Compare commits

..

1 Commits

Author SHA1 Message Date
Andy Lee
fcbcde1ea8 feat: implement smart memory configuration for DiskANN
- Add intelligent memory calculation based on data size and system specs
- search_memory_maximum: 1/10 of embedding size (controls PQ compression)
- build_memory_maximum: 50% of available RAM (controls sharding)
- Provides optimal balance between performance and memory usage
- Automatic fallback to default values if parameters are explicitly provided
2025-08-03 22:54:08 -07:00
91 changed files with 3745 additions and 5889 deletions

View File

@@ -5,7 +5,6 @@ on:
branches: [ main ]
pull_request:
branches: [ main ]
workflow_dispatch:
jobs:
build:

View File

@@ -54,36 +54,16 @@ jobs:
python: '3.12'
- os: ubuntu-22.04
python: '3.13'
- os: macos-14
- os: macos-latest
python: '3.9'
- os: macos-14
- os: macos-latest
python: '3.10'
- os: macos-14
- os: macos-latest
python: '3.11'
- os: macos-14
- os: macos-latest
python: '3.12'
- os: macos-14
- os: macos-latest
python: '3.13'
- os: macos-15
python: '3.9'
- os: macos-15
python: '3.10'
- os: macos-15
python: '3.11'
- os: macos-15
python: '3.12'
- os: macos-15
python: '3.13'
- os: macos-13
python: '3.9'
- os: macos-13
python: '3.10'
- os: macos-13
python: '3.11'
- os: macos-13
python: '3.12'
# Note: macos-13 + Python 3.13 excluded due to PyTorch compatibility
# (PyTorch 2.5+ supports Python 3.13 but not Intel Mac x86_64)
runs-on: ${{ matrix.os }}
steps:
@@ -129,73 +109,48 @@ jobs:
uv pip install --system delocate
fi
- name: Set macOS environment variables
if: runner.os == 'macOS'
run: |
# Use brew --prefix to automatically detect Homebrew installation path
HOMEBREW_PREFIX=$(brew --prefix)
echo "HOMEBREW_PREFIX=${HOMEBREW_PREFIX}" >> $GITHUB_ENV
echo "OpenMP_ROOT=${HOMEBREW_PREFIX}/opt/libomp" >> $GITHUB_ENV
# Set CMAKE_PREFIX_PATH to let CMake find all packages automatically
echo "CMAKE_PREFIX_PATH=${HOMEBREW_PREFIX}" >> $GITHUB_ENV
# Set compiler flags for OpenMP (required for both backends)
echo "LDFLAGS=-L${HOMEBREW_PREFIX}/opt/libomp/lib" >> $GITHUB_ENV
echo "CPPFLAGS=-I${HOMEBREW_PREFIX}/opt/libomp/include" >> $GITHUB_ENV
- name: Build packages
run: |
# Build core (platform independent)
cd packages/leann-core
uv build
cd ../..
if [[ "${{ matrix.os }}" == ubuntu-* ]]; then
cd packages/leann-core
uv build
cd ../..
fi
# Build HNSW backend
cd packages/leann-backend-hnsw
if [[ "${{ matrix.os }}" == macos-* ]]; then
# Use system clang for better compatibility
if [ "${{ matrix.os }}" == "macos-latest" ]; then
# Use system clang instead of homebrew LLVM for better compatibility
export CC=clang
export CXX=clang++
# Homebrew libraries on each macOS version require matching minimum version
if [[ "${{ matrix.os }}" == "macos-13" ]]; then
export MACOSX_DEPLOYMENT_TARGET=13.0
elif [[ "${{ matrix.os }}" == "macos-14" ]]; then
export MACOSX_DEPLOYMENT_TARGET=14.0
elif [[ "${{ matrix.os }}" == "macos-15" ]]; then
export MACOSX_DEPLOYMENT_TARGET=15.0
fi
uv build --wheel --python ${{ matrix.python }} --find-links ${GITHUB_WORKSPACE}/packages/leann-core/dist
export MACOSX_DEPLOYMENT_TARGET=11.0
uv build --wheel --python python
else
uv build --wheel --python ${{ matrix.python }} --find-links ${GITHUB_WORKSPACE}/packages/leann-core/dist
uv build --wheel --python python
fi
cd ../..
# Build DiskANN backend
cd packages/leann-backend-diskann
if [[ "${{ matrix.os }}" == macos-* ]]; then
# Use system clang for better compatibility
if [ "${{ matrix.os }}" == "macos-latest" ]; then
# Use system clang instead of homebrew LLVM for better compatibility
export CC=clang
export CXX=clang++
# DiskANN requires macOS 13.3+ for sgesdd_ LAPACK function
# But Homebrew libraries on each macOS version require matching minimum version
if [[ "${{ matrix.os }}" == "macos-13" ]]; then
export MACOSX_DEPLOYMENT_TARGET=13.3
elif [[ "${{ matrix.os }}" == "macos-14" ]]; then
export MACOSX_DEPLOYMENT_TARGET=14.0
elif [[ "${{ matrix.os }}" == "macos-15" ]]; then
export MACOSX_DEPLOYMENT_TARGET=15.0
fi
uv build --wheel --python ${{ matrix.python }} --find-links ${GITHUB_WORKSPACE}/packages/leann-core/dist
export MACOSX_DEPLOYMENT_TARGET=13.3
uv build --wheel --python python
else
uv build --wheel --python ${{ matrix.python }} --find-links ${GITHUB_WORKSPACE}/packages/leann-core/dist
uv build --wheel --python python
fi
cd ../..
# Build meta package (platform independent)
cd packages/leann
uv build
cd ../..
if [[ "${{ matrix.os }}" == ubuntu-* ]]; then
cd packages/leann
uv build
cd ../..
fi
- name: Repair wheels (Linux)
if: runner.os == 'Linux'
@@ -221,24 +176,10 @@ jobs:
- name: Repair wheels (macOS)
if: runner.os == 'macOS'
run: |
# Determine deployment target based on runner OS
# Must match the Homebrew libraries for each macOS version
if [[ "${{ matrix.os }}" == "macos-13" ]]; then
HNSW_TARGET="13.0"
DISKANN_TARGET="13.3"
elif [[ "${{ matrix.os }}" == "macos-14" ]]; then
HNSW_TARGET="14.0"
DISKANN_TARGET="14.0"
elif [[ "${{ matrix.os }}" == "macos-15" ]]; then
HNSW_TARGET="15.0"
DISKANN_TARGET="15.0"
fi
# Repair HNSW wheel
cd packages/leann-backend-hnsw
if [ -d dist ]; then
export MACOSX_DEPLOYMENT_TARGET=$HNSW_TARGET
delocate-wheel -w dist_repaired -v --require-target-macos-version $HNSW_TARGET dist/*.whl
delocate-wheel -w dist_repaired -v dist/*.whl
rm -rf dist
mv dist_repaired dist
fi
@@ -247,8 +188,7 @@ jobs:
# Repair DiskANN wheel
cd packages/leann-backend-diskann
if [ -d dist ]; then
export MACOSX_DEPLOYMENT_TARGET=$DISKANN_TARGET
delocate-wheel -w dist_repaired -v --require-target-macos-version $DISKANN_TARGET dist/*.whl
delocate-wheel -w dist_repaired -v dist/*.whl
rm -rf dist
mv dist_repaired dist
fi
@@ -259,34 +199,39 @@ jobs:
echo "📦 Built packages:"
find packages/*/dist -name "*.whl" -o -name "*.tar.gz" | sort
- name: Install built packages for testing
run: |
# Create a virtual environment with the correct Python version
uv venv --python ${{ matrix.python }}
# Create a virtual environment
uv venv
source .venv/bin/activate || source .venv/Scripts/activate
# Install packages using --find-links to prioritize local builds
uv pip install --find-links packages/leann-core/dist --find-links packages/leann-backend-hnsw/dist --find-links packages/leann-backend-diskann/dist packages/leann-core/dist/*.whl || uv pip install --find-links packages/leann-core/dist packages/leann-core/dist/*.tar.gz
uv pip install --find-links packages/leann-core/dist packages/leann-backend-hnsw/dist/*.whl
uv pip install --find-links packages/leann-core/dist packages/leann-backend-diskann/dist/*.whl
uv pip install packages/leann/dist/*.whl || uv pip install packages/leann/dist/*.tar.gz
# Install the built wheels
# Use --find-links to let uv choose the correct wheel for the platform
if [[ "${{ matrix.os }}" == ubuntu-* ]]; then
uv pip install leann-core --find-links packages/leann-core/dist
uv pip install leann --find-links packages/leann/dist
fi
uv pip install leann-backend-hnsw --find-links packages/leann-backend-hnsw/dist
uv pip install leann-backend-diskann --find-links packages/leann-backend-diskann/dist
# Install test dependencies using extras
uv pip install -e ".[test]"
- name: Run tests with pytest
env:
CI: true
CI: true # Mark as CI environment to skip memory-intensive tests
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
HF_HUB_DISABLE_SYMLINKS: 1
TOKENIZERS_PARALLELISM: false
PYTORCH_ENABLE_MPS_FALLBACK: 0
OMP_NUM_THREADS: 1
MKL_NUM_THREADS: 1
PYTORCH_ENABLE_MPS_FALLBACK: 0 # Disable MPS on macOS CI to avoid memory issues
OMP_NUM_THREADS: 1 # Disable OpenMP parallelism to avoid libomp crashes
MKL_NUM_THREADS: 1 # Single thread for MKL operations
run: |
# Activate virtual environment
source .venv/bin/activate || source .venv/Scripts/activate
pytest tests/ -v --tb=short
# Run all tests
pytest tests/
- name: Run sanity checks (optional)
run: |

View File

@@ -1,19 +0,0 @@
name: Link Check
on:
push:
branches: [ main, master ]
pull_request:
schedule:
- cron: "0 3 * * 1"
jobs:
link-check:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: lycheeverse/lychee-action@v2
with:
args: --no-progress --insecure README.md docs/ apps/ examples/ benchmarks/
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

14
.gitignore vendored
View File

@@ -34,15 +34,11 @@ build/
nprobe_logs/
micro/results
micro/contriever-INT8
data/*
!data/2501.14312v1 (1).pdf
!data/2506.08276v1.pdf
!data/PrideandPrejudice.txt
!data/huawei_pangu.md
!data/ground_truth/
!data/indices/
!data/queries/
!data/.gitattributes
examples/data/*
!examples/data/2501.14312v1 (1).pdf
!examples/data/2506.08276v1.pdf
!examples/data/PrideandPrejudice.txt
!examples/data/README.md
*.qdstrm
benchmark_results/
results/

View File

@@ -1,6 +1,6 @@
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v5.0.0
rev: v4.5.0
hooks:
- id: trailing-whitespace
- id: end-of-file-fixer
@@ -10,7 +10,7 @@ repos:
- id: debug-statements
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.12.7 # Fixed version to match pyproject.toml
rev: v0.2.1
hooks:
- id: ruff
- id: ruff-format

317
README.md
View File

@@ -3,11 +3,9 @@
</p>
<p align="center">
<img src="https://img.shields.io/badge/Python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12%20%7C%203.13-blue.svg" alt="Python Versions">
<img src="https://github.com/yichuan-w/LEANN/actions/workflows/build-and-publish.yml/badge.svg" alt="CI Status">
<img src="https://img.shields.io/badge/Platform-Ubuntu%20%7C%20macOS%20(ARM64%2FIntel)-lightgrey" alt="Platform">
<img src="https://img.shields.io/badge/Python-3.9%2B-blue.svg" alt="Python 3.9+">
<img src="https://img.shields.io/badge/License-MIT-green.svg" alt="MIT License">
<img src="https://img.shields.io/badge/MCP-Native%20Integration-blue" alt="MCP Integration">
<img src="https://img.shields.io/badge/Platform-Linux%20%7C%20macOS-lightgrey" alt="Platform">
</p>
<h2 align="center" tabindex="-1" class="heading-element" dir="auto">
@@ -18,10 +16,7 @@ LEANN is an innovative vector database that democratizes personal AI. Transform
LEANN achieves this through *graph-based selective recomputation* with *high-degree preserving pruning*, computing embeddings on-demand instead of storing them all. [Illustration Fig →](#-architecture--how-it-works) | [Paper →](https://arxiv.org/abs/2506.08276)
**Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can semantic search your **[file system](#-personal-data-manager-process-any-documents-pdf-txt-md)**, **[emails](#-your-personal-email-secretary-rag-on-apple-mail)**, **[browser history](#-time-machine-for-the-web-rag-your-entire-browser-history)**, **[chat history](#-wechat-detective-unlock-your-golden-memories)**, **[codebase](#-claude-code-integration-transform-your-development-workflow)**\* , or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy.
\* Claude Code only supports basic `grep`-style keyword search. **LEANN** is a drop-in **semantic search MCP service fully compatible with Claude Code**, unlocking intelligent retrieval without changing your workflow. 🔥 Check out [the easy setup →](packages/leann-mcp/README.md)
**Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can search your **[file system](#-personal-data-manager-process-any-documents-pdf-txt-md)**, **[emails](#-your-personal-email-secretary-rag-on-apple-mail)**, **[browser history](#-time-machine-for-the-web-rag-your-entire-browser-history)**, **[chat history](#-wechat-detective-unlock-your-golden-memories)**, or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy.
@@ -31,7 +26,7 @@ LEANN achieves this through *graph-based selective recomputation* with *high-deg
<img src="assets/effects.png" alt="LEANN vs Traditional Vector DB Storage Comparison" width="70%">
</p>
> **The numbers speak for themselves:** Index 60 million text chunks in just 6GB instead of 201GB. From emails to browser history, everything fits on your laptop. [See detailed benchmarks for different applications below ↓](#-storage-comparison)
> **The numbers speak for themselves:** Index 60 million Wikipedia chunks in just 6GB instead of 201GB. From emails to browser history, everything fits on your laptop. [See detailed benchmarks for different applications below ↓](#storage-comparison)
🔒 **Privacy:** Your data never leaves your laptop. No OpenAI, no cloud, no "terms of service".
@@ -46,42 +41,40 @@ LEANN achieves this through *graph-based selective recomputation* with *high-deg
## Installation
### 📦 Prerequisites: Install uv
<details>
<summary><strong>📦 Prerequisites: Install uv (if you don't have it)</strong></summary>
[Install uv](https://docs.astral.sh/uv/getting-started/installation/#installation-methods) first if you don't have it. Typically, you can install it with:
Install uv first if you don't have it:
```bash
curl -LsSf https://astral.sh/uv/install.sh | sh
```
### 🚀 Quick Install
📖 [Detailed uv installation methods →](https://docs.astral.sh/uv/getting-started/installation/#installation-methods)
Clone the repository to access all examples and try amazing applications,
</details>
LEANN provides two installation methods: **pip install** (quick and easy) and **build from source** (recommended for development).
### 🚀 Quick Install (Recommended for most users)
Clone the repository to access all examples and install LEANN from [PyPI](https://pypi.org/project/leann/) to run them immediately:
```bash
git clone https://github.com/yichuan-w/LEANN.git leann
git clone git@github.com:yichuan-w/LEANN.git leann
cd leann
```
and install LEANN from [PyPI](https://pypi.org/project/leann/) to run them immediately:
```bash
uv venv
source .venv/bin/activate
uv pip install leann
```
<!--
> Low-resource? See “Low-resource setups” in the [Configuration Guide](docs/configuration-guide.md#low-resource-setups). -->
<details>
<summary>
<strong>🔧 Build from Source (Recommended for development)</strong>
</summary>
### 🔧 Build from Source (Recommended for development)
```bash
git clone https://github.com/yichuan-w/LEANN.git leann
git clone git@github.com:yichuan-w/LEANN.git leann
cd leann
git submodule update --init --recursive
```
@@ -98,14 +91,14 @@ sudo apt-get install libomp-dev libboost-all-dev protobuf-compiler libabsl-dev l
uv sync
```
</details>
## Quick Start
Our declarative API makes RAG as easy as writing a config file.
Check out [demo.ipynb](demo.ipynb) or [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/yichuan-w/LEANN/blob/main/demo.ipynb)
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/yichuan-w/LEANN/blob/main/demo.ipynb) [Try in this ipynb file →](demo.ipynb)
```python
from leann import LeannBuilder, LeannSearcher, LeannChat
@@ -129,11 +122,11 @@ response = chat.ask("How much storage does LEANN save?", top_k=1)
## RAG on Everything!
LEANN supports RAG on various data sources including documents (`.pdf`, `.txt`, `.md`), Apple Mail, Google Search History, WeChat, and more.
LEANN supports RAG on various data sources including documents (.pdf, .txt, .md), Apple Mail, Google Search History, WeChat, and more.
### Generation Model Setup
LEANN supports multiple LLM providers for text generation (OpenAI API, HuggingFace, Ollama).
> **Generation Model Setup**
> LEANN supports multiple LLM providers for text generation (OpenAI API, HuggingFace, Ollama).
<details>
<summary><strong>🔑 OpenAI API Setup (Default)</strong></summary>
@@ -173,52 +166,7 @@ ollama pull llama3.2:1b
</details>
### ⭐ Flexible Configuration
LEANN provides flexible parameters for embedding models, search strategies, and data processing to fit your specific needs.
📚 **Need configuration best practices?** Check our [Configuration Guide](docs/configuration-guide.md) for detailed optimization tips, model selection advice, and solutions to common issues like slow embeddings or poor search quality.
<details>
<summary><strong>📋 Click to expand: Common Parameters (Available in All Examples)</strong></summary>
All RAG examples share these common parameters. **Interactive mode** is available in all examples - simply run without `--query` to start a continuous Q&A session where you can ask multiple questions. Type 'quit' to exit.
```bash
# Core Parameters (General preprocessing for all examples)
--index-dir DIR # Directory to store the index (default: current directory)
--query "YOUR QUESTION" # Single query mode. Omit for interactive chat (type 'quit' to exit), and now you can play with your index interactively
--max-items N # Limit data preprocessing (default: -1, process all data)
--force-rebuild # Force rebuild index even if it exists
# Embedding Parameters
--embedding-model MODEL # e.g., facebook/contriever, text-embedding-3-small, mlx-community/Qwen3-Embedding-0.6B-8bit or nomic-embed-text
--embedding-mode MODE # sentence-transformers, openai, mlx, or ollama
# LLM Parameters (Text generation models)
--llm TYPE # LLM backend: openai, ollama, or hf (default: openai)
--llm-model MODEL # Model name (default: gpt-4o) e.g., gpt-4o-mini, llama3.2:1b, Qwen/Qwen2.5-1.5B-Instruct
--thinking-budget LEVEL # Thinking budget for reasoning models: low/medium/high (supported by o3, o3-mini, GPT-Oss:20b, and other reasoning models)
# Search Parameters
--top-k N # Number of results to retrieve (default: 20)
--search-complexity N # Search complexity for graph traversal (default: 32)
# Chunking Parameters
--chunk-size N # Size of text chunks (default varies by source: 256 for most, 192 for WeChat)
--chunk-overlap N # Overlap between chunks (default varies: 25-128 depending on source)
# Index Building Parameters
--backend-name NAME # Backend to use: hnsw or diskann (default: hnsw)
--graph-degree N # Graph degree for index construction (default: 32)
--build-complexity N # Build complexity for index construction (default: 64)
--compact / --no-compact # Use compact storage (default: true). Must be `no-compact` for `no-recompute` build.
--recompute / --no-recompute # Enable/disable embedding recomputation (default: enabled). Should not do a `no-recompute` search in a `recompute` build.
```
</details>
### 📄 Personal Data Manager: Process Any Documents (`.pdf`, `.txt`, `.md`)!
### 📄 Personal Data Manager: Process Any Documents (.pdf, .txt, .md)!
Ask questions directly about your personal PDFs, documents, and any directory containing your files!
@@ -226,29 +174,25 @@ Ask questions directly about your personal PDFs, documents, and any directory co
<img src="videos/paper_clear.gif" alt="LEANN Document Search Demo" width="600">
</p>
The example below asks a question about summarizing our paper (uses default data in `data/`, which is a directory with diverse data sources: two papers, Pride and Prejudice, and a Technical report about LLM in Huawei in Chinese), and this is the **easiest example** to run here:
The example below asks a question about summarizing two papers (uses default data in `examples/data`) and this is the easiest example to run here:
```bash
source .venv/bin/activate # Don't forget to activate the virtual environment
python -m apps.document_rag --query "What are the main techniques LEANN explores?"
source .venv/bin/activate
python ./examples/main_cli_example.py
```
<details>
<summary><strong>📋 Click to expand: Document-Specific Arguments</strong></summary>
<summary><strong>📋 Click to expand: User Configurable Arguments</strong></summary>
#### Parameters
```bash
--data-dir DIR # Directory containing documents to process (default: data)
--file-types .ext .ext # Filter by specific file types (optional - all LlamaIndex supported types if omitted)
```
# Use custom index directory
python examples/main_cli_example.py --index-dir "./my_custom_index"
#### Example Commands
```bash
# Process all documents with larger chunks for academic papers
python -m apps.document_rag --data-dir "~/Documents/Papers" --chunk-size 1024
# Use custom data directory
python examples/main_cli_example.py --data-dir "./my_documents"
# Filter only markdown and Python files with smaller chunks
python -m apps.document_rag --data-dir "./docs" --chunk-size 256 --file-types .md .py
# Ask a specific question
python examples/main_cli_example.py --query "What are the main findings in these papers?"
```
</details>
@@ -262,29 +206,30 @@ python -m apps.document_rag --data-dir "./docs" --chunk-size 256 --file-types .m
<img src="videos/mail_clear.gif" alt="LEANN Email Search Demo" width="600">
</p>
Before running the example below, you need to grant full disk access to your terminal/VS Code in System Preferences → Privacy & Security → Full Disk Access.
**Note:** You need to grant full disk access to your terminal/VS Code in System Preferences → Privacy & Security → Full Disk Access.
```bash
python -m apps.email_rag --query "What's the food I ordered by DoorDash or Uber Eats mostly?"
python examples/mail_reader_leann.py --query "What's the food I ordered by DoorDash or Uber Eats mostly?"
```
**780K email chunks → 78MB storage.** Finally, search your email like you search Google.
<details>
<summary><strong>📋 Click to expand: Email-Specific Arguments</strong></summary>
<summary><strong>📋 Click to expand: User Configurable Arguments</strong></summary>
#### Parameters
```bash
--mail-path PATH # Path to specific mail directory (auto-detects if omitted)
--include-html # Include HTML content in processing (useful for newsletters)
```
# Use default mail path (works for most macOS setups)
python examples/mail_reader_leann.py
#### Example Commands
```bash
# Search work emails from a specific account
python -m apps.email_rag --mail-path "~/Library/Mail/V10/WORK_ACCOUNT"
# Run with custom index directory
python examples/mail_reader_leann.py --index-dir "./my_mail_index"
# Find all receipts and order confirmations (includes HTML)
python -m apps.email_rag --query "receipt order confirmation invoice" --include-html
# Process all emails (may take time but indexes everything)
python examples/mail_reader_leann.py --max-emails -1
# Limit number of emails processed (useful for testing)
python examples/mail_reader_leann.py --max-emails 1000
# Run a single query
python examples/mail_reader_leann.py --query "What did my boss say about deadlines?"
```
</details>
@@ -305,25 +250,25 @@ Once the index is built, you can ask questions like:
</p>
```bash
python -m apps.browser_rag --query "Tell me my browser history about machine learning?"
python examples/google_history_reader_leann.py --query "Tell me my browser history about machine learning?"
```
**38K browser entries → 6MB storage.** Your browser history becomes your personal search engine.
<details>
<summary><strong>📋 Click to expand: Browser-Specific Arguments</strong></summary>
<summary><strong>📋 Click to expand: User Configurable Arguments</strong></summary>
#### Parameters
```bash
--chrome-profile PATH # Path to Chrome profile directory (auto-detects if omitted)
```
# Use default Chrome profile (auto-finds all profiles)
python examples/google_history_reader_leann.py
#### Example Commands
```bash
# Search academic research from your browsing history
python -m apps.browser_rag --query "arxiv papers machine learning transformer architecture"
# Run with custom index directory
python examples/google_history_reader_leann.py --index-dir "./my_chrome_index"
# Track competitor analysis across work profile
python -m apps.browser_rag --chrome-profile "~/Library/Application Support/Google/Chrome/Work Profile" --max-items 5000
# Limit number of history entries processed (useful for testing)
python examples/google_history_reader_leann.py --max-entries 500
# Run a single query
python examples/google_history_reader_leann.py --query "What websites did I visit about machine learning?"
```
</details>
@@ -363,7 +308,7 @@ Once the index is built, you can ask questions like:
</p>
```bash
python -m apps.wechat_rag --query "Show me all group chats about weekend plans"
python examples/wechat_history_reader_leann.py --query "Show me all group chats about weekend plans"
```
**400K messages → 64MB storage** Search years of chat history in any language.
@@ -371,13 +316,7 @@ python -m apps.wechat_rag --query "Show me all group chats about weekend plans"
<details>
<summary><strong>🔧 Click to expand: Installation Requirements</strong></summary>
First, you need to install the [WeChat exporter](https://github.com/sunnyyoung/WeChatTweak-CLI),
```bash
brew install sunnyyoung/repo/wechattweak-cli
```
or install it manually (if you have issues with Homebrew):
First, you need to install the WeChat exporter:
```bash
sudo packages/wechat-exporter/wechattweak-cli install
@@ -386,28 +325,30 @@ sudo packages/wechat-exporter/wechattweak-cli install
**Troubleshooting:**
- **Installation issues**: Check the [WeChatTweak-CLI issues page](https://github.com/sunnyyoung/WeChatTweak-CLI/issues/41)
- **Export errors**: If you encounter the error below, try restarting WeChat
```bash
Failed to export WeChat data. Please ensure WeChat is running and WeChatTweak is installed.
Failed to find or export WeChat data. Exiting.
```
```
Failed to export WeChat data. Please ensure WeChat is running and WeChatTweak is installed.
Failed to find or export WeChat data. Exiting.
```
</details>
<details>
<summary><strong>📋 Click to expand: WeChat-Specific Arguments</strong></summary>
<summary><strong>📋 Click to expand: User Configurable Arguments</strong></summary>
#### Parameters
```bash
--export-dir DIR # Directory to store exported WeChat data (default: wechat_export_direct)
--force-export # Force re-export even if data exists
```
# Use default settings (recommended for first run)
python examples/wechat_history_reader_leann.py
#### Example Commands
```bash
# Search for travel plans discussed in group chats
python -m apps.wechat_rag --query "travel plans" --max-items 10000
# Run with custom export directory and wehn we run the first time, LEANN will export all chat history automatically for you
python examples/wechat_history_reader_leann.py --export-dir "./my_wechat_exports"
# Re-export and search recent chats (useful after new messages)
python -m apps.wechat_rag --force-export --query "work schedule"
# Run with custom index directory
python examples/wechat_history_reader_leann.py --index-dir "./my_wechat_index"
# Limit number of chat entries processed (useful for testing)
python examples/wechat_history_reader_leann.py --max-entries 1000
# Run a single query
python examples/wechat_history_reader_leann.py --query "Show me conversations about travel plans"
```
</details>
@@ -421,58 +362,15 @@ Once the index is built, you can ask questions like:
</details>
### 🚀 Claude Code Integration: Transform Your Development Workflow!
**The future of code assistance is here.** Transform your development workflow with LEANN's native MCP integration for Claude Code. Index your entire codebase and get intelligent code assistance directly in your IDE.
**Key features:**
- 🔍 **Semantic code search** across your entire project, fully local index and lightweight
- 📚 **Context-aware assistance** for debugging and development
- 🚀 **Zero-config setup** with automatic language detection
```bash
# Install LEANN globally for MCP integration
uv tool install leann-core --with leann
claude mcp add --scope user leann-server -- leann_mcp
# Setup is automatic - just start using Claude Code!
```
Try our fully agentic pipeline with auto query rewriting, semantic search planning, and more:
![LEANN MCP Integration](assets/mcp_leann.png)
**🔥 Ready to supercharge your coding?** [Complete Setup Guide →](packages/leann-mcp/README.md)
## 🖥️ Command Line Interface
LEANN includes a powerful CLI for document processing and search. Perfect for quick document indexing and interactive chat.
### Installation
If you followed the Quick Start, `leann` is already installed in your virtual environment:
```bash
source .venv/bin/activate
leann --help
```
**To make it globally available:**
```bash
# Install the LEANN CLI globally using uv tool
uv tool install leann-core --with leann
# Now you can use leann from anywhere without activating venv
leann --help
```
> **Note**: Global installation is required for Claude Code integration. The `leann_mcp` server depends on the globally available `leann` command.
### Usage Examples
```bash
# build from a specific directory, and my_docs is the index name(Here you can also build from multiple dict or multiple files)
leann build my-docs --docs ./your_documents
# Build an index from documents
leann build my-docs --docs ./documents
# Search your documents
leann search my-docs "machine learning concepts"
@@ -485,29 +383,27 @@ leann list
```
**Key CLI features:**
- Auto-detects document formats (PDF, TXT, MD, DOCX, PPTX + code files)
- Auto-detects document formats (PDF, TXT, MD, DOCX)
- Smart text chunking with overlap
- Multiple LLM providers (Ollama, OpenAI, HuggingFace)
- Organized index storage in `.leann/indexes/` (project-local)
- Organized index storage in `~/.leann/indexes/`
- Support for advanced search parameters
<details>
<summary><strong>📋 Click to expand: Complete CLI Reference</strong></summary>
You can use `leann --help`, or `leann build --help`, `leann search --help`, `leann ask --help` to get the complete CLI reference.
**Build Command:**
```bash
leann build INDEX_NAME --docs DIRECTORY|FILE [DIRECTORY|FILE ...] [OPTIONS]
leann build INDEX_NAME --docs DIRECTORY [OPTIONS]
Options:
--backend {hnsw,diskann} Backend to use (default: hnsw)
--embedding-model MODEL Embedding model (default: facebook/contriever)
--graph-degree N Graph degree (default: 32)
--complexity N Build complexity (default: 64)
--force Force rebuild existing index
--compact / --no-compact Use compact storage (default: true). Must be `no-compact` for `no-recompute` build.
--recompute / --no-recompute Enable recomputation (default: true)
--graph-degree N Graph degree (default: 32)
--complexity N Build complexity (default: 64)
--force Force rebuild existing index
--compact Use compact storage (default: true)
--recompute Enable recomputation (default: true)
```
**Search Command:**
@@ -515,9 +411,9 @@ Options:
leann search INDEX_NAME QUERY [OPTIONS]
Options:
--top-k N Number of results (default: 5)
--complexity N Search complexity (default: 64)
--recompute / --no-recompute Enable/disable embedding recomputation (default: enabled). Should not do a `no-recompute` search in a `recompute` build.
--top-k N Number of results (default: 5)
--complexity N Search complexity (default: 64)
--recompute-embeddings Use recomputation for highest accuracy
--pruning-strategy {global,local,proportional}
```
@@ -548,17 +444,13 @@ Options:
- **Dynamic batching:** Efficiently batch embedding computations for GPU utilization
- **Two-level search:** Smart graph traversal that prioritizes promising nodes
**Backends:**
- **HNSW** (default): Ideal for most datasets with maximum storage savings through full recomputation
- **DiskANN**: Advanced option with superior search performance, using PQ-based graph traversal with real-time reranking for the best speed-accuracy trade-off
**Backends:** DiskANN or HNSW - pick what works for your data size.
## Benchmarks
**[DiskANN vs HNSW Performance Comparison →](benchmarks/diskann_vs_hnsw_speed_comparison.py)** - Compare search performance between both backends
**[Simple Example: Compare LEANN vs FAISS →](benchmarks/compare_faiss_vs_leann.py)** - See storage savings in action
### 📊 Storage Comparison
📊 **[Simple Example: Compare LEANN vs FAISS →](examples/compare_faiss_vs_leann.py)**
### Storage Comparison
| System | DPR (2.1M) | Wiki (60M) | Chat (400K) | Email (780K) | Browser (38K) |
|--------|-------------|------------|-------------|--------------|---------------|
@@ -572,7 +464,8 @@ Options:
```bash
uv pip install -e ".[dev]" # Install dev dependencies
python benchmarks/run_evaluation.py # Will auto-download evaluation data and run benchmarks
python examples/run_evaluation.py data/indices/dpr/dpr_diskann # DPR dataset
python examples/run_evaluation.py data/indices/rpj_wiki/rpj_wiki.index # Wikipedia
```
The evaluation script downloads data automatically on first run. The last three results were tested with partial personal data, and you can reproduce them with your own data!
@@ -610,15 +503,9 @@ MIT License - see [LICENSE](LICENSE) for details.
## 🙏 Acknowledgments
Core Contributors: [Yichuan Wang](https://yichuan-w.github.io/) & [Zhifei Li](https://github.com/andylizf).
This work is done at [**Berkeley Sky Computing Lab**](https://sky.cs.berkeley.edu/)
---
We welcome more contributors! Feel free to open issues or submit PRs.
This work is done at [**Berkeley Sky Computing Lab**](https://sky.cs.berkeley.edu/).
## Star History
[![Star History Chart](https://api.star-history.com/svg?repos=yichuan-w/LEANN&type=Date)](https://www.star-history.com/#yichuan-w/LEANN&Date)
<p align="center">
<strong>⭐ Star us on GitHub if Leann is useful for your research or applications!</strong>
</p>

View File

View File

@@ -1,324 +0,0 @@
"""
Base class for unified RAG examples interface.
Provides common parameters and functionality for all RAG examples.
"""
import argparse
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Any
import dotenv
from leann.api import LeannBuilder, LeannChat
from llama_index.core.node_parser import SentenceSplitter
dotenv.load_dotenv()
class BaseRAGExample(ABC):
"""Base class for all RAG examples with unified interface."""
def __init__(
self,
name: str,
description: str,
default_index_name: str,
):
self.name = name
self.description = description
self.default_index_name = default_index_name
self.parser = self._create_parser()
def _create_parser(self) -> argparse.ArgumentParser:
"""Create argument parser with common parameters."""
parser = argparse.ArgumentParser(
description=self.description, formatter_class=argparse.RawDescriptionHelpFormatter
)
# Core parameters (all examples share these)
core_group = parser.add_argument_group("Core Parameters")
core_group.add_argument(
"--index-dir",
type=str,
default=f"./{self.default_index_name}",
help=f"Directory to store the index (default: ./{self.default_index_name})",
)
core_group.add_argument(
"--query",
type=str,
default=None,
help="Query to run (if not provided, will run in interactive mode)",
)
# Allow subclasses to override default max_items
max_items_default = getattr(self, "max_items_default", -1)
core_group.add_argument(
"--max-items",
type=int,
default=max_items_default,
help="Maximum number of items to process -1 for all, means index all documents, and you should set it to a reasonable number if you have a large dataset and try at the first time)",
)
core_group.add_argument(
"--force-rebuild", action="store_true", help="Force rebuild index even if it exists"
)
# Embedding parameters
embedding_group = parser.add_argument_group("Embedding Parameters")
# Allow subclasses to override default embedding_model
embedding_model_default = getattr(self, "embedding_model_default", "facebook/contriever")
embedding_group.add_argument(
"--embedding-model",
type=str,
default=embedding_model_default,
help=f"Embedding model to use (default: {embedding_model_default}), we provide facebook/contriever, text-embedding-3-small,mlx-community/Qwen3-Embedding-0.6B-8bit or nomic-embed-text",
)
embedding_group.add_argument(
"--embedding-mode",
type=str,
default="sentence-transformers",
choices=["sentence-transformers", "openai", "mlx", "ollama"],
help="Embedding backend mode (default: sentence-transformers), we provide sentence-transformers, openai, mlx, or ollama",
)
# LLM parameters
llm_group = parser.add_argument_group("LLM Parameters")
llm_group.add_argument(
"--llm",
type=str,
default="openai",
choices=["openai", "ollama", "hf", "simulated"],
help="LLM backend: openai, ollama, or hf (default: openai)",
)
llm_group.add_argument(
"--llm-model",
type=str,
default=None,
help="Model name (default: gpt-4o) e.g., gpt-4o-mini, llama3.2:1b, Qwen/Qwen2.5-1.5B-Instruct",
)
llm_group.add_argument(
"--llm-host",
type=str,
default="http://localhost:11434",
help="Host for Ollama API (default: http://localhost:11434)",
)
llm_group.add_argument(
"--thinking-budget",
type=str,
choices=["low", "medium", "high"],
default=None,
help="Thinking budget for reasoning models (low/medium/high). Supported by GPT-Oss:20b and other reasoning models.",
)
# Search parameters
search_group = parser.add_argument_group("Search Parameters")
search_group.add_argument(
"--top-k", type=int, default=20, help="Number of results to retrieve (default: 20)"
)
search_group.add_argument(
"--search-complexity",
type=int,
default=32,
help="Search complexity for graph traversal (default: 64)",
)
# Index building parameters
index_group = parser.add_argument_group("Index Building Parameters")
index_group.add_argument(
"--backend-name",
type=str,
default="hnsw",
choices=["hnsw", "diskann"],
help="Backend to use for index (default: hnsw)",
)
index_group.add_argument(
"--graph-degree",
type=int,
default=32,
help="Graph degree for index construction (default: 32)",
)
index_group.add_argument(
"--build-complexity",
type=int,
default=64,
help="Build complexity for index construction (default: 64)",
)
index_group.add_argument(
"--no-compact",
action="store_true",
help="Disable compact index storage",
)
index_group.add_argument(
"--no-recompute",
action="store_true",
help="Disable embedding recomputation",
)
# Add source-specific parameters
self._add_specific_arguments(parser)
return parser
@abstractmethod
def _add_specific_arguments(self, parser: argparse.ArgumentParser):
"""Add source-specific arguments. Override in subclasses."""
pass
@abstractmethod
async def load_data(self, args) -> list[str]:
"""Load data from the source. Returns list of text chunks."""
pass
def get_llm_config(self, args) -> dict[str, Any]:
"""Get LLM configuration based on arguments."""
config = {"type": args.llm}
if args.llm == "openai":
config["model"] = args.llm_model or "gpt-4o"
elif args.llm == "ollama":
config["model"] = args.llm_model or "llama3.2:1b"
config["host"] = args.llm_host
elif args.llm == "hf":
config["model"] = args.llm_model or "Qwen/Qwen2.5-1.5B-Instruct"
elif args.llm == "simulated":
# Simulated LLM doesn't need additional configuration
pass
return config
async def build_index(self, args, texts: list[str]) -> str:
"""Build LEANN index from texts."""
index_path = str(Path(args.index_dir) / f"{self.default_index_name}.leann")
print(f"\n[Building Index] Creating {self.name} index...")
print(f"Total text chunks: {len(texts)}")
builder = LeannBuilder(
backend_name=args.backend_name,
embedding_model=args.embedding_model,
embedding_mode=args.embedding_mode,
graph_degree=args.graph_degree,
complexity=args.build_complexity,
is_compact=not args.no_compact,
is_recompute=not args.no_recompute,
num_threads=1, # Force single-threaded mode
)
# Add texts in batches for better progress tracking
batch_size = 1000
for i in range(0, len(texts), batch_size):
batch = texts[i : i + batch_size]
for text in batch:
builder.add_text(text)
print(f"Added {min(i + batch_size, len(texts))}/{len(texts)} texts...")
print("Building index structure...")
builder.build_index(index_path)
print(f"Index saved to: {index_path}")
return index_path
async def run_interactive_chat(self, args, index_path: str):
"""Run interactive chat with the index."""
chat = LeannChat(
index_path,
llm_config=self.get_llm_config(args),
system_prompt=f"You are a helpful assistant that answers questions about {self.name} data.",
complexity=args.search_complexity,
)
print(f"\n[Interactive Mode] Chat with your {self.name} data!")
print("Type 'quit' or 'exit' to stop.\n")
while True:
try:
query = input("You: ").strip()
if query.lower() in ["quit", "exit", "q"]:
print("Goodbye!")
break
if not query:
continue
# Prepare LLM kwargs with thinking budget if specified
llm_kwargs = {}
if hasattr(args, "thinking_budget") and args.thinking_budget:
llm_kwargs["thinking_budget"] = args.thinking_budget
response = chat.ask(
query,
top_k=args.top_k,
complexity=args.search_complexity,
llm_kwargs=llm_kwargs,
)
print(f"\nAssistant: {response}\n")
except KeyboardInterrupt:
print("\nGoodbye!")
break
except Exception as e:
print(f"Error: {e}")
async def run_single_query(self, args, index_path: str, query: str):
"""Run a single query against the index."""
chat = LeannChat(
index_path,
llm_config=self.get_llm_config(args),
system_prompt=f"You are a helpful assistant that answers questions about {self.name} data.",
complexity=args.search_complexity,
)
print(f"\n[Query]: \033[36m{query}\033[0m")
# Prepare LLM kwargs with thinking budget if specified
llm_kwargs = {}
if hasattr(args, "thinking_budget") and args.thinking_budget:
llm_kwargs["thinking_budget"] = args.thinking_budget
response = chat.ask(
query, top_k=args.top_k, complexity=args.search_complexity, llm_kwargs=llm_kwargs
)
print(f"\n[Response]: \033[36m{response}\033[0m")
async def run(self):
"""Main entry point for the example."""
args = self.parser.parse_args()
# Check if index exists
index_path = str(Path(args.index_dir) / f"{self.default_index_name}.leann")
index_exists = Path(args.index_dir).exists()
if not index_exists or args.force_rebuild:
# Load data and build index
print(f"\n{'Rebuilding' if index_exists else 'Building'} index...")
texts = await self.load_data(args)
if not texts:
print("No data found to index!")
return
index_path = await self.build_index(args, texts)
else:
print(f"\nUsing existing index in {args.index_dir}")
# Run query or interactive mode
if args.query:
await self.run_single_query(args, index_path, args.query)
else:
await self.run_interactive_chat(args, index_path)
def create_text_chunks(documents, chunk_size=256, chunk_overlap=25) -> list[str]:
"""Helper function to create text chunks from documents."""
node_parser = SentenceSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
separator=" ",
paragraph_separator="\n\n",
)
all_texts = []
for doc in documents:
nodes = node_parser.get_nodes_from_documents([doc])
if nodes:
all_texts.extend(node.get_content() for node in nodes)
return all_texts

View File

@@ -1,170 +0,0 @@
"""
Browser History RAG example using the unified interface.
Supports Chrome browser history.
"""
import os
import sys
from pathlib import Path
# Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent))
from base_rag_example import BaseRAGExample, create_text_chunks
from .history_data.history import ChromeHistoryReader
class BrowserRAG(BaseRAGExample):
"""RAG example for Chrome browser history."""
def __init__(self):
# Set default values BEFORE calling super().__init__
self.embedding_model_default = (
"sentence-transformers/all-MiniLM-L6-v2" # Fast 384-dim model
)
super().__init__(
name="Browser History",
description="Process and query Chrome browser history with LEANN",
default_index_name="google_history_index",
)
def _add_specific_arguments(self, parser):
"""Add browser-specific arguments."""
browser_group = parser.add_argument_group("Browser Parameters")
browser_group.add_argument(
"--chrome-profile",
type=str,
default=None,
help="Path to Chrome profile directory (auto-detected if not specified)",
)
browser_group.add_argument(
"--auto-find-profiles",
action="store_true",
default=True,
help="Automatically find all Chrome profiles (default: True)",
)
browser_group.add_argument(
"--chunk-size", type=int, default=256, help="Text chunk size (default: 256)"
)
browser_group.add_argument(
"--chunk-overlap", type=int, default=128, help="Text chunk overlap (default: 128)"
)
def _get_chrome_base_path(self) -> Path:
"""Get the base Chrome profile path based on OS."""
if sys.platform == "darwin":
return Path.home() / "Library" / "Application Support" / "Google" / "Chrome"
elif sys.platform.startswith("linux"):
return Path.home() / ".config" / "google-chrome"
elif sys.platform == "win32":
return Path(os.environ["LOCALAPPDATA"]) / "Google" / "Chrome" / "User Data"
else:
raise ValueError(f"Unsupported platform: {sys.platform}")
def _find_chrome_profiles(self) -> list[Path]:
"""Auto-detect all Chrome profiles."""
base_path = self._get_chrome_base_path()
if not base_path.exists():
return []
profiles = []
# Check Default profile
default_profile = base_path / "Default"
if default_profile.exists() and (default_profile / "History").exists():
profiles.append(default_profile)
# Check numbered profiles
for item in base_path.iterdir():
if item.is_dir() and item.name.startswith("Profile "):
if (item / "History").exists():
profiles.append(item)
return profiles
async def load_data(self, args) -> list[str]:
"""Load browser history and convert to text chunks."""
# Determine Chrome profiles
if args.chrome_profile and not args.auto_find_profiles:
profile_dirs = [Path(args.chrome_profile)]
else:
print("Auto-detecting Chrome profiles...")
profile_dirs = self._find_chrome_profiles()
# If specific profile given, filter to just that one
if args.chrome_profile:
profile_path = Path(args.chrome_profile)
profile_dirs = [p for p in profile_dirs if p == profile_path]
if not profile_dirs:
print("No Chrome profiles found!")
print("Please specify --chrome-profile manually")
return []
print(f"Found {len(profile_dirs)} Chrome profiles")
# Create reader
reader = ChromeHistoryReader()
# Process each profile
all_documents = []
total_processed = 0
for i, profile_dir in enumerate(profile_dirs):
print(f"\nProcessing profile {i + 1}/{len(profile_dirs)}: {profile_dir.name}")
try:
# Apply max_items limit per profile
max_per_profile = -1
if args.max_items > 0:
remaining = args.max_items - total_processed
if remaining <= 0:
break
max_per_profile = remaining
# Load history
documents = reader.load_data(
chrome_profile_path=str(profile_dir),
max_count=max_per_profile,
)
if documents:
all_documents.extend(documents)
total_processed += len(documents)
print(f"Processed {len(documents)} history entries from this profile")
except Exception as e:
print(f"Error processing {profile_dir}: {e}")
continue
if not all_documents:
print("No browser history found to process!")
return []
print(f"\nTotal history entries processed: {len(all_documents)}")
# Convert to text chunks
all_texts = create_text_chunks(
all_documents, chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
)
return all_texts
if __name__ == "__main__":
import asyncio
# Example queries for browser history RAG
print("\n🌐 Browser History RAG Example")
print("=" * 50)
print("\nExample queries you can try:")
print("- 'What websites did I visit about machine learning?'")
print("- 'Find my search history about programming'")
print("- 'What YouTube videos did I watch recently?'")
print("- 'Show me websites about travel planning'")
print("\nNote: Make sure Chrome is closed before running\n")
rag = BrowserRAG()
asyncio.run(rag.run())

View File

@@ -1,108 +0,0 @@
"""
Document RAG example using the unified interface.
Supports PDF, TXT, MD, and other document formats.
"""
import sys
from pathlib import Path
# Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent))
from base_rag_example import BaseRAGExample, create_text_chunks
from llama_index.core import SimpleDirectoryReader
class DocumentRAG(BaseRAGExample):
"""RAG example for document processing (PDF, TXT, MD, etc.)."""
def __init__(self):
super().__init__(
name="Document",
description="Process and query documents (PDF, TXT, MD, etc.) with LEANN",
default_index_name="test_doc_files",
)
def _add_specific_arguments(self, parser):
"""Add document-specific arguments."""
doc_group = parser.add_argument_group("Document Parameters")
doc_group.add_argument(
"--data-dir",
type=str,
default="data",
help="Directory containing documents to index (default: data)",
)
doc_group.add_argument(
"--file-types",
nargs="+",
default=None,
help="Filter by file types (e.g., .pdf .txt .md). If not specified, all supported types are processed",
)
doc_group.add_argument(
"--chunk-size", type=int, default=256, help="Text chunk size (default: 256)"
)
doc_group.add_argument(
"--chunk-overlap", type=int, default=128, help="Text chunk overlap (default: 128)"
)
async def load_data(self, args) -> list[str]:
"""Load documents and convert to text chunks."""
print(f"Loading documents from: {args.data_dir}")
if args.file_types:
print(f"Filtering by file types: {args.file_types}")
else:
print("Processing all supported file types")
# Check if data directory exists
data_path = Path(args.data_dir)
if not data_path.exists():
raise ValueError(f"Data directory not found: {args.data_dir}")
# Load documents
reader_kwargs = {
"recursive": True,
"encoding": "utf-8",
}
if args.file_types:
reader_kwargs["required_exts"] = args.file_types
documents = SimpleDirectoryReader(args.data_dir, **reader_kwargs).load_data(
show_progress=True
)
if not documents:
print(f"No documents found in {args.data_dir} with extensions {args.file_types}")
return []
print(f"Loaded {len(documents)} documents")
# Convert to text chunks
all_texts = create_text_chunks(
documents, chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
)
# Apply max_items limit if specified
if args.max_items > 0 and len(all_texts) > args.max_items:
print(f"Limiting to {args.max_items} chunks (from {len(all_texts)})")
all_texts = all_texts[: args.max_items]
return all_texts
if __name__ == "__main__":
import asyncio
# Example queries for document RAG
print("\n📄 Document RAG Example")
print("=" * 50)
print("\nExample queries you can try:")
print("- 'What are the main techniques LEANN uses?'")
print("- 'What is the technique DLPM?'")
print("- 'Who does Elizabeth Bennet marry?'")
print(
"- 'What is the problem of developing pan gu model Huawei meets? (盘古大模型开发中遇到什么问题?)'"
)
print("\nOr run without --query for interactive mode\n")
rag = DocumentRAG()
asyncio.run(rag.run())

View File

@@ -1,156 +0,0 @@
"""
Email RAG example using the unified interface.
Supports Apple Mail on macOS.
"""
import sys
from pathlib import Path
# Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent))
from base_rag_example import BaseRAGExample, create_text_chunks
from .email_data.LEANN_email_reader import EmlxReader
class EmailRAG(BaseRAGExample):
"""RAG example for Apple Mail processing."""
def __init__(self):
# Set default values BEFORE calling super().__init__
self.max_items_default = -1 # Process all emails by default
self.embedding_model_default = (
"sentence-transformers/all-MiniLM-L6-v2" # Fast 384-dim model
)
super().__init__(
name="Email",
description="Process and query Apple Mail emails with LEANN",
default_index_name="mail_index",
)
def _add_specific_arguments(self, parser):
"""Add email-specific arguments."""
email_group = parser.add_argument_group("Email Parameters")
email_group.add_argument(
"--mail-path",
type=str,
default=None,
help="Path to Apple Mail directory (auto-detected if not specified)",
)
email_group.add_argument(
"--include-html", action="store_true", help="Include HTML content in email processing"
)
email_group.add_argument(
"--chunk-size", type=int, default=256, help="Text chunk size (default: 256)"
)
email_group.add_argument(
"--chunk-overlap", type=int, default=25, help="Text chunk overlap (default: 25)"
)
def _find_mail_directories(self) -> list[Path]:
"""Auto-detect all Apple Mail directories."""
mail_base = Path.home() / "Library" / "Mail"
if not mail_base.exists():
return []
# Find all Messages directories
messages_dirs = []
for item in mail_base.rglob("Messages"):
if item.is_dir():
messages_dirs.append(item)
return messages_dirs
async def load_data(self, args) -> list[str]:
"""Load emails and convert to text chunks."""
# Determine mail directories
if args.mail_path:
messages_dirs = [Path(args.mail_path)]
else:
print("Auto-detecting Apple Mail directories...")
messages_dirs = self._find_mail_directories()
if not messages_dirs:
print("No Apple Mail directories found!")
print("Please specify --mail-path manually")
return []
print(f"Found {len(messages_dirs)} mail directories")
# Create reader
reader = EmlxReader(include_html=args.include_html)
# Process each directory
all_documents = []
total_processed = 0
for i, messages_dir in enumerate(messages_dirs):
print(f"\nProcessing directory {i + 1}/{len(messages_dirs)}: {messages_dir}")
try:
# Count emlx files
emlx_files = list(messages_dir.glob("*.emlx"))
print(f"Found {len(emlx_files)} email files")
# Apply max_items limit per directory
max_per_dir = -1 # Default to process all
if args.max_items > 0:
remaining = args.max_items - total_processed
if remaining <= 0:
break
max_per_dir = remaining
# If args.max_items == -1, max_per_dir stays -1 (process all)
# Load emails - fix the parameter passing
documents = reader.load_data(
input_dir=str(messages_dir),
max_count=max_per_dir,
)
if documents:
all_documents.extend(documents)
total_processed += len(documents)
print(f"Processed {len(documents)} emails from this directory")
except Exception as e:
print(f"Error processing {messages_dir}: {e}")
continue
if not all_documents:
print("No emails found to process!")
return []
print(f"\nTotal emails processed: {len(all_documents)}")
print("now starting to split into text chunks ... take some time")
# Convert to text chunks
# Email reader uses chunk_overlap=25 as in original
all_texts = create_text_chunks(
all_documents, chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
)
return all_texts
if __name__ == "__main__":
import asyncio
# Check platform
if sys.platform != "darwin":
print("\n⚠️ Warning: This example is designed for macOS (Apple Mail)")
print(" Windows/Linux support coming soon!\n")
# Example queries for email RAG
print("\n📧 Email RAG Example")
print("=" * 50)
print("\nExample queries you can try:")
print("- 'What did my boss say about deadlines?'")
print("- 'Find emails about travel expenses'")
print("- 'Show me emails from last month about the project'")
print("- 'What food did I order from DoorDash?'")
print("\nNote: You may need to grant Full Disk Access to your terminal\n")
rag = EmailRAG()
asyncio.run(rag.run())

View File

@@ -1,189 +0,0 @@
"""
WeChat History RAG example using the unified interface.
Supports WeChat chat history export and search.
"""
import subprocess
import sys
from pathlib import Path
# Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent))
from base_rag_example import BaseRAGExample
from .history_data.wechat_history import WeChatHistoryReader
class WeChatRAG(BaseRAGExample):
"""RAG example for WeChat chat history."""
def __init__(self):
# Set default values BEFORE calling super().__init__
self.max_items_default = -1 # Match original default
self.embedding_model_default = (
"sentence-transformers/all-MiniLM-L6-v2" # Fast 384-dim model
)
super().__init__(
name="WeChat History",
description="Process and query WeChat chat history with LEANN",
default_index_name="wechat_history_magic_test_11Debug_new",
)
def _add_specific_arguments(self, parser):
"""Add WeChat-specific arguments."""
wechat_group = parser.add_argument_group("WeChat Parameters")
wechat_group.add_argument(
"--export-dir",
type=str,
default="./wechat_export",
help="Directory to store WeChat exports (default: ./wechat_export)",
)
wechat_group.add_argument(
"--force-export",
action="store_true",
help="Force re-export of WeChat data even if exports exist",
)
wechat_group.add_argument(
"--chunk-size", type=int, default=192, help="Text chunk size (default: 192)"
)
wechat_group.add_argument(
"--chunk-overlap", type=int, default=64, help="Text chunk overlap (default: 64)"
)
def _export_wechat_data(self, export_dir: Path) -> bool:
"""Export WeChat data using wechattweak-cli."""
print("Exporting WeChat data...")
# Check if WeChat is running
try:
result = subprocess.run(["pgrep", "WeChat"], capture_output=True, text=True)
if result.returncode != 0:
print("WeChat is not running. Please start WeChat first.")
return False
except Exception:
pass # pgrep might not be available on all systems
# Create export directory
export_dir.mkdir(parents=True, exist_ok=True)
# Run export command
cmd = ["packages/wechat-exporter/wechattweak-cli", "export", str(export_dir)]
try:
print(f"Running: {' '.join(cmd)}")
result = subprocess.run(cmd, capture_output=True, text=True)
if result.returncode == 0:
print("WeChat data exported successfully!")
return True
else:
print(f"Export failed: {result.stderr}")
return False
except FileNotFoundError:
print("\nError: wechattweak-cli not found!")
print("Please install it first:")
print(" sudo packages/wechat-exporter/wechattweak-cli install")
return False
except Exception as e:
print(f"Export error: {e}")
return False
async def load_data(self, args) -> list[str]:
"""Load WeChat history and convert to text chunks."""
# Initialize WeChat reader with export capabilities
reader = WeChatHistoryReader()
# Find existing exports or create new ones using the centralized method
export_dirs = reader.find_or_export_wechat_data(args.export_dir)
if not export_dirs:
print("Failed to find or export WeChat data. Trying to find any existing exports...")
# Try to find any existing exports in common locations
export_dirs = reader.find_wechat_export_dirs()
if not export_dirs:
print("No WeChat data found. Please ensure WeChat exports exist.")
return []
# Load documents from all found export directories
all_documents = []
total_processed = 0
for i, export_dir in enumerate(export_dirs):
print(f"\nProcessing WeChat export {i + 1}/{len(export_dirs)}: {export_dir}")
try:
# Apply max_items limit per export
max_per_export = -1
if args.max_items > 0:
remaining = args.max_items - total_processed
if remaining <= 0:
break
max_per_export = remaining
documents = reader.load_data(
wechat_export_dir=str(export_dir),
max_count=max_per_export,
concatenate_messages=True, # Enable message concatenation for better context
)
if documents:
print(f"Loaded {len(documents)} chat documents from {export_dir}")
all_documents.extend(documents)
total_processed += len(documents)
else:
print(f"No documents loaded from {export_dir}")
except Exception as e:
print(f"Error processing {export_dir}: {e}")
continue
if not all_documents:
print("No documents loaded from any source. Exiting.")
return []
print(f"\nTotal loaded {len(all_documents)} chat documents from {len(export_dirs)} exports")
print("now starting to split into text chunks ... take some time")
# Convert to text chunks with contact information
all_texts = []
for doc in all_documents:
# Split the document into chunks
from llama_index.core.node_parser import SentenceSplitter
text_splitter = SentenceSplitter(
chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
)
nodes = text_splitter.get_nodes_from_documents([doc])
for node in nodes:
# Add contact information to each chunk
contact_name = doc.metadata.get("contact_name", "Unknown")
text = f"[Contact] means the message is from: {contact_name}\n" + node.get_content()
all_texts.append(text)
print(f"Created {len(all_texts)} text chunks from {len(all_documents)} documents")
return all_texts
if __name__ == "__main__":
import asyncio
# Check platform
if sys.platform != "darwin":
print("\n⚠️ Warning: WeChat export is only supported on macOS")
print(" You can still query existing exports on other platforms\n")
# Example queries for WeChat RAG
print("\n💬 WeChat History RAG Example")
print("=" * 50)
print("\nExample queries you can try:")
print("- 'Show me conversations about travel plans'")
print("- 'Find group chats about weekend activities'")
print("- '我想买魔术师约翰逊的球衣,给我一些对应聊天记录?'")
print("- 'What did we discuss about the project last month?'")
print("\nNote: WeChat must be running for export to work\n")
rag = WeChatRAG()
asyncio.run(rag.run())

View File

Binary file not shown.

