Compare commits
13 Commits
fix/securi
...
embed-laun
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
ed15776564 | ||
|
|
8d202b8b0e | ||
|
|
9ac9eab48d | ||
|
|
cd1d853a46 | ||
|
|
253680043a | ||
|
|
36c44b8806 | ||
|
|
66c6aad3e4 | ||
|
|
29ef3c95dc | ||
|
|
469dce0045 | ||
|
|
0ac676f9cb | ||
|
|
97c9f39704 | ||
|
|
3766ad1fd2 | ||
|
|
c3aceed1e0 |
@@ -12,6 +12,7 @@ from pathlib import Path
|
||||
try:
|
||||
from leann.chunking_utils import (
|
||||
CODE_EXTENSIONS,
|
||||
_traditional_chunks_as_dicts,
|
||||
create_ast_chunks,
|
||||
create_text_chunks,
|
||||
create_traditional_chunks,
|
||||
@@ -25,6 +26,7 @@ except Exception: # pragma: no cover - best-effort fallback for dev environment
|
||||
sys.path.insert(0, str(leann_src))
|
||||
from leann.chunking_utils import (
|
||||
CODE_EXTENSIONS,
|
||||
_traditional_chunks_as_dicts,
|
||||
create_ast_chunks,
|
||||
create_text_chunks,
|
||||
create_traditional_chunks,
|
||||
@@ -36,6 +38,7 @@ except Exception: # pragma: no cover - best-effort fallback for dev environment
|
||||
|
||||
__all__ = [
|
||||
"CODE_EXTENSIONS",
|
||||
"_traditional_chunks_as_dicts",
|
||||
"create_ast_chunks",
|
||||
"create_text_chunks",
|
||||
"create_traditional_chunks",
|
||||
|
||||
@@ -1,13 +1,18 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import sys
|
||||
import concurrent.futures
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any, Optional, cast
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def _ensure_repo_paths_importable(current_file: str) -> None:
|
||||
"""Make local leann packages importable without installing (mirrors multi-vector-leann.py)."""
|
||||
_repo_root = Path(current_file).resolve().parents[3]
|
||||
_leann_core_src = _repo_root / "packages" / "leann-core" / "src"
|
||||
_leann_hnsw_pkg = _repo_root / "packages" / "leann-backend-hnsw"
|
||||
@@ -17,6 +22,380 @@ def _ensure_repo_paths_importable(current_file: str) -> None:
|
||||
sys.path.append(str(_leann_hnsw_pkg))
|
||||
|
||||
|
||||
def _find_backend_module_file() -> Optional[Path]:
|
||||
"""Best-effort locate the backend leann_multi_vector.py file, avoiding this file."""
|
||||
this_file = Path(__file__).resolve()
|
||||
candidates: list[Path] = []
|
||||
|
||||
# Common in-repo location
|
||||
repo_root = this_file.parents[3]
|
||||
candidates.append(repo_root / "packages" / "leann-backend-hnsw" / "leann_multi_vector.py")
|
||||
candidates.append(
|
||||
repo_root / "packages" / "leann-backend-hnsw" / "src" / "leann_multi_vector.py"
|
||||
)
|
||||
|
||||
for cand in candidates:
|
||||
try:
|
||||
if cand.exists() and cand.resolve() != this_file:
|
||||
return cand.resolve()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
# Fallback: scan sys.path for another leann_multi_vector.py different from this file
|
||||
for p in list(sys.path):
|
||||
try:
|
||||
cand = Path(p) / "leann_multi_vector.py"
|
||||
if cand.exists() and cand.resolve() != this_file:
|
||||
return cand.resolve()
|
||||
except Exception:
|
||||
continue
|
||||
return None
|
||||
|
||||
|
||||
_BACKEND_LEANN_CLASS: Optional[type] = None
|
||||
|
||||
|
||||
def _get_backend_leann_multi_vector() -> type:
|
||||
"""Load backend LeannMultiVector class even if this file shadows its module name."""
|
||||
global _BACKEND_LEANN_CLASS
|
||||
if _BACKEND_LEANN_CLASS is not None:
|
||||
return _BACKEND_LEANN_CLASS
|
||||
|
||||
backend_path = _find_backend_module_file()
|
||||
if backend_path is None:
|
||||
# Fallback to local implementation in this module
|
||||
try:
|
||||
cls = LeannMultiVector # type: ignore[name-defined]
|
||||
_BACKEND_LEANN_CLASS = cls
|
||||
return cls
|
||||
except Exception as e:
|
||||
raise ImportError(
|
||||
"Could not locate backend 'leann_multi_vector.py' and no local implementation found. "
|
||||
"Ensure the leann backend is available under packages/leann-backend-hnsw or installed."
|
||||
) from e
|
||||
|
||||
import importlib.util
|
||||
|
||||
module_name = "leann_hnsw_backend_module"
|
||||
spec = importlib.util.spec_from_file_location(module_name, str(backend_path))
|
||||
if spec is None or spec.loader is None:
|
||||
raise ImportError(f"Failed to create spec for backend module at {backend_path}")
|
||||
backend_module = importlib.util.module_from_spec(spec)
|
||||
sys.modules[module_name] = backend_module
|
||||
spec.loader.exec_module(backend_module) # type: ignore[assignment]
|
||||
|
||||
if not hasattr(backend_module, "LeannMultiVector"):
|
||||
raise ImportError(f"'LeannMultiVector' not found in backend module at {backend_path}")
|
||||
_BACKEND_LEANN_CLASS = backend_module.LeannMultiVector
|
||||
return _BACKEND_LEANN_CLASS
|
||||
|
||||
|
||||
def _natural_sort_key(name: str) -> int:
|
||||
m = re.search(r"\d+", name)
|
||||
return int(m.group()) if m else 0
|
||||
|
||||
|
||||
def _load_images_from_dir(pages_dir: str) -> tuple[list[str], list[Image.Image]]:
|
||||
filenames = [n for n in os.listdir(pages_dir) if n.lower().endswith((".png", ".jpg", ".jpeg"))]
|
||||
filenames = sorted(filenames, key=_natural_sort_key)
|
||||
filepaths = [os.path.join(pages_dir, n) for n in filenames]
|
||||
images = [Image.open(p) for p in filepaths]
|
||||
return filepaths, images
|
||||
|
||||
|
||||
def _maybe_convert_pdf_to_images(pdf_path: Optional[str], pages_dir: str, dpi: int = 200) -> None:
|
||||
if not pdf_path:
|
||||
return
|
||||
os.makedirs(pages_dir, exist_ok=True)
|
||||
try:
|
||||
from pdf2image import convert_from_path
|
||||
except Exception as e:
|
||||
raise RuntimeError(
|
||||
"pdf2image is required to convert PDF to images. Install via pip install pdf2image"
|
||||
) from e
|
||||
images = convert_from_path(pdf_path, dpi=dpi)
|
||||
for i, image in enumerate(images):
|
||||
image.save(os.path.join(pages_dir, f"page_{i + 1}.png"), "PNG")
|
||||
|
||||
|
||||
def _select_device_and_dtype():
|
||||
import torch
|
||||
from colpali_engine.utils.torch_utils import get_torch_device
|
||||
|
||||
device_str = (
|
||||
"cuda"
|
||||
if torch.cuda.is_available()
|
||||
else (
|
||||
"mps"
|
||||
if getattr(torch.backends, "mps", None) and torch.backends.mps.is_available()
|
||||
else "cpu"
|
||||
)
|
||||
)
|
||||
device = get_torch_device(device_str)
|
||||
# Stable dtype selection to avoid NaNs:
|
||||
# - CUDA: prefer bfloat16 if supported, else float16
|
||||
# - MPS: use float32 (fp16 on MPS can produce NaNs in some ops)
|
||||
# - CPU: float32
|
||||
if device_str == "cuda":
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
|
||||
try:
|
||||
torch.backends.cuda.matmul.allow_tf32 = True # Better stability/perf on Ampere+
|
||||
except Exception:
|
||||
pass
|
||||
elif device_str == "mps":
|
||||
dtype = torch.float32
|
||||
else:
|
||||
dtype = torch.float32
|
||||
return device_str, device, dtype
|
||||
|
||||
|
||||
def _load_colvision(model_choice: str):
|
||||
import torch
|
||||
from colpali_engine.models import ColPali, ColQwen2, ColQwen2Processor
|
||||
from colpali_engine.models.paligemma.colpali.processing_colpali import ColPaliProcessor
|
||||
from transformers.utils.import_utils import is_flash_attn_2_available
|
||||
|
||||
device_str, device, dtype = _select_device_and_dtype()
|
||||
|
||||
if model_choice == "colqwen2":
|
||||
model_name = "vidore/colqwen2-v1.0"
|
||||
# On CPU/MPS we must avoid flash-attn and stay eager; on CUDA prefer flash-attn if available
|
||||
attn_implementation = (
|
||||
"flash_attention_2"
|
||||
if (device_str == "cuda" and is_flash_attn_2_available())
|
||||
else "eager"
|
||||
)
|
||||
model = ColQwen2.from_pretrained(
|
||||
model_name,
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map=device,
|
||||
attn_implementation=attn_implementation,
|
||||
).eval()
|
||||
processor = ColQwen2Processor.from_pretrained(model_name)
|
||||
else:
|
||||
model_name = "vidore/colpali-v1.2"
|
||||
model = ColPali.from_pretrained(
|
||||
model_name,
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map=device,
|
||||
).eval()
|
||||
processor = cast(ColPaliProcessor, ColPaliProcessor.from_pretrained(model_name))
|
||||
|
||||
return model_name, model, processor, device_str, device, dtype
|
||||
|
||||
|
||||
def _embed_images(model, processor, images: list[Image.Image]) -> list[Any]:
|
||||
import torch
|
||||
from colpali_engine.utils.torch_utils import ListDataset
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
# Ensure deterministic eval and autocast for stability
|
||||
model.eval()
|
||||
|
||||
dataloader = DataLoader(
|
||||
dataset=ListDataset[Image.Image](images),
|
||||
batch_size=1,
|
||||
shuffle=False,
|
||||
collate_fn=lambda x: processor.process_images(x),
|
||||
)
|
||||
|
||||
doc_vecs: list[Any] = []
|
||||
for batch_doc in tqdm(dataloader, desc="Embedding images"):
|
||||
with torch.no_grad():
|
||||
batch_doc = {k: v.to(model.device) for k, v in batch_doc.items()}
|
||||
# autocast on CUDA for bf16/fp16; on CPU/MPS stay in fp32
|
||||
if model.device.type == "cuda":
|
||||
with torch.autocast(
|
||||
device_type="cuda",
|
||||
dtype=model.dtype if model.dtype.is_floating_point else torch.bfloat16,
|
||||
):
|
||||
embeddings_doc = model(**batch_doc)
|
||||
else:
|
||||
embeddings_doc = model(**batch_doc)
|
||||
doc_vecs.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
|
||||
return doc_vecs
|
||||
|
||||
|
||||
def _embed_queries(model, processor, queries: list[str]) -> list[Any]:
|
||||
import torch
|
||||
from colpali_engine.utils.torch_utils import ListDataset
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
model.eval()
|
||||
|
||||
dataloader = DataLoader(
|
||||
dataset=ListDataset[str](queries),
|
||||
batch_size=1,
|
||||
shuffle=False,
|
||||
collate_fn=lambda x: processor.process_queries(x),
|
||||
)
|
||||
|
||||
q_vecs: list[Any] = []
|
||||
for batch_query in tqdm(dataloader, desc="Embedding queries"):
|
||||
with torch.no_grad():
|
||||
batch_query = {k: v.to(model.device) for k, v in batch_query.items()}
|
||||
if model.device.type == "cuda":
|
||||
with torch.autocast(
|
||||
device_type="cuda",
|
||||
dtype=model.dtype if model.dtype.is_floating_point else torch.bfloat16,
|
||||
):
|
||||
embeddings_query = model(**batch_query)
|
||||
else:
|
||||
embeddings_query = model(**batch_query)
|
||||
q_vecs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
|
||||
return q_vecs
|
||||
|
||||
|
||||
def _build_index(
|
||||
index_path: str, doc_vecs: list[Any], filepaths: list[str], images: list[Image.Image]
|
||||
) -> Any:
|
||||
LeannMultiVector = _get_backend_leann_multi_vector()
|
||||
dim = int(doc_vecs[0].shape[-1])
|
||||
retriever = LeannMultiVector(index_path=index_path, dim=dim)
|
||||
retriever.create_collection()
|
||||
for i, vec in enumerate(doc_vecs):
|
||||
data = {
|
||||
"colbert_vecs": vec.float().numpy(),
|
||||
"doc_id": i,
|
||||
"filepath": filepaths[i],
|
||||
"image": images[i], # Include the original image
|
||||
}
|
||||
retriever.insert(data)
|
||||
retriever.create_index()
|
||||
return retriever
|
||||
|
||||
|
||||
def _load_retriever_if_index_exists(index_path: str) -> Optional[Any]:
|
||||
LeannMultiVector = _get_backend_leann_multi_vector()
|
||||
index_base = Path(index_path)
|
||||
# Check for the actual HNSW index file written by the backend + our sidecar files
|
||||
index_file = index_base.parent / f"{index_base.stem}.index"
|
||||
meta = index_base.parent / f"{index_base.name}.meta.json"
|
||||
labels = index_base.parent / f"{index_base.name}.labels.json"
|
||||
if index_file.exists() and meta.exists() and labels.exists():
|
||||
try:
|
||||
with open(meta, encoding="utf-8") as f:
|
||||
meta_json = json.load(f)
|
||||
dim = int(meta_json.get("dimensions", 128))
|
||||
except Exception:
|
||||
dim = 128
|
||||
return LeannMultiVector(index_path=index_path, dim=dim)
|
||||
return None
|
||||
|
||||
|
||||
def _generate_similarity_map(
|
||||
model,
|
||||
processor,
|
||||
image: Image.Image,
|
||||
query: str,
|
||||
token_idx: Optional[int] = None,
|
||||
output_path: Optional[str] = None,
|
||||
) -> tuple[int, float]:
|
||||
import torch
|
||||
from colpali_engine.interpretability import (
|
||||
get_similarity_maps_from_embeddings,
|
||||
plot_similarity_map,
|
||||
)
|
||||
|
||||
batch_images = processor.process_images([image]).to(model.device)
|
||||
batch_queries = processor.process_queries([query]).to(model.device)
|
||||
|
||||
with torch.no_grad():
|
||||
image_embeddings = model.forward(**batch_images)
|
||||
query_embeddings = model.forward(**batch_queries)
|
||||
|
||||
n_patches = processor.get_n_patches(
|
||||
image_size=image.size,
|
||||
spatial_merge_size=getattr(model, "spatial_merge_size", None),
|
||||
)
|
||||
image_mask = processor.get_image_mask(batch_images)
|
||||
|
||||
batched_similarity_maps = get_similarity_maps_from_embeddings(
|
||||
image_embeddings=image_embeddings,
|
||||
query_embeddings=query_embeddings,
|
||||
n_patches=n_patches,
|
||||
image_mask=image_mask,
|
||||
)
|
||||
|
||||
similarity_maps = batched_similarity_maps[0]
|
||||
|
||||
# Determine token index if not provided: choose the token with highest max score
|
||||
if token_idx is None:
|
||||
per_token_max = similarity_maps.view(similarity_maps.shape[0], -1).max(dim=1).values
|
||||
token_idx = int(per_token_max.argmax().item())
|
||||
|
||||
max_sim_score = similarity_maps[token_idx, :, :].max().item()
|
||||
|
||||
if output_path:
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
fig, ax = plot_similarity_map(
|
||||
image=image,
|
||||
similarity_map=similarity_maps[token_idx],
|
||||
figsize=(14, 14),
|
||||
show_colorbar=False,
|
||||
)
|
||||
ax.set_title(f"Token #{token_idx}. MaxSim score: {max_sim_score:.2f}", fontsize=12)
|
||||
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
||||
plt.savefig(output_path, bbox_inches="tight")
|
||||
plt.close(fig)
|
||||
|
||||
return token_idx, float(max_sim_score)
|
||||
|
||||
|
||||
class QwenVL:
|
||||
def __init__(self, device: str):
|
||||
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
|
||||
from transformers.utils.import_utils import is_flash_attn_2_available
|
||||
|
||||
attn_implementation = "flash_attention_2" if is_flash_attn_2_available() else "eager"
|
||||
self.model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
||||
"Qwen/Qwen2.5-VL-3B-Instruct",
|
||||
torch_dtype="auto",
|
||||
device_map=device,
|
||||
attn_implementation=attn_implementation,
|
||||
)
|
||||
|
||||
min_pixels = 256 * 28 * 28
|
||||
max_pixels = 1280 * 28 * 28
|
||||
self.processor = AutoProcessor.from_pretrained(
|
||||
"Qwen/Qwen2.5-VL-3B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels
|
||||
)
|
||||
|
||||
def answer(self, query: str, images: list[Image.Image], max_new_tokens: int = 128) -> str:
|
||||
import base64
|
||||
from io import BytesIO
|
||||
|
||||
from qwen_vl_utils import process_vision_info
|
||||
|
||||
content = []
|
||||
for img in images:
|
||||
buffer = BytesIO()
|
||||
img.save(buffer, format="jpeg")
|
||||
img_base64 = base64.b64encode(buffer.getvalue()).decode("utf-8")
|
||||
content.append({"type": "image", "image": f"data:image;base64,{img_base64}"})
|
||||
content.append({"type": "text", "text": query})
|
||||
messages = [{"role": "user", "content": content}]
|
||||
|
||||
text = self.processor.apply_chat_template(
|
||||
messages, tokenize=False, add_generation_prompt=True
|
||||
)
|
||||
image_inputs, video_inputs = process_vision_info(messages)
|
||||
inputs = self.processor(
|
||||
text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt"
|
||||
)
|
||||
inputs = inputs.to(self.model.device)
|
||||
|
||||
generated_ids = self.model.generate(**inputs, max_new_tokens=max_new_tokens)
|
||||
generated_ids_trimmed = [
|
||||
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
||||
]
|
||||
return self.processor.batch_decode(
|
||||
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
||||
)[0]
|
||||
|
||||
|
||||
# Ensure repo paths are importable for dynamic backend loading
|
||||
_ensure_repo_paths_importable(__file__)
|
||||
|
||||
from leann_backend_hnsw.hnsw_backend import HNSWBuilder, HNSWSearcher # noqa: E402
|
||||
@@ -71,6 +450,7 @@ class LeannMultiVector:
|
||||
"doc_id": int(data["doc_id"]),
|
||||
"filepath": data.get("filepath", ""),
|
||||
"colbert_vecs": [np.asarray(v, dtype=np.float32) for v in data["colbert_vecs"]],
|
||||
"image": data.get("image"), # PIL Image object (optional)
|
||||
}
|
||||
)
|
||||
|
||||
@@ -86,6 +466,11 @@ class LeannMultiVector:
|
||||
index_path_obj = Path(self.index_path)
|
||||
return index_path_obj.parent / f"{index_path_obj.name}.emb.npy"
|
||||
|
||||
def _images_dir_path(self) -> Path:
|
||||
"""Directory where original images are stored."""
