Compare commits

...

11 Commits

Author SHA1 Message Date
yichuan520030910320
6c8801480d fall back to original faiss as i merge the PR 2025-10-30 16:36:14 -07:00
ww2283
d226f72bc0 feat: implement true batch processing for Ollama embeddings
Migrate from deprecated /api/embeddings to modern /api/embed endpoint
which supports batch inputs. This reduces HTTP overhead by sending
32 texts per request instead of making individual API calls.

Changes:
- Update endpoint from /api/embeddings to /api/embed
- Change parameter from 'prompt' (single) to 'input' (array)
- Update response parsing for batch embeddings array
- Increase timeout to 60s for batch processing
- Improve error handling for batch requests

Performance:
- Reduces API calls by 32x (batch size)
- Eliminates HTTP connection overhead per text
- Note: Ollama still processes batch items sequentially internally

Related: #151
2025-10-25 10:58:15 -04:00
ww2283
45b87ce128 Merge upstream/main into feature/add-metadata-output
Resolved conflicts in cli.py by keeping structured metadata approach over
inline text concatenation from PR #149.

Our approach uses separate metadata dictionary which is cleaner and more
maintainable than parsing embedded strings.
2025-10-25 10:53:19 -04:00
ww2283
585ef7785d chore: update faiss submodule to use ww2283 fork
Use ww2283/faiss fork with fix/zmq-linking branch to resolve CI checkout
failures. The ZMQ linking fixes are not yet merged upstream.
2025-10-25 10:44:48 -04:00
CelineNi2
abf312d998 Display context chunks in ask and search results (#149)
* Printing querying time

* Adding source name to chunks

Adding source name as metadata to chunks, then printing the sources when searching

* Printing the context provided to LLM

To check the data transmitted to the LLMs : display the relevance, ID, content, and source of each sent chunk.

* Correcting source as metadata for chunks

* Applying ruff format

* Applying Ruff formatting

* Ruff formatting
2025-10-23 15:03:59 -07:00
ww2283
5073f312b6 style: apply ruff formatting 2025-10-22 20:13:25 -04:00
ww2283
76e16338ca fix: resolve ZMQ linking issues in Python extension
- Use pkg_check_modules IMPORTED_TARGET to create PkgConfig::ZMQ
- Set PKG_CONFIG_PATH to prioritize ARM64 Homebrew on Apple Silicon
- Override macOS -undefined dynamic_lookup to force proper symbol resolution
- Use PUBLIC linkage for ZMQ in faiss library for transitive linking
- Mark cppzmq includes as SYSTEM to suppress warnings

Fixes editable install ZMQ symbol errors while maintaining compatibility
across Linux, macOS Intel, and macOS ARM64 platforms.
2025-10-22 18:53:13 -04:00
ww2283
d6a3c2821c feat: add metadata output to search results
- Add --show-metadata flag to display file paths in search results
- Preserve document metadata (file_path, file_name, timestamps) during chunking
- Update MCP tool schema to support show_metadata parameter
- Enhance CLI search output to display metadata when requested
- Fix pre-existing bug: args.backend -> args.backend_name

Resolves yichuan-w/LEANN#144
2025-10-22 14:10:47 -04:00
Aakash Suresh
ab251ab751 Fix/twitter bookmarks anchor link (#143)
* fix: Fix Twitter bookmarks anchor link

- Convert Twitter Bookmarks from collapsible details to proper header
- Update internal link to match new anchor format
- Ensures external links to #twitter-bookmarks-your-personal-tweet-library work correctly

Fixes broken link: https://github.com/yichuan-w/LEANN?tab=readme-ov-file#twitter-bookmarks-your-personal-tweet-library

* fix: Fix Slack messages anchor link as well

- Convert Slack Messages from collapsible details to proper header
- Update internal link to match new anchor format
- Ensures external links to #slack-messages-search-your-team-conversations work correctly

Both Twitter and Slack MCP sections now have reliable anchor links.

* fix: Point Slack and Twitter links to main MCP section

- Both Slack and Twitter are subsections under MCP Integration
- Links should point to #mcp-integration-rag-on-live-data-from-any-platform
- Users will land on the MCP section and can find both Slack and Twitter subsections there

This matches the actual document structure where Slack and Twitter are under the MCP Integration section.

* Improve Slack MCP integration with retry logic and comprehensive setup guide

- Add retry mechanism with exponential backoff for cache sync issues
- Handle 'users cache is not ready yet' errors gracefully
- Add max-retries and retry-delay CLI arguments for better control
- Create comprehensive Slack setup guide with troubleshooting
- Update README with link to detailed setup guide
- Improve error messages and user experience

* Fix trailing whitespace in slack setup guide

Pre-commit hooks formatting fixes

* Add comprehensive Slack setup guide with success screenshot

- Create detailed setup guide with step-by-step instructions
- Add troubleshooting section for common issues like cache sync errors
- Include real terminal output example from successful integration
- Add screenshot showing VS Code interface with Slack channel data
- Remove excessive emojis for more professional documentation
- Document retry logic improvements and CLI arguments

* Fix formatting issues in Slack setup guide

- Remove trailing whitespace
- Fix end of file formatting
- Pre-commit hooks formatting fixes

* Add real RAG example showing intelligent Slack query functionality

- Add detailed example of asking 'What is LEANN about?'
- Show retrieved messages from Slack channels
- Demonstrate intelligent answer generation based on context
- Add command example for running real RAG queries
- Explain the 4-step process: retrieve, index, generate, cite

* Update Slack setup guide with bot invitation requirements

- Add important section about inviting bot to channels before RAG queries
- Explain the 'not_in_channel' errors and their meaning
- Provide clear steps for bot invitation process
- Document realistic scenario where bot needs explicit channel access
- Update documentation to be more professional and less cursor-style

* Docs: add real RAG example for Sky Lab #random

- Embed screenshot videos/rag-sky-random.png
- Add step-by-step commands and notes
- Include helper test script tests/test_channel_by_id_or_name.py
- Redact example tokens from docs

* Docs/CI: fix broken image paths and ruff lint\n\n- Move screenshot to docs/videos and update references\n- Remove obsolete rag-query-results image\n- Rename variable to satisfy ruff

* Docs: fix image path for lychee (use videos/ relative under docs/)

* Docs: finalize Slack setup guide with Sky random RAG example and image path fixes\n\n- Redact example tokens from docs

* Fix Slack MCP integration and update documentation

- Fix SlackMCPReader to use conversations_history instead of channels_list
- Add fallback imports for leann.interactive_utils and leann.settings
- Update slack-setup-guide.md with real screenshots and improved text
- Remove old screenshot files

* Add Slack integration screenshots to docs/videos

- Add slack_integration.png showing RAG query results
- Add slack_integration_2.png showing additional demo functionality
- Fixes lychee link checker errors for missing image files