Before

Width:  |  Height:  |  Size: 73 KiB

View File

Binary file not shown.

Before

Width:  |  Height:  |  Size: 224 KiB

View File

@@ -1,148 +0,0 @@
import argparse
import os
import time
from pathlib import Path
from leann import LeannBuilder, LeannSearcher
def _meta_exists(index_path: str) -> bool:
p = Path(index_path)
return (p.parent / f"{p.stem}.meta.json").exists()
def ensure_index(index_path: str, backend_name: str, num_docs: int, is_recompute: bool) -> None:
# if _meta_exists(index_path):
# return
kwargs = {}
if backend_name == "hnsw":
kwargs["is_compact"] = is_recompute
builder = LeannBuilder(
backend_name=backend_name,
embedding_model=os.getenv("LEANN_EMBED_MODEL", "facebook/contriever"),
embedding_mode=os.getenv("LEANN_EMBED_MODE", "sentence-transformers"),
graph_degree=32,
complexity=64,
is_recompute=is_recompute,
num_threads=4,
**kwargs,
)
for i in range(num_docs):
builder.add_text(
f"This is a test document number {i}. It contains some repeated text for benchmarking."
)
builder.build_index(index_path)
def _bench_group(
index_path: str,
recompute: bool,
query: str,
repeats: int,
complexity: int = 32,
top_k: int = 10,
) -> float:
# Independent searcher per group; fixed port when recompute
searcher = LeannSearcher(index_path=index_path)
# Warm-up once
_ = searcher.search(
query,
top_k=top_k,
complexity=complexity,
recompute_embeddings=recompute,
)
def _once() -> float:
t0 = time.time()
_ = searcher.search(
query,
top_k=top_k,
complexity=complexity,
recompute_embeddings=recompute,
)
return time.time() - t0
if repeats <= 1:
t = _once()
else:
vals = [_once() for _ in range(repeats)]
vals.sort()
t = vals[len(vals) // 2]
searcher.cleanup()
return t
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--num-docs", type=int, default=5000)
parser.add_argument("--repeats", type=int, default=3)
parser.add_argument("--complexity", type=int, default=32)
args = parser.parse_args()
base = Path.cwd() / ".leann" / "indexes" / f"bench_n{args.num_docs}"
base.parent.mkdir(parents=True, exist_ok=True)
# ---------- Build HNSW variants ----------
hnsw_r = str(base / f"hnsw_recompute_n{args.num_docs}.leann")
hnsw_nr = str(base / f"hnsw_norecompute_n{args.num_docs}.leann")
ensure_index(hnsw_r, "hnsw", args.num_docs, True)
ensure_index(hnsw_nr, "hnsw", args.num_docs, False)
# ---------- Build DiskANN variants ----------
diskann_r = str(base / "diskann_r.leann")
diskann_nr = str(base / "diskann_nr.leann")
ensure_index(diskann_r, "diskann", args.num_docs, True)
ensure_index(diskann_nr, "diskann", args.num_docs, False)
# ---------- Helpers ----------
def _size_for(prefix: str) -> int:
p = Path(prefix)
base_dir = p.parent
stem = p.stem
total = 0
for f in base_dir.iterdir():
if f.is_file() and f.name.startswith(stem):
total += f.stat().st_size
return total
# ---------- HNSW benchmark ----------
t_hnsw_r = _bench_group(
hnsw_r, True, "test document number 42", repeats=args.repeats, complexity=args.complexity
)
t_hnsw_nr = _bench_group(
hnsw_nr, False, "test document number 42", repeats=args.repeats, complexity=args.complexity
)
size_hnsw_r = _size_for(hnsw_r)
size_hnsw_nr = _size_for(hnsw_nr)
print("Benchmark results (HNSW):")
print(f" recompute=True: search_time={t_hnsw_r:.3f}s, size={size_hnsw_r / 1024 / 1024:.1f}MB")
print(
f" recompute=False: search_time={t_hnsw_nr:.3f}s, size={size_hnsw_nr / 1024 / 1024:.1f}MB"
)
print(" Expectation: no-recompute should be faster but larger on disk.")
# ---------- DiskANN benchmark ----------
t_diskann_r = _bench_group(
diskann_r, True, "DiskANN R test doc 123", repeats=args.repeats, complexity=args.complexity
)
t_diskann_nr = _bench_group(
diskann_nr,
False,
"DiskANN NR test doc 123",
repeats=args.repeats,
complexity=args.complexity,
)
size_diskann_r = _size_for(diskann_r)
size_diskann_nr = _size_for(diskann_nr)
print("\nBenchmark results (DiskANN):")
print(f" build(recompute=True, partition): size={size_diskann_r / 1024 / 1024:.1f}MB")
print(f" build(recompute=False): size={size_diskann_nr / 1024 / 1024:.1f}MB")
print(f" search recompute=True (final rerank): {t_diskann_r:.3f}s")
print(f" search recompute=False (PQ only): {t_diskann_nr:.3f}s")
if __name__ == "__main__":
main()

View File

@@ -1,286 +0,0 @@
#!/usr/bin/env python3
"""
DiskANN vs HNSW Search Performance Comparison
This benchmark compares search performance between DiskANN and HNSW backends:
- DiskANN: With graph partitioning enabled (is_recompute=True)
- HNSW: With recompute enabled (is_recompute=True)
- Tests performance across different dataset sizes
- Measures search latency, recall, and index size
"""
import gc
import multiprocessing as mp
import tempfile
import time
from pathlib import Path
from typing import Any
import numpy as np
# Prefer 'fork' start method to avoid POSIX semaphore leaks on macOS
try:
mp.set_start_method("fork", force=True)
except Exception:
pass
def create_test_texts(n_docs: int) -> list[str]:
"""Create synthetic test documents for benchmarking."""
np.random.seed(42)
topics = [
"machine learning and artificial intelligence",
"natural language processing and text analysis",
"computer vision and image recognition",
"data science and statistical analysis",
"deep learning and neural networks",
"information retrieval and search engines",
"database systems and data management",
"software engineering and programming",
"cybersecurity and network protection",
"cloud computing and distributed systems",
]
texts = []
for i in range(n_docs):
topic = topics[i % len(topics)]
variation = np.random.randint(1, 100)
text = (
f"This is document {i} about {topic}. Content variation {variation}. "
f"Additional information about {topic} with details and examples. "
f"Technical discussion of {topic} including implementation aspects."
)
texts.append(text)
return texts
def benchmark_backend(
backend_name: str, texts: list[str], test_queries: list[str], backend_kwargs: dict[str, Any]
) -> dict[str, float]:
"""Benchmark a specific backend with the given configuration."""
from leann.api import LeannBuilder, LeannSearcher
print(f"\n🔧 Testing {backend_name.upper()} backend...")
with tempfile.TemporaryDirectory() as temp_dir:
index_path = str(Path(temp_dir) / f"benchmark_{backend_name}.leann")
# Build index
print(f"📦 Building {backend_name} index with {len(texts)} documents...")
start_time = time.time()
builder = LeannBuilder(
backend_name=backend_name,
embedding_model="facebook/contriever",
embedding_mode="sentence-transformers",
**backend_kwargs,
)
for text in texts:
builder.add_text(text)
builder.build_index(index_path)
build_time = time.time() - start_time
# Measure index size
index_dir = Path(index_path).parent
index_files = list(index_dir.glob(f"{Path(index_path).stem}.*"))
total_size = sum(f.stat().st_size for f in index_files if f.is_file())
size_mb = total_size / (1024 * 1024)
print(f" ✅ Build completed in {build_time:.2f}s, index size: {size_mb:.1f}MB")
# Search benchmark
print("🔍 Running search benchmark...")
searcher = LeannSearcher(index_path)
search_times = []
all_results = []
for query in test_queries:
start_time = time.time()
results = searcher.search(query, top_k=5)
search_time = time.time() - start_time
search_times.append(search_time)
all_results.append(results)
avg_search_time = np.mean(search_times) * 1000 # Convert to ms
print(f" ✅ Average search time: {avg_search_time:.1f}ms")
# Check for valid scores (detect -inf issues)
all_scores = [
result.score
for results in all_results
for result in results
if result.score is not None
]
valid_scores = [
score for score in all_scores if score != float("-inf") and score != float("inf")
]
score_validity_rate = len(valid_scores) / len(all_scores) if all_scores else 0
# Clean up (ensure embedding server shutdown and object GC)
try:
if hasattr(searcher, "cleanup"):
searcher.cleanup()
del searcher
del builder
gc.collect()
except Exception as e:
print(f"⚠️ Warning: Resource cleanup error: {e}")
return {
"build_time": build_time,
"avg_search_time_ms": avg_search_time,
"index_size_mb": size_mb,
"score_validity_rate": score_validity_rate,
}
def run_comparison(n_docs: int = 500, n_queries: int = 10):
"""Run performance comparison between DiskANN and HNSW."""
print("🚀 Starting DiskANN vs HNSW Performance Comparison")
print(f"📊 Dataset: {n_docs} documents, {n_queries} test queries")
# Create test data
texts = create_test_texts(n_docs)
test_queries = [
"machine learning algorithms",
"natural language processing",
"computer vision techniques",
"data analysis methods",
"neural network architectures",
"database query optimization",
"software development practices",
"security vulnerabilities",
"cloud infrastructure",
"distributed computing",
][:n_queries]
# HNSW benchmark
hnsw_results = benchmark_backend(
backend_name="hnsw",
texts=texts,
test_queries=test_queries,
backend_kwargs={
"is_recompute": True, # Enable recompute for fair comparison
"M": 16,
"efConstruction": 200,
},
)
# DiskANN benchmark
diskann_results = benchmark_backend(
backend_name="diskann",
texts=texts,
test_queries=test_queries,
backend_kwargs={
"is_recompute": True, # Enable graph partitioning
"num_neighbors": 32,
"search_list_size": 50,
},
)
# Performance comparison
print("\n📈 Performance Comparison Results")
print(f"{'=' * 60}")
print(f"{'Metric':<25} {'HNSW':<15} {'DiskANN':<15} {'Speedup':<10}")
print(f"{'-' * 60}")
# Build time comparison
build_speedup = hnsw_results["build_time"] / diskann_results["build_time"]
print(
f"{'Build Time (s)':<25} {hnsw_results['build_time']:<15.2f} {diskann_results['build_time']:<15.2f} {build_speedup:<10.2f}x"
)
# Search time comparison
search_speedup = hnsw_results["avg_search_time_ms"] / diskann_results["avg_search_time_ms"]
print(
f"{'Search Time (ms)':<25} {hnsw_results['avg_search_time_ms']:<15.1f} {diskann_results['avg_search_time_ms']:<15.1f} {search_speedup:<10.2f}x"
)
# Index size comparison
size_ratio = diskann_results["index_size_mb"] / hnsw_results["index_size_mb"]
print(
f"{'Index Size (MB)':<25} {hnsw_results['index_size_mb']:<15.1f} {diskann_results['index_size_mb']:<15.1f} {size_ratio:<10.2f}x"
)
# Score validity
print(
f"{'Score Validity (%)':<25} {hnsw_results['score_validity_rate'] * 100:<15.1f} {diskann_results['score_validity_rate'] * 100:<15.1f}"
)
print(f"{'=' * 60}")
print("\n🎯 Summary:")
if search_speedup > 1:
print(f" DiskANN is {search_speedup:.2f}x faster than HNSW for search")
else:
print(f" HNSW is {1 / search_speedup:.2f}x faster than DiskANN for search")
if size_ratio > 1:
print(f" DiskANN uses {size_ratio:.2f}x more storage than HNSW")
else:
print(f" DiskANN uses {1 / size_ratio:.2f}x less storage than HNSW")
print(
f" Both backends achieved {min(hnsw_results['score_validity_rate'], diskann_results['score_validity_rate']) * 100:.1f}% score validity"
)
if __name__ == "__main__":
import sys
try:
# Handle help request
if len(sys.argv) > 1 and sys.argv[1] in ["-h", "--help", "help"]:
print("DiskANN vs HNSW Performance Comparison")
print("=" * 50)
print(f"Usage: python {sys.argv[0]} [n_docs] [n_queries]")
print()
print("Arguments:")
print(" n_docs Number of documents to index (default: 500)")
print(" n_queries Number of test queries to run (default: 10)")
print()
print("Examples:")
print(" python benchmarks/diskann_vs_hnsw_speed_comparison.py")
print(" python benchmarks/diskann_vs_hnsw_speed_comparison.py 1000")
print(" python benchmarks/diskann_vs_hnsw_speed_comparison.py 2000 20")
sys.exit(0)
# Parse command line arguments
n_docs = int(sys.argv[1]) if len(sys.argv) > 1 else 500
n_queries = int(sys.argv[2]) if len(sys.argv) > 2 else 10
print("DiskANN vs HNSW Performance Comparison")
print("=" * 50)
print(f"Dataset: {n_docs} documents, {n_queries} queries")
print()
run_comparison(n_docs=n_docs, n_queries=n_queries)
except KeyboardInterrupt:
print("\n⚠️ Benchmark interrupted by user")
sys.exit(130)
except Exception as e:
print(f"\n❌ Benchmark failed: {e}")
sys.exit(1)
finally:
# Ensure clean exit (forceful to prevent rare hangs from atexit/threads)
try:
gc.collect()
print("\n🧹 Cleanup completed")
# Flush stdio to ensure message is visible before hard-exit
try:
import sys as _sys
_sys.stdout.flush()
_sys.stderr.flush()
except Exception:
pass
except Exception:
pass
# Use os._exit to bypass atexit handlers that may hang in rare cases
import os as _os
_os._exit(0)

View File

44
data/README.md Normal file
View File

@@ -0,0 +1,44 @@
---
license: mit
---
# LEANN-RAG Evaluation Data
This repository contains the necessary data to run the recall evaluation scripts for the [LEANN-RAG](https://huggingface.co/LEANN-RAG) project.
## Dataset Components
This dataset is structured into three main parts:
1. **Pre-built LEANN Indices**:
* `dpr/`: A pre-built index for the DPR dataset.
* `rpj_wiki/`: A pre-built index for the RPJ-Wiki dataset.
These indices were created using the `leann-core` library and are required by the `LeannSearcher`.
2. **Ground Truth Data**:
* `ground_truth/`: Contains the ground truth files (`flat_results_nq_k3.json`) for both the DPR and RPJ-Wiki datasets. These files map queries to the original passage IDs from the Natural Questions benchmark, evaluated using the Contriever model.
3. **Queries**:
* `queries/`: Contains the `nq_open.jsonl` file with the Natural Questions queries used for the evaluation.
## Usage
To use this data, you can download it locally using the `huggingface-hub` library. First, install the library:
```bash
pip install huggingface-hub
```
Then, you can download the entire dataset to a local directory (e.g., `data/`) with the following Python script:
```python
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="LEANN-RAG/leann-rag-evaluation-data",
repo_type="dataset",
local_dir="data"
)
```
This will download all the necessary files into a local `data` folder, preserving the repository structure. The evaluation scripts in the main [LEANN-RAG Space](https://huggingface.co/LEANN-RAG) are configured to work with this data structure.

View File

@@ -1,123 +0,0 @@
# Thinking Budget Feature Implementation
## Overview
This document describes the implementation of the **thinking budget** feature for LEANN, which allows users to control the computational effort for reasoning models like GPT-Oss:20b.
## Feature Description
The thinking budget feature provides three levels of computational effort for reasoning models:
- **`low`**: Fast responses, basic reasoning (default for simple queries)
- **`medium`**: Balanced speed and reasoning depth
- **`high`**: Maximum reasoning effort, best for complex analytical questions
## Implementation Details
### 1. Command Line Interface
Added `--thinking-budget` parameter to both CLI and RAG examples:
```bash
# LEANN CLI
leann ask my-index --llm ollama --model gpt-oss:20b --thinking-budget high
# RAG Examples
python apps/email_rag.py --llm ollama --llm-model gpt-oss:20b --thinking-budget high
python apps/document_rag.py --llm openai --llm-model o3 --thinking-budget medium
```
### 2. LLM Backend Support
#### Ollama Backend (`packages/leann-core/src/leann/chat.py`)
```python
def ask(self, prompt: str, **kwargs) -> str:
# Handle thinking budget for reasoning models
options = kwargs.copy()
thinking_budget = kwargs.get("thinking_budget")
if thinking_budget:
options.pop("thinking_budget", None)
if thinking_budget in ["low", "medium", "high"]:
options["reasoning"] = {"effort": thinking_budget, "exclude": False}
```
**API Format**: Uses Ollama's `reasoning` parameter with `effort` and `exclude` fields.
#### OpenAI Backend (`packages/leann-core/src/leann/chat.py`)
```python
def ask(self, prompt: str, **kwargs) -> str:
# Handle thinking budget for reasoning models
thinking_budget = kwargs.get("thinking_budget")
if thinking_budget and thinking_budget in ["low", "medium", "high"]:
# Check if this is an o-series model
o_series_models = ["o3", "o3-mini", "o4-mini", "o1", "o3-pro", "o3-deep-research"]
if any(model in self.model for model in o_series_models):
params["reasoning_effort"] = thinking_budget
```
**API Format**: Uses OpenAI's `reasoning_effort` parameter for o-series models.
### 3. Parameter Propagation
The thinking budget parameter is properly propagated through the LEANN architecture:
1. **CLI** (`packages/leann-core/src/leann/cli.py`): Captures `--thinking-budget` argument
2. **Base RAG** (`apps/base_rag_example.py`): Adds parameter to argument parser
3. **LeannChat** (`packages/leann-core/src/leann/api.py`): Passes `llm_kwargs` to LLM
4. **LLM Interface**: Handles the parameter in backend-specific implementations
## Files Modified
### Core Implementation
- `packages/leann-core/src/leann/chat.py`: Added thinking budget support to OllamaChat and OpenAIChat
- `packages/leann-core/src/leann/cli.py`: Added `--thinking-budget` argument
- `apps/base_rag_example.py`: Added thinking budget parameter to RAG examples
### Documentation
- `README.md`: Added thinking budget parameter to usage examples
- `docs/configuration-guide.md`: Added detailed documentation and usage guidelines
### Examples
- `examples/thinking_budget_demo.py`: Comprehensive demo script with usage examples
## Usage Examples
### Basic Usage
```bash
# High reasoning effort for complex questions
leann ask my-index --llm ollama --model gpt-oss:20b --thinking-budget high
# Medium reasoning for balanced performance
leann ask my-index --llm openai --model gpt-4o --thinking-budget medium
# Low reasoning for fast responses
leann ask my-index --llm ollama --model gpt-oss:20b --thinking-budget low
```
### RAG Examples
```bash
# Email RAG with high reasoning
python apps/email_rag.py --llm ollama --llm-model gpt-oss:20b --thinking-budget high
# Document RAG with medium reasoning
python apps/document_rag.py --llm openai --llm-model gpt-4o --thinking-budget medium
```
## Supported Models
### Ollama Models
- **GPT-Oss:20b**: Primary target model with reasoning capabilities
- **Other reasoning models**: Any Ollama model that supports the `reasoning` parameter
### OpenAI Models
- **o3, o3-mini, o4-mini, o1**: o-series reasoning models with `reasoning_effort` parameter
- **GPT-OSS models**: Models that support reasoning capabilities
## Testing
The implementation includes comprehensive testing:
- Parameter handling verification
- Backend-specific API format validation
- CLI argument parsing tests
- Integration with existing LEANN architecture

View File

@@ -1,384 +0,0 @@
# LEANN Configuration Guide
This guide helps you optimize LEANN for different use cases and understand the trade-offs between various configuration options.
## Getting Started: Simple is Better
When first trying LEANN, start with a small dataset to quickly validate your approach:
**For document RAG**: The default `data/` directory works perfectly - includes 2 AI research papers, Pride and Prejudice literature, and a technical report
```bash
python -m apps.document_rag --query "What techniques does LEANN use?"
```
**For other data sources**: Limit the dataset size for quick testing
```bash
# WeChat: Test with recent messages only
python -m apps.wechat_rag --max-items 100 --query "What did we discuss about the project timeline?"
# Browser history: Last few days
python -m apps.browser_rag --max-items 500 --query "Find documentation about vector databases"
# Email: Recent inbox
python -m apps.email_rag --max-items 200 --query "Who sent updates about the deployment status?"
```
Once validated, scale up gradually:
- 100 documents → 1,000 → 10,000 → full dataset (`--max-items -1`)
- This helps identify issues early before committing to long processing times
## Embedding Model Selection: Understanding the Trade-offs
Based on our experience developing LEANN, embedding models fall into three categories:
### Small Models (< 100M parameters)
**Example**: `sentence-transformers/all-MiniLM-L6-v2` (22M params)
- **Pros**: Lightweight, fast for both indexing and inference
- **Cons**: Lower semantic understanding, may miss nuanced relationships
- **Use when**: Speed is critical, handling simple queries, interactive mode, or just experimenting with LEANN. If time is not a constraint, consider using a larger/better embedding model
### Medium Models (100M-500M parameters)
**Example**: `facebook/contriever` (110M params), `BAAI/bge-base-en-v1.5` (110M params)
- **Pros**: Balanced performance, good multilingual support, reasonable speed
- **Cons**: Requires more compute than small models
- **Use when**: Need quality results without extreme compute requirements, general-purpose RAG applications
### Large Models (500M+ parameters)
**Example**: `Qwen/Qwen3-Embedding-0.6B` (600M params), `intfloat/multilingual-e5-large` (560M params)
- **Pros**: Best semantic understanding, captures complex relationships, excellent multilingual support. **Qwen3-Embedding-0.6B achieves nearly OpenAI API performance!**
- **Cons**: Slower inference, longer index build times
- **Use when**: Quality is paramount and you have sufficient compute resources. **Highly recommended** for production use
### Quick Start: Cloud and Local Embedding Options
**OpenAI Embeddings (Fastest Setup)**
For immediate testing without local model downloads(also if you [do not have GPU](https://github.com/yichuan-w/LEANN/issues/43) and do not care that much about your document leak, you should use this, we compute the embedding and recompute using openai API):
```bash
# Set OpenAI embeddings (requires OPENAI_API_KEY)
--embedding-mode openai --embedding-model text-embedding-3-small
```
**Ollama Embeddings (Privacy-Focused)**
For local embeddings with complete privacy:
```bash
# First, pull an embedding model
ollama pull nomic-embed-text
# Use Ollama embeddings
--embedding-mode ollama --embedding-model nomic-embed-text
```
<details>
<summary><strong>Cloud vs Local Trade-offs</strong></summary>
**OpenAI Embeddings** (`text-embedding-3-small/large`)
- **Pros**: No local compute needed, consistently fast, high quality
- **Cons**: Requires API key, costs money, data leaves your system, [known limitations with certain languages](https://yichuan-w.github.io/blog/lessons_learned_in_dev_leann/)
- **When to use**: Prototyping, non-sensitive data, need immediate results
**Local Embeddings**
- **Pros**: Complete privacy, no ongoing costs, full control, can sometimes outperform OpenAI embeddings
- **Cons**: Slower than cloud APIs, requires local compute resources
- **When to use**: Production systems, sensitive data, cost-sensitive applications
</details>
## Index Selection: Matching Your Scale
### HNSW (Hierarchical Navigable Small World)
**Best for**: Small to medium datasets (< 10M vectors) - **Default and recommended for extreme low storage**
- Full recomputation required
- High memory usage during build phase
- Excellent recall (95%+)
```bash
# Optimal for most use cases
--backend-name hnsw --graph-degree 32 --build-complexity 64
```
### DiskANN
**Best for**: Large datasets, especially when you want `recompute=True`.
**Key advantages:**
- **Faster search** on large datasets (3x+ speedup vs HNSW in many cases)
- **Smart storage**: `recompute=True` enables automatic graph partitioning for smaller indexes
- **Better scaling**: Designed for 100k+ documents
**Recompute behavior:**
- `recompute=True` (recommended): Pure PQ traversal + final reranking - faster and enables partitioning
- `recompute=False`: PQ + partial real distances during traversal - slower but higher accuracy
```bash
# Recommended for most use cases
--backend-name diskann --graph-degree 32 --build-complexity 64
```
**Performance Benchmark**: Run `uv run benchmarks/diskann_vs_hnsw_speed_comparison.py` to compare DiskANN and HNSW on your system.
## LLM Selection: Engine and Model Comparison
### LLM Engines
**OpenAI** (`--llm openai`)
- **Pros**: Best quality, consistent performance, no local resources needed
- **Cons**: Costs money ($0.15-2.5 per million tokens), requires internet, data privacy concerns
- **Models**: `gpt-4o-mini` (fast, cheap), `gpt-4o` (best quality), `o3` (reasoning), `o3-mini` (reasoning, cheaper)
- **Thinking Budget**: Use `--thinking-budget low/medium/high` for o-series reasoning models (o3, o3-mini, o4-mini)
- **Note**: Our current default, but we recommend switching to Ollama for most use cases
**Ollama** (`--llm ollama`)
- **Pros**: Fully local, free, privacy-preserving, good model variety
- **Cons**: Requires local GPU/CPU resources, slower than cloud APIs, need to install extra [ollama app](https://github.com/ollama/ollama?tab=readme-ov-file#ollama) and pre-download models by `ollama pull`
- **Models**: `qwen3:0.6b` (ultra-fast), `qwen3:1.7b` (balanced), `qwen3:4b` (good quality), `qwen3:7b` (high quality), `deepseek-r1:1.5b` (reasoning)
- **Thinking Budget**: Use `--thinking-budget low/medium/high` for reasoning models like GPT-Oss:20b
**HuggingFace** (`--llm hf`)
- **Pros**: Free tier available, huge model selection, direct model loading (vs Ollama's server-based approach)
- **Cons**: More complex initial setup
- **Models**: `Qwen/Qwen3-1.7B-FP8`
## Parameter Tuning Guide
### Search Complexity Parameters
**`--build-complexity`** (index building)
- Controls thoroughness during index construction
- Higher = better recall but slower build
- Recommendations:
- 32: Quick prototyping
- 64: Balanced (default)
- 128: Production systems
- 256: Maximum quality
**`--search-complexity`** (query time)
- Controls search thoroughness
- Higher = better results but slower
- Recommendations:
- 16: Fast/Interactive search
- 32: High quality with diversity
- 64+: Maximum accuracy
### Top-K Selection
**`--top-k`** (number of retrieved chunks)
- More chunks = better context but slower LLM processing
- Should be always smaller than `--search-complexity`
- Guidelines:
- 10-20: General questions (default: 20)
- 30+: Complex multi-hop reasoning requiring comprehensive context
**Trade-off formula**:
- Retrieval time ∝ log(n) × search_complexity
- LLM processing time ∝ top_k × chunk_size
- Total context = top_k × chunk_size tokens
### Thinking Budget for Reasoning Models
**`--thinking-budget`** (reasoning effort level)
- Controls the computational effort for reasoning models
- Options: `low`, `medium`, `high`
- Guidelines:
- `low`: Fast responses, basic reasoning (default for simple queries)
- `medium`: Balanced speed and reasoning depth
- `high`: Maximum reasoning effort, best for complex analytical questions
- **Supported Models**:
- **Ollama**: `gpt-oss:20b`, `gpt-oss:120b`
- **OpenAI**: `o3`, `o3-mini`, `o4-mini`, `o1` (o-series reasoning models)
- **Note**: Models without reasoning support will show a warning and proceed without reasoning parameters
- **Example**: `--thinking-budget high` for complex analytical questions
**📖 For detailed usage examples and implementation details, check out [Thinking Budget Documentation](THINKING_BUDGET_FEATURE.md)**
**💡 Quick Examples:**
```bash
# OpenAI o-series reasoning model
python apps/document_rag.py --query "What are the main techniques LEANN explores?" \
--index-dir hnswbuild --backend hnsw \
--llm openai --llm-model o3 --thinking-budget medium
# Ollama reasoning model
python apps/document_rag.py --query "What are the main techniques LEANN explores?" \
--index-dir hnswbuild --backend hnsw \
--llm ollama --llm-model gpt-oss:20b --thinking-budget high
```
### Graph Degree (HNSW/DiskANN)
**`--graph-degree`**
- Number of connections per node in the graph
- Higher = better recall but more memory
- HNSW: 16-32 (default: 32)
- DiskANN: 32-128 (default: 64)
## Performance Optimization Checklist
### If Embedding is Too Slow
1. **Switch to smaller model**:
```bash
# From large model
--embedding-model Qwen/Qwen3-Embedding-0.6B
# To small model
--embedding-model sentence-transformers/all-MiniLM-L6-v2
```
2. **Limit dataset size for testing**:
```bash
--max-items 1000 # Process first 1k items only
```
3. **Use MLX on Apple Silicon** (optional optimization):
```bash
--embedding-mode mlx --embedding-model mlx-community/Qwen3-Embedding-0.6B-8bit
```
MLX might not be the best choice, as we tested and found that it only offers 1.3x acceleration compared to HF, so maybe using ollama is a better choice for embedding generation
4. **Use Ollama**
```bash
--embedding-mode ollama --embedding-model nomic-embed-text
```
To discover additional embedding models in ollama, check out https://ollama.com/search?c=embedding or read more about embedding models at https://ollama.com/blog/embedding-models, please do check the model size that works best for you
### If Search Quality is Poor
1. **Increase retrieval count**:
```bash
--top-k 30 # Retrieve more candidates
```
2. **Upgrade embedding model**:
```bash
# For English
--embedding-model BAAI/bge-base-en-v1.5
# For multilingual
--embedding-model intfloat/multilingual-e5-large
```
## Understanding the Trade-offs
Every configuration choice involves trade-offs:
| Factor | Small/Fast | Large/Quality |
|--------|------------|---------------|
| Embedding Model | `all-MiniLM-L6-v2` | `Qwen/Qwen3-Embedding-0.6B` |
| Chunk Size | 512 tokens | 128 tokens |
| Index Type | HNSW | DiskANN |
| LLM | `qwen3:1.7b` | `gpt-4o` |
The key is finding the right balance for your specific use case. Start small and simple, measure performance, then scale up only where needed.
## Low-resource setups
If you dont have a local GPU or builds/searches are too slow, use one or more of the options below.
### 1) Use OpenAI embeddings (no local compute)
Fastest path with zero local GPU requirements. Set your API key and use OpenAI embeddings during build and search:
```bash
export OPENAI_API_KEY=sk-...
# Build with OpenAI embeddings
leann build my-index \
--embedding-mode openai \
--embedding-model text-embedding-3-small
# Search with OpenAI embeddings (recompute at query time)
leann search my-index "your query" \
--recompute
```
### 2) Run remote builds with SkyPilot (cloud GPU)
Offload embedding generation and index building to a GPU VM using [SkyPilot](https://skypilot.readthedocs.io/en/latest/). A template is provided at `sky/leann-build.yaml`.
```bash
# One-time: install and configure SkyPilot
pip install skypilot
# Launch with defaults (L4:1) and mount ./data to ~/leann-data; the build runs automatically
sky launch -c leann-gpu sky/leann-build.yaml
# Override parameters via -e key=value (optional)
sky launch -c leann-gpu sky/leann-build.yaml \
-e index_name=my-index \
-e backend=hnsw \
-e embedding_mode=sentence-transformers \
-e embedding_model=Qwen/Qwen3-Embedding-0.6B
# Copy the built index back to your local .leann (use rsync)
rsync -Pavz leann-gpu:~/.leann/indexes/my-index ./.leann/indexes/
```
### 3) Disable recomputation to trade storage for speed
If you need lower latency and have more storage/memory, disable recomputation. This stores full embeddings and avoids recomputing at search time.
```bash
# Build without recomputation (HNSW requires non-compact in this mode)
leann build my-index --no-recompute --no-compact
# Search without recomputation
leann search my-index "your query" --no-recompute
```
When to use:
- Extreme low latency requirements (high QPS, interactive assistants)
- Read-heavy workloads where storage is cheaper than latency
- No always-available GPU
Constraints:
- HNSW: when `--no-recompute` is set, LEANN automatically disables compact mode during build
- DiskANN: supported; `--no-recompute` skips selective recompute during search
Storage impact:
- Storing N embeddings of dimension D with float32 requires approximately N × D × 4 bytes
- Example: 1,000,000 chunks × 768 dims × 4 bytes ≈ 2.86 GB (plus graph/metadata)
Converting an existing index (rebuild required):
```bash
# Rebuild in-place (ensure you still have original docs or can regenerate chunks)
leann build my-index --force --no-recompute --no-compact
```
Python API usage:
```python
from leann import LeannSearcher
searcher = LeannSearcher("/path/to/my-index.leann")
results = searcher.search("your query", top_k=10, recompute_embeddings=False)
```
Trade-offs:
- Lower latency and fewer network hops at query time
- Significantly higher storage (10100× vs selective recomputation)
- Slightly larger memory footprint during build and search
Quick benchmark results (`benchmarks/benchmark_no_recompute.py` with 5k texts, complexity=32):
- HNSW
```text
recompute=True: search_time=0.818s, size=1.1MB
recompute=False: search_time=0.012s, size=16.6MB
```
- DiskANN
```text
recompute=True: search_time=0.041s, size=5.9MB
recompute=False: search_time=0.013s, size=24.6MB
```
Conclusion:
- **HNSW**: `no-recompute` is significantly faster (no embedding recomputation) but requires much more storage (stores all embeddings)
- **DiskANN**: `no-recompute` uses PQ + partial real distances during traversal (slower but higher accuracy), while `recompute=True` uses pure PQ traversal + final reranking (faster traversal, enables build-time partitioning for smaller storage)
## Further Reading
- [Lessons Learned Developing LEANN](https://yichuan-w.github.io/blog/lessons_learned_in_dev_leann/)
- [LEANN Technical Paper](https://arxiv.org/abs/2506.08276)
- [DiskANN Original Paper](https://papers.nips.cc/paper/2019/file/09853c7fb1d3f8ee67a61b6bf4a7f8e6-Paper.pdf)
- [SSD-based Graph Partitioning](https://github.com/SonglinLife/SSD_BASED_PLAN)

View File

@@ -5,7 +5,7 @@
- **🔄 Real-time Embeddings** - Eliminate heavy embedding storage with dynamic computation using optimized ZMQ servers and highly optimized search paradigm (overlapping and batching) with highly optimized embedding engine
- **📈 Scalable Architecture** - Handles millions of documents on consumer hardware; the larger your dataset, the more LEANN can save
- **🎯 Graph Pruning** - Advanced techniques to minimize the storage overhead of vector search to a limited footprint
- **🏗️ Pluggable Backends** - HNSW/FAISS (default), with optional DiskANN for large-scale deployments
- **🏗️ Pluggable Backends** - DiskANN, HNSW/FAISS with unified API
## 🛠️ Technical Highlights
- **🔄 Recompute Mode** - Highest accuracy scenarios while eliminating vector storage overhead
@@ -13,7 +13,7 @@
- **🚀 High-throughput Embedding Pipeline** - Optimized batched processing for maximum efficiency
- **🎯 Two-level Search** - Novel coarse-to-fine search overlap for accelerated query processing (optional)
- **💾 Memory-mapped Indices** - Fast startup with raw text mapping to reduce memory overhead
- **🚀 MLX Support** - Ultra-fast recompute/build with quantized embedding models, accelerating building and search ([minimal example](../examples/mlx_demo.py))
- **🚀 MLX Support** - Ultra-fast recompute/build with quantized embedding models, accelerating building and search ([minimal example](test/build_mlx_index.py))
## 🎨 Developer Experience

View File

@@ -72,4 +72,4 @@ Using the wrong distance metric with normalized embeddings can lead to:
- **Incorrect ranking** of search results
- **Suboptimal performance** compared to using the correct metric
For more details on why this happens, see our analysis in the [embedding detection code](../packages/leann-core/src/leann/api.py) which automatically handles normalized embeddings and MIPS distance metric issues.
For more details on why this happens, see our analysis of [OpenAI embeddings with MIPS](../examples/main_cli_example.py).

View File

@@ -2,8 +2,8 @@
## 🎯 Q2 2025
- [X] HNSW backend integration
- [X] DiskANN backend with MIPS/L2/Cosine support
- [X] HNSW backend integration
- [X] Real-time embedding pipeline
- [X] Memory-efficient graph pruning

View File

@@ -62,7 +62,7 @@ def test_faiss_hnsw():
try:
result = subprocess.run(
[sys.executable, "benchmarks/faiss_only.py"],
[sys.executable, "examples/faiss_only.py"],
capture_output=True,
text=True,
timeout=300,
@@ -115,7 +115,7 @@ def test_leann_hnsw():
# Load and parse documents
documents = SimpleDirectoryReader(
"data",
"examples/data",
recursive=True,
encoding="utf-8",
required_exts=[".pdf", ".txt", ".md"],

158
examples/document_search.py Normal file
View File

@@ -0,0 +1,158 @@
#!/usr/bin/env python3
"""
Document search demo with recompute mode
"""
import shutil
import time
from pathlib import Path
# Import backend packages to trigger plugin registration
try:
import leann_backend_diskann # noqa: F401
import leann_backend_hnsw # noqa: F401
print("INFO: Backend packages imported successfully.")
except ImportError as e:
print(f"WARNING: Could not import backend packages. Error: {e}")
# Import upper-level API from leann-core
from leann.api import LeannBuilder, LeannChat, LeannSearcher
def load_sample_documents():
"""Create sample documents for demonstration"""
docs = [
{
"title": "Intro to Python",
"content": "Python is a high-level, interpreted language known for simplicity.",
},
{
"title": "ML Basics",
"content": "Machine learning builds systems that learn from data.",
},
{
"title": "Data Structures",
"content": "Data structures like arrays, lists, and graphs organize data.",
},
]
return docs
def main():
print("==========================================================")
print("=== Leann Document Search Demo (DiskANN + Recompute) ===")
print("==========================================================")
INDEX_DIR = Path("./test_indices")
INDEX_PATH = str(INDEX_DIR / "documents.diskann")
BACKEND_TO_TEST = "diskann"
if INDEX_DIR.exists():
print(f"--- Cleaning up old index directory: {INDEX_DIR} ---")
shutil.rmtree(INDEX_DIR)
# --- 1. Build index ---
print(f"\n[PHASE 1] Building index using '{BACKEND_TO_TEST}' backend...")
builder = LeannBuilder(backend_name=BACKEND_TO_TEST, graph_degree=32, complexity=64)
documents = load_sample_documents()
print(f"Loaded {len(documents)} sample documents.")
for doc in documents:
builder.add_text(doc["content"], metadata={"title": doc["title"]})
builder.build_index(INDEX_PATH)
print("\nIndex built!")
# --- 2. Basic search demo ---
print(f"\n[PHASE 2] Basic search using '{BACKEND_TO_TEST}' backend...")
searcher = LeannSearcher(index_path=INDEX_PATH)
query = "What is machine learning?"
print(f"\nQuery: '{query}'")
print("\n--- Basic search mode (PQ computation) ---")
start_time = time.time()
results = searcher.search(query, top_k=2)
basic_time = time.time() - start_time
print(f"⏱️ Basic search time: {basic_time:.3f} seconds")
print(">>> Basic search results <<<")
for i, res in enumerate(results, 1):
print(
f" {i}. ID: {res.id}, Score: {res.score:.4f}, Text: '{res.text}', Metadata: {res.metadata}"
)
# --- 3. Recompute search demo ---
print("\n[PHASE 3] Recompute search using embedding server...")
print("\n--- Recompute search mode (get real embeddings via network) ---")
# Configure recompute parameters
recompute_params = {
"recompute_beighbor_embeddings": True, # Enable network recomputation
"USE_DEFERRED_FETCH": False, # Don't use deferred fetch
"skip_search_reorder": True, # Skip search reordering
"dedup_node_dis": True, # Enable node distance deduplication
"prune_ratio": 0.1, # Pruning ratio 10%
"batch_recompute": False, # Don't use batch recomputation
"global_pruning": False, # Don't use global pruning
"zmq_port": 5555, # ZMQ port
"embedding_model": "sentence-transformers/all-mpnet-base-v2",
}
print("Recompute parameter configuration:")
for key, value in recompute_params.items():
print(f" {key}: {value}")
print("\n🔄 Executing Recompute search...")
try:
start_time = time.time()
recompute_results = searcher.search(query, top_k=2, **recompute_params)
recompute_time = time.time() - start_time
print(f"⏱️ Recompute search time: {recompute_time:.3f} seconds")
print(">>> Recompute search results <<<")
for i, res in enumerate(recompute_results, 1):
print(
f" {i}. ID: {res.id}, Score: {res.score:.4f}, Text: '{res.text}', Metadata: {res.metadata}"
)
# Compare results
print("\n--- Result comparison ---")
print(f"Basic search time: {basic_time:.3f} seconds")
print(f"Recompute time: {recompute_time:.3f} seconds")
print("\nBasic search vs Recompute results:")
for i in range(min(len(results), len(recompute_results))):
basic_score = results[i].score
recompute_score = recompute_results[i].score
score_diff = abs(basic_score - recompute_score)
print(
f" Position {i + 1}: PQ={basic_score:.4f}, Recompute={recompute_score:.4f}, Difference={score_diff:.4f}"
)
if recompute_time > basic_time:
print("✅ Recompute mode working correctly (more accurate but slower)")
else:
print("i Recompute time is unusually fast, network recomputation may not be enabled")
except Exception as e:
print(f"❌ Recompute search failed: {e}")
print("This usually indicates an embedding server connection issue")
# --- 4. Chat demo ---
print("\n[PHASE 4] Starting chat session...")
chat = LeannChat(index_path=INDEX_PATH)
chat_response = chat.ask(query)
print(f"You: {query}")
print(f"Leann: {chat_response}")
print("\n==========================================================")
print("✅ Demo finished successfully!")
print("==========================================================")
if __name__ == "__main__":
main()

View File

@@ -52,11 +52,6 @@ class EmlxReader(BaseReader):
docs: list[Document] = []
max_count = load_kwargs.get("max_count", 1000)
count = 0
total_files = 0
successful_files = 0
failed_files = 0
print(f"Starting to process directory: {input_dir}")
# Walk through the directory recursively
for dirpath, dirnames, filenames in os.walk(input_dir):
@@ -64,12 +59,10 @@ class EmlxReader(BaseReader):
dirnames[:] = [d for d in dirnames if not d.startswith(".")]
for filename in filenames:
# Check if we've reached the max count (skip if max_count == -1)
if max_count > 0 and count >= max_count:
if count >= max_count:
break
if filename.endswith(".emlx"):
total_files += 1
filepath = os.path.join(dirpath, filename)
try:
# Read the .emlx file
@@ -105,26 +98,17 @@ class EmlxReader(BaseReader):
and not self.include_html
):
continue
try:
payload = part.get_payload(decode=True)
if payload:
body += payload.decode("utf-8", errors="ignore")
except Exception as e:
print(f"Error decoding payload: {e}")
continue
body += part.get_payload(decode=True).decode(
"utf-8", errors="ignore"
)
# break
else:
try:
payload = msg.get_payload(decode=True)
if payload:
body = payload.decode("utf-8", errors="ignore")
except Exception as e:
print(f"Error decoding single part payload: {e}")
body = ""
body = msg.get_payload(decode=True).decode(
"utf-8", errors="ignore"
)
# Only create document if we have some content
if body.strip() or subject != "No Subject":
# Create document content with metadata embedded in text
doc_content = f"""
# Create document content with metadata embedded in text
doc_content = f"""
[File]: {filename}
[From]: {from_addr}
[To]: {to_addr}
@@ -134,34 +118,18 @@ class EmlxReader(BaseReader):
{body}
"""
# No separate metadata - everything is in the text
doc = Document(text=doc_content, metadata={})
docs.append(doc)
count += 1
successful_files += 1
# Print first few successful files for debugging
if successful_files <= 3:
print(
f"Successfully loaded: {filename} - Subject: {subject[:50]}..."
)
# No separate metadata - everything is in the text
doc = Document(text=doc_content, metadata={})
docs.append(doc)
count += 1
except Exception as e:
failed_files += 1
if failed_files <= 5: # Only print first few errors
print(f"Error parsing email from {filepath}: {e}")
print(f"Error parsing email from {filepath}: {e}")
continue
except Exception as e:
failed_files += 1
if failed_files <= 5: # Only print first few errors
print(f"Error reading file {filepath}: {e}")
print(f"Error reading file {filepath}: {e}")
continue
print("Processing summary:")
print(f" Total .emlx files found: {total_files}")
print(f" Successfully loaded: {successful_files}")
print(f" Failed to load: {failed_files}")
print(f" Final documents: {len(docs)}")
print(f"Loaded {len(docs)} email documents")
return docs

View File

@@ -65,7 +65,7 @@ def main():
tracker.checkpoint("After Faiss index creation")
documents = SimpleDirectoryReader(
"data",
"examples/data",
recursive=True,
encoding="utf-8",
required_exts=[".pdf", ".txt", ".md"],