|
||||
index_path_obj = Path(self.index_path)
|
||||
return index_path_obj.parent / f"{index_path_obj.name}.images"
|
||||
|
||||
def create_index(self) -> None:
|
||||
if not self._pending_items:
|
||||
return
|
||||
@@ -93,10 +478,23 @@ class LeannMultiVector:
|
||||
embeddings: list[np.ndarray] = []
|
||||
labels_meta: list[dict] = []
|
||||
|
||||
# Create images directory if needed
|
||||
images_dir = self._images_dir_path()
|
||||
images_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
for item in self._pending_items:
|
||||
doc_id = int(item["doc_id"])
|
||||
filepath = item.get("filepath", "")
|
||||
colbert_vecs = item["colbert_vecs"]
|
||||
image = item.get("image")
|
||||
|
||||
# Save image if provided
|
||||
image_path = ""
|
||||
if image is not None and isinstance(image, Image.Image):
|
||||
image_filename = f"doc_{doc_id}.png"
|
||||
image_path = str(images_dir / image_filename)
|
||||
image.save(image_path, "PNG")
|
||||
|
||||
for seq_id, vec in enumerate(colbert_vecs):
|
||||
vec_np = np.asarray(vec, dtype=np.float32)
|
||||
embeddings.append(vec_np)
|
||||
@@ -106,6 +504,7 @@ class LeannMultiVector:
|
||||
"doc_id": doc_id,
|
||||
"seq_id": int(seq_id),
|
||||
"filepath": filepath,
|
||||
"image_path": image_path, # Store the path to the saved image
|
||||
}
|
||||
)
|
||||
|
||||
@@ -113,7 +512,6 @@ class LeannMultiVector:
|
||||
return
|
||||
|
||||
embeddings_np = np.vstack(embeddings).astype(np.float32)
|
||||
# print shape of embeddings_np
|
||||
print(embeddings_np.shape)
|
||||
|
||||
builder = HNSWBuilder(**{**self._backend_kwargs, "dimensions": self.dim})
|
||||
@@ -338,3 +736,45 @@ class LeannMultiVector:
|
||||
|
||||
scores.sort(key=lambda x: x[0], reverse=True)
|
||||
return scores[:topk] if len(scores) >= topk else scores
|
||||
|
||||
def get_image(self, doc_id: int) -> Optional[Image.Image]:
|
||||
"""
|
||||
Retrieve the original image for a given doc_id from the index.
|
||||
|
||||
Args:
|
||||
doc_id: The document ID
|
||||
|
||||
Returns:
|
||||
PIL Image object if found, None otherwise
|
||||
"""
|
||||
self._load_labels_meta_if_needed()
|
||||
|
||||
# Find the image_path for this doc_id (all seq_ids for same doc share the same image_path)
|
||||
for meta in self._labels_meta:
|
||||
if meta.get("doc_id") == doc_id:
|
||||
image_path = meta.get("image_path", "")
|
||||
if image_path and Path(image_path).exists():
|
||||
return Image.open(image_path)
|
||||
break
|
||||
return None
|
||||
|
||||
def get_metadata(self, doc_id: int) -> Optional[dict]:
|
||||
"""
|
||||
Retrieve metadata for a given doc_id.
|
||||
|
||||
Args:
|
||||
doc_id: The document ID
|
||||
|
||||
Returns:
|
||||
Dictionary with metadata (filepath, image_path, etc.) if found, None otherwise
|
||||
"""
|
||||
self._load_labels_meta_if_needed()
|
||||
|
||||
for meta in self._labels_meta:
|
||||
if meta.get("doc_id") == doc_id:
|
||||
return {
|
||||
"doc_id": doc_id,
|
||||
"filepath": meta.get("filepath", ""),
|
||||
"image_path": meta.get("image_path", ""),
|
||||
}
|
||||
return None
|
||||
|
||||
@@ -2,35 +2,31 @@
|
||||
# %%
|
||||
# uv pip install matplotlib qwen_vl_utils
|
||||
import os
|
||||
import json
|
||||
import re
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any, Optional, cast
|
||||
from typing import Any, Optional
|
||||
|
||||
from PIL import Image
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def _ensure_repo_paths_importable(current_file: str) -> None:
|
||||
"""Make local leann packages importable without installing (mirrors multi-vector-leann.py)."""
|
||||
_repo_root = Path(current_file).resolve().parents[3]
|
||||
_leann_core_src = _repo_root / "packages" / "leann-core" / "src"
|
||||
_leann_hnsw_pkg = _repo_root / "packages" / "leann-backend-hnsw"
|
||||
if str(_leann_core_src) not in sys.path:
|
||||
sys.path.append(str(_leann_core_src))
|
||||
if str(_leann_hnsw_pkg) not in sys.path:
|
||||
sys.path.append(str(_leann_hnsw_pkg))
|
||||
|
||||
from leann_multi_vector import ( # utility functions/classes
|
||||
_ensure_repo_paths_importable,
|
||||
_load_images_from_dir,
|
||||
_maybe_convert_pdf_to_images,
|
||||
_load_colvision,
|
||||
_embed_images,
|
||||
_embed_queries,
|
||||
_build_index,
|
||||
_load_retriever_if_index_exists,
|
||||
_generate_similarity_map,
|
||||
QwenVL,
|
||||
)
|
||||
|
||||
_ensure_repo_paths_importable(__file__)
|
||||
|
||||
from leann_multi_vector import LeannMultiVector # noqa: E402
|
||||
|
||||
# %%
|
||||
# Config
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||
QUERY = "How does DeepSeek-V2 compare against the LLaMA family of LLMs?"
|
||||
QUERY = "The paper talk about the latent video generative model and data curation in the related work part?"
|
||||
MODEL: str = "colqwen2" # "colpali" or "colqwen2"
|
||||
|
||||
# Data source: set to True to use the Hugging Face dataset example (recommended)
|
||||
@@ -45,7 +41,7 @@ PAGES_DIR: str = "./pages"
|
||||
|
||||
# Index + retrieval settings
|
||||
INDEX_PATH: str = "./indexes/colvision.leann"
|
||||
TOPK: int = 1
|
||||
TOPK: int = 3
|
||||
FIRST_STAGE_K: int = 500
|
||||
REBUILD_INDEX: bool = False
|
||||
|
||||
@@ -55,338 +51,57 @@ SIMILARITY_MAP: bool = True
|
||||
SIM_TOKEN_IDX: int = 13 # -1 means auto-select the most salient token
|
||||
SIM_OUTPUT: str = "./figures/similarity_map.png"
|
||||
ANSWER: bool = True
|
||||
MAX_NEW_TOKENS: int = 128
|
||||
|
||||
|
||||
# %%
|
||||
# Helpers
|
||||
def _natural_sort_key(name: str) -> int:
|
||||
m = re.search(r"\d+", name)
|
||||
return int(m.group()) if m else 0
|
||||
|
||||
|
||||
def _load_images_from_dir(pages_dir: str) -> tuple[list[str], list[Image.Image]]:
|
||||
filenames = [n for n in os.listdir(pages_dir) if n.lower().endswith((".png", ".jpg", ".jpeg"))]
|
||||
filenames = sorted(filenames, key=_natural_sort_key)
|
||||
filepaths = [os.path.join(pages_dir, n) for n in filenames]
|
||||
images = [Image.open(p) for p in filepaths]
|
||||
return filepaths, images
|
||||
|
||||
|
||||
def _maybe_convert_pdf_to_images(pdf_path: Optional[str], pages_dir: str, dpi: int = 200) -> None:
|
||||
if not pdf_path:
|
||||
return
|
||||
os.makedirs(pages_dir, exist_ok=True)
|
||||
try:
|
||||
from pdf2image import convert_from_path
|
||||
except Exception as e:
|
||||
raise RuntimeError(
|
||||
"pdf2image is required to convert PDF to images. Install via pip install pdf2image"
|
||||
) from e
|
||||
images = convert_from_path(pdf_path, dpi=dpi)
|
||||
for i, image in enumerate(images):
|
||||
image.save(os.path.join(pages_dir, f"page_{i + 1}.png"), "PNG")
|
||||
|
||||
|
||||
def _select_device_and_dtype():
|
||||
import torch
|
||||
from colpali_engine.utils.torch_utils import get_torch_device
|
||||
|
||||
device_str = (
|
||||
"cuda"
|
||||
if torch.cuda.is_available()
|
||||
else (
|
||||
"mps"
|
||||
if getattr(torch.backends, "mps", None) and torch.backends.mps.is_available()
|
||||
else "cpu"
|
||||
)
|
||||
)
|
||||
device = get_torch_device(device_str)
|
||||
# Stable dtype selection to avoid NaNs:
|
||||
# - CUDA: prefer bfloat16 if supported, else float16
|
||||
# - MPS: use float32 (fp16 on MPS can produce NaNs in some ops)
|
||||
# - CPU: float32
|
||||
if device_str == "cuda":
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
|
||||
try:
|
||||
torch.backends.cuda.matmul.allow_tf32 = True # Better stability/perf on Ampere+
|
||||
except Exception:
|
||||
pass
|
||||
elif device_str == "mps":
|
||||
dtype = torch.float32
|
||||
else:
|
||||
dtype = torch.float32
|
||||
return device_str, device, dtype
|
||||
|
||||
|
||||
def _load_colvision(model_choice: str):
|
||||
import torch
|
||||
from colpali_engine.models import ColPali, ColQwen2, ColQwen2Processor
|
||||
from colpali_engine.models.paligemma.colpali.processing_colpali import ColPaliProcessor
|
||||
from transformers.utils.import_utils import is_flash_attn_2_available
|
||||
|
||||
device_str, device, dtype = _select_device_and_dtype()
|
||||
|
||||
if model_choice == "colqwen2":
|
||||
model_name = "vidore/colqwen2-v1.0"
|
||||
# On CPU/MPS we must avoid flash-attn and stay eager; on CUDA prefer flash-attn if available
|
||||
attn_implementation = (
|
||||
"flash_attention_2"
|
||||
if (device_str == "cuda" and is_flash_attn_2_available())
|
||||
else "eager"
|
||||
)
|
||||
model = ColQwen2.from_pretrained(
|
||||
model_name,
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map=device,
|
||||
attn_implementation=attn_implementation,
|
||||
).eval()
|
||||
processor = ColQwen2Processor.from_pretrained(model_name)
|
||||
else:
|
||||
model_name = "vidore/colpali-v1.2"
|
||||
model = ColPali.from_pretrained(
|
||||
model_name,
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map=device,
|
||||
).eval()
|
||||
processor = cast(ColPaliProcessor, ColPaliProcessor.from_pretrained(model_name))
|
||||
|
||||
return model_name, model, processor, device_str, device, dtype
|
||||
|
||||
|
||||
def _embed_images(model, processor, images: list[Image.Image]) -> list[Any]:
|
||||
import torch
|
||||
from colpali_engine.utils.torch_utils import ListDataset
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
# Ensure deterministic eval and autocast for stability
|
||||
model.eval()
|
||||
|
||||
dataloader = DataLoader(
|
||||
dataset=ListDataset[Image.Image](images),
|
||||
batch_size=1,
|
||||
shuffle=False,
|
||||
collate_fn=lambda x: processor.process_images(x),
|
||||
)
|
||||
|
||||
doc_vecs: list[Any] = []
|
||||
for batch_doc in tqdm(dataloader, desc="Embedding images"):
|
||||
with torch.no_grad():
|
||||
batch_doc = {k: v.to(model.device) for k, v in batch_doc.items()}
|
||||
# autocast on CUDA for bf16/fp16; on CPU/MPS stay in fp32
|
||||
if model.device.type == "cuda":
|
||||
with torch.autocast(
|
||||
device_type="cuda",
|
||||
dtype=model.dtype if model.dtype.is_floating_point else torch.bfloat16,
|
||||
):
|
||||
embeddings_doc = model(**batch_doc)
|
||||
else:
|
||||
embeddings_doc = model(**batch_doc)
|
||||
doc_vecs.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
|
||||
return doc_vecs
|
||||
|
||||
|
||||
def _embed_queries(model, processor, queries: list[str]) -> list[Any]:
|
||||
import torch
|
||||
from colpali_engine.utils.torch_utils import ListDataset
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
model.eval()
|
||||
|
||||
dataloader = DataLoader(
|
||||
dataset=ListDataset[str](queries),
|
||||
batch_size=1,
|
||||
shuffle=False,
|
||||
collate_fn=lambda x: processor.process_queries(x),
|
||||
)
|
||||
|
||||
q_vecs: list[Any] = []
|
||||
for batch_query in tqdm(dataloader, desc="Embedding queries"):
|
||||
with torch.no_grad():
|
||||
batch_query = {k: v.to(model.device) for k, v in batch_query.items()}
|
||||
if model.device.type == "cuda":
|
||||
with torch.autocast(
|
||||
device_type="cuda",
|
||||
dtype=model.dtype if model.dtype.is_floating_point else torch.bfloat16,
|
||||
):
|
||||
embeddings_query = model(**batch_query)
|
||||
else:
|
||||
embeddings_query = model(**batch_query)
|
||||
q_vecs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
|
||||
return q_vecs
|
||||
|
||||
|
||||
def _build_index(index_path: str, doc_vecs: list[Any], filepaths: list[str]) -> LeannMultiVector:
|
||||
dim = int(doc_vecs[0].shape[-1])
|
||||
retriever = LeannMultiVector(index_path=index_path, dim=dim)
|
||||
retriever.create_collection()
|
||||
for i, vec in enumerate(doc_vecs):
|
||||
data = {
|
||||
"colbert_vecs": vec.float().numpy(),
|
||||
"doc_id": i,
|
||||
"filepath": filepaths[i],
|
||||
}
|
||||
retriever.insert(data)
|
||||
retriever.create_index()
|
||||
return retriever
|
||||
|
||||
|
||||
def _load_retriever_if_index_exists(index_path: str) -> Optional[LeannMultiVector]:
|
||||
index_base = Path(index_path)
|
||||
# Rough heuristic: index dir exists AND meta+labels files exist
|
||||
meta = index_base.parent / f"{index_base.name}.meta.json"
|
||||
labels = index_base.parent / f"{index_base.name}.labels.json"
|
||||
if index_base.exists() and meta.exists() and labels.exists():
|
||||
try:
|
||||
with open(meta, "r", encoding="utf-8") as f:
|
||||
meta_json = json.load(f)
|
||||
dim = int(meta_json.get("dimensions", 128))
|
||||
except Exception:
|
||||
dim = 128
|
||||
return LeannMultiVector(index_path=index_path, dim=dim)
|
||||
return None
|
||||
|
||||
|
||||
def _generate_similarity_map(
|
||||
model,
|
||||
processor,
|
||||
image: Image.Image,
|
||||
query: str,
|
||||
token_idx: Optional[int] = None,
|
||||
output_path: Optional[str] = None,
|
||||
) -> tuple[int, float]:
|
||||
import torch
|
||||
from colpali_engine.interpretability import (
|
||||
get_similarity_maps_from_embeddings,
|
||||
plot_similarity_map,
|
||||
)
|
||||
|
||||
batch_images = processor.process_images([image]).to(model.device)
|
||||
batch_queries = processor.process_queries([query]).to(model.device)
|
||||
|
||||
with torch.no_grad():
|
||||
image_embeddings = model.forward(**batch_images)
|
||||
query_embeddings = model.forward(**batch_queries)
|
||||
|
||||
n_patches = processor.get_n_patches(
|
||||
image_size=image.size,
|
||||
spatial_merge_size=getattr(model, "spatial_merge_size", None),
|
||||
)
|
||||
image_mask = processor.get_image_mask(batch_images)
|
||||
|
||||
batched_similarity_maps = get_similarity_maps_from_embeddings(
|
||||
image_embeddings=image_embeddings,
|
||||
query_embeddings=query_embeddings,
|
||||
n_patches=n_patches,
|
||||
image_mask=image_mask,
|
||||
)
|
||||
|
||||
similarity_maps = batched_similarity_maps[0]
|
||||
|
||||
# Determine token index if not provided: choose the token with highest max score
|
||||
if token_idx is None:
|
||||
per_token_max = similarity_maps.view(similarity_maps.shape[0], -1).max(dim=1).values
|
||||
token_idx = int(per_token_max.argmax().item())
|
||||
|
||||
max_sim_score = similarity_maps[token_idx, :, :].max().item()
|
||||
|
||||
if output_path:
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
fig, ax = plot_similarity_map(
|
||||
image=image,
|
||||
similarity_map=similarity_maps[token_idx],
|
||||
figsize=(14, 14),
|
||||
show_colorbar=False,
|
||||
)
|
||||
ax.set_title(f"Token #{token_idx}. MaxSim score: {max_sim_score:.2f}", fontsize=12)
|
||||
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
||||
plt.savefig(output_path, bbox_inches="tight")
|
||||
plt.close(fig)
|
||||
|
||||
return token_idx, float(max_sim_score)
|
||||
|
||||
|
||||
class QwenVL:
|
||||
def __init__(self, device: str):
|
||||
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
|
||||
from transformers.utils.import_utils import is_flash_attn_2_available
|
||||
|
||||
attn_implementation = "flash_attention_2" if is_flash_attn_2_available() else "eager"
|
||||
self.model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
||||
"Qwen/Qwen2.5-VL-3B-Instruct",
|
||||
torch_dtype="auto",
|
||||
device_map=device,
|
||||
attn_implementation=attn_implementation,
|
||||
)
|
||||
|
||||
min_pixels = 256 * 28 * 28
|
||||
max_pixels = 1280 * 28 * 28
|
||||
self.processor = AutoProcessor.from_pretrained(
|
||||
"Qwen/Qwen2.5-VL-3B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels
|
||||
)
|
||||
|
||||
def answer(self, query: str, images: list[Image.Image], max_new_tokens: int = 128) -> str:
|
||||
import base64
|
||||
from io import BytesIO
|
||||
|
||||
from qwen_vl_utils import process_vision_info
|
||||
|
||||
content = []
|
||||
for img in images:
|
||||
buffer = BytesIO()
|
||||
img.save(buffer, format="jpeg")
|
||||
img_base64 = base64.b64encode(buffer.getvalue()).decode("utf-8")
|
||||
content.append({"type": "image", "image": f"data:image;base64,{img_base64}"})
|
||||
content.append({"type": "text", "text": query})
|
||||
messages = [{"role": "user", "content": content}]
|
||||
|
||||
text = self.processor.apply_chat_template(
|
||||
messages, tokenize=False, add_generation_prompt=True
|
||||
)
|
||||
image_inputs, video_inputs = process_vision_info(messages)
|
||||
inputs = self.processor(
|
||||
text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt"
|
||||
)
|
||||
inputs = inputs.to(self.model.device)
|
||||
|
||||
generated_ids = self.model.generate(**inputs, max_new_tokens=max_new_tokens)
|
||||
generated_ids_trimmed = [
|
||||
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
||||
]
|
||||
return self.processor.batch_decode(
|
||||
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
||||
)[0]
|
||||
MAX_NEW_TOKENS: int = 1024
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# Step 1: Prepare data
|
||||
if USE_HF_DATASET:
|
||||
from datasets import load_dataset
|
||||
# Step 1: Check if we can skip data loading (index already exists)
|
||||
retriever: Optional[Any] = None
|
||||
need_to_build_index = REBUILD_INDEX
|
||||
|
||||
dataset = load_dataset(DATASET_NAME, split=DATASET_SPLIT)
|
||||
N = len(dataset) if MAX_DOCS is None else min(MAX_DOCS, len(dataset))
|
||||
filepaths: list[str] = []
|
||||
images: list[Image.Image] = []
|
||||
for i in tqdm(range(N), desc="Loading dataset", total=N ):
|
||||
p = dataset[i]
|
||||
# Compose a descriptive identifier for printing later
|
||||
identifier = f"arXiv:{p['paper_arxiv_id']}|title:{p['paper_title']}|page:{int(p['page_number'])}|id:{p['page_id']}"
|
||||
print(identifier)
|
||||
filepaths.append(identifier)
|
||||
images.append(p["page_image"]) # PIL Image
|
||||
if not REBUILD_INDEX:
|
||||
retriever = _load_retriever_if_index_exists(INDEX_PATH)
|
||||
if retriever is not None:
|
||||
print(f"✓ Index loaded from {INDEX_PATH}")
|
||||
print(f"✓ Images available at: {retriever._images_dir_path()}")
|
||||
need_to_build_index = False
|
||||
else:
|
||||
print(f"Index not found, will build new index")
|
||||
need_to_build_index = True
|
||||
|
||||
# Step 2: Load data only if we need to build the index
|
||||
if need_to_build_index:
|
||||
print("Loading dataset...")