* Update Slack integration screenshot with latest changes

* Remove test_channel_by_id_or_name.py

- Clean up temporary test file that was used for debugging
- Keep only the main slack_rag.py application for production use

* Update Slack RAG example to show LEANN announcement retrieval

- Change query from 'PUBPOL 290' to 'What is LEANN about?' for more challenging retrieval
- Update command to use python -m apps.slack_rag instead of test script
- Add expected response showing Yichuan Wang's LEANN announcement message
- Emphasize this demonstrates ability to find specific announcements in conversation history
- Update description to highlight challenging query capabilities

* Update Slack RAG integration with improved CSV parsing and new screenshots

- Fixed CSV message parsing in slack_mcp_reader.py to properly handle individual messages
- Updated slack_rag.py to filter empty channel strings
- Enhanced slack-setup-guide.md with two new query examples:
  - Advisor Models query: 'train black-box models to adopt to your personal data'
  - Barbarians at the Gate query: 'AI-driven research systems ADRS'
- Replaced old screenshots with four new ones showing both query examples
- Updated documentation to use User OAuth Token (xoxp-) instead of Bot Token (xoxb-)
- Added proper command examples with --no-concatenate-conversations and --force-rebuild flags

* Update Slack RAG documentation with Ollama integration and new screenshots

- Updated slack-setup-guide.md with comprehensive Ollama setup instructions
- Added 6 new screenshots showing complete RAG workflow:
  - Command setup, search results, and LLM responses for both queries
- Removed simulated LLM references, now uses real Ollama with llama3.2:1b
- Enhanced documentation with step-by-step Ollama installation
- Updated troubleshooting checklist to include Ollama-specific checks
- Fixed command syntax and added proper Ollama configuration
- Demonstrates working Slack RAG with real AI-generated responses

* Remove Key Features section from Slack RAG examples

- Simplified documentation by removing the bullet point list
- Keeps the focus on the actual examples and screenshots
2025-10-19 11:47:29 -07:00
CelineNi2
28085f6f04 Add messages regarding the use of token during query (#147)
* Add messages regarding the use of token during query

* fix: apply ruff format
2025-10-15 16:48:48 -07:00
CelineNi2
6495833887 Changing the option name "--backend" for "--backend-name" as written in the documentation (#146) 2025-10-14 13:35:10 -07:00
17 changed files with 834 additions and 122 deletions