View File

@@ -0,0 +1,362 @@
import argparse
import asyncio
import os
try:
import dotenv
dotenv.load_dotenv()
except ModuleNotFoundError:
# python-dotenv is not installed; skip loading environment variables
dotenv = None
from pathlib import Path
from leann.api import LeannBuilder, LeannChat
from llama_index.core.node_parser import SentenceSplitter
# dotenv.load_dotenv() # handled above if python-dotenv is available
# Default Chrome profile path
DEFAULT_CHROME_PROFILE = os.path.expanduser("~/Library/Application Support/Google/Chrome/Default")
def create_leann_index_from_multiple_chrome_profiles(
profile_dirs: list[Path],
index_path: str = "chrome_history_index.leann",
max_count: int = -1,
embedding_model: str = "facebook/contriever",
embedding_mode: str = "sentence-transformers",
):
"""
Create LEANN index from multiple Chrome profile data sources.
Args:
profile_dirs: List of Path objects pointing to Chrome profile directories
index_path: Path to save the LEANN index
max_count: Maximum number of history entries to process per profile
embedding_model: The embedding model to use
embedding_mode: The embedding backend mode
"""
print("Creating LEANN index from multiple Chrome profile data sources...")
# Load documents using ChromeHistoryReader from history_data
from history_data.history import ChromeHistoryReader
reader = ChromeHistoryReader()
INDEX_DIR = Path(index_path).parent
if not INDEX_DIR.exists():
print("--- Index directory not found, building new index ---")
all_documents = []
total_processed = 0
# Process each Chrome profile directory
for i, profile_dir in enumerate(profile_dirs):
print(f"\nProcessing Chrome profile {i + 1}/{len(profile_dirs)}: {profile_dir}")
try:
documents = reader.load_data(
chrome_profile_path=str(profile_dir), max_count=max_count
)
if documents:
print(f"Loaded {len(documents)} history documents from {profile_dir}")
all_documents.extend(documents)
total_processed += len(documents)
# Check if we've reached the max count
if max_count > 0 and total_processed >= max_count:
print(f"Reached max count of {max_count} documents")
break
else:
print(f"No documents loaded from {profile_dir}")
except Exception as e:
print(f"Error processing {profile_dir}: {e}")
continue
if not all_documents:
print("No documents loaded from any source. Exiting.")
# highlight info that you need to close all chrome browser before running this script and high light the instruction!!
print(
"\033[91mYou need to close or quit all chrome browser before running this script\033[0m"
)
return None
print(
f"\nTotal loaded {len(all_documents)} history documents from {len(profile_dirs)} profiles"
)
# Create text splitter with 256 chunk size
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=128)
# Convert Documents to text strings and chunk them
all_texts = []
for doc in all_documents:
# Split the document into chunks
nodes = text_splitter.get_nodes_from_documents([doc])
for node in nodes:
text = node.get_content()
# text = '[Title] ' + doc.metadata["title"] + '\n' + text
all_texts.append(text)
print(f"Created {len(all_texts)} text chunks from {len(all_documents)} documents")
# Create LEANN index directory
print("--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print("--- Building new LEANN index ---")
print("\n[PHASE 1] Building Leann index...")
# Use HNSW backend for better macOS compatibility
# LeannBuilder will automatically detect normalized embeddings and set appropriate distance metric
builder = LeannBuilder(
backend_name="hnsw",
embedding_model=embedding_model,
embedding_mode=embedding_mode,
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1, # Force single-threaded mode
)
print(f"Adding {len(all_texts)} history chunks to index...")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(index_path)
print(f"\nLEANN index built at {index_path}!")
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
return index_path
def create_leann_index(
profile_path: str | None = None,
index_path: str = "chrome_history_index.leann",
max_count: int = 1000,
embedding_model: str = "facebook/contriever",
embedding_mode: str = "sentence-transformers",
):
"""
Create LEANN index from Chrome history data.
Args:
profile_path: Path to the Chrome profile directory (optional, uses default if None)
index_path: Path to save the LEANN index
max_count: Maximum number of history entries to process
embedding_model: The embedding model to use
embedding_mode: The embedding backend mode
"""
print("Creating LEANN index from Chrome history data...")
INDEX_DIR = Path(index_path).parent
if not INDEX_DIR.exists():
print("--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print("--- Building new LEANN index ---")
print("\n[PHASE 1] Building Leann index...")
# Load documents using ChromeHistoryReader from history_data
from history_data.history import ChromeHistoryReader
reader = ChromeHistoryReader()
documents = reader.load_data(chrome_profile_path=profile_path, max_count=max_count)
if not documents:
print("No documents loaded. Exiting.")
return None
print(f"Loaded {len(documents)} history documents")
# Create text splitter with 256 chunk size
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25)
# Convert Documents to text strings and chunk them
all_texts = []
for doc in documents:
# Split the document into chunks
nodes = text_splitter.get_nodes_from_documents([doc])
for node in nodes:
all_texts.append(node.get_content())
print(f"Created {len(all_texts)} text chunks from {len(documents)} documents")
# Create LEANN index directory
print("--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print("--- Building new LEANN index ---")
print("\n[PHASE 1] Building Leann index...")
# Use HNSW backend for better macOS compatibility
# LeannBuilder will automatically detect normalized embeddings and set appropriate distance metric
builder = LeannBuilder(
backend_name="hnsw",
embedding_model=embedding_model,
embedding_mode=embedding_mode,
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1, # Force single-threaded mode
)
print(f"Adding {len(all_texts)} history chunks to index...")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(index_path)
print(f"\nLEANN index built at {index_path}!")
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
return index_path
async def query_leann_index(index_path: str, query: str):
"""
Query the LEANN index.
Args:
index_path: Path to the LEANN index
query: The query string
"""
print("\n[PHASE 2] Starting Leann chat session...")
chat = LeannChat(index_path=index_path)
print(f"You: {query}")
chat_response = chat.ask(
query,
top_k=10,
recompute_beighbor_embeddings=True,
complexity=32,
beam_width=1,
llm_config={
"type": "openai",
"model": "gpt-4o",
"api_key": os.getenv("OPENAI_API_KEY"),
},
llm_kwargs={"temperature": 0.0, "max_tokens": 1000},
)
print(f"Leann chat response: \033[36m{chat_response}\033[0m")
async def main():
# Parse command line arguments
parser = argparse.ArgumentParser(
description="LEANN Chrome History Reader - Create and query browser history index"
)
parser.add_argument(
"--chrome-profile",
type=str,
default=DEFAULT_CHROME_PROFILE,
help=f"Path to Chrome profile directory (default: {DEFAULT_CHROME_PROFILE}), usually you dont need to change this",
)
parser.add_argument(
"--index-dir",
type=str,
default="./google_history_index",
help="Directory to store the LEANN index (default: ./chrome_history_index_leann_test)",
)
parser.add_argument(
"--max-entries",
type=int,
default=1000,
help="Maximum number of history entries to process (default: 1000)",
)
parser.add_argument(
"--query",
type=str,
default=None,
help="Single query to run (default: runs example queries)",
)
parser.add_argument(
"--auto-find-profiles",
action="store_true",
default=True,
help="Automatically find all Chrome profiles (default: True)",
)
parser.add_argument(
"--embedding-model",
type=str,
default="facebook/contriever",
help="The embedding model to use (e.g., 'facebook/contriever', 'text-embedding-3-small')",
)
parser.add_argument(
"--embedding-mode",
type=str,
default="sentence-transformers",
choices=["sentence-transformers", "openai", "mlx"],
help="The embedding backend mode",
)
parser.add_argument(
"--use-existing-index",
action="store_true",
help="Use existing index without rebuilding",
)
args = parser.parse_args()
INDEX_DIR = Path(args.index_dir)
INDEX_PATH = str(INDEX_DIR / "chrome_history.leann")
print(f"Using Chrome profile: {args.chrome_profile}")
print(f"Index directory: {INDEX_DIR}")
print(f"Max entries: {args.max_entries}")
if args.use_existing_index:
# Use existing index without rebuilding
if not Path(INDEX_PATH).exists():
print(f"Error: Index file not found at {INDEX_PATH}")
return
print(f"Using existing index at {INDEX_PATH}")
index_path = INDEX_PATH
else:
# Find Chrome profile directories
from history_data.history import ChromeHistoryReader
if args.auto_find_profiles:
profile_dirs = ChromeHistoryReader.find_chrome_profiles()
if not profile_dirs:
print("No Chrome profiles found automatically. Exiting.")
return
else:
# Use single specified profile
profile_path = Path(args.chrome_profile)
if not profile_path.exists():
print(f"Chrome profile not found: {profile_path}")
return
profile_dirs = [profile_path]
# Create or load the LEANN index from all sources
index_path = create_leann_index_from_multiple_chrome_profiles(
profile_dirs, INDEX_PATH, args.max_entries, args.embedding_model, args.embedding_mode
)
if index_path:
if args.query:
# Run single query
await query_leann_index(index_path, args.query)
else:
# Example queries
queries = [
"What websites did I visit about machine learning?",
"Find my search history about programming",
]
for query in queries:
print("\n" + "=" * 60)
await query_leann_index(index_path, query)
if __name__ == "__main__":
asyncio.run(main())

View File

@@ -97,11 +97,6 @@ class ChromeHistoryReader(BaseReader):
except Exception as e:
print(f"Error reading Chrome history: {e}")
# add you may need to close your browser to make the database file available
# also highlight in red
print(
"\033[91mYou may need to close your browser to make the database file available\033[0m"
)
return docs
return docs

View File

@@ -411,8 +411,8 @@ Messages ({len(messages)} messages, {message_group["total_length"]} chars):
wechat_export_dir = load_kwargs.get("wechat_export_dir", None)
include_non_text = load_kwargs.get("include_non_text", False)
concatenate_messages = load_kwargs.get("concatenate_messages", False)
max_length = load_kwargs.get("max_length", 1000)
time_window_minutes = load_kwargs.get("time_window_minutes", 30)
load_kwargs.get("max_length", 1000)
load_kwargs.get("time_window_minutes", 30)
# Default WeChat export path
if wechat_export_dir is None:
@@ -460,9 +460,9 @@ Messages ({len(messages)} messages, {message_group["total_length"]} chars):
# Concatenate messages based on rules
message_groups = self._concatenate_messages(
readable_messages,
max_length=max_length,
time_window_minutes=time_window_minutes,
overlap_messages=0, # No overlap between groups
max_length=-1,
time_window_minutes=-1,
overlap_messages=0, # Keep 2 messages overlap between groups
)
# Create documents from concatenated groups
@@ -532,9 +532,7 @@ Message: {readable_text if readable_text else message_text}
"""
# Create document with embedded metadata
doc = Document(
text=doc_content, metadata={"contact_name": contact_name}
)
doc = Document(text=doc_content, metadata={})
docs.append(doc)
count += 1
@@ -562,8 +560,8 @@ Message: {readable_text if readable_text else message_text}
# Look for common export directory names
possible_dirs = [
Path("./wechat_export_test"),
Path("./wechat_export"),
Path("./wechat_export_direct"),
Path("./wechat_chat_history"),
Path("./chat_export"),
]

View File

@@ -0,0 +1,342 @@
import argparse
import asyncio
import os
import sys
from pathlib import Path
import dotenv
# Add the project root to Python path so we can import from examples
project_root = Path(__file__).parent.parent
sys.path.insert(0, str(project_root))
from leann.api import LeannBuilder, LeannChat
from llama_index.core.node_parser import SentenceSplitter
dotenv.load_dotenv()
# Auto-detect user's mail path
def get_mail_path():
"""Get the mail path for the current user"""
home_dir = os.path.expanduser("~")
return os.path.join(home_dir, "Library", "Mail")
# Default mail path for macOS
DEFAULT_MAIL_PATH = "/Users/yichuan/Library/Mail/V10/0FCA0879-FD8C-4B7E-83BF-FDDA930791C5/[Gmail].mbox/All Mail.mbox/78BA5BE1-8819-4F9A-9613-EB63772F1DD0/Data"
def create_leann_index_from_multiple_sources(
messages_dirs: list[Path],
index_path: str = "mail_index.leann",
max_count: int = -1,
include_html: bool = False,
embedding_model: str = "facebook/contriever",
):
"""
Create LEANN index from multiple mail data sources.
Args:
messages_dirs: List of Path objects pointing to Messages directories
index_path: Path to save the LEANN index
max_count: Maximum number of emails to process per directory
include_html: Whether to include HTML content in email processing
"""
print("Creating LEANN index from multiple mail data sources...")
# Load documents using EmlxReader from LEANN_email_reader
from examples.email_data.LEANN_email_reader import EmlxReader
reader = EmlxReader(include_html=include_html)
# from email_data.email import EmlxMboxReader
# from pathlib import Path
# reader = EmlxMboxReader()
INDEX_DIR = Path(index_path).parent
if not INDEX_DIR.exists():
print("--- Index directory not found, building new index ---")
all_documents = []
total_processed = 0
# Process each Messages directory
for i, messages_dir in enumerate(messages_dirs):
print(f"\nProcessing Messages directory {i + 1}/{len(messages_dirs)}: {messages_dir}")
try:
documents = reader.load_data(messages_dir)
if documents:
print(f"Loaded {len(documents)} email documents from {messages_dir}")
all_documents.extend(documents)
total_processed += len(documents)
# Check if we've reached the max count
if max_count > 0 and total_processed >= max_count:
print(f"Reached max count of {max_count} documents")
break
else:
print(f"No documents loaded from {messages_dir}")
except Exception as e:
print(f"Error processing {messages_dir}: {e}")
continue
if not all_documents:
print("No documents loaded from any source. Exiting.")
return None
print(
f"\nTotal loaded {len(all_documents)} email documents from {len(messages_dirs)} directories and starting to split them into chunks"
)
# Create text splitter with 256 chunk size
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25)
# Convert Documents to text strings and chunk them
all_texts = []
for doc in all_documents:
# Split the document into chunks
nodes = text_splitter.get_nodes_from_documents([doc])
for node in nodes:
text = node.get_content()
# text = '[subject] ' + doc.metadata["subject"] + '\n' + text
all_texts.append(text)
print(
f"Finished splitting {len(all_documents)} documents into {len(all_texts)} text chunks"
)
# Create LEANN index directory
print("--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print("--- Building new LEANN index ---")
print("\n[PHASE 1] Building Leann index...")
# Use HNSW backend for better macOS compatibility
builder = LeannBuilder(
backend_name="hnsw",
embedding_model=embedding_model,
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1, # Force single-threaded mode
)
print(f"Adding {len(all_texts)} email chunks to index...")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(index_path)
print(f"\nLEANN index built at {index_path}!")
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
return index_path
def create_leann_index(
mail_path: str,
index_path: str = "mail_index.leann",
max_count: int = 1000,
include_html: bool = False,
embedding_model: str = "facebook/contriever",
):
"""
Create LEANN index from mail data.
Args:
mail_path: Path to the mail directory
index_path: Path to save the LEANN index
max_count: Maximum number of emails to process
include_html: Whether to include HTML content in email processing
"""
print("Creating LEANN index from mail data...")
INDEX_DIR = Path(index_path).parent
if not INDEX_DIR.exists():
print("--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print("--- Building new LEANN index ---")
print("\n[PHASE 1] Building Leann index...")
# Load documents using EmlxReader from LEANN_email_reader
from examples.email_data.LEANN_email_reader import EmlxReader
reader = EmlxReader(include_html=include_html)
# from email_data.email import EmlxMboxReader
# from pathlib import Path
# reader = EmlxMboxReader()
documents = reader.load_data(Path(mail_path))
if not documents:
print("No documents loaded. Exiting.")
return None
print(f"Loaded {len(documents)} email documents")
# Create text splitter with 256 chunk size
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=128)
# Convert Documents to text strings and chunk them
all_texts = []
for doc in documents:
# Split the document into chunks
nodes = text_splitter.get_nodes_from_documents([doc])
for node in nodes:
all_texts.append(node.get_content())
print(f"Created {len(all_texts)} text chunks from {len(documents)} documents")
# Create LEANN index directory
print("--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print("--- Building new LEANN index ---")
print("\n[PHASE 1] Building Leann index...")
# Use HNSW backend for better macOS compatibility
builder = LeannBuilder(
backend_name="hnsw",
embedding_model=embedding_model,
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1, # Force single-threaded mode
)
print(f"Adding {len(all_texts)} email chunks to index...")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(index_path)
print(f"\nLEANN index built at {index_path}!")
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
return index_path
async def query_leann_index(index_path: str, query: str):
"""
Query the LEANN index.
Args:
index_path: Path to the LEANN index
query: The query string
"""
print("\n[PHASE 2] Starting Leann chat session...")
chat = LeannChat(index_path=index_path, llm_config={"type": "openai", "model": "gpt-4o"})
print(f"You: {query}")
import time
time.time()
chat_response = chat.ask(
query,
top_k=20,
recompute_beighbor_embeddings=True,
complexity=32,
beam_width=1,
)
time.time()
# print(f"Time taken: {end_time - start_time} seconds")
# highlight the answer
print(f"Leann chat response: \033[36m{chat_response}\033[0m")
async def main():
# Parse command line arguments
parser = argparse.ArgumentParser(description="LEANN Mail Reader - Create and query email index")
# Remove --mail-path argument and auto-detect all Messages directories
# Remove DEFAULT_MAIL_PATH
parser.add_argument(
"--index-dir",
type=str,
default="./mail_index",
help="Directory to store the LEANN index (default: ./mail_index_leann_raw_text_all_dicts)",
)
parser.add_argument(
"--max-emails",
type=int,
default=1000,
help="Maximum number of emails to process (-1 means all)",
)
parser.add_argument(
"--query",
type=str,
default="Give me some funny advertisement about apple or other companies",
help="Single query to run (default: runs example queries)",
)
parser.add_argument(
"--include-html",
action="store_true",
default=False,
help="Include HTML content in email processing (default: False)",
)
parser.add_argument(
"--embedding-model",
type=str,
default="facebook/contriever",
help="Embedding model to use (default: facebook/contriever)",
)
args = parser.parse_args()
print(f"args: {args}")
# Automatically find all Messages directories under the current user's Mail directory
from examples.email_data.LEANN_email_reader import find_all_messages_directories
mail_path = get_mail_path()
print(f"Searching for email data in: {mail_path}")
messages_dirs = find_all_messages_directories(mail_path)
# messages_dirs = find_all_messages_directories(DEFAULT_MAIL_PATH)
# messages_dirs = [DEFAULT_MAIL_PATH]
# messages_dirs = messages_dirs[:1]
print("len(messages_dirs): ", len(messages_dirs))
if not messages_dirs:
print("No Messages directories found. Exiting.")
return
INDEX_DIR = Path(args.index_dir)
INDEX_PATH = str(INDEX_DIR / "mail_documents.leann")
print(f"Index directory: {INDEX_DIR}")
print(f"Found {len(messages_dirs)} Messages directories.")
# Create or load the LEANN index from all sources
index_path = create_leann_index_from_multiple_sources(
messages_dirs,
INDEX_PATH,
args.max_emails,
args.include_html,
args.embedding_model,
)
if index_path:
if args.query:
# Run single query
await query_leann_index(index_path, args.query)
else:
# Example queries
queries = [
"Hows Berkeley Graduate Student Instructor",
"how's the icloud related advertisement saying",
"Whats the number of class recommend to take per semester for incoming EECS students",
]
for query in queries:
print("\n" + "=" * 60)
await query_leann_index(index_path, query)
if __name__ == "__main__":
asyncio.run(main())

View File

@@ -0,0 +1,135 @@
import argparse
import os
import sys
from pathlib import Path
# Add the project root to Python path so we can import from examples
project_root = Path(__file__).parent.parent
sys.path.insert(0, str(project_root))
import torch
from llama_index.core import StorageContext, VectorStoreIndex
from llama_index.core.node_parser import SentenceSplitter
# --- EMBEDDING MODEL ---
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
# --- END EMBEDDING MODEL ---
# Import EmlxReader from the new module
from examples.email_data.LEANN_email_reader import EmlxReader
def create_and_save_index(
mail_path: str,
save_dir: str = "mail_index_embedded",
max_count: int = 1000,
include_html: bool = False,
):
print("Creating index from mail data with embedded metadata...")
documents = EmlxReader(include_html=include_html).load_data(mail_path, max_count=max_count)
if not documents:
print("No documents loaded. Exiting.")
return None
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25)
# Use facebook/contriever as the embedder
embed_model = HuggingFaceEmbedding(model_name="facebook/contriever")
# set on device
if torch.cuda.is_available():
embed_model._model.to("cuda")
# set mps
elif torch.backends.mps.is_available():
embed_model._model.to("mps")
else:
embed_model._model.to("cpu")
index = VectorStoreIndex.from_documents(
documents, transformations=[text_splitter], embed_model=embed_model
)
os.makedirs(save_dir, exist_ok=True)
index.storage_context.persist(persist_dir=save_dir)
print(f"Index saved to {save_dir}")
return index
def load_index(save_dir: str = "mail_index_embedded"):
try:
storage_context = StorageContext.from_defaults(persist_dir=save_dir)
index = VectorStoreIndex.from_vector_store(
storage_context.vector_store, storage_context=storage_context
)
print(f"Index loaded from {save_dir}")
return index
except Exception as e:
print(f"Error loading index: {e}")
return None
def query_index(index, query: str):
if index is None:
print("No index available for querying.")
return
query_engine = index.as_query_engine()
response = query_engine.query(query)
print(f"Query: {query}")
print(f"Response: {response}")
def main():
# Parse command line arguments
parser = argparse.ArgumentParser(
description="LlamaIndex Mail Reader - Create and query email index"
)
parser.add_argument(
"--mail-path",
type=str,
default="/Users/yichuan/Library/Mail/V10/0FCA0879-FD8C-4B7E-83BF-FDDA930791C5/[Gmail].mbox/All Mail.mbox/78BA5BE1-8819-4F9A-9613-EB63772F1DD0/Data/9/Messages",
help="Path to mail data directory",
)
parser.add_argument(
"--save-dir",
type=str,
default="mail_index_embedded",
help="Directory to store the index (default: mail_index_embedded)",
)
parser.add_argument(
"--max-emails",
type=int,
default=10000,
help="Maximum number of emails to process",
)
parser.add_argument(
"--include-html",
action="store_true",
default=False,
help="Include HTML content in email processing (default: False)",
)
args = parser.parse_args()
mail_path = args.mail_path
save_dir = args.save_dir
if os.path.exists(save_dir) and os.path.exists(os.path.join(save_dir, "vector_store.json")):
print("Loading existing index...")
index = load_index(save_dir)
else:
print("Creating new index...")
index = create_and_save_index(
mail_path,
save_dir,
max_count=args.max_emails,
include_html=args.include_html,
)
if index:
queries = [
"Hows Berkeley Graduate Student Instructor",
"how's the icloud related advertisement saying",
"Whats the number of class recommend to take per semester for incoming EECS students",
]
for query in queries:
print("\n" + "=" * 50)
query_index(index, query)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,146 @@
import argparse
import asyncio
from pathlib import Path
import dotenv
from leann.api import LeannBuilder, LeannChat
from llama_index.core import SimpleDirectoryReader
from llama_index.core.node_parser import SentenceSplitter
dotenv.load_dotenv()
async def main(args):
INDEX_DIR = Path(args.index_dir)
INDEX_PATH = str(INDEX_DIR / "pdf_documents.leann")
if not INDEX_DIR.exists():
node_parser = SentenceSplitter(
chunk_size=256, chunk_overlap=128, separator=" ", paragraph_separator="\n\n"
)
print("Loading documents...")
documents = SimpleDirectoryReader(
args.data_dir,
recursive=True,
encoding="utf-8",
required_exts=[".pdf", ".txt", ".md"],
).load_data(show_progress=True)
print("Documents loaded.")
all_texts = []
for doc in documents:
nodes = node_parser.get_nodes_from_documents([doc])
if nodes:
all_texts.extend(node.get_content() for node in nodes)
print("--- Index directory not found, building new index ---")
print("\n[PHASE 1] Building Leann index...")
# LeannBuilder now automatically detects normalized embeddings and sets appropriate distance metric
print(f"Using {args.embedding_model} with {args.embedding_mode} mode")
# Use HNSW backend for better macOS compatibility
builder = LeannBuilder(
backend_name="hnsw",
embedding_model=args.embedding_model,
embedding_mode=args.embedding_mode,
# distance_metric is automatically set based on embedding model
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1, # Force single-threaded mode
)
print(f"Loaded {len(all_texts)} text chunks from documents.")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(INDEX_PATH)
print(f"\nLeann index built at {INDEX_PATH}!")
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
print("\n[PHASE 2] Starting Leann chat session...")
# Build llm_config based on command line arguments
if args.llm == "simulated":
llm_config = {"type": "simulated"}
elif args.llm == "ollama":
llm_config = {"type": "ollama", "model": args.model, "host": args.host}
elif args.llm == "hf":
llm_config = {"type": "hf", "model": args.model}
elif args.llm == "openai":
llm_config = {"type": "openai", "model": args.model}
else:
raise ValueError(f"Unknown LLM type: {args.llm}")
print(f"Using LLM: {args.llm} with model: {args.model if args.llm != 'simulated' else 'N/A'}")
chat = LeannChat(index_path=INDEX_PATH, llm_config=llm_config)
# query = (
# "什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发"
# )
query = args.query
print(f"You: {query}")
chat_response = chat.ask(query, top_k=20, recompute_embeddings=True, complexity=32)
print(f"Leann chat response: \033[36m{chat_response}\033[0m")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run Leann Chat with various LLM backends.")
parser.add_argument(
"--llm",
type=str,
default="openai",
choices=["simulated", "ollama", "hf", "openai"],
help="The LLM backend to use.",
)
parser.add_argument(
"--model",
type=str,
default="gpt-4o",
help="The model name to use (e.g., 'llama3:8b' for ollama, 'deepseek-ai/deepseek-llm-7b-chat' for hf, 'gpt-4o' for openai).",
)
parser.add_argument(
"--embedding-model",
type=str,
default="facebook/contriever",
help="The embedding model to use (e.g., 'facebook/contriever', 'text-embedding-3-small').",
)
parser.add_argument(
"--embedding-mode",
type=str,
default="sentence-transformers",
choices=["sentence-transformers", "openai", "mlx"],
help="The embedding backend mode.",
)
parser.add_argument(
"--host",
type=str,
default="http://localhost:11434",
help="The host for the Ollama API.",
)
parser.add_argument(
"--index-dir",
type=str,
default="./test_doc_files",
help="Directory where the Leann index will be stored.",
)
parser.add_argument(
"--data-dir",
type=str,
default="examples/data",
help="Directory containing documents to index (PDF, TXT, MD files).",
)
parser.add_argument(
"--query",
type=str,
default="Based on the paper, what are the main techniques LEANN explores to reduce the storage overhead and DLPM explore to achieve Fairness and Efiiciency trade-off?",
help="The query to ask the Leann chat system.",
)
args = parser.parse_args()
asyncio.run(main(args))

View File

@@ -0,0 +1,360 @@
#!/usr/bin/env python3
"""
Multi-Vector Aggregator for Fat Embeddings
==========================================
This module implements aggregation strategies for multi-vector embeddings,
similar to ColPali's approach where multiple patch vectors represent a single document.
Key features:
- MaxSim aggregation (take maximum similarity across patches)
- Voting-based aggregation (count patch matches)
- Weighted aggregation (attention-score weighted)
- Spatial clustering of matching patches
- Document-level result consolidation
"""
from collections import defaultdict
from dataclasses import dataclass
from typing import Any
import numpy as np
@dataclass
class PatchResult:
"""Represents a single patch search result."""
patch_id: int
image_name: str
image_path: str
coordinates: tuple[int, int, int, int] # (x1, y1, x2, y2)
score: float
attention_score: float
scale: float
metadata: dict[str, Any]
@dataclass
class AggregatedResult:
"""Represents an aggregated document-level result."""
image_name: str
image_path: str
doc_score: float
patch_count: int
best_patch: PatchResult
all_patches: list[PatchResult]
aggregation_method: str
spatial_clusters: list[list[PatchResult]] | None = None
class MultiVectorAggregator:
"""
Aggregates multiple patch-level results into document-level results.
"""
def __init__(
self,
aggregation_method: str = "maxsim",
spatial_clustering: bool = True,
cluster_distance_threshold: float = 100.0,
):
"""
Initialize the aggregator.
Args:
aggregation_method: "maxsim", "voting", "weighted", or "mean"
spatial_clustering: Whether to cluster spatially close patches
cluster_distance_threshold: Distance threshold for spatial clustering
"""
self.aggregation_method = aggregation_method
self.spatial_clustering = spatial_clustering
self.cluster_distance_threshold = cluster_distance_threshold
def aggregate_results(
self, search_results: list[dict[str, Any]], top_k: int = 10
) -> list[AggregatedResult]:
"""
Aggregate patch-level search results into document-level results.
Args:
search_results: List of search results from LeannSearcher
top_k: Number of top documents to return
Returns:
List of aggregated document results
"""
# Group results by image
image_groups = defaultdict(list)
for result in search_results:
metadata = result.metadata
if "image_name" in metadata and "patch_id" in metadata:
patch_result = PatchResult(
patch_id=metadata["patch_id"],
image_name=metadata["image_name"],
image_path=metadata["image_path"],
coordinates=tuple(metadata["coordinates"]),
score=result.score,
attention_score=metadata.get("attention_score", 0.0),
scale=metadata.get("scale", 1.0),
metadata=metadata,
)
image_groups[metadata["image_name"]].append(patch_result)
# Aggregate each image group
aggregated_results = []
for image_name, patches in image_groups.items():
if len(patches) == 0:
continue
agg_result = self._aggregate_image_patches(image_name, patches)
aggregated_results.append(agg_result)
# Sort by aggregated score and return top-k
aggregated_results.sort(key=lambda x: x.doc_score, reverse=True)
return aggregated_results[:top_k]
def _aggregate_image_patches(
self, image_name: str, patches: list[PatchResult]
) -> AggregatedResult:
"""Aggregate patches for a single image."""
if self.aggregation_method == "maxsim":
doc_score = max(patch.score for patch in patches)
best_patch = max(patches, key=lambda p: p.score)
elif self.aggregation_method == "voting":
# Count patches above threshold
threshold = np.percentile([p.score for p in patches], 75)
doc_score = sum(1 for patch in patches if patch.score >= threshold)
best_patch = max(patches, key=lambda p: p.score)
elif self.aggregation_method == "weighted":
# Weight by attention scores
total_weighted_score = sum(p.score * p.attention_score for p in patches)
total_weights = sum(p.attention_score for p in patches)
doc_score = total_weighted_score / max(total_weights, 1e-8)
best_patch = max(patches, key=lambda p: p.score * p.attention_score)
elif self.aggregation_method == "mean":
doc_score = np.mean([patch.score for patch in patches])
best_patch = max(patches, key=lambda p: p.score)
else:
raise ValueError(f"Unknown aggregation method: {self.aggregation_method}")
# Spatial clustering if enabled
spatial_clusters = None
if self.spatial_clustering:
spatial_clusters = self._cluster_patches_spatially(patches)
return AggregatedResult(
image_name=image_name,
image_path=patches[0].image_path,
doc_score=float(doc_score),
patch_count=len(patches),
best_patch=best_patch,
all_patches=sorted(patches, key=lambda p: p.score, reverse=True),
aggregation_method=self.aggregation_method,
spatial_clusters=spatial_clusters,
)
def _cluster_patches_spatially(self, patches: list[PatchResult]) -> list[list[PatchResult]]:
"""Cluster patches that are spatially close to each other."""
if len(patches) <= 1:
return [patches]
clusters = []
remaining_patches = patches.copy()
while remaining_patches:
# Start new cluster with highest scoring remaining patch
seed_patch = max(remaining_patches, key=lambda p: p.score)
current_cluster = [seed_patch]
remaining_patches.remove(seed_patch)
# Add nearby patches to cluster
added_to_cluster = True
while added_to_cluster:
added_to_cluster = False
for patch in remaining_patches.copy():
if self._is_patch_nearby(patch, current_cluster):
current_cluster.append(patch)
remaining_patches.remove(patch)
added_to_cluster = True
clusters.append(current_cluster)
return sorted(clusters, key=lambda cluster: max(p.score for p in cluster), reverse=True)
def _is_patch_nearby(self, patch: PatchResult, cluster: list[PatchResult]) -> bool:
"""Check if a patch is spatially close to any patch in the cluster."""
patch_center = self._get_patch_center(patch.coordinates)
for cluster_patch in cluster:
cluster_center = self._get_patch_center(cluster_patch.coordinates)
distance = np.sqrt(
(patch_center[0] - cluster_center[0]) ** 2
+ (patch_center[1] - cluster_center[1]) ** 2
)
if distance <= self.cluster_distance_threshold:
return True
return False
def _get_patch_center(self, coordinates: tuple[int, int, int, int]) -> tuple[float, float]:
"""Get center point of a patch."""
x1, y1, x2, y2 = coordinates
return ((x1 + x2) / 2, (y1 + y2) / 2)
def print_aggregated_results(
self, results: list[AggregatedResult], max_patches_per_doc: int = 3
):
"""Pretty print aggregated results."""
print(f"\n🔍 Aggregated Results (method: {self.aggregation_method})")
print("=" * 80)
for i, result in enumerate(results):
print(f"\n{i + 1}. {result.image_name}")
print(f" Doc Score: {result.doc_score:.4f} | Patches: {result.patch_count}")
print(f" Path: {result.image_path}")
# Show best patch
best = result.best_patch
print(
f" 🌟 Best Patch: #{best.patch_id} at {best.coordinates} (score: {best.score:.4f})"
)
# Show top patches
print(" 📍 Top Patches:")
for j, patch in enumerate(result.all_patches[:max_patches_per_doc]):
print(
f" {j + 1}. Patch #{patch.patch_id}: {patch.score:.4f} at {patch.coordinates}"
)
# Show spatial clusters if available
if result.spatial_clusters and len(result.spatial_clusters) > 1:
print(f" 🗂️ Spatial Clusters: {len(result.spatial_clusters)}")
for j, cluster in enumerate(result.spatial_clusters[:2]): # Show top 2 clusters
cluster_score = max(p.score for p in cluster)
print(
f" Cluster {j + 1}: {len(cluster)} patches (best: {cluster_score:.4f})"
)
def demo_aggregation():
"""Demonstrate the multi-vector aggregation functionality."""
print("=== Multi-Vector Aggregation Demo ===")
# Simulate some patch-level search results
# In real usage, these would come from LeannSearcher.search()
class MockResult:
def __init__(self, score, metadata):
self.score = score
self.metadata = metadata
# Simulate results for 2 images with multiple patches each
mock_results = [
# Image 1: cats_and_kitchen.jpg - 4 patches
MockResult(
0.85,
{
"image_name": "cats_and_kitchen.jpg",
"image_path": "/path/to/cats_and_kitchen.jpg",
"patch_id": 3,
"coordinates": [100, 50, 224, 174], # Kitchen area
"attention_score": 0.92,
"scale": 1.0,
},
),
MockResult(
0.78,
{
"image_name": "cats_and_kitchen.jpg",
"image_path": "/path/to/cats_and_kitchen.jpg",
"patch_id": 7,
"coordinates": [200, 300, 324, 424], # Cat area
"attention_score": 0.88,
"scale": 1.0,
},
),
MockResult(
0.72,
{
"image_name": "cats_and_kitchen.jpg",
"image_path": "/path/to/cats_and_kitchen.jpg",
"patch_id": 12,
"coordinates": [150, 100, 274, 224], # Appliances
"attention_score": 0.75,
"scale": 1.0,
},
),
MockResult(
0.65,
{
"image_name": "cats_and_kitchen.jpg",
"image_path": "/path/to/cats_and_kitchen.jpg",
"patch_id": 15,
"coordinates": [50, 250, 174, 374], # Furniture
"attention_score": 0.70,
"scale": 1.0,
},
),
# Image 2: city_street.jpg - 3 patches
MockResult(
0.68,
{
"image_name": "city_street.jpg",
"image_path": "/path/to/city_street.jpg",
"patch_id": 2,
"coordinates": [300, 100, 424, 224], # Buildings
"attention_score": 0.80,
"scale": 1.0,
},
),
MockResult(
0.62,
{
"image_name": "city_street.jpg",
"image_path": "/path/to/city_street.jpg",
"patch_id": 8,
"coordinates": [100, 350, 224, 474], # Street level
"attention_score": 0.75,
"scale": 1.0,
},
),
MockResult(
0.55,
{
"image_name": "city_street.jpg",
"image_path": "/path/to/city_street.jpg",
"patch_id": 11,
"coordinates": [400, 200, 524, 324], # Sky area
"attention_score": 0.60,
"scale": 1.0,
},
),
]
# Test different aggregation methods
methods = ["maxsim", "voting", "weighted", "mean"]
for method in methods:
print(f"\n{'=' * 20} {method.upper()} AGGREGATION {'=' * 20}")
aggregator = MultiVectorAggregator(
aggregation_method=method,
spatial_clustering=True,
cluster_distance_threshold=100.0,
)
aggregated = aggregator.aggregate_results(mock_results, top_k=5)
aggregator.print_aggregated_results(aggregated)
if __name__ == "__main__":
demo_aggregation()

View File

@@ -0,0 +1,113 @@
#!/usr/bin/env python3
"""
OpenAI Embedding Example
Complete example showing how to build and search with OpenAI embeddings using HNSW backend.
"""
import os
from pathlib import Path
import dotenv
from leann.api import LeannBuilder, LeannSearcher
# Load environment variables
dotenv.load_dotenv()
def main():
# Check if OpenAI API key is available
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
print("ERROR: OPENAI_API_KEY environment variable not set")
return False
print(f"✅ OpenAI API key found: {api_key[:10]}...")
# Sample texts
sample_texts = [
"Machine learning is a powerful technology that enables computers to learn from data.",
"Natural language processing helps computers understand and generate human language.",
"Deep learning uses neural networks with multiple layers to solve complex problems.",
"Computer vision allows machines to interpret and understand visual information.",
"Reinforcement learning trains agents to make decisions through trial and error.",
"Data science combines statistics, math, and programming to extract insights from data.",
"Artificial intelligence aims to create machines that can perform human-like tasks.",
"Python is a popular programming language used extensively in data science and AI.",
"Neural networks are inspired by the structure and function of the human brain.",
"Big data refers to extremely large datasets that require special tools to process.",
]
INDEX_DIR = Path("./simple_openai_test_index")
INDEX_PATH = str(INDEX_DIR / "simple_test.leann")
print("\n=== Building Index with OpenAI Embeddings ===")
print(f"Index path: {INDEX_PATH}")
try:
# Use proper configuration for OpenAI embeddings
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="text-embedding-3-small",
embedding_mode="openai",
# HNSW settings for OpenAI embeddings
M=16, # Smaller graph degree
efConstruction=64, # Smaller construction complexity
is_compact=True, # Enable compact storage for recompute
is_recompute=True, # MUST enable for OpenAI embeddings
num_threads=1,
)
print(f"Adding {len(sample_texts)} texts to the index...")
for i, text in enumerate(sample_texts):
metadata = {"id": f"doc_{i}", "topic": "AI"}
builder.add_text(text, metadata)
print("Building index...")
builder.build_index(INDEX_PATH)
print("✅ Index built successfully!")
except Exception as e:
print(f"❌ Error building index: {e}")
import traceback
traceback.print_exc()
return False
print("\n=== Testing Search ===")
try:
searcher = LeannSearcher(INDEX_PATH)
test_queries = [
"What is machine learning?",
"How do neural networks work?",
"Programming languages for data science",
]
for query in test_queries:
print(f"\n🔍 Query: '{query}'")
results = searcher.search(query, top_k=3)
print(f" Found {len(results)} results:")
for i, result in enumerate(results):
print(f" {i + 1}. Score: {result.score:.4f}")
print(f" Text: {result.text[:80]}...")
print("\n✅ Search test completed successfully!")
return True
except Exception as e:
print(f"❌ Error during search: {e}")
import traceback
traceback.print_exc()
return False
if __name__ == "__main__":
success = main()
if success:
print("\n🎉 Simple OpenAI index test completed successfully!")
else:
print("\n💥 Simple OpenAI index test failed!")

23
examples/resue_index.py Normal file
View File

@@ -0,0 +1,23 @@
import asyncio
from pathlib import Path
from leann.api import LeannChat
INDEX_DIR = Path("./test_pdf_index_huawei")
INDEX_PATH = str(INDEX_DIR / "pdf_documents.leann")
async def main():
print("\n[PHASE 2] Starting Leann chat session...")
chat = LeannChat(index_path=INDEX_PATH)
query = "What is the main idea of RL and give me 5 exapmle of classic RL algorithms?"
query = "Based on the paper, what are the main techniques LEANN explores to reduce the storage overhead and DLPM explore to achieve Fairness and Efiiciency trade-off?"
# query = "什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发"
response = chat.ask(
query, top_k=20, recompute_beighbor_embeddings=True, complexity=32, beam_width=1
)
print(f"\n[PHASE 2] Response: {response}")
if __name__ == "__main__":
asyncio.run(main())

View File

@@ -200,10 +200,10 @@ def main():
args = parser.parse_args()
# --- Path Configuration ---
# Assumes a project structure where the script is in 'benchmarks/'
# and evaluation data is in 'benchmarks/data/'.
script_dir = Path(__file__).resolve().parent
data_root = script_dir / "data"
# Assumes a project structure where the script is in 'examples/'
# and data is in 'data/' at the project root.
project_root = Path(__file__).resolve().parent.parent
data_root = project_root / "data"
# Download data based on mode
if args.mode == "build":
@@ -279,9 +279,7 @@ def main():
if not args.index_path:
print("No indices found. The data download should have included pre-built indices.")
print(
"Please check the benchmarks/data/indices/ directory or provide --index-path manually."
)
print("Please check the data/indices/ directory or provide --index-path manually.")
sys.exit(1)
# Detect dataset type from index path to select the correct ground truth

View File

@@ -1,6 +1,6 @@
"""
Simple demo showing basic leann usage
Run: uv run python examples/basic_demo.py
Run: uv run python examples/simple_demo.py
"""
import argparse
@@ -81,7 +81,7 @@ def main():
print()
print("Demo completed! Try running:")
print(" uv run python apps/document_rag.py")
print(" uv run python examples/document_search.py")
if __name__ == "__main__":

View File

@@ -0,0 +1,320 @@
import argparse
import asyncio
import os
from pathlib import Path
import dotenv
from leann.api import LeannBuilder, LeannChat
from llama_index.core.node_parser import SentenceSplitter
dotenv.load_dotenv()
# Default WeChat export directory
DEFAULT_WECHAT_EXPORT_DIR = "./wechat_export_direct"
def create_leann_index_from_multiple_wechat_exports(
export_dirs: list[Path],
index_path: str = "wechat_history_index.leann",
max_count: int = -1,
):
"""
Create LEANN index from multiple WeChat export data sources.
Args:
export_dirs: List of Path objects pointing to WeChat export directories
index_path: Path to save the LEANN index
max_count: Maximum number of chat entries to process per export
"""
print("Creating LEANN index from multiple WeChat export data sources...")
# Load documents using WeChatHistoryReader from history_data
from history_data.wechat_history import WeChatHistoryReader
reader = WeChatHistoryReader()
INDEX_DIR = Path(index_path).parent
if not INDEX_DIR.exists():
print("--- Index directory not found, building new index ---")
all_documents = []
total_processed = 0
# Process each WeChat export directory
for i, export_dir in enumerate(export_dirs):
print(f"\nProcessing WeChat export {i + 1}/{len(export_dirs)}: {export_dir}")
try:
documents = reader.load_data(
wechat_export_dir=str(export_dir),
max_count=max_count,
concatenate_messages=True, # Disable concatenation - one message per document
)
if documents:
print(f"Loaded {len(documents)} chat documents from {export_dir}")
all_documents.extend(documents)
total_processed += len(documents)
# Check if we've reached the max count
if max_count > 0 and total_processed >= max_count:
print(f"Reached max count of {max_count} documents")
break
else:
print(f"No documents loaded from {export_dir}")
except Exception as e:
print(f"Error processing {export_dir}: {e}")
continue
if not all_documents:
print("No documents loaded from any source. Exiting.")
return None
print(
f"\nTotal loaded {len(all_documents)} chat documents from {len(export_dirs)} exports and starting to split them into chunks"
)
# Create text splitter with 256 chunk size
text_splitter = SentenceSplitter(chunk_size=192, chunk_overlap=64)
# Convert Documents to text strings and chunk them
all_texts = []
for doc in all_documents:
# Split the document into chunks
nodes = text_splitter.get_nodes_from_documents([doc])
for node in nodes:
text = (
"[Contact] means the message is from: "
+ doc.metadata["contact_name"]
+ "\n"
+ node.get_content()
)
all_texts.append(text)
print(
f"Finished splitting {len(all_documents)} documents into {len(all_texts)} text chunks"
)
# Create LEANN index directory
print("--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print("--- Building new LEANN index ---")
print("\n[PHASE 1] Building Leann index...")
# Use HNSW backend for better macOS compatibility
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="Qwen/Qwen3-Embedding-0.6B",
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1, # Force single-threaded mode
)
print(f"Adding {len(all_texts)} chat chunks to index...")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(index_path)
print(f"\nLEANN index built at {index_path}!")
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
return index_path
def create_leann_index(
export_dir: str | None = None,
index_path: str = "wechat_history_index.leann",
max_count: int = 1000,
):
"""
Create LEANN index from WeChat chat history data.
Args:
export_dir: Path to the WeChat export directory (optional, uses default if None)
index_path: Path to save the LEANN index
max_count: Maximum number of chat entries to process
"""
print("Creating LEANN index from WeChat chat history data...")
INDEX_DIR = Path(index_path).parent
if not INDEX_DIR.exists():
print("--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print("--- Building new LEANN index ---")
print("\n[PHASE 1] Building Leann index...")
# Load documents using WeChatHistoryReader from history_data
from history_data.wechat_history import WeChatHistoryReader
reader = WeChatHistoryReader()
documents = reader.load_data(
wechat_export_dir=export_dir,
max_count=max_count,
concatenate_messages=False, # Disable concatenation - one message per document
)
if not documents:
print("No documents loaded. Exiting.")
return None
print(f"Loaded {len(documents)} chat documents")
# Create text splitter with 256 chunk size
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25)
# Convert Documents to text strings and chunk them
all_texts = []
for doc in documents:
# Split the document into chunks
nodes = text_splitter.get_nodes_from_documents([doc])
for node in nodes:
all_texts.append(node.get_content())
print(f"Created {len(all_texts)} text chunks from {len(documents)} documents")
# Create LEANN index directory
print("--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print("--- Building new LEANN index ---")
print("\n[PHASE 1] Building Leann index...")
# Use HNSW backend for better macOS compatibility
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="mlx-community/Qwen3-Embedding-0.6B-4bit-DWQ", # MLX-optimized model
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1, # Force single-threaded mode
)
print(f"Adding {len(all_texts)} chat chunks to index...")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(index_path)
print(f"\nLEANN index built at {index_path}!")
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
return index_path
async def query_leann_index(index_path: str, query: str):
"""
Query the LEANN index.
Args:
index_path: Path to the LEANN index
query: The query string
"""
print("\n[PHASE 2] Starting Leann chat session...")
chat = LeannChat(index_path=index_path)
print(f"You: {query}")
chat_response = chat.ask(
query,
top_k=20,
recompute_beighbor_embeddings=True,
complexity=16,
beam_width=1,
llm_config={
"type": "openai",
"model": "gpt-4o",
"api_key": os.getenv("OPENAI_API_KEY"),
},
llm_kwargs={"temperature": 0.0, "max_tokens": 1000},
)
print(f"Leann chat response: \033[36m{chat_response}\033[0m")
async def main():
"""Main function with integrated WeChat export functionality."""
# Parse command line arguments
parser = argparse.ArgumentParser(
description="LEANN WeChat History Reader - Create and query WeChat chat history index"
)
parser.add_argument(
"--export-dir",
type=str,
default=DEFAULT_WECHAT_EXPORT_DIR,
help=f"Directory to store WeChat exports (default: {DEFAULT_WECHAT_EXPORT_DIR})",
)
parser.add_argument(
"--index-dir",
type=str,
default="./wechat_history_magic_test_11Debug_new",
help="Directory to store the LEANN index (default: ./wechat_history_index_leann_test)",
)
parser.add_argument(
"--max-entries",
type=int,
default=50,
help="Maximum number of chat entries to process (default: 5000)",
)
parser.add_argument(
"--query",
type=str,
default=None,
help="Single query to run (default: runs example queries)",
)
parser.add_argument(
"--force-export",
action="store_true",
default=False,
help="Force re-export of WeChat data even if exports exist",
)
args = parser.parse_args()
INDEX_DIR = Path(args.index_dir)
INDEX_PATH = str(INDEX_DIR / "wechat_history.leann")
print(f"Using WeChat export directory: {args.export_dir}")
print(f"Index directory: {INDEX_DIR}")
print(f"Max entries: {args.max_entries}")
# Initialize WeChat reader with export capabilities
from history_data.wechat_history import WeChatHistoryReader
reader = WeChatHistoryReader()
# Find existing exports or create new ones using the centralized method
export_dirs = reader.find_or_export_wechat_data(args.export_dir)
if not export_dirs:
print("Failed to find or export WeChat data. Exiting.")
return
# Create or load the LEANN index from all sources
index_path = create_leann_index_from_multiple_wechat_exports(
export_dirs, INDEX_PATH, max_count=args.max_entries
)
if index_path:
if args.query:
# Run single query
await query_leann_index(index_path, args.query)
else:
# Example queries
queries = [
"我想买魔术师约翰逊的球衣,给我一些对应聊天记录?",
]
for query in queries:
print("\n" + "=" * 60)
await query_leann_index(index_path, query)
if __name__ == "__main__":
asyncio.run(main())

View File

@@ -0,0 +1,8 @@
# packages/leann-backend-diskann/CMakeLists.txt (simplified version)
cmake_minimum_required(VERSION 3.20)
project(leann_backend_diskann_wrapper)
# Tell CMake to directly enter the DiskANN submodule and execute its own CMakeLists.txt
# DiskANN will handle everything itself, including compiling Python bindings
add_subdirectory(src/third_party/DiskANN)

View File

@@ -1,7 +1 @@
from . import diskann_backend as diskann_backend
from . import graph_partition
# Export main classes and functions
from .graph_partition import GraphPartitioner, partition_graph
__all__ = ["GraphPartitioner", "diskann_backend", "graph_partition", "partition_graph"]

