Compare commits
7 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
b6ab6f1993 | ||
|
|
9f2e82a838 | ||
|
|
0b2b799d5a | ||
|
|
0f790fbbd9 | ||
|
|
387ae21eba | ||
|
|
3cc329c3e7 | ||
|
|
5567302316 |
36
README.md
36
README.md
@@ -6,6 +6,7 @@
|
||||
<img src="https://img.shields.io/badge/Python-3.9%2B-blue.svg" alt="Python 3.9+">
|
||||
<img src="https://img.shields.io/badge/License-MIT-green.svg" alt="MIT License">
|
||||
<img src="https://img.shields.io/badge/Platform-Linux%20%7C%20macOS-lightgrey" alt="Platform">
|
||||
<img src="https://img.shields.io/badge/MCP-Native%20Integration-blue?style=flat-square" alt="MCP Integration">
|
||||
</p>
|
||||
|
||||
<h2 align="center" tabindex="-1" class="heading-element" dir="auto">
|
||||
@@ -16,9 +17,10 @@ LEANN is an innovative vector database that democratizes personal AI. Transform
|
||||
|
||||
LEANN achieves this through *graph-based selective recomputation* with *high-degree preserving pruning*, computing embeddings on-demand instead of storing them all. [Illustration Fig →](#️-architecture--how-it-works) | [Paper →](https://arxiv.org/abs/2506.08276)
|
||||
|
||||
**Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can search your **[file system](#-personal-data-manager-process-any-documents-pdf-txt-md)**, **[emails](#-your-personal-email-secretary-rag-on-apple-mail)**, **[browser history](#-time-machine-for-the-web-rag-your-entire-browser-history)**, **[chat history](#-wechat-detective-unlock-your-golden-memories)**, or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy.
|
||||
**Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can semantic search your **[file system](#-personal-data-manager-process-any-documents-pdf-txt-md)**, **[emails](#-your-personal-email-secretary-rag-on-apple-mail)**, **[browser history](#-time-machine-for-the-web-rag-your-entire-browser-history)**, **[chat history](#-wechat-detective-unlock-your-golden-memories)**, **[codebase](#-claude-code-integration-transform-your-development-workflow)**\* , or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy.
|
||||
|
||||
> **🚀 NEW: Claude Code Integration!** LEANN now provides native MCP integration for Claude Code users. Index your codebase and get intelligent code assistance directly in Claude Code. [Setup Guide →](packages/leann-mcp/README.md)
|
||||
|
||||
\* Claude Code only supports basic `grep`-style keyword search. **LEANN** is a drop-in **semantic search MCP service fully compatible with Claude Code**, unlocking intelligent retrieval without changing your workflow.
|
||||
|
||||
|
||||
|
||||
@@ -28,7 +30,7 @@ LEANN achieves this through *graph-based selective recomputation* with *high-deg
|
||||
<img src="assets/effects.png" alt="LEANN vs Traditional Vector DB Storage Comparison" width="70%">
|
||||
</p>
|
||||
|
||||
> **The numbers speak for themselves:** Index 60 million Wikipedia chunks in just 6GB instead of 201GB. From emails to browser history, everything fits on your laptop. [See detailed benchmarks for different applications below ↓](#storage-comparison)
|
||||
> **The numbers speak for themselves:** Index 60 million text chunks in just 6GB instead of 201GB. From emails to browser history, everything fits on your laptop. [See detailed benchmarks for different applications below ↓](#storage-comparison)
|
||||
|
||||
|
||||
🔒 **Privacy:** Your data never leaves your laptop. No OpenAI, no cloud, no "terms of service".
|
||||
@@ -221,7 +223,7 @@ Ask questions directly about your personal PDFs, documents, and any directory co
|
||||
<img src="videos/paper_clear.gif" alt="LEANN Document Search Demo" width="600">
|
||||
</p>
|
||||
|
||||
The example below asks a question about summarizing our paper (uses default data in `data/`, which is a directory with diverse data sources: two papers, Pride and Prejudice, and a README in Chinese) and this is the **easiest example** to run here:
|
||||
The example below asks a question about summarizing our paper (uses default data in `data/`, which is a directory with diverse data sources: two papers, Pride and Prejudice, and a Technical report about LLM in Huawei in Chinese), and this is the **easiest example** to run here:
|
||||
|
||||
```bash
|
||||
source .venv/bin/activate # Don't forget to activate the virtual environment
|
||||
@@ -416,7 +418,26 @@ Once the index is built, you can ask questions like:
|
||||
|
||||
</details>
|
||||
|
||||
### 🚀 Claude Code Integration: Transform Your Development Workflow!
|
||||
|
||||
**The future of code assistance is here.** Transform your development workflow with LEANN's native MCP integration for Claude Code. Index your entire codebase and get intelligent code assistance directly in your IDE.