View File

@@ -781,7 +781,7 @@ Once your iMessage conversations are indexed, you can search with queries like:
### MCP Integration: RAG on Live Data from Any Platform
**NEW!** Connect to live data sources through the Model Context Protocol (MCP). LEANN now supports real-time RAG on platforms like Slack, Twitter, and more through standardized MCP servers.
Connect to live data sources through the Model Context Protocol (MCP). LEANN now supports real-time RAG on platforms like Slack, Twitter, and more through standardized MCP servers.
**Key Benefits:**
- **Live Data Access**: Fetch real-time data without manual exports
@@ -805,18 +805,17 @@ python -m apps.slack_rag \
--query "What did we decide about the product launch?"
```
**Setup Requirements:**
**📖 Comprehensive Setup Guide**: For detailed setup instructions, troubleshooting common issues (like "users cache is not ready yet"), and advanced configuration options, see our [**Slack Setup Guide**](docs/slack-setup-guide.md).
**Quick Setup:**
1. Install a Slack MCP server (e.g., `npm install -g slack-mcp-server`)
2. Create a Slack App and get API credentials:
- Go to [api.slack.com/apps](https://api.slack.com/apps) and create a new app
- Under "OAuth & Permissions", add these Bot Token Scopes: `channels:read`, `channels:history`, `groups:read`, `groups:history`, `im:read`, `im:history`, `mpim:read`, `mpim:history`
- Install the app to your workspace and copy the "Bot User OAuth Token" (starts with `xoxb-`)
- Under "App-Level Tokens", create a token with `connections:write` scope (starts with `xapp-`)
2. Create a Slack App and get API credentials (see detailed guide above)
3. Set environment variables:
```bash
export SLACK_BOT_TOKEN="xoxb-your-bot-token"
export SLACK_APP_TOKEN="xapp-your-app-token"
export SLACK_APP_TOKEN="xapp-your-app-token" # Optional
```
3. Test connection with `--test-connection` flag
4. Test connection with `--test-connection` flag
**Arguments:**
- `--mcp-server`: Command to start the Slack MCP server
@@ -824,6 +823,8 @@ python -m apps.slack_rag \
- `--channels`: Specific channels to index (optional)
- `--concatenate-conversations`: Group messages by channel (default: true)
- `--max-messages-per-channel`: Limit messages per channel (default: 100)
- `--max-retries`: Maximum retries for cache sync issues (default: 5)
- `--retry-delay`: Initial delay between retries in seconds (default: 2.0)
#### 🐦 Twitter Bookmarks: Your Personal Tweet Library
@@ -925,7 +926,7 @@ Want to add support for other platforms? LEANN's MCP integration is designed for
### 🚀 Claude Code Integration: Transform Your Development Workflow!
<details>
<summary><strong>NEW!! ASTAware Code Chunking</strong></summary>
<summary><strong>ASTAware Code Chunking</strong></summary>
LEANN features intelligent code chunking that preserves semantic boundaries (functions, classes, methods) for Python, Java, C#, and TypeScript, improving code understanding compared to text-based chunking.

View File

@@ -10,9 +10,39 @@ from typing import Any
import dotenv
from leann.api import LeannBuilder, LeannChat
from leann.interactive_utils import create_rag_session
# Optional import: older PyPI builds may not include interactive_utils
try:
from leann.interactive_utils import create_rag_session
except ImportError:
def create_rag_session(app_name: str, data_description: str):
class _SimpleSession:
def run_interactive_loop(self, handler):
print(f"Interactive session for {app_name}: {data_description}")
print("Interactive mode not available in this build")
return _SimpleSession()
from leann.registry import register_project_directory
from leann.settings import resolve_ollama_host, resolve_openai_api_key, resolve_openai_base_url
# Optional import: older PyPI builds may not include settings
try:
from leann.settings import resolve_ollama_host, resolve_openai_api_key, resolve_openai_base_url
except ImportError:
# Minimal fallbacks if settings helpers are unavailable
import os
def resolve_ollama_host(value: str | None) -> str | None:
return value or os.getenv("LEANN_OLLAMA_HOST") or os.getenv("OLLAMA_HOST")
def resolve_openai_api_key(value: str | None) -> str | None:
return value or os.getenv("OPENAI_API_KEY")
def resolve_openai_base_url(value: str | None) -> str | None:
return value or os.getenv("OPENAI_BASE_URL")
dotenv.load_dotenv()

View File

@@ -29,6 +29,8 @@ class SlackMCPReader:
workspace_name: Optional[str] = None,
concatenate_conversations: bool = True,
max_messages_per_conversation: int = 100,
max_retries: int = 5,
retry_delay: float = 2.0,
):
"""
Initialize the Slack MCP Reader.
@@ -38,11 +40,15 @@ class SlackMCPReader:
workspace_name: Optional workspace name to filter messages
concatenate_conversations: Whether to group messages by channel/thread
max_messages_per_conversation: Maximum messages to include per conversation
max_retries: Maximum number of retries for failed operations
retry_delay: Initial delay between retries in seconds
"""
self.mcp_server_command = mcp_server_command
self.workspace_name = workspace_name
self.concatenate_conversations = concatenate_conversations
self.max_messages_per_conversation = max_messages_per_conversation
self.max_retries = max_retries
self.retry_delay = retry_delay
self.mcp_process = None
async def start_mcp_server(self):
@@ -110,11 +116,73 @@ class SlackMCPReader:
return response.get("result", {}).get("tools", [])
def _is_cache_sync_error(self, error: dict) -> bool:
"""Check if the error is related to users cache not being ready."""
if isinstance(error, dict):
message = error.get("message", "").lower()
return (
"users cache is not ready" in message or "sync process is still running" in message
)
return False
async def _retry_with_backoff(self, func, *args, **kwargs):
"""Retry a function with exponential backoff, especially for cache sync issues."""
last_exception = None
for attempt in range(self.max_retries + 1):
try:
return await func(*args, **kwargs)
except Exception as e:
last_exception = e
# Check if this is a cache sync error
error_dict = {}
if hasattr(e, "args") and e.args and isinstance(e.args[0], dict):
error_dict = e.args[0]
elif "Failed to fetch messages" in str(e):
# Try to extract error from the exception message
import re
match = re.search(r"'error':\s*(\{[^}]+\})", str(e))
if match:
try:
error_dict = eval(match.group(1))
except (ValueError, SyntaxError, NameError):
pass
else:
# Try alternative format
match = re.search(r"Failed to fetch messages:\s*(\{[^}]+\})", str(e))
if match:
try:
error_dict = eval(match.group(1))
except (ValueError, SyntaxError, NameError):
pass
if self._is_cache_sync_error(error_dict):
if attempt < self.max_retries:
delay = self.retry_delay * (2**attempt) # Exponential backoff
logger.info(
f"Cache sync not ready, waiting {delay:.1f}s before retry {attempt + 1}/{self.max_retries}"
)
await asyncio.sleep(delay)
continue
else:
logger.warning(
f"Cache sync still not ready after {self.max_retries} retries, giving up"
)
break
else:
# Not a cache sync error, don't retry
break
# If we get here, all retries failed or it's not a retryable error
raise last_exception
async def fetch_slack_messages(
self, channel: Optional[str] = None, limit: int = 100
) -> list[dict[str, Any]]:
"""
Fetch Slack messages using MCP tools.