View File

@@ -4,7 +4,7 @@ import os
import struct
import sys
from pathlib import Path
from typing import Any, Literal, Optional
from typing import Any, Literal
import numpy as np
import psutil
@@ -22,11 +22,6 @@ logger = logging.getLogger(__name__)
@contextlib.contextmanager
def suppress_cpp_output_if_needed():
"""Suppress C++ stdout/stderr based on LEANN_LOG_LEVEL"""
# In CI we avoid fiddling with low-level file descriptors to prevent aborts
if os.getenv("CI") == "true":
yield
return
log_level = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
# Only suppress if log level is WARNING or higher (ERROR, CRITICAL)
@@ -142,71 +137,6 @@ class DiskannBuilder(LeannBackendBuilderInterface):
def __init__(self, **kwargs):
self.build_params = kwargs
def _safe_cleanup_after_partition(self, index_dir: Path, index_prefix: str):
"""
Safely cleanup files after partition.
In partition mode, C++ doesn't read _disk.index content,
so we can delete it if all derived files exist.
"""
disk_index_file = index_dir / f"{index_prefix}_disk.index"
beam_search_file = index_dir / f"{index_prefix}_disk_beam_search.index"
# Required files that C++ partition mode needs
# Note: C++ generates these with _disk.index suffix
disk_suffix = "_disk.index"
required_files = [
f"{index_prefix}{disk_suffix}_medoids.bin", # Critical: assert fails if missing
# Note: _centroids.bin is not created in single-shot build - C++ handles this automatically
f"{index_prefix}_pq_pivots.bin", # PQ table
f"{index_prefix}_pq_compressed.bin", # PQ compressed vectors
]
# Check if all required files exist
missing_files = []
for filename in required_files:
file_path = index_dir / filename
if not file_path.exists():
missing_files.append(filename)
if missing_files:
logger.warning(
f"Cannot safely delete _disk.index - missing required files: {missing_files}"
)
logger.info("Keeping all original files for safety")
return
# Calculate space savings
space_saved = 0
files_to_delete = []
if disk_index_file.exists():
space_saved += disk_index_file.stat().st_size
files_to_delete.append(disk_index_file)
if beam_search_file.exists():
space_saved += beam_search_file.stat().st_size
files_to_delete.append(beam_search_file)
# Safe to delete!
for file_to_delete in files_to_delete:
try:
os.remove(file_to_delete)
logger.info(f"✅ Safely deleted: {file_to_delete.name}")
except Exception as e:
logger.warning(f"Failed to delete {file_to_delete.name}: {e}")
if space_saved > 0:
space_saved_mb = space_saved / (1024 * 1024)
logger.info(f"💾 Space saved: {space_saved_mb:.1f} MB")
# Show what files are kept
logger.info("📁 Kept essential files for partition mode:")
for filename in required_files:
file_path = index_dir / filename
if file_path.exists():
size_mb = file_path.stat().st_size / (1024 * 1024)
logger.info(f" - {filename} ({size_mb:.1f} MB)")
def build(self, data: np.ndarray, ids: list[str], index_path: str, **kwargs):
path = Path(index_path)
index_dir = path.parent
@@ -221,17 +151,6 @@ class DiskannBuilder(LeannBackendBuilderInterface):
_write_vectors_to_bin(data, index_dir / data_filename)
build_kwargs = {**self.build_params, **kwargs}
# Extract is_recompute from nested backend_kwargs if needed
is_recompute = build_kwargs.get("is_recompute", False)
if not is_recompute and "backend_kwargs" in build_kwargs:
is_recompute = build_kwargs["backend_kwargs"].get("is_recompute", False)
# Flatten all backend_kwargs parameters to top level for compatibility
if "backend_kwargs" in build_kwargs:
nested_params = build_kwargs.pop("backend_kwargs")
build_kwargs.update(nested_params)
metric_enum = _get_diskann_metrics().get(
build_kwargs.get("distance_metric", "mips").lower()
)
@@ -266,30 +185,6 @@ class DiskannBuilder(LeannBackendBuilderInterface):
build_kwargs.get("pq_disk_bytes", 0),
"",
)
# Auto-partition if is_recompute is enabled
if build_kwargs.get("is_recompute", False):
logger.info("is_recompute=True, starting automatic graph partitioning...")
from .graph_partition import partition_graph
# Partition the index using absolute paths
# Convert to absolute paths to avoid issues with working directory changes
absolute_index_dir = Path(index_dir).resolve()
absolute_index_prefix_path = str(absolute_index_dir / index_prefix)
disk_graph_path, partition_bin_path = partition_graph(
index_prefix_path=absolute_index_prefix_path,
output_dir=str(absolute_index_dir),
partition_prefix=index_prefix,
)
# Safe cleanup: In partition mode, C++ doesn't read _disk.index content
# but still needs the derived files (_medoids.bin, _centroids.bin, etc.)
self._safe_cleanup_after_partition(index_dir, index_prefix)
logger.info("✅ Graph partitioning completed successfully!")
logger.info(f" - Disk graph: {disk_graph_path}")
logger.info(f" - Partition file: {partition_bin_path}")
finally:
temp_data_file = index_dir / data_filename
if temp_data_file.exists():
@@ -318,26 +213,7 @@ class DiskannSearcher(BaseSearcher):
# For DiskANN, we need to reinitialize the index when zmq_port changes
# Store the initialization parameters for later use
# Note: C++ load method expects the BASE path (without _disk.index suffix)
# C++ internally constructs: index_prefix + "_disk.index"
index_name = self.index_path.stem # "simple_test.leann" -> "simple_test"
diskann_index_prefix = str(self.index_dir / index_name) # /path/to/simple_test
full_index_prefix = diskann_index_prefix # /path/to/simple_test (base path)
# Auto-detect partition files and set partition_prefix
partition_graph_file = self.index_dir / f"{index_name}_disk_graph.index"
partition_bin_file = self.index_dir / f"{index_name}_partition.bin"
partition_prefix = ""
if partition_graph_file.exists() and partition_bin_file.exists():
# C++ expects full path prefix, not just filename
partition_prefix = str(self.index_dir / index_name) # /path/to/simple_test
logger.info(
f"✅ Detected partition files, using partition_prefix='{partition_prefix}'"
)
else:
logger.debug("No partition files detected, using standard index files")
full_index_prefix = str(self.index_dir / self.index_path.stem)
self._init_params = {
"metric_enum": metric_enum,
"full_index_prefix": full_index_prefix,
@@ -345,14 +221,8 @@ class DiskannSearcher(BaseSearcher):
"num_nodes_to_cache": kwargs.get("num_nodes_to_cache", 0),
"cache_mechanism": 1,
"pq_prefix": "",
"partition_prefix": partition_prefix,
"partition_prefix": "",
}
# Log partition configuration for debugging
if partition_prefix:
logger.info(
f"✅ Detected partition files, using partition_prefix='{partition_prefix}'"
)
self._diskannpy = diskannpy
self._current_zmq_port = None
self._index = None
@@ -389,7 +259,7 @@ class DiskannSearcher(BaseSearcher):
prune_ratio: float = 0.0,
recompute_embeddings: bool = False,
pruning_strategy: Literal["global", "local", "proportional"] = "global",
zmq_port: Optional[int] = None,
zmq_port: int | None = None,
batch_recompute: bool = False,
dedup_node_dis: bool = False,
**kwargs,
@@ -441,14 +311,7 @@ class DiskannSearcher(BaseSearcher):
else: # "global"
use_global_pruning = True
# Strategy:
# - Traversal always uses PQ distances
# - If recompute_embeddings=True, do a single final rerank via deferred fetch
# (fetch embeddings for the final candidate set only)
# - Do not recompute neighbor distances along the path
use_deferred_fetch = True if recompute_embeddings else False
recompute_neighors = False # Expected typo. For backward compatibility.
# Perform search with suppressed C++ output based on log level
with suppress_cpp_output_if_needed():
labels, distances = self._index.batch_search(
query,
@@ -457,9 +320,9 @@ class DiskannSearcher(BaseSearcher):
complexity,
beam_width,
self.num_threads,
use_deferred_fetch,
kwargs.get("USE_DEFERRED_FETCH", False),
kwargs.get("skip_search_reorder", False),
recompute_neighors,
recompute_embeddings,
dedup_node_dis,
prune_ratio,
batch_recompute,

View File

@@ -10,7 +10,6 @@ import sys
import threading
import time
from pathlib import Path
from typing import Optional
import numpy as np
import zmq
@@ -33,7 +32,7 @@ if not logger.handlers:
def create_diskann_embedding_server(
passages_file: Optional[str] = None,
passages_file: str | None = None,
zmq_port: int = 5555,
model_name: str = "sentence-transformers/all-mpnet-base-v2",
embedding_mode: str = "sentence-transformers",
@@ -81,8 +80,7 @@ def create_diskann_embedding_server(
with open(passages_file) as f:
meta = json.load(f)
logger.info(f"Loading PassageManager with metadata_file_path: {passages_file}")
passages = PassageManager(meta["passage_sources"], metadata_file_path=passages_file)
passages = PassageManager(meta["passage_sources"])
logger.info(
f"Loaded PassageManager with {len(passages.global_offset_map)} passages from metadata"
)
@@ -103,9 +101,8 @@ def create_diskann_embedding_server(
socket.bind(f"tcp://*:{zmq_port}")
logger.info(f"DiskANN ZMQ REP server listening on port {zmq_port}")
socket.setsockopt(zmq.RCVTIMEO, 1000)
socket.setsockopt(zmq.SNDTIMEO, 1000)
socket.setsockopt(zmq.LINGER, 0)
socket.setsockopt(zmq.RCVTIMEO, 300000)
socket.setsockopt(zmq.SNDTIMEO, 300000)
while True:
try:
@@ -222,217 +219,30 @@ def create_diskann_embedding_server(
traceback.print_exc()
raise
def zmq_server_thread_with_shutdown(shutdown_event):
"""ZMQ server thread that respects shutdown signal.
This creates its own REP socket, binds to zmq_port, and periodically
checks shutdown_event using recv timeouts to exit cleanly.
"""
logger.info("DiskANN ZMQ server thread started with shutdown support")
context = zmq.Context()
rep_socket = context.socket(zmq.REP)
rep_socket.bind(f"tcp://*:{zmq_port}")
logger.info(f"DiskANN ZMQ REP server listening on port {zmq_port}")
# Set receive timeout so we can check shutdown_event periodically
rep_socket.setsockopt(zmq.RCVTIMEO, 1000) # 1 second timeout
rep_socket.setsockopt(zmq.SNDTIMEO, 1000)
rep_socket.setsockopt(zmq.LINGER, 0)
try:
while not shutdown_event.is_set():
try:
e2e_start = time.time()
# REP socket receives single-part messages
message = rep_socket.recv()
# Check for empty messages - REP socket requires response to every request
if not message:
logger.warning("Received empty message, sending empty response")
rep_socket.send(b"")
continue
# Try protobuf first (same logic as original)
texts = []
is_text_request = False
try:
req_proto = embedding_pb2.NodeEmbeddingRequest()
req_proto.ParseFromString(message)
node_ids = list(req_proto.node_ids)
# Look up texts by node IDs
for nid in node_ids:
try:
passage_data = passages.get_passage(str(nid))
txt = passage_data["text"]
if not txt:
raise RuntimeError(f"FATAL: Empty text for passage ID {nid}")
texts.append(txt)
except KeyError:
raise RuntimeError(f"FATAL: Passage with ID {nid} not found")
logger.info(f"ZMQ received protobuf request for {len(node_ids)} node IDs")
except Exception:
# Fallback to msgpack for text requests
try:
import msgpack
request = msgpack.unpackb(message)
if isinstance(request, list) and all(
isinstance(item, str) for item in request
):
texts = request
is_text_request = True
logger.info(
f"ZMQ received msgpack text request for {len(texts)} texts"
)
else:
raise ValueError("Not a valid msgpack text request")
except Exception:
logger.error("Both protobuf and msgpack parsing failed!")
# Send error response
resp_proto = embedding_pb2.NodeEmbeddingResponse()
rep_socket.send(resp_proto.SerializeToString())
continue
# Process the request
embeddings = compute_embeddings(texts, model_name, mode=embedding_mode)
logger.info(f"Computed embeddings shape: {embeddings.shape}")
# Validation
if np.isnan(embeddings).any() or np.isinf(embeddings).any():
logger.error("NaN or Inf detected in embeddings!")
# Send error response
if is_text_request:
import msgpack
response_data = msgpack.packb([])
else:
resp_proto = embedding_pb2.NodeEmbeddingResponse()
response_data = resp_proto.SerializeToString()
rep_socket.send(response_data)
continue
# Prepare response based on request type
if is_text_request:
# For direct text requests, return msgpack
import msgpack
response_data = msgpack.packb(embeddings.tolist())
else:
# For protobuf requests, return protobuf
resp_proto = embedding_pb2.NodeEmbeddingResponse()
hidden_contiguous = np.ascontiguousarray(embeddings, dtype=np.float32)
resp_proto.embeddings_data = hidden_contiguous.tobytes()
resp_proto.dimensions.append(hidden_contiguous.shape[0])
resp_proto.dimensions.append(hidden_contiguous.shape[1])
response_data = resp_proto.SerializeToString()
# Send response back to the client
rep_socket.send(response_data)
e2e_end = time.time()
logger.info(f"⏱️ ZMQ E2E time: {e2e_end - e2e_start:.6f}s")
except zmq.Again:
# Timeout - check shutdown_event and continue
continue
except Exception as e:
if not shutdown_event.is_set():
logger.error(f"Error in ZMQ server loop: {e}")
try:
# Send error response for REP socket
resp_proto = embedding_pb2.NodeEmbeddingResponse()
rep_socket.send(resp_proto.SerializeToString())
except Exception:
pass
else:
logger.info("Shutdown in progress, ignoring ZMQ error")
break
finally:
try:
rep_socket.close(0)
except Exception:
pass
try:
context.term()
except Exception:
pass
logger.info("DiskANN ZMQ server thread exiting gracefully")
# Add shutdown coordination
shutdown_event = threading.Event()
def shutdown_zmq_server():
"""Gracefully shutdown ZMQ server."""
logger.info("Initiating graceful shutdown...")
shutdown_event.set()
if zmq_thread.is_alive():
logger.info("Waiting for ZMQ thread to finish...")
zmq_thread.join(timeout=5)
if zmq_thread.is_alive():
logger.warning("ZMQ thread did not finish in time")
# Clean up ZMQ resources
try:
# Note: socket and context are cleaned up by thread exit
logger.info("ZMQ resources cleaned up")
except Exception as e:
logger.warning(f"Error cleaning ZMQ resources: {e}")
# Clean up other resources
try:
import gc
gc.collect()
logger.info("Additional resources cleaned up")
except Exception as e:
logger.warning(f"Error cleaning additional resources: {e}")
logger.info("Graceful shutdown completed")
sys.exit(0)
# Register signal handlers within this function scope
import signal
def signal_handler(sig, frame):
logger.info(f"Received signal {sig}, shutting down gracefully...")
shutdown_zmq_server()
signal.signal(signal.SIGTERM, signal_handler)
signal.signal(signal.SIGINT, signal_handler)
# Start ZMQ thread (NOT daemon!)
zmq_thread = threading.Thread(
target=lambda: zmq_server_thread_with_shutdown(shutdown_event),
daemon=False, # Not daemon - we want to wait for it
)
zmq_thread = threading.Thread(target=zmq_server_thread, daemon=True)
zmq_thread.start()
logger.info(f"Started DiskANN ZMQ server thread on port {zmq_port}")
# Keep the main thread alive
try:
while not shutdown_event.is_set():
time.sleep(0.1) # Check shutdown more frequently
while True:
time.sleep(1)
except KeyboardInterrupt:
logger.info("DiskANN Server shutting down...")
shutdown_zmq_server()
return
# If we reach here, shutdown was triggered by signal
logger.info("Main loop exited, process should be shutting down")
if __name__ == "__main__":
import signal
import sys
# Signal handlers are now registered within create_diskann_embedding_server
def signal_handler(sig, frame):
logger.info(f"Received signal {sig}, shutting down gracefully...")
sys.exit(0)
# Register signal handlers for graceful shutdown
signal.signal(signal.SIGTERM, signal_handler)
signal.signal(signal.SIGINT, signal_handler)
parser = argparse.ArgumentParser(description="DiskANN Embedding service")
parser.add_argument("--zmq-port", type=int, default=5555, help="ZMQ port to run on")
@@ -451,7 +261,7 @@ if __name__ == "__main__":
"--embedding-mode",
type=str,
default="sentence-transformers",
choices=["sentence-transformers", "openai", "mlx", "ollama"],
choices=["sentence-transformers", "openai", "mlx"],
help="Embedding backend mode",
)
parser.add_argument(

View File

@@ -1,299 +0,0 @@
#!/usr/bin/env python3
"""
Graph Partition Module for LEANN DiskANN Backend
This module provides Python bindings for the graph partition functionality
of DiskANN, allowing users to partition disk-based indices for better
performance.
"""
import os
import shutil
import subprocess
import tempfile
from pathlib import Path
from typing import Optional
class GraphPartitioner:
"""
A Python interface for DiskANN's graph partition functionality.
This class provides methods to partition disk-based indices for improved
search performance and memory efficiency.
"""
def __init__(self, build_type: str = "release"):
"""
Initialize the GraphPartitioner.
Args:
build_type: Build type for the executables ("debug" or "release")
"""
self.build_type = build_type
self._ensure_executables()
def _get_executable_path(self, name: str) -> str:
"""Get the path to a graph partition executable."""
# Get the directory where this Python module is located
module_dir = Path(__file__).parent
# Navigate to the graph_partition directory
graph_partition_dir = module_dir.parent / "third_party" / "DiskANN" / "graph_partition"
executable_path = graph_partition_dir / "build" / self.build_type / "graph_partition" / name
if not executable_path.exists():
raise FileNotFoundError(f"Executable {name} not found at {executable_path}")
return str(executable_path)
def _ensure_executables(self):
"""Ensure that the required executables are built."""
try:
self._get_executable_path("partitioner")
self._get_executable_path("index_relayout")
except FileNotFoundError:
# Try to build the executables automatically
print("Executables not found, attempting to build them...")
self._build_executables()
def _build_executables(self):
"""Build the required executables."""
graph_partition_dir = (
Path(__file__).parent.parent / "third_party" / "DiskANN" / "graph_partition"
)
original_dir = os.getcwd()
try:
os.chdir(graph_partition_dir)
# Clean any existing build
if (graph_partition_dir / "build").exists():
shutil.rmtree(graph_partition_dir / "build")
# Run the build script
cmd = ["./build.sh", self.build_type, "split_graph", "/tmp/dummy"]
subprocess.run(cmd, capture_output=True, text=True, cwd=graph_partition_dir)
# Check if executables were created
partitioner_path = self._get_executable_path("partitioner")
relayout_path = self._get_executable_path("index_relayout")
print(f"✅ Built partitioner: {partitioner_path}")
print(f"✅ Built index_relayout: {relayout_path}")
except Exception as e:
raise RuntimeError(f"Failed to build executables: {e}")
finally:
os.chdir(original_dir)
def partition_graph(
self,
index_prefix_path: str,
output_dir: Optional[str] = None,
partition_prefix: Optional[str] = None,
**kwargs,
) -> tuple[str, str]:
"""
Partition a disk-based index for improved performance.
Args:
index_prefix_path: Path to the index prefix (e.g., "/path/to/index")
output_dir: Output directory for results (defaults to parent of index_prefix_path)
partition_prefix: Prefix for output files (defaults to basename of index_prefix_path)
**kwargs: Additional parameters for graph partitioning:
- gp_times: Number of LDG partition iterations (default: 10)
- lock_nums: Number of lock nodes (default: 10)
- cut: Cut adjacency list degree (default: 100)
- scale_factor: Scale factor (default: 1)
- data_type: Data type (default: "float")
- thread_nums: Number of threads (default: 10)
Returns:
Tuple of (disk_graph_index_path, partition_bin_path)
Raises:
RuntimeError: If the partitioning process fails
"""
# Set default parameters
params = {
"gp_times": 10,
"lock_nums": 10,
"cut": 100,
"scale_factor": 1,
"data_type": "float",
"thread_nums": 10,
**kwargs,
}
# Determine output directory
if output_dir is None:
output_dir = str(Path(index_prefix_path).parent)
# Create output directory if it doesn't exist
Path(output_dir).mkdir(parents=True, exist_ok=True)
# Determine partition prefix
if partition_prefix is None:
partition_prefix = Path(index_prefix_path).name
# Get executable paths
partitioner_path = self._get_executable_path("partitioner")
relayout_path = self._get_executable_path("index_relayout")
# Create temporary directory for processing
with tempfile.TemporaryDirectory() as temp_dir:
# Change to the graph_partition directory for temporary files
graph_partition_dir = (
Path(__file__).parent.parent / "third_party" / "DiskANN" / "graph_partition"
)
original_dir = os.getcwd()
try:
os.chdir(graph_partition_dir)
# Create temporary data directory
temp_data_dir = Path(temp_dir) / "data"
temp_data_dir.mkdir(parents=True, exist_ok=True)
# Set up paths for temporary files
graph_path = temp_data_dir / "starling" / "_M_R_L_B" / "GRAPH"
graph_gp_path = (
graph_path
/ f"GP_TIMES_{params['gp_times']}_LOCK_{params['lock_nums']}_GP_USE_FREQ0_CUT{params['cut']}_SCALE{params['scale_factor']}"
)
graph_gp_path.mkdir(parents=True, exist_ok=True)
# Find input index file
old_index_file = f"{index_prefix_path}_disk_beam_search.index"
if not os.path.exists(old_index_file):
old_index_file = f"{index_prefix_path}_disk.index"
if not os.path.exists(old_index_file):
raise RuntimeError(f"Index file not found: {old_index_file}")
# Run partitioner
gp_file_path = graph_gp_path / "_part.bin"
partitioner_cmd = [
partitioner_path,
"--index_file",
old_index_file,
"--data_type",
params["data_type"],
"--gp_file",
str(gp_file_path),
"-T",
str(params["thread_nums"]),
"--ldg_times",
str(params["gp_times"]),
"--scale",
str(params["scale_factor"]),
"--mode",
"1",
]
print(f"Running partitioner: {' '.join(partitioner_cmd)}")
result = subprocess.run(
partitioner_cmd, capture_output=True, text=True, cwd=graph_partition_dir
)
if result.returncode != 0:
raise RuntimeError(
f"Partitioner failed with return code {result.returncode}.\n"
f"stdout: {result.stdout}\n"
f"stderr: {result.stderr}"
)
# Run relayout
part_tmp_index = graph_gp_path / "_part_tmp.index"
relayout_cmd = [
relayout_path,
old_index_file,
str(gp_file_path),
params["data_type"],
"1",
]
print(f"Running relayout: {' '.join(relayout_cmd)}")
result = subprocess.run(
relayout_cmd, capture_output=True, text=True, cwd=graph_partition_dir
)
if result.returncode != 0:
raise RuntimeError(
f"Relayout failed with return code {result.returncode}.\n"
f"stdout: {result.stdout}\n"
f"stderr: {result.stderr}"
)
# Copy results to output directory
disk_graph_path = Path(output_dir) / f"{partition_prefix}_disk_graph.index"
partition_bin_path = Path(output_dir) / f"{partition_prefix}_partition.bin"
shutil.copy2(part_tmp_index, disk_graph_path)
shutil.copy2(gp_file_path, partition_bin_path)
print(f"Results copied to: {output_dir}")
return str(disk_graph_path), str(partition_bin_path)
finally:
os.chdir(original_dir)
def get_partition_info(self, partition_bin_path: str) -> dict:
"""
Get information about a partition file.
Args:
partition_bin_path: Path to the partition binary file
Returns:
Dictionary containing partition information
"""
if not os.path.exists(partition_bin_path):
raise FileNotFoundError(f"Partition file not found: {partition_bin_path}")
# For now, return basic file information
# In the future, this could parse the binary file for detailed info
stat = os.stat(partition_bin_path)
return {
"file_size": stat.st_size,
"file_path": partition_bin_path,
"modified_time": stat.st_mtime,
}
def partition_graph(
index_prefix_path: str,
output_dir: Optional[str] = None,
partition_prefix: Optional[str] = None,
build_type: str = "release",
**kwargs,
) -> tuple[str, str]:
"""
Convenience function to partition a graph index.
Args:
index_prefix_path: Path to the index prefix
output_dir: Output directory (defaults to parent of index_prefix_path)
partition_prefix: Prefix for output files (defaults to basename of index_prefix_path)
build_type: Build type for executables ("debug" or "release")
**kwargs: Additional parameters for graph partitioning
Returns:
Tuple of (disk_graph_index_path, partition_bin_path)
"""
partitioner = GraphPartitioner(build_type=build_type)
return partitioner.partition_graph(index_prefix_path, output_dir, partition_prefix, **kwargs)
# Example usage:
if __name__ == "__main__":
# Example: partition an index
try:
disk_graph_path, partition_bin_path = partition_graph(
"/path/to/your/index_prefix", gp_times=10, lock_nums=10, cut=100
)
print("Partitioning completed successfully!")
print(f"Disk graph index: {disk_graph_path}")
print(f"Partition binary: {partition_bin_path}")
except Exception as e:
print(f"Partitioning failed: {e}")

View File

@@ -4,8 +4,8 @@ build-backend = "scikit_build_core.build"
[project]
name = "leann-backend-diskann"
version = "0.2.9"
dependencies = ["leann-core==0.2.9", "numpy", "protobuf>=3.19.0"]
version = "0.1.16"
dependencies = ["leann-core==0.1.16", "numpy", "protobuf>=3.19.0"]
[tool.scikit-build]
# Key: simplified CMake path
@@ -17,5 +17,3 @@ editable.mode = "redirect"
cmake.build-type = "Release"
build.verbose = true
build.tool-args = ["-j8"]
# Let CMake find packages via Homebrew prefix
cmake.define = {CMAKE_PREFIX_PATH = {env = "CMAKE_PREFIX_PATH"}, OpenMP_ROOT = {env = "OpenMP_ROOT"}}

View File

@@ -5,20 +5,11 @@ set(CMAKE_CXX_COMPILER_WORKS 1)
# Set OpenMP path for macOS
if(APPLE)
# Detect Homebrew installation path (Apple Silicon vs Intel)
if(EXISTS "/opt/homebrew/opt/libomp")
set(HOMEBREW_PREFIX "/opt/homebrew")
elseif(EXISTS "/usr/local/opt/libomp")
set(HOMEBREW_PREFIX "/usr/local")
else()
message(FATAL_ERROR "Could not find libomp installation. Please install with: brew install libomp")
endif()
set(OpenMP_C_FLAGS "-Xpreprocessor -fopenmp -I${HOMEBREW_PREFIX}/opt/libomp/include")
set(OpenMP_CXX_FLAGS "-Xpreprocessor -fopenmp -I${HOMEBREW_PREFIX}/opt/libomp/include")
set(OpenMP_C_FLAGS "-Xpreprocessor -fopenmp -I/opt/homebrew/opt/libomp/include")
set(OpenMP_CXX_FLAGS "-Xpreprocessor -fopenmp -I/opt/homebrew/opt/libomp/include")
set(OpenMP_C_LIB_NAMES "omp")
set(OpenMP_CXX_LIB_NAMES "omp")
set(OpenMP_omp_LIBRARY "${HOMEBREW_PREFIX}/opt/libomp/lib/libomp.dylib")
set(OpenMP_omp_LIBRARY "/opt/homebrew/opt/libomp/lib/libomp.dylib")
# Force use of system libc++ to avoid version mismatch
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -stdlib=libc++")

View File

@@ -1,6 +1,5 @@
import argparse
import gc # Import garbage collector interface
import logging
import os
import struct
import sys
@@ -8,12 +7,6 @@ import time
import numpy as np
# Set up logging to avoid print buffer issues
logger = logging.getLogger(__name__)
LOG_LEVEL = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
log_level = getattr(logging, LOG_LEVEL, logging.WARNING)
logger.setLevel(log_level)
# --- FourCCs (add more if needed) ---
INDEX_HNSW_FLAT_FOURCC = int.from_bytes(b"IHNf", "little")
# Add other HNSW fourccs if you expect different storage types inside HNSW
@@ -250,8 +243,6 @@ def convert_hnsw_graph_to_csr(input_filename, output_filename, prune_embeddings=
output_filename: Output CSR index file
prune_embeddings: Whether to prune embedding storage (write NULL storage marker)
"""
# Keep prints simple; rely on CI runner to flush output as needed
print(f"Starting conversion: {input_filename} -> {output_filename}")
start_time = time.time()
original_hnsw_data = {}

View File

@@ -2,7 +2,7 @@ import logging
import os
import shutil
from pathlib import Path
from typing import Any, Literal, Optional
from typing import Any, Literal
import numpy as np
from leann.interface import (
@@ -54,13 +54,12 @@ class HNSWBuilder(LeannBackendBuilderInterface):
self.efConstruction = self.build_params.setdefault("efConstruction", 200)
self.distance_metric = self.build_params.setdefault("distance_metric", "mips")
self.dimensions = self.build_params.get("dimensions")
if not self.is_recompute and self.is_compact:
# Auto-correct: non-recompute requires non-compact storage for HNSW
logger.warning(
"is_recompute=False requires non-compact HNSW. Forcing is_compact=False."
)
self.is_compact = False
self.build_params["is_compact"] = False
if not self.is_recompute:
if self.is_compact:
# TODO: support this case @andy
raise ValueError(
"is_recompute is False, but is_compact is True. This is not compatible now. change is compact to False and you can use the original HNSW index."
)
def build(self, data: np.ndarray, ids: list[str], index_path: str, **kwargs):
from . import faiss # type: ignore
@@ -153,7 +152,7 @@ class HNSWSearcher(BaseSearcher):
self,
query: np.ndarray,
top_k: int,
zmq_port: Optional[int] = None,
zmq_port: int | None = None,
complexity: int = 64,
beam_width: int = 1,
prune_ratio: float = 0.0,
@@ -185,11 +184,9 @@ class HNSWSearcher(BaseSearcher):
"""
from . import faiss # type: ignore
if not recompute_embeddings and self.is_pruned:
raise RuntimeError(
"Recompute is required for pruned/compact HNSW index. "
"Re-run search with --recompute, or rebuild with --no-recompute and --no-compact."
)
if not recompute_embeddings:
if self.is_pruned:
raise RuntimeError("Recompute is required for pruned index.")
if recompute_embeddings:
if zmq_port is None:
raise ValueError("zmq_port must be provided if recompute_embeddings is True")

View File

@@ -10,7 +10,6 @@ import sys
import threading
import time
from pathlib import Path
from typing import Optional
import msgpack
import numpy as np
@@ -34,7 +33,7 @@ if not logger.handlers:
def create_hnsw_embedding_server(
passages_file: Optional[str] = None,
passages_file: str | None = None,
zmq_port: int = 5555,
model_name: str = "sentence-transformers/all-mpnet-base-v2",
distance_metric: str = "mips",
@@ -82,317 +81,199 @@ def create_hnsw_embedding_server(
with open(passages_file) as f:
meta = json.load(f)
# Let PassageManager handle path resolution uniformly. It supports fallback order:
# 1) path/index_path; 2) *_relative; 3) standard siblings next to meta
passages = PassageManager(meta["passage_sources"], metadata_file_path=passages_file)
# Dimension from metadata for shaping responses
try:
embedding_dim: int = int(meta.get("dimensions", 0))
except Exception:
embedding_dim = 0
# Convert relative paths to absolute paths based on metadata file location
metadata_dir = Path(passages_file).parent.parent # Go up one level from the metadata file
passage_sources = []
for source in meta["passage_sources"]:
source_copy = source.copy()
# Convert relative paths to absolute paths
if not Path(source_copy["path"]).is_absolute():
source_copy["path"] = str(metadata_dir / source_copy["path"])
if not Path(source_copy["index_path"]).is_absolute():
source_copy["index_path"] = str(metadata_dir / source_copy["index_path"])
passage_sources.append(source_copy)
passages = PassageManager(passage_sources)
logger.info(
f"Loaded PassageManager with {len(passages.global_offset_map)} passages from metadata"
)
# (legacy ZMQ thread removed; using shutdown-capable server only)
def zmq_server_thread_with_shutdown(shutdown_event):
"""ZMQ server thread that respects shutdown signal.
Creates its own REP socket bound to zmq_port and polls with timeouts
to allow graceful shutdown.
"""
logger.info("ZMQ server thread started with shutdown support")
def zmq_server_thread():
"""ZMQ server thread"""
context = zmq.Context()
rep_socket = context.socket(zmq.REP)
rep_socket.bind(f"tcp://*:{zmq_port}")
logger.info(f"HNSW ZMQ REP server listening on port {zmq_port}")
rep_socket.setsockopt(zmq.RCVTIMEO, 1000)
# Keep sends from blocking during shutdown; fail fast and drop on close
rep_socket.setsockopt(zmq.SNDTIMEO, 1000)
rep_socket.setsockopt(zmq.LINGER, 0)
socket = context.socket(zmq.REP)
socket.bind(f"tcp://*:{zmq_port}")
logger.info(f"HNSW ZMQ server listening on port {zmq_port}")
# Track last request type/length for shape-correct fallbacks
last_request_type = "unknown" # 'text' | 'distance' | 'embedding' | 'unknown'
last_request_length = 0
socket.setsockopt(zmq.RCVTIMEO, 300000)
socket.setsockopt(zmq.SNDTIMEO, 300000)
try:
while not shutdown_event.is_set():
try:
e2e_start = time.time()
logger.debug("🔍 Waiting for ZMQ message...")
request_bytes = rep_socket.recv()
while True:
try:
message_bytes = socket.recv()
logger.debug(f"Received ZMQ request of size {len(message_bytes)} bytes")
# Rest of the processing logic (same as original)
request = msgpack.unpackb(request_bytes)
e2e_start = time.time()
request_payload = msgpack.unpackb(message_bytes)
if len(request) == 1 and request[0] == "__QUERY_MODEL__":
response_bytes = msgpack.packb([model_name])
rep_socket.send(response_bytes)
continue
# Handle direct text embedding request
if isinstance(request_payload, list) and len(request_payload) > 0:
# Check if this is a direct text request (list of strings)
if all(isinstance(item, str) for item in request_payload):
logger.info(
f"Processing direct text embedding request for {len(request_payload)} texts in {embedding_mode} mode"
)
# Handle direct text embedding request
if (
isinstance(request, list)
and request
and all(isinstance(item, str) for item in request)
):
last_request_type = "text"
last_request_length = len(request)
embeddings = compute_embeddings(request, model_name, mode=embedding_mode)
rep_socket.send(msgpack.packb(embeddings.tolist()))
# Use unified embedding computation (now with model caching)
embeddings = compute_embeddings(
request_payload, model_name, mode=embedding_mode
)
response = embeddings.tolist()
socket.send(msgpack.packb(response))
e2e_end = time.time()
logger.info(f"⏱️ Text embedding E2E time: {e2e_end - e2e_start:.6f}s")
continue
# Handle distance calculation request: [[ids], [query_vector]]
if (
isinstance(request, list)
and len(request) == 2
and isinstance(request[0], list)
and isinstance(request[1], list)
):
node_ids = request[0]
# Handle nested [[ids]] shape defensively
if len(node_ids) == 1 and isinstance(node_ids[0], list):
node_ids = node_ids[0]
query_vector = np.array(request[1], dtype=np.float32)
last_request_type = "distance"
last_request_length = len(node_ids)
# Handle distance calculation requests
if (
isinstance(request_payload, list)
and len(request_payload) == 2
and isinstance(request_payload[0], list)
and isinstance(request_payload[1], list)
):
node_ids = request_payload[0]
query_vector = np.array(request_payload[1], dtype=np.float32)
logger.debug("Distance calculation request received")
logger.debug(f" Node IDs: {node_ids}")
logger.debug(f" Query vector dim: {len(query_vector)}")
logger.debug("Distance calculation request received")
logger.debug(f" Node IDs: {node_ids}")
logger.debug(f" Query vector dim: {len(query_vector)}")
# Gather texts for found ids
texts: list[str] = []
found_indices: list[int] = []
for idx, nid in enumerate(node_ids):
try:
passage_data = passages.get_passage(str(nid))
txt = passage_data.get("text", "")
if isinstance(txt, str) and len(txt) > 0:
texts.append(txt)
found_indices.append(idx)
else:
logger.error(f"Empty text for passage ID {nid}")
except KeyError:
logger.error(f"Passage ID {nid} not found")
except Exception as e:
logger.error(f"Exception looking up passage ID {nid}: {e}")
# Prepare full-length response with large sentinel values
large_distance = 1e9
response_distances = [large_distance] * len(node_ids)
if texts:
try:
embeddings = compute_embeddings(
texts, model_name, mode=embedding_mode
)
logger.info(
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
)
if distance_metric == "l2":
partial = np.sum(
np.square(embeddings - query_vector.reshape(1, -1)), axis=1
)
else: # mips or cosine
partial = -np.dot(embeddings, query_vector)
for pos, dval in zip(found_indices, partial.flatten().tolist()):
response_distances[pos] = float(dval)
except Exception as e:
logger.error(f"Distance computation error, using sentinels: {e}")
# Send response in expected shape [[distances]]
rep_socket.send(msgpack.packb([response_distances], use_single_float=True))
e2e_end = time.time()
logger.info(f"⏱️ Distance calculation E2E time: {e2e_end - e2e_start:.6f}s")
continue
# Fallback: treat as embedding-by-id request
if (
isinstance(request, list)
and len(request) == 1
and isinstance(request[0], list)
):
node_ids = request[0]
elif isinstance(request, list):
node_ids = request
else:
node_ids = []
last_request_type = "embedding"
last_request_length = len(node_ids)
logger.info(f"ZMQ received {len(node_ids)} node IDs for embedding fetch")
# Preallocate zero-filled flat data for robustness
if embedding_dim <= 0:
dims = [0, 0]
flat_data: list[float] = []
else:
dims = [len(node_ids), embedding_dim]
flat_data = [0.0] * (dims[0] * dims[1])
# Collect texts for found ids
texts: list[str] = []
found_indices: list[int] = []
for idx, nid in enumerate(node_ids):
# Get embeddings for node IDs
texts = []
for nid in node_ids:
try:
passage_data = passages.get_passage(str(nid))
txt = passage_data.get("text", "")
if isinstance(txt, str) and len(txt) > 0:
texts.append(txt)
found_indices.append(idx)
else:
logger.error(f"Empty text for passage ID {nid}")
txt = passage_data["text"]
texts.append(txt)
except KeyError:
logger.error(f"Passage with ID {nid} not found")
logger.error(f"Passage ID {nid} not found")
raise RuntimeError(f"FATAL: Passage with ID {nid} not found")
except Exception as e:
logger.error(f"Exception looking up passage ID {nid}: {e}")
raise
if texts:
try:
embeddings = compute_embeddings(texts, model_name, mode=embedding_mode)
logger.info(
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
)
# Process embeddings
embeddings = compute_embeddings(texts, model_name, mode=embedding_mode)
logger.info(
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
)
if np.isnan(embeddings).any() or np.isinf(embeddings).any():
logger.error(
f"NaN or Inf detected in embeddings! Requested IDs: {node_ids[:5]}..."
)
dims = [0, embedding_dim]
flat_data = []
else:
emb_f32 = np.ascontiguousarray(embeddings, dtype=np.float32)
flat = emb_f32.flatten().tolist()
for j, pos in enumerate(found_indices):
start = pos * embedding_dim
end = start + embedding_dim
if end <= len(flat_data):
flat_data[start:end] = flat[
j * embedding_dim : (j + 1) * embedding_dim
]
except Exception as e:
logger.error(f"Embedding computation error, returning zeros: {e}")
# Calculate distances
if distance_metric == "l2":
distances = np.sum(
np.square(embeddings - query_vector.reshape(1, -1)), axis=1
)
else: # mips or cosine
distances = -np.dot(embeddings, query_vector)
response_payload = [dims, flat_data]
response_bytes = msgpack.packb(response_payload, use_single_float=True)
response_payload = distances.flatten().tolist()
response_bytes = msgpack.packb([response_payload], use_single_float=True)
logger.debug(f"Sending distance response with {len(distances)} distances")
rep_socket.send(response_bytes)
socket.send(response_bytes)
e2e_end = time.time()
logger.info(f"⏱️ ZMQ E2E time: {e2e_end - e2e_start:.6f}s")
except zmq.Again:
# Timeout - check shutdown_event and continue
logger.info(f"⏱️ Distance calculation E2E time: {e2e_end - e2e_start:.6f}s")
continue
except Exception as e:
if not shutdown_event.is_set():
logger.error(f"Error in ZMQ server loop: {e}")
# Shape-correct fallback
try:
if last_request_type == "distance":
large_distance = 1e9
fallback_len = max(0, int(last_request_length))
safe = [[large_distance] * fallback_len]
elif last_request_type == "embedding":
bsz = max(0, int(last_request_length))
dim = max(0, int(embedding_dim))
safe = (
[[bsz, dim], [0.0] * (bsz * dim)] if dim > 0 else [[0, 0], []]
)
elif last_request_type == "text":
safe = [] # direct text embeddings expectation is a flat list
else:
safe = [[0, int(embedding_dim) if embedding_dim > 0 else 0], []]
rep_socket.send(msgpack.packb(safe, use_single_float=True))
except Exception:
pass
else:
logger.info("Shutdown in progress, ignoring ZMQ error")
break
finally:
try:
rep_socket.close(0)
except Exception:
pass
try:
context.term()
except Exception:
pass
logger.info("ZMQ server thread exiting gracefully")
# Standard embedding request (passage ID lookup)
if (
not isinstance(request_payload, list)
or len(request_payload) != 1
or not isinstance(request_payload[0], list)
):
logger.error(
f"Invalid MessagePack request format. Expected [[ids...]] or [texts...], got: {type(request_payload)}"
)
socket.send(msgpack.packb([[], []]))
continue
# Add shutdown coordination
shutdown_event = threading.Event()
node_ids = request_payload[0]
logger.debug(f"Request for {len(node_ids)} node embeddings")
def shutdown_zmq_server():
"""Gracefully shutdown ZMQ server."""
logger.info("Initiating graceful shutdown...")
shutdown_event.set()
# Look up texts by node IDs
texts = []
for nid in node_ids:
try:
passage_data = passages.get_passage(str(nid))
txt = passage_data["text"]
if not txt:
raise RuntimeError(f"FATAL: Empty text for passage ID {nid}")
texts.append(txt)
except KeyError:
raise RuntimeError(f"FATAL: Passage with ID {nid} not found")
except Exception as e:
logger.error(f"Exception looking up passage ID {nid}: {e}")
raise
if zmq_thread.is_alive():
logger.info("Waiting for ZMQ thread to finish...")
zmq_thread.join(timeout=5)
if zmq_thread.is_alive():
logger.warning("ZMQ thread did not finish in time")
# Process embeddings
embeddings = compute_embeddings(texts, model_name, mode=embedding_mode)
logger.info(
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
)
# Clean up ZMQ resources
try:
# Note: socket and context are cleaned up by thread exit
logger.info("ZMQ resources cleaned up")
except Exception as e:
logger.warning(f"Error cleaning ZMQ resources: {e}")
# Serialization and response
if np.isnan(embeddings).any() or np.isinf(embeddings).any():
logger.error(
f"NaN or Inf detected in embeddings! Requested IDs: {node_ids[:5]}..."
)
raise AssertionError()
# Clean up other resources
try:
import gc
hidden_contiguous_f32 = np.ascontiguousarray(embeddings, dtype=np.float32)
response_payload = [
list(hidden_contiguous_f32.shape),
hidden_contiguous_f32.flatten().tolist(),
]
response_bytes = msgpack.packb(response_payload, use_single_float=True)
gc.collect()
logger.info("Additional resources cleaned up")
except Exception as e:
logger.warning(f"Error cleaning additional resources: {e}")
socket.send(response_bytes)
e2e_end = time.time()
logger.info(f"⏱️ ZMQ E2E time: {e2e_end - e2e_start:.6f}s")
logger.info("Graceful shutdown completed")
sys.exit(0)
except zmq.Again:
logger.debug("ZMQ socket timeout, continuing to listen")
continue
except Exception as e:
logger.error(f"Error in ZMQ server loop: {e}")
import traceback
# Register signal handlers within this function scope
import signal
traceback.print_exc()
socket.send(msgpack.packb([[], []]))
def signal_handler(sig, frame):
logger.info(f"Received signal {sig}, shutting down gracefully...")
shutdown_zmq_server()
signal.signal(signal.SIGTERM, signal_handler)
signal.signal(signal.SIGINT, signal_handler)
# Pass shutdown_event to ZMQ thread
zmq_thread = threading.Thread(
target=lambda: zmq_server_thread_with_shutdown(shutdown_event),
daemon=False, # Not daemon - we want to wait for it
)
zmq_thread = threading.Thread(target=zmq_server_thread, daemon=True)
zmq_thread.start()
logger.info(f"Started HNSW ZMQ server thread on port {zmq_port}")
# Keep the main thread alive
try:
while not shutdown_event.is_set():
time.sleep(0.1) # Check shutdown more frequently
while True:
time.sleep(1)
except KeyboardInterrupt:
logger.info("HNSW Server shutting down...")
shutdown_zmq_server()
return
# If we reach here, shutdown was triggered by signal
logger.info("Main loop exited, process should be shutting down")
if __name__ == "__main__":
import signal
import sys
# Signal handlers are now registered within create_hnsw_embedding_server
def signal_handler(sig, frame):
logger.info(f"Received signal {sig}, shutting down gracefully...")
sys.exit(0)
# Register signal handlers for graceful shutdown
signal.signal(signal.SIGTERM, signal_handler)
signal.signal(signal.SIGINT, signal_handler)
parser = argparse.ArgumentParser(description="HNSW Embedding service")
parser.add_argument("--zmq-port", type=int, default=5555, help="ZMQ port to run on")
@@ -414,7 +295,7 @@ if __name__ == "__main__":
"--embedding-mode",
type=str,
default="sentence-transformers",
choices=["sentence-transformers", "openai", "mlx", "ollama"],
choices=["sentence-transformers", "openai", "mlx"],
help="Embedding backend mode",
)

View File

@@ -6,10 +6,10 @@ build-backend = "scikit_build_core.build"
[project]
name = "leann-backend-hnsw"
version = "0.2.9"
version = "0.1.16"
description = "Custom-built HNSW (Faiss) backend for the Leann toolkit."
dependencies = [
"leann-core==0.2.9",
"leann-core==0.1.16",
"numpy",
"pyzmq>=23.0.0",
"msgpack>=1.0.0",
@@ -22,8 +22,6 @@ cmake.build-type = "Release"
build.verbose = true
build.tool-args = ["-j8"]
# CMake definitions to optimize compilation and find Homebrew packages
# CMake definitions to optimize compilation
[tool.scikit-build.cmake.define]
CMAKE_BUILD_PARALLEL_LEVEL = "8"
CMAKE_PREFIX_PATH = {env = "CMAKE_PREFIX_PATH"}
OpenMP_ROOT = {env = "OpenMP_ROOT"}

View File

@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
[project]
name = "leann-core"
version = "0.2.9"
version = "0.1.16"
description = "Core API and plugin system for LEANN"
readme = "README.md"
requires-python = ">=3.9"
@@ -31,10 +31,8 @@ dependencies = [
"PyPDF2>=3.0.0",
"pymupdf>=1.23.0",
"pdfplumber>=0.10.0",
"nbconvert>=7.0.0", # For .ipynb file support
"gitignore-parser>=0.1.12", # For proper .gitignore handling
"mlx>=0.26.3; sys_platform == 'darwin' and platform_machine == 'arm64'",
"mlx-lm>=0.26.0; sys_platform == 'darwin' and platform_machine == 'arm64'",
"mlx>=0.26.3; sys_platform == 'darwin'",
"mlx-lm>=0.26.0; sys_platform == 'darwin'",
]
[project.optional-dependencies]
@@ -46,7 +44,6 @@ colab = [
[project.scripts]
leann = "leann.cli:main"
leann_mcp = "leann.mcp:main"
[tool.setuptools.packages.find]
where = ["src"]

View File

@@ -10,7 +10,7 @@ import time
import warnings
from dataclasses import dataclass, field
from pathlib import Path
from typing import Any, Literal, Optional
from typing import Any, Literal
import numpy as np
@@ -33,7 +33,7 @@ def compute_embeddings(
model_name: str,
mode: str = "sentence-transformers",
use_server: bool = True,
port: Optional[int] = None,
port: int | None = None,
is_build=False,
) -> np.ndarray:
"""
@@ -115,62 +115,20 @@ class SearchResult:
class PassageManager:
def __init__(
self, passage_sources: list[dict[str, Any]], metadata_file_path: Optional[str] = None
):
def __init__(self, passage_sources: list[dict[str, Any]]):
self.offset_maps = {}
self.passage_files = {}
self.global_offset_map = {} # Combined map for fast lookup
# Derive index base name for standard sibling fallbacks, e.g., <index_name>.passages.*
index_name_base = None
if metadata_file_path:
meta_name = Path(metadata_file_path).name
if meta_name.endswith(".meta.json"):
index_name_base = meta_name[: -len(".meta.json")]
for source in passage_sources:
assert source["type"] == "jsonl", "only jsonl is supported"
passage_file = source.get("path", "")
index_file = source.get("index_path", "") # .idx file
passage_file = source["path"]
index_file = source["index_path"] # .idx file
# Fix path resolution - relative paths should be relative to metadata file directory
def _resolve_candidates(
primary: str,
relative_key: str,
default_name: Optional[str],
source_dict: dict[str, Any],
) -> list[Path]:
candidates: list[Path] = []
# 1) Primary as-is (absolute or relative)
if primary:
p = Path(primary)
candidates.append(p if p.is_absolute() else (Path.cwd() / p))
# 2) metadata-relative explicit relative key
if metadata_file_path and source_dict.get(relative_key):
candidates.append(Path(metadata_file_path).parent / source_dict[relative_key])
# 3) metadata-relative standard sibling filename
if metadata_file_path and default_name:
candidates.append(Path(metadata_file_path).parent / default_name)
return candidates
# Build candidate lists and pick first existing; otherwise keep last candidate for error message
idx_default = f"{index_name_base}.passages.idx" if index_name_base else None
idx_candidates = _resolve_candidates(
index_file, "index_path_relative", idx_default, source
)
pas_default = f"{index_name_base}.passages.jsonl" if index_name_base else None
pas_candidates = _resolve_candidates(passage_file, "path_relative", pas_default, source)
def _pick_existing(cands: list[Path]) -> str:
for c in cands:
if c.exists():
return str(c.resolve())
# Fallback to last candidate (best guess) even if not exists; will error below
return str(cands[-1].resolve()) if cands else ""
index_file = _pick_existing(idx_candidates)
passage_file = _pick_existing(pas_candidates)
# Fix path resolution for Colab and other environments
if not Path(index_file).is_absolute():
# If relative path, try to resolve it properly
index_file = str(Path(index_file).resolve())
if not Path(index_file).exists():
raise FileNotFoundError(f"Passage index file not found: {index_file}")
@@ -199,24 +157,12 @@ class LeannBuilder:
self,
backend_name: str,
embedding_model: str = "facebook/contriever",
dimensions: Optional[int] = None,
dimensions: int | None = None,
embedding_mode: str = "sentence-transformers",
**backend_kwargs,
):
self.backend_name = backend_name
# Normalize incompatible combinations early (for consistent metadata)
if backend_name == "hnsw":
is_recompute = backend_kwargs.get("is_recompute", True)
is_compact = backend_kwargs.get("is_compact", True)
if is_recompute is False and is_compact is True:
warnings.warn(
"HNSW with is_recompute=False requires non-compact storage. Forcing is_compact=False.",
UserWarning,
stacklevel=2,
)
backend_kwargs["is_compact"] = False
backend_factory: Optional[LeannBackendFactoryInterface] = BACKEND_REGISTRY.get(backend_name)
backend_factory: LeannBackendFactoryInterface | None = BACKEND_REGISTRY.get(backend_name)
if backend_factory is None:
raise ValueError(f"Backend '{backend_name}' not found or not registered.")
self.backend_factory = backend_factory
@@ -296,7 +242,7 @@ class LeannBuilder:
self.backend_kwargs = backend_kwargs
self.chunks: list[dict[str, Any]] = []
def add_text(self, text: str, metadata: Optional[dict[str, Any]] = None):
def add_text(self, text: str, metadata: dict[str, Any] | None = None):
if metadata is None:
metadata = {}
passage_id = metadata.get("id", str(len(self.chunks)))
@@ -306,23 +252,6 @@ class LeannBuilder:
def build_index(self, index_path: str):
if not self.chunks:
raise ValueError("No chunks added.")
# Filter out invalid/empty text chunks early to keep passage and embedding counts aligned
valid_chunks: list[dict[str, Any]] = []
skipped = 0
for chunk in self.chunks:
text = chunk.get("text", "")
if isinstance(text, str) and text.strip():
valid_chunks.append(chunk)
else:
skipped += 1
if skipped > 0:
print(
f"Warning: Skipping {skipped} empty/invalid text chunk(s). Processing {len(valid_chunks)} valid chunks"
)
self.chunks = valid_chunks
if not self.chunks:
raise ValueError("All provided chunks are empty or invalid. Nothing to index.")
if self.dimensions is None:
self.dimensions = len(
compute_embeddings(
@@ -385,12 +314,8 @@ class LeannBuilder:
"passage_sources": [
{
"type": "jsonl",
# Preserve existing relative file names (backward-compatible)
"path": passages_file.name,
"index_path": offset_file.name,
# Add optional redundant relative keys for remote build portability (non-breaking)
"path_relative": passages_file.name,
"index_path_relative": offset_file.name,
"path": str(passages_file),
"index_path": str(offset_file),
}
],
}
@@ -505,12 +430,8 @@ class LeannBuilder:
"passage_sources": [
{
"type": "jsonl",
# Preserve existing relative file names (backward-compatible)
"path": passages_file.name,
"index_path": offset_file.name,
# Add optional redundant relative keys for remote build portability (non-breaking)
"path_relative": passages_file.name,
"index_path_relative": offset_file.name,
"path": str(passages_file),
"index_path": str(offset_file),
}
],
"built_from_precomputed_embeddings": True,
@@ -538,24 +459,14 @@ class LeannSearcher:
self.meta_path_str = f"{index_path}.meta.json"
if not Path(self.meta_path_str).exists():
parent_dir = Path(index_path).parent
print(
f"Leann metadata file not found at {self.meta_path_str}, and you may need to rm -rf {parent_dir}"
)
# highlight in red the filenotfound error
raise FileNotFoundError(
f"Leann metadata file not found at {self.meta_path_str}, \033[91m you may need to rm -rf {parent_dir}\033[0m"
)
raise FileNotFoundError(f"Leann metadata file not found at {self.meta_path_str}")
with open(self.meta_path_str, encoding="utf-8") as f:
self.meta_data = json.load(f)
backend_name = self.meta_data["backend_name"]
self.embedding_model = self.meta_data["embedding_model"]
# Support both old and new format
self.embedding_mode = self.meta_data.get("embedding_mode", "sentence-transformers")
# Delegate portability handling to PassageManager
self.passage_manager = PassageManager(
self.meta_data.get("passage_sources", []), metadata_file_path=self.meta_path_str
)
self.passage_manager = PassageManager(self.meta_data.get("passage_sources", []))
backend_factory = BACKEND_REGISTRY.get(backend_name)
if backend_factory is None:
raise ValueError(f"Backend '{backend_name}' not found.")
@@ -582,16 +493,6 @@ class LeannSearcher:
logger.info(f" Top_k: {top_k}")
logger.info(f" Additional kwargs: {kwargs}")
# Smart top_k detection and adjustment
total_docs = len(self.passage_manager.global_offset_map)
original_top_k = top_k
if top_k > total_docs:
top_k = total_docs
logger.warning(
f" ⚠️ Requested top_k ({original_top_k}) exceeds total documents ({total_docs})"
)
logger.warning(f" ✅ Auto-adjusted top_k to {top_k} to match available documents")
zmq_port = None
start_time = time.time()
@@ -628,15 +529,15 @@ class LeannSearcher:
zmq_port=zmq_port,
**kwargs,
)
time.time() - start_time
# logger.info(f" Search time: {search_time} seconds")
logger.info(f" Backend returned: labels={len(results.get('labels', [[]])[0])} results")
enriched_results = []
if "labels" in results and "distances" in results:
logger.info(f" Processing {len(results['labels'][0])} passage IDs:")
# Python 3.9 does not support zip(strict=...); lengths are expected to match
for i, (string_id, dist) in enumerate(
zip(results["labels"][0], results["distances"][0])
zip(results["labels"][0], results["distances"][0], strict=False)
):
try:
passage_data = self.passage_manager.get_passage(string_id)
@@ -662,49 +563,19 @@ class LeannSearcher:
)
except KeyError:
RED = "\033[91m"
RESET = "\033[0m"
logger.error(
f" {RED}{RESET} [{i + 1:2d}] ID: '{string_id}' -> {RED}ERROR: Passage not found!{RESET}"
)
# Define color codes outside the loop for final message
GREEN = "\033[92m"
RESET = "\033[0m"
logger.info(f" {GREEN}✓ Final enriched results: {len(enriched_results)} passages{RESET}")
return enriched_results
def cleanup(self):
"""Explicitly cleanup embedding server resources.
This method should be called after you're done using the searcher,
especially in test environments or batch processing scenarios.
"""
if hasattr(self.backend_impl, "embedding_server_manager"):
self.backend_impl.embedding_server_manager.stop_server()
# Enable automatic cleanup patterns
def __enter__(self):
return self
def __exit__(self, exc_type, exc, tb):
try:
self.cleanup()
except Exception:
pass
def __del__(self):
try:
self.cleanup()
except Exception:
# Avoid noisy errors during interpreter shutdown
pass
class LeannChat:
def __init__(
self,
index_path: str,
llm_config: Optional[dict[str, Any]] = None,
llm_config: dict[str, Any] | None = None,
enable_warmup: bool = False,
**kwargs,
):
@@ -720,7 +591,7 @@ class LeannChat:
prune_ratio: float = 0.0,
recompute_embeddings: bool = True,
pruning_strategy: Literal["global", "local", "proportional"] = "global",
llm_kwargs: Optional[dict[str, Any]] = None,
llm_kwargs: dict[str, Any] | None = None,
expected_zmq_port: int = 5557,
**search_kwargs,
):
@@ -748,10 +619,7 @@ class LeannChat:
"Please provide the best answer you can based on this context and your knowledge."
)
ask_time = time.time()
ans = self.llm.ask(prompt, **llm_kwargs)
ask_time = time.time() - ask_time
logger.info(f" Ask time: {ask_time} seconds")
return ans
def start_interactive(self):
@@ -768,28 +636,3 @@ class LeannChat:
except (KeyboardInterrupt, EOFError):
print("\nGoodbye!")
break
def cleanup(self):
"""Explicitly cleanup embedding server resources.
This method should be called after you're done using the chat interface,
especially in test environments or batch processing scenarios.
"""
if hasattr(self.searcher, "cleanup"):
self.searcher.cleanup()
# Enable automatic cleanup patterns
def __enter__(self):
return self
def __exit__(self, exc_type, exc, tb):
try:
self.cleanup()
except Exception:
pass
def __del__(self):
try:
self.cleanup()
except Exception:
pass