|
||||
|
||||
**Key features:**
|
||||
- 🔍 **Semantic code search** across your entire project
|
||||
- 📚 **Context-aware assistance** for debugging and development
|
||||
- 🚀 **Zero-config setup** with automatic language detection
|
||||
|
||||
```bash
|
||||
# Install LEANN globally for MCP integration
|
||||
uv tool install leann-core
|
||||
|
||||
# Setup is automatic - just start using Claude Code!
|
||||
```
|
||||
Try our fully agentic pipeline with auto query rewriting, semantic search planning, and more:
|
||||
|
||||

|
||||
|
||||
**Ready to supercharge your coding?** [Complete Setup Guide →](packages/leann-mcp/README.md)
|
||||
|
||||
## 🖥️ Command Line Interface
|
||||
|
||||
@@ -446,11 +467,8 @@ leann --help
|
||||
### Usage Examples
|
||||
|
||||
```bash
|
||||
# Build an index from current directory (default)
|
||||
leann build my-docs
|
||||
|
||||
# Or from specific directory
|
||||
leann build my-docs --docs ./documents
|
||||
# build from a specific directory, and my_docs is the index name
|
||||
leann build my-docs --docs ./your_documents
|
||||
|
||||
# Search your documents
|
||||
leann search my-docs "machine learning concepts"
|
||||
|
||||
BIN
assets/mcp_leann.png
Normal file
BIN
assets/mcp_leann.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 224 KiB |
@@ -1,150 +0,0 @@
|
||||
# Claude Code x LEANN 集成指南
|
||||
|
||||
## ✅ 现状:已经可以工作!
|
||||
|
||||
好消息:LEANN CLI已经完全可以在Claude Code中使用,无需任何修改!
|
||||
|
||||
## 🚀 立即开始
|
||||
|
||||
### 1. 激活环境
|
||||
```bash
|
||||
# 在LEANN项目目录下
|
||||
source .venv/bin/activate.fish # fish shell
|
||||
# 或
|
||||
source .venv/bin/activate # bash shell
|
||||
```
|
||||
|
||||
### 2. 基本命令
|
||||
|
||||
#### 查看现有索引
|
||||
```bash
|
||||
leann list
|
||||
```
|
||||
|
||||
#### 搜索文档
|
||||
```bash
|
||||
leann search my-docs "machine learning" --recompute-embeddings
|
||||
```
|
||||
|
||||
#### 问答对话
|
||||
```bash
|
||||
echo "What is machine learning?" | leann ask my-docs --llm ollama --model qwen3:8b --recompute-embeddings
|
||||
```
|
||||
|
||||
#### 构建新索引
|
||||
```bash
|
||||
leann build project-docs --docs ./src --recompute-embeddings
|
||||
```
|
||||
|
||||
## 💡 Claude Code 使用技巧
|
||||
|
||||
### 在Claude Code中直接使用
|
||||
|
||||
1. **激活环境**:
|
||||
```bash
|
||||
cd /Users/andyl/Projects/LEANN-RAG
|
||||
source .venv/bin/activate.fish
|
||||
```
|
||||
|
||||
2. **搜索代码库**:
|
||||
```bash
|
||||
leann search my-docs "authentication patterns" --recompute-embeddings --top-k 10
|
||||
```
|
||||
|
||||
3. **智能问答**:
|
||||
```bash
|
||||
echo "How does the authentication system work?" | leann ask my-docs --llm ollama --model qwen3:8b --recompute-embeddings
|
||||
```
|
||||
|
||||
### 批量操作示例
|
||||
|
||||
```bash
|
||||
# 构建项目文档索引
|
||||
leann build project-docs --docs ./docs --force
|
||||
|
||||
# 搜索多个关键词
|
||||
leann search project-docs "API authentication" --recompute-embeddings
|
||||
leann search project-docs "database schema" --recompute-embeddings
|
||||
leann search project-docs "deployment guide" --recompute-embeddings
|
||||
|
||||
# 问答模式
|
||||