Fetch Slack messages using MCP tools with retry logic for cache sync issues.
Args:
channel: Optional channel name to filter messages
@@ -123,32 +191,59 @@ class SlackMCPReader:
Returns:
List of message dictionaries
"""
return await self._retry_with_backoff(self._fetch_slack_messages_impl, channel, limit)
async def _fetch_slack_messages_impl(
self, channel: Optional[str] = None, limit: int = 100
) -> list[dict[str, Any]]:
"""
Internal implementation of fetch_slack_messages without retry logic.
"""
# This is a generic implementation - specific MCP servers may have different tool names
# Common tool names might be: 'get_messages', 'list_messages', 'fetch_channel_history'
tools = await self.list_available_tools()
logger.info(f"Available tools: {[tool.get('name') for tool in tools]}")
message_tool = None
# Look for a tool that can fetch messages
# Look for a tool that can fetch messages - prioritize conversations_history
message_tool = None
# First, try to find conversations_history specifically
for tool in tools:
tool_name = tool.get("name", "").lower()
if any(
keyword in tool_name
for keyword in ["message", "history", "channel", "conversation"]
):
if "conversations_history" in tool_name:
message_tool = tool
logger.info(f"Found conversations_history tool: {tool}")
break
# If not found, look for other message-fetching tools
if not message_tool:
for tool in tools:
tool_name = tool.get("name", "").lower()
if any(
keyword in tool_name
for keyword in ["conversations_search", "message", "history"]
):
message_tool = tool
break
if not message_tool:
raise RuntimeError("No message fetching tool found in MCP server")
# Prepare tool call parameters
tool_params = {"limit": limit}
tool_params = {"limit": "180d"} # Use 180 days to get older messages
if channel:
# Try common parameter names for channel specification
for param_name in ["channel", "channel_id", "channel_name"]:
tool_params[param_name] = channel
break
# For conversations_history, use channel_id parameter
if message_tool["name"] == "conversations_history":
tool_params["channel_id"] = channel
else:
# Try common parameter names for channel specification
for param_name in ["channel", "channel_id", "channel_name"]:
tool_params[param_name] = channel
break
logger.info(f"Tool parameters: {tool_params}")
fetch_request = {
"jsonrpc": "2.0",
@@ -170,8 +265,8 @@ class SlackMCPReader:
try:
messages = json.loads(content["text"])
except json.JSONDecodeError:
# If not JSON, treat as plain text
messages = [{"text": content["text"], "channel": channel or "unknown"}]
# If not JSON, try to parse as CSV format (Slack MCP server format)
messages = self._parse_csv_messages(content["text"], channel)
else:
messages = result["content"]
else:
@@ -180,6 +275,56 @@ class SlackMCPReader:
return messages if isinstance(messages, list) else [messages]
def _parse_csv_messages(self, csv_text: str, channel: str) -> list[dict[str, Any]]:
"""Parse CSV format messages from Slack MCP server."""
import csv
import io
messages = []
try:
# Split by lines and process each line as a CSV row
lines = csv_text.strip().split("\n")
if not lines:
return messages
# Skip header line if it exists
start_idx = 0
if lines[0].startswith("MsgID,UserID,UserName"):
start_idx = 1
for line in lines[start_idx:]:
if not line.strip():
continue
# Parse CSV line
reader = csv.reader(io.StringIO(line))
try:
row = next(reader)
if len(row) >= 7: # Ensure we have enough columns
message = {
"ts": row[0],
"user": row[1],
"username": row[2],
"real_name": row[3],
"channel": row[4],
"thread_ts": row[5],
"text": row[6],
"time": row[7] if len(row) > 7 else "",
"reactions": row[8] if len(row) > 8 else "",
"cursor": row[9] if len(row) > 9 else "",
}
messages.append(message)
except Exception as e:
logger.warning(f"Failed to parse CSV line: {line[:100]}... Error: {e}")
continue
except Exception as e:
logger.warning(f"Failed to parse CSV messages: {e}")
# Fallback: treat entire text as one message
messages = [{"text": csv_text, "channel": channel or "unknown"}]
return messages
def _format_message(self, message: dict[str, Any]) -> str:
"""Format a single message for indexing."""
text = message.get("text", "")
@@ -251,6 +396,40 @@ class SlackMCPReader:
return "\n".join(content_parts)
async def get_all_channels(self) -> list[str]:
"""Get list of all available channels."""
try:
channels_list_request = {
"jsonrpc": "2.0",
"id": 4,
"method": "tools/call",
"params": {"name": "channels_list", "arguments": {}},
}
channels_response = await self.send_mcp_request(channels_list_request)
if "result" in channels_response:
result = channels_response["result"]
if "content" in result and isinstance(result["content"], list):
content = result["content"][0] if result["content"] else {}
if "text" in content:
# Parse the channels from the response
channels = []
lines = content["text"].split("\n")
for line in lines:
if line.strip() and ("#" in line or "C" in line[:10]):
# Extract channel ID or name
parts = line.split()
for part in parts:
if part.startswith("C") and len(part) > 5:
channels.append(part)
elif part.startswith("#"):
channels.append(part[1:]) # Remove #
logger.info(f"Found {len(channels)} channels: {channels}")
return channels
return []
except Exception as e:
logger.warning(f"Failed to get channels list: {e}")
return []
async def read_slack_data(self, channels: Optional[list[str]] = None) -> list[str]:
"""
Read Slack data and return formatted text chunks.
@@ -287,36 +466,33 @@ class SlackMCPReader:
logger.warning(f"Failed to fetch messages from channel {channel}: {e}")
continue
else:
# Fetch from all available channels/conversations
# This is a simplified approach - real implementation would need to
# discover available channels first
try:
messages = await self.fetch_slack_messages(limit=1000)
if messages:
# Group messages by channel if concatenating
if self.concatenate_conversations:
channel_messages = {}
for message in messages:
channel = message.get(
"channel", message.get("channel_name", "general")
)
if channel not in channel_messages:
channel_messages[channel] = []
channel_messages[channel].append(message)
# Fetch from all available channels
logger.info("Fetching from all available channels...")
all_channels = await self.get_all_channels()
# Create concatenated content for each channel
for channel, msgs in channel_messages.items():
text_content = self._create_concatenated_content(msgs, channel)
if not all_channels:
# Fallback to common channel names if we can't get the list
all_channels = ["general", "random", "announcements", "C0GN5BX0F"]
logger.info(f"Using fallback channels: {all_channels}")
for channel in all_channels:
try:
logger.info(f"Searching channel: {channel}")
messages = await self.fetch_slack_messages(channel=channel, limit=1000)
if messages:
if self.concatenate_conversations:
text_content = self._create_concatenated_content(messages, channel)
if text_content.strip():
all_texts.append(text_content)
else:
# Process individual messages
for message in messages:
formatted_msg = self._format_message(message)
if formatted_msg.strip():
all_texts.append(formatted_msg)
except Exception as e:
logger.error(f"Failed to fetch messages: {e}")
else:
# Process individual messages
for message in messages:
formatted_msg = self._format_message(message)
if formatted_msg.strip():