View File

@@ -8,7 +8,7 @@ import difflib
import logging
import os
from abc import ABC, abstractmethod
from typing import Any, Optional
from typing import Any
import torch
@@ -17,12 +17,12 @@ logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def check_ollama_models(host: str) -> list[str]:
def check_ollama_models() -> list[str]:
"""Check available Ollama models and return a list"""
try:
import requests
response = requests.get(f"{host}/api/tags", timeout=5)
response = requests.get("http://localhost:11434/api/tags", timeout=5)
if response.status_code == 200:
data = response.json()
return [model["name"] for model in data.get("models", [])]
@@ -309,12 +309,10 @@ def search_hf_models(query: str, limit: int = 10) -> list[str]:
return search_hf_models_fuzzy(query, limit)
def validate_model_and_suggest(
model_name: str, llm_type: str, host: str = "http://localhost:11434"
) -> Optional[str]:
def validate_model_and_suggest(model_name: str, llm_type: str) -> str | None:
"""Validate model name and provide suggestions if invalid"""
if llm_type == "ollama":
available_models = check_ollama_models(host)
available_models = check_ollama_models()
if available_models and model_name not in available_models:
error_msg = f"Model '{model_name}' not found in your local Ollama installation."
@@ -360,11 +358,7 @@ def validate_model_and_suggest(
error_msg += f"\n\nModel '{model_name}' was not found in Ollama's library."
if suggestions:
error_msg += (
"\n\nDid you mean one of these installed models?\n"
+ "\nTry to use ollama pull to install the model you need\n"
)
error_msg += "\n\nDid you mean one of these installed models?\n"
for i, suggestion in enumerate(suggestions, 1):
error_msg += f" {i}. {suggestion}\n"
else:
@@ -422,6 +416,7 @@ class LLMInterface(ABC):
top_k=10,
complexity=64,
beam_width=8,
USE_DEFERRED_FETCH=True,
skip_search_reorder=True,
recompute_beighbor_embeddings=True,
dedup_node_dis=True,
@@ -433,6 +428,7 @@ class LLMInterface(ABC):
Supported kwargs:
- complexity (int): Search complexity parameter (default: 32)
- beam_width (int): Beam width for search (default: 4)
- USE_DEFERRED_FETCH (bool): Enable deferred fetch mode (default: False)
- skip_search_reorder (bool): Skip search reorder step (default: False)
- recompute_beighbor_embeddings (bool): Enable ZMQ embedding server for neighbor recomputation (default: False)
- dedup_node_dis (bool): Deduplicate nodes by distance (default: False)
@@ -469,7 +465,7 @@ class OllamaChat(LLMInterface):
requests.get(host)
# Pre-check model availability with helpful suggestions
model_error = validate_model_and_suggest(model, "ollama", host)
model_error = validate_model_and_suggest(model, "ollama")
if model_error:
raise ValueError(model_error)
@@ -489,35 +485,11 @@ class OllamaChat(LLMInterface):
import requests
full_url = f"{self.host}/api/generate"
# Handle thinking budget for reasoning models
options = kwargs.copy()
thinking_budget = kwargs.get("thinking_budget")
if thinking_budget:
# Remove thinking_budget from options as it's not a standard Ollama option
options.pop("thinking_budget", None)
# Only apply reasoning parameters to models that support it
reasoning_supported_models = [
"gpt-oss:20b",
"gpt-oss:120b",
"deepseek-r1",
"deepseek-coder",
]
if thinking_budget in ["low", "medium", "high"]:
if any(model in self.model.lower() for model in reasoning_supported_models):
options["reasoning"] = {"effort": thinking_budget, "exclude": False}
logger.info(f"Applied reasoning effort={thinking_budget} to model {self.model}")
else:
logger.warning(
f"Thinking budget '{thinking_budget}' requested but model '{self.model}' may not support reasoning parameters. Proceeding without reasoning."
)
payload = {
"model": self.model,
"prompt": prompt,
"stream": False, # Keep it simple for now
"options": options,
"options": kwargs,
}
logger.debug(f"Sending request to Ollama: {payload}")
try:
@@ -683,7 +655,7 @@ class HFChat(LLMInterface):
class OpenAIChat(LLMInterface):
"""LLM interface for OpenAI models."""
def __init__(self, model: str = "gpt-4o", api_key: Optional[str] = None):
def __init__(self, model: str = "gpt-4o", api_key: str | None = None):
self.model = model
self.api_key = api_key or os.getenv("OPENAI_API_KEY")
@@ -708,38 +680,11 @@ class OpenAIChat(LLMInterface):
params = {
"model": self.model,
"messages": [{"role": "user", "content": prompt}],
"max_tokens": kwargs.get("max_tokens", 1000),
"temperature": kwargs.get("temperature", 0.7),
**{k: v for k, v in kwargs.items() if k not in ["max_tokens", "temperature"]},
}
# Handle max_tokens vs max_completion_tokens based on model
max_tokens = kwargs.get("max_tokens", 1000)
if "o3" in self.model or "o4" in self.model or "o1" in self.model:
# o-series models use max_completion_tokens
params["max_completion_tokens"] = max_tokens
params["temperature"] = 1.0
else:
# Other models use max_tokens
params["max_tokens"] = max_tokens
# Handle thinking budget for reasoning models
thinking_budget = kwargs.get("thinking_budget")
if thinking_budget and thinking_budget in ["low", "medium", "high"]:
# Check if this is an o-series model (partial match for model names)
o_series_models = ["o3", "o3-mini", "o4-mini", "o1", "o3-pro", "o3-deep-research"]
if any(model in self.model for model in o_series_models):
# Use the correct OpenAI reasoning parameter format
params["reasoning_effort"] = thinking_budget
logger.info(f"Applied reasoning_effort={thinking_budget} to model {self.model}")
else:
logger.warning(
f"Thinking budget '{thinking_budget}' requested but model '{self.model}' may not support reasoning parameters. Proceeding without reasoning."
)
# Add other kwargs (excluding thinking_budget as it's handled above)
for k, v in kwargs.items():
if k not in ["max_tokens", "temperature", "thinking_budget"]:
params[k] = v
logger.info(f"Sending request to OpenAI with model {self.model}")
try:
@@ -759,7 +704,7 @@ class SimulatedChat(LLMInterface):
return "This is a simulated answer from the LLM based on the retrieved context."
def get_llm(llm_config: Optional[dict[str, Any]] = None) -> LLMInterface:
def get_llm(llm_config: dict[str, Any] | None = None) -> LLMInterface:
"""
Factory function to get an LLM interface based on configuration.

View File

@@ -1,11 +1,9 @@
import argparse
import asyncio
from pathlib import Path
from typing import Union
from llama_index.core import SimpleDirectoryReader
from llama_index.core.node_parser import SentenceSplitter
from tqdm import tqdm
from .api import LeannBuilder, LeannChat, LeannSearcher
@@ -43,23 +41,13 @@ def extract_pdf_text_with_pdfplumber(file_path: str) -> str:
class LeannCLI:
def __init__(self):
# Always use project-local .leann directory (like .git)
self.indexes_dir = Path.cwd() / ".leann" / "indexes"
self.indexes_dir = Path.home() / ".leann" / "indexes"
self.indexes_dir.mkdir(parents=True, exist_ok=True)
# Default parser for documents
self.node_parser = SentenceSplitter(
chunk_size=256, chunk_overlap=128, separator=" ", paragraph_separator="\n\n"
)
# Code-optimized parser
self.code_parser = SentenceSplitter(
chunk_size=512, # Larger chunks for code context
chunk_overlap=50, # Less overlap to preserve function boundaries
separator="\n", # Split by lines for code
paragraph_separator="\n\n", # Preserve logical code blocks
)
def get_index_path(self, index_name: str) -> str:
index_dir = self.indexes_dir / index_name
return str(index_dir / "documents.leann")
@@ -72,18 +60,14 @@ class LeannCLI:
def create_parser(self) -> argparse.ArgumentParser:
parser = argparse.ArgumentParser(
prog="leann",
description="The smallest vector index in the world. RAG Everything with LEANN!",
description="LEANN - Local Enhanced AI Navigation",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
leann build my-docs --docs ./documents # Build index from directory
leann build my-code --docs ./src ./tests ./config # Build index from multiple directories
leann build my-files --docs ./file1.py ./file2.txt ./docs/ # Build index from files and directories
leann build my-mixed --docs ./readme.md ./src/ ./config.json # Build index from mixed files/dirs
leann build my-ppts --docs ./ --file-types .pptx,.pdf # Index only PowerPoint and PDF files
leann search my-docs "query" # Search in my-docs index
leann ask my-docs "question" # Ask my-docs index
leann list # List all stored indexes
leann build my-docs --docs ./documents # Build index named my-docs
leann search my-docs "query" # Search in my-docs index
leann ask my-docs "question" # Ask my-docs index
leann list # List all stored indexes
""",
)
@@ -91,112 +75,32 @@ Examples:
# Build command
build_parser = subparsers.add_parser("build", help="Build document index")
build_parser.add_argument("index_name", help="Index name")
build_parser.add_argument("--docs", type=str, required=True, help="Documents directory")
build_parser.add_argument(
"index_name", nargs="?", help="Index name (default: current directory name)"
)
build_parser.add_argument(
"--docs",
type=str,
nargs="+",
default=["."],
help="Documents directories and/or files (default: current directory)",
)
build_parser.add_argument(
"--backend",
type=str,
default="hnsw",
choices=["hnsw", "diskann"],
help="Backend to use (default: hnsw)",
)
build_parser.add_argument(
"--embedding-model",
type=str,
default="facebook/contriever",
help="Embedding model (default: facebook/contriever)",
)
build_parser.add_argument(
"--embedding-mode",
type=str,
default="sentence-transformers",
choices=["sentence-transformers", "openai", "mlx", "ollama"],
help="Embedding backend mode (default: sentence-transformers)",
)
build_parser.add_argument(
"--force", "-f", action="store_true", help="Force rebuild existing index"
)
build_parser.add_argument(
"--graph-degree", type=int, default=32, help="Graph degree (default: 32)"
)
build_parser.add_argument(
"--complexity", type=int, default=64, help="Build complexity (default: 64)"
"--backend", type=str, default="hnsw", choices=["hnsw", "diskann"]
)
build_parser.add_argument("--embedding-model", type=str, default="facebook/contriever")
build_parser.add_argument("--force", "-f", action="store_true", help="Force rebuild")
build_parser.add_argument("--graph-degree", type=int, default=32)
build_parser.add_argument("--complexity", type=int, default=64)
build_parser.add_argument("--num-threads", type=int, default=1)
build_parser.add_argument(
"--compact",
action=argparse.BooleanOptionalAction,
default=True,
help="Use compact storage (default: true). Must be `no-compact` for `no-recompute` build.",
)
build_parser.add_argument(
"--recompute",
action=argparse.BooleanOptionalAction,
default=True,
help="Enable recomputation (default: true)",
)
build_parser.add_argument(
"--file-types",
type=str,
help="Comma-separated list of file extensions to include (e.g., '.txt,.pdf,.pptx'). If not specified, uses default supported types.",
)
build_parser.add_argument(
"--doc-chunk-size",
type=int,
default=256,
help="Document chunk size in tokens/characters (default: 256)",
)
build_parser.add_argument(
"--doc-chunk-overlap",
type=int,
default=128,
help="Document chunk overlap (default: 128)",
)
build_parser.add_argument(
"--code-chunk-size",
type=int,
default=512,
help="Code chunk size in tokens/lines (default: 512)",
)
build_parser.add_argument(
"--code-chunk-overlap",
type=int,
default=50,
help="Code chunk overlap (default: 50)",
)
build_parser.add_argument("--compact", action="store_true", default=True)
build_parser.add_argument("--recompute", action="store_true", default=True)
# Search command
search_parser = subparsers.add_parser("search", help="Search documents")
search_parser.add_argument("index_name", help="Index name")
search_parser.add_argument("query", help="Search query")
search_parser.add_argument(
"--top-k", type=int, default=5, help="Number of results (default: 5)"
)
search_parser.add_argument(
"--complexity", type=int, default=64, help="Search complexity (default: 64)"
)
search_parser.add_argument("--top-k", type=int, default=5)
search_parser.add_argument("--complexity", type=int, default=64)
search_parser.add_argument("--beam-width", type=int, default=1)
search_parser.add_argument("--prune-ratio", type=float, default=0.0)
search_parser.add_argument(
"--recompute",
dest="recompute_embeddings",
action=argparse.BooleanOptionalAction,
default=True,
help="Enable/disable embedding recomputation (default: enabled). Should not do a `no-recompute` search in a `recompute` build.",
)
search_parser.add_argument("--recompute-embeddings", action="store_true")
search_parser.add_argument(
"--pruning-strategy",
choices=["global", "local", "proportional"],
default="global",
help="Pruning strategy (default: global)",
)
# Ask command
@@ -207,513 +111,102 @@ Examples:
type=str,
default="ollama",
choices=["simulated", "ollama", "hf", "openai"],
help="LLM provider (default: ollama)",
)
ask_parser.add_argument(
"--model", type=str, default="qwen3:8b", help="Model name (default: qwen3:8b)"
)
ask_parser.add_argument("--model", type=str, default="qwen3:8b")
ask_parser.add_argument("--host", type=str, default="http://localhost:11434")
ask_parser.add_argument(
"--interactive", "-i", action="store_true", help="Interactive chat mode"
)
ask_parser.add_argument(
"--top-k", type=int, default=20, help="Retrieval count (default: 20)"
)
ask_parser.add_argument("--interactive", "-i", action="store_true")
ask_parser.add_argument("--top-k", type=int, default=20)
ask_parser.add_argument("--complexity", type=int, default=32)
ask_parser.add_argument("--beam-width", type=int, default=1)
ask_parser.add_argument("--prune-ratio", type=float, default=0.0)
ask_parser.add_argument(
"--recompute",
dest="recompute_embeddings",
action=argparse.BooleanOptionalAction,
default=True,
help="Enable/disable embedding recomputation during ask (default: enabled)",
)
ask_parser.add_argument("--recompute-embeddings", action="store_true")
ask_parser.add_argument(
"--pruning-strategy",
choices=["global", "local", "proportional"],
default="global",
)
ask_parser.add_argument(
"--thinking-budget",
type=str,
choices=["low", "medium", "high"],
default=None,
help="Thinking budget for reasoning models (low/medium/high). Supported by GPT-Oss:20b and other reasoning models.",
)
# List command
subparsers.add_parser("list", help="List all indexes")
return parser
def register_project_dir(self):
"""Register current project directory in global registry"""
global_registry = Path.home() / ".leann" / "projects.json"
global_registry.parent.mkdir(exist_ok=True)
current_dir = str(Path.cwd())
# Load existing registry
projects = []
if global_registry.exists():
try:
import json
with open(global_registry) as f:
projects = json.load(f)
except Exception:
projects = []
# Add current directory if not already present
if current_dir not in projects:
projects.append(current_dir)
# Save registry
import json
with open(global_registry, "w") as f:
json.dump(projects, f, indent=2)
def _build_gitignore_parser(self, docs_dir: str):
"""Build gitignore parser using gitignore-parser library."""
from gitignore_parser import parse_gitignore
# Try to parse the root .gitignore
gitignore_path = Path(docs_dir) / ".gitignore"
if gitignore_path.exists():
try:
# gitignore-parser automatically handles all subdirectory .gitignore files!
matches = parse_gitignore(str(gitignore_path))
print(f"📋 Loaded .gitignore from {docs_dir} (includes all subdirectories)")
return matches
except Exception as e:
print(f"Warning: Could not parse .gitignore: {e}")
else:
print("📋 No .gitignore found")
# Fallback: basic pattern matching for essential files
essential_patterns = {".git", ".DS_Store", "__pycache__", "node_modules", ".venv", "venv"}
def basic_matches(file_path):
path_parts = Path(file_path).parts
return any(part in essential_patterns for part in path_parts)
return basic_matches
def _should_exclude_file(self, relative_path: Path, gitignore_matches) -> bool:
"""Check if a file should be excluded using gitignore parser."""
return gitignore_matches(str(relative_path))
def _is_git_submodule(self, path: Path) -> bool:
"""Check if a path is a git submodule."""
try:
# Find the git repo root
current_dir = Path.cwd()
while current_dir != current_dir.parent:
if (current_dir / ".git").exists():
gitmodules_path = current_dir / ".gitmodules"
if gitmodules_path.exists():
# Read .gitmodules to check if this path is a submodule
gitmodules_content = gitmodules_path.read_text()
# Convert path to relative to git root
try:
relative_path = path.resolve().relative_to(current_dir)
# Check if this path appears in .gitmodules
return f"path = {relative_path}" in gitmodules_content
except ValueError:
# Path is not under git root
return False
break
current_dir = current_dir.parent
return False
except Exception:
# If anything goes wrong, assume it's not a submodule
return False
def list_indexes(self):
print("Stored LEANN indexes:")
# Get all project directories with .leann
global_registry = Path.home() / ".leann" / "projects.json"
all_projects = []
if global_registry.exists():
try:
import json
with open(global_registry) as f:
all_projects = json.load(f)
except Exception:
pass
# Filter to only existing directories with .leann
valid_projects = []
for project_dir in all_projects:
project_path = Path(project_dir)
if project_path.exists() and (project_path / ".leann" / "indexes").exists():
valid_projects.append(project_path)
# Add current project if it has .leann but not in registry
current_path = Path.cwd()
if (current_path / ".leann" / "indexes").exists() and current_path not in valid_projects:
valid_projects.append(current_path)
if not valid_projects:
print(
"No indexes found. Use 'leann build <name> --docs <dir> [<dir2> ...]' to create one."
)
if not self.indexes_dir.exists():
print("No indexes found. Use 'leann build <name> --docs <dir>' to create one.")
return
total_indexes = 0
current_dir = Path.cwd()
index_dirs = [d for d in self.indexes_dir.iterdir() if d.is_dir()]
for project_path in valid_projects:
indexes_dir = project_path / ".leann" / "indexes"
if not indexes_dir.exists():
continue
if not index_dirs:
print("No indexes found. Use 'leann build <name> --docs <dir>' to create one.")
return
index_dirs = [d for d in indexes_dir.iterdir() if d.is_dir()]
if not index_dirs:
continue
print(f"Found {len(index_dirs)} indexes:")
for i, index_dir in enumerate(index_dirs, 1):
index_name = index_dir.name
status = "" if self.index_exists(index_name) else ""
# Show project header
if project_path == current_dir:
print(f"\n📁 Current project ({project_path}):")
print(f" {i}. {index_name} [{status}]")
if self.index_exists(index_name):
index_dir / "documents.leann.meta.json"
size_mb = sum(f.stat().st_size for f in index_dir.iterdir() if f.is_file()) / (
1024 * 1024
)
print(f" Size: {size_mb:.1f} MB")
if index_dirs:
example_name = index_dirs[0].name
print("\nUsage:")
print(f' leann search {example_name} "your query"')
print(f" leann ask {example_name} --interactive")
def load_documents(self, docs_dir: str):
print(f"Loading documents from {docs_dir}...")
# Try to use better PDF parsers first
documents = []
docs_path = Path(docs_dir)
for file_path in docs_path.rglob("*.pdf"):
print(f"Processing PDF: {file_path}")
# Try PyMuPDF first (best quality)
text = extract_pdf_text_with_pymupdf(str(file_path))
if text is None:
# Try pdfplumber
text = extract_pdf_text_with_pdfplumber(str(file_path))
if text:
# Create a simple document structure
from llama_index.core import Document
doc = Document(text=text, metadata={"source": str(file_path)})
documents.append(doc)
else:
print(f"\n📂 {project_path}:")
for index_dir in index_dirs:
total_indexes += 1
index_name = index_dir.name
meta_file = index_dir / "documents.leann.meta.json"
status = "" if meta_file.exists() else ""
print(f" {total_indexes}. {index_name} [{status}]")
if status == "":
size_mb = sum(f.stat().st_size for f in index_dir.iterdir() if f.is_file()) / (
1024 * 1024
)
print(f" Size: {size_mb:.1f} MB")
if total_indexes > 0:
print(f"\nTotal: {total_indexes} indexes across {len(valid_projects)} projects")
print("\nUsage (current project only):")
# Show example from current project
current_indexes_dir = current_dir / ".leann" / "indexes"
if current_indexes_dir.exists():
current_index_dirs = [d for d in current_indexes_dir.iterdir() if d.is_dir()]
if current_index_dirs:
example_name = current_index_dirs[0].name
print(f' leann search {example_name} "your query"')
print(f" leann ask {example_name} --interactive")
def load_documents(
self, docs_paths: Union[str, list], custom_file_types: Union[str, None] = None
):
# Handle both single path (string) and multiple paths (list) for backward compatibility
if isinstance(docs_paths, str):
docs_paths = [docs_paths]
# Separate files and directories
files = []
directories = []
for path in docs_paths:
path_obj = Path(path)
if path_obj.is_file():
files.append(str(path_obj))
elif path_obj.is_dir():
# Check if this is a git submodule - if so, skip it
if self._is_git_submodule(path_obj):
print(f"⚠️ Skipping git submodule: {path}")
continue
directories.append(str(path_obj))
else:
print(f"⚠️ Warning: Path '{path}' does not exist, skipping...")
continue
# Print summary of what we're processing
total_items = len(files) + len(directories)
items_desc = []
if files:
items_desc.append(f"{len(files)} file{'s' if len(files) > 1 else ''}")
if directories:
items_desc.append(
f"{len(directories)} director{'ies' if len(directories) > 1 else 'y'}"
)
print(f"Loading documents from {' and '.join(items_desc)} ({total_items} total):")
if files:
print(f" 📄 Files: {', '.join([Path(f).name for f in files])}")
if directories:
print(f" 📁 Directories: {', '.join(directories)}")
if custom_file_types:
print(f"Using custom file types: {custom_file_types}")
all_documents = []
# First, process individual files if any
if files:
print(f"\n🔄 Processing {len(files)} individual file{'s' if len(files) > 1 else ''}...")
# Load individual files using SimpleDirectoryReader with input_files
# Note: We skip gitignore filtering for explicitly specified files
try:
# Group files by their parent directory for efficient loading
from collections import defaultdict
files_by_dir = defaultdict(list)
for file_path in files:
parent_dir = str(Path(file_path).parent)
files_by_dir[parent_dir].append(file_path)
# Load files from each parent directory
for parent_dir, file_list in files_by_dir.items():
print(
f" Loading {len(file_list)} file{'s' if len(file_list) > 1 else ''} from {parent_dir}"
)
try:
file_docs = SimpleDirectoryReader(
parent_dir,
input_files=file_list,
filename_as_id=True,
).load_data()
all_documents.extend(file_docs)
print(
f" ✅ Loaded {len(file_docs)} document{'s' if len(file_docs) > 1 else ''}"
)
except Exception as e:
print(f" ❌ Warning: Could not load files from {parent_dir}: {e}")
except Exception as e:
print(f"❌ Error processing individual files: {e}")
# Define file extensions to process
if custom_file_types:
# Parse custom file types from comma-separated string
code_extensions = [ext.strip() for ext in custom_file_types.split(",") if ext.strip()]
# Ensure extensions start with a dot
code_extensions = [ext if ext.startswith(".") else f".{ext}" for ext in code_extensions]
else:
# Use default supported file types
code_extensions = [
# Original document types
".txt",
".md",
".docx",
".pptx",
# Code files for Claude Code integration
".py",
".js",
".ts",
".jsx",
".tsx",
".java",
".cpp",
".c",
".h",
".hpp",
".cs",
".go",
".rs",
".rb",
".php",
".swift",
".kt",
".scala",
".r",
".sql",
".sh",
".bash",
".zsh",
".fish",
".ps1",
".bat",
# Config and markup files
".json",
".yaml",
".yml",
".xml",
".toml",
".ini",
".cfg",
".conf",
".html",
".css",
".scss",
".less",
".vue",
".svelte",
# Data science
".ipynb",
".R",
".py",
".jl",
]
# Process each directory
if directories:
print(
f"\n🔄 Processing {len(directories)} director{'ies' if len(directories) > 1 else 'y'}..."
)
for docs_dir in directories:
print(f"Processing directory: {docs_dir}")
# Build gitignore parser for each directory
gitignore_matches = self._build_gitignore_parser(docs_dir)
# Try to use better PDF parsers first, but only if PDFs are requested
documents = []
docs_path = Path(docs_dir)
# Check if we should process PDFs
should_process_pdfs = custom_file_types is None or ".pdf" in custom_file_types
if should_process_pdfs:
for file_path in docs_path.rglob("*.pdf"):
# Check if file matches any exclude pattern
try:
relative_path = file_path.relative_to(docs_path)
if self._should_exclude_file(relative_path, gitignore_matches):
continue
except ValueError:
# Skip files that can't be made relative to docs_path
print(f"⚠️ Skipping file outside directory scope: {file_path}")
continue
print(f"Processing PDF: {file_path}")
# Try PyMuPDF first (best quality)
text = extract_pdf_text_with_pymupdf(str(file_path))
if text is None:
# Try pdfplumber
text = extract_pdf_text_with_pdfplumber(str(file_path))
if text:
# Create a simple document structure
from llama_index.core import Document
doc = Document(text=text, metadata={"source": str(file_path)})
documents.append(doc)
else:
# Fallback to default reader
print(f"Using default reader for {file_path}")
try:
default_docs = SimpleDirectoryReader(
str(file_path.parent),
filename_as_id=True,
required_exts=[file_path.suffix],
).load_data()
documents.extend(default_docs)
except Exception as e:
print(f"Warning: Could not process {file_path}: {e}")
# Load other file types with default reader
try:
# Create a custom file filter function using our PathSpec
def file_filter(
file_path: str, docs_dir=docs_dir, gitignore_matches=gitignore_matches
) -> bool:
"""Return True if file should be included (not excluded)"""
try:
docs_path_obj = Path(docs_dir)
file_path_obj = Path(file_path)
relative_path = file_path_obj.relative_to(docs_path_obj)
return not self._should_exclude_file(relative_path, gitignore_matches)
except (ValueError, OSError):
return True # Include files that can't be processed
other_docs = SimpleDirectoryReader(
docs_dir,
recursive=True,
encoding="utf-8",
required_exts=code_extensions,
file_extractor={}, # Use default extractors
# Fallback to default reader
print(f"Using default reader for {file_path}")
default_docs = SimpleDirectoryReader(
str(file_path.parent),
filename_as_id=True,
).load_data(show_progress=True)
required_exts=[file_path.suffix],
).load_data()
documents.extend(default_docs)
# Filter documents after loading based on gitignore rules
filtered_docs = []
for doc in other_docs:
file_path = doc.metadata.get("file_path", "")
if file_filter(file_path):
filtered_docs.append(doc)
documents.extend(filtered_docs)
except ValueError as e:
if "No files found" in str(e):
print(f"No additional files found for other supported types in {docs_dir}.")
else:
raise e
all_documents.extend(documents)
print(f"Loaded {len(documents)} documents from {docs_dir}")
documents = all_documents
# Load other file types with default reader
other_docs = SimpleDirectoryReader(
docs_dir,
recursive=True,
encoding="utf-8",
required_exts=[".txt", ".md", ".docx"],
).load_data(show_progress=True)
documents.extend(other_docs)
all_texts = []
# Define code file extensions for intelligent chunking
code_file_exts = {
".py",
".js",
".ts",
".jsx",
".tsx",
".java",
".cpp",
".c",
".h",
".hpp",
".cs",
".go",
".rs",
".rb",
".php",
".swift",
".kt",
".scala",
".r",
".sql",
".sh",
".bash",
".zsh",
".fish",
".ps1",
".bat",
".json",
".yaml",
".yml",
".xml",
".toml",
".ini",
".cfg",
".conf",
".html",
".css",
".scss",
".less",
".vue",
".svelte",
".ipynb",
".R",
".jl",
}
print("start chunking documents")
# Add progress bar for document chunking
for doc in tqdm(documents, desc="Chunking documents", unit="doc"):
# Check if this is a code file based on source path
source_path = doc.metadata.get("source", "")
is_code_file = any(source_path.endswith(ext) for ext in code_file_exts)
# Use appropriate parser based on file type
parser = self.code_parser if is_code_file else self.node_parser
nodes = parser.get_nodes_from_documents([doc])
for doc in documents:
nodes = self.node_parser.get_nodes_from_documents([doc])
for node in nodes:
all_texts.append(node.get_content())
@@ -721,67 +214,16 @@ Examples:
return all_texts
async def build_index(self, args):
docs_paths = args.docs
# Use current directory name if index_name not provided
if args.index_name:
index_name = args.index_name
else:
index_name = Path.cwd().name
print(f"Using current directory name as index: '{index_name}'")
docs_dir = args.docs
index_name = args.index_name
index_dir = self.indexes_dir / index_name
index_path = self.get_index_path(index_name)
# Display all paths being indexed with file/directory distinction
files = [p for p in docs_paths if Path(p).is_file()]
directories = [p for p in docs_paths if Path(p).is_dir()]
print(f"📂 Indexing {len(docs_paths)} path{'s' if len(docs_paths) > 1 else ''}:")
if files:
print(f" 📄 Files ({len(files)}):")
for i, file_path in enumerate(files, 1):
print(f" {i}. {Path(file_path).resolve()}")
if directories:
print(f" 📁 Directories ({len(directories)}):")
for i, dir_path in enumerate(directories, 1):
print(f" {i}. {Path(dir_path).resolve()}")
if index_dir.exists() and not args.force:
print(f"Index '{index_name}' already exists. Use --force to rebuild.")
return
# Configure chunking based on CLI args before loading documents
# Guard against invalid configurations
doc_chunk_size = max(1, int(args.doc_chunk_size))
doc_chunk_overlap = max(0, int(args.doc_chunk_overlap))
if doc_chunk_overlap >= doc_chunk_size:
print(
f"⚠️ Adjusting doc chunk overlap from {doc_chunk_overlap} to {doc_chunk_size - 1} (must be < chunk size)"
)
doc_chunk_overlap = doc_chunk_size - 1
code_chunk_size = max(1, int(args.code_chunk_size))
code_chunk_overlap = max(0, int(args.code_chunk_overlap))
if code_chunk_overlap >= code_chunk_size:
print(
f"⚠️ Adjusting code chunk overlap from {code_chunk_overlap} to {code_chunk_size - 1} (must be < chunk size)"
)
code_chunk_overlap = code_chunk_size - 1
self.node_parser = SentenceSplitter(
chunk_size=doc_chunk_size,
chunk_overlap=doc_chunk_overlap,
separator=" ",
paragraph_separator="\n\n",
)
self.code_parser = SentenceSplitter(
chunk_size=code_chunk_size,
chunk_overlap=code_chunk_overlap,
separator="\n",
paragraph_separator="\n\n",
)
all_texts = self.load_documents(docs_paths, args.file_types)
all_texts = self.load_documents(docs_dir)
if not all_texts:
print("No documents found")
return
@@ -793,7 +235,6 @@ Examples:
builder = LeannBuilder(
backend_name=args.backend,
embedding_model=args.embedding_model,
embedding_mode=args.embedding_mode,
graph_degree=args.graph_degree,
complexity=args.complexity,
is_compact=args.compact,
@@ -807,9 +248,6 @@ Examples:
builder.build_index(index_path)
print(f"Index built at {index_path}")
# Register this project directory in global registry
self.register_project_dir()
async def search_documents(self, args):
index_name = args.index_name
query = args.query
@@ -817,7 +255,7 @@ Examples:
if not self.index_exists(index_name):
print(
f"Index '{index_name}' not found. Use 'leann build {index_name} --docs <dir> [<dir2> ...]' to create it."
f"Index '{index_name}' not found. Use 'leann build {index_name} --docs <dir>' to create it."
)
return
@@ -844,7 +282,7 @@ Examples:
if not self.index_exists(index_name):
print(
f"Index '{index_name}' not found. Use 'leann build {index_name} --docs <dir> [<dir2> ...]' to create it."
f"Index '{index_name}' not found. Use 'leann build {index_name} --docs <dir>' to create it."
)
return
@@ -870,11 +308,6 @@ Examples:
if not user_input:
continue
# Prepare LLM kwargs with thinking budget if specified
llm_kwargs = {}
if args.thinking_budget:
llm_kwargs["thinking_budget"] = args.thinking_budget
response = chat.ask(
user_input,
top_k=args.top_k,
@@ -883,17 +316,11 @@ Examples:
prune_ratio=args.prune_ratio,
recompute_embeddings=args.recompute_embeddings,
pruning_strategy=args.pruning_strategy,
llm_kwargs=llm_kwargs,
)
print(f"LEANN: {response}")
else:
query = input("Enter your question: ").strip()
if query:
# Prepare LLM kwargs with thinking budget if specified
llm_kwargs = {}
if args.thinking_budget:
llm_kwargs["thinking_budget"] = args.thinking_budget
response = chat.ask(
query,
top_k=args.top_k,
@@ -902,7 +329,6 @@ Examples:
prune_ratio=args.prune_ratio,
recompute_embeddings=args.recompute_embeddings,
pruning_strategy=args.pruning_strategy,
llm_kwargs=llm_kwargs,
)
print(f"LEANN: {response}")

View File

@@ -35,7 +35,7 @@ def compute_embeddings(
Args:
texts: List of texts to compute embeddings for
model_name: Model name
mode: Computation mode ('sentence-transformers', 'openai', 'mlx', 'ollama')
mode: Computation mode ('sentence-transformers', 'openai', 'mlx')
is_build: Whether this is a build operation (shows progress bar)
batch_size: Batch size for processing
adaptive_optimization: Whether to use adaptive optimization based on batch size
@@ -55,8 +55,6 @@ def compute_embeddings(
return compute_embeddings_openai(texts, model_name)
elif mode == "mlx":
return compute_embeddings_mlx(texts, model_name)
elif mode == "ollama":
return compute_embeddings_ollama(texts, model_name, is_build=is_build)
else:
raise ValueError(f"Unsupported embedding mode: {mode}")
@@ -244,16 +242,6 @@ def compute_embeddings_openai(texts: list[str], model_name: str) -> np.ndarray:
except ImportError as e:
raise ImportError(f"OpenAI package not installed: {e}")
# Validate input list
if not texts:
raise ValueError("Cannot compute embeddings for empty text list")
# Extra validation: abort early if any item is empty/whitespace
invalid_count = sum(1 for t in texts if not isinstance(t, str) or not t.strip())
if invalid_count > 0:
raise ValueError(
f"Found {invalid_count} empty/invalid text(s) in input. Upstream should filter before calling OpenAI."
)
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
raise RuntimeError("OPENAI_API_KEY environment variable not set")
@@ -273,16 +261,8 @@ def compute_embeddings_openai(texts: list[str], model_name: str) -> np.ndarray:
print(f"len of texts: {len(texts)}")
# OpenAI has limits on batch size and input length
max_batch_size = 800 # Conservative batch size because the token limit is 300K
max_batch_size = 1000 # Conservative batch size
all_embeddings = []
# get the avg len of texts
avg_len = sum(len(text) for text in texts) / len(texts)
print(f"avg len of texts: {avg_len}")
# if avg len is less than 1000, use the max batch size
if avg_len > 300:
max_batch_size = 500
# if avg len is less than 1000, use the max batch size
try:
from tqdm import tqdm
@@ -385,286 +365,3 @@ def compute_embeddings_mlx(chunks: list[str], model_name: str, batch_size: int =
# Stack numpy arrays
return np.stack(all_embeddings)
def compute_embeddings_ollama(
texts: list[str], model_name: str, is_build: bool = False, host: str = "http://localhost:11434"
) -> np.ndarray:
"""
Compute embeddings using Ollama API with simplified batch processing.
Uses batch size of 32 for MPS/CPU and 128 for CUDA to optimize performance.
Args:
texts: List of texts to compute embeddings for
model_name: Ollama model name (e.g., "nomic-embed-text", "mxbai-embed-large")
is_build: Whether this is a build operation (shows progress bar)
host: Ollama host URL (default: http://localhost:11434)
Returns:
Normalized embeddings array, shape: (len(texts), embedding_dim)
"""
try:
import requests
except ImportError:
raise ImportError(
"The 'requests' library is required for Ollama embeddings. Install with: uv pip install requests"
)
if not texts:
raise ValueError("Cannot compute embeddings for empty text list")
logger.info(
f"Computing embeddings for {len(texts)} texts using Ollama API, model: '{model_name}'"
)
# Check if Ollama is running
try:
response = requests.get(f"{host}/api/version", timeout=5)
response.raise_for_status()
except requests.exceptions.ConnectionError:
error_msg = (
f"❌ Could not connect to Ollama at {host}.\n\n"
"Please ensure Ollama is running:\n"
" • macOS/Linux: ollama serve\n"
" • Windows: Make sure Ollama is running in the system tray\n\n"
"Installation: https://ollama.com/download"
)
raise RuntimeError(error_msg)
except Exception as e:
raise RuntimeError(f"Unexpected error connecting to Ollama: {e}")
# Check if model exists and provide helpful suggestions
try:
response = requests.get(f"{host}/api/tags", timeout=5)
response.raise_for_status()
models = response.json()
model_names = [model["name"] for model in models.get("models", [])]
# Filter for embedding models (models that support embeddings)
embedding_models = []
suggested_embedding_models = [
"nomic-embed-text",
"mxbai-embed-large",
"bge-m3",
"all-minilm",
"snowflake-arctic-embed",
]
for model in model_names:
# Check if it's an embedding model (by name patterns or known models)
base_name = model.split(":")[0]
if any(emb in base_name for emb in ["embed", "bge", "minilm", "e5"]):
embedding_models.append(model)
# Check if model exists (handle versioned names) and resolve to full name
resolved_model_name = None
for name in model_names:
# Exact match
if model_name == name:
resolved_model_name = name
break
# Match without version tag (use the versioned name)
elif model_name == name.split(":")[0]:
resolved_model_name = name
break
if not resolved_model_name:
error_msg = f"❌ Model '{model_name}' not found in local Ollama.\n\n"
# Suggest pulling the model
error_msg += "📦 To install this embedding model:\n"
error_msg += f" ollama pull {model_name}\n\n"
# Show available embedding models
if embedding_models:
error_msg += "✅ Available embedding models:\n"
for model in embedding_models[:5]:
error_msg += f"{model}\n"
if len(embedding_models) > 5:
error_msg += f" ... and {len(embedding_models) - 5} more\n"
else:
error_msg += "💡 Popular embedding models to install:\n"
for model in suggested_embedding_models[:3]:
error_msg += f" • ollama pull {model}\n"
error_msg += "\n📚 Browse more: https://ollama.com/library"
raise ValueError(error_msg)
# Use the resolved model name for all subsequent operations
if resolved_model_name != model_name:
logger.info(f"Resolved model name '{model_name}' to '{resolved_model_name}'")
model_name = resolved_model_name
# Verify the model supports embeddings by testing it
try:
test_response = requests.post(
f"{host}/api/embeddings", json={"model": model_name, "prompt": "test"}, timeout=10
)
if test_response.status_code != 200:
error_msg = (
f"⚠️ Model '{model_name}' exists but may not support embeddings.\n\n"
f"Please use an embedding model like:\n"
)
for model in suggested_embedding_models[:3]:
error_msg += f"{model}\n"
raise ValueError(error_msg)
except requests.exceptions.RequestException:
# If test fails, continue anyway - model might still work
pass
except requests.exceptions.RequestException as e:
logger.warning(f"Could not verify model existence: {e}")
# Determine batch size based on device availability
# Check for CUDA/MPS availability using torch if available
batch_size = 32 # Default for MPS/CPU
try:
import torch
if torch.cuda.is_available():
batch_size = 128 # CUDA gets larger batch size
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
batch_size = 32 # MPS gets smaller batch size
except ImportError:
# If torch is not available, use conservative batch size
batch_size = 32
logger.info(f"Using batch size: {batch_size}")
def get_batch_embeddings(batch_texts):
"""Get embeddings for a batch of texts."""
all_embeddings = []
failed_indices = []
for i, text in enumerate(batch_texts):
max_retries = 3
retry_count = 0
# Truncate very long texts to avoid API issues
truncated_text = text[:8000] if len(text) > 8000 else text
while retry_count < max_retries:
try:
response = requests.post(
f"{host}/api/embeddings",
json={"model": model_name, "prompt": truncated_text},
timeout=30,
)
response.raise_for_status()
result = response.json()
embedding = result.get("embedding")
if embedding is None:
raise ValueError(f"No embedding returned for text {i}")
if not isinstance(embedding, list) or len(embedding) == 0:
raise ValueError(f"Invalid embedding format for text {i}")
all_embeddings.append(embedding)
break
except requests.exceptions.Timeout:
retry_count += 1
if retry_count >= max_retries:
logger.warning(f"Timeout for text {i} after {max_retries} retries")
failed_indices.append(i)
all_embeddings.append(None)
break
except Exception as e:
retry_count += 1
if retry_count >= max_retries:
logger.error(f"Failed to get embedding for text {i}: {e}")
failed_indices.append(i)
all_embeddings.append(None)
break
return all_embeddings, failed_indices
# Process texts in batches
all_embeddings = []
all_failed_indices = []
# Setup progress bar if needed
show_progress = is_build or len(texts) > 10
try:
if show_progress:
from tqdm import tqdm
except ImportError:
show_progress = False
# Process batches
num_batches = (len(texts) + batch_size - 1) // batch_size
if show_progress:
batch_iterator = tqdm(range(num_batches), desc="Computing Ollama embeddings")
else:
batch_iterator = range(num_batches)
for batch_idx in batch_iterator:
start_idx = batch_idx * batch_size
end_idx = min(start_idx + batch_size, len(texts))
batch_texts = texts[start_idx:end_idx]
batch_embeddings, batch_failed = get_batch_embeddings(batch_texts)
# Adjust failed indices to global indices
global_failed = [start_idx + idx for idx in batch_failed]
all_failed_indices.extend(global_failed)
all_embeddings.extend(batch_embeddings)
# Handle failed embeddings
if all_failed_indices:
if len(all_failed_indices) == len(texts):
raise RuntimeError("Failed to compute any embeddings")
logger.warning(
f"Failed to compute embeddings for {len(all_failed_indices)}/{len(texts)} texts"
)
# Use zero embeddings as fallback for failed ones
valid_embedding = next((e for e in all_embeddings if e is not None), None)
if valid_embedding:
embedding_dim = len(valid_embedding)
for i, embedding in enumerate(all_embeddings):
if embedding is None:
all_embeddings[i] = [0.0] * embedding_dim
# Remove None values
all_embeddings = [e for e in all_embeddings if e is not None]
if not all_embeddings:
raise RuntimeError("No valid embeddings were computed")
# Validate embedding dimensions
expected_dim = len(all_embeddings[0])
inconsistent_dims = []
for i, embedding in enumerate(all_embeddings):
if len(embedding) != expected_dim:
inconsistent_dims.append((i, len(embedding)))
if inconsistent_dims:
error_msg = f"Ollama returned inconsistent embedding dimensions. Expected {expected_dim}, but got:\n"
for idx, dim in inconsistent_dims[:10]: # Show first 10 inconsistent ones
error_msg += f" - Text {idx}: {dim} dimensions\n"
if len(inconsistent_dims) > 10:
error_msg += f" ... and {len(inconsistent_dims) - 10} more\n"
error_msg += f"\nThis is likely an Ollama API bug with model '{model_name}'. Please try:\n"
error_msg += "1. Restart Ollama service: 'ollama serve'\n"
error_msg += f"2. Re-pull the model: 'ollama pull {model_name}'\n"
error_msg += (
"3. Use sentence-transformers instead: --embedding-mode sentence-transformers\n"
)
error_msg += "4. Report this issue to Ollama: https://github.com/ollama/ollama/issues"
raise ValueError(error_msg)
# Convert to numpy array and normalize
embeddings = np.array(all_embeddings, dtype=np.float32)
# Normalize embeddings (L2 normalization)
norms = np.linalg.norm(embeddings, axis=1, keepdims=True)
embeddings = embeddings / (norms + 1e-8) # Add small epsilon to avoid division by zero
logger.info(f"Generated {len(embeddings)} embeddings, dimension: {embeddings.shape[1]}")
return embeddings

View File

@@ -6,9 +6,8 @@ import subprocess
import sys
import time
from pathlib import Path
from typing import Optional
# Lightweight, self-contained server manager with no cross-process inspection
import psutil
# Set up logging based on environment variable
LOG_LEVEL = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
@@ -43,7 +42,130 @@ def _check_port(port: int) -> bool:
return s.connect_ex(("localhost", port)) == 0
# Note: All cross-process scanning helpers removed for simplicity
def _check_process_matches_config(
port: int, expected_model: str, expected_passages_file: str
) -> bool:
"""
Check if the process using the port matches our expected model and passages file.
Returns True if matches, False otherwise.
"""
try:
for proc in psutil.process_iter(["pid", "cmdline"]):
if not _is_process_listening_on_port(proc, port):
continue
cmdline = proc.info["cmdline"]
if not cmdline:
continue
return _check_cmdline_matches_config(
cmdline, port, expected_model, expected_passages_file
)
logger.debug(f"No process found listening on port {port}")
return False
except Exception as e:
logger.warning(f"Could not check process on port {port}: {e}")
return False
def _is_process_listening_on_port(proc, port: int) -> bool:
"""Check if a process is listening on the given port."""
try:
connections = proc.net_connections()
for conn in connections:
if conn.laddr.port == port and conn.status == psutil.CONN_LISTEN:
return True
return False
except (psutil.NoSuchProcess, psutil.AccessDenied, psutil.ZombieProcess):
return False
def _check_cmdline_matches_config(
cmdline: list, port: int, expected_model: str, expected_passages_file: str
) -> bool:
"""Check if command line matches our expected configuration."""
cmdline_str = " ".join(cmdline)
logger.debug(f"Found process on port {port}: {cmdline_str}")
# Check if it's our embedding server
is_embedding_server = any(
server_type in cmdline_str
for server_type in [
"embedding_server",
"leann_backend_diskann.embedding_server",
"leann_backend_hnsw.hnsw_embedding_server",
]
)
if not is_embedding_server:
logger.debug(f"Process on port {port} is not our embedding server")
return False
# Check model name
model_matches = _check_model_in_cmdline(cmdline, expected_model)
# Check passages file if provided
passages_matches = _check_passages_in_cmdline(cmdline, expected_passages_file)
result = model_matches and passages_matches
logger.debug(
f"model_matches: {model_matches}, passages_matches: {passages_matches}, overall: {result}"
)
return result
def _check_model_in_cmdline(cmdline: list, expected_model: str) -> bool:
"""Check if the command line contains the expected model."""
if "--model-name" not in cmdline:
return False
model_idx = cmdline.index("--model-name")
if model_idx + 1 >= len(cmdline):
return False
actual_model = cmdline[model_idx + 1]
return actual_model == expected_model
def _check_passages_in_cmdline(cmdline: list, expected_passages_file: str) -> bool:
"""Check if the command line contains the expected passages file."""
if "--passages-file" not in cmdline:
return False # Expected but not found
passages_idx = cmdline.index("--passages-file")
if passages_idx + 1 >= len(cmdline):
return False
actual_passages = cmdline[passages_idx + 1]
expected_path = Path(expected_passages_file).resolve()
actual_path = Path(actual_passages).resolve()
return actual_path == expected_path
def _find_compatible_port_or_next_available(
start_port: int, model_name: str, passages_file: str, max_attempts: int = 100
) -> tuple[int, bool]:
"""
Find a port that either has a compatible server or is available.
Returns (port, is_compatible) where is_compatible indicates if we found a matching server.
"""
for port in range(start_port, start_port + max_attempts):
if not _check_port(port):
# Port is available
return port, False
# Port is in use, check if it's compatible
if _check_process_matches_config(port, model_name, passages_file):
logger.info(f"Found compatible server on port {port}")
return port, True
else:
logger.info(f"Port {port} has incompatible server, trying next port...")
raise RuntimeError(
f"Could not find compatible or available port in range {start_port}-{start_port + max_attempts}"
)
class EmbeddingServerManager:
@@ -60,18 +182,9 @@ class EmbeddingServerManager:
e.g., "leann_backend_diskann.embedding_server"
"""
self.backend_module_name = backend_module_name
self.server_process: Optional[subprocess.Popen] = None
self.server_port: Optional[int] = None
# Track last-started config for in-process reuse only
self._server_config: Optional[dict] = None
self.server_process: subprocess.Popen | None = None
self.server_port: int | None = None
self._atexit_registered = False
# Also register a weakref finalizer to ensure cleanup when manager is GC'ed
try:
import weakref
self._finalizer = weakref.finalize(self, self._finalize_process)
except Exception:
self._finalizer = None
def start_server(
self,
@@ -81,24 +194,26 @@ class EmbeddingServerManager:
**kwargs,
) -> tuple[bool, int]:
"""Start the embedding server."""
# passages_file may be present in kwargs for server CLI, but we don't need it here
passages_file = kwargs.get("passages_file")
# If this manager already has a live server, just reuse it
if self.server_process and self.server_process.poll() is None and self.server_port:
logger.info("Reusing in-process server")
return True, self.server_port
# Check if we have a compatible server already running
if self._has_compatible_running_server(model_name, passages_file):
logger.info("Found compatible running server!")
return True, port
# For Colab environment, use a different strategy
if _is_colab_environment():
logger.info("Detected Colab environment, using alternative startup strategy")
return self._start_server_colab(port, model_name, embedding_mode, **kwargs)
# Always pick a fresh available port
try:
actual_port = _get_available_port(port)
except RuntimeError:
logger.error("No available ports found")
return False, port
# Find a compatible port or next available
actual_port, is_compatible = _find_compatible_port_or_next_available(
port, model_name, passages_file
)
if is_compatible:
logger.info(f"Found compatible server on port {actual_port}")
return True, actual_port
# Start a new server
return self._start_new_server(actual_port, model_name, embedding_mode, **kwargs)
@@ -131,7 +246,17 @@ class EmbeddingServerManager:
logger.error(f"Failed to start embedding server in Colab: {e}")
return False, actual_port
# Note: No compatibility check needed; manager is per-searcher and configs are stable per instance
def _has_compatible_running_server(self, model_name: str, passages_file: str) -> bool:
"""Check if we have a compatible running server."""
if not (self.server_process and self.server_process.poll() is None and self.server_port):
return False
if _check_process_matches_config(self.server_port, model_name, passages_file):
logger.info(f"Existing server process (PID {self.server_process.pid}) is compatible")
return True
logger.info("Existing server process is incompatible. Should start a new server.")
return False
def _start_new_server(
self, port: int, model_name: str, embedding_mode: str, **kwargs
@@ -178,61 +303,22 @@ class EmbeddingServerManager:
project_root = Path(__file__).parent.parent.parent.parent.parent
logger.info(f"Command: {' '.join(command)}")
# In CI environment, redirect stdout to avoid buffer deadlock but keep stderr for debugging
# Embedding servers use many print statements that can fill stdout buffers
is_ci = os.environ.get("CI") == "true"
if is_ci:
stdout_target = subprocess.DEVNULL
stderr_target = None # Keep stderr for error debugging in CI
logger.info(
"CI environment detected, redirecting embedding server stdout to DEVNULL, keeping stderr"
)
else:
stdout_target = None # Direct to console for visible logs
stderr_target = None # Direct to console for visible logs
# Start embedding server subprocess
# Let server output go directly to console
# The server will respect LEANN_LOG_LEVEL environment variable
self.server_process = subprocess.Popen(
command,
cwd=project_root,
stdout=stdout_target,
stderr=stderr_target,
stdout=None, # Direct to console
stderr=None, # Direct to console
)
self.server_port = port
# Record config for in-process reuse
try:
self._server_config = {
"model_name": command[command.index("--model-name") + 1]
if "--model-name" in command
else "",
"passages_file": command[command.index("--passages-file") + 1]
if "--passages-file" in command
else "",
"embedding_mode": command[command.index("--embedding-mode") + 1]
if "--embedding-mode" in command
else "sentence-transformers",
}
except Exception:
self._server_config = {
"model_name": "",
"passages_file": "",
"embedding_mode": "sentence-transformers",
}
logger.info(f"Server process started with PID: {self.server_process.pid}")
# Register atexit callback only when we actually start a process
if not self._atexit_registered:
# Always attempt best-effort finalize at interpreter exit
atexit.register(self._finalize_process)
# Use a lambda to avoid issues with bound methods
atexit.register(lambda: self.stop_server() if self.server_process else None)
self._atexit_registered = True
# Touch finalizer so it knows there is a live process
if getattr(self, "_finalizer", None) is not None and not self._finalizer.alive:
try:
import weakref
self._finalizer = weakref.finalize(self, self._finalize_process)
except Exception:
pass
def _wait_for_server_ready(self, port: int) -> tuple[bool, int]:
"""Wait for the server to be ready."""
@@ -257,35 +343,24 @@ class EmbeddingServerManager:
if not self.server_process:
return
if self.server_process and self.server_process.poll() is not None:
if self.server_process.poll() is not None:
# Process already terminated
self.server_process = None
self.server_port = None
self._server_config = None
return
logger.info(
f"Terminating server process (PID: {self.server_process.pid}) for backend {self.backend_module_name}..."
)
# Use simple termination first; if the server installed signal handlers,
# it will exit cleanly. Otherwise escalate to kill after a short wait.
try:
self.server_process.terminate()
except Exception:
pass
self.server_process.terminate()
try:
self.server_process.wait(timeout=5) # Give more time for graceful shutdown
logger.info(f"Server process {self.server_process.pid} terminated gracefully.")
self.server_process.wait(timeout=3)
logger.info(f"Server process {self.server_process.pid} terminated.")
except subprocess.TimeoutExpired:
logger.warning(
f"Server process {self.server_process.pid} did not terminate within 5 seconds, force killing..."
f"Server process {self.server_process.pid} did not terminate gracefully within 3 seconds, killing it."
)
try:
self.server_process.kill()
except Exception:
pass
self.server_process.kill()
try:
self.server_process.wait(timeout=2)
logger.info(f"Server process {self.server_process.pid} killed successfully.")
@@ -293,33 +368,15 @@ class EmbeddingServerManager:
logger.error(
f"Failed to kill server process {self.server_process.pid} - it may be hung"
)
# Don't hang indefinitely
# Clean up process resources with timeout to avoid CI hang
# Clean up process resources to prevent resource tracker warnings
try:
# Use shorter timeout in CI environments
is_ci = os.environ.get("CI") == "true"
timeout = 3 if is_ci else 10
self.server_process.wait(timeout=timeout)
logger.info(f"Server process {self.server_process.pid} cleanup completed")
except subprocess.TimeoutExpired:
logger.warning(f"Process cleanup timeout after {timeout}s, proceeding anyway")
except Exception as e:
logger.warning(f"Error during process cleanup: {e}")
finally:
self.server_process = None
self.server_port = None
self._server_config = None
def _finalize_process(self) -> None:
"""Best-effort cleanup used by weakref.finalize/atexit."""
try:
self.stop_server()
self.server_process.wait() # Ensure process is fully cleaned up
except Exception:
pass
def _adopt_existing_server(self, *args, **kwargs) -> None:
# Removed: cross-process adoption no longer supported
return
self.server_process = None
def _launch_server_process_colab(self, command: list, port: int) -> None:
"""Launch the server process with Colab-specific settings."""
@@ -335,16 +392,10 @@ class EmbeddingServerManager:
self.server_port = port
logger.info(f"Colab server process started with PID: {self.server_process.pid}")
# Register atexit callback (unified)
# Register atexit callback
if not self._atexit_registered:
atexit.register(self._finalize_process)
atexit.register(lambda: self.stop_server() if self.server_process else None)
self._atexit_registered = True
# Record config for in-process reuse is best-effort in Colab mode
self._server_config = {
"model_name": "",
"passages_file": "",
"embedding_mode": "sentence-transformers",
}
def _wait_for_server_ready_colab(self, port: int) -> tuple[bool, int]:
"""Wait for the server to be ready with Colab-specific timeout."""