|
||||
if USE_HF_DATASET:
|
||||
from datasets import load_dataset
|
||||
|
||||
dataset = load_dataset(DATASET_NAME, split=DATASET_SPLIT)
|
||||
N = len(dataset) if MAX_DOCS is None else min(MAX_DOCS, len(dataset))
|
||||
filepaths: list[str] = []
|
||||
images: list[Image.Image] = []
|
||||
for i in tqdm(range(N), desc="Loading dataset", total=N):
|
||||
p = dataset[i]
|
||||
# Compose a descriptive identifier for printing later
|
||||
identifier = f"arXiv:{p['paper_arxiv_id']}|title:{p['paper_title']}|page:{int(p['page_number'])}|id:{p['page_id']}"
|
||||
filepaths.append(identifier)
|
||||
images.append(p["page_image"]) # PIL Image
|
||||
else:
|
||||
_maybe_convert_pdf_to_images(PDF, PAGES_DIR)
|
||||
filepaths, images = _load_images_from_dir(PAGES_DIR)
|
||||
if not images:
|
||||
raise RuntimeError(
|
||||
f"No images found in {PAGES_DIR}. Provide PDF path in PDF variable or ensure images exist."
|
||||
)
|
||||
print(f"Loaded {len(images)} images")
|
||||
else:
|
||||
_maybe_convert_pdf_to_images(PDF, PAGES_DIR)
|
||||
filepaths, images = _load_images_from_dir(PAGES_DIR)
|
||||
if not images:
|
||||
raise RuntimeError(
|
||||
f"No images found in {PAGES_DIR}. Provide PDF path in PDF variable or ensure images exist."
|
||||
)
|
||||
print("Skipping dataset loading (using existing index)")
|
||||
filepaths = [] # Not needed when using existing index
|
||||
images = [] # Not needed when using existing index
|
||||
|
||||
|
||||
# %%
|
||||
# Step 2: Load model and processor
|
||||
# Step 3: Load model and processor (only if we need to build index or perform search)
|
||||
model_name, model, processor, device_str, device, dtype = _load_colvision(MODEL)
|
||||
print(f"Using model={model_name}, device={device_str}, dtype={dtype}")
|
||||
|
||||
@@ -394,30 +109,39 @@ print(f"Using model={model_name}, device={device_str}, dtype={dtype}")
|
||||
# %%
|
||||
|
||||
# %%
|
||||
# Step 3: Build or load index
|
||||
retriever: Optional[LeannMultiVector] = None
|
||||
if not REBUILD_INDEX:
|
||||
retriever = _load_retriever_if_index_exists(INDEX_PATH)
|
||||
|
||||
if retriever is None:
|
||||
# Step 4: Build index if needed
|
||||
if need_to_build_index and retriever is None:
|
||||
print("Building index...")
|
||||
doc_vecs = _embed_images(model, processor, images)
|
||||
retriever = _build_index(INDEX_PATH, doc_vecs, filepaths)
|
||||
retriever = _build_index(INDEX_PATH, doc_vecs, filepaths, images)
|
||||
print(f"✓ Index built and images saved to: {retriever._images_dir_path()}")
|
||||
# Clear memory
|
||||
del images, filepaths, doc_vecs
|
||||
|
||||
# Note: Images are now stored in the index, retriever will load them on-demand from disk
|
||||
|
||||
|
||||
# %%
|
||||
# Step 4: Embed query and search
|
||||
# Step 5: Embed query and search
|
||||
q_vec = _embed_queries(model, processor, [QUERY])[0]
|
||||
results = retriever.search(q_vec.float().numpy(), topk=TOPK, first_stage_k=FIRST_STAGE_K)
|
||||
results = retriever.search(q_vec.float().numpy(), topk=TOPK)
|
||||
if not results:
|
||||
print("No results found.")
|
||||
else:
|
||||
print(f'Top {len(results)} results for query: "{QUERY}"')
|
||||
top_images: list[Image.Image] = []
|
||||
for rank, (score, doc_id) in enumerate(results, start=1):
|
||||
path = filepaths[doc_id]
|
||||
# Retrieve image from index instead of memory
|
||||
image = retriever.get_image(doc_id)
|
||||
if image is None:
|
||||
print(f"Warning: Could not retrieve image for doc_id {doc_id}")
|
||||
continue
|
||||
|
||||
metadata = retriever.get_metadata(doc_id)
|
||||
path = metadata.get("filepath", "unknown") if metadata else "unknown"
|
||||
# For HF dataset, path is a descriptive identifier, not a real file path
|
||||
print(f"{rank}) MaxSim: {score:.4f}, Page: {path}")
|
||||
top_images.append(images[doc_id])
|
||||
top_images.append(image)
|
||||
|
||||
if SAVE_TOP_IMAGE:
|
||||
from pathlib import Path as _Path
|
||||
@@ -430,12 +154,17 @@ else:
|
||||
else:
|
||||
out_path = base / f"retrieved_page_rank{rank}.png"
|
||||
img.save(str(out_path))
|
||||
print(f"Saved retrieved page (rank {rank}) to: {out_path}")
|
||||
# Print the retrieval score (document-level MaxSim) alongside the saved path
|
||||
try:
|
||||
score, _doc_id = results[rank - 1]
|
||||
print(f"Saved retrieved page (rank {rank}) [MaxSim={score:.4f}] to: {out_path}")
|
||||
except Exception:
|
||||
print(f"Saved retrieved page (rank {rank}) to: {out_path}")
|
||||
|
||||
## TODO stange results of second page of DeepSeek-V2 rather than the first page
|
||||
|
||||
# %%
|
||||
# Step 5: Similarity maps for top-K results
|
||||
# Step 6: Similarity maps for top-K results
|
||||
if results and SIMILARITY_MAP:
|
||||
token_idx = None if SIM_TOKEN_IDX < 0 else int(SIM_TOKEN_IDX)
|
||||
from pathlib import Path as _Path
|
||||
@@ -472,7 +201,7 @@ if results and SIMILARITY_MAP:
|
||||
|
||||
|
||||
# %%
|
||||
# Step 6: Optional answer generation
|
||||
# Step 7: Optional answer generation
|
||||
if results and ANSWER:
|
||||
qwen = QwenVL(device=device_str)
|
||||
response = qwen.answer(QUERY, top_images[:TOPK], max_new_tokens=MAX_NEW_TOKENS)
|
||||
|
||||
98
benchmarks/issue_159.py
Normal file
98
benchmarks/issue_159.py
Normal file
@@ -0,0 +1,98 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Test script to reproduce issue #159: Slow search performance
|
||||
Configuration:
|
||||
- GPU: A10
|
||||
- embedding_model: BAAI/bge-large-zh-v1.5
|
||||
- data size: 180M text (~90K chunks)
|
||||
- backend: hnsw
|
||||
"""
|
||||
|
||||
import os
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
from leann.api import LeannBuilder, LeannSearcher
|
||||
|
||||
os.environ["LEANN_LOG_LEVEL"] = "DEBUG"
|
||||
|
||||
# Configuration matching the issue
|
||||
INDEX_PATH = "./test_issue_159.leann"
|
||||
EMBEDDING_MODEL = "BAAI/bge-large-zh-v1.5"
|
||||
BACKEND_NAME = "hnsw"
|
||||
|
||||
|
||||
def generate_test_data(num_chunks=90000, chunk_size=2000):
|
||||
"""Generate test data similar to 180MB text (~90K chunks)"""
|
||||
# Each chunk is approximately 2000 characters
|
||||
# 90K chunks * 2000 chars ≈ 180MB
|
||||
chunks = []
|
||||
base_text = (
|
||||
"这是一个测试文档。LEANN是一个创新的向量数据库, 通过图基选择性重计算实现97%的存储节省。"
|
||||
)
|
||||
|
||||
for i in range(num_chunks):
|
||||
chunk = f"{base_text} 文档编号: {i}. " * (chunk_size // len(base_text) + 1)
|
||||
chunks.append(chunk[:chunk_size])
|
||||
|
||||
return chunks
|
||||
|
||||
|
||||
def test_search_performance():
|
||||
"""Test search performance with different configurations"""
|
||||
print("=" * 80)
|
||||
print("Testing LEANN Search Performance (Issue #159)")
|
||||
print("=" * 80)
|
||||
|
||||
meta_path = Path(f"{INDEX_PATH}.meta.json")
|
||||
if meta_path.exists():
|
||||
print(f"\n✓ Index already exists at {INDEX_PATH}")
|
||||
print(" Skipping build phase. Delete the index to rebuild.")
|
||||
else:
|
||||
print("\n📦 Building index...")
|
||||
print(f" Backend: {BACKEND_NAME}")
|
||||
print(f" Embedding Model: {EMBEDDING_MODEL}")
|
||||
print(" Generating test data (~90K chunks, ~180MB)...")
|
||||
|
||||
chunks = generate_test_data(num_chunks=90000)
|
||||
print(f" Generated {len(chunks)} chunks")
|
||||
print(f" Total text size: {sum(len(c) for c in chunks) / (1024 * 1024):.2f} MB")
|
||||
|
||||
builder = LeannBuilder(
|
||||
backend_name=BACKEND_NAME,
|
||||
embedding_model=EMBEDDING_MODEL,
|
||||
)
|
||||
|
||||
print(" Adding chunks to builder...")
|
||||
start_time = time.time()
|
||||
for i, chunk in enumerate(chunks):
|
||||
builder.add_text(chunk)
|
||||
if (i + 1) % 10000 == 0:
|
||||
print(f" Added {i + 1}/{len(chunks)} chunks...")
|
||||
|
||||
print(" Building index...")
|
||||
build_start = time.time()
|
||||
builder.build_index(INDEX_PATH)
|
||||
build_time = time.time() - build_start
|
||||
print(f" ✓ Index built in {build_time:.2f} seconds")
|
||||
|
||||
# Test search with different complexity values
|
||||
print("\n🔍 Testing search performance...")
|
||||
searcher = LeannSearcher(INDEX_PATH)
|
||||
|
||||
test_query = "LEANN向量数据库存储优化"
|
||||
|
||||
# Test with minimal complexity (8)
|
||||
print("\n Test 4: Minimal complexity (8)")
|
||||
print(f" Query: '{test_query}'")
|
||||
start_time = time.time()
|
||||
results = searcher.search(test_query, top_k=10, complexity=8)
|
||||
search_time = time.time() - start_time
|
||||
print(f" ✓ Search completed in {search_time:.2f} seconds")
|
||||
print(f" Results: {len(results)} items")
|
||||
|
||||
print("\n" + "=" * 80)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_search_performance()
|
||||
@@ -143,8 +143,6 @@ def create_hnsw_embedding_server(
|
||||
pass
|
||||
return str(nid)
|
||||
|
||||
# (legacy ZMQ thread removed; using shutdown-capable server only)
|
||||
|
||||
def zmq_server_thread_with_shutdown(shutdown_event):
|
||||
"""ZMQ server thread that respects shutdown signal.
|
||||
|
||||
@@ -158,225 +156,238 @@ def create_hnsw_embedding_server(
|
||||
rep_socket.bind(f"tcp://*:{zmq_port}")
|
||||
logger.info(f"HNSW ZMQ REP server listening on port {zmq_port}")
|
||||
rep_socket.setsockopt(zmq.RCVTIMEO, 1000)
|
||||
# Keep sends from blocking during shutdown; fail fast and drop on close
|
||||
rep_socket.setsockopt(zmq.SNDTIMEO, 1000)
|
||||
rep_socket.setsockopt(zmq.LINGER, 0)
|
||||
|
||||
# Track last request type/length for shape-correct fallbacks
|
||||
last_request_type = "unknown" # 'text' | 'distance' | 'embedding' | 'unknown'
|
||||
last_request_type = "unknown"
|
||||
last_request_length = 0
|
||||
|
||||
def _build_safe_fallback():
|
||||
if last_request_type == "distance":
|
||||
large_distance = 1e9
|
||||
fallback_len = max(0, int(last_request_length))
|
||||
return [[large_distance] * fallback_len]
|
||||
if last_request_type == "embedding":
|
||||
bsz = max(0, int(last_request_length))
|
||||
dim = max(0, int(embedding_dim))
|
||||
if dim > 0:
|
||||
return [[bsz, dim], [0.0] * (bsz * dim)]
|
||||
return [[0, 0], []]
|
||||
if last_request_type == "text":
|
||||
return []
|
||||
return [[0, int(embedding_dim) if embedding_dim > 0 else 0], []]
|
||||
|
||||
def _handle_text_embedding(request: list[str]) -> None:
|
||||
nonlocal last_request_type, last_request_length
|
||||
|
||||
e2e_start = time.time()
|
||||
last_request_type = "text"
|
||||
last_request_length = len(request)
|
||||
embeddings = compute_embeddings(
|
||||
request,
|
||||
model_name,
|
||||
mode=embedding_mode,
|
||||
provider_options=PROVIDER_OPTIONS,
|
||||
)
|
||||
rep_socket.send(msgpack.packb(embeddings.tolist()))
|
||||
e2e_end = time.time()
|
||||
logger.info(f"⏱️ Direct text embedding E2E time: {e2e_end - e2e_start:.6f}s")
|
||||
|
||||
def _handle_distance_request(request: list[Any]) -> None:
|
||||
nonlocal last_request_type, last_request_length
|
||||
|
||||
e2e_start = time.time()
|
||||
node_ids = request[0]
|
||||
if len(node_ids) == 1 and isinstance(node_ids[0], list):
|
||||
node_ids = node_ids[0]
|
||||
query_vector = np.array(request[1], dtype=np.float32)
|
||||
last_request_type = "distance"
|
||||
last_request_length = len(node_ids)
|
||||
|
||||
logger.debug("Distance calculation request received")
|
||||
logger.debug(f" Node IDs: {node_ids}")
|
||||
logger.debug(f" Query vector dim: {len(query_vector)}")
|
||||
|
||||
texts: list[str] = []
|
||||
found_indices: list[int] = []
|
||||
for idx, nid in enumerate(node_ids):
|
||||
try:
|
||||
passage_id = _map_node_id(nid)
|
||||
passage_data = passages.get_passage(passage_id)
|
||||
txt = passage_data.get("text", "")
|
||||
if isinstance(txt, str) and len(txt) > 0:
|
||||
texts.append(txt)
|
||||
found_indices.append(idx)
|
||||
else:
|
||||
logger.error(f"Empty text for passage ID {passage_id}")
|
||||
except KeyError:
|
||||
logger.error(f"Passage ID {nid} not found")
|
||||
except Exception as exc:
|
||||
logger.error(f"Exception looking up passage ID {nid}: {exc}")
|
||||
|
||||
large_distance = 1e9
|
||||
response_distances = [large_distance] * len(node_ids)
|
||||
|
||||
if texts:
|
||||
try:
|
||||
embeddings = compute_embeddings(
|
||||
texts,
|
||||
model_name,
|
||||
mode=embedding_mode,
|
||||
provider_options=PROVIDER_OPTIONS,
|
||||
)
|
||||
logger.info(
|
||||
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
|
||||
)
|
||||
if distance_metric == "l2":
|
||||
partial = np.sum(
|
||||
np.square(embeddings - query_vector.reshape(1, -1)), axis=1
|
||||
)
|
||||
else:
|
||||
partial = -np.dot(embeddings, query_vector)
|
||||
|
||||
for pos, dval in zip(found_indices, partial.flatten().tolist()):
|
||||
response_distances[pos] = float(dval)
|
||||
except Exception as exc:
|
||||
logger.error(f"Distance computation error, using sentinels: {exc}")
|
||||
|
||||
rep_socket.send(msgpack.packb([response_distances], use_single_float=True))
|
||||
e2e_end = time.time()
|
||||
logger.info(f"⏱️ Distance calculation E2E time: {e2e_end - e2e_start:.6f}s")
|
||||
|
||||
def _handle_embedding_by_id(request: Any) -> None:
|
||||
nonlocal last_request_type, last_request_length
|
||||
|
||||
if isinstance(request, list) and len(request) == 1 and isinstance(request[0], list):
|
||||
node_ids = request[0]
|
||||
elif isinstance(request, list):
|
||||
node_ids = request
|
||||
else:
|
||||
node_ids = []
|
||||
|
||||
e2e_start = time.time()
|
||||
last_request_type = "embedding"
|
||||
last_request_length = len(node_ids)
|
||||
logger.info(f"ZMQ received {len(node_ids)} node IDs for embedding fetch")
|
||||
|
||||
if embedding_dim <= 0:
|
||||
dims = [0, 0]
|
||||
flat_data: list[float] = []
|
||||
else:
|
||||
dims = [len(node_ids), embedding_dim]
|
||||
flat_data = [0.0] * (dims[0] * dims[1])
|
||||
|
||||
texts: list[str] = []
|
||||
found_indices: list[int] = []
|
||||
for idx, nid in enumerate(node_ids):
|
||||
try:
|
||||
passage_id = _map_node_id(nid)
|
||||
passage_data = passages.get_passage(passage_id)
|
||||
txt = passage_data.get("text", "")
|
||||
if isinstance(txt, str) and len(txt) > 0:
|
||||
texts.append(txt)
|
||||
found_indices.append(idx)
|
||||
else:
|
||||
logger.error(f"Empty text for passage ID {passage_id}")
|
||||
except KeyError:
|
||||
logger.error(f"Passage with ID {nid} not found")
|
||||
except Exception as exc:
|
||||
logger.error(f"Exception looking up passage ID {nid}: {exc}")
|
||||
|
||||
if texts:
|
||||
try:
|
||||
embeddings = compute_embeddings(
|
||||
texts,
|
||||
model_name,
|
||||
mode=embedding_mode,
|
||||
provider_options=PROVIDER_OPTIONS,
|
||||
)
|
||||
logger.info(
|
||||
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
|
||||
)
|
||||
|
||||
if np.isnan(embeddings).any() or np.isinf(embeddings).any():
|
||||
logger.error(
|
||||
f"NaN or Inf detected in embeddings! Requested IDs: {node_ids[:5]}..."