all_texts.append(formatted_msg)
except Exception as e:
logger.warning(f"Failed to fetch messages from channel {channel}: {e}")
continue
return all_texts

View File

@@ -78,6 +78,20 @@ class SlackMCPRAG(BaseRAGExample):
help="Test MCP server connection and list available tools without indexing",
)
parser.add_argument(
"--max-retries",
type=int,
default=5,
help="Maximum number of retries for failed operations (default: 5)",
)
parser.add_argument(
"--retry-delay",
type=float,
default=2.0,
help="Initial delay between retries in seconds (default: 2.0)",
)
async def test_mcp_connection(self, args) -> bool:
"""Test the MCP server connection and display available tools."""
print(f"Testing connection to MCP server: {args.mcp_server}")
@@ -88,12 +102,14 @@ class SlackMCPRAG(BaseRAGExample):
workspace_name=args.workspace_name,
concatenate_conversations=not args.no_concatenate_conversations,
max_messages_per_conversation=args.max_messages_per_channel,
max_retries=args.max_retries,
retry_delay=args.retry_delay,
)
async with reader:
tools = await reader.list_available_tools()
print("\nSuccessfully connected to MCP server!")
print("Successfully connected to MCP server!")
print(f"Available tools ({len(tools)}):")
for i, tool in enumerate(tools, 1):
@@ -115,7 +131,7 @@ class SlackMCPRAG(BaseRAGExample):
return True
except Exception as e:
print(f"\nFailed to connect to MCP server: {e}")
print(f"Failed to connect to MCP server: {e}")
print("\nTroubleshooting tips:")
print("1. Make sure the MCP server is installed and accessible")
print("2. Check if the server command is correct")
@@ -130,8 +146,11 @@ class SlackMCPRAG(BaseRAGExample):
if args.workspace_name:
print(f"Workspace: {args.workspace_name}")
if args.channels:
print(f"Channels: {', '.join(args.channels)}")
# Filter out empty strings from channels
channels = [ch for ch in args.channels if ch.strip()] if args.channels else None
if channels:
print(f"Channels: {', '.join(channels)}")
else:
print("Fetching from all available channels")
@@ -146,18 +165,20 @@ class SlackMCPRAG(BaseRAGExample):
workspace_name=args.workspace_name,
concatenate_conversations=concatenate,
max_messages_per_conversation=args.max_messages_per_channel,
max_retries=args.max_retries,
retry_delay=args.retry_delay,
)
texts = await reader.read_slack_data(channels=args.channels)
texts = await reader.read_slack_data(channels=channels)
if not texts:
print("No messages found! This could mean:")
print("No messages found! This could mean:")
print("- The MCP server couldn't fetch messages")
print("- The specified channels don't exist or are empty")
print("- Authentication issues with the Slack workspace")
return []
print(f"Successfully loaded {len(texts)} text chunks from Slack")
print(f"Successfully loaded {len(texts)} text chunks from Slack")
# Show sample of what was loaded
if texts:
@@ -170,7 +191,7 @@ class SlackMCPRAG(BaseRAGExample):
return texts
except Exception as e:
print(f"Error loading Slack data: {e}")
print(f"Error loading Slack data: {e}")
print("\nThis might be due to:")
print("- MCP server connection issues")
print("- Authentication problems")
@@ -188,7 +209,7 @@ class SlackMCPRAG(BaseRAGExample):
if not success:
return
print(
"\n🎉 MCP server is working! You can now run without --test-connection to start indexing."
"MCP server is working! You can now run without --test-connection to start indexing."
)
return

395
docs/slack-setup-guide.md Normal file
View File

@@ -0,0 +1,395 @@
# Slack Integration Setup Guide
This guide provides step-by-step instructions for setting up Slack integration with LEANN.
## Overview
LEANN's Slack integration uses MCP (Model Context Protocol) servers to fetch and index your Slack messages for RAG (Retrieval-Augmented Generation). This allows you to search through your Slack conversations using natural language queries.
## Prerequisites
1. **Slack Workspace Access**: You need admin or owner permissions in your Slack workspace to create apps and configure OAuth tokens.
2. **Slack MCP Server**: Install a Slack MCP server (e.g., `slack-mcp-server` via npm)
3. **LEANN**: Ensure you have LEANN installed and working
## Step 1: Create a Slack App
### 1.1 Go to Slack API Dashboard
1. Visit [https://api.slack.com/apps](https://api.slack.com/apps)
2. Click **"Create New App"**
3. Choose **"From scratch"**
4. Enter your app name (e.g., "LEANN Slack Integration")
5. Select your workspace
6. Click **"Create App"**
### 1.2 Configure App Permissions
#### Token Scopes
1. In your app dashboard, go to **"OAuth & Permissions"** in the left sidebar
2. Scroll down to **"Scopes"** section
3. Under **"Bot Token Scopes & OAuth Scope"**, click **"Add an OAuth Scope"**
4. Add the following scopes:
- `channels:read` - Read public channel information
- `channels:history` - Read messages in public channels
- `groups:read` - Read private channel information
- `groups:history` - Read messages in private channels
- `im:read` - Read direct message information
- `im:history` - Read direct messages
- `mpim:read` - Read group direct message information
- `mpim:history` - Read group direct messages
- `users:read` - Read user information
- `team:read` - Read workspace information
#### App-Level Tokens (Optional)
Some MCP servers may require app-level tokens:
1. Go to **"Basic Information"** in the left sidebar
2. Scroll down to **"App-Level Tokens"**
3. Click **"Generate Token and Scopes"**
4. Enter a name (e.g., "LEANN Integration")
5. Add the `connections:write` scope
6. Click **"Generate"**
7. Copy the token (starts with `xapp-`)
### 1.3 Install App to Workspace
1. Go to **"OAuth & Permissions"** in the left sidebar
2. Click **"Install to Workspace"**
3. Review the permissions and click **"Allow"**
4. Copy the **"Bot User OAuth Token"** (starts with `xoxb-`)
5. Copy the **"User OAuth Token"** (starts with `xoxp-`)
## Step 2: Install Slack MCP Server
### Option A: Using npm (Recommended)
```bash
# Install globally
npm install -g slack-mcp-server
# Or install locally
npm install slack-mcp-server
```
### Option B: Using npx (No installation required)
```bash
# Use directly without installation
npx slack-mcp-server
```
## Step 3: Install and Configure Ollama (for Real LLM Responses)
### 3.1 Install Ollama
```bash
# Install Ollama using Homebrew (macOS)
brew install ollama
# Or download from https://ollama.ai/
```
### 3.2 Start Ollama Service
```bash
# Start Ollama as a service
brew services start ollama
# Or start manually
ollama serve
```
### 3.3 Pull a Model
```bash
# Pull a lightweight model for testing
ollama pull llama3.2:1b
# Verify the model is available
ollama list
```
## Step 4: Configure Environment Variables
Create a `.env` file or set environment variables:
```bash
# Required: User OAuth Token
SLACK_OAUTH_TOKEN=xoxp-your-user-oauth-token-here
# Optional: App-Level Token (if your MCP server requires it)
SLACK_APP_TOKEN=xapp-your-app-token-here
# Optional: Workspace-specific settings
SLACK_WORKSPACE_ID=T1234567890 # Your workspace ID (optional)
```
## Step 5: Test the Setup
### 5.1 Test MCP Server Connection
```bash
python -m apps.slack_rag \
--mcp-server "slack-mcp-server" \
--test-connection \
--workspace-name "Your Workspace Name"
```
This will test the connection and list available tools without indexing any data.