View File

@@ -1,5 +1,5 @@
from abc import ABC, abstractmethod
from typing import Any, Literal, Optional
from typing import Any, Literal
import numpy as np
@@ -34,9 +34,7 @@ class LeannBackendSearcherInterface(ABC):
pass
@abstractmethod
def _ensure_server_running(
self, passages_source_file: str, port: Optional[int], **kwargs
) -> int:
def _ensure_server_running(self, passages_source_file: str, port: int | None, **kwargs) -> int:
"""Ensure server is running"""
pass
@@ -50,7 +48,7 @@ class LeannBackendSearcherInterface(ABC):
prune_ratio: float = 0.0,
recompute_embeddings: bool = False,
pruning_strategy: Literal["global", "local", "proportional"] = "global",
zmq_port: Optional[int] = None,
zmq_port: int | None = None,
**kwargs,
) -> dict[str, Any]:
"""Search for nearest neighbors
@@ -76,7 +74,7 @@ class LeannBackendSearcherInterface(ABC):
self,
query: str,
use_server_if_available: bool = True,
zmq_port: Optional[int] = None,
zmq_port: int | None = None,
) -> np.ndarray:
"""Compute embedding for a query string

View File

@@ -1,153 +0,0 @@
#!/usr/bin/env python3
import json
import subprocess
import sys
def handle_request(request):
if request.get("method") == "initialize":
return {
"jsonrpc": "2.0",
"id": request.get("id"),
"result": {
"capabilities": {"tools": {}},
"protocolVersion": "2024-11-05",
"serverInfo": {"name": "leann-mcp", "version": "1.0.0"},
},
}
elif request.get("method") == "tools/list":
return {
"jsonrpc": "2.0",
"id": request.get("id"),
"result": {
"tools": [
{
"name": "leann_search",
"description": """🔍 Search code using natural language - like having a coding assistant who knows your entire codebase!
🎯 **Perfect for**:
- "How does authentication work?" → finds auth-related code
- "Error handling patterns" → locates try-catch blocks and error logic
- "Database connection setup" → finds DB initialization code
- "API endpoint definitions" → locates route handlers
- "Configuration management" → finds config files and usage
💡 **Pro tip**: Use this before making any changes to understand existing patterns and conventions.""",
"inputSchema": {
"type": "object",
"properties": {
"index_name": {
"type": "string",
"description": "Name of the LEANN index to search. Use 'leann_list' first to see available indexes.",
},
"query": {
"type": "string",
"description": "Search query - can be natural language (e.g., 'how to handle errors') or technical terms (e.g., 'async function definition')",
},
"top_k": {
"type": "integer",
"default": 5,
"minimum": 1,
"maximum": 20,
"description": "Number of search results to return. Use 5-10 for focused results, 15-20 for comprehensive exploration.",
},
"complexity": {
"type": "integer",
"default": 32,
"minimum": 16,
"maximum": 128,
"description": "Search complexity level. Use 16-32 for fast searches (recommended), 64+ for higher precision when needed.",
},
},
"required": ["index_name", "query"],
},
},
{
"name": "leann_list",
"description": "📋 Show all your indexed codebases - your personal code library! Use this to see what's available for search.",
"inputSchema": {"type": "object", "properties": {}},
},
]
},
}
elif request.get("method") == "tools/call":
tool_name = request["params"]["name"]
args = request["params"].get("arguments", {})
try:
if tool_name == "leann_search":
# Validate required parameters
if not args.get("index_name") or not args.get("query"):
return {
"jsonrpc": "2.0",
"id": request.get("id"),
"result": {
"content": [
{
"type": "text",
"text": "Error: Both index_name and query are required",
}
]
},
}
# Build simplified command
cmd = [
"leann",
"search",
args["index_name"],
args["query"],
f"--top-k={args.get('top_k', 5)}",
f"--complexity={args.get('complexity', 32)}",
]
result = subprocess.run(cmd, capture_output=True, text=True)
elif tool_name == "leann_list":
result = subprocess.run(["leann", "list"], capture_output=True, text=True)
return {
"jsonrpc": "2.0",
"id": request.get("id"),
"result": {
"content": [
{
"type": "text",
"text": result.stdout
if result.returncode == 0
else f"Error: {result.stderr}",
}
]
},
}
except Exception as e:
return {
"jsonrpc": "2.0",
"id": request.get("id"),
"error": {"code": -1, "message": str(e)},
}
def main():
for line in sys.stdin:
try:
request = json.loads(line.strip())
response = handle_request(request)
if response:
print(json.dumps(response))
sys.stdout.flush()
except Exception as e:
error_response = {
"jsonrpc": "2.0",
"id": None,
"error": {"code": -1, "message": str(e)},
}
print(json.dumps(error_response))
sys.stdout.flush()
if __name__ == "__main__":
main()

View File

@@ -1,7 +1,7 @@
import json
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Any, Literal, Optional
from typing import Any, Literal
import numpy as np
@@ -169,7 +169,7 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
prune_ratio: float = 0.0,
recompute_embeddings: bool = False,
pruning_strategy: Literal["global", "local", "proportional"] = "global",
zmq_port: Optional[int] = None,
zmq_port: int | None = None,
**kwargs,
) -> dict[str, Any]:
"""

View File

@@ -1,147 +0,0 @@
# 🔥 LEANN Claude Code Integration
Transform your development workflow with intelligent code assistance using LEANN's semantic search directly in Claude Code.
## Prerequisites
Install LEANN globally for MCP integration (with default backend):
```bash
uv tool install leann-core --with leann
```
This installs the `leann` CLI into an isolated tool environment and includes both backends so `leann build` works out-of-the-box.
## 🚀 Quick Setup
Add the LEANN MCP server to Claude Code. Choose the scope based on how widely you want it available. Below is the command to install it globally; if you prefer a local install, skip this step:
```bash
# Global (recommended): available in all projects for your user
claude mcp add --scope user leann-server -- leann_mcp
```
- `leann-server`: the display name of the MCP server in Claude Code (you can change it).
- `leann_mcp`: the Python entry point installed with LEANN that starts the MCP server.
Verify it is registered globally:
```bash
claude mcp list | cat
```
## 🛠️ Available Tools
Once connected, you'll have access to these powerful semantic search tools in Claude Code:
- **`leann_list`** - List all available indexes across your projects
- **`leann_search`** - Perform semantic searches across code and documents
## 🎯 Quick Start Example
```bash
# Add locally if you did not add it globally (current folder only; default if --scope is omitted)
claude mcp add leann-server -- leann_mcp
# Build an index for your project (change to your actual path)
# See the advanced examples below for more ways to configure indexing
# Set the index name (replace 'my-project' with your own)
leann build my-project --docs $(git ls-files)
# Start Claude Code
claude
```
## 🚀 Advanced Usage Examples to build the index
### Index Entire Git Repository
```bash
# Index all tracked files in your Git repository.
# Note: submodules are currently skipped; we can add them back if needed.
leann build my-repo --docs $(git ls-files) --embedding-mode sentence-transformers --embedding-model all-MiniLM-L6-v2 --backend hnsw
# Index only tracked Python files from Git.
leann build my-python-code --docs $(git ls-files "*.py") --embedding-mode sentence-transformers --embedding-model all-MiniLM-L6-v2 --backend hnsw
# If you encounter empty requests caused by empty files (e.g., __init__.py), exclude zero-byte files. Thanks @ww2283 for pointing [that](https://github.com/yichuan-w/LEANN/issues/48) out
leann build leann-prospec-lig --docs $(find ./src -name "*.py" -not -empty) --embedding-mode openai --embedding-model text-embedding-3-small
```
### Multiple Directories and Files
```bash
# Index multiple directories
leann build my-codebase --docs ./src ./tests ./docs ./config --embedding-mode sentence-transformers --embedding-model all-MiniLM-L6-v2 --backend hnsw
# Mix files and directories
leann build my-project --docs ./README.md ./src/ ./package.json ./docs/ --embedding-mode sentence-transformers --embedding-model all-MiniLM-L6-v2 --backend hnsw
# Specific files only
leann build my-configs --docs ./tsconfig.json ./package.json ./webpack.config.js --embedding-mode sentence-transformers --embedding-model all-MiniLM-L6-v2 --backend hnsw
```
### Advanced Git Integration
```bash
# Index recently modified files
leann build recent-changes --docs $(git diff --name-only HEAD~10..HEAD) --embedding-mode sentence-transformers --embedding-model all-MiniLM-L6-v2 --backend hnsw
# Index files matching pattern
leann build frontend --docs $(git ls-files "*.tsx" "*.ts" "*.jsx" "*.js") --embedding-mode sentence-transformers --embedding-model all-MiniLM-L6-v2 --backend hnsw
# Index documentation and config files
leann build docs-and-configs --docs $(git ls-files "*.md" "*.yml" "*.yaml" "*.json" "*.toml") --embedding-mode sentence-transformers --embedding-model all-MiniLM-L6-v2 --backend hnsw
```
## **Try this in Claude Code:**
```
Help me understand this codebase. List available indexes and search for authentication patterns.
```
<p align="center">
<img src="../../assets/claude_code_leann.png" alt="LEANN in Claude Code" width="80%">
</p>
If you see a prompt asking whether to proceed with LEANN, you can now use it in your chat!
## 🧠 How It Works
The integration consists of three key components working seamlessly together:
- **`leann`** - Core CLI tool for indexing and searching (installed globally via `uv tool install`)
- **`leann_mcp`** - MCP server that wraps `leann` commands for Claude Code integration
- **Claude Code** - Calls `leann_mcp`, which executes `leann` commands and returns intelligent results
## 📁 File Support
LEANN understands **30+ file types** including:
- **Programming**: Python, JavaScript, TypeScript, Java, Go, Rust, C++, C#
- **Data**: SQL, YAML, JSON, CSV, XML
- **Documentation**: Markdown, TXT, PDF
- **And many more!**
## 💾 Storage & Organization
- **Project indexes**: Stored in `.leann/` directory (just like `.git`)
- **Global registry**: Project tracking at `~/.leann/projects.json`
- **Multi-project support**: Switch between different codebases seamlessly
- **Portable**: Transfer indexes between machines with minimal overhead
## 🗑️ Uninstalling
To remove the LEANN MCP server from Claude Code:
```bash
claude mcp remove leann-server
```
To remove LEANN
```
uv pip uninstall leann leann-backend-hnsw leann-core
```
To globally remove LEANN (for version update)
```
uv tool list | cat
uv tool uninstall leann-core
command -v leann || echo "leann gone"
command -v leann_mcp || echo "leann_mcp gone"
```

View File

@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
[project]
name = "leann"
version = "0.2.9"
version = "0.1.16"
description = "LEANN - The smallest vector index in the world. RAG Everything with LEANN!"
readme = "README.md"
requires-python = ">=3.9"

View File

@@ -1 +0,0 @@
__all__ = []

View File

@@ -136,9 +136,5 @@ def export_sqlite(
connection.commit()
def main():
app()
if __name__ == "__main__":
main()
app()

View File

@@ -10,7 +10,6 @@ requires-python = ">=3.9"
dependencies = [
"leann-core",
"leann-backend-hnsw",
"typer>=0.12.3",
"numpy>=1.26.0",
"torch",
"tqdm",
@@ -33,7 +32,7 @@ dependencies = [
"pypdfium2>=4.30.0",
# LlamaIndex core and readers - updated versions
"llama-index>=0.12.44",
"llama-index-readers-file>=0.4.0", # Essential for PDF parsing
"llama-index-readers-file>=0.4.0", # Essential for PDF parsing
# "llama-index-readers-docling", # Requires Python >= 3.10
# "llama-index-node-parser-docling", # Requires Python >= 3.10
"llama-index-vector-stores-faiss>=0.4.0",
@@ -41,13 +40,9 @@ dependencies = [
# Other dependencies
"ipykernel==6.29.5",
"msgpack>=1.1.1",
"mlx>=0.26.3; sys_platform == 'darwin' and platform_machine == 'arm64'",
"mlx-lm>=0.26.0; sys_platform == 'darwin' and platform_machine == 'arm64'",
"mlx>=0.26.3; sys_platform == 'darwin'",
"mlx-lm>=0.26.0; sys_platform == 'darwin'",
"psutil>=5.8.0",
"pybind11>=3.0.0",
"pathspec>=0.12.1",
"nbconvert>=7.16.6",
"gitignore-parser>=0.1.12",
]
[project.optional-dependencies]
@@ -56,7 +51,7 @@ dev = [
"pytest-cov>=4.0",
"pytest-xdist>=3.0", # For parallel test execution
"black>=23.0",
"ruff==0.12.7", # Fixed version to ensure consistent formatting across all environments
"ruff>=0.1.0",
"matplotlib",
"huggingface-hub>=0.20.0",
"pre-commit>=3.5.0",
@@ -85,11 +80,6 @@ documents = [
[tool.setuptools]
py-modules = []
packages = ["wechat_exporter"]
package-dir = { "wechat_exporter" = "packages/wechat-exporter" }
[project.scripts]
wechat-exporter = "wechat_exporter.main:main"
[tool.uv.sources]
@@ -98,7 +88,7 @@ leann-backend-diskann = { path = "packages/leann-backend-diskann", editable = tr
leann-backend-hnsw = { path = "packages/leann-backend-hnsw", editable = true }
[tool.ruff]
target-version = "py39"
target-version = "py310"
line-length = 100
extend-exclude = [
"third_party",
@@ -144,14 +134,6 @@ dev = [
"ruff>=0.12.4",
]
[tool.lychee]
accept = ["200", "403", "429", "503"]
timeout = 20
max_retries = 2
exclude = ["localhost", "127.0.0.1", "example.com"]
exclude_path = [".git/", ".venv/", "__pycache__/", "third_party/"]
scheme = ["https", "http"]
[tool.pytest.ini_options]
testpaths = ["tests"]
python_files = ["test_*.py"]
@@ -161,7 +143,7 @@ markers = [
"slow: marks tests as slow (deselect with '-m \"not slow\"')",
"openai: marks tests that require OpenAI API key",
]
timeout = 300 # Reduced from 600s (10min) to 300s (5min) for CI safety
timeout = 600
addopts = [
"-v",
"--tb=short",

View File

@@ -1,76 +0,0 @@
name: leann-build
resources:
# Choose a GPU for fast embeddings (examples: L4, A10G, A100). CPU also works but is slower.
accelerators: L4:1
# Optionally pin a cloud, otherwise SkyPilot will auto-select
# cloud: aws
disk_size: 100
envs:
# Build parameters (override with: sky launch -c leann-gpu sky/leann-build.yaml -e key=value)
index_name: my-index
docs: ./data
backend: hnsw # hnsw | diskann
complexity: 64
graph_degree: 32
num_threads: 8
# Embedding selection
embedding_mode: sentence-transformers # sentence-transformers | openai | mlx | ollama
embedding_model: facebook/contriever
# Storage/latency knobs
recompute: true # true => selective recomputation (recommended)
compact: true # for HNSW only
# Optional pass-through
extra_args: ""
# Rebuild control
force: true
# Sync local paths to the remote VM. Adjust as needed.
file_mounts:
# Example: mount your local data directory used for building
~/leann-data: ${docs}
setup: |
set -e
# Install uv (package manager)
curl -LsSf https://astral.sh/uv/install.sh | sh
export PATH="$HOME/.local/bin:$PATH"
# Ensure modern libstdc++ for FAISS (GLIBCXX >= 3.4.30)
sudo apt-get update -y
sudo apt-get install -y libstdc++6 libgomp1
# Also upgrade conda's libstdc++ in base env (Skypilot images include conda)
if command -v conda >/dev/null 2>&1; then
conda install -y -n base -c conda-forge libstdcxx-ng
fi
# Install LEANN CLI and backends into the user environment
uv pip install --upgrade pip
uv pip install leann-core leann-backend-hnsw leann-backend-diskann
run: |
export PATH="$HOME/.local/bin:$PATH"
# Derive flags from env
recompute_flag=""
if [ "${recompute}" = "false" ] || [ "${recompute}" = "0" ]; then
recompute_flag="--no-recompute"
fi
force_flag=""
if [ "${force}" = "true" ] || [ "${force}" = "1" ]; then
force_flag="--force"
fi
# Build command
python -m leann.cli build ${index_name} \
--docs ~/leann-data \
--backend ${backend} \
--complexity ${complexity} \
--graph-degree ${graph_degree} \
--num-threads ${num_threads} \
--embedding-mode ${embedding_mode} \
--embedding-model ${embedding_model} \
${recompute_flag} ${force_flag} ${extra_args}
# Print where the index is stored for downstream rsync
echo "INDEX_OUT_DIR=~/.leann/indexes/${index_name}"

View File

@@ -0,0 +1,161 @@
import email
import os
from typing import Any
from llama_index.core import Document, VectorStoreIndex
from llama_index.core.readers.base import BaseReader
class EmlxReader(BaseReader):
"""
Apple Mail .emlx file reader.
Reads individual .emlx files from Apple Mail's storage format.
"""
def __init__(self) -> None:
"""Initialize."""
pass
def load_data(self, input_dir: str, **load_kwargs: Any) -> list[Document]:
"""
Load data from the input directory containing .emlx files.
Args:
input_dir: Directory containing .emlx files
**load_kwargs:
max_count (int): Maximum amount of messages to read.
"""
docs: list[Document] = []
max_count = load_kwargs.get("max_count", 1000)
count = 0
# Walk through the directory recursively
for dirpath, dirnames, filenames in os.walk(input_dir):
# Skip hidden directories
dirnames[:] = [d for d in dirnames if not d.startswith(".")]
for filename in filenames:
if count >= max_count:
break
if filename.endswith(".emlx"):
filepath = os.path.join(dirpath, filename)
try:
# Read the .emlx file
with open(filepath, encoding="utf-8", errors="ignore") as f:
content = f.read()
# .emlx files have a length prefix followed by the email content
# The first line contains the length, followed by the email
lines = content.split("\n", 1)
if len(lines) >= 2:
email_content = lines[1]
# Parse the email using Python's email module
try:
msg = email.message_from_string(email_content)
# Extract email metadata
subject = msg.get("Subject", "No Subject")
from_addr = msg.get("From", "Unknown")
to_addr = msg.get("To", "Unknown")
date = msg.get("Date", "Unknown")
# Extract email body
body = ""
if msg.is_multipart():
for part in msg.walk():
if (
part.get_content_type() == "text/plain"
or part.get_content_type() == "text/html"
):
body += part.get_payload(decode=True).decode(
"utf-8", errors="ignore"
)
# break
else:
body = msg.get_payload(decode=True).decode(
"utf-8", errors="ignore"
)
# Create document content
doc_content = f"""
From: {from_addr}
To: {to_addr}
Subject: {subject}
Date: {date}
{body}
"""
# Create metadata
metadata = {
"file_path": filepath,
"subject": subject,
"from": from_addr,
"to": to_addr,
"date": date,
"filename": filename,
}
if count == 0:
print("--------------------------------")
print("dir path", dirpath)
print(metadata)
print(doc_content)
print("--------------------------------")
body = []
if msg.is_multipart():
for part in msg.walk():
print(
"-------------------------------- get content type -------------------------------"
)
print(part.get_content_type())
print(part)
# body.append(part.get_payload(decode=True).decode('utf-8', errors='ignore'))
print(
"-------------------------------- get content type -------------------------------"
)
else:
body = msg.get_payload(decode=True).decode(
"utf-8", errors="ignore"
)
print(body)
print(body)
print("--------------------------------")
doc = Document(text=doc_content, metadata=metadata)
docs.append(doc)
count += 1
except Exception as e:
print(f"!!!!!!! Error parsing email from {filepath}: {e} !!!!!!!!")
continue
except Exception as e:
print(f"!!!!!!! Error reading file !!!!!!!! {filepath}: {e}")
continue
print(f"Loaded {len(docs)} email documents")
return docs
# Use the custom EmlxReader instead of MboxReader
documents = EmlxReader().load_data(
"/Users/yichuan/Library/Mail/V10/0FCA0879-FD8C-4B7E-83BF-FDDA930791C5/[Gmail].mbox/All Mail.mbox/78BA5BE1-8819-4F9A-9613-EB63772F1DD0/Data/9/Messages",
max_count=1000,
) # Returns list of documents
# Configure the index with larger chunk size to handle long metadata
from llama_index.core.node_parser import SentenceSplitter
# Create a custom text splitter with larger chunk size
text_splitter = SentenceSplitter(chunk_size=2048, chunk_overlap=200)
index = VectorStoreIndex.from_documents(
documents, transformations=[text_splitter]
) # Initialize index with documents
query_engine = index.as_query_engine()
res = query_engine.query("Hows Berkeley Graduate Student Instructor")
print(res)

View File

@@ -0,0 +1,219 @@
import email
import os
from typing import Any
from llama_index.core import Document, StorageContext, VectorStoreIndex
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.readers.base import BaseReader
class EmlxReader(BaseReader):
"""
Apple Mail .emlx file reader.
Reads individual .emlx files from Apple Mail's storage format.
"""
def __init__(self) -> None:
"""Initialize."""
pass
def load_data(self, input_dir: str, **load_kwargs: Any) -> list[Document]:
"""
Load data from the input directory containing .emlx files.
Args:
input_dir: Directory containing .emlx files
**load_kwargs:
max_count (int): Maximum amount of messages to read.
"""
docs: list[Document] = []
max_count = load_kwargs.get("max_count", 1000)
count = 0
# Walk through the directory recursively
for dirpath, dirnames, filenames in os.walk(input_dir):
# Skip hidden directories
dirnames[:] = [d for d in dirnames if not d.startswith(".")]
for filename in filenames:
if count >= max_count:
break
if filename.endswith(".emlx"):
filepath = os.path.join(dirpath, filename)
try:
# Read the .emlx file
with open(filepath, encoding="utf-8", errors="ignore") as f:
content = f.read()
# .emlx files have a length prefix followed by the email content
# The first line contains the length, followed by the email
lines = content.split("\n", 1)
if len(lines) >= 2:
email_content = lines[1]
# Parse the email using Python's email module
try:
msg = email.message_from_string(email_content)
# Extract email metadata
subject = msg.get("Subject", "No Subject")
from_addr = msg.get("From", "Unknown")
to_addr = msg.get("To", "Unknown")
date = msg.get("Date", "Unknown")
# Extract email body
body = ""
if msg.is_multipart():
for part in msg.walk():
if part.get_content_type() == "text/plain":
body = part.get_payload(decode=True).decode(
"utf-8", errors="ignore"
)
break
else:
body = msg.get_payload(decode=True).decode(
"utf-8", errors="ignore"
)
# Create document content
doc_content = f"""
From: {from_addr}
To: {to_addr}
Subject: {subject}
Date: {date}
{body}
"""
# Create metadata
metadata = {
"file_path": filepath,
"subject": subject,
"from": from_addr,
"to": to_addr,
"date": date,
"filename": filename,
}
doc = Document(text=doc_content, metadata=metadata)
docs.append(doc)
count += 1
except Exception as e:
print(f"Error parsing email from {filepath}: {e}")
continue
except Exception as e:
print(f"Error reading file {filepath}: {e}")
continue
print(f"Loaded {len(docs)} email documents")
return docs
def create_and_save_index(mail_path: str, save_dir: str = "mail_index", max_count: int = 1000):
"""
Create the index from mail data and save it to disk.
Args:
mail_path: Path to the mail directory
save_dir: Directory to save the index
max_count: Maximum number of emails to process
"""
print("Creating index from mail data...")
# Load documents
documents = EmlxReader().load_data(mail_path, max_count=max_count)
if not documents:
print("No documents loaded. Exiting.")
return None
# Create text splitter
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=0)
# Create index
index = VectorStoreIndex.from_documents(documents, transformations=[text_splitter])
# Save the index
os.makedirs(save_dir, exist_ok=True)
index.storage_context.persist(persist_dir=save_dir)
print(f"Index saved to {save_dir}")
return index
def load_index(save_dir: str = "mail_index"):
"""
Load the saved index from disk.
Args:
save_dir: Directory where the index is saved
Returns:
Loaded index or None if loading fails
"""
try:
# Load storage context
storage_context = StorageContext.from_defaults(persist_dir=save_dir)
# Load index
index = VectorStoreIndex.from_vector_store(
storage_context.vector_store, storage_context=storage_context
)
print(f"Index loaded from {save_dir}")
return index
except Exception as e:
print(f"Error loading index: {e}")
return None
def query_index(index, query: str):
"""
Query the loaded index.
Args:
index: The loaded index
query: The query string
"""
if index is None:
print("No index available for querying.")
return
query_engine = index.as_query_engine()
response = query_engine.query(query)
print(f"Query: {query}")
print(f"Response: {response}")
def main():
mail_path = "/Users/yichuan/Library/Mail/V10/0FCA0879-FD8C-4B7E-83BF-FDDA930791C5/[Gmail].mbox/All Mail.mbox/78BA5BE1-8819-4F9A-9613-EB63772F1DD0/Data/9/Messages"
save_dir = "mail_index"
# Check if index already exists
if os.path.exists(save_dir) and os.path.exists(os.path.join(save_dir, "vector_store.json")):
print("Loading existing index...")
index = load_index(save_dir)
else:
print("Creating new index...")
index = create_and_save_index(mail_path, save_dir, max_count=1000)
if index:
# Example queries
queries = [
"Hows Berkeley Graduate Student Instructor",
"What emails mention GSR appointments?",
"Find emails about deadlines",
]
for query in queries:
print("\n" + "=" * 50)
query_index(index, query)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,219 @@
import email
import os
from typing import Any
from llama_index.core import Document, StorageContext, VectorStoreIndex
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.readers.base import BaseReader
class EmlxReader(BaseReader):
"""
Apple Mail .emlx file reader with reduced metadata.
Reads individual .emlx files from Apple Mail's storage format.
"""
def __init__(self) -> None:
"""Initialize."""
pass
def load_data(self, input_dir: str, **load_kwargs: Any) -> list[Document]:
"""
Load data from the input directory containing .emlx files.
Args:
input_dir: Directory containing .emlx files
**load_kwargs:
max_count (int): Maximum amount of messages to read.
"""
docs: list[Document] = []
max_count = load_kwargs.get("max_count", 1000)
count = 0
# Walk through the directory recursively
for dirpath, dirnames, filenames in os.walk(input_dir):
# Skip hidden directories
dirnames[:] = [d for d in dirnames if not d.startswith(".")]
for filename in filenames:
if count >= max_count:
break
if filename.endswith(".emlx"):
filepath = os.path.join(dirpath, filename)
try:
# Read the .emlx file
with open(filepath, encoding="utf-8", errors="ignore") as f:
content = f.read()
# .emlx files have a length prefix followed by the email content
# The first line contains the length, followed by the email
lines = content.split("\n", 1)
if len(lines) >= 2:
email_content = lines[1]
# Parse the email using Python's email module
try:
msg = email.message_from_string(email_content)
# Extract email metadata
subject = msg.get("Subject", "No Subject")
from_addr = msg.get("From", "Unknown")
to_addr = msg.get("To", "Unknown")
date = msg.get("Date", "Unknown")
# Extract email body
body = ""
if msg.is_multipart():
for part in msg.walk():
if part.get_content_type() == "text/plain":
body = part.get_payload(decode=True).decode(
"utf-8", errors="ignore"
)
break
else:
body = msg.get_payload(decode=True).decode(
"utf-8", errors="ignore"
)
# Create document content with metadata embedded in text
doc_content = f"""
From: {from_addr}
To: {to_addr}
Subject: {subject}
Date: {date}
{body}
"""
# Create minimal metadata (only essential info)
metadata = {
"subject": subject[:50], # Truncate subject
"from": from_addr[:30], # Truncate from
"date": date[:20], # Truncate date
"filename": filename, # Keep filename
}
doc = Document(text=doc_content, metadata=metadata)
docs.append(doc)
count += 1
except Exception as e:
print(f"Error parsing email from {filepath}: {e}")
continue
except Exception as e:
print(f"Error reading file {filepath}: {e}")
continue
print(f"Loaded {len(docs)} email documents")
return docs
def create_and_save_index(
mail_path: str, save_dir: str = "mail_index_small", max_count: int = 1000
):
"""
Create the index from mail data and save it to disk.
Args:
mail_path: Path to the mail directory
save_dir: Directory to save the index
max_count: Maximum number of emails to process
"""
print("Creating index from mail data with small chunks...")
# Load documents
documents = EmlxReader().load_data(mail_path, max_count=max_count)
if not documents:
print("No documents loaded. Exiting.")
return None
# Create text splitter with small chunk size
text_splitter = SentenceSplitter(chunk_size=512, chunk_overlap=50)
# Create index
index = VectorStoreIndex.from_documents(documents, transformations=[text_splitter])
# Save the index
os.makedirs(save_dir, exist_ok=True)
index.storage_context.persist(persist_dir=save_dir)
print(f"Index saved to {save_dir}")
return index
def load_index(save_dir: str = "mail_index_small"):
"""
Load the saved index from disk.
Args:
save_dir: Directory where the index is saved
Returns:
Loaded index or None if loading fails
"""
try:
# Load storage context
storage_context = StorageContext.from_defaults(persist_dir=save_dir)
# Load index
index = VectorStoreIndex.from_vector_store(
storage_context.vector_store, storage_context=storage_context
)
print(f"Index loaded from {save_dir}")
return index
except Exception as e:
print(f"Error loading index: {e}")
return None
def query_index(index, query: str):
"""
Query the loaded index.
Args:
index: The loaded index
query: The query string
"""
if index is None:
print("No index available for querying.")
return
query_engine = index.as_query_engine()
response = query_engine.query(query)
print(f"Query: {query}")
print(f"Response: {response}")
def main():
mail_path = "/Users/yichuan/Library/Mail/V10/0FCA0879-FD8C-4B7E-83BF-FDDA930791C5/[Gmail].mbox/All Mail.mbox/78BA5BE1-8819-4F9A-9613-EB63772F1DD0/Data/9/Messages"
save_dir = "mail_index_small"
# Check if index already exists
if os.path.exists(save_dir) and os.path.exists(os.path.join(save_dir, "vector_store.json")):
print("Loading existing index...")
index = load_index(save_dir)
else:
print("Creating new index...")
index = create_and_save_index(mail_path, save_dir, max_count=1000)
if index:
# Example queries
queries = [
"Hows Berkeley Graduate Student Instructor",
"What emails mention GSR appointments?",
"Find emails about deadlines",
]
for query in queries:
print("\n" + "=" * 50)
query_index(index, query)
if __name__ == "__main__":
main()

154
test/mail_reader_test.py Normal file
View File

@@ -0,0 +1,154 @@
import email
import os
from typing import Any
from llama_index.core import Document, VectorStoreIndex
from llama_index.core.readers.base import BaseReader
class EmlxReader(BaseReader):
"""
Apple Mail .emlx file reader.
Reads individual .emlx files from Apple Mail's storage format.
"""
def __init__(self) -> None:
"""Initialize."""
pass
def load_data(self, input_dir: str, **load_kwargs: Any) -> list[Document]:
"""
Load data from the input directory containing .emlx files.
Args:
input_dir: Directory containing .emlx files
**load_kwargs:
max_count (int): Maximum amount of messages to read.
"""
docs: list[Document] = []
max_count = load_kwargs.get("max_count", 1000)
count = 0
# Check if directory exists and is accessible
if not os.path.exists(input_dir):
print(f"Error: Directory '{input_dir}' does not exist")
return docs
if not os.access(input_dir, os.R_OK):
print(f"Error: Directory '{input_dir}' is not accessible (permission denied)")
print("This is likely due to macOS security restrictions on Mail app data")
return docs
print(f"Scanning directory: {input_dir}")
# Walk through the directory recursively
for dirpath, dirnames, filenames in os.walk(input_dir):
# Skip hidden directories
dirnames[:] = [d for d in dirnames if not d.startswith(".")]
for filename in filenames:
if count >= max_count:
break
if filename.endswith(".emlx"):
filepath = os.path.join(dirpath, filename)
print(f"Found .emlx file: {filepath}")
try:
# Read the .emlx file
with open(filepath, encoding="utf-8", errors="ignore") as f:
content = f.read()
# .emlx files have a length prefix followed by the email content
# The first line contains the length, followed by the email
lines = content.split("\n", 1)
if len(lines) >= 2:
email_content = lines[1]
# Parse the email using Python's email module
try:
msg = email.message_from_string(email_content)
# Extract email metadata
subject = msg.get("Subject", "No Subject")
from_addr = msg.get("From", "Unknown")
to_addr = msg.get("To", "Unknown")
date = msg.get("Date", "Unknown")
# Extract email body
body = ""
if msg.is_multipart():
for part in msg.walk():
if part.get_content_type() == "text/plain":
body = part.get_payload(decode=True).decode(
"utf-8", errors="ignore"
)
break
else:
body = msg.get_payload(decode=True).decode(
"utf-8", errors="ignore"
)
# Create document content
doc_content = f"""
From: {from_addr}
To: {to_addr}
Subject: {subject}
Date: {date}
{body}
"""
# Create metadata
metadata = {
"file_path": filepath,
"subject": subject,
"from": from_addr,
"to": to_addr,
"date": date,
"filename": filename,
}
doc = Document(text=doc_content, metadata=metadata)
docs.append(doc)
count += 1
except Exception as e:
print(f"Error parsing email from {filepath}: {e}")
continue
except Exception as e:
print(f"Error reading file {filepath}: {e}")
continue
print(f"Loaded {len(docs)} email documents")
return docs
def main():
# Use the current directory where the sample.emlx file is located
current_dir = os.path.dirname(os.path.abspath(__file__))
print("Testing EmlxReader with sample .emlx file...")
print(f"Scanning directory: {current_dir}")
# Use the custom EmlxReader
documents = EmlxReader().load_data(current_dir, max_count=1000)
if not documents:
print("No documents loaded. Make sure sample.emlx exists in the examples directory.")
return
print(f"\nSuccessfully loaded {len(documents)} document(s)")
# Initialize index with documents
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()
print("\nTesting query: 'Hows Berkeley Graduate Student Instructor'")
res = query_engine.query("Hows Berkeley Graduate Student Instructor")
print(f"Response: {res}")
if __name__ == "__main__":
main()

105
test/query_saved_index.py Normal file
View File

@@ -0,0 +1,105 @@
import os
from llama_index.core import StorageContext, VectorStoreIndex
def load_index(save_dir: str = "mail_index"):
"""
Load the saved index from disk.
Args:
save_dir: Directory where the index is saved
Returns:
Loaded index or None if loading fails
"""
try:
# Load storage context
storage_context = StorageContext.from_defaults(persist_dir=save_dir)
# Load index
index = VectorStoreIndex.from_vector_store(
storage_context.vector_store, storage_context=storage_context
)
print(f"Index loaded from {save_dir}")
return index
except Exception as e:
print(f"Error loading index: {e}")
return None
def query_index(index, query: str):
"""
Query the loaded index.
Args:
index: The loaded index
query: The query string
"""
if index is None:
print("No index available for querying.")
return
query_engine = index.as_query_engine()
response = query_engine.query(query)
print(f"\nQuery: {query}")
print(f"Response: {response}")
def main():
save_dir = "mail_index"
# Check if index exists
if not os.path.exists(save_dir) or not os.path.exists(
os.path.join(save_dir, "vector_store.json")
):
print(f"Index not found in {save_dir}")
print("Please run mail_reader_save_load.py first to create the index.")
return
# Load the index
index = load_index(save_dir)
if not index:
print("Failed to load index.")
return
print("\n" + "=" * 60)
print("Email Query Interface")
print("=" * 60)
print("Type 'quit' to exit")
print("Type 'help' for example queries")
print("=" * 60)
# Interactive query loop
while True:
try:
query = input("\nEnter your query: ").strip()
if query.lower() == "quit":
print("Goodbye!")
break
elif query.lower() == "help":
print("\nExample queries:")
print("- Hows Berkeley Graduate Student Instructor")
print("- What emails mention GSR appointments?")
print("- Find emails about deadlines")
print("- Search for emails from specific sender")
print("- Find emails about meetings")
continue
elif not query:
continue
query_index(index, query)
except KeyboardInterrupt:
print("\nGoodbye!")
break
except Exception as e:
print(f"Error processing query: {e}")
if __name__ == "__main__":
main()

View File

@@ -1,24 +1,9 @@
# 🧪 LEANN Benchmarks & Testing
# 🧪 Leann Sanity Checks
This directory contains performance benchmarks and comprehensive tests for the LEANN system, including backend comparisons and sanity checks across different configurations.
This directory contains comprehensive sanity checks for the Leann system, ensuring all components work correctly across different configurations.
## 📁 Test Files
### `diskann_vs_hnsw_speed_comparison.py`
Performance comparison between DiskANN and HNSW backends:
- ✅ **Search latency** comparison with both backends using recompute
- ✅ **Index size** and **build time** measurements
- ✅ **Score validity** testing (ensures no -inf scores)
- ✅ **Configurable dataset sizes** for different scales
```bash
# Quick comparison with 500 docs, 10 queries
python benchmarks/diskann_vs_hnsw_speed_comparison.py
# Large-scale comparison with 2000 docs, 20 queries
python benchmarks/diskann_vs_hnsw_speed_comparison.py 2000 20
```
### `test_distance_functions.py`
Tests all supported distance functions across DiskANN backend:
- ✅ **MIPS** (Maximum Inner Product Search)

View File

@@ -0,0 +1,117 @@
#!/usr/bin/env python3
"""
Debug script to test ZMQ communication with the exact same setup as main_cli_example.py
"""
import sys
import time
import zmq
sys.path.append("packages/leann-backend-diskann")
from leann_backend_diskann import embedding_pb2
def test_zmq_with_same_model():
print("=== Testing ZMQ with same model as main_cli_example.py ===")
# Test the exact same model that main_cli_example.py uses
model_name = "sentence-transformers/all-mpnet-base-v2"
# Start server with the same model
import subprocess
server_cmd = [
sys.executable,
"-m",
"packages.leann-backend-diskann.leann_backend_diskann.embedding_server",
"--zmq-port",
"5556", # Use different port to avoid conflicts
"--model-name",
model_name,
]
print(f"Starting server with command: {' '.join(server_cmd)}")
server_process = subprocess.Popen(
server_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True
)
# Wait for server to start
print("Waiting for server to start...")
time.sleep(10)
# Check if server is running
if server_process.poll() is not None:
stdout, stderr = server_process.communicate()
print(f"Server failed to start. stdout: {stdout}")
print(f"Server failed to start. stderr: {stderr}")
return False
print(f"Server started with PID: {server_process.pid}")
try:
# Test client
context = zmq.Context()
socket = context.socket(zmq.REQ)
socket.connect("tcp://127.0.0.1:5556")
socket.setsockopt(zmq.RCVTIMEO, 30000) # 30 second timeout like C++
socket.setsockopt(zmq.SNDTIMEO, 30000)
# Create request with same format as C++
request = embedding_pb2.NodeEmbeddingRequest()
request.node_ids.extend([0, 1, 2, 3, 4]) # Test with some node IDs
print(f"Sending request with {len(request.node_ids)} node IDs...")
start_time = time.time()
# Send request
socket.send(request.SerializeToString())
# Receive response
response_data = socket.recv()
end_time = time.time()
print(f"Received response in {end_time - start_time:.3f} seconds")
print(f"Response size: {len(response_data)} bytes")
# Parse response
response = embedding_pb2.NodeEmbeddingResponse()
response.ParseFromString(response_data)
print(f"Response dimensions: {list(response.dimensions)}")
print(f"Embeddings data size: {len(response.embeddings_data)} bytes")
print(f"Missing IDs: {list(response.missing_ids)}")
# Calculate expected size
if len(response.dimensions) == 2:
batch_size = response.dimensions[0]
embedding_dim = response.dimensions[1]
expected_bytes = batch_size * embedding_dim * 4 # 4 bytes per float
print(f"Expected bytes: {expected_bytes}, Actual: {len(response.embeddings_data)}")
if len(response.embeddings_data) == expected_bytes:
print("✅ Response format is correct!")
return True
else:
print("❌ Response format mismatch!")
return False
else:
print("❌ Invalid response dimensions!")
return False
except Exception as e:
print(f"❌ Error during ZMQ test: {e}")
return False
finally:
# Clean up
server_process.terminate()
server_process.wait()
print("Server terminated")
if __name__ == "__main__":
success = test_zmq_with_same_model()
if success:
print("\n✅ ZMQ communication test passed!")
else:
print("\n❌ ZMQ communication test failed!")