|
||||
)
|
||||
dims = [0, embedding_dim]
|
||||
flat_data = []
|
||||
else:
|
||||
emb_f32 = np.ascontiguousarray(embeddings, dtype=np.float32)
|
||||
flat = emb_f32.flatten().tolist()
|
||||
for j, pos in enumerate(found_indices):
|
||||
start = pos * embedding_dim
|
||||
end = start + embedding_dim
|
||||
if end <= len(flat_data):
|
||||
flat_data[start:end] = flat[
|
||||
j * embedding_dim : (j + 1) * embedding_dim
|
||||
]
|
||||
except Exception as exc:
|
||||
logger.error(f"Embedding computation error, returning zeros: {exc}")
|
||||
|
||||
response_payload = [dims, flat_data]
|
||||
rep_socket.send(msgpack.packb(response_payload, use_single_float=True))
|
||||
e2e_end = time.time()
|
||||
logger.info(f"⏱️ Fallback Embed by Id E2E time: {e2e_end - e2e_start:.6f}s")
|
||||
|
||||
try:
|
||||
while not shutdown_event.is_set():
|
||||
try:
|
||||
e2e_start = time.time()
|
||||
logger.debug("🔍 Waiting for ZMQ message...")
|
||||
request_bytes = rep_socket.recv()
|
||||
except zmq.Again:
|
||||
continue
|
||||
|
||||
# Rest of the processing logic (same as original)
|
||||
try:
|
||||
request = msgpack.unpackb(request_bytes)
|
||||
except Exception as exc:
|
||||
if shutdown_event.is_set():
|
||||
logger.info("Shutdown in progress, ignoring ZMQ error")
|
||||
break
|
||||
logger.error(f"Error unpacking ZMQ message: {exc}")
|
||||
try:
|
||||
safe = _build_safe_fallback()
|
||||
rep_socket.send(msgpack.packb(safe, use_single_float=True))
|
||||
except Exception:
|
||||
pass
|
||||
continue
|
||||
|
||||
if len(request) == 1 and request[0] == "__QUERY_MODEL__":
|
||||
response_bytes = msgpack.packb([model_name])
|
||||
rep_socket.send(response_bytes)
|
||||
continue
|
||||
|
||||
# Handle direct text embedding request
|
||||
try:
|
||||
# Model query
|
||||
if (
|
||||
isinstance(request, list)
|
||||
and len(request) == 1
|
||||
and request[0] == "__QUERY_MODEL__"
|
||||
):
|
||||
rep_socket.send(msgpack.packb([model_name]))
|
||||
# Direct text embedding
|
||||
elif (
|
||||
isinstance(request, list)
|
||||
and request
|
||||
and all(isinstance(item, str) for item in request)
|
||||
):
|
||||
last_request_type = "text"
|
||||
last_request_length = len(request)
|
||||
embeddings = compute_embeddings(
|
||||
request,
|
||||
model_name,
|
||||
mode=embedding_mode,
|
||||
provider_options=PROVIDER_OPTIONS,
|
||||
)
|
||||
rep_socket.send(msgpack.packb(embeddings.tolist()))
|
||||
e2e_end = time.time()
|
||||
logger.info(f"⏱️ Text embedding E2E time: {e2e_end - e2e_start:.6f}s")
|
||||
continue
|
||||
|
||||
# Handle distance calculation request: [[ids], [query_vector]]
|
||||
if (
|
||||
_handle_text_embedding(request)
|
||||
# Distance calculation: [[ids], [query_vector]]
|
||||
elif (
|
||||
isinstance(request, list)
|
||||
and len(request) == 2
|
||||
and isinstance(request[0], list)
|
||||
and isinstance(request[1], list)
|
||||
):
|
||||
node_ids = request[0]
|
||||
# Handle nested [[ids]] shape defensively
|
||||
if len(node_ids) == 1 and isinstance(node_ids[0], list):
|
||||
node_ids = node_ids[0]
|
||||
query_vector = np.array(request[1], dtype=np.float32)
|
||||
last_request_type = "distance"
|
||||
last_request_length = len(node_ids)
|
||||
|
||||
logger.debug("Distance calculation request received")
|
||||
logger.debug(f" Node IDs: {node_ids}")
|
||||
logger.debug(f" Query vector dim: {len(query_vector)}")
|
||||
|
||||
# Gather texts for found ids
|
||||
texts: list[str] = []
|
||||
found_indices: list[int] = []
|
||||
for idx, nid in enumerate(node_ids):
|
||||
try:
|
||||
passage_id = _map_node_id(nid)
|
||||
passage_data = passages.get_passage(passage_id)
|
||||
txt = passage_data.get("text", "")
|
||||
if isinstance(txt, str) and len(txt) > 0:
|
||||
texts.append(txt)
|
||||
found_indices.append(idx)
|
||||
else:
|
||||
logger.error(f"Empty text for passage ID {passage_id}")
|
||||
except KeyError:
|
||||
logger.error(f"Passage ID {nid} not found")
|
||||
except Exception as e:
|
||||
logger.error(f"Exception looking up passage ID {nid}: {e}")
|
||||
|
||||
# Prepare full-length response with large sentinel values
|
||||
large_distance = 1e9
|
||||
response_distances = [large_distance] * len(node_ids)
|
||||
|
||||
if texts:
|
||||
try:
|
||||
embeddings = compute_embeddings(
|
||||
texts,
|
||||
model_name,
|
||||
mode=embedding_mode,
|
||||
provider_options=PROVIDER_OPTIONS,
|
||||
)
|
||||
logger.info(
|
||||
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
|
||||
)
|
||||
if distance_metric == "l2":
|
||||
partial = np.sum(
|
||||
np.square(embeddings - query_vector.reshape(1, -1)), axis=1
|
||||
)
|
||||
else: # mips or cosine
|
||||
partial = -np.dot(embeddings, query_vector)
|
||||
|
||||
for pos, dval in zip(found_indices, partial.flatten().tolist()):
|
||||
response_distances[pos] = float(dval)
|
||||
except Exception as e:
|
||||
logger.error(f"Distance computation error, using sentinels: {e}")
|
||||
|
||||
# Send response in expected shape [[distances]]
|
||||
rep_socket.send(msgpack.packb([response_distances], use_single_float=True))
|
||||
e2e_end = time.time()
|
||||
logger.info(f"⏱️ Distance calculation E2E time: {e2e_end - e2e_start:.6f}s")
|
||||
continue
|
||||
|
||||
# Fallback: treat as embedding-by-id request
|
||||
if (
|
||||
isinstance(request, list)
|
||||
and len(request) == 1
|
||||
and isinstance(request[0], list)
|
||||
):
|
||||
node_ids = request[0]
|
||||
elif isinstance(request, list):
|
||||
node_ids = request
|
||||
else:
|
||||
node_ids = []
|
||||
last_request_type = "embedding"
|
||||
last_request_length = len(node_ids)
|
||||
logger.info(f"ZMQ received {len(node_ids)} node IDs for embedding fetch")
|
||||
|
||||
# Preallocate zero-filled flat data for robustness
|
||||
if embedding_dim <= 0:
|
||||
dims = [0, 0]
|
||||
flat_data: list[float] = []
|
||||
else:
|
||||
dims = [len(node_ids), embedding_dim]
|
||||
flat_data = [0.0] * (dims[0] * dims[1])
|
||||
|
||||
# Collect texts for found ids
|
||||
texts: list[str] = []
|
||||
found_indices: list[int] = []
|
||||
for idx, nid in enumerate(node_ids):
|
||||
try:
|
||||
passage_id = _map_node_id(nid)
|
||||
passage_data = passages.get_passage(passage_id)
|
||||
txt = passage_data.get("text", "")
|
||||
if isinstance(txt, str) and len(txt) > 0:
|
||||
texts.append(txt)
|
||||
found_indices.append(idx)
|
||||
else:
|
||||
logger.error(f"Empty text for passage ID {passage_id}")
|
||||
except KeyError:
|
||||
logger.error(f"Passage with ID {nid} not found")
|
||||
except Exception as e:
|
||||
logger.error(f"Exception looking up passage ID {nid}: {e}")
|
||||
|
||||
if texts:
|
||||
try:
|
||||
embeddings = compute_embeddings(
|
||||
texts,
|
||||
model_name,
|
||||
mode=embedding_mode,
|
||||
provider_options=PROVIDER_OPTIONS,
|
||||
)
|
||||
logger.info(
|
||||
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
|
||||
)
|
||||
|
||||
if np.isnan(embeddings).any() or np.isinf(embeddings).any():
|
||||
logger.error(
|
||||
f"NaN or Inf detected in embeddings! Requested IDs: {node_ids[:5]}..."
|
||||
)
|
||||
dims = [0, embedding_dim]
|
||||
flat_data = []
|
||||
else:
|
||||
emb_f32 = np.ascontiguousarray(embeddings, dtype=np.float32)
|
||||
flat = emb_f32.flatten().tolist()
|
||||
for j, pos in enumerate(found_indices):
|
||||
start = pos * embedding_dim
|
||||
end = start + embedding_dim
|
||||
if end <= len(flat_data):
|
||||
flat_data[start:end] = flat[
|
||||
j * embedding_dim : (j + 1) * embedding_dim
|
||||
]
|
||||
except Exception as e:
|
||||
logger.error(f"Embedding computation error, returning zeros: {e}")
|
||||
|
||||
response_payload = [dims, flat_data]
|
||||
response_bytes = msgpack.packb(response_payload, use_single_float=True)
|
||||
|
||||
rep_socket.send(response_bytes)
|
||||
e2e_end = time.time()
|
||||
logger.info(f"⏱️ ZMQ E2E time: {e2e_end - e2e_start:.6f}s")
|
||||
|
||||
except zmq.Again:
|
||||
# Timeout - check shutdown_event and continue
|
||||
continue
|
||||
except Exception as e:
|
||||
if not shutdown_event.is_set():
|
||||
logger.error(f"Error in ZMQ server loop: {e}")
|
||||
# Shape-correct fallback
|
||||
try:
|
||||
if last_request_type == "distance":
|
||||
large_distance = 1e9
|
||||
fallback_len = max(0, int(last_request_length))
|
||||
safe = [[large_distance] * fallback_len]
|
||||
elif last_request_type == "embedding":
|
||||
bsz = max(0, int(last_request_length))
|
||||
dim = max(0, int(embedding_dim))
|
||||
safe = (
|
||||
[[bsz, dim], [0.0] * (bsz * dim)] if dim > 0 else [[0, 0], []]
|
||||
)
|
||||
elif last_request_type == "text":
|
||||
safe = [] # direct text embeddings expectation is a flat list
|
||||
else:
|
||||
safe = [[0, int(embedding_dim) if embedding_dim > 0 else 0], []]
|
||||
rep_socket.send(msgpack.packb(safe, use_single_float=True))
|
||||
except Exception:
|
||||
pass
|
||||
_handle_distance_request(request)
|
||||
# Embedding-by-id fallback
|
||||
else:
|
||||
_handle_embedding_by_id(request)
|
||||
except Exception as exc:
|
||||
if shutdown_event.is_set():
|
||||
logger.info("Shutdown in progress, ignoring ZMQ error")
|
||||
break
|
||||
logger.error(f"Error in ZMQ server loop: {exc}")
|
||||
try:
|
||||
safe = _build_safe_fallback()
|
||||
rep_socket.send(msgpack.packb(safe, use_single_float=True))
|
||||
except Exception:
|
||||
pass
|
||||
finally:
|
||||
try:
|
||||
rep_socket.close(0)
|
||||
|
||||
Submodule packages/leann-backend-hnsw/third_party/faiss updated: e2d243c40d...301bf24f14
@@ -864,7 +864,13 @@ class LeannBuilder:
|
||||
|
||||
|
||||
class LeannSearcher:
|
||||
def __init__(self, index_path: str, enable_warmup: bool = False, **backend_kwargs):
|
||||
def __init__(
|
||||
self,
|
||||
index_path: str,
|
||||
enable_warmup: bool = True,
|
||||
recompute_embeddings: bool = True,
|
||||
**backend_kwargs,
|
||||
):
|
||||
# Fix path resolution for Colab and other environments
|
||||
if not Path(index_path).is_absolute():
|
||||
index_path = str(Path(index_path).resolve())
|
||||
@@ -895,14 +901,32 @@ class LeannSearcher:
|
||||
backend_factory = BACKEND_REGISTRY.get(backend_name)
|
||||
if backend_factory is None:
|
||||
raise ValueError(f"Backend '{backend_name}' not found.")
|
||||
|
||||
# Global recompute flag for this searcher (explicit knob, default True)
|
||||
self.recompute_embeddings: bool = bool(recompute_embeddings)
|
||||
|
||||
# Warmup flag: keep using the existing enable_warmup parameter,
|
||||
# but default it to True so cold-start happens earlier.
|
||||
self._warmup: bool = bool(enable_warmup)
|
||||
|
||||
final_kwargs = {**self.meta_data.get("backend_kwargs", {}), **backend_kwargs}
|
||||
final_kwargs["enable_warmup"] = enable_warmup
|
||||
final_kwargs["enable_warmup"] = self._warmup
|
||||
if self.embedding_options:
|
||||
final_kwargs.setdefault("embedding_options", self.embedding_options)
|
||||
self.backend_impl: LeannBackendSearcherInterface = backend_factory.searcher(
|
||||
index_path, **final_kwargs
|
||||
)
|
||||
|
||||
# Optional one-shot warmup at construction time to hide cold-start latency.
|
||||
if self._warmup:
|
||||
try:
|
||||
_ = self.backend_impl.compute_query_embedding(
|
||||
"__LEANN_WARMUP__",
|
||||
use_server_if_available=self.recompute_embeddings,
|
||||
)
|
||||
except Exception as exc:
|
||||
logger.warning(f"Warmup embedding failed (ignored): {exc}")
|
||||
|
||||
def search(
|
||||
self,
|
||||
query: str,
|
||||
@@ -910,7 +934,7 @@ class LeannSearcher:
|
||||
complexity: int = 64,
|
||||
beam_width: int = 1,
|
||||
prune_ratio: float = 0.0,
|
||||
recompute_embeddings: bool = True,
|
||||
recompute_embeddings: Optional[bool] = None,
|
||||
pruning_strategy: Literal["global", "local", "proportional"] = "global",
|
||||
expected_zmq_port: int = 5557,
|
||||
metadata_filters: Optional[dict[str, dict[str, Union[str, int, float, bool, list]]]] = None,
|
||||
@@ -927,7 +951,8 @@ class LeannSearcher:
|
||||
complexity: Search complexity/candidate list size, higher = more accurate but slower
|
||||
beam_width: Number of parallel search paths/IO requests per iteration
|
||||
prune_ratio: Ratio of neighbors to prune via approximate distance (0.0-1.0)
|
||||
recompute_embeddings: Whether to fetch fresh embeddings from server vs use stored codes
|
||||
recompute_embeddings: (Deprecated) Per-call override for recompute mode.
|
||||
Configure this at LeannSearcher(..., recompute_embeddings=...) instead.
|
||||
pruning_strategy: Candidate selection strategy - "global" (default), "local", or "proportional"
|
||||
expected_zmq_port: ZMQ port for embedding server communication
|
||||
metadata_filters: Optional filters to apply to search results based on metadata.
|
||||
@@ -966,8 +991,19 @@ class LeannSearcher:
|
||||
|
||||
zmq_port = None
|
||||
|
||||
# Resolve effective recompute flag for this search.
|
||||
if recompute_embeddings is not None:
|
||||
logger.warning(
|
||||
"LeannSearcher.search(..., recompute_embeddings=...) is deprecated and "
|
||||
"will be removed in a future version. Configure recompute at "
|
||||
"LeannSearcher(..., recompute_embeddings=...) instead."
|
||||
)
|
||||
effective_recompute = bool(recompute_embeddings)
|
||||
else:
|
||||
effective_recompute = self.recompute_embeddings
|
||||
|
||||
start_time = time.time()
|
||||
if recompute_embeddings:
|
||||
if effective_recompute:
|
||||
zmq_port = self.backend_impl._ensure_server_running(
|
||||
self.meta_path_str,
|
||||
port=expected_zmq_port,
|
||||
@@ -981,7 +1017,7 @@ class LeannSearcher:
|
||||
|
||||
query_embedding = self.backend_impl.compute_query_embedding(
|
||||
query,
|
||||
use_server_if_available=recompute_embeddings,
|
||||
use_server_if_available=effective_recompute,
|
||||
zmq_port=zmq_port,
|
||||
)
|
||||
logger.info(f" Generated embedding shape: {query_embedding.shape}")
|
||||
@@ -993,7 +1029,7 @@ class LeannSearcher:
|
||||
"complexity": complexity,
|
||||
"beam_width": beam_width,
|
||||
"prune_ratio": prune_ratio,
|
||||
"recompute_embeddings": recompute_embeddings,
|
||||
"recompute_embeddings": effective_recompute,
|
||||
"pruning_strategy": pruning_strategy,
|
||||
"zmq_port": zmq_port,
|
||||
}
|
||||
|
||||
@@ -5,12 +5,15 @@ Packaged within leann-core so installed wheels can import it reliably.
|
||||
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
from typing import Any, Optional
|
||||
|
||||
from llama_index.core.node_parser import SentenceSplitter
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Flag to ensure AST token warning only shown once per session
|
||||
_ast_token_warning_shown = False
|
||||
|
||||
|
||||
def estimate_token_count(text: str) -> int:
|
||||
"""
|
||||
@@ -174,37 +177,44 @@ def create_ast_chunks(
|
||||
max_chunk_size: int = 512,
|
||||
chunk_overlap: int = 64,
|
||||
metadata_template: str = "default",
|
||||
) -> list[str]:
|
||||
) -> list[dict[str, Any]]:
|
||||
"""Create AST-aware chunks from code documents using astchunk.