### 5.2 Index a Specific Channel
```bash
python -m apps.slack_rag \
--mcp-server "slack-mcp-server" \
--workspace-name "Your Workspace Name" \
--channels general \
--query "What did we discuss about the project?"
```
### 5.3 Real RAG Query Examples
This section demonstrates successful Slack RAG integration queries against the Sky Lab Computing workspace's "random" channel. The system successfully retrieves actual conversation messages and performs semantic search with high relevance scores, including finding specific research paper announcements and technical discussions.
### Example 1: Advisor Models Query
**Query:** "train black-box models to adopt to your personal data"
This query demonstrates the system's ability to find specific research announcements about training black-box models for personal data adaptation.
![Advisor Models Query - Command Setup](videos/slack_integration_1.1.png)
![Advisor Models Query - Search Results](videos/slack_integration_1.2.png)
![Advisor Models Query - LLM Response](videos/slack_integration_1.3.png)
### Example 2: Barbarians at the Gate Query
**Query:** "AI-driven research systems ADRS"
This query demonstrates the system's ability to find specific research announcements about AI-driven research systems and algorithm discovery.
![Barbarians Query - Command Setup](videos/slack_integration_2.1.png)
![Barbarians Query - Search Results](videos/slack_integration_2.2.png)
![Barbarians Query - LLM Response](videos/slack_integration_2.3.png)
### Prerequisites
- Bot is installed in the Sky Lab Computing workspace and invited to the target channel (run `/invite @YourBotName` in the channel if needed)
- Bot token available and exported in the same terminal session
### Commands
1) Set the workspace token for this shell
```bash
export SLACK_MCP_XOXP_TOKEN="xoxp-***-redacted-***"
```
2) Run queries against the "random" channel by channel ID (C0GN5BX0F)
**Advisor Models Query:**
```bash
python -m apps.slack_rag \
--mcp-server "slack-mcp-server" \
--workspace-name "Sky Lab Computing" \
--channels C0GN5BX0F \
--max-messages-per-channel 100000 \
--query "train black-box models to adopt to your personal data" \
--llm ollama \
--llm-model "llama3.2:1b" \
--llm-host "http://localhost:11434" \
--no-concatenate-conversations
```
**Barbarians at the Gate Query:**
```bash
python -m apps.slack_rag \
--mcp-server "slack-mcp-server" \
--workspace-name "Sky Lab Computing" \
--channels C0GN5BX0F \
--max-messages-per-channel 100000 \
--query "AI-driven research systems ADRS" \
--llm ollama \
--llm-model "llama3.2:1b" \
--llm-host "http://localhost:11434" \
--no-concatenate-conversations
```
These examples demonstrate the system's ability to find and retrieve specific research announcements and technical discussions from the conversation history, showcasing the power of semantic search in Slack data.
3) Optional: Ask a broader question
```bash
python test_channel_by_id_or_name.py \
--channel-id C0GN5BX0F \
--workspace-name "Sky Lab Computing" \
--query "What is LEANN about?"
```
Notes:
- If you see `not_in_channel`, invite the bot to the channel and re-run.
- If you see `channel_not_found`, confirm the channel ID and workspace.
- Deep search via server-side “search” tools may require additional Slack scopes; the example above performs client-side filtering over retrieved history.
## Common Issues and Solutions
### Issue 1: "users cache is not ready yet" Error
**Problem**: You see this warning:
```
WARNING - Failed to fetch messages from channel random: Failed to fetch messages: {'code': -32603, 'message': 'users cache is not ready yet, sync process is still running... please wait'}
```
**Solution**: This is a common timing issue. The LEANN integration now includes automatic retry logic:
1. **Wait and Retry**: The system will automatically retry with exponential backoff (2s, 4s, 8s, etc.)
2. **Increase Retry Parameters**: If needed, you can customize retry behavior:
```bash
python -m apps.slack_rag \
--mcp-server "slack-mcp-server" \
--max-retries 10 \
--retry-delay 3.0 \
--channels general \
--query "Your query here"
```
3. **Keep MCP Server Running**: Start the MCP server separately and keep it running:
```bash
# Terminal 1: Start MCP server
slack-mcp-server
# Terminal 2: Run LEANN (it will connect to the running server)
python -m apps.slack_rag --mcp-server "slack-mcp-server" --channels general --query "test"
```
### Issue 2: "No message fetching tool found"
**Problem**: The MCP server doesn't have the expected tools.
**Solution**:
1. Check if your MCP server is properly installed and configured
2. Verify your Slack tokens are correct
3. Try a different MCP server implementation
4. Check the MCP server documentation for required configuration
### Issue 3: Permission Denied Errors
**Problem**: You get permission errors when trying to access channels.
**Solutions**:
1. **Check Bot Permissions**: Ensure your bot has been added to the channels you want to access
2. **Verify Token Scopes**: Make sure you have all required scopes configured
3. **Channel Access**: For private channels, the bot needs to be explicitly invited
4. **Workspace Permissions**: Ensure your Slack app has the necessary workspace permissions
### Issue 4: Empty Results
**Problem**: No messages are returned even though the channel has messages.
**Solutions**:
1. **Check Channel Names**: Ensure channel names are correct (without the # symbol)
2. **Verify Bot Access**: Make sure the bot can access the channels
3. **Check Date Ranges**: Some MCP servers have limitations on message history
4. **Increase Message Limits**: Try increasing the message limit:
```bash
python -m apps.slack_rag \
--mcp-server "slack-mcp-server" \
--channels general \
--max-messages-per-channel 1000 \
--query "test"
```
## Advanced Configuration
### Custom MCP Server Commands
If you need to pass additional parameters to your MCP server:
```bash
python -m apps.slack_rag \
--mcp-server "slack-mcp-server --token-file /path/to/tokens.json" \
--workspace-name "Your Workspace" \
--channels general \
--query "Your query"
```
### Multiple Workspaces
To work with multiple Slack workspaces, you can:
1. Create separate apps for each workspace
2. Use different environment variables
3. Run separate instances with different configurations
### Performance Optimization
For better performance with large workspaces:
```bash
python -m apps.slack_rag \
--mcp-server "slack-mcp-server" \
--workspace-name "Your Workspace" \
--max-messages-per-channel 500 \
--no-concatenate-conversations \
--query "Your query"
```
---
## Troubleshooting Checklist
- [ ] Slack app created with proper permissions
- [ ] Bot token (xoxb-) copied correctly
- [ ] App-level token (xapp-) created if needed
- [ ] MCP server installed and accessible
- [ ] Ollama installed and running (`brew services start ollama`)
- [ ] Ollama model pulled (`ollama pull llama3.2:1b`)
- [ ] Environment variables set correctly
- [ ] Bot invited to relevant channels
- [ ] Channel names specified without # symbol
- [ ] Sufficient retry attempts configured
- [ ] Network connectivity to Slack APIs
## Getting Help
If you continue to have issues:
1. **Check Logs**: Look for detailed error messages in the console output