View File

@@ -6,11 +6,10 @@ This directory contains automated tests for the LEANN project using pytest.
### `test_readme_examples.py`
Tests the examples shown in README.md:
- The basic example code that users see first (parametrized for both HNSW and DiskANN backends)
- The basic example code that users see first
- Import statements work correctly
- Different backend options (HNSW, DiskANN)
- Different LLM configuration options (parametrized for both backends)
- **All main README examples are tested with both HNSW and DiskANN backends using pytest parametrization**
- Different LLM configuration options
### `test_basic.py`
Basic functionality tests that verify:
@@ -19,23 +18,13 @@ Basic functionality tests that verify:
- Basic index building and searching works for both HNSW and DiskANN backends
- Uses parametrized tests to test both backends
### `test_document_rag.py`
Tests the document RAG example functionality:
### `test_main_cli.py`
Tests the main CLI example functionality:
- Tests with facebook/contriever embeddings
- Tests with OpenAI embeddings (if API key is available)
- Tests error handling with invalid parameters
- Verifies that normalized embeddings are detected and cosine distance is used
### `test_diskann_partition.py`
Tests DiskANN graph partitioning functionality:
- Tests DiskANN index building without partitioning (baseline)
- Tests automatic graph partitioning with `is_recompute=True`
- Verifies that partition files are created and large files are cleaned up for storage saving
- Tests search functionality with partitioned indices
- Validates medoid and max_base_norm file generation and usage
- Includes performance comparison between DiskANN (with partition) and HNSW
- **Note**: These tests are skipped in CI due to hardware requirements and computation time
## Running Tests
### Install test dependencies:
@@ -65,23 +54,15 @@ pytest tests/ -m "not openai"
# Skip slow tests
pytest tests/ -m "not slow"
# Run DiskANN partition tests (requires local machine, not CI)
pytest tests/test_diskann_partition.py
```
### Run with specific backend:
```bash
# Test only HNSW backend
pytest tests/test_basic.py::test_backend_basic[hnsw]
pytest tests/test_readme_examples.py::test_readme_basic_example[hnsw]
# Test only DiskANN backend
pytest tests/test_basic.py::test_backend_basic[diskann]
pytest tests/test_readme_examples.py::test_readme_basic_example[diskann]
# All DiskANN tests (parametrized + specialized partition tests)
pytest tests/ -k diskann
```
## CI/CD Integration

View File

@@ -64,9 +64,6 @@ def test_backend_basic(backend_name):
assert isinstance(results[0], SearchResult)
assert "topic 2" in results[0].text or "document" in results[0].text
# Ensure cleanup to avoid hanging background servers
searcher.cleanup()
@pytest.mark.skipif(
os.environ.get("CI") == "true", reason="Skip model tests in CI to avoid MPS memory issues"
@@ -93,5 +90,3 @@ def test_large_index():
searcher = LeannSearcher(index_path)
results = searcher.search(["word10 word20"], top_k=10)
assert len(results[0]) == 10
# Cleanup
searcher.cleanup()

View File

@@ -20,7 +20,7 @@ def test_package_imports():
def test_cli_help():
"""Test that CLI example shows help."""
result = subprocess.run(
[sys.executable, "apps/document_rag.py", "--help"], capture_output=True, text=True
[sys.executable, "examples/main_cli_example.py", "--help"], capture_output=True, text=True
)
assert result.returncode == 0

View File

@@ -1,369 +0,0 @@
"""
Test DiskANN graph partitioning functionality.
Tests the automatic graph partitioning feature that was implemented to save
storage space by partitioning large DiskANN indices and safely deleting
redundant files while maintaining search functionality.
"""
import os
import tempfile
from pathlib import Path
import pytest
@pytest.mark.skipif(
os.environ.get("CI") == "true",
reason="Skip DiskANN partition tests in CI - requires specific hardware and large memory",
)
def test_diskann_without_partition():
"""Test DiskANN index building without partition (baseline)."""
from leann.api import LeannBuilder, LeannSearcher
with tempfile.TemporaryDirectory() as temp_dir:
index_path = str(Path(temp_dir) / "test_no_partition.leann")
# Test data - enough to trigger index building
texts = [
f"Document {i} discusses topic {i % 10} with detailed analysis of subject {i // 10}."
for i in range(500)
]
# Build without partition (is_recompute=False)
builder = LeannBuilder(
backend_name="diskann",
embedding_model="facebook/contriever",
embedding_mode="sentence-transformers",
num_neighbors=32,
search_list_size=50,
is_recompute=False, # No partition
)
for text in texts:
builder.add_text(text)
builder.build_index(index_path)
# Verify index was created
index_dir = Path(index_path).parent
assert index_dir.exists()
# Check that traditional DiskANN files exist
index_prefix = Path(index_path).stem
# Core DiskANN files (beam search index may not be created for small datasets)
required_files = [
f"{index_prefix}_disk.index",
f"{index_prefix}_pq_compressed.bin",
f"{index_prefix}_pq_pivots.bin",
]
# Check all generated files first for debugging
generated_files = [f.name for f in index_dir.glob(f"{index_prefix}*")]
print(f"Generated files: {generated_files}")
for required_file in required_files:
file_path = index_dir / required_file
assert file_path.exists(), f"Required file {required_file} not found"
# Ensure no partition files exist in non-partition mode
partition_files = [f"{index_prefix}_disk_graph.index", f"{index_prefix}_partition.bin"]
for partition_file in partition_files:
file_path = index_dir / partition_file
assert not file_path.exists(), (
f"Partition file {partition_file} should not exist in non-partition mode"
)
# Test search functionality
searcher = LeannSearcher(index_path)
results = searcher.search("topic 3 analysis", top_k=3)
assert len(results) > 0
assert all(result.score is not None and result.score != float("-inf") for result in results)
@pytest.mark.skipif(
os.environ.get("CI") == "true",
reason="Skip DiskANN partition tests in CI - requires specific hardware and large memory",
)
def test_diskann_with_partition():
"""Test DiskANN index building with automatic graph partitioning."""
from leann.api import LeannBuilder
with tempfile.TemporaryDirectory() as temp_dir:
index_path = str(Path(temp_dir) / "test_with_partition.leann")
# Test data - enough to trigger partitioning
texts = [
f"Document {i} explores subject {i % 15} with comprehensive coverage of area {i // 15}."
for i in range(500)
]
# Build with partition (is_recompute=True)
builder = LeannBuilder(
backend_name="diskann",
embedding_model="facebook/contriever",
embedding_mode="sentence-transformers",
num_neighbors=32,
search_list_size=50,
is_recompute=True, # Enable automatic partitioning
)
for text in texts:
builder.add_text(text)
builder.build_index(index_path)
# Verify index was created
index_dir = Path(index_path).parent
assert index_dir.exists()
# Check that partition files exist
index_prefix = Path(index_path).stem
partition_files = [
f"{index_prefix}_disk_graph.index", # Partitioned graph
f"{index_prefix}_partition.bin", # Partition metadata
f"{index_prefix}_pq_compressed.bin",
f"{index_prefix}_pq_pivots.bin",
]
for partition_file in partition_files:
file_path = index_dir / partition_file
assert file_path.exists(), f"Expected partition file {partition_file} not found"
# Check that large files were cleaned up (storage saving goal)
large_files = [f"{index_prefix}_disk.index", f"{index_prefix}_disk_beam_search.index"]
for large_file in large_files:
file_path = index_dir / large_file
assert not file_path.exists(), (
f"Large file {large_file} should have been deleted for storage saving"
)
# Verify required auxiliary files for partition mode exist
required_files = [
f"{index_prefix}_disk.index_medoids.bin",
f"{index_prefix}_disk.index_max_base_norm.bin",
]
for req_file in required_files:
file_path = index_dir / req_file
assert file_path.exists(), (
f"Required auxiliary file {req_file} missing for partition mode"
)
@pytest.mark.skipif(
os.environ.get("CI") == "true",
reason="Skip DiskANN partition tests in CI - requires specific hardware and large memory",
)
def test_diskann_partition_search_functionality():
"""Test that search works correctly with partitioned indices."""
from leann.api import LeannBuilder, LeannSearcher
with tempfile.TemporaryDirectory() as temp_dir:
index_path = str(Path(temp_dir) / "test_partition_search.leann")
# Create diverse test data
texts = [
"LEANN is a storage-efficient approximate nearest neighbor search system.",
"Graph partitioning helps reduce memory usage in large scale vector search.",
"DiskANN provides high-performance disk-based approximate nearest neighbor search.",
"Vector embeddings enable semantic search over unstructured text data.",
"Approximate nearest neighbor algorithms trade accuracy for speed and storage.",
] * 100 # Repeat to get enough data
# Build with partitioning
builder = LeannBuilder(
backend_name="diskann",
embedding_model="facebook/contriever",
embedding_mode="sentence-transformers",
is_recompute=True, # Enable partitioning
)
for text in texts:
builder.add_text(text)
builder.build_index(index_path)
# Test search with partitioned index
searcher = LeannSearcher(index_path)
# Test various queries
test_queries = [
("vector search algorithms", 5),
("LEANN storage efficiency", 3),
("graph partitioning memory", 4),
("approximate nearest neighbor", 7),
]
for query, top_k in test_queries:
results = searcher.search(query, top_k=top_k)
# Verify search results
assert len(results) == top_k, f"Expected {top_k} results for query '{query}'"
assert all(result.score is not None for result in results), (
"All results should have scores"
)
assert all(result.score != float("-inf") for result in results), (
"No result should have -inf score"
)
assert all(result.text is not None for result in results), (
"All results should have text"
)
# Scores should be in descending order (higher similarity first)
scores = [result.score for result in results]
assert scores == sorted(scores, reverse=True), (
"Results should be sorted by score descending"
)
@pytest.mark.skipif(
os.environ.get("CI") == "true",
reason="Skip DiskANN partition tests in CI - requires specific hardware and large memory",
)
def test_diskann_medoid_and_norm_files():
"""Test that medoid and max_base_norm files are correctly generated and used."""
import struct
from leann.api import LeannBuilder, LeannSearcher
with tempfile.TemporaryDirectory() as temp_dir:
index_path = str(Path(temp_dir) / "test_medoid_norm.leann")
# Small but sufficient dataset
texts = [f"Test document {i} with content about subject {i % 10}." for i in range(200)]
builder = LeannBuilder(
backend_name="diskann",
embedding_model="facebook/contriever",
embedding_mode="sentence-transformers",
is_recompute=True,
)
for text in texts:
builder.add_text(text)
builder.build_index(index_path)
index_dir = Path(index_path).parent
index_prefix = Path(index_path).stem
# Test medoids file
medoids_file = index_dir / f"{index_prefix}_disk.index_medoids.bin"
assert medoids_file.exists(), "Medoids file should be generated"
# Read and validate medoids file format
with open(medoids_file, "rb") as f:
nshards = struct.unpack("<I", f.read(4))[0]
one_val = struct.unpack("<I", f.read(4))[0]
medoid_id = struct.unpack("<I", f.read(4))[0]
assert nshards == 1, "Single-shot build should have 1 shard"
assert one_val == 1, "Expected value should be 1"
assert medoid_id >= 0, "Medoid ID should be valid (not hardcoded 0)"
# Test max_base_norm file
norm_file = index_dir / f"{index_prefix}_disk.index_max_base_norm.bin"
assert norm_file.exists(), "Max base norm file should be generated"
# Read and validate norm file
with open(norm_file, "rb") as f:
npts = struct.unpack("<I", f.read(4))[0]
ndims = struct.unpack("<I", f.read(4))[0]
norm_val = struct.unpack("<f", f.read(4))[0]
assert npts == 1, "Should have 1 norm point"
assert ndims == 1, "Should have 1 dimension"
assert norm_val > 0, "Norm value should be positive"
assert norm_val != float("inf"), "Norm value should be finite"
# Test that search works with these files
searcher = LeannSearcher(index_path)
results = searcher.search("test subject", top_k=3)
# Verify that scores are not -inf (which indicates norm file was loaded correctly)
assert len(results) > 0
assert all(result.score != float("-inf") for result in results), (
"Scores should not be -inf when norm file is correct"
)
@pytest.mark.skipif(
os.environ.get("CI") == "true",
reason="Skip performance comparison in CI - requires significant compute time",
)
def test_diskann_vs_hnsw_performance():
"""Compare DiskANN (with partition) vs HNSW performance."""
import time
from leann.api import LeannBuilder, LeannSearcher
with tempfile.TemporaryDirectory() as temp_dir:
# Test data
texts = [
f"Performance test document {i} covering topic {i % 20} in detail." for i in range(1000)
]
query = "performance topic test"
# Test DiskANN with partitioning
diskann_path = str(Path(temp_dir) / "perf_diskann.leann")
diskann_builder = LeannBuilder(
backend_name="diskann",
embedding_model="facebook/contriever",
embedding_mode="sentence-transformers",
is_recompute=True,
)
for text in texts:
diskann_builder.add_text(text)
start_time = time.time()
diskann_builder.build_index(diskann_path)
# Test HNSW
hnsw_path = str(Path(temp_dir) / "perf_hnsw.leann")
hnsw_builder = LeannBuilder(
backend_name="hnsw",
embedding_model="facebook/contriever",
embedding_mode="sentence-transformers",
is_recompute=True,
)
for text in texts:
hnsw_builder.add_text(text)
start_time = time.time()
hnsw_builder.build_index(hnsw_path)
# Compare search performance
diskann_searcher = LeannSearcher(diskann_path)
hnsw_searcher = LeannSearcher(hnsw_path)
# Warm up searches
diskann_searcher.search(query, top_k=5)
hnsw_searcher.search(query, top_k=5)
# Timed searches
start_time = time.time()
diskann_results = diskann_searcher.search(query, top_k=10)
diskann_search_time = time.time() - start_time
start_time = time.time()
hnsw_results = hnsw_searcher.search(query, top_k=10)
hnsw_search_time = time.time() - start_time
# Basic assertions
assert len(diskann_results) == 10
assert len(hnsw_results) == 10
assert all(r.score != float("-inf") for r in diskann_results)
assert all(r.score != float("-inf") for r in hnsw_results)
# Performance ratio (informational)
if hnsw_search_time > 0:
speed_ratio = hnsw_search_time / diskann_search_time
print(f"DiskANN search time: {diskann_search_time:.4f}s")
print(f"HNSW search time: {hnsw_search_time:.4f}s")
print(f"DiskANN is {speed_ratio:.2f}x faster than HNSW")

View File

@@ -1,5 +1,5 @@
"""
Test document_rag functionality using pytest.
Test main_cli_example functionality using pytest.
"""
import os
@@ -14,20 +14,20 @@ import pytest
@pytest.fixture
def test_data_dir():
"""Return the path to test data directory."""
return Path("data")
return Path("examples/data")
@pytest.mark.skipif(
os.environ.get("CI") == "true", reason="Skip model tests in CI to avoid MPS memory issues"
)
def test_document_rag_simulated(test_data_dir):
"""Test document_rag with simulated LLM."""
def test_main_cli_simulated(test_data_dir):
"""Test main_cli with simulated LLM."""
with tempfile.TemporaryDirectory() as temp_dir:
# Use a subdirectory that doesn't exist yet to force index creation
index_dir = Path(temp_dir) / "test_index"
cmd = [
sys.executable,
"apps/document_rag.py",
"examples/main_cli_example.py",
"--llm",
"simulated",
"--embedding-model",
@@ -53,22 +53,19 @@ def test_document_rag_simulated(test_data_dir):
# Verify output
output = result.stdout + result.stderr
assert "Index saved to" in output or "Using existing index" in output
assert "Leann index built at" in output or "Using existing index" in output
assert "This is a simulated answer" in output
@pytest.mark.skipif(not os.environ.get("OPENAI_API_KEY"), reason="OpenAI API key not available")
@pytest.mark.skipif(
os.environ.get("CI") == "true", reason="Skip OpenAI tests in CI to avoid API costs"
)
def test_document_rag_openai(test_data_dir):
"""Test document_rag with OpenAI embeddings."""
def test_main_cli_openai(test_data_dir):
"""Test main_cli with OpenAI embeddings."""
with tempfile.TemporaryDirectory() as temp_dir:
# Use a subdirectory that doesn't exist yet to force index creation
index_dir = Path(temp_dir) / "test_index_openai"
cmd = [
sys.executable,
"apps/document_rag.py",
"examples/main_cli_example.py",
"--llm",
"simulated", # Use simulated LLM to avoid GPT-4 costs
"--embedding-model",
@@ -102,12 +99,12 @@ def test_document_rag_openai(test_data_dir):
)
def test_document_rag_error_handling(test_data_dir):
"""Test document_rag with invalid parameters."""
def test_main_cli_error_handling(test_data_dir):
"""Test main_cli with invalid parameters."""
with tempfile.TemporaryDirectory() as temp_dir:
cmd = [
sys.executable,
"apps/document_rag.py",
"examples/main_cli_example.py",
"--llm",
"invalid_llm_type",
"--index-dir",
@@ -120,4 +117,4 @@ def test_document_rag_error_handling(test_data_dir):
# Should fail with invalid LLM type
assert result.returncode != 0
assert "invalid choice" in result.stderr or "invalid_llm_type" in result.stderr
assert "Unknown LLM type" in result.stderr or "invalid_llm_type" in result.stderr

View File

@@ -10,33 +10,29 @@ from pathlib import Path
import pytest
@pytest.mark.parametrize("backend_name", ["hnsw", "diskann"])
def test_readme_basic_example(backend_name):
"""Test the basic example from README.md with both backends."""
def test_readme_basic_example():
"""Test the basic example from README.md."""
# Skip on macOS CI due to MPS environment issues with all-MiniLM-L6-v2
if os.environ.get("CI") == "true" and platform.system() == "Darwin":
pytest.skip("Skipping on macOS CI due to MPS environment issues with all-MiniLM-L6-v2")
# Skip DiskANN on CI (Linux runners) due to C++ extension memory/hardware constraints
if os.environ.get("CI") == "true" and backend_name == "diskann":
pytest.skip("Skip DiskANN tests in CI due to resource constraints and instability")
# This is the exact code from README (with smaller model for CI)
from leann import LeannBuilder, LeannChat, LeannSearcher
from leann.api import SearchResult
with tempfile.TemporaryDirectory() as temp_dir:
INDEX_PATH = str(Path(temp_dir) / f"demo_{backend_name}.leann")
INDEX_PATH = str(Path(temp_dir) / "demo.leann")
# Build an index
# In CI, use a smaller model to avoid memory issues
if os.environ.get("CI") == "true":
builder = LeannBuilder(
backend_name=backend_name,
backend_name="hnsw",
embedding_model="sentence-transformers/all-MiniLM-L6-v2", # Smaller model
dimensions=384, # Smaller dimensions
)
else:
builder = LeannBuilder(backend_name=backend_name)
builder = LeannBuilder(backend_name="hnsw")
builder.add_text("LEANN saves 97% storage compared to traditional vector databases.")
builder.add_text("Tung Tung Tung Sahur called—they need their banana-crocodile hybrid back")
builder.build_index(INDEX_PATH)
@@ -56,15 +52,9 @@ def test_readme_basic_example(backend_name):
# Verify search results
assert len(results) > 0
assert isinstance(results[0], SearchResult)
assert results[0].score != float("-inf"), (
f"should return valid scores, got {results[0].score}"
)
# The second text about banana-crocodile should be more relevant
assert "banana" in results[0].text or "crocodile" in results[0].text
# Ensure we cleanup background embedding server
searcher.cleanup()
# Chat with your data (using simulated LLM to avoid external dependencies)
chat = LeannChat(INDEX_PATH, llm_config={"type": "simulated"})
response = chat.ask("How much storage does LEANN save?", top_k=1)
@@ -72,8 +62,6 @@ def test_readme_basic_example(backend_name):
# Verify chat works
assert isinstance(response, str)
assert len(response) > 0
# Cleanup chat resources
chat.cleanup()
def test_readme_imports():
@@ -122,31 +110,26 @@ def test_backend_options():
assert len(list(Path(diskann_path).parent.glob(f"{Path(diskann_path).stem}.*"))) > 0
@pytest.mark.parametrize("backend_name", ["hnsw", "diskann"])
def test_llm_config_simulated(backend_name):
"""Test simulated LLM configuration option with both backends."""
def test_llm_config_simulated():
"""Test simulated LLM configuration option."""
# Skip on macOS CI due to MPS environment issues with all-MiniLM-L6-v2
if os.environ.get("CI") == "true" and platform.system() == "Darwin":
pytest.skip("Skipping on macOS CI due to MPS environment issues with all-MiniLM-L6-v2")
# Skip DiskANN tests in CI due to hardware requirements
if os.environ.get("CI") == "true" and backend_name == "diskann":
pytest.skip("Skip DiskANN tests in CI - requires specific hardware and large memory")
from leann import LeannBuilder, LeannChat
with tempfile.TemporaryDirectory() as temp_dir:
# Build a simple index
index_path = str(Path(temp_dir) / f"test_{backend_name}.leann")
index_path = str(Path(temp_dir) / "test.leann")
# Use smaller model in CI to avoid memory issues
if os.environ.get("CI") == "true":
builder = LeannBuilder(
backend_name=backend_name,
backend_name="hnsw",
embedding_model="sentence-transformers/all-MiniLM-L6-v2",
dimensions=384,
)
else:
builder = LeannBuilder(backend_name=backend_name)
builder = LeannBuilder(backend_name="hnsw")
builder.add_text("Test document for LLM testing")
builder.build_index(index_path)

431
uv.lock generated
View File

@@ -294,23 +294,6 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/09/71/54e999902aed72baf26bca0d50781b01838251a462612966e9fc4891eadd/black-25.1.0-py3-none-any.whl", hash = "sha256:95e8176dae143ba9097f351d174fdaf0ccd29efb414b362ae3fd72bf0f710717", size = 207646 },
]
[[package]]
name = "bleach"
version = "6.2.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "webencodings" },
]
sdist = { url = "https://files.pythonhosted.org/packages/76/9a/0e33f5054c54d349ea62c277191c020c2d6ef1d65ab2cb1993f91ec846d1/bleach-6.2.0.tar.gz", hash = "sha256:123e894118b8a599fd80d3ec1a6d4cc7ce4e5882b1317a7e1ba69b56e95f991f", size = 203083 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/fc/55/96142937f66150805c25c4d0f31ee4132fd33497753400734f9dfdcbdc66/bleach-6.2.0-py3-none-any.whl", hash = "sha256:117d9c6097a7c3d22fd578fcd8d35ff1e125df6736f554da4e432fdd63f31e5e", size = 163406 },
]
[package.optional-dependencies]
css = [
{ name = "tinycss2" },
]
[[package]]
name = "blinker"
version = "1.9.0"
@@ -1269,15 +1252,6 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/7b/8f/c4d9bafc34ad7ad5d8dc16dd1347ee0e507a52c3adb6bfa8887e1c6a26ba/executing-2.2.0-py2.py3-none-any.whl", hash = "sha256:11387150cad388d62750327a53d3339fad4888b39a6fe233c3afbb54ecffd3aa", size = 26702 },
]
[[package]]
name = "fastjsonschema"
version = "2.21.1"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/8b/50/4b769ce1ac4071a1ef6d86b1a3fb56cdc3a37615e8c5519e1af96cdac366/fastjsonschema-2.21.1.tar.gz", hash = "sha256:794d4f0a58f848961ba16af7b9c85a3e88cd360df008c59aac6fc5ae9323b5d4", size = 373939 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/90/2b/0817a2b257fe88725c25589d89aec060581aabf668707a8d03b2e9e0cb2a/fastjsonschema-2.21.1-py3-none-any.whl", hash = "sha256:c9e5b7e908310918cf494a434eeb31384dd84a98b57a30bcb1f535015b554667", size = 23924 },
]
[[package]]
name = "filelock"
version = "3.18.0"
@@ -1504,12 +1478,6 @@ http = [
{ name = "aiohttp" },
]
[[package]]
name = "gitignore-parser"
version = "0.1.12"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/86/a8/faf07759672973362e3f1f9742281a90aec7846e8a4043c4df5652990054/gitignore_parser-0.1.12.tar.gz", hash = "sha256:78b22243adc0f02102c56c5e8c9a1d9121394142ca6143a90daa7f8d7a07a17e", size = 5407 }
[[package]]
name = "greenlet"
version = "3.2.3"
@@ -1682,7 +1650,7 @@ name = "importlib-metadata"
version = "8.7.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "zipp", marker = "python_full_version < '3.10'" },
{ name = "zipp" },
]
sdist = { url = "https://files.pythonhosted.org/packages/76/66/650a33bd90f786193e4de4b3ad86ea60b53c89b669a5c7be931fac31cdb0/importlib_metadata-8.7.0.tar.gz", hash = "sha256:d13b81ad223b890aa16c5471f2ac3056cf76c5f10f82d6f9292f0b415f389000", size = 56641 }
wheels = [
@@ -1959,33 +1927,6 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/7d/4f/1195bbac8e0c2acc5f740661631d8d750dc38d4a32b23ee5df3cde6f4e0d/joblib-1.5.1-py3-none-any.whl", hash = "sha256:4719a31f054c7d766948dcd83e9613686b27114f190f717cec7eaa2084f8a74a", size = 307746 },
]
[[package]]
name = "jsonschema"
version = "4.25.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "attrs" },
{ name = "jsonschema-specifications" },
{ name = "referencing" },
{ name = "rpds-py" },
]
sdist = { url = "https://files.pythonhosted.org/packages/d5/00/a297a868e9d0784450faa7365c2172a7d6110c763e30ba861867c32ae6a9/jsonschema-4.25.0.tar.gz", hash = "sha256:e63acf5c11762c0e6672ffb61482bdf57f0876684d8d249c0fe2d730d48bc55f", size = 356830 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/fe/54/c86cd8e011fe98803d7e382fd67c0df5ceab8d2b7ad8c5a81524f791551c/jsonschema-4.25.0-py3-none-any.whl", hash = "sha256:24c2e8da302de79c8b9382fee3e76b355e44d2a4364bb207159ce10b517bd716", size = 89184 },
]
[[package]]
name = "jsonschema-specifications"
version = "2025.4.1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "referencing" },
]
sdist = { url = "https://files.pythonhosted.org/packages/bf/ce/46fbd9c8119cfc3581ee5643ea49464d168028cfb5caff5fc0596d0cf914/jsonschema_specifications-2025.4.1.tar.gz", hash = "sha256:630159c9f4dbea161a6a2205c3011cc4f18ff381b189fff48bb39b9bf26ae608", size = 15513 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/01/0e/b27cdbaccf30b890c40ed1da9fd4a3593a5cf94dae54fb34f8a4b74fcd3f/jsonschema_specifications-2025.4.1-py3-none-any.whl", hash = "sha256:4653bffbd6584f7de83a67e0d620ef16900b390ddc7939d56684d6c81e33f1af", size = 18437 },
]
[[package]]
name = "jupyter-client"
version = "8.6.3"
@@ -2017,15 +1958,6 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/2f/57/6bffd4b20b88da3800c5d691e0337761576ee688eb01299eae865689d2df/jupyter_core-5.8.1-py3-none-any.whl", hash = "sha256:c28d268fc90fb53f1338ded2eb410704c5449a358406e8a948b75706e24863d0", size = 28880 },
]
[[package]]
name = "jupyterlab-pygments"
version = "0.3.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/90/51/9187be60d989df97f5f0aba133fa54e7300f17616e065d1ada7d7646b6d6/jupyterlab_pygments-0.3.0.tar.gz", hash = "sha256:721aca4d9029252b11cfa9d185e5b5af4d54772bb8072f9b7036f4170054d35d", size = 512900 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/b1/dd/ead9d8ea85bf202d90cc513b533f9c363121c7792674f78e0d8a854b63b4/jupyterlab_pygments-0.3.0-py3-none-any.whl", hash = "sha256:841a89020971da1d8693f1a99997aefc5dc424bb1b251fd6322462a1b8842780", size = 15884 },
]
[[package]]
name = "kiwisolver"
version = "1.4.7"
@@ -2223,7 +2155,7 @@ wheels = [
[[package]]
name = "leann-backend-diskann"
version = "0.2.9"
version = "0.1.15"
source = { editable = "packages/leann-backend-diskann" }
dependencies = [
{ name = "leann-core" },
@@ -2235,14 +2167,14 @@ dependencies = [
[package.metadata]
requires-dist = [
{ name = "leann-core", specifier = "==0.2.9" },
{ name = "leann-core", specifier = "==0.1.15" },
{ name = "numpy" },
{ name = "protobuf", specifier = ">=3.19.0" },
]
[[package]]
name = "leann-backend-hnsw"
version = "0.2.9"
version = "0.1.15"
source = { editable = "packages/leann-backend-hnsw" }
dependencies = [
{ name = "leann-core" },
@@ -2255,7 +2187,7 @@ dependencies = [
[package.metadata]
requires-dist = [
{ name = "leann-core", specifier = "==0.2.9" },
{ name = "leann-core", specifier = "==0.1.15" },
{ name = "msgpack", specifier = ">=1.0.0" },
{ name = "numpy" },
{ name = "pyzmq", specifier = ">=23.0.0" },
@@ -2263,19 +2195,17 @@ requires-dist = [
[[package]]
name = "leann-core"
version = "0.2.9"
version = "0.1.15"
source = { editable = "packages/leann-core" }
dependencies = [
{ name = "accelerate" },
{ name = "gitignore-parser" },
{ name = "huggingface-hub" },
{ name = "llama-index-core" },
{ name = "llama-index-embeddings-huggingface" },
{ name = "llama-index-readers-file" },
{ name = "mlx", marker = "platform_machine == 'arm64' and sys_platform == 'darwin'" },
{ name = "mlx-lm", marker = "platform_machine == 'arm64' and sys_platform == 'darwin'" },
{ name = "mlx", marker = "sys_platform == 'darwin'" },
{ name = "mlx-lm", marker = "sys_platform == 'darwin'" },
{ name = "msgpack" },
{ name = "nbconvert" },
{ name = "numpy", version = "2.0.2", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" },
{ name = "numpy", version = "2.2.6", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version == '3.10.*'" },
{ name = "numpy", version = "2.3.2", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.11'" },
@@ -2297,15 +2227,13 @@ dependencies = [
requires-dist = [
{ name = "accelerate", specifier = ">=0.20.0" },
{ name = "accelerate", marker = "extra == 'colab'", specifier = ">=0.20.0,<1.0.0" },
{ name = "gitignore-parser", specifier = ">=0.1.12" },
{ name = "huggingface-hub", specifier = ">=0.20.0" },
{ name = "llama-index-core", specifier = ">=0.12.0" },
{ name = "llama-index-embeddings-huggingface", specifier = ">=0.5.5" },
{ name = "llama-index-readers-file", specifier = ">=0.4.0" },
{ name = "mlx", marker = "platform_machine == 'arm64' and sys_platform == 'darwin'", specifier = ">=0.26.3" },
{ name = "mlx-lm", marker = "platform_machine == 'arm64' and sys_platform == 'darwin'", specifier = ">=0.26.0" },
{ name = "mlx", marker = "sys_platform == 'darwin'", specifier = ">=0.26.3" },
{ name = "mlx-lm", marker = "sys_platform == 'darwin'", specifier = ">=0.26.0" },
{ name = "msgpack", specifier = ">=1.0.0" },
{ name = "nbconvert", specifier = ">=7.0.0" },
{ name = "numpy", specifier = ">=1.20.0" },
{ name = "openai", specifier = ">=1.0.0" },
{ name = "pdfplumber", specifier = ">=0.10.0" },
@@ -2335,7 +2263,6 @@ dependencies = [
{ name = "evaluate" },
{ name = "flask" },
{ name = "flask-compress" },
{ name = "gitignore-parser" },
{ name = "ipykernel" },
{ name = "leann-backend-hnsw" },
{ name = "leann-core" },
@@ -2343,20 +2270,17 @@ dependencies = [
{ name = "llama-index-embeddings-huggingface" },
{ name = "llama-index-readers-file" },
{ name = "llama-index-vector-stores-faiss" },
{ name = "mlx", marker = "platform_machine == 'arm64' and sys_platform == 'darwin'" },
{ name = "mlx-lm", marker = "platform_machine == 'arm64' and sys_platform == 'darwin'" },
{ name = "mlx", marker = "sys_platform == 'darwin'" },
{ name = "mlx-lm", marker = "sys_platform == 'darwin'" },
{ name = "msgpack" },
{ name = "nbconvert" },
{ name = "numpy", version = "2.0.2", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" },
{ name = "numpy", version = "2.2.6", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version == '3.10.*'" },
{ name = "numpy", version = "2.3.2", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.11'" },
{ name = "ollama" },
{ name = "openai" },
{ name = "pathspec" },
{ name = "pdfplumber" },
{ name = "protobuf" },
{ name = "psutil" },
{ name = "pybind11" },
{ name = "pymupdf" },
{ name = "pypdf2" },
{ name = "pypdfium2" },
@@ -2412,7 +2336,6 @@ requires-dist = [
{ name = "evaluate" },
{ name = "flask" },
{ name = "flask-compress" },
{ name = "gitignore-parser", specifier = ">=0.1.12" },
{ name = "huggingface-hub", marker = "extra == 'dev'", specifier = ">=0.20.0" },
{ name = "ipykernel", specifier = "==6.29.5" },
{ name = "leann-backend-diskann", marker = "extra == 'diskann'", editable = "packages/leann-backend-diskann" },
@@ -2425,21 +2348,18 @@ requires-dist = [
{ name = "llama-index-readers-file", marker = "extra == 'test'", specifier = ">=0.4.0" },
{ name = "llama-index-vector-stores-faiss", specifier = ">=0.4.0" },
{ name = "matplotlib", marker = "extra == 'dev'" },
{ name = "mlx", marker = "platform_machine == 'arm64' and sys_platform == 'darwin'", specifier = ">=0.26.3" },
{ name = "mlx-lm", marker = "platform_machine == 'arm64' and sys_platform == 'darwin'", specifier = ">=0.26.0" },
{ name = "mlx", marker = "sys_platform == 'darwin'", specifier = ">=0.26.3" },
{ name = "mlx-lm", marker = "sys_platform == 'darwin'", specifier = ">=0.26.0" },
{ name = "msgpack", specifier = ">=1.1.1" },
{ name = "nbconvert", specifier = ">=7.16.6" },
{ name = "numpy", specifier = ">=1.26.0" },
{ name = "ollama" },
{ name = "openai", specifier = ">=1.0.0" },
{ name = "openpyxl", marker = "extra == 'documents'", specifier = ">=3.1.0" },
{ name = "pandas", marker = "extra == 'documents'", specifier = ">=2.2.0" },
{ name = "pathspec", specifier = ">=0.12.1" },
{ name = "pdfplumber", specifier = ">=0.11.0" },
{ name = "pre-commit", marker = "extra == 'dev'", specifier = ">=3.5.0" },
{ name = "protobuf", specifier = "==4.25.3" },
{ name = "psutil", specifier = ">=5.8.0" },
{ name = "pybind11", specifier = ">=3.0.0" },
{ name = "pymupdf", specifier = ">=1.26.0" },
{ name = "pypdf2", specifier = ">=3.0.0" },
{ name = "pypdfium2", specifier = ">=4.30.0" },
@@ -2451,7 +2371,7 @@ requires-dist = [
{ name = "python-docx", marker = "extra == 'documents'", specifier = ">=0.8.11" },
{ name = "python-dotenv", marker = "extra == 'test'", specifier = ">=1.0.0" },
{ name = "requests", specifier = ">=2.25.0" },
{ name = "ruff", marker = "extra == 'dev'", specifier = "==0.12.7" },
{ name = "ruff", marker = "extra == 'dev'", specifier = ">=0.1.0" },
{ name = "sentence-transformers", specifier = ">=2.2.0" },
{ name = "sentence-transformers", marker = "extra == 'test'", specifier = ">=2.2.0" },
{ name = "sglang" },
@@ -3074,18 +2994,6 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/8f/8e/9ad090d3553c280a8060fbf6e24dc1c0c29704ee7d1c372f0c174aa59285/matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca", size = 9899 },
]
[[package]]
name = "mistune"
version = "3.1.3"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "typing-extensions", marker = "python_full_version < '3.11'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/c4/79/bda47f7dd7c3c55770478d6d02c9960c430b0cf1773b72366ff89126ea31/mistune-3.1.3.tar.gz", hash = "sha256:a7035c21782b2becb6be62f8f25d3df81ccb4d6fa477a6525b15af06539f02a0", size = 94347 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/01/4d/23c4e4f09da849e127e9f123241946c23c1e30f45a88366879e064211815/mistune-3.1.3-py3-none-any.whl", hash = "sha256:1a32314113cff28aa6432e99e522677c8587fd83e3d51c29b82a52409c842bd9", size = 53410 },
]
[[package]]
name = "mlx"
version = "0.27.1"
@@ -3356,62 +3264,6 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/79/7b/2c79738432f5c924bef5071f933bcc9efd0473bac3b4aa584a6f7c1c8df8/mypy_extensions-1.1.0-py3-none-any.whl", hash = "sha256:1be4cccdb0f2482337c4743e60421de3a356cd97508abadd57d47403e94f5505", size = 4963 },
]
[[package]]
name = "nbclient"
version = "0.10.2"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "jupyter-client" },
{ name = "jupyter-core" },
{ name = "nbformat" },
{ name = "traitlets" },
]
sdist = { url = "https://files.pythonhosted.org/packages/87/66/7ffd18d58eae90d5721f9f39212327695b749e23ad44b3881744eaf4d9e8/nbclient-0.10.2.tar.gz", hash = "sha256:90b7fc6b810630db87a6d0c2250b1f0ab4cf4d3c27a299b0cde78a4ed3fd9193", size = 62424 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/34/6d/e7fa07f03a4a7b221d94b4d586edb754a9b0dc3c9e2c93353e9fa4e0d117/nbclient-0.10.2-py3-none-any.whl", hash = "sha256:4ffee11e788b4a27fabeb7955547e4318a5298f34342a4bfd01f2e1faaeadc3d", size = 25434 },
]
[[package]]
name = "nbconvert"
version = "7.16.6"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "beautifulsoup4" },
{ name = "bleach", extra = ["css"] },
{ name = "defusedxml" },
{ name = "importlib-metadata", marker = "python_full_version < '3.10'" },
{ name = "jinja2" },
{ name = "jupyter-core" },
{ name = "jupyterlab-pygments" },
{ name = "markupsafe" },
{ name = "mistune" },
{ name = "nbclient" },
{ name = "nbformat" },
{ name = "packaging" },
{ name = "pandocfilters" },
{ name = "pygments" },
{ name = "traitlets" },
]
sdist = { url = "https://files.pythonhosted.org/packages/a3/59/f28e15fc47ffb73af68a8d9b47367a8630d76e97ae85ad18271b9db96fdf/nbconvert-7.16.6.tar.gz", hash = "sha256:576a7e37c6480da7b8465eefa66c17844243816ce1ccc372633c6b71c3c0f582", size = 857715 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/cc/9a/cd673b2f773a12c992f41309ef81b99da1690426bd2f96957a7ade0d3ed7/nbconvert-7.16.6-py3-none-any.whl", hash = "sha256:1375a7b67e0c2883678c48e506dc320febb57685e5ee67faa51b18a90f3a712b", size = 258525 },
]
[[package]]
name = "nbformat"
version = "5.10.4"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "fastjsonschema" },
{ name = "jsonschema" },
{ name = "jupyter-core" },
{ name = "traitlets" },
]
sdist = { url = "https://files.pythonhosted.org/packages/6d/fd/91545e604bc3dad7dca9ed03284086039b294c6b3d75c0d2fa45f9e9caf3/nbformat-5.10.4.tar.gz", hash = "sha256:322168b14f937a5d11362988ecac2a4952d3d8e3a2cbeb2319584631226d5b3a", size = 142749 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/a9/82/0340caa499416c78e5d8f5f05947ae4bc3cba53c9f038ab6e9ed964e22f1/nbformat-5.10.4-py3-none-any.whl", hash = "sha256:3b48d6c8fbca4b299bf3982ea7db1af21580e4fec269ad087b9e81588891200b", size = 78454 },
]
[[package]]
name = "nest-asyncio"
version = "1.6.0"
@@ -3931,15 +3783,6 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/2f/49/5c30646e96c684570925b772eac4eb0a8cb0ca590fa978f56c5d3ae73ea1/pandas-2.2.3-cp39-cp39-win_amd64.whl", hash = "sha256:4850ba03528b6dd51d6c5d273c46f183f39a9baf3f0143e566b89450965b105e", size = 11618011 },
]
[[package]]
name = "pandocfilters"
version = "1.5.1"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/70/6f/3dd4940bbe001c06a65f88e36bad298bc7a0de5036115639926b0c5c0458/pandocfilters-1.5.1.tar.gz", hash = "sha256:002b4a555ee4ebc03f8b66307e287fa492e4a77b4ea14d3f934328297bb4939e", size = 8454 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/ef/af/4fbc8cab944db5d21b7e2a5b8e9211a03a79852b1157e2c102fcc61ac440/pandocfilters-1.5.1-py2.py3-none-any.whl", hash = "sha256:93be382804a9cdb0a7267585f157e5d1731bbe5545a85b268d6f5fe6232de2bc", size = 8663 },
]
[[package]]
name = "parso"
version = "0.8.4"
@@ -4360,15 +4203,6 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/10/15/6b30e77872012bbfe8265d42a01d5b3c17ef0ac0f2fae531ad91b6a6c02e/pyarrow-21.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:cdc4c17afda4dab2a9c0b79148a43a7f4e1094916b3e18d8975bfd6d6d52241f", size = 26227521 },
]
[[package]]
name = "pybind11"
version = "3.0.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/ef/83/698d120e257a116f2472c710932023ad779409adf2734d2e940f34eea2c5/pybind11-3.0.0.tar.gz", hash = "sha256:c3f07bce3ada51c3e4b76badfa85df11688d12c46111f9d242bc5c9415af7862", size = 544819 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/41/9c/85f50a5476832c3efc67b6d7997808388236ae4754bf53e1749b3bc27577/pybind11-3.0.0-py3-none-any.whl", hash = "sha256:7c5cac504da5a701b5163f0e6a7ba736c713a096a5378383c5b4b064b753f607", size = 292118 },
]
[[package]]
name = "pycparser"
version = "2.22"
@@ -4936,20 +4770,6 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/ee/21/c8726b1738d72c7f1602a6720996c4c227754b12335ad84e7db1300f8363/pyzstd-0.17.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a67d7ef18715875b31127eb90075c03ced722fd87902b34bca4b807a2ce1e4d9", size = 241664 },
]
[[package]]
name = "referencing"
version = "0.36.2"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "attrs" },
{ name = "rpds-py" },
{ name = "typing-extensions", marker = "python_full_version < '3.13'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/2f/db/98b5c277be99dd18bfd91dd04e1b759cad18d1a338188c936e92f921c7e2/referencing-0.36.2.tar.gz", hash = "sha256:df2e89862cd09deabbdba16944cc3f10feb6b3e6f18e902f7cc25609a34775aa", size = 74744 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/c1/b1/3baf80dc6d2b7bc27a95a67752d0208e410351e3feb4eb78de5f77454d8d/referencing-0.36.2-py3-none-any.whl", hash = "sha256:e8699adbbf8b5c7de96d8ffa0eb5c158b3beafce084968e2ea8bb08c6794dcd0", size = 26775 },
]
[[package]]
name = "regex"
version = "2024.11.6"
@@ -5051,191 +4871,29 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/7c/e4/56027c4a6b4ae70ca9de302488c5ca95ad4a39e190093d6c1a8ace08341b/requests-2.32.4-py3-none-any.whl", hash = "sha256:27babd3cda2a6d50b30443204ee89830707d396671944c998b5975b031ac2b2c", size = 64847 },
]
[[package]]
name = "rpds-py"
version = "0.27.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/1e/d9/991a0dee12d9fc53ed027e26a26a64b151d77252ac477e22666b9688bc16/rpds_py-0.27.0.tar.gz", hash = "sha256:8b23cf252f180cda89220b378d917180f29d313cd6a07b2431c0d3b776aae86f", size = 27420 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/75/2d/ad2e37dee3f45580f7fa0066c412a521f9bee53d2718b0e9436d308a1ecd/rpds_py-0.27.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:130c1ffa5039a333f5926b09e346ab335f0d4ec393b030a18549a7c7e7c2cea4", size = 371511 },
{ url = "https://files.pythonhosted.org/packages/f5/67/57b4b2479193fde9dd6983a13c2550b5f9c3bcdf8912dffac2068945eb14/rpds_py-0.27.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a4cf32a26fa744101b67bfd28c55d992cd19438aff611a46cac7f066afca8fd4", size = 354718 },
{ url = "https://files.pythonhosted.org/packages/a3/be/c2b95ec4b813eb11f3a3c3d22f22bda8d3a48a074a0519cde968c4d102cf/rpds_py-0.27.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:64a0fe3f334a40b989812de70160de6b0ec7e3c9e4a04c0bbc48d97c5d3600ae", size = 381518 },
{ url = "https://files.pythonhosted.org/packages/a5/d2/5a7279bc2b93b20bd50865a2269016238cee45f7dc3cc33402a7f41bd447/rpds_py-0.27.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:9a0ff7ee28583ab30a52f371b40f54e7138c52ca67f8ca17ccb7ccf0b383cb5f", size = 396694 },
{ url = "https://files.pythonhosted.org/packages/65/e9/bac8b3714bd853c5bcb466e04acfb9a5da030d77e0ddf1dfad9afb791c31/rpds_py-0.27.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:15ea4d2e182345dd1b4286593601d766411b43f868924afe297570658c31a62b", size = 514813 },
{ url = "https://files.pythonhosted.org/packages/1d/aa/293115e956d7d13b7d2a9e9a4121f74989a427aa125f00ce4426ca8b7b28/rpds_py-0.27.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:36184b44bf60a480863e51021c26aca3dfe8dd2f5eeabb33622b132b9d8b8b54", size = 402246 },
{ url = "https://files.pythonhosted.org/packages/88/59/2d6789bb898fb3e2f0f7b82b7bcf27f579ebcb6cc36c24f4e208f7f58a5b/rpds_py-0.27.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9b78430703cfcf5f5e86eb74027a1ed03a93509273d7c705babb547f03e60016", size = 383661 },
{ url = "https://files.pythonhosted.org/packages/0c/55/add13a593a7a81243a9eed56d618d3d427be5dc1214931676e3f695dfdc1/rpds_py-0.27.0-cp310-cp310-manylinux_2_31_riscv64.whl", hash = "sha256:dbd749cff1defbde270ca346b69b3baf5f1297213ef322254bf2a28537f0b046", size = 401691 },
{ url = "https://files.pythonhosted.org/packages/04/09/3e8b2aad494ffaca571e4e19611a12cc18fcfd756d9274f3871a2d822445/rpds_py-0.27.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6bde37765564cd22a676dd8101b657839a1854cfaa9c382c5abf6ff7accfd4ae", size = 416529 },
{ url = "https://files.pythonhosted.org/packages/a4/6d/bd899234728f1d8f72c9610f50fdf1c140ecd0a141320e1f1d0f6b20595d/rpds_py-0.27.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:1d66f45b9399036e890fb9c04e9f70c33857fd8f58ac8db9f3278cfa835440c3", size = 558673 },
{ url = "https://files.pythonhosted.org/packages/79/f4/f3e02def5193fb899d797c232f90d6f8f0f2b9eca2faef6f0d34cbc89b2e/rpds_py-0.27.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:d85d784c619370d9329bbd670f41ff5f2ae62ea4519761b679d0f57f0f0ee267", size = 588426 },
{ url = "https://files.pythonhosted.org/packages/e3/0c/88e716cd8fd760e5308835fe298255830de4a1c905fd51760b9bb40aa965/rpds_py-0.27.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:5df559e9e7644d9042f626f2c3997b555f347d7a855a15f170b253f6c5bfe358", size = 554552 },
{ url = "https://files.pythonhosted.org/packages/2b/a9/0a8243c182e7ac59b901083dff7e671feba6676a131bfff3f8d301cd2b36/rpds_py-0.27.0-cp310-cp310-win32.whl", hash = "sha256:b8a4131698b6992b2a56015f51646711ec5d893a0b314a4b985477868e240c87", size = 218081 },
{ url = "https://files.pythonhosted.org/packages/0f/e7/202ff35852312760148be9e08fe2ba6900aa28e7a46940a313eae473c10c/rpds_py-0.27.0-cp310-cp310-win_amd64.whl", hash = "sha256:cbc619e84a5e3ab2d452de831c88bdcad824414e9c2d28cd101f94dbdf26329c", size = 230077 },
{ url = "https://files.pythonhosted.org/packages/b4/c1/49d515434c1752e40f5e35b985260cf27af052593378580a2f139a5be6b8/rpds_py-0.27.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:dbc2ab5d10544eb485baa76c63c501303b716a5c405ff2469a1d8ceffaabf622", size = 371577 },
{ url = "https://files.pythonhosted.org/packages/e1/6d/bf2715b2fee5087fa13b752b5fd573f1a93e4134c74d275f709e38e54fe7/rpds_py-0.27.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7ec85994f96a58cf7ed288caa344b7fe31fd1d503bdf13d7331ead5f70ab60d5", size = 354959 },
{ url = "https://files.pythonhosted.org/packages/a3/5c/e7762808c746dd19733a81373c10da43926f6a6adcf4920a21119697a60a/rpds_py-0.27.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:190d7285cd3bb6d31d37a0534d7359c1ee191eb194c511c301f32a4afa5a1dd4", size = 381485 },
{ url = "https://files.pythonhosted.org/packages/40/51/0d308eb0b558309ca0598bcba4243f52c4cd20e15fe991b5bd75824f2e61/rpds_py-0.27.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c10d92fb6d7fd827e44055fcd932ad93dac6a11e832d51534d77b97d1d85400f", size = 396816 },
{ url = "https://files.pythonhosted.org/packages/5c/aa/2d585ec911d78f66458b2c91252134ca0c7c70f687a72c87283173dc0c96/rpds_py-0.27.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:dd2c1d27ebfe6a015cfa2005b7fe8c52d5019f7bbdd801bc6f7499aab9ae739e", size = 514950 },
{ url = "https://files.pythonhosted.org/packages/0b/ef/aced551cc1148179557aed84343073adadf252c91265263ee6203458a186/rpds_py-0.27.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4790c9d5dd565ddb3e9f656092f57268951398cef52e364c405ed3112dc7c7c1", size = 402132 },
{ url = "https://files.pythonhosted.org/packages/4b/ac/cf644803d8d417653fe2b3604186861d62ea6afaef1b2284045741baef17/rpds_py-0.27.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4300e15e7d03660f04be84a125d1bdd0e6b2f674bc0723bc0fd0122f1a4585dc", size = 383660 },
{ url = "https://files.pythonhosted.org/packages/c9/ec/caf47c55ce02b76cbaeeb2d3b36a73da9ca2e14324e3d75cf72b59dcdac5/rpds_py-0.27.0-cp311-cp311-manylinux_2_31_riscv64.whl", hash = "sha256:59195dc244fc183209cf8a93406889cadde47dfd2f0a6b137783aa9c56d67c85", size = 401730 },
{ url = "https://files.pythonhosted.org/packages/0b/71/c1f355afdcd5b99ffc253422aa4bdcb04ccf1491dcd1bda3688a0c07fd61/rpds_py-0.27.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:fae4a01ef8c4cb2bbe92ef2063149596907dc4a881a8d26743b3f6b304713171", size = 416122 },