|
||||
|
||||
Falls back to traditional chunking if astchunk is unavailable.
|
||||
|
||||
Returns:
|
||||
List of dicts with {"text": str, "metadata": dict}
|
||||
"""
|
||||
try:
|
||||
from astchunk import ASTChunkBuilder # optional dependency
|
||||
except ImportError as e:
|
||||
logger.error(f"astchunk not available: {e}")
|
||||
logger.info("Falling back to traditional chunking for code files")
|
||||
return create_traditional_chunks(documents, max_chunk_size, chunk_overlap)
|
||||
return _traditional_chunks_as_dicts(documents, max_chunk_size, chunk_overlap)
|
||||
|
||||
all_chunks = []
|
||||
for doc in documents:
|
||||
language = doc.metadata.get("language")
|
||||
if not language:
|
||||
logger.warning("No language detected; falling back to traditional chunking")
|
||||
all_chunks.extend(create_traditional_chunks([doc], max_chunk_size, chunk_overlap))
|
||||
all_chunks.extend(_traditional_chunks_as_dicts([doc], max_chunk_size, chunk_overlap))
|
||||
continue
|
||||
|
||||
try:
|
||||
# Warn if AST chunk size + overlap might exceed common token limits
|
||||
# Warn once if AST chunk size + overlap might exceed common token limits
|
||||
# Note: Actual truncation happens at embedding time with dynamic model limits
|
||||
global _ast_token_warning_shown
|
||||
estimated_max_tokens = int(
|
||||
(max_chunk_size + chunk_overlap) * 1.2
|
||||
) # Conservative estimate
|
||||
if estimated_max_tokens > 512:
|
||||
if estimated_max_tokens > 512 and not _ast_token_warning_shown:
|
||||
logger.warning(
|
||||
f"AST chunk size ({max_chunk_size}) + overlap ({chunk_overlap}) = {max_chunk_size + chunk_overlap} chars "
|
||||
f"may exceed 512 token limit (~{estimated_max_tokens} tokens estimated). "
|
||||
f"Consider reducing --ast-chunk-size to {int(400 / 1.2)} or --ast-chunk-overlap to {int(50 / 1.2)}"
|
||||
f"Consider reducing --ast-chunk-size to {int(400 / 1.2)} or --ast-chunk-overlap to {int(50 / 1.2)}. "
|
||||
f"Note: Chunks will be auto-truncated at embedding time based on your model's actual token limit."
|
||||
)
|
||||
_ast_token_warning_shown = True
|
||||
|
||||
configs = {
|
||||
"max_chunk_size": max_chunk_size,
|
||||
@@ -229,17 +239,40 @@ def create_ast_chunks(
|
||||
|
||||
chunks = chunk_builder.chunkify(code_content)
|
||||
for chunk in chunks:
|
||||
chunk_text = None
|
||||
astchunk_metadata = {}
|
||||
|
||||
if hasattr(chunk, "text"):
|
||||
chunk_text = chunk.text
|
||||
elif isinstance(chunk, dict) and "text" in chunk:
|
||||
chunk_text = chunk["text"]
|
||||
elif isinstance(chunk, str):
|
||||
chunk_text = chunk
|
||||
elif isinstance(chunk, dict):
|
||||
# Handle astchunk format: {"content": "...", "metadata": {...}}
|
||||
if "content" in chunk:
|
||||
chunk_text = chunk["content"]
|
||||
astchunk_metadata = chunk.get("metadata", {})
|
||||
elif "text" in chunk:
|
||||
chunk_text = chunk["text"]
|
||||
else:
|
||||
chunk_text = str(chunk) # Last resort
|
||||
else:
|
||||
chunk_text = str(chunk)
|
||||
|
||||
if chunk_text and chunk_text.strip():
|
||||
all_chunks.append(chunk_text.strip())
|
||||
# Extract document-level metadata
|
||||
doc_metadata = {
|
||||
"file_path": doc.metadata.get("file_path", ""),
|
||||
"file_name": doc.metadata.get("file_name", ""),
|
||||
}
|
||||
if "creation_date" in doc.metadata:
|
||||
doc_metadata["creation_date"] = doc.metadata["creation_date"]
|
||||
if "last_modified_date" in doc.metadata:
|
||||
doc_metadata["last_modified_date"] = doc.metadata["last_modified_date"]
|
||||
|
||||
# Merge document metadata + astchunk metadata
|
||||
combined_metadata = {**doc_metadata, **astchunk_metadata}
|
||||
|
||||
all_chunks.append({"text": chunk_text.strip(), "metadata": combined_metadata})
|
||||
|
||||
logger.info(
|
||||
f"Created {len(chunks)} AST chunks from {language} file: {doc.metadata.get('file_name', 'unknown')}"
|
||||
@@ -247,15 +280,19 @@ def create_ast_chunks(
|
||||
except Exception as e:
|
||||
logger.warning(f"AST chunking failed for {language} file: {e}")
|
||||
logger.info("Falling back to traditional chunking")
|
||||
all_chunks.extend(create_traditional_chunks([doc], max_chunk_size, chunk_overlap))
|
||||
all_chunks.extend(_traditional_chunks_as_dicts([doc], max_chunk_size, chunk_overlap))
|
||||
|
||||
return all_chunks
|
||||
|
||||
|
||||
def create_traditional_chunks(
|
||||
documents, chunk_size: int = 256, chunk_overlap: int = 128
|
||||
) -> list[str]:
|
||||
"""Create traditional text chunks using LlamaIndex SentenceSplitter."""
|
||||
) -> list[dict[str, Any]]:
|
||||
"""Create traditional text chunks using LlamaIndex SentenceSplitter.
|
||||
|
||||
Returns:
|
||||
List of dicts with {"text": str, "metadata": dict}
|
||||
"""
|
||||
if chunk_size <= 0:
|
||||
logger.warning(f"Invalid chunk_size={chunk_size}, using default value of 256")
|
||||
chunk_size = 256
|
||||
@@ -271,19 +308,40 @@ def create_traditional_chunks(
|
||||
paragraph_separator="\n\n",
|
||||
)
|
||||
|
||||
all_texts = []
|
||||
result = []
|
||||
for doc in documents:
|
||||
# Extract document-level metadata
|
||||
doc_metadata = {
|
||||
"file_path": doc.metadata.get("file_path", ""),
|
||||
"file_name": doc.metadata.get("file_name", ""),
|
||||
}
|
||||
if "creation_date" in doc.metadata:
|
||||
doc_metadata["creation_date"] = doc.metadata["creation_date"]
|
||||
if "last_modified_date" in doc.metadata:
|
||||
doc_metadata["last_modified_date"] = doc.metadata["last_modified_date"]
|
||||
|
||||
try:
|
||||
nodes = node_parser.get_nodes_from_documents([doc])
|
||||
if nodes:
|
||||
all_texts.extend(node.get_content() for node in nodes)
|
||||
for node in nodes:
|
||||
result.append({"text": node.get_content(), "metadata": doc_metadata})
|
||||
except Exception as e:
|
||||
logger.error(f"Traditional chunking failed for document: {e}")
|
||||
content = doc.get_content()
|
||||
if content and content.strip():
|
||||
all_texts.append(content.strip())
|
||||
result.append({"text": content.strip(), "metadata": doc_metadata})
|
||||
|
||||
return all_texts
|
||||
return result
|
||||
|
||||
|
||||
def _traditional_chunks_as_dicts(
|
||||
documents, chunk_size: int = 256, chunk_overlap: int = 128
|
||||
) -> list[dict[str, Any]]:
|
||||
"""Helper: Traditional chunking that returns dict format for consistency.
|
||||
|
||||
This is now just an alias for create_traditional_chunks for backwards compatibility.
|
||||
"""
|
||||
return create_traditional_chunks(documents, chunk_size, chunk_overlap)
|
||||
|
||||
|
||||
def create_text_chunks(
|
||||
@@ -295,8 +353,12 @@ def create_text_chunks(
|
||||
ast_chunk_overlap: int = 64,
|
||||
code_file_extensions: Optional[list[str]] = None,
|
||||
ast_fallback_traditional: bool = True,
|
||||
) -> list[str]:
|
||||
"""Create text chunks from documents with optional AST support for code files."""
|
||||
) -> list[dict[str, Any]]:
|
||||
"""Create text chunks from documents with optional AST support for code files.
|
||||
|
||||
Returns:
|
||||
List of dicts with {"text": str, "metadata": dict}
|
||||
"""
|
||||
if not documents:
|
||||
logger.warning("No documents provided for chunking")
|
||||
return []
|
||||
@@ -331,24 +393,17 @@ def create_text_chunks(
|
||||
logger.error(f"AST chunking failed: {e}")
|
||||
if ast_fallback_traditional:
|
||||
all_chunks.extend(
|
||||
create_traditional_chunks(code_docs, chunk_size, chunk_overlap)
|
||||
_traditional_chunks_as_dicts(code_docs, chunk_size, chunk_overlap)
|
||||
)
|
||||
else:
|
||||
raise
|
||||
if text_docs:
|
||||
all_chunks.extend(create_traditional_chunks(text_docs, chunk_size, chunk_overlap))
|
||||
all_chunks.extend(_traditional_chunks_as_dicts(text_docs, chunk_size, chunk_overlap))
|
||||
else:
|
||||
all_chunks = create_traditional_chunks(documents, chunk_size, chunk_overlap)
|
||||
all_chunks = _traditional_chunks_as_dicts(documents, chunk_size, chunk_overlap)
|
||||
|
||||
logger.info(f"Total chunks created: {len(all_chunks)}")
|
||||
|
||||
# Validate chunk token limits (default to 512 for safety)
|
||||
# This provides a safety net for embedding models with token limits
|
||||
validated_chunks, num_truncated = validate_chunk_token_limits(all_chunks, max_tokens=512)
|
||||
|
||||
if num_truncated > 0:
|
||||
logger.info(
|
||||
f"Post-chunking validation: {num_truncated} chunks were truncated to fit 512 token limit"
|
||||
)
|
||||
|
||||
return validated_chunks
|
||||
# Note: Token truncation is now handled at embedding time with dynamic model limits
|
||||
# See get_model_token_limit() and truncate_to_token_limit() in embedding_compute.py
|
||||
return all_chunks
|
||||
|
||||
@@ -1279,13 +1279,8 @@ Examples:
|
||||
ast_fallback_traditional=getattr(args, "ast_fallback_traditional", True),
|
||||
)
|
||||
|
||||
# Note: AST chunking currently returns plain text chunks without metadata
|
||||
# We preserve basic file info by associating chunks with their source documents
|
||||
# For better metadata preservation, documents list order should be maintained
|
||||
for chunk_text in chunk_texts:
|
||||
# TODO: Enhance create_text_chunks to return metadata alongside text
|
||||
# For now, we store chunks with empty metadata
|
||||
all_texts.append({"text": chunk_text, "metadata": {}})
|
||||
# create_text_chunks now returns list[dict] with metadata preserved
|
||||
all_texts.extend(chunk_texts)
|
||||
|
||||
except ImportError as e:
|
||||
print(
|
||||
|
||||
@@ -10,72 +10,63 @@ import time
|
||||
from typing import Any, Optional
|
||||
|
||||
import numpy as np
|
||||
import tiktoken
|
||||
import torch
|
||||
|
||||
from .settings import resolve_ollama_host, resolve_openai_api_key, resolve_openai_base_url
|
||||
|
||||
# Set up logger with proper level
|
||||
logger = logging.getLogger(__name__)
|
||||
LOG_LEVEL = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
|
||||
log_level = getattr(logging, LOG_LEVEL, logging.WARNING)
|
||||
logger.setLevel(log_level)
|
||||
|
||||
def truncate_to_token_limit(texts: list[str], max_tokens: int = 512) -> list[str]:
|
||||
"""
|
||||
Truncate texts to token limit using tiktoken or conservative character truncation.
|
||||
|
||||
Args:
|
||||
texts: List of texts to truncate
|
||||
max_tokens: Maximum tokens allowed per text
|
||||
|
||||
Returns:
|
||||
List of truncated texts that should fit within token limit
|
||||
"""
|
||||
try:
|
||||
import tiktoken
|
||||
|
||||
encoder = tiktoken.get_encoding("cl100k_base")
|
||||
truncated = []
|
||||
|
||||
for text in texts:
|
||||
tokens = encoder.encode(text)
|
||||
if len(tokens) > max_tokens:
|
||||
# Truncate to max_tokens and decode back to text
|
||||
truncated_tokens = tokens[:max_tokens]
|
||||
truncated_text = encoder.decode(truncated_tokens)
|
||||
truncated.append(truncated_text)
|
||||
logger.warning(
|
||||
f"Truncated text from {len(tokens)} to {max_tokens} tokens "
|
||||
f"(from {len(text)} to {len(truncated_text)} characters)"
|
||||
)
|
||||
else:
|
||||
truncated.append(text)
|
||||
return truncated
|
||||
|
||||
except ImportError:
|
||||
# Fallback: Conservative character truncation
|
||||
# Assume worst case: 1.5 tokens per character for code content
|
||||
char_limit = int(max_tokens / 1.5)
|
||||
truncated = []
|
||||
|
||||
for text in texts:
|
||||
if len(text) > char_limit:
|
||||
truncated_text = text[:char_limit]
|
||||
truncated.append(truncated_text)
|
||||
logger.warning(
|
||||
f"Truncated text from {len(text)} to {char_limit} characters "
|
||||
f"(conservative estimate for {max_tokens} tokens)"
|
||||
)
|
||||
else:
|
||||
truncated.append(text)
|
||||
return truncated
|
||||
# Token limit registry for embedding models
|
||||
# Used as fallback when dynamic discovery fails (e.g., LM Studio, OpenAI)
|
||||
# Ollama models use dynamic discovery via /api/show
|
||||
EMBEDDING_MODEL_LIMITS = {
|
||||
# Nomic models (common across servers)
|
||||
"nomic-embed-text": 2048, # Corrected from 512 - verified via /api/show
|
||||
"nomic-embed-text-v1.5": 2048,
|
||||
"nomic-embed-text-v2": 512,
|
||||
# Other embedding models
|
||||
"mxbai-embed-large": 512,
|
||||
"all-minilm": 512,
|
||||
"bge-m3": 8192,
|
||||
"snowflake-arctic-embed": 512,
|
||||
# OpenAI models
|
||||
"text-embedding-3-small": 8192,
|
||||
"text-embedding-3-large": 8192,
|
||||
"text-embedding-ada-002": 8192,
|
||||
}
|
||||
|
||||
|
||||
def get_model_token_limit(model_name: str) -> int:
|
||||
def get_model_token_limit(
|
||||
model_name: str,
|
||||
base_url: Optional[str] = None,
|
||||
default: int = 2048,
|
||||
) -> int:
|
||||
"""
|
||||
Get token limit for a given embedding model.
|
||||
Uses hybrid approach: dynamic discovery for Ollama, registry fallback for others.
|
||||
|
||||
Args:
|
||||
model_name: Name of the embedding model
|
||||
base_url: Base URL of the embedding server (for dynamic discovery)
|
||||
default: Default token limit if model not found
|
||||
|
||||
Returns:
|
||||
Token limit for the model, defaults to 512 if unknown
|
||||
Token limit for the model in tokens
|
||||
"""
|
||||
# Try Ollama dynamic discovery if base_url provided
|
||||
if base_url:
|
||||
# Detect Ollama servers by port or "ollama" in URL
|
||||
if "11434" in base_url or "ollama" in base_url.lower():
|
||||
limit = _query_ollama_context_limit(model_name, base_url)
|
||||
if limit:
|
||||
return limit
|
||||
|
||||
# Fallback to known model registry with version handling (from PR #154)
|
||||
# Handle versioned model names (e.g., "nomic-embed-text:latest" -> "nomic-embed-text")
|
||||
base_model_name = model_name.split(":")[0]
|
||||
|
||||
@@ -92,31 +83,111 @@ def get_model_token_limit(model_name: str) -> int:
|
||||
if known_model in base_model_name or base_model_name in known_model:
|
||||
return limit
|
||||
|
||||
# Default to conservative 512 token limit
|
||||
logger.warning(f"Unknown model '{model_name}', using default 512 token limit")
|
||||
return 512
|
||||
# Default fallback
|
||||
logger.warning(f"Unknown model '{model_name}', using default {default} token limit")
|
||||
return default
|
||||
|
||||
|
||||
# Set up logger with proper level
|
||||
logger = logging.getLogger(__name__)
|
||||
LOG_LEVEL = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
|
||||
log_level = getattr(logging, LOG_LEVEL, logging.WARNING)
|
||||
logger.setLevel(log_level)
|
||||
def truncate_to_token_limit(texts: list[str], token_limit: int) -> list[str]:
|
||||
"""
|
||||
Truncate texts to fit within token limit using tiktoken.
|
||||
|
||||
Args:
|
||||
texts: List of text strings to truncate
|
||||
token_limit: Maximum number of tokens allowed
|
||||
|
||||
Returns:
|
||||
List of truncated texts (same length as input)
|
||||
"""
|
||||
if not texts:
|
||||
return []
|
||||
|
||||
# Use tiktoken with cl100k_base encoding
|
||||
enc = tiktoken.get_encoding("cl100k_base")
|
||||
|
||||
truncated_texts = []
|
||||
truncation_count = 0
|
||||
total_tokens_removed = 0
|
||||
max_original_length = 0
|
||||
|
||||
for i, text in enumerate(texts):
|
||||
tokens = enc.encode(text)
|
||||
original_length = len(tokens)
|
||||
|
||||
if original_length <= token_limit:
|
||||
# Text is within limit, keep as is
|
||||
truncated_texts.append(text)
|
||||
else:
|
||||
# Truncate to token_limit
|
||||
truncated_tokens = tokens[:token_limit]
|
||||
truncated_text = enc.decode(truncated_tokens)
|
||||
truncated_texts.append(truncated_text)
|
||||
|
||||
# Track truncation statistics
|
||||
truncation_count += 1
|
||||
tokens_removed = original_length - token_limit
|
||||
total_tokens_removed += tokens_removed
|
||||
max_original_length = max(max_original_length, original_length)
|
||||
|
||||
# Log individual truncation at WARNING level (first few only)
|
||||
if truncation_count <= 3:
|
||||
logger.warning(
|
||||
f"Text {i + 1} truncated: {original_length} → {token_limit} tokens "
|
||||
f"({tokens_removed} tokens removed)"
|
||||
)
|
||||
elif truncation_count == 4:
|
||||
logger.warning("Further truncation warnings suppressed...")