2. **Test MCP Server**: Use `--test-connection` to verify the MCP server is working
3. **Verify Tokens**: Double-check that your Slack tokens are valid and have the right scopes
4. **Check Ollama**: Ensure Ollama is running (`ollama serve`) and the model is available (`ollama list`)
5. **Community Support**: Reach out to the LEANN community for help
## Example Commands
### Basic Usage
```bash
# Test connection
python -m apps.slack_rag --mcp-server "slack-mcp-server" --test-connection
# Index specific channels
python -m apps.slack_rag \
--mcp-server "slack-mcp-server" \
--workspace-name "My Company" \
--channels general random \
--query "What did we decide about the project timeline?"
```
### Advanced Usage
```bash
# With custom retry settings
python -m apps.slack_rag \
--mcp-server "slack-mcp-server" \
--workspace-name "My Company" \
--channels general \
--max-retries 10 \
--retry-delay 5.0 \
--max-messages-per-channel 2000 \
--query "Show me all decisions made in the last month"
```

View File

Binary file not shown.

After

Width:  |  Height:  |  Size: 445 KiB

View File

Binary file not shown.

After

Width:  |  Height:  |  Size: 508 KiB

View File

Binary file not shown.

After

Width:  |  Height:  |  Size: 437 KiB

View File

Binary file not shown.

After

Width:  |  Height:  |  Size: 474 KiB

View File

Binary file not shown.

After

Width:  |  Height:  |  Size: 501 KiB

View File

Binary file not shown.

After

Width:  |  Height:  |  Size: 454 KiB

View File

@@ -29,12 +29,25 @@ if(APPLE)
set(CMAKE_OSX_DEPLOYMENT_TARGET "11.0" CACHE STRING "Minimum macOS version")
endif()
# Use system ZeroMQ instead of building from source
# Find ZMQ using pkg-config with IMPORTED_TARGET for automatic target creation
find_package(PkgConfig REQUIRED)
pkg_check_modules(ZMQ REQUIRED libzmq)
# On ARM64 macOS, ensure pkg-config finds ARM64 Homebrew packages first
if(APPLE AND CMAKE_SYSTEM_PROCESSOR MATCHES "aarch64|arm64")
set(ENV{PKG_CONFIG_PATH} "/opt/homebrew/lib/pkgconfig:/opt/homebrew/share/pkgconfig:$ENV{PKG_CONFIG_PATH}")
endif()
pkg_check_modules(ZMQ REQUIRED IMPORTED_TARGET libzmq)
# This creates PkgConfig::ZMQ target automatically with correct properties
if(TARGET PkgConfig::ZMQ)
message(STATUS "Found and configured ZMQ target: PkgConfig::ZMQ")
else()
message(FATAL_ERROR "pkg_check_modules did not create IMPORTED target for ZMQ.")
endif()
# Add cppzmq headers
include_directories(third_party/cppzmq)
include_directories(SYSTEM third_party/cppzmq)
# Configure msgpack-c - disable boost dependency
set(MSGPACK_USE_BOOST OFF CACHE BOOL "" FORCE)

View File

@@ -1236,6 +1236,17 @@ class LeannChat:
"Please provide the best answer you can based on this context and your knowledge."
)
print("The context provided to the LLM is:")
print(f"{'Relevance':<10} | {'Chunk id':<10} | {'Content':<60} | {'Source':<80}")
print("-" * 150)
for r in results:
chunk_relevance = f"{r.score:.3f}"
chunk_id = r.id
chunk_content = r.text[:60]
chunk_source = r.metadata.get("source", "")[:80]
print(
f"{chunk_relevance:<10} | {chunk_id:<10} | {chunk_content:<60} | {chunk_source:<80}"
)
ask_time = time.time()
ans = self.llm.ask(prompt, **llm_kwargs)
ask_time = time.time() - ask_time

View File

@@ -834,6 +834,11 @@ class OpenAIChat(LLMInterface):
try:
response = self.client.chat.completions.create(**params)
print(
f"Total tokens = {response.usage.total_tokens}, prompt tokens = {response.usage.prompt_tokens}, completion tokens = {response.usage.completion_tokens}"
)
if response.choices[0].finish_reason == "length":
print("The query is exceeding the maximum allowed number of tokens")
return response.choices[0].message.content.strip()
except Exception as e:
logger.error(f"Error communicating with OpenAI: {e}")

View File

@@ -1,5 +1,6 @@
import argparse
import asyncio
import time
from pathlib import Path
from typing import Any, Optional, Union
@@ -106,7 +107,7 @@ Examples:
help="Documents directories and/or files (default: current directory)",
)
build_parser.add_argument(
"--backend",
"--backend-name",
type=str,
default="hnsw",
choices=["hnsw", "diskann"],
@@ -254,6 +255,11 @@ Examples:
action="store_true",
help="Non-interactive mode: automatically select index without prompting",
)
search_parser.add_argument(
"--show-metadata",
action="store_true",
help="Display file paths and metadata in search results",
)
# Ask command
ask_parser = subparsers.add_parser("ask", help="Ask questions")
@@ -1186,6 +1192,7 @@ Examples:
for doc in other_docs:
file_path = doc.metadata.get("file_path", "")
if file_filter(file_path):
doc.metadata["source"] = file_path
filtered_docs.append(doc)
documents.extend(filtered_docs)
@@ -1261,7 +1268,7 @@ Examples:
from .chunking_utils import create_text_chunks
# Use enhanced chunking with AST support
all_texts = create_text_chunks(
chunk_texts = create_text_chunks(
documents,
chunk_size=self.node_parser.chunk_size,
chunk_overlap=self.node_parser.chunk_overlap,
@@ -1272,6 +1279,14 @@ Examples:
ast_fallback_traditional=getattr(args, "ast_fallback_traditional", True),
)
# Note: AST chunking currently returns plain text chunks without metadata
# We preserve basic file info by associating chunks with their source documents
# For better metadata preservation, documents list order should be maintained
for chunk_text in chunk_texts:
# TODO: Enhance create_text_chunks to return metadata alongside text
# For now, we store chunks with empty metadata
all_texts.append({"text": chunk_text, "metadata": {}})
except ImportError as e:
print(
f"⚠️ AST chunking utilities not available in package ({e}), falling back to traditional chunking"
@@ -1283,14 +1298,27 @@ Examples:
for doc in tqdm(documents, desc="Chunking documents", unit="doc"):
# Check if this is a code file based on source path
source_path = doc.metadata.get("source", "")
file_path = doc.metadata.get("file_path", "")
is_code_file = any(source_path.endswith(ext) for ext in code_file_exts)
# Extract metadata to preserve with chunks
chunk_metadata = {
"file_path": file_path or source_path,
"file_name": doc.metadata.get("file_name", ""),
}
# Add optional metadata if available
if "creation_date" in doc.metadata:
chunk_metadata["creation_date"] = doc.metadata["creation_date"]
if "last_modified_date" in doc.metadata:
chunk_metadata["last_modified_date"] = doc.metadata["last_modified_date"]
# Use appropriate parser based on file type
parser = self.code_parser if is_code_file else self.node_parser
nodes = parser.get_nodes_from_documents([doc])
for node in nodes:
all_texts.append(node.get_content())
all_texts.append({"text": node.get_content(), "metadata": chunk_metadata})
print(f"Loaded {len(documents)} documents, {len(all_texts)} chunks")
return all_texts
@@ -1365,7 +1393,7 @@ Examples:
index_dir.mkdir(parents=True, exist_ok=True)
print(f"Building index '{index_name}' with {args.backend} backend...")
print(f"Building index '{index_name}' with {args.backend_name} backend...")
embedding_options: dict[str, Any] = {}
if args.embedding_mode == "ollama":
@@ -1377,7 +1405,7 @@ Examples:
embedding_options["api_key"] = resolved_embedding_key
builder = LeannBuilder(
backend_name=args.backend,
backend_name=args.backend_name,
embedding_model=args.embedding_model,
embedding_mode=args.embedding_mode,
embedding_options=embedding_options or None,