{ url = "https://files.pythonhosted.org/packages/38/0f/f4b5b1eda724ed0e04d2b26d8911cdc131451a7ee4c4c020a1387e5c6ded/rpds_py-0.27.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:e3dc8d4ede2dbae6c0fc2b6c958bf51ce9fd7e9b40c0f5b8835c3fde44f5807d", size = 558771 },
{ url = "https://files.pythonhosted.org/packages/93/c0/5f8b834db2289ab48d5cffbecbb75e35410103a77ac0b8da36bf9544ec1c/rpds_py-0.27.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:c3782fb753aa825b4ccabc04292e07897e2fd941448eabf666856c5530277626", size = 587876 },
{ url = "https://files.pythonhosted.org/packages/d2/dd/1a1df02ab8eb970115cff2ae31a6f73916609b900dc86961dc382b8c2e5e/rpds_py-0.27.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:887ab1f12b0d227e9260558a4a2320024b20102207ada65c43e1ffc4546df72e", size = 554359 },
{ url = "https://files.pythonhosted.org/packages/a1/e4/95a014ab0d51ab6e3bebbdb476a42d992d2bbf9c489d24cff9fda998e925/rpds_py-0.27.0-cp311-cp311-win32.whl", hash = "sha256:5d6790ff400254137b81b8053b34417e2c46921e302d655181d55ea46df58cf7", size = 218084 },
{ url = "https://files.pythonhosted.org/packages/49/78/f8d5b71ec65a0376b0de31efcbb5528ce17a9b7fdd19c3763303ccfdedec/rpds_py-0.27.0-cp311-cp311-win_amd64.whl", hash = "sha256:e24d8031a2c62f34853756d9208eeafa6b940a1efcbfe36e8f57d99d52bb7261", size = 230085 },
{ url = "https://files.pythonhosted.org/packages/e7/d3/84429745184091e06b4cc70f8597408e314c2d2f7f5e13249af9ffab9e3d/rpds_py-0.27.0-cp311-cp311-win_arm64.whl", hash = "sha256:08680820d23df1df0a0260f714d12966bc6c42d02e8055a91d61e03f0c47dda0", size = 222112 },
{ url = "https://files.pythonhosted.org/packages/cd/17/e67309ca1ac993fa1888a0d9b2f5ccc1f67196ace32e76c9f8e1dbbbd50c/rpds_py-0.27.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:19c990fdf5acecbf0623e906ae2e09ce1c58947197f9bced6bbd7482662231c4", size = 362611 },
{ url = "https://files.pythonhosted.org/packages/93/2e/28c2fb84aa7aa5d75933d1862d0f7de6198ea22dfd9a0cca06e8a4e7509e/rpds_py-0.27.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6c27a7054b5224710fcfb1a626ec3ff4f28bcb89b899148c72873b18210e446b", size = 347680 },
{ url = "https://files.pythonhosted.org/packages/44/3e/9834b4c8f4f5fe936b479e623832468aa4bd6beb8d014fecaee9eac6cdb1/rpds_py-0.27.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:09965b314091829b378b60607022048953e25f0b396c2b70e7c4c81bcecf932e", size = 384600 },
{ url = "https://files.pythonhosted.org/packages/19/78/744123c7b38865a965cd9e6f691fde7ef989a00a256fa8bf15b75240d12f/rpds_py-0.27.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:14f028eb47f59e9169bfdf9f7ceafd29dd64902141840633683d0bad5b04ff34", size = 400697 },
{ url = "https://files.pythonhosted.org/packages/32/97/3c3d32fe7daee0a1f1a678b6d4dfb8c4dcf88197fa2441f9da7cb54a8466/rpds_py-0.27.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6168af0be75bba990a39f9431cdfae5f0ad501f4af32ae62e8856307200517b8", size = 517781 },
{ url = "https://files.pythonhosted.org/packages/b2/be/28f0e3e733680aa13ecec1212fc0f585928a206292f14f89c0b8a684cad1/rpds_py-0.27.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ab47fe727c13c09d0e6f508e3a49e545008e23bf762a245b020391b621f5b726", size = 406449 },
{ url = "https://files.pythonhosted.org/packages/95/ae/5d15c83e337c082d0367053baeb40bfba683f42459f6ebff63a2fd7e5518/rpds_py-0.27.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5fa01b3d5e3b7d97efab65bd3d88f164e289ec323a8c033c5c38e53ee25c007e", size = 386150 },
{ url = "https://files.pythonhosted.org/packages/bf/65/944e95f95d5931112829e040912b25a77b2e7ed913ea5fe5746aa5c1ce75/rpds_py-0.27.0-cp312-cp312-manylinux_2_31_riscv64.whl", hash = "sha256:6c135708e987f46053e0a1246a206f53717f9fadfba27174a9769ad4befba5c3", size = 406100 },
{ url = "https://files.pythonhosted.org/packages/21/a4/1664b83fae02894533cd11dc0b9f91d673797c2185b7be0f7496107ed6c5/rpds_py-0.27.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:fc327f4497b7087d06204235199daf208fd01c82d80465dc5efa4ec9df1c5b4e", size = 421345 },
{ url = "https://files.pythonhosted.org/packages/7c/26/b7303941c2b0823bfb34c71378249f8beedce57301f400acb04bb345d025/rpds_py-0.27.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:7e57906e38583a2cba67046a09c2637e23297618dc1f3caddbc493f2be97c93f", size = 561891 },
{ url = "https://files.pythonhosted.org/packages/9b/c8/48623d64d4a5a028fa99576c768a6159db49ab907230edddc0b8468b998b/rpds_py-0.27.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:0f4f69d7a4300fbf91efb1fb4916421bd57804c01ab938ab50ac9c4aa2212f03", size = 591756 },
{ url = "https://files.pythonhosted.org/packages/b3/51/18f62617e8e61cc66334c9fb44b1ad7baae3438662098efbc55fb3fda453/rpds_py-0.27.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:b4c4fbbcff474e1e5f38be1bf04511c03d492d42eec0babda5d03af3b5589374", size = 557088 },
{ url = "https://files.pythonhosted.org/packages/bd/4c/e84c3a276e2496a93d245516be6b49e20499aa8ca1c94d59fada0d79addc/rpds_py-0.27.0-cp312-cp312-win32.whl", hash = "sha256:27bac29bbbf39601b2aab474daf99dbc8e7176ca3389237a23944b17f8913d97", size = 221926 },
{ url = "https://files.pythonhosted.org/packages/83/89/9d0fbcef64340db0605eb0a0044f258076f3ae0a3b108983b2c614d96212/rpds_py-0.27.0-cp312-cp312-win_amd64.whl", hash = "sha256:8a06aa1197ec0281eb1d7daf6073e199eb832fe591ffa329b88bae28f25f5fe5", size = 233235 },
{ url = "https://files.pythonhosted.org/packages/c9/b0/e177aa9f39cbab060f96de4a09df77d494f0279604dc2f509263e21b05f9/rpds_py-0.27.0-cp312-cp312-win_arm64.whl", hash = "sha256:e14aab02258cb776a108107bd15f5b5e4a1bbaa61ef33b36693dfab6f89d54f9", size = 223315 },
{ url = "https://files.pythonhosted.org/packages/81/d2/dfdfd42565a923b9e5a29f93501664f5b984a802967d48d49200ad71be36/rpds_py-0.27.0-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:443d239d02d9ae55b74015234f2cd8eb09e59fbba30bf60baeb3123ad4c6d5ff", size = 362133 },
{ url = "https://files.pythonhosted.org/packages/ac/4a/0a2e2460c4b66021d349ce9f6331df1d6c75d7eea90df9785d333a49df04/rpds_py-0.27.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:b8a7acf04fda1f30f1007f3cc96d29d8cf0a53e626e4e1655fdf4eabc082d367", size = 347128 },
{ url = "https://files.pythonhosted.org/packages/35/8d/7d1e4390dfe09d4213b3175a3f5a817514355cb3524593380733204f20b9/rpds_py-0.27.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9d0f92b78cfc3b74a42239fdd8c1266f4715b573204c234d2f9fc3fc7a24f185", size = 384027 },
{ url = "https://files.pythonhosted.org/packages/c1/65/78499d1a62172891c8cd45de737b2a4b84a414b6ad8315ab3ac4945a5b61/rpds_py-0.27.0-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ce4ed8e0c7dbc5b19352b9c2c6131dd23b95fa8698b5cdd076307a33626b72dc", size = 399973 },
{ url = "https://files.pythonhosted.org/packages/10/a1/1c67c1d8cc889107b19570bb01f75cf49852068e95e6aee80d22915406fc/rpds_py-0.27.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fde355b02934cc6b07200cc3b27ab0c15870a757d1a72fd401aa92e2ea3c6bfe", size = 515295 },
{ url = "https://files.pythonhosted.org/packages/df/27/700ec88e748436b6c7c4a2262d66e80f8c21ab585d5e98c45e02f13f21c0/rpds_py-0.27.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:13bbc4846ae4c993f07c93feb21a24d8ec637573d567a924b1001e81c8ae80f9", size = 406737 },
{ url = "https://files.pythonhosted.org/packages/33/cc/6b0ee8f0ba3f2df2daac1beda17fde5cf10897a7d466f252bd184ef20162/rpds_py-0.27.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:be0744661afbc4099fef7f4e604e7f1ea1be1dd7284f357924af12a705cc7d5c", size = 385898 },
{ url = "https://files.pythonhosted.org/packages/e8/7e/c927b37d7d33c0a0ebf249cc268dc2fcec52864c1b6309ecb960497f2285/rpds_py-0.27.0-cp313-cp313-manylinux_2_31_riscv64.whl", hash = "sha256:069e0384a54f427bd65d7fda83b68a90606a3835901aaff42185fcd94f5a9295", size = 405785 },
{ url = "https://files.pythonhosted.org/packages/5b/d2/8ed50746d909dcf402af3fa58b83d5a590ed43e07251d6b08fad1a535ba6/rpds_py-0.27.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:4bc262ace5a1a7dc3e2eac2fa97b8257ae795389f688b5adf22c5db1e2431c43", size = 419760 },
{ url = "https://files.pythonhosted.org/packages/d3/60/2b2071aee781cb3bd49f94d5d35686990b925e9b9f3e3d149235a6f5d5c1/rpds_py-0.27.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:2fe6e18e5c8581f0361b35ae575043c7029d0a92cb3429e6e596c2cdde251432", size = 561201 },
{ url = "https://files.pythonhosted.org/packages/98/1f/27b67304272521aaea02be293fecedce13fa351a4e41cdb9290576fc6d81/rpds_py-0.27.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:d93ebdb82363d2e7bec64eecdc3632b59e84bd270d74fe5be1659f7787052f9b", size = 591021 },
{ url = "https://files.pythonhosted.org/packages/db/9b/a2fadf823164dd085b1f894be6443b0762a54a7af6f36e98e8fcda69ee50/rpds_py-0.27.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:0954e3a92e1d62e83a54ea7b3fdc9efa5d61acef8488a8a3d31fdafbfb00460d", size = 556368 },
{ url = "https://files.pythonhosted.org/packages/24/f3/6d135d46a129cda2e3e6d4c5e91e2cc26ea0428c6cf152763f3f10b6dd05/rpds_py-0.27.0-cp313-cp313-win32.whl", hash = "sha256:2cff9bdd6c7b906cc562a505c04a57d92e82d37200027e8d362518df427f96cd", size = 221236 },
{ url = "https://files.pythonhosted.org/packages/c5/44/65d7494f5448ecc755b545d78b188440f81da98b50ea0447ab5ebfdf9bd6/rpds_py-0.27.0-cp313-cp313-win_amd64.whl", hash = "sha256:dc79d192fb76fc0c84f2c58672c17bbbc383fd26c3cdc29daae16ce3d927e8b2", size = 232634 },
{ url = "https://files.pythonhosted.org/packages/70/d9/23852410fadab2abb611733933401de42a1964ce6600a3badae35fbd573e/rpds_py-0.27.0-cp313-cp313-win_arm64.whl", hash = "sha256:5b3a5c8089eed498a3af23ce87a80805ff98f6ef8f7bdb70bd1b7dae5105f6ac", size = 222783 },
{ url = "https://files.pythonhosted.org/packages/15/75/03447917f78512b34463f4ef11066516067099a0c466545655503bed0c77/rpds_py-0.27.0-cp313-cp313t-macosx_10_12_x86_64.whl", hash = "sha256:90fb790138c1a89a2e58c9282fe1089638401f2f3b8dddd758499041bc6e0774", size = 359154 },
{ url = "https://files.pythonhosted.org/packages/6b/fc/4dac4fa756451f2122ddaf136e2c6aeb758dc6fdbe9ccc4bc95c98451d50/rpds_py-0.27.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:010c4843a3b92b54373e3d2291a7447d6c3fc29f591772cc2ea0e9f5c1da434b", size = 343909 },
{ url = "https://files.pythonhosted.org/packages/7b/81/723c1ed8e6f57ed9d8c0c07578747a2d3d554aaefc1ab89f4e42cfeefa07/rpds_py-0.27.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c9ce7a9e967afc0a2af7caa0d15a3e9c1054815f73d6a8cb9225b61921b419bd", size = 379340 },
{ url = "https://files.pythonhosted.org/packages/98/16/7e3740413de71818ce1997df82ba5f94bae9fff90c0a578c0e24658e6201/rpds_py-0.27.0-cp313-cp313t-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:aa0bf113d15e8abdfee92aa4db86761b709a09954083afcb5bf0f952d6065fdb", size = 391655 },
{ url = "https://files.pythonhosted.org/packages/e0/63/2a9f510e124d80660f60ecce07953f3f2d5f0b96192c1365443859b9c87f/rpds_py-0.27.0-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eb91d252b35004a84670dfeafadb042528b19842a0080d8b53e5ec1128e8f433", size = 513017 },
{ url = "https://files.pythonhosted.org/packages/2c/4e/cf6ff311d09776c53ea1b4f2e6700b9d43bb4e99551006817ade4bbd6f78/rpds_py-0.27.0-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:db8a6313dbac934193fc17fe7610f70cd8181c542a91382531bef5ed785e5615", size = 402058 },
{ url = "https://files.pythonhosted.org/packages/88/11/5e36096d474cb10f2a2d68b22af60a3bc4164fd8db15078769a568d9d3ac/rpds_py-0.27.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce96ab0bdfcef1b8c371ada2100767ace6804ea35aacce0aef3aeb4f3f499ca8", size = 383474 },
{ url = "https://files.pythonhosted.org/packages/db/a2/3dff02805b06058760b5eaa6d8cb8db3eb3e46c9e452453ad5fc5b5ad9fe/rpds_py-0.27.0-cp313-cp313t-manylinux_2_31_riscv64.whl", hash = "sha256:7451ede3560086abe1aa27dcdcf55cd15c96b56f543fb12e5826eee6f721f858", size = 400067 },
{ url = "https://files.pythonhosted.org/packages/67/87/eed7369b0b265518e21ea836456a4ed4a6744c8c12422ce05bce760bb3cf/rpds_py-0.27.0-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:32196b5a99821476537b3f7732432d64d93a58d680a52c5e12a190ee0135d8b5", size = 412085 },
{ url = "https://files.pythonhosted.org/packages/8b/48/f50b2ab2fbb422fbb389fe296e70b7a6b5ea31b263ada5c61377e710a924/rpds_py-0.27.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:a029be818059870664157194e46ce0e995082ac49926f1423c1f058534d2aaa9", size = 555928 },
{ url = "https://files.pythonhosted.org/packages/98/41/b18eb51045d06887666c3560cd4bbb6819127b43d758f5adb82b5f56f7d1/rpds_py-0.27.0-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:3841f66c1ffdc6cebce8aed64e36db71466f1dc23c0d9a5592e2a782a3042c79", size = 585527 },
{ url = "https://files.pythonhosted.org/packages/be/03/a3dd6470fc76499959b00ae56295b76b4bdf7c6ffc60d62006b1217567e1/rpds_py-0.27.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:42894616da0fc0dcb2ec08a77896c3f56e9cb2f4b66acd76fc8992c3557ceb1c", size = 554211 },
{ url = "https://files.pythonhosted.org/packages/bf/d1/ee5fd1be395a07423ac4ca0bcc05280bf95db2b155d03adefeb47d5ebf7e/rpds_py-0.27.0-cp313-cp313t-win32.whl", hash = "sha256:b1fef1f13c842a39a03409e30ca0bf87b39a1e2a305a9924deadb75a43105d23", size = 216624 },
{ url = "https://files.pythonhosted.org/packages/1c/94/4814c4c858833bf46706f87349c37ca45e154da7dbbec9ff09f1abeb08cc/rpds_py-0.27.0-cp313-cp313t-win_amd64.whl", hash = "sha256:183f5e221ba3e283cd36fdfbe311d95cd87699a083330b4f792543987167eff1", size = 230007 },
{ url = "https://files.pythonhosted.org/packages/0e/a5/8fffe1c7dc7c055aa02df310f9fb71cfc693a4d5ccc5de2d3456ea5fb022/rpds_py-0.27.0-cp314-cp314-macosx_10_12_x86_64.whl", hash = "sha256:f3cd110e02c5bf17d8fb562f6c9df5c20e73029d587cf8602a2da6c5ef1e32cb", size = 362595 },
{ url = "https://files.pythonhosted.org/packages/bc/c7/4e4253fd2d4bb0edbc0b0b10d9f280612ca4f0f990e3c04c599000fe7d71/rpds_py-0.27.0-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:8d0e09cf4863c74106b5265c2c310f36146e2b445ff7b3018a56799f28f39f6f", size = 347252 },
{ url = "https://files.pythonhosted.org/packages/f3/c8/3d1a954d30f0174dd6baf18b57c215da03cf7846a9d6e0143304e784cddc/rpds_py-0.27.0-cp314-cp314-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:64f689ab822f9b5eb6dfc69893b4b9366db1d2420f7db1f6a2adf2a9ca15ad64", size = 384886 },
{ url = "https://files.pythonhosted.org/packages/e0/52/3c5835f2df389832b28f9276dd5395b5a965cea34226e7c88c8fbec2093c/rpds_py-0.27.0-cp314-cp314-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e36c80c49853b3ffda7aa1831bf175c13356b210c73128c861f3aa93c3cc4015", size = 399716 },
{ url = "https://files.pythonhosted.org/packages/40/73/176e46992461a1749686a2a441e24df51ff86b99c2d34bf39f2a5273b987/rpds_py-0.27.0-cp314-cp314-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6de6a7f622860af0146cb9ee148682ff4d0cea0b8fd3ad51ce4d40efb2f061d0", size = 517030 },
{ url = "https://files.pythonhosted.org/packages/79/2a/7266c75840e8c6e70effeb0d38922a45720904f2cd695e68a0150e5407e2/rpds_py-0.27.0-cp314-cp314-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4045e2fc4b37ec4b48e8907a5819bdd3380708c139d7cc358f03a3653abedb89", size = 408448 },
{ url = "https://files.pythonhosted.org/packages/e6/5f/a7efc572b8e235093dc6cf39f4dbc8a7f08e65fdbcec7ff4daeb3585eef1/rpds_py-0.27.0-cp314-cp314-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9da162b718b12c4219eeeeb68a5b7552fbc7aadedf2efee440f88b9c0e54b45d", size = 387320 },
{ url = "https://files.pythonhosted.org/packages/a2/eb/9ff6bc92efe57cf5a2cb74dee20453ba444b6fdc85275d8c99e0d27239d1/rpds_py-0.27.0-cp314-cp314-manylinux_2_31_riscv64.whl", hash = "sha256:0665be515767dc727ffa5f74bd2ef60b0ff85dad6bb8f50d91eaa6b5fb226f51", size = 407414 },
{ url = "https://files.pythonhosted.org/packages/fb/bd/3b9b19b00d5c6e1bd0f418c229ab0f8d3b110ddf7ec5d9d689ef783d0268/rpds_py-0.27.0-cp314-cp314-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:203f581accef67300a942e49a37d74c12ceeef4514874c7cede21b012613ca2c", size = 420766 },
{ url = "https://files.pythonhosted.org/packages/17/6b/521a7b1079ce16258c70805166e3ac6ec4ee2139d023fe07954dc9b2d568/rpds_py-0.27.0-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:7873b65686a6471c0037139aa000d23fe94628e0daaa27b6e40607c90e3f5ec4", size = 562409 },
{ url = "https://files.pythonhosted.org/packages/8b/bf/65db5bfb14ccc55e39de8419a659d05a2a9cd232f0a699a516bb0991da7b/rpds_py-0.27.0-cp314-cp314-musllinux_1_2_i686.whl", hash = "sha256:249ab91ceaa6b41abc5f19513cb95b45c6f956f6b89f1fe3d99c81255a849f9e", size = 590793 },
{ url = "https://files.pythonhosted.org/packages/db/b8/82d368b378325191ba7aae8f40f009b78057b598d4394d1f2cdabaf67b3f/rpds_py-0.27.0-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:d2f184336bc1d6abfaaa1262ed42739c3789b1e3a65a29916a615307d22ffd2e", size = 558178 },
{ url = "https://files.pythonhosted.org/packages/f6/ff/f270bddbfbc3812500f8131b1ebbd97afd014cd554b604a3f73f03133a36/rpds_py-0.27.0-cp314-cp314-win32.whl", hash = "sha256:d3c622c39f04d5751408f5b801ecb527e6e0a471b367f420a877f7a660d583f6", size = 222355 },
{ url = "https://files.pythonhosted.org/packages/bf/20/fdab055b1460c02ed356a0e0b0a78c1dd32dc64e82a544f7b31c9ac643dc/rpds_py-0.27.0-cp314-cp314-win_amd64.whl", hash = "sha256:cf824aceaeffff029ccfba0da637d432ca71ab21f13e7f6f5179cd88ebc77a8a", size = 234007 },
{ url = "https://files.pythonhosted.org/packages/4d/a8/694c060005421797a3be4943dab8347c76c2b429a9bef68fb2c87c9e70c7/rpds_py-0.27.0-cp314-cp314-win_arm64.whl", hash = "sha256:86aca1616922b40d8ac1b3073a1ead4255a2f13405e5700c01f7c8d29a03972d", size = 223527 },
{ url = "https://files.pythonhosted.org/packages/1e/f9/77f4c90f79d2c5ca8ce6ec6a76cb4734ee247de6b3a4f337e289e1f00372/rpds_py-0.27.0-cp314-cp314t-macosx_10_12_x86_64.whl", hash = "sha256:341d8acb6724c0c17bdf714319c393bb27f6d23d39bc74f94221b3e59fc31828", size = 359469 },
{ url = "https://files.pythonhosted.org/packages/c0/22/b97878d2f1284286fef4172069e84b0b42b546ea7d053e5fb7adb9ac6494/rpds_py-0.27.0-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:6b96b0b784fe5fd03beffff2b1533dc0d85e92bab8d1b2c24ef3a5dc8fac5669", size = 343960 },
{ url = "https://files.pythonhosted.org/packages/b1/b0/dfd55b5bb480eda0578ae94ef256d3061d20b19a0f5e18c482f03e65464f/rpds_py-0.27.0-cp314-cp314t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0c431bfb91478d7cbe368d0a699978050d3b112d7f1d440a41e90faa325557fd", size = 380201 },
{ url = "https://files.pythonhosted.org/packages/28/22/e1fa64e50d58ad2b2053077e3ec81a979147c43428de9e6de68ddf6aff4e/rpds_py-0.27.0-cp314-cp314t-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:20e222a44ae9f507d0f2678ee3dd0c45ec1e930f6875d99b8459631c24058aec", size = 392111 },
{ url = "https://files.pythonhosted.org/packages/49/f9/43ab7a43e97aedf6cea6af70fdcbe18abbbc41d4ae6cdec1bfc23bbad403/rpds_py-0.27.0-cp314-cp314t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:184f0d7b342967f6cda94a07d0e1fae177d11d0b8f17d73e06e36ac02889f303", size = 515863 },
{ url = "https://files.pythonhosted.org/packages/38/9b/9bd59dcc636cd04d86a2d20ad967770bf348f5eb5922a8f29b547c074243/rpds_py-0.27.0-cp314-cp314t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a00c91104c173c9043bc46f7b30ee5e6d2f6b1149f11f545580f5d6fdff42c0b", size = 402398 },
{ url = "https://files.pythonhosted.org/packages/71/bf/f099328c6c85667aba6b66fa5c35a8882db06dcd462ea214be72813a0dd2/rpds_py-0.27.0-cp314-cp314t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f7a37dd208f0d658e0487522078b1ed68cd6bce20ef4b5a915d2809b9094b410", size = 384665 },
{ url = "https://files.pythonhosted.org/packages/a9/c5/9c1f03121ece6634818490bd3c8be2c82a70928a19de03467fb25a3ae2a8/rpds_py-0.27.0-cp314-cp314t-manylinux_2_31_riscv64.whl", hash = "sha256:92f3b3ec3e6008a1fe00b7c0946a170f161ac00645cde35e3c9a68c2475e8156", size = 400405 },
{ url = "https://files.pythonhosted.org/packages/b5/b8/e25d54af3e63ac94f0c16d8fe143779fe71ff209445a0c00d0f6984b6b2c/rpds_py-0.27.0-cp314-cp314t-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a1b3db5fae5cbce2131b7420a3f83553d4d89514c03d67804ced36161fe8b6b2", size = 413179 },
{ url = "https://files.pythonhosted.org/packages/f9/d1/406b3316433fe49c3021546293a04bc33f1478e3ec7950215a7fce1a1208/rpds_py-0.27.0-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:5355527adaa713ab693cbce7c1e0ec71682f599f61b128cf19d07e5c13c9b1f1", size = 556895 },
{ url = "https://files.pythonhosted.org/packages/5f/bc/3697c0c21fcb9a54d46ae3b735eb2365eea0c2be076b8f770f98e07998de/rpds_py-0.27.0-cp314-cp314t-musllinux_1_2_i686.whl", hash = "sha256:fcc01c57ce6e70b728af02b2401c5bc853a9e14eb07deda30624374f0aebfe42", size = 585464 },
{ url = "https://files.pythonhosted.org/packages/63/09/ee1bb5536f99f42c839b177d552f6114aa3142d82f49cef49261ed28dbe0/rpds_py-0.27.0-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:3001013dae10f806380ba739d40dee11db1ecb91684febb8406a87c2ded23dae", size = 555090 },
{ url = "https://files.pythonhosted.org/packages/7d/2c/363eada9e89f7059199d3724135a86c47082cbf72790d6ba2f336d146ddb/rpds_py-0.27.0-cp314-cp314t-win32.whl", hash = "sha256:0f401c369186a5743694dd9fc08cba66cf70908757552e1f714bfc5219c655b5", size = 218001 },
{ url = "https://files.pythonhosted.org/packages/e2/3f/d6c216ed5199c9ef79e2a33955601f454ed1e7420a93b89670133bca5ace/rpds_py-0.27.0-cp314-cp314t-win_amd64.whl", hash = "sha256:8a1dca5507fa1337f75dcd5070218b20bc68cf8844271c923c1b79dfcbc20391", size = 230993 },
{ url = "https://files.pythonhosted.org/packages/a3/2e/82fee0cb7142bc32a9ce586eadd24a945257c016902d575bb377ad5feb10/rpds_py-0.27.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:e0d7151a1bd5d0a203a5008fc4ae51a159a610cb82ab0a9b2c4d80241745582e", size = 371495 },
{ url = "https://files.pythonhosted.org/packages/f9/b5/b421756c7e5cc1d2bb438a34b16f750363d0d87caf2bfa6f2326423c42e5/rpds_py-0.27.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:42ccc57ff99166a55a59d8c7d14f1a357b7749f9ed3584df74053fd098243451", size = 354823 },
{ url = "https://files.pythonhosted.org/packages/f9/4a/63337bbabfa38d4094144d0e689758e8452372fd3e45359b806fc1b4c022/rpds_py-0.27.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e377e4cf8795cdbdff75b8f0223d7b6c68ff4fef36799d88ccf3a995a91c0112", size = 381538 },
{ url = "https://files.pythonhosted.org/packages/33/8b/14eb61fb9a5bb830d28c548e3e67046fd04cae06c2ce6afe7f30aba7f7f0/rpds_py-0.27.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:79af163a4b40bbd8cfd7ca86ec8b54b81121d3b213b4435ea27d6568bcba3e9d", size = 396724 },
{ url = "https://files.pythonhosted.org/packages/03/54/47faf6aa4040443b108b24ae08e9db6fe6daaa8140b696f905833f325293/rpds_py-0.27.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b2eff8ee57c5996b0d2a07c3601fb4ce5fbc37547344a26945dd9e5cbd1ed27a", size = 517084 },
{ url = "https://files.pythonhosted.org/packages/0b/88/a78dbacc9a96e3ea7e83d9bed8f272754e618c629ed6a9f8e2a506c84419/rpds_py-0.27.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7cf9bc4508efb18d8dff6934b602324eb9f8c6644749627ce001d6f38a490889", size = 402397 },
{ url = "https://files.pythonhosted.org/packages/6b/88/268c6422c0c3a0f01bf6e79086f6e4dbc6a2e60a6e95413ad17e3392ec0a/rpds_py-0.27.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05284439ebe7d9f5f5a668d4d8a0a1d851d16f7d47c78e1fab968c8ad30cab04", size = 383570 },
{ url = "https://files.pythonhosted.org/packages/9c/1a/34f5a2459b9752cc08e02c3845c8f570222f7dbd48c7baac4b827701a40e/rpds_py-0.27.0-cp39-cp39-manylinux_2_31_riscv64.whl", hash = "sha256:1321bce595ad70e80f97f998db37356b2e22cf98094eba6fe91782e626da2f71", size = 401771 },
{ url = "https://files.pythonhosted.org/packages/4e/9b/16979115f2ec783ca06454a141a0f32f082763ef874675c5f756e6e76fcd/rpds_py-0.27.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:737005088449ddd3b3df5a95476ee1c2c5c669f5c30eed909548a92939c0e12d", size = 416215 },
{ url = "https://files.pythonhosted.org/packages/81/0b/0305df88fb22db8efe81753ce4ec51b821555448fd94ec77ae4e5dfd57b7/rpds_py-0.27.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:9b2a4e17bfd68536c3b801800941c95a1d4a06e3cada11c146093ba939d9638d", size = 558573 },
{ url = "https://files.pythonhosted.org/packages/84/9a/c48be4da43a556495cf66d6bf71a16e8e3e22ae8e724b678e430521d0702/rpds_py-0.27.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:dc6b0d5a1ea0318ef2def2b6a55dccf1dcaf77d605672347271ed7b829860765", size = 587956 },
{ url = "https://files.pythonhosted.org/packages/76/95/deb1111abde461330c4dad22b14347d064161fb7cb249746a06accc07633/rpds_py-0.27.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:4c3f8a0d4802df34fcdbeb3dfe3a4d8c9a530baea8fafdf80816fcaac5379d83", size = 554493 },
{ url = "https://files.pythonhosted.org/packages/cb/16/5342d91917f26da91fc193932d9fbf422e2903aaee9bd3c6ecb4875ef17f/rpds_py-0.27.0-cp39-cp39-win32.whl", hash = "sha256:699c346abc73993962cac7bb4f02f58e438840fa5458a048d3a178a7a670ba86", size = 218302 },
{ url = "https://files.pythonhosted.org/packages/fb/a3/0346108a47efe41b50d8781688b7fb16b18d252053486c932d10b18977c9/rpds_py-0.27.0-cp39-cp39-win_amd64.whl", hash = "sha256:be806e2961cd390a89d6c3ce8c2ae34271cfcd05660f716257838bb560f1c3b6", size = 229977 },
{ url = "https://files.pythonhosted.org/packages/47/55/287068956f9ba1cb40896d291213f09fdd4527630709058b45a592bc09dc/rpds_py-0.27.0-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:46f48482c1a4748ab2773f75fffbdd1951eb59794e32788834b945da857c47a8", size = 371566 },
{ url = "https://files.pythonhosted.org/packages/a2/fb/443af59cbe552e89680bb0f1d1ba47f6387b92083e28a45b8c8863b86c5a/rpds_py-0.27.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:419dd9c98bcc9fb0242be89e0c6e922df333b975d4268faa90d58499fd9c9ebe", size = 355781 },
{ url = "https://files.pythonhosted.org/packages/ad/f0/35f48bb073b5ca42b1dcc55cb148f4a3bd4411a3e584f6a18d26f0ea8832/rpds_py-0.27.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:55d42a0ef2bdf6bc81e1cc2d49d12460f63c6ae1423c4f4851b828e454ccf6f1", size = 382575 },
{ url = "https://files.pythonhosted.org/packages/51/e1/5f5296a21d1189f0f116a938af2e346d83172bf814d373695e54004a936f/rpds_py-0.27.0-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2e39169ac6aae06dd79c07c8a69d9da867cef6a6d7883a0186b46bb46ccfb0c3", size = 397435 },
{ url = "https://files.pythonhosted.org/packages/97/79/3af99b7852b2b55cad8a08863725cbe9dc14781bcf7dc6ecead0c3e1dc54/rpds_py-0.27.0-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:935afcdea4751b0ac918047a2df3f720212892347767aea28f5b3bf7be4f27c0", size = 514861 },
{ url = "https://files.pythonhosted.org/packages/df/3e/11fd6033708ed3ae0e6947bb94f762f56bb46bf59a1b16eef6944e8a62ee/rpds_py-0.27.0-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8de567dec6d451649a781633d36f5c7501711adee329d76c095be2178855b042", size = 402776 },
{ url = "https://files.pythonhosted.org/packages/b7/89/f9375ceaa996116de9cbc949874804c7874d42fb258c384c037a46d730b8/rpds_py-0.27.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:555ed147cbe8c8f76e72a4c6cd3b7b761cbf9987891b9448808148204aed74a5", size = 384665 },
{ url = "https://files.pythonhosted.org/packages/48/bf/0061e55c6f1f573a63c0f82306b8984ed3b394adafc66854a936d5db3522/rpds_py-0.27.0-pp310-pypy310_pp73-manylinux_2_31_riscv64.whl", hash = "sha256:d2cc2b34f9e1d31ce255174da82902ad75bd7c0d88a33df54a77a22f2ef421ee", size = 402518 },
{ url = "https://files.pythonhosted.org/packages/ae/dc/8d506676bfe87b3b683332ec8e6ab2b0be118a3d3595ed021e3274a63191/rpds_py-0.27.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:cb0702c12983be3b2fab98ead349ac63a98216d28dda6f518f52da5498a27a1b", size = 416247 },
{ url = "https://files.pythonhosted.org/packages/2e/02/9a89eea1b75c69e81632de7963076e455b1e00e1cfb46dfdabb055fa03e3/rpds_py-0.27.0-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:ba783541be46f27c8faea5a6645e193943c17ea2f0ffe593639d906a327a9bcc", size = 559456 },
{ url = "https://files.pythonhosted.org/packages/38/4a/0f3ac4351957847c0d322be6ec72f916e43804a2c1d04e9672ea4a67c315/rpds_py-0.27.0-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:2406d034635d1497c596c40c85f86ecf2bf9611c1df73d14078af8444fe48031", size = 587778 },
{ url = "https://files.pythonhosted.org/packages/c2/8e/39d0d7401095bed5a5ad5ef304fae96383f9bef40ca3f3a0807ff5b68d9d/rpds_py-0.27.0-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:dea0808153f1fbbad772669d906cddd92100277533a03845de6893cadeffc8be", size = 555247 },
{ url = "https://files.pythonhosted.org/packages/e0/04/6b8311e811e620b9eaca67cd80a118ff9159558a719201052a7b2abb88bf/rpds_py-0.27.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:d2a81bdcfde4245468f7030a75a37d50400ac2455c3a4819d9d550c937f90ab5", size = 230256 },
{ url = "https://files.pythonhosted.org/packages/59/64/72ab5b911fdcc48058359b0e786e5363e3fde885156116026f1a2ba9a5b5/rpds_py-0.27.0-pp311-pypy311_pp73-macosx_10_12_x86_64.whl", hash = "sha256:e6491658dd2569f05860bad645569145c8626ac231877b0fb2d5f9bcb7054089", size = 371658 },
{ url = "https://files.pythonhosted.org/packages/6c/4b/90ff04b4da055db53d8fea57640d8d5d55456343a1ec9a866c0ecfe10fd1/rpds_py-0.27.0-pp311-pypy311_pp73-macosx_11_0_arm64.whl", hash = "sha256:bec77545d188f8bdd29d42bccb9191682a46fb2e655e3d1fb446d47c55ac3b8d", size = 355529 },
{ url = "https://files.pythonhosted.org/packages/a4/be/527491fb1afcd86fc5ce5812eb37bc70428ee017d77fee20de18155c3937/rpds_py-0.27.0-pp311-pypy311_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:25a4aebf8ca02bbb90a9b3e7a463bbf3bee02ab1c446840ca07b1695a68ce424", size = 382822 },
{ url = "https://files.pythonhosted.org/packages/e0/a5/dcdb8725ce11e6d0913e6fcf782a13f4b8a517e8acc70946031830b98441/rpds_py-0.27.0-pp311-pypy311_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:44524b96481a4c9b8e6c46d6afe43fa1fb485c261e359fbe32b63ff60e3884d8", size = 397233 },
{ url = "https://files.pythonhosted.org/packages/33/f9/0947920d1927e9f144660590cc38cadb0795d78fe0d9aae0ef71c1513b7c/rpds_py-0.27.0-pp311-pypy311_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:45d04a73c54b6a5fd2bab91a4b5bc8b426949586e61340e212a8484919183859", size = 514892 },
{ url = "https://files.pythonhosted.org/packages/1d/ed/d1343398c1417c68f8daa1afce56ef6ce5cc587daaf98e29347b00a80ff2/rpds_py-0.27.0-pp311-pypy311_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:343cf24de9ed6c728abefc5d5c851d5de06497caa7ac37e5e65dd572921ed1b5", size = 402733 },
{ url = "https://files.pythonhosted.org/packages/1d/0b/646f55442cd14014fb64d143428f25667a100f82092c90087b9ea7101c74/rpds_py-0.27.0-pp311-pypy311_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7aed8118ae20515974650d08eb724150dc2e20c2814bcc307089569995e88a14", size = 384447 },
{ url = "https://files.pythonhosted.org/packages/4b/15/0596ef7529828e33a6c81ecf5013d1dd33a511a3e0be0561f83079cda227/rpds_py-0.27.0-pp311-pypy311_pp73-manylinux_2_31_riscv64.whl", hash = "sha256:af9d4fd79ee1cc8e7caf693ee02737daabfc0fcf2773ca0a4735b356c8ad6f7c", size = 402502 },
{ url = "https://files.pythonhosted.org/packages/c3/8d/986af3c42f8454a6cafff8729d99fb178ae9b08a9816325ac7a8fa57c0c0/rpds_py-0.27.0-pp311-pypy311_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f0396e894bd1e66c74ecbc08b4f6a03dc331140942c4b1d345dd131b68574a60", size = 416651 },
{ url = "https://files.pythonhosted.org/packages/e9/9a/b4ec3629b7b447e896eec574469159b5b60b7781d3711c914748bf32de05/rpds_py-0.27.0-pp311-pypy311_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:59714ab0a5af25d723d8e9816638faf7f4254234decb7d212715c1aa71eee7be", size = 559460 },
{ url = "https://files.pythonhosted.org/packages/61/63/d1e127b40c3e4733b3a6f26ae7a063cdf2bc1caa5272c89075425c7d397a/rpds_py-0.27.0-pp311-pypy311_pp73-musllinux_1_2_i686.whl", hash = "sha256:88051c3b7d5325409f433c5a40328fcb0685fc04e5db49ff936e910901d10114", size = 588072 },
{ url = "https://files.pythonhosted.org/packages/04/7e/8ffc71a8f6833d9c9fb999f5b0ee736b8b159fd66968e05c7afc2dbcd57e/rpds_py-0.27.0-pp311-pypy311_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:181bc29e59e5e5e6e9d63b143ff4d5191224d355e246b5a48c88ce6b35c4e466", size = 555083 },
{ url = "https://files.pythonhosted.org/packages/a8/fc/ef6386838e0e91d6ba79b741ccce6ca987e89619aa86f418fecf381eba23/rpds_py-0.27.0-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:9ad08547995a57e74fea6abaf5940d399447935faebbd2612b3b0ca6f987946b", size = 371849 },
{ url = "https://files.pythonhosted.org/packages/2c/f8/f30394aff811bc0f13fab8d8e4b9f880fcb678234eb0af7d2c4b6232f44f/rpds_py-0.27.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:61490d57e82e23b45c66f96184237994bfafa914433b8cd1a9bb57fecfced59d", size = 356437 },
{ url = "https://files.pythonhosted.org/packages/87/56/ed704fc668c9abc56d3686b723e4d6f2585597daf4b68b654ade7c97930d/rpds_py-0.27.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7cf5e726b6fa977e428a61880fb108a62f28b6d0c7ef675b117eaff7076df49", size = 382247 },
{ url = "https://files.pythonhosted.org/packages/48/55/6ef2c9b7caae3c1c360d9556a70979e16f21bfb1e94f50f481d224f3b8aa/rpds_py-0.27.0-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:dc662bc9375a6a394b62dfd331874c434819f10ee3902123200dbcf116963f89", size = 397223 },
{ url = "https://files.pythonhosted.org/packages/63/04/8fc2059411daaca733155fc2613cc91dc728d7abe31fd0c0fa4c7ec5ff1a/rpds_py-0.27.0-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:299a245537e697f28a7511d01038c310ac74e8ea213c0019e1fc65f52c0dcb23", size = 516308 },
{ url = "https://files.pythonhosted.org/packages/a4/d0/b79d3fe07c47bfa989139e692f85371f5a0e1376696b173dabe7ac77b7d1/rpds_py-0.27.0-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:be3964f7312ea05ed283b20f87cb533fdc555b2e428cc7be64612c0b2124f08c", size = 401967 },
{ url = "https://files.pythonhosted.org/packages/cd/b1/55014f6da5ec8029d1d7d7d2a884b9d7ad7f217e05bb9cb782f06d8209c4/rpds_py-0.27.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:33ba649a6e55ae3808e4c39e01580dc9a9b0d5b02e77b66bb86ef117922b1264", size = 384584 },
{ url = "https://files.pythonhosted.org/packages/86/34/5c5c1a8550ac172dd6cd53925c321363d94b2a1f0b3173743dbbfd87b8ec/rpds_py-0.27.0-pp39-pypy39_pp73-manylinux_2_31_riscv64.whl", hash = "sha256:81f81bbd7cdb4bdc418c09a73809abeda8f263a6bf8f9c7f93ed98b5597af39d", size = 401879 },
{ url = "https://files.pythonhosted.org/packages/35/07/009bbc659388c4c5a256f05f56df207633cda2f5d61a8d54c50c427e435e/rpds_py-0.27.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:11e8e28c0ba0373d052818b600474cfee2fafa6c9f36c8587d217b13ee28ca7d", size = 416908 },
{ url = "https://files.pythonhosted.org/packages/7a/cc/8949c13dc5a05d955cb88909bfac4004805974dec7b0d02543de55e43272/rpds_py-0.27.0-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:e3acb9c16530362aeaef4e84d57db357002dc5cbfac9a23414c3e73c08301ab2", size = 559105 },
{ url = "https://files.pythonhosted.org/packages/ea/40/574da2033b01d6e2e7fa3b021993321565c6634f9d0021707d210ce35b58/rpds_py-0.27.0-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:2e307cb5f66c59ede95c00e93cd84190a5b7f3533d7953690b2036780622ba81", size = 588335 },
{ url = "https://files.pythonhosted.org/packages/1d/83/72ed1ce357d8c63bde0bba2458a502e7cc4e150e272139161e1d205a9d67/rpds_py-0.27.0-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:f09c9d4c26fa79c1bad927efb05aca2391350b8e61c38cbc0d7d3c814e463124", size = 555094 },
{ url = "https://files.pythonhosted.org/packages/6f/15/fc639de53b3798340233f37959d252311b30d1834b65a02741e3373407fa/rpds_py-0.27.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:af22763a0a1eff106426a6e1f13c4582e0d0ad89c1493ab6c058236174cd6c6a", size = 230031 },
]
[[package]]
name = "ruff"
version = "0.12.7"
version = "0.12.5"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/a1/81/0bd3594fa0f690466e41bd033bdcdf86cba8288345ac77ad4afbe5ec743a/ruff-0.12.7.tar.gz", hash = "sha256:1fc3193f238bc2d7968772c82831a4ff69252f673be371fb49663f0068b7ec71", size = 5197814 }
sdist = { url = "https://files.pythonhosted.org/packages/30/cd/01015eb5034605fd98d829c5839ec2c6b4582b479707f7c1c2af861e8258/ruff-0.12.5.tar.gz", hash = "sha256:b209db6102b66f13625940b7f8c7d0f18e20039bb7f6101fbdac935c9612057e", size = 5170722 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/e1/d2/6cb35e9c85e7a91e8d22ab32ae07ac39cc34a71f1009a6f9e4a2a019e602/ruff-0.12.7-py3-none-linux_armv6l.whl", hash = "sha256:76e4f31529899b8c434c3c1dede98c4483b89590e15fb49f2d46183801565303", size = 11852189 },
{ url = "https://files.pythonhosted.org/packages/63/5b/a4136b9921aa84638f1a6be7fb086f8cad0fde538ba76bda3682f2599a2f/ruff-0.12.7-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:789b7a03e72507c54fb3ba6209e4bb36517b90f1a3569ea17084e3fd295500fb", size = 12519389 },
{ url = "https://files.pythonhosted.org/packages/a8/c9/3e24a8472484269b6b1821794141f879c54645a111ded4b6f58f9ab0705f/ruff-0.12.7-py3-none-macosx_11_0_arm64.whl", hash = "sha256:2e1c2a3b8626339bb6369116e7030a4cf194ea48f49b64bb505732a7fce4f4e3", size = 11743384 },
{ url = "https://files.pythonhosted.org/packages/26/7c/458dd25deeb3452c43eaee853c0b17a1e84169f8021a26d500ead77964fd/ruff-0.12.7-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:32dec41817623d388e645612ec70d5757a6d9c035f3744a52c7b195a57e03860", size = 11943759 },
{ url = "https://files.pythonhosted.org/packages/7f/8b/658798472ef260ca050e400ab96ef7e85c366c39cf3dfbef4d0a46a528b6/ruff-0.12.7-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:47ef751f722053a5df5fa48d412dbb54d41ab9b17875c6840a58ec63ff0c247c", size = 11654028 },
{ url = "https://files.pythonhosted.org/packages/a8/86/9c2336f13b2a3326d06d39178fd3448dcc7025f82514d1b15816fe42bfe8/ruff-0.12.7-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a828a5fc25a3efd3e1ff7b241fd392686c9386f20e5ac90aa9234a5faa12c423", size = 13225209 },
{ url = "https://files.pythonhosted.org/packages/76/69/df73f65f53d6c463b19b6b312fd2391dc36425d926ec237a7ed028a90fc1/ruff-0.12.7-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:5726f59b171111fa6a69d82aef48f00b56598b03a22f0f4170664ff4d8298efb", size = 14182353 },
{ url = "https://files.pythonhosted.org/packages/58/1e/de6cda406d99fea84b66811c189b5ea139814b98125b052424b55d28a41c/ruff-0.12.7-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:74e6f5c04c4dd4aba223f4fe6e7104f79e0eebf7d307e4f9b18c18362124bccd", size = 13631555 },
{ url = "https://files.pythonhosted.org/packages/6f/ae/625d46d5164a6cc9261945a5e89df24457dc8262539ace3ac36c40f0b51e/ruff-0.12.7-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d0bfe4e77fba61bf2ccadf8cf005d6133e3ce08793bbe870dd1c734f2699a3e", size = 12667556 },
{ url = "https://files.pythonhosted.org/packages/55/bf/9cb1ea5e3066779e42ade8d0cd3d3b0582a5720a814ae1586f85014656b6/ruff-0.12.7-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:06bfb01e1623bf7f59ea749a841da56f8f653d641bfd046edee32ede7ff6c606", size = 12939784 },
{ url = "https://files.pythonhosted.org/packages/55/7f/7ead2663be5627c04be83754c4f3096603bf5e99ed856c7cd29618c691bd/ruff-0.12.7-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:e41df94a957d50083fd09b916d6e89e497246698c3f3d5c681c8b3e7b9bb4ac8", size = 11771356 },
{ url = "https://files.pythonhosted.org/packages/17/40/a95352ea16edf78cd3a938085dccc55df692a4d8ba1b3af7accbe2c806b0/ruff-0.12.7-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:4000623300563c709458d0ce170c3d0d788c23a058912f28bbadc6f905d67afa", size = 11612124 },
{ url = "https://files.pythonhosted.org/packages/4d/74/633b04871c669e23b8917877e812376827c06df866e1677f15abfadc95cb/ruff-0.12.7-py3-none-musllinux_1_2_i686.whl", hash = "sha256:69ffe0e5f9b2cf2b8e289a3f8945b402a1b19eff24ec389f45f23c42a3dd6fb5", size = 12479945 },
{ url = "https://files.pythonhosted.org/packages/be/34/c3ef2d7799c9778b835a76189c6f53c179d3bdebc8c65288c29032e03613/ruff-0.12.7-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:a07a5c8ffa2611a52732bdc67bf88e243abd84fe2d7f6daef3826b59abbfeda4", size = 12998677 },
{ url = "https://files.pythonhosted.org/packages/77/ab/aca2e756ad7b09b3d662a41773f3edcbd262872a4fc81f920dc1ffa44541/ruff-0.12.7-py3-none-win32.whl", hash = "sha256:c928f1b2ec59fb77dfdf70e0419408898b63998789cc98197e15f560b9e77f77", size = 11756687 },
{ url = "https://files.pythonhosted.org/packages/b4/71/26d45a5042bc71db22ddd8252ca9d01e9ca454f230e2996bb04f16d72799/ruff-0.12.7-py3-none-win_amd64.whl", hash = "sha256:9c18f3d707ee9edf89da76131956aba1270c6348bfee8f6c647de841eac7194f", size = 12912365 },
{ url = "https://files.pythonhosted.org/packages/4c/9b/0b8aa09817b63e78d94b4977f18b1fcaead3165a5ee49251c5d5c245bb2d/ruff-0.12.7-py3-none-win_arm64.whl", hash = "sha256:dfce05101dbd11833a0776716d5d1578641b7fddb537fe7fa956ab85d1769b69", size = 11982083 },
{ url = "https://files.pythonhosted.org/packages/d4/de/ad2f68f0798ff15dd8c0bcc2889558970d9a685b3249565a937cd820ad34/ruff-0.12.5-py3-none-linux_armv6l.whl", hash = "sha256:1de2c887e9dec6cb31fcb9948299de5b2db38144e66403b9660c9548a67abd92", size = 11819133 },
{ url = "https://files.pythonhosted.org/packages/f8/fc/c6b65cd0e7fbe60f17e7ad619dca796aa49fbca34bb9bea5f8faf1ec2643/ruff-0.12.5-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:d1ab65e7d8152f519e7dea4de892317c9da7a108da1c56b6a3c1d5e7cf4c5e9a", size = 12501114 },
{ url = "https://files.pythonhosted.org/packages/c5/de/c6bec1dce5ead9f9e6a946ea15e8d698c35f19edc508289d70a577921b30/ruff-0.12.5-py3-none-macosx_11_0_arm64.whl", hash = "sha256:962775ed5b27c7aa3fdc0d8f4d4433deae7659ef99ea20f783d666e77338b8cf", size = 11716873 },
{ url = "https://files.pythonhosted.org/packages/a1/16/cf372d2ebe91e4eb5b82a2275c3acfa879e0566a7ac94d331ea37b765ac8/ruff-0.12.5-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:73b4cae449597e7195a49eb1cdca89fd9fbb16140c7579899e87f4c85bf82f73", size = 11958829 },
{ url = "https://files.pythonhosted.org/packages/25/bf/cd07e8f6a3a6ec746c62556b4c4b79eeb9b0328b362bb8431b7b8afd3856/ruff-0.12.5-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8b13489c3dc50de5e2d40110c0cce371e00186b880842e245186ca862bf9a1ac", size = 11626619 },
{ url = "https://files.pythonhosted.org/packages/d8/c9/c2ccb3b8cbb5661ffda6925f81a13edbb786e623876141b04919d1128370/ruff-0.12.5-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f1504fea81461cf4841778b3ef0a078757602a3b3ea4b008feb1308cb3f23e08", size = 13221894 },
{ url = "https://files.pythonhosted.org/packages/6b/58/68a5be2c8e5590ecdad922b2bcd5583af19ba648f7648f95c51c3c1eca81/ruff-0.12.5-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:c7da4129016ae26c32dfcbd5b671fe652b5ab7fc40095d80dcff78175e7eddd4", size = 14163909 },
{ url = "https://files.pythonhosted.org/packages/bd/d1/ef6b19622009ba8386fdb792c0743f709cf917b0b2f1400589cbe4739a33/ruff-0.12.5-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ca972c80f7ebcfd8af75a0f18b17c42d9f1ef203d163669150453f50ca98ab7b", size = 13583652 },
{ url = "https://files.pythonhosted.org/packages/62/e3/1c98c566fe6809a0c83751d825a03727f242cdbe0d142c9e292725585521/ruff-0.12.5-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8dbbf9f25dfb501f4237ae7501d6364b76a01341c6f1b2cd6764fe449124bb2a", size = 12700451 },
{ url = "https://files.pythonhosted.org/packages/24/ff/96058f6506aac0fbc0d0fc0d60b0d0bd746240a0594657a2d94ad28033ba/ruff-0.12.5-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c47dea6ae39421851685141ba9734767f960113d51e83fd7bb9958d5be8763a", size = 12937465 },
{ url = "https://files.pythonhosted.org/packages/eb/d3/68bc5e7ab96c94b3589d1789f2dd6dd4b27b263310019529ac9be1e8f31b/ruff-0.12.5-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:c5076aa0e61e30f848846f0265c873c249d4b558105b221be1828f9f79903dc5", size = 11771136 },
{ url = "https://files.pythonhosted.org/packages/52/75/7356af30a14584981cabfefcf6106dea98cec9a7af4acb5daaf4b114845f/ruff-0.12.5-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:a5a4c7830dadd3d8c39b1cc85386e2c1e62344f20766be6f173c22fb5f72f293", size = 11601644 },
{ url = "https://files.pythonhosted.org/packages/c2/67/91c71d27205871737cae11025ee2b098f512104e26ffd8656fd93d0ada0a/ruff-0.12.5-py3-none-musllinux_1_2_i686.whl", hash = "sha256:46699f73c2b5b137b9dc0fc1a190b43e35b008b398c6066ea1350cce6326adcb", size = 12478068 },
{ url = "https://files.pythonhosted.org/packages/34/04/b6b00383cf2f48e8e78e14eb258942fdf2a9bf0287fbf5cdd398b749193a/ruff-0.12.5-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:5a655a0a0d396f0f072faafc18ebd59adde8ca85fb848dc1b0d9f024b9c4d3bb", size = 12991537 },
{ url = "https://files.pythonhosted.org/packages/3e/b9/053d6445dc7544fb6594785056d8ece61daae7214859ada4a152ad56b6e0/ruff-0.12.5-py3-none-win32.whl", hash = "sha256:dfeb2627c459b0b78ca2bbdc38dd11cc9a0a88bf91db982058b26ce41714ffa9", size = 11751575 },
{ url = "https://files.pythonhosted.org/packages/bc/0f/ab16e8259493137598b9149734fec2e06fdeda9837e6f634f5c4e35916da/ruff-0.12.5-py3-none-win_amd64.whl", hash = "sha256:ae0d90cf5f49466c954991b9d8b953bd093c32c27608e409ae3564c63c5306a5", size = 12882273 },
{ url = "https://files.pythonhosted.org/packages/00/db/c376b0661c24cf770cb8815268190668ec1330eba8374a126ceef8c72d55/ruff-0.12.5-py3-none-win_arm64.whl", hash = "sha256:48cdbfc633de2c5c37d9f090ba3b352d1576b0015bfc3bc98eaf230275b7e805", size = 11951564 },
]
[[package]]
@@ -5850,18 +5508,6 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/70/22/e8fc1bf9cdecc439b7ddc28a45b976a8c699a38874c070749d855696368a/tiktoken-0.9.0-cp39-cp39-win_amd64.whl", hash = "sha256:26242ca9dc8b58e875ff4ca078b9a94d2f0813e6a535dcd2205df5d49d927cc7", size = 894215 },
]
[[package]]
name = "tinycss2"
version = "1.4.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "webencodings" },
]
sdist = { url = "https://files.pythonhosted.org/packages/7a/fd/7a5ee21fd08ff70d3d33a5781c255cbe779659bd03278feb98b19ee550f4/tinycss2-1.4.0.tar.gz", hash = "sha256:10c0972f6fc0fbee87c3edb76549357415e94548c1ae10ebccdea16fb404a9b7", size = 87085 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/e6/34/ebdc18bae6aa14fbee1a08b63c015c72b64868ff7dae68808ab500c492e2/tinycss2-1.4.0-py3-none-any.whl", hash = "sha256:3a49cf47b7675da0b15d0c6e1df8df4ebd96e9394bb905a5775adb0d884c5289", size = 26610 },
]
[[package]]
name = "tokenizers"
version = "0.21.4"
@@ -6154,15 +5800,6 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/fd/84/fd2ba7aafacbad3c4201d395674fc6348826569da3c0937e75505ead3528/wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859", size = 34166 },
]
[[package]]
name = "webencodings"
version = "0.5.1"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/0b/02/ae6ceac1baeda530866a85075641cec12989bd8d31af6d5ab4a3e8c92f47/webencodings-0.5.1.tar.gz", hash = "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923", size = 9721 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/f4/24/2a3e3df732393fed8b3ebf2ec078f05546de641fe1b667ee316ec1dcf3b7/webencodings-0.5.1-py2.py3-none-any.whl", hash = "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", size = 11774 },
]
[[package]]
name = "werkzeug"
version = "3.1.3"