|
||||
|
||||
# Log summary at INFO level
|
||||
if truncation_count > 0:
|
||||
logger.warning(
|
||||
f"Truncation summary: {truncation_count}/{len(texts)} texts truncated "
|
||||
f"(removed {total_tokens_removed} tokens total, longest was {max_original_length} tokens)"
|
||||
)
|
||||
else:
|
||||
logger.debug(
|
||||
f"No truncation needed - all {len(texts)} texts within {token_limit} token limit"
|
||||
)
|
||||
|
||||
return truncated_texts
|
||||
|
||||
|
||||
def _query_ollama_context_limit(model_name: str, base_url: str) -> Optional[int]:
|
||||
"""
|
||||
Query Ollama /api/show for model context limit.
|
||||
|
||||
Args:
|
||||
model_name: Name of the Ollama model
|
||||
base_url: Base URL of the Ollama server
|
||||
|
||||
Returns:
|
||||
Context limit in tokens if found, None otherwise
|
||||
"""
|
||||
try:
|
||||
import requests
|
||||
|
||||
response = requests.post(
|
||||
f"{base_url}/api/show",
|
||||
json={"name": model_name},
|
||||
timeout=5,
|
||||
)
|
||||
if response.status_code == 200:
|
||||
data = response.json()
|
||||
if "model_info" in data:
|
||||
# Look for *.context_length in model_info
|
||||
for key, value in data["model_info"].items():
|
||||
if "context_length" in key and isinstance(value, int):
|
||||
logger.info(f"Detected {model_name} context limit: {value} tokens")
|
||||
return value
|
||||
except Exception as e:
|
||||
logger.debug(f"Failed to query Ollama context limit: {e}")
|
||||
|
||||
return None
|
||||
|
||||
|
||||
# Global model cache to avoid repeated loading
|
||||
_model_cache: dict[str, Any] = {}
|
||||
|
||||
# Known embedding model token limits
|
||||
EMBEDDING_MODEL_LIMITS = {
|
||||
"nomic-embed-text": 512,
|
||||
"nomic-embed-text-v2": 512,
|
||||
"mxbai-embed-large": 512,
|
||||
"all-minilm": 512,
|
||||
"bge-m3": 8192,
|
||||
"snowflake-arctic-embed": 512,
|
||||
# Add more models as needed
|
||||
}
|
||||
|
||||
|
||||
def compute_embeddings(
|
||||
texts: list[str],
|
||||
@@ -144,9 +215,14 @@ def compute_embeddings(
|
||||
Normalized embeddings array, shape: (len(texts), embedding_dim)
|
||||
"""
|
||||
provider_options = provider_options or {}
|
||||
wrapper_start_time = time.time()
|
||||
logger.debug(
|
||||
f"[compute_embeddings] entry: mode={mode}, model='{model_name}', text_count={len(texts)}"
|
||||
)
|
||||
|
||||
if mode == "sentence-transformers":
|
||||
return compute_embeddings_sentence_transformers(
|
||||
inner_start_time = time.time()
|
||||
result = compute_embeddings_sentence_transformers(
|
||||
texts,
|
||||
model_name,
|
||||
is_build=is_build,
|
||||
@@ -155,6 +231,14 @@ def compute_embeddings(
|
||||
manual_tokenize=manual_tokenize,
|
||||
max_length=max_length,
|
||||
)
|
||||
inner_end_time = time.time()
|
||||
wrapper_end_time = time.time()
|
||||
logger.debug(
|
||||
"[compute_embeddings] sentence-transformers timings: "
|
||||
f"inner={inner_end_time - inner_start_time:.6f}s, "
|
||||
f"wrapper_total={wrapper_end_time - wrapper_start_time:.6f}s"
|
||||
)
|
||||
return result
|
||||
elif mode == "openai":
|
||||
return compute_embeddings_openai(
|
||||
texts,
|
||||
@@ -200,6 +284,7 @@ def compute_embeddings_sentence_transformers(
|
||||
is_build: Whether this is a build operation (shows progress bar)
|
||||
adaptive_optimization: Whether to use adaptive optimization based on batch size
|
||||
"""
|
||||
outer_start_time = time.time()
|
||||
# Handle empty input
|
||||
if not texts:
|
||||
raise ValueError("Cannot compute embeddings for empty text list")
|
||||
@@ -230,7 +315,14 @@ def compute_embeddings_sentence_transformers(
|
||||
# Create cache key
|
||||
cache_key = f"sentence_transformers_{model_name}_{device}_{use_fp16}_optimized"
|
||||
|
||||
pre_model_init_end_time = time.time()
|
||||
logger.debug(
|
||||
"compute_embeddings_sentence_transformers pre-model-init time "
|
||||
f"(device/batch selection etc.): {pre_model_init_end_time - outer_start_time:.6f}s"
|
||||
)
|
||||
|
||||
# Check if model is already cached
|
||||
start_time = time.time()
|
||||
if cache_key in _model_cache:
|
||||
logger.info(f"Using cached optimized model: {model_name}")
|
||||
model = _model_cache[cache_key]
|
||||
@@ -370,10 +462,13 @@ def compute_embeddings_sentence_transformers(
|
||||
_model_cache[cache_key] = model
|
||||
logger.info(f"Model cached: {cache_key}")
|
||||
|
||||
# Compute embeddings with optimized inference mode
|
||||
logger.info(
|
||||
f"Starting embedding computation... (batch_size: {batch_size}, manual_tokenize={manual_tokenize})"
|
||||
)
|
||||
end_time = time.time()
|
||||
|
||||
# Compute embeddings with optimized inference mode
|
||||
logger.info(
|
||||
f"Starting embedding computation... (batch_size: {batch_size}, manual_tokenize={manual_tokenize})"
|
||||
)
|
||||
logger.info(f"start sentence transformers {model} takes {end_time - start_time}")
|
||||
|
||||
start_time = time.time()
|
||||
if not manual_tokenize:
|
||||
@@ -394,32 +489,46 @@ def compute_embeddings_sentence_transformers(
|
||||
except Exception:
|
||||
pass
|
||||
else:
|
||||
# Manual tokenization + forward pass using HF AutoTokenizer/AutoModel
|
||||
# Manual tokenization + forward pass using HF AutoTokenizer/AutoModel.
|
||||
# This path is reserved for an aggressively optimized FP pipeline
|
||||
# (no quantization), mainly for experimentation.
|
||||
try:
|
||||
from transformers import AutoModel, AutoTokenizer # type: ignore
|
||||
except Exception as e:
|
||||
raise ImportError(f"transformers is required for manual_tokenize=True: {e}")
|
||||
|
||||
# Cache tokenizer and model
|
||||
tok_cache_key = f"hf_tokenizer_{model_name}"
|
||||
mdl_cache_key = f"hf_model_{model_name}_{device}_{use_fp16}"
|
||||
mdl_cache_key = f"hf_model_{model_name}_{device}_{use_fp16}_fp"
|
||||
|
||||
if tok_cache_key in _model_cache and mdl_cache_key in _model_cache:
|
||||
hf_tokenizer = _model_cache[tok_cache_key]
|
||||
hf_model = _model_cache[mdl_cache_key]
|
||||
logger.info("Using cached HF tokenizer/model for manual path")
|
||||
logger.info("Using cached HF tokenizer/model for manual FP path")
|
||||
else:
|
||||
logger.info("Loading HF tokenizer/model for manual tokenization path")
|
||||
logger.info("Loading HF tokenizer/model for manual FP path")
|
||||
hf_tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
||||
|
||||
torch_dtype = torch.float16 if (use_fp16 and device == "cuda") else torch.float32
|
||||
hf_model = AutoModel.from_pretrained(model_name, torch_dtype=torch_dtype)
|
||||
hf_model = AutoModel.from_pretrained(
|
||||
model_name,
|
||||
torch_dtype=torch_dtype,
|
||||
)
|
||||
hf_model.to(device)
|
||||
|
||||
hf_model.eval()
|
||||
# Optional compile on supported devices
|
||||
if device in ["cuda", "mps"]:
|
||||
try:
|
||||
hf_model = torch.compile(hf_model, mode="reduce-overhead", dynamic=True) # type: ignore
|
||||
except Exception:
|
||||
pass
|
||||
hf_model = torch.compile( # type: ignore
|
||||
hf_model, mode="reduce-overhead", dynamic=True
|
||||
)
|
||||
logger.info(
|
||||
f"Applied torch.compile to HF model for {model_name} "
|
||||
f"(device={device}, dtype={torch_dtype})"
|
||||
)
|
||||
except Exception as exc:
|
||||
logger.warning(f"torch.compile optimization failed: {exc}")
|
||||
|
||||
_model_cache[tok_cache_key] = hf_tokenizer
|
||||
_model_cache[mdl_cache_key] = hf_model
|
||||
|
||||
@@ -445,7 +554,6 @@ def compute_embeddings_sentence_transformers(
|
||||
for start_index in batch_iter:
|
||||
end_index = min(start_index + batch_size, len(texts))
|
||||
batch_texts = texts[start_index:end_index]
|
||||
tokenize_start_time = time.time()
|
||||
inputs = hf_tokenizer(
|
||||
batch_texts,
|
||||
padding=True,
|
||||
@@ -453,34 +561,17 @@ def compute_embeddings_sentence_transformers(
|
||||
max_length=max_length,
|
||||
return_tensors="pt",
|
||||
)
|
||||
tokenize_end_time = time.time()
|
||||
logger.info(
|
||||
f"Tokenize time taken: {tokenize_end_time - tokenize_start_time} seconds"
|
||||
)
|
||||
# Print shapes of all input tensors for debugging
|
||||
for k, v in inputs.items():
|
||||
print(f"inputs[{k!r}] shape: {getattr(v, 'shape', type(v))}")
|
||||
to_device_start_time = time.time()
|
||||
inputs = {k: v.to(device) for k, v in inputs.items()}
|
||||
to_device_end_time = time.time()
|
||||
logger.info(
|
||||
f"To device time taken: {to_device_end_time - to_device_start_time} seconds"
|
||||
)
|
||||
forward_start_time = time.time()
|
||||
outputs = hf_model(**inputs)
|
||||
forward_end_time = time.time()
|
||||
logger.info(f"Forward time taken: {forward_end_time - forward_start_time} seconds")
|
||||
last_hidden_state = outputs.last_hidden_state # (B, L, H)
|
||||
attention_mask = inputs.get("attention_mask")
|
||||
if attention_mask is None:
|
||||
# Fallback: assume all tokens are valid
|
||||
pooled = last_hidden_state.mean(dim=1)
|
||||
else:
|
||||
mask = attention_mask.unsqueeze(-1).to(last_hidden_state.dtype)
|
||||
masked = last_hidden_state * mask
|
||||
lengths = mask.sum(dim=1).clamp(min=1)
|
||||
pooled = masked.sum(dim=1) / lengths
|
||||
# Move to CPU float32
|
||||
batch_embeddings = pooled.detach().to("cpu").float().numpy()
|
||||
all_embeddings.append(batch_embeddings)
|
||||
|
||||
@@ -500,6 +591,12 @@ def compute_embeddings_sentence_transformers(
|
||||
if np.isnan(embeddings).any() or np.isinf(embeddings).any():
|
||||
raise RuntimeError(f"Detected NaN or Inf values in embeddings, model: {model_name}")
|
||||
|
||||
outer_end_time = time.time()
|
||||
logger.debug(
|
||||
"compute_embeddings_sentence_transformers total time "
|
||||
f"(function entry -> return): {outer_end_time - outer_start_time:.6f}s"
|
||||
)
|
||||
|
||||
return embeddings
|
||||
|
||||
|
||||
@@ -814,15 +911,13 @@ def compute_embeddings_ollama(
|
||||
|
||||
logger.info(f"Using batch size: {batch_size} for true batch processing")
|
||||
|
||||
# Get model token limit and apply truncation
|
||||
token_limit = get_model_token_limit(model_name)
|
||||
# Get model token limit and apply truncation before batching
|
||||
token_limit = get_model_token_limit(model_name, base_url=resolved_host)
|
||||
logger.info(f"Model '{model_name}' token limit: {token_limit}")
|
||||
|
||||
# Apply token-aware truncation to all texts
|
||||
truncated_texts = truncate_to_token_limit(texts, token_limit)
|
||||
if len(truncated_texts) != len(texts):
|
||||
logger.error("Truncation failed - text count mismatch")
|
||||
truncated_texts = texts # Fallback to original texts
|
||||
# Apply truncation to all texts before batch processing
|
||||
# Function logs truncation details internally
|
||||
texts = truncate_to_token_limit(texts, token_limit)
|
||||
|
||||
def get_batch_embeddings(batch_texts):
|
||||
"""Get embeddings for a batch of texts using /api/embed endpoint."""
|
||||
@@ -880,12 +975,12 @@ def compute_embeddings_ollama(
|
||||
|
||||
return None, list(range(len(batch_texts)))
|
||||
|
||||
# Process truncated texts in batches
|
||||
# Process texts in batches
|
||||
all_embeddings = []
|
||||
all_failed_indices = []
|
||||
|
||||
# Setup progress bar if needed
|
||||
show_progress = is_build or len(truncated_texts) > 10
|
||||
show_progress = is_build or len(texts) > 10
|
||||
try:
|
||||
if show_progress:
|
||||
from tqdm import tqdm
|
||||
@@ -893,7 +988,7 @@ def compute_embeddings_ollama(
|
||||
show_progress = False
|
||||
|
||||
# Process batches
|
||||
num_batches = (len(truncated_texts) + batch_size - 1) // batch_size
|
||||
num_batches = (len(texts) + batch_size - 1) // batch_size
|
||||
|
||||
if show_progress:
|
||||
batch_iterator = tqdm(range(num_batches), desc="Computing Ollama embeddings (batched)")
|
||||
@@ -902,8 +997,8 @@ def compute_embeddings_ollama(
|
||||
|
||||
for batch_idx in batch_iterator:
|
||||
start_idx = batch_idx * batch_size
|
||||
end_idx = min(start_idx + batch_size, len(truncated_texts))
|
||||
batch_texts = truncated_texts[start_idx:end_idx]
|
||||
end_idx = min(start_idx + batch_size, len(texts))
|
||||
batch_texts = texts[start_idx:end_idx]
|
||||
|
||||
batch_embeddings, batch_failed = get_batch_embeddings(batch_texts)
|
||||
|
||||
@@ -918,11 +1013,11 @@ def compute_embeddings_ollama(
|
||||
|
||||
# Handle failed embeddings
|
||||
if all_failed_indices:
|
||||
if len(all_failed_indices) == len(truncated_texts):
|
||||
if len(all_failed_indices) == len(texts):
|
||||
raise RuntimeError("Failed to compute any embeddings")
|
||||
|
||||
logger.warning(
|
||||
f"Failed to compute embeddings for {len(all_failed_indices)}/{len(truncated_texts)} texts"
|
||||
f"Failed to compute embeddings for {len(all_failed_indices)}/{len(texts)} texts"
|
||||
)
|
||||
|
||||
# Use zero embeddings as fallback for failed ones
|
||||
|
||||
@@ -57,6 +57,8 @@ dependencies = [
|
||||
"tree-sitter-c-sharp>=0.20.0",
|
||||
"tree-sitter-typescript>=0.20.0",
|
||||
"torchvision>=0.23.0",
|
||||
"einops",
|
||||
"seaborn",
|
||||
]
|
||||
|
||||
[project.optional-dependencies]
|
||||
|
||||
@@ -8,7 +8,7 @@ import subprocess
|
||||
import sys
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
from unittest.mock import patch
|
||||
from unittest.mock import Mock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
@@ -116,8 +116,10 @@ class TestChunkingFunctions:
|
||||
chunks = create_traditional_chunks(docs, chunk_size=50, chunk_overlap=10)
|
||||
|
||||
assert len(chunks) > 0
|
||||
assert all(isinstance(chunk, str) for chunk in chunks)
|
||||
assert all(len(chunk.strip()) > 0 for chunk in chunks)
|
||||
# Traditional chunks now return dict format for consistency
|
||||
assert all(isinstance(chunk, dict) for chunk in chunks)
|
||||
assert all("text" in chunk and "metadata" in chunk for chunk in chunks)
|
||||
assert all(len(chunk["text"].strip()) > 0 for chunk in chunks)
|
||||
|
||||
def test_create_traditional_chunks_empty_docs(self):
|
||||
"""Test traditional chunking with empty documents."""
|
||||
@@ -158,11 +160,22 @@ class Calculator:
|
||||
|
||||
# Should have multiple chunks due to different functions/classes
|
||||
assert len(chunks) > 0
|
||||
assert all(isinstance(chunk, str) for chunk in chunks)
|
||||
assert all(len(chunk.strip()) > 0 for chunk in chunks)
|
||||
# R3: Expect dict format with "text" and "metadata" keys
|
||||
assert all(isinstance(chunk, dict) for chunk in chunks), "All chunks should be dicts"
|
||||
assert all("text" in chunk and "metadata" in chunk for chunk in chunks), (
|
||||
"Each chunk should have 'text' and 'metadata' keys"
|
||||
)
|
||||
assert all(len(chunk["text"].strip()) > 0 for chunk in chunks), (
|
||||
"Each chunk text should be non-empty"
|
||||
)
|
||||
|
||||
# Check metadata is present
|
||||
assert all("file_path" in chunk["metadata"] for chunk in chunks), (
|
||||
"Each chunk should have file_path metadata"
|
||||
)
|
||||
|
||||
# Check that code structure is somewhat preserved
|
||||
combined_content = " ".join(chunks)
|
||||
combined_content = " ".join([c["text"] for c in chunks])
|
||||
assert "def hello_world" in combined_content
|
||||
assert "class Calculator" in combined_content
|
||||
|
||||
@@ -194,7 +207,11 @@ class Calculator:
|
||||
chunks = create_text_chunks(docs, use_ast_chunking=False, chunk_size=50, chunk_overlap=10)
|
||||
|
||||
assert len(chunks) > 0
|
||||
assert all(isinstance(chunk, str) for chunk in chunks)
|
||||
# R3: Traditional chunking should also return dict format for consistency
|
||||
assert all(isinstance(chunk, dict) for chunk in chunks), "All chunks should be dicts"
|
||||
assert all("text" in chunk and "metadata" in chunk for chunk in chunks), (
|
||||
"Each chunk should have 'text' and 'metadata' keys"
|
||||
)
|
||||
|
||||
def test_create_text_chunks_ast_mode(self):
|
||||
"""Test text chunking in AST mode."""
|
||||
@@ -213,7 +230,11 @@ class Calculator:
|
||||
)
|
||||
|
||||
assert len(chunks) > 0
|
||||
assert all(isinstance(chunk, str) for chunk in chunks)
|
||||
# R3: AST mode should also return dict format
|
||||
assert all(isinstance(chunk, dict) for chunk in chunks), "All chunks should be dicts"
|
||||
assert all("text" in chunk and "metadata" in chunk for chunk in chunks), (
|
||||
"Each chunk should have 'text' and 'metadata' keys"
|
||||
)
|
||||
|
||||
def test_create_text_chunks_custom_extensions(self):
|
||||
"""Test text chunking with custom code file extensions."""