@@ -1388,8 +1416,8 @@ Examples:
num_threads=args.num_threads,
)
for chunk_text in all_texts:
builder.add_text(chunk_text)
for chunk in all_texts:
builder.add_text(chunk["text"], metadata=chunk["metadata"])
builder.build_index(index_path)
print(f"Index built at {index_path}")
@@ -1510,7 +1538,25 @@ Examples:
print(f"Search results for '{query}' (top {len(results)}):")
for i, result in enumerate(results, 1):
print(f"{i}. Score: {result.score:.3f}")
# Display metadata if flag is set
if args.show_metadata and result.metadata:
file_path = result.metadata.get("file_path", "")
if file_path:
print(f" 📄 File: {file_path}")
file_name = result.metadata.get("file_name", "")
if file_name and file_name != file_path:
print(f" 📝 Name: {file_name}")
# Show timestamps if available
if "creation_date" in result.metadata:
print(f" 🕐 Created: {result.metadata['creation_date']}")
if "last_modified_date" in result.metadata:
print(f" 🕑 Modified: {result.metadata['last_modified_date']}")
print(f" {result.text[:200]}...")
print(f" Source: {result.metadata.get('source', '')}")
print()
async def ask_questions(self, args):
@@ -1542,6 +1588,7 @@ Examples:
llm_kwargs["thinking_budget"] = args.thinking_budget
def _ask_once(prompt: str) -> None:
query_start_time = time.time()
response = chat.ask(
prompt,
top_k=args.top_k,
@@ -1552,7 +1599,9 @@ Examples:
pruning_strategy=args.pruning_strategy,
llm_kwargs=llm_kwargs,
)
query_completion_time = time.time() - query_start_time
print(f"LEANN: {response}")
print(f"The query took {query_completion_time:.3f} seconds to finish")
initial_query = (args.query or "").strip()

View File

@@ -574,9 +574,10 @@ def compute_embeddings_ollama(
host: Optional[str] = None,
) -> np.ndarray:
"""
Compute embeddings using Ollama API with simplified batch processing.
Compute embeddings using Ollama API with true batch processing.
Uses batch size of 32 for MPS/CPU and 128 for CUDA to optimize performance.
Uses the /api/embed endpoint which supports batch inputs.
Batch size: 32 for MPS/CPU, 128 for CUDA to optimize performance.
Args:
texts: List of texts to compute embeddings for
@@ -681,11 +682,11 @@ def compute_embeddings_ollama(
logger.info(f"Resolved model name '{model_name}' to '{resolved_model_name}'")
model_name = resolved_model_name
# Verify the model supports embeddings by testing it
# Verify the model supports embeddings by testing it with /api/embed
try:
test_response = requests.post(
f"{resolved_host}/api/embeddings",
json={"model": model_name, "prompt": "test"},
f"{resolved_host}/api/embed",
json={"model": model_name, "input": "test"},
timeout=10,
)
if test_response.status_code != 200:
@@ -717,56 +718,55 @@ def compute_embeddings_ollama(
# If torch is not available, use conservative batch size
batch_size = 32
logger.info(f"Using batch size: {batch_size}")
logger.info(f"Using batch size: {batch_size} for true batch processing")
def get_batch_embeddings(batch_texts):
"""Get embeddings for a batch of texts."""
all_embeddings = []
failed_indices = []
"""Get embeddings for a batch of texts using /api/embed endpoint."""
max_retries = 3
retry_count = 0
for i, text in enumerate(batch_texts):
max_retries = 3
retry_count = 0
# Truncate very long texts to avoid API issues
truncated_texts = [text[:8000] if len(text) > 8000 else text for text in batch_texts]
# Truncate very long texts to avoid API issues
truncated_text = text[:8000] if len(text) > 8000 else text
while retry_count < max_retries:
try:
response = requests.post(
f"{resolved_host}/api/embeddings",
json={"model": model_name, "prompt": truncated_text},
timeout=30,
while retry_count < max_retries:
try:
# Use /api/embed endpoint with "input" parameter for batch processing
response = requests.post(
f"{resolved_host}/api/embed",
json={"model": model_name, "input": truncated_texts},
timeout=60, # Increased timeout for batch processing
)
response.raise_for_status()
result = response.json()
batch_embeddings = result.get("embeddings")
if batch_embeddings is None:
raise ValueError("No embeddings returned from API")
if not isinstance(batch_embeddings, list):
raise ValueError(f"Invalid embeddings format: {type(batch_embeddings)}")
if len(batch_embeddings) != len(batch_texts):
raise ValueError(
f"Mismatch: requested {len(batch_texts)} embeddings, got {len(batch_embeddings)}"
)
response.raise_for_status()
result = response.json()
embedding = result.get("embedding")
return batch_embeddings, []
if embedding is None:
raise ValueError(f"No embedding returned for text {i}")
except requests.exceptions.Timeout:
retry_count += 1
if retry_count >= max_retries:
logger.warning(f"Timeout for batch after {max_retries} retries")
return None, list(range(len(batch_texts)))
if not isinstance(embedding, list) or len(embedding) == 0:
raise ValueError(f"Invalid embedding format for text {i}")
except Exception as e:
retry_count += 1
if retry_count >= max_retries:
logger.error(f"Failed to get embeddings for batch: {e}")
return None, list(range(len(batch_texts)))
all_embeddings.append(embedding)
break
except requests.exceptions.Timeout:
retry_count += 1
if retry_count >= max_retries:
logger.warning(f"Timeout for text {i} after {max_retries} retries")
failed_indices.append(i)
all_embeddings.append(None)
break
except Exception as e:
retry_count += 1
if retry_count >= max_retries:
logger.error(f"Failed to get embedding for text {i}: {e}")
failed_indices.append(i)
all_embeddings.append(None)
break
return all_embeddings, failed_indices
return None, list(range(len(batch_texts)))
# Process texts in batches
all_embeddings = []
@@ -784,7 +784,7 @@ def compute_embeddings_ollama(
num_batches = (len(texts) + batch_size - 1) // batch_size
if show_progress:
batch_iterator = tqdm(range(num_batches), desc="Computing Ollama embeddings")
batch_iterator = tqdm(range(num_batches), desc="Computing Ollama embeddings (batched)")
else:
batch_iterator = range(num_batches)
@@ -795,10 +795,14 @@ def compute_embeddings_ollama(
batch_embeddings, batch_failed = get_batch_embeddings(batch_texts)
# Adjust failed indices to global indices
global_failed = [start_idx + idx for idx in batch_failed]
all_failed_indices.extend(global_failed)
all_embeddings.extend(batch_embeddings)
if batch_embeddings is not None:
all_embeddings.extend(batch_embeddings)
else:
# Entire batch failed, add None placeholders
all_embeddings.extend([None] * len(batch_texts))
# Adjust failed indices to global indices
global_failed = [start_idx + idx for idx in batch_failed]
all_failed_indices.extend(global_failed)
# Handle failed embeddings
if all_failed_indices:

View File

@@ -60,6 +60,11 @@ def handle_request(request):
"maximum": 128,
"description": "Search complexity level. Use 16-32 for fast searches (recommended), 64+ for higher precision when needed.",
},
"show_metadata": {
"type": "boolean",
"default": False,
"description": "Include file paths and metadata in search results. Useful for understanding which files contain the results.",
},
},
"required": ["index_name", "query"],
},
@@ -104,6 +109,8 @@ def handle_request(request):
f"--complexity={args.get('complexity', 32)}",
"--non-interactive",
]
if args.get("show_metadata", False):
cmd.append("--show-metadata")
result = subprocess.run(cmd, capture_output=True, text=True)
elif tool_name == "leann_list":