|
||||
@@ -353,6 +374,552 @@ class MathUtils:
|
||||
pytest.skip("Test timed out - likely due to model download in CI")
|
||||
|
||||
|
||||
class TestASTContentExtraction:
|
||||
"""Test AST content extraction bug fix.
|
||||
|
||||
These tests verify that astchunk's dict format with 'content' key is handled correctly,
|
||||
and that the extraction logic doesn't fall through to stringifying entire dicts.
|
||||
"""
|
||||
|
||||
def test_extract_content_from_astchunk_dict(self):
|
||||
"""Test that astchunk dict format with 'content' key is handled correctly.
|
||||
|
||||
Bug: Current code checks for chunk["text"] but astchunk returns chunk["content"].
|
||||
This causes fallthrough to str(chunk), stringifying the entire dict.
|
||||
|
||||
This test will FAIL until the bug is fixed because:
|
||||
- Current code will stringify the dict: "{'content': '...', 'metadata': {...}}"
|
||||
- Fixed code should extract just the content value
|
||||
"""
|
||||
# Mock the ASTChunkBuilder class
|
||||
mock_builder = Mock()
|
||||
|
||||
# Astchunk returns this format
|
||||
astchunk_format_chunk = {
|
||||
"content": "def hello():\n print('world')",
|
||||
"metadata": {
|
||||
"filepath": "test.py",
|
||||
"line_count": 2,
|
||||
"start_line_no": 0,
|
||||
"end_line_no": 1,
|
||||
"node_count": 1,
|
||||
},
|
||||
}
|
||||
mock_builder.chunkify.return_value = [astchunk_format_chunk]
|
||||
|
||||
# Create mock document
|
||||
doc = MockDocument(
|
||||
"def hello():\n print('world')", "/test/test.py", {"language": "python"}
|
||||
)
|
||||
|
||||
# Mock the astchunk module and its ASTChunkBuilder class
|
||||
mock_astchunk = Mock()
|
||||
mock_astchunk.ASTChunkBuilder = Mock(return_value=mock_builder)
|
||||
|
||||
# Patch sys.modules to inject our mock before the import
|
||||
with patch.dict("sys.modules", {"astchunk": mock_astchunk}):
|
||||
# Call create_ast_chunks
|
||||
chunks = create_ast_chunks([doc])
|
||||
|
||||
# R3: Should return dict format with proper metadata
|
||||
assert len(chunks) > 0, "Should return at least one chunk"
|
||||
|
||||
# R3: Each chunk should be a dict
|
||||
chunk = chunks[0]
|
||||
assert isinstance(chunk, dict), "Chunk should be a dict"
|
||||
assert "text" in chunk, "Chunk should have 'text' key"
|
||||
assert "metadata" in chunk, "Chunk should have 'metadata' key"
|
||||
|
||||
chunk_text = chunk["text"]
|
||||
|
||||
# CRITICAL: Should NOT contain stringified dict markers in the text field
|
||||
# These assertions will FAIL with current buggy code
|
||||
assert "'content':" not in chunk_text, (
|
||||
f"Chunk text contains stringified dict - extraction failed! Got: {chunk_text[:100]}..."
|
||||
)
|
||||
assert "'metadata':" not in chunk_text, (
|
||||
"Chunk text contains stringified metadata - extraction failed! "
|
||||
f"Got: {chunk_text[:100]}..."
|
||||
)
|
||||
assert "{" not in chunk_text or "def hello" in chunk_text.split("{")[0], (
|
||||
"Chunk text appears to be a stringified dict"
|
||||
)
|
||||
|
||||
# Should contain actual content
|
||||
assert "def hello()" in chunk_text, "Should extract actual code content"
|
||||
assert "print('world')" in chunk_text, "Should extract complete code content"
|
||||
|
||||
# R3: Should preserve astchunk metadata
|
||||
assert "filepath" in chunk["metadata"] or "file_path" in chunk["metadata"], (
|
||||
"Should preserve file path metadata"
|
||||
)
|
||||
|
||||
def test_extract_text_key_fallback(self):
|
||||
"""Test that 'text' key still works for backward compatibility.
|
||||
|
||||
Some chunks might use 'text' instead of 'content' - ensure backward compatibility.
|
||||
This test should PASS even with current code.
|
||||
"""
|
||||
mock_builder = Mock()
|
||||
|
||||
# Some chunks might use "text" key
|
||||
text_key_chunk = {"text": "def legacy_function():\n return True"}
|
||||
mock_builder.chunkify.return_value = [text_key_chunk]
|
||||
|
||||
# Create mock document
|
||||
doc = MockDocument(
|
||||
"def legacy_function():\n return True", "/test/legacy.py", {"language": "python"}
|
||||
)
|
||||
|
||||
# Mock the astchunk module
|
||||
mock_astchunk = Mock()
|
||||
mock_astchunk.ASTChunkBuilder = Mock(return_value=mock_builder)
|
||||
|
||||
with patch.dict("sys.modules", {"astchunk": mock_astchunk}):
|
||||
# Call create_ast_chunks
|
||||
chunks = create_ast_chunks([doc])
|
||||
|
||||
# R3: Should extract text correctly as dict format
|
||||
assert len(chunks) > 0
|
||||
chunk = chunks[0]
|
||||
assert isinstance(chunk, dict), "Chunk should be a dict"
|
||||
assert "text" in chunk, "Chunk should have 'text' key"
|
||||
|
||||
chunk_text = chunk["text"]
|
||||
|
||||
# Should NOT be stringified
|
||||
assert "'text':" not in chunk_text, "Should not stringify dict with 'text' key"
|
||||
|
||||
# Should contain actual content
|
||||
assert "def legacy_function()" in chunk_text
|
||||
assert "return True" in chunk_text
|
||||
|
||||
def test_handles_string_chunks(self):
|
||||
"""Test that plain string chunks still work.
|
||||
|
||||
Some chunkers might return plain strings - verify these are preserved.
|
||||
This test should PASS with current code.
|
||||
"""
|
||||
mock_builder = Mock()
|
||||
|
||||
# Plain string chunk
|
||||
plain_string_chunk = "def simple_function():\n pass"
|
||||
mock_builder.chunkify.return_value = [plain_string_chunk]
|
||||
|
||||
# Create mock document
|
||||
doc = MockDocument(
|
||||
"def simple_function():\n pass", "/test/simple.py", {"language": "python"}
|
||||
)
|
||||
|
||||
# Mock the astchunk module
|
||||
mock_astchunk = Mock()
|
||||
mock_astchunk.ASTChunkBuilder = Mock(return_value=mock_builder)
|
||||
|
||||
with patch.dict("sys.modules", {"astchunk": mock_astchunk}):
|
||||
# Call create_ast_chunks
|
||||
chunks = create_ast_chunks([doc])
|
||||
|
||||
# R3: Should wrap string in dict format
|
||||
assert len(chunks) > 0
|
||||
chunk = chunks[0]
|
||||
assert isinstance(chunk, dict), "Even string chunks should be wrapped in dict"
|
||||
assert "text" in chunk, "Chunk should have 'text' key"
|
||||
|
||||
chunk_text = chunk["text"]
|
||||
|
||||
assert chunk_text == plain_string_chunk.strip(), (
|
||||
"Should preserve plain string chunk content"
|
||||
)
|
||||
assert "def simple_function()" in chunk_text
|
||||
assert "pass" in chunk_text
|
||||
|
||||
def test_multiple_chunks_with_mixed_formats(self):
|
||||
"""Test handling of multiple chunks with different formats.
|
||||
|
||||
Real-world scenario: astchunk might return a mix of formats.
|
||||
This test will FAIL if any chunk with 'content' key gets stringified.
|
||||
"""
|
||||
mock_builder = Mock()
|
||||
|
||||
# Mix of formats
|
||||
mixed_chunks = [
|
||||
{"content": "def first():\n return 1", "metadata": {"line_count": 2}},
|
||||
"def second():\n return 2", # Plain string
|
||||
{"text": "def third():\n return 3"}, # Old format
|
||||
{"content": "class MyClass:\n pass", "metadata": {"node_count": 1}},
|
||||
]
|
||||
mock_builder.chunkify.return_value = mixed_chunks
|
||||
|
||||
# Create mock document
|
||||
code = "def first():\n return 1\n\ndef second():\n return 2\n\ndef third():\n return 3\n\nclass MyClass:\n pass"
|
||||
doc = MockDocument(code, "/test/mixed.py", {"language": "python"})
|
||||
|
||||
# Mock the astchunk module
|
||||
mock_astchunk = Mock()
|
||||
mock_astchunk.ASTChunkBuilder = Mock(return_value=mock_builder)
|
||||
|
||||
with patch.dict("sys.modules", {"astchunk": mock_astchunk}):
|
||||
# Call create_ast_chunks
|
||||
chunks = create_ast_chunks([doc])
|
||||
|
||||
# R3: Should extract all chunks correctly as dicts
|
||||
assert len(chunks) == 4, "Should extract all 4 chunks"
|
||||
|
||||
# Check each chunk
|
||||
for i, chunk in enumerate(chunks):
|
||||
assert isinstance(chunk, dict), f"Chunk {i} should be a dict"
|
||||
assert "text" in chunk, f"Chunk {i} should have 'text' key"
|
||||
assert "metadata" in chunk, f"Chunk {i} should have 'metadata' key"
|
||||
|
||||
chunk_text = chunk["text"]
|
||||
# None should be stringified dicts
|
||||
assert "'content':" not in chunk_text, f"Chunk {i} text is stringified (has 'content':)"
|
||||
assert "'metadata':" not in chunk_text, (
|
||||
f"Chunk {i} text is stringified (has 'metadata':)"
|
||||
)
|
||||
assert "'text':" not in chunk_text, f"Chunk {i} text is stringified (has 'text':)"
|
||||
|
||||
# Verify actual content is present
|
||||
combined = "\n".join([c["text"] for c in chunks])
|
||||
assert "def first()" in combined
|
||||
assert "def second()" in combined
|
||||
assert "def third()" in combined
|
||||
assert "class MyClass:" in combined
|
||||
|
||||
def test_empty_content_value_handling(self):
|
||||
"""Test handling of chunks with empty content values.
|
||||
|
||||
Edge case: chunk has 'content' key but value is empty.
|
||||
Should skip these chunks, not stringify them.
|
||||
"""
|
||||
mock_builder = Mock()
|
||||
|
||||
chunks_with_empty = [
|
||||
{"content": "", "metadata": {"line_count": 0}}, # Empty content
|
||||
{"content": " ", "metadata": {"line_count": 1}}, # Whitespace only
|
||||
{"content": "def valid():\n return True", "metadata": {"line_count": 2}}, # Valid
|
||||
]
|
||||
mock_builder.chunkify.return_value = chunks_with_empty
|
||||
|
||||
doc = MockDocument(
|
||||
"def valid():\n return True", "/test/empty.py", {"language": "python"}
|
||||
)
|
||||
|
||||
# Mock the astchunk module
|
||||
mock_astchunk = Mock()
|
||||
mock_astchunk.ASTChunkBuilder = Mock(return_value=mock_builder)
|
||||
|
||||
with patch.dict("sys.modules", {"astchunk": mock_astchunk}):
|
||||
chunks = create_ast_chunks([doc])
|
||||
|
||||
# R3: Should only have the valid chunk (empty ones filtered out)
|
||||
assert len(chunks) == 1, "Should filter out empty content chunks"
|
||||
|
||||
chunk = chunks[0]
|
||||
assert isinstance(chunk, dict), "Chunk should be a dict"
|
||||
assert "text" in chunk, "Chunk should have 'text' key"
|
||||
assert "def valid()" in chunk["text"]
|
||||
|
||||
# Should not have stringified the empty dict
|
||||
assert "'content': ''" not in chunk["text"]
|
||||
|
||||
|
||||
class TestASTMetadataPreservation:
|
||||
"""Test metadata preservation in AST chunk dictionaries.
|
||||
|
||||
R3: These tests define the contract for metadata preservation when returning
|
||||
chunk dictionaries instead of plain strings. Each chunk dict should have:
|
||||
- "text": str - the actual chunk content
|
||||
- "metadata": dict - all metadata from document AND astchunk
|
||||
|
||||
These tests will FAIL until G3 implementation changes return type to list[dict].
|
||||
"""
|
||||
|
||||
def test_ast_chunks_preserve_file_metadata(self):
|
||||
"""Test that document metadata is preserved in chunk metadata.
|
||||
|
||||
This test verifies that all document-level metadata (file_path, file_name,
|
||||
creation_date, last_modified_date) is included in each chunk's metadata dict.
|
||||
|
||||
This will FAIL because current code returns list[str], not list[dict].
|
||||
"""
|
||||
# Create mock document with rich metadata
|
||||
python_code = '''
|
||||
def calculate_sum(numbers):
|
||||
"""Calculate sum of numbers."""
|
||||
return sum(numbers)
|
||||
|
||||
class DataProcessor:
|
||||
"""Process data records."""
|
||||
|
||||
def process(self, data):
|
||||
return [x * 2 for x in data]
|
||||
'''
|
||||
doc = MockDocument(
|
||||
python_code,
|
||||
file_path="/project/src/utils.py",
|
||||
metadata={
|
||||
"language": "python",
|
||||
"file_path": "/project/src/utils.py",
|
||||
"file_name": "utils.py",
|
||||
"creation_date": "2024-01-15T10:30:00",
|
||||
"last_modified_date": "2024-10-31T15:45:00",
|
||||
},
|
||||
)
|
||||
|
||||
# Mock astchunk to return chunks with metadata
|
||||
mock_builder = Mock()
|
||||
astchunk_chunks = [
|
||||
{
|
||||
"content": "def calculate_sum(numbers):\n return sum(numbers)",
|
||||
"metadata": {
|
||||
"filepath": "/project/src/utils.py",
|
||||
"line_count": 2,
|
||||
"start_line_no": 1,
|
||||
"end_line_no": 2,
|
||||
"node_count": 1,
|
||||
},
|
||||
},
|
||||
{
|
||||
"content": "class DataProcessor:\n def process(self, data):\n return [x * 2 for x in data]",
|
||||
"metadata": {
|
||||
"filepath": "/project/src/utils.py",
|
||||
"line_count": 3,
|
||||
"start_line_no": 5,
|
||||
"end_line_no": 7,
|
||||
"node_count": 2,
|
||||
},
|
||||
},
|
||||
]
|
||||
mock_builder.chunkify.return_value = astchunk_chunks
|
||||
|
||||
mock_astchunk = Mock()
|
||||
mock_astchunk.ASTChunkBuilder = Mock(return_value=mock_builder)
|
||||
|
||||
with patch.dict("sys.modules", {"astchunk": mock_astchunk}):
|
||||
chunks = create_ast_chunks([doc])
|
||||
|
||||
# CRITICAL: These assertions will FAIL with current list[str] return type
|
||||
assert len(chunks) == 2, "Should return 2 chunks"
|
||||
|
||||
for i, chunk in enumerate(chunks):
|
||||
# Structure assertions - WILL FAIL: current code returns strings
|
||||
assert isinstance(chunk, dict), f"Chunk {i} should be dict, got {type(chunk)}"
|
||||
assert "text" in chunk, f"Chunk {i} must have 'text' key"
|
||||
assert "metadata" in chunk, f"Chunk {i} must have 'metadata' key"
|
||||
assert isinstance(chunk["metadata"], dict), f"Chunk {i} metadata should be dict"
|
||||
|
||||
# Document metadata preservation - WILL FAIL
|
||||
metadata = chunk["metadata"]
|
||||
assert "file_path" in metadata, f"Chunk {i} should preserve file_path"
|
||||
assert metadata["file_path"] == "/project/src/utils.py", (
|
||||
f"Chunk {i} file_path incorrect"
|
||||
)
|
||||
|
||||
assert "file_name" in metadata, f"Chunk {i} should preserve file_name"
|
||||
assert metadata["file_name"] == "utils.py", f"Chunk {i} file_name incorrect"
|
||||
|
||||
assert "creation_date" in metadata, f"Chunk {i} should preserve creation_date"
|
||||
assert metadata["creation_date"] == "2024-01-15T10:30:00", (
|
||||
f"Chunk {i} creation_date incorrect"
|
||||
)
|
||||
|
||||
assert "last_modified_date" in metadata, f"Chunk {i} should preserve last_modified_date"
|
||||
assert metadata["last_modified_date"] == "2024-10-31T15:45:00", (
|
||||
f"Chunk {i} last_modified_date incorrect"
|
||||
)
|
||||
|
||||
# Verify metadata is consistent across chunks from same document
|
||||
assert chunks[0]["metadata"]["file_path"] == chunks[1]["metadata"]["file_path"], (
|
||||
"All chunks from same document should have same file_path"
|
||||
)
|
||||
|
||||
# Verify text content is present and not stringified
|
||||
assert "def calculate_sum" in chunks[0]["text"]
|
||||
assert "class DataProcessor" in chunks[1]["text"]
|
||||
|
||||
def test_ast_chunks_include_astchunk_metadata(self):
|
||||
"""Test that astchunk-specific metadata is merged into chunk metadata.
|
||||
|
||||
This test verifies that astchunk's metadata (line_count, start_line_no,
|
||||
end_line_no, node_count) is merged with document metadata.
|
||||
|
||||
This will FAIL because current code returns list[str], not list[dict].
|
||||
"""
|
||||
python_code = '''
|
||||
def function_one():
|
||||
"""First function."""
|
||||
x = 1
|
||||
y = 2
|
||||
return x + y
|
||||
|
||||
def function_two():
|
||||
"""Second function."""
|
||||
return 42
|
||||
'''
|
||||
doc = MockDocument(
|
||||
python_code,
|
||||
file_path="/test/code.py",
|
||||
metadata={
|
||||
"language": "python",
|
||||
"file_path": "/test/code.py",
|
||||
"file_name": "code.py",
|
||||
},
|
||||
)
|
||||
|
||||
# Mock astchunk with detailed metadata
|
||||
mock_builder = Mock()
|
||||
astchunk_chunks = [
|
||||
{
|
||||
"content": "def function_one():\n x = 1\n y = 2\n return x + y",
|
||||
"metadata": {
|
||||
"filepath": "/test/code.py",
|
||||
"line_count": 4,
|
||||
"start_line_no": 1,
|
||||
"end_line_no": 4,
|
||||
"node_count": 5, # function, assignments, return
|
||||
},
|
||||
},
|
||||
{
|
||||
"content": "def function_two():\n return 42",
|
||||
"metadata": {
|
||||
"filepath": "/test/code.py",
|
||||
"line_count": 2,
|
||||
"start_line_no": 7,
|
||||
"end_line_no": 8,
|
||||
"node_count": 2, # function, return
|
||||
},
|
||||
},
|
||||
]
|
||||
mock_builder.chunkify.return_value = astchunk_chunks
|
||||
|
||||
mock_astchunk = Mock()
|
||||
mock_astchunk.ASTChunkBuilder = Mock(return_value=mock_builder)
|
||||
|
||||
with patch.dict("sys.modules", {"astchunk": mock_astchunk}):
|
||||
chunks = create_ast_chunks([doc])
|
||||
|
||||
# CRITICAL: These will FAIL with current list[str] return
|
||||
assert len(chunks) == 2
|
||||
|
||||
# First chunk - function_one
|
||||
chunk1 = chunks[0]
|
||||
assert isinstance(chunk1, dict), "Chunk should be dict"
|
||||
assert "metadata" in chunk1
|
||||
|
||||
metadata1 = chunk1["metadata"]
|
||||
|
||||
# Check astchunk metadata is present
|
||||
assert "line_count" in metadata1, "Should include astchunk line_count"
|
||||
assert metadata1["line_count"] == 4, "line_count should be 4"
|
||||
|
||||
assert "start_line_no" in metadata1, "Should include astchunk start_line_no"
|
||||
assert metadata1["start_line_no"] == 1, "start_line_no should be 1"
|
||||
|
||||
assert "end_line_no" in metadata1, "Should include astchunk end_line_no"
|
||||
assert metadata1["end_line_no"] == 4, "end_line_no should be 4"
|
||||
|
||||
assert "node_count" in metadata1, "Should include astchunk node_count"
|
||||
assert metadata1["node_count"] == 5, "node_count should be 5"
|
||||
|
||||
# Second chunk - function_two
|
||||
chunk2 = chunks[1]
|
||||
metadata2 = chunk2["metadata"]
|
||||
|
||||
assert metadata2["line_count"] == 2, "line_count should be 2"
|
||||
assert metadata2["start_line_no"] == 7, "start_line_no should be 7"
|
||||
assert metadata2["end_line_no"] == 8, "end_line_no should be 8"
|
||||
assert metadata2["node_count"] == 2, "node_count should be 2"
|
||||
|
||||
# Verify document metadata is ALSO present (merged, not replaced)
|
||||
assert metadata1["file_path"] == "/test/code.py"
|
||||
assert metadata1["file_name"] == "code.py"
|
||||
assert metadata2["file_path"] == "/test/code.py"
|
||||
assert metadata2["file_name"] == "code.py"
|
||||
|
||||
# Verify text content is correct
|
||||
assert "def function_one" in chunk1["text"]
|
||||
assert "def function_two" in chunk2["text"]
|
||||
|
||||
def test_traditional_chunks_as_dicts_helper(self):
|
||||
"""Test the helper function that wraps traditional chunks as dicts.
|
||||
|
||||
This test verifies that when create_traditional_chunks is called,
|
||||
its plain string chunks are wrapped into dict format with metadata.
|
||||
|
||||
This will FAIL because the helper function _traditional_chunks_as_dicts()
|
||||
doesn't exist yet, and create_traditional_chunks returns list[str].
|
||||
"""
|
||||
# Create documents with various metadata
|
||||
docs = [
|
||||
MockDocument(
|
||||
"This is the first paragraph of text. It contains multiple sentences. "
|
||||
"This should be split into chunks based on size.",
|
||||
file_path="/docs/readme.txt",
|
||||
metadata={
|
||||
"file_path": "/docs/readme.txt",
|
||||
"file_name": "readme.txt",
|
||||
"creation_date": "2024-01-01",
|
||||
},
|
||||
),
|
||||
MockDocument(
|
||||
"Second document with different metadata. It also has content that needs chunking.",
|
||||
file_path="/docs/guide.md",
|
||||
metadata={
|
||||
"file_path": "/docs/guide.md",
|
||||
"file_name": "guide.md",
|
||||
"last_modified_date": "2024-10-31",
|
||||
},
|
||||
),
|
||||
]
|
||||
|
||||
# Call create_traditional_chunks (which should now return list[dict])
|
||||
chunks = create_traditional_chunks(docs, chunk_size=50, chunk_overlap=10)
|
||||
|
||||
# CRITICAL: Will FAIL - current code returns list[str]
|
||||
assert len(chunks) > 0, "Should return chunks"
|
||||
|
||||
for i, chunk in enumerate(chunks):
|
||||
# Structure assertions - WILL FAIL
|
||||
assert isinstance(chunk, dict), f"Chunk {i} should be dict, got {type(chunk)}"
|
||||
assert "text" in chunk, f"Chunk {i} must have 'text' key"
|
||||
assert "metadata" in chunk, f"Chunk {i} must have 'metadata' key"
|
||||
|
||||
# Text should be non-empty
|
||||
assert len(chunk["text"].strip()) > 0, f"Chunk {i} text should be non-empty"
|
||||
|
||||
# Metadata should include document info
|
||||
metadata = chunk["metadata"]
|
||||
assert "file_path" in metadata, f"Chunk {i} should have file_path in metadata"
|
||||
assert "file_name" in metadata, f"Chunk {i} should have file_name in metadata"
|
||||
|
||||
# Verify metadata tracking works correctly
|
||||
# At least one chunk should be from readme.txt
|
||||
readme_chunks = [c for c in chunks if "readme.txt" in c["metadata"]["file_name"]]
|
||||
assert len(readme_chunks) > 0, "Should have chunks from readme.txt"
|
||||
|
||||
# At least one chunk should be from guide.md
|
||||
guide_chunks = [c for c in chunks if "guide.md" in c["metadata"]["file_name"]]
|
||||
assert len(guide_chunks) > 0, "Should have chunks from guide.md"
|
||||
|
||||
# Verify creation_date is preserved for readme chunks
|
||||
for chunk in readme_chunks:
|
||||
assert chunk["metadata"].get("creation_date") == "2024-01-01", (
|
||||
"readme.txt chunks should preserve creation_date"
|
||||
)
|
||||
|
||||
# Verify last_modified_date is preserved for guide chunks
|
||||
for chunk in guide_chunks:
|
||||
assert chunk["metadata"].get("last_modified_date") == "2024-10-31", (
|
||||
"guide.md chunks should preserve last_modified_date"
|
||||
)
|
||||
|
||||
# Verify text content is present
|
||||
all_text = " ".join([c["text"] for c in chunks])
|
||||
assert "first paragraph" in all_text
|
||||
assert "Second document" in all_text
|
||||
|
||||
|
||||
class TestErrorHandling:
|
||||
"""Test error handling and edge cases."""
|
||||
|
||||
|
||||
268
tests/test_token_truncation.py
Normal file
268
tests/test_token_truncation.py
Normal file
@@ -0,0 +1,268 @@
|
||||
"""Unit tests for token-aware truncation functionality.
|
||||
|
||||
This test suite defines the contract for token truncation functions that prevent
|
||||
500 errors from Ollama when text exceeds model token limits. These tests verify:
|
||||
|
||||
1. Model token limit retrieval (known and unknown models)
|
||||
2. Text truncation behavior for single and multiple texts
|
||||
3. Token counting and truncation accuracy using tiktoken
|
||||
|
||||
All tests are written in Red Phase - they should FAIL initially because the
|
||||
implementation does not exist yet.
|
||||
"""
|
||||
|
||||
import pytest
|
||||
import tiktoken
|
||||
from leann.embedding_compute import (
|
||||
EMBEDDING_MODEL_LIMITS,
|
||||
get_model_token_limit,
|
||||
truncate_to_token_limit,
|
||||
)
|
||||
|
||||
|
||||
class TestModelTokenLimits:
|
||||
"""Tests for retrieving model-specific token limits."""
|
||||
|
||||
def test_get_model_token_limit_known_model(self):
|
||||
"""Verify correct token limit is returned for known models.
|
||||
|
||||
Known models should return their specific token limits from
|
||||
EMBEDDING_MODEL_LIMITS dictionary.
|
||||
"""
|
||||
# Test nomic-embed-text (2048 tokens)
|
||||
limit = get_model_token_limit("nomic-embed-text")
|
||||
assert limit == 2048, "nomic-embed-text should have 2048 token limit"
|
||||
|
||||
# Test nomic-embed-text-v1.5 (2048 tokens)
|
||||
limit = get_model_token_limit("nomic-embed-text-v1.5")
|
||||
assert limit == 2048, "nomic-embed-text-v1.5 should have 2048 token limit"
|
||||
|
||||
# Test nomic-embed-text-v2 (512 tokens)
|
||||
limit = get_model_token_limit("nomic-embed-text-v2")
|
||||
assert limit == 512, "nomic-embed-text-v2 should have 512 token limit"
|
||||
|
||||
# Test OpenAI models (8192 tokens)
|
||||
limit = get_model_token_limit("text-embedding-3-small")
|
||||
assert limit == 8192, "text-embedding-3-small should have 8192 token limit"
|
||||
|
||||
def test_get_model_token_limit_unknown_model(self):
|
||||
"""Verify default token limit is returned for unknown models.
|
||||
|
||||
Unknown models should return the default limit (2048) to allow
|
||||
operation with reasonable safety margin.
|
||||
"""
|
||||
# Test with completely unknown model
|
||||
limit = get_model_token_limit("unknown-model-xyz")
|
||||
assert limit == 2048, "Unknown models should return default 2048"
|
||||
|
||||
# Test with empty string
|
||||
limit = get_model_token_limit("")
|
||||
assert limit == 2048, "Empty model name should return default 2048"
|
||||
|
||||
def test_get_model_token_limit_custom_default(self):
|
||||
"""Verify custom default can be specified for unknown models.
|
||||
|
||||
Allow callers to specify their own default token limit when
|
||||
model is not in the known models dictionary.
|
||||
"""
|
||||
limit = get_model_token_limit("unknown-model", default=4096)
|
||||
assert limit == 4096, "Should return custom default for unknown models"
|
||||
|
||||
# Known model should ignore custom default
|
||||
limit = get_model_token_limit("nomic-embed-text", default=4096)
|
||||
assert limit == 2048, "Known model should ignore custom default"
|
||||
|
||||
def test_embedding_model_limits_dictionary_exists(self):
|
||||
"""Verify EMBEDDING_MODEL_LIMITS dictionary contains expected models.
|
||||
|
||||
The dictionary should be importable and contain at least the
|
||||
known nomic models with correct token limits.
|
||||
"""
|
||||
assert isinstance(EMBEDDING_MODEL_LIMITS, dict), "Should be a dictionary"
|
||||
assert "nomic-embed-text" in EMBEDDING_MODEL_LIMITS, "Should contain nomic-embed-text"
|
||||
assert "nomic-embed-text-v1.5" in EMBEDDING_MODEL_LIMITS, (
|
||||
"Should contain nomic-embed-text-v1.5"
|
||||
)
|
||||
assert EMBEDDING_MODEL_LIMITS["nomic-embed-text"] == 2048
|
||||
assert EMBEDDING_MODEL_LIMITS["nomic-embed-text-v1.5"] == 2048
|
||||
assert EMBEDDING_MODEL_LIMITS["nomic-embed-text-v2"] == 512
|
||||
# OpenAI models
|
||||
assert EMBEDDING_MODEL_LIMITS["text-embedding-3-small"] == 8192
|
||||
|
||||
|
||||
class TestTokenTruncation:
|
||||
"""Tests for truncating texts to token limits."""
|
||||
|
||||
@pytest.fixture
|
||||
def tokenizer(self):
|
||||
"""Provide tiktoken tokenizer for token counting verification."""
|
||||
return tiktoken.get_encoding("cl100k_base")
|
||||
|
||||
def test_truncate_single_text_under_limit(self, tokenizer):
|
||||
"""Verify text under token limit remains unchanged.
|
||||
|
||||
When text is already within the token limit, it should be
|
||||
returned unchanged with no truncation.
|
||||
"""
|
||||
text = "This is a short text that is well under the token limit."
|
||||
token_count = len(tokenizer.encode(text))
|
||||
assert token_count < 100, f"Test setup: text should be short (has {token_count} tokens)"
|
||||
|
||||
# Truncate with generous limit
|
||||
result = truncate_to_token_limit([text], token_limit=512)
|
||||
|
||||
assert len(result) == 1, "Should return same number of texts"
|
||||
assert result[0] == text, "Text under limit should be unchanged"
|
||||
|
||||
def test_truncate_single_text_over_limit(self, tokenizer):
|
||||
"""Verify text over token limit is truncated correctly.
|
||||
|
||||
When text exceeds the token limit, it should be truncated to
|
||||
fit within the limit while maintaining valid token boundaries.
|
||||
"""
|
||||
# Create a text that definitely exceeds limit
|
||||
text = "word " * 200 # ~200 tokens (each "word " is typically 1-2 tokens)
|
||||
original_token_count = len(tokenizer.encode(text))
|
||||
assert original_token_count > 50, (
|
||||
f"Test setup: text should be long (has {original_token_count} tokens)"
|
||||
)
|
||||
|
||||
# Truncate to 50 tokens
|
||||
result = truncate_to_token_limit([text], token_limit=50)
|
||||
|
||||
assert len(result) == 1, "Should return same number of texts"
|
||||
assert result[0] != text, "Text over limit should be truncated"
|
||||
assert len(result[0]) < len(text), "Truncated text should be shorter"
|
||||
|
||||
# Verify truncated text is within token limit
|
||||
truncated_token_count = len(tokenizer.encode(result[0]))
|
||||
assert truncated_token_count <= 50, (
|
||||
f"Truncated text should be ≤50 tokens, got {truncated_token_count}"
|
||||
)
|
||||
|
||||
def test_truncate_multiple_texts_mixed_lengths(self, tokenizer):
|
||||
"""Verify multiple texts with mixed lengths are handled correctly.
|
||||
|
||||
When processing multiple texts:
|
||||
- Texts under limit should remain unchanged
|
||||
- Texts over limit should be truncated independently
|
||||
- Output list should maintain same order and length
|
||||
"""
|
||||
texts = [
|
||||
"Short text.", # Under limit
|
||||
"word " * 200, # Over limit
|
||||
"Another short one.", # Under limit
|
||||
"token " * 150, # Over limit
|
||||
]
|
||||
|
||||
# Verify test setup
|
||||
for i, text in enumerate(texts):
|
||||
token_count = len(tokenizer.encode(text))
|
||||
if i in [1, 3]:
|
||||
assert token_count > 50, f"Text {i} should be over limit (has {token_count} tokens)"
|
||||
else:
|
||||
assert token_count < 50, (
|
||||
f"Text {i} should be under limit (has {token_count} tokens)"
|
||||
)
|
||||
|
||||
# Truncate with 50 token limit
|
||||
result = truncate_to_token_limit(texts, token_limit=50)
|
||||
|
||||
assert len(result) == len(texts), "Should return same number of texts"
|
||||
|
||||
# Verify each text individually
|
||||
for i, (original, truncated) in enumerate(zip(texts, result)):
|
||||
token_count = len(tokenizer.encode(truncated))
|
||||
assert token_count <= 50, f"Text {i} should be ≤50 tokens, got {token_count}"
|
||||
|
||||
# Short texts should be unchanged
|
||||
if i in [0, 2]:
|
||||
assert truncated == original, f"Short text {i} should be unchanged"
|
||||
# Long texts should be truncated
|
||||
else:
|
||||
assert len(truncated) < len(original), f"Long text {i} should be truncated"
|
||||
|
||||
def test_truncate_empty_list(self):
|
||||
"""Verify empty input list returns empty output list.
|
||||
|
||||
Edge case: empty list should return empty list without errors.
|
||||
"""
|
||||
result = truncate_to_token_limit([], token_limit=512)
|
||||
assert result == [], "Empty input should return empty output"
|
||||
|
||||
def test_truncate_preserves_order(self, tokenizer):
|
||||
"""Verify truncation preserves original text order.
|
||||
|
||||
Output list should maintain the same order as input list,
|
||||
regardless of which texts were truncated.
|
||||
"""
|
||||
texts = [
|
||||
"First text " * 50, # Will be truncated
|
||||
"Second text.", # Won't be truncated
|
||||
"Third text " * 50, # Will be truncated
|
||||
]
|
||||
|
||||
result = truncate_to_token_limit(texts, token_limit=20)
|
||||
|
||||
assert len(result) == 3, "Should preserve list length"
|
||||
# Check that order is maintained by looking for distinctive words
|
||||
assert "First" in result[0], "First text should remain in first position"
|
||||
assert "Second" in result[1], "Second text should remain in second position"
|
||||
assert "Third" in result[2], "Third text should remain in third position"
|
||||
|
||||
def test_truncate_extremely_long_text(self, tokenizer):
|
||||
"""Verify extremely long texts are truncated efficiently.
|
||||
|
||||
Test with text that far exceeds token limit to ensure
|
||||
truncation handles extreme cases without performance issues.
|
||||
"""
|
||||
# Create very long text (simulate real-world scenario)
|
||||
text = "token " * 5000 # ~5000+ tokens
|
||||
original_token_count = len(tokenizer.encode(text))
|
||||
assert original_token_count > 1000, "Test setup: text should be very long"
|
||||
|
||||
# Truncate to small limit
|
||||
result = truncate_to_token_limit([text], token_limit=100)
|
||||
|
||||
assert len(result) == 1
|
||||
truncated_token_count = len(tokenizer.encode(result[0]))
|
||||
assert truncated_token_count <= 100, (
|
||||
f"Should truncate to ≤100 tokens, got {truncated_token_count}"
|
||||
)
|
||||
assert len(result[0]) < len(text) // 10, "Should significantly reduce text length"
|
||||
|
||||
def test_truncate_exact_token_limit(self, tokenizer):
|
||||
"""Verify text at exactly token limit is handled correctly.
|
||||
|
||||
Edge case: text with exactly the token limit should either
|
||||
remain unchanged or be safely truncated by 1 token.
|
||||
"""
|
||||
# Create text with approximately 50 tokens
|
||||
# We'll adjust to get exactly 50
|
||||
target_tokens = 50
|
||||
text = "word " * 50
|
||||
tokens = tokenizer.encode(text)
|
||||
|
||||
# Adjust to get exactly target_tokens
|
||||
if len(tokens) > target_tokens:
|
||||
tokens = tokens[:target_tokens]
|
||||
text = tokenizer.decode(tokens)
|
||||
elif len(tokens) < target_tokens:
|
||||
# Add more words
|
||||
while len(tokenizer.encode(text)) < target_tokens:
|
||||
text += "word "
|
||||
tokens = tokenizer.encode(text)[:target_tokens]
|
||||
text = tokenizer.decode(tokens)
|
||||
|
||||
# Verify we have exactly target_tokens
|
||||
assert len(tokenizer.encode(text)) == target_tokens, (
|
||||
"Test setup: should have exactly 50 tokens"
|
||||
)
|
||||
|
||||
result = truncate_to_token_limit([text], token_limit=target_tokens)
|
||||
|
||||
assert len(result) == 1
|
||||
result_tokens = len(tokenizer.encode(result[0]))
|
||||
assert result_tokens <= target_tokens, (
|
||||
f"Should be ≤{target_tokens} tokens, got {result_tokens}"
|
||||
)
|
||||
Reference in New Issue
Block a user