echo "What are the API endpoints?" | leann ask project-docs --recompute-embeddings
|
||||
```
|
||||
|
||||
## 🎯 Claude 可以立即执行的工作流
|
||||
|
||||
### 代码分析工作流
|
||||
```bash
|
||||
# 1. 构建代码库索引
|
||||
leann build codebase --docs ./src --backend hnsw --recompute-embeddings
|
||||
|
||||
# 2. 分析架构
|
||||
echo "What is the overall architecture?" | leann ask codebase --recompute-embeddings
|
||||
|
||||
# 3. 查找特定功能
|
||||
leann search codebase "user authentication" --recompute-embeddings --top-k 5
|
||||
|
||||
# 4. 理解实现细节
|
||||
echo "How is user authentication implemented?" | leann ask codebase --recompute-embeddings
|
||||
```
|
||||
|
||||
### 文档理解工作流
|
||||
```bash
|
||||
# 1. 索引项目文档
|
||||
leann build docs --docs ./docs --recompute-embeddings
|
||||
|
||||
# 2. 快速查找信息
|
||||
leann search docs "installation requirements" --recompute-embeddings
|
||||
|
||||
# 3. 获取详细说明
|
||||
echo "What are the system requirements?" | leann ask docs --recompute-embeddings
|
||||
```
|
||||
|
||||
## ⚠️ 重要提示
|
||||
|
||||
1. **必须使用 `--recompute-embeddings`** - 这是关键参数,不加会报错
|
||||
2. **需要先激活虚拟环境** - 确保有LEANN的Python环境
|
||||
3. **Ollama需要预先安装** - ask功能需要本地LLM
|
||||
|
||||
## 🔥 立即可用的Claude提示词
|
||||
|
||||
```
|
||||
Help me analyze this codebase using LEANN:
|
||||
|
||||
1. First, activate the environment:
|
||||
cd /Users/andyl/Projects/LEANN-RAG && source .venv/bin/activate.fish
|
||||
|
||||
2. Build an index of the source code:
|
||||
leann build codebase --docs ./src --recompute-embeddings
|
||||
|
||||
3. Search for authentication patterns:
|
||||
leann search codebase "authentication middleware" --recompute-embeddings --top-k 10
|
||||
|
||||
4. Ask about the authentication system:
|
||||
echo "How does user authentication work in this codebase?" | leann ask codebase --recompute-embeddings
|
||||
|
||||
Please execute these commands and help me understand the code structure.
|
||||
```
|
||||
|
||||
## 📈 下一步改进计划
|
||||
|
||||
虽然现在已经可以用,但还可以进一步优化:
|
||||
|
||||
1. **简化命令** - 默认启用recompute-embeddings
|
||||
2. **配置文件** - 避免重复输入参数
|
||||
3. **状态管理** - 自动检测环境和索引
|
||||
4. **输出格式** - 更适合Claude解析的格式
|
||||
|
||||
但这些都是锦上添花,现在就能用起来!
|
||||
|
||||
## 🎉 总结
|
||||
|
||||
**LEANN现在就可以在Claude Code中完美工作!**
|
||||
|
||||
- ✅ 搜索功能正常
|
||||
- ✅ RAG问答功能正常
|
||||
- ✅ 索引构建功能正常
|
||||
- ✅ 支持多种数据源
|
||||
- ✅ 支持本地LLM
|
||||
|
||||
只需要记住加上 `--recompute-embeddings` 参数就行!
|
||||
@@ -4,8 +4,8 @@ build-backend = "scikit_build_core.build"
|
||||
|
||||
[project]
|
||||
name = "leann-backend-diskann"
|
||||
version = "0.2.2"
|
||||
dependencies = ["leann-core==0.2.2", "numpy", "protobuf>=3.19.0"]
|
||||
version = "0.2.5"
|
||||
dependencies = ["leann-core==0.2.5", "numpy", "protobuf>=3.19.0"]
|
||||
|
||||
[tool.scikit-build]
|
||||
# Key: simplified CMake path
|
||||
|
||||
@@ -6,10 +6,10 @@ build-backend = "scikit_build_core.build"
|
||||
|
||||
[project]
|
||||
name = "leann-backend-hnsw"
|
||||
version = "0.2.2"
|
||||
version = "0.2.5"
|
||||
description = "Custom-built HNSW (Faiss) backend for the Leann toolkit."
|
||||
dependencies = [
|
||||
"leann-core==0.2.2",
|
||||
"leann-core==0.2.5",
|
||||
"numpy",
|
||||
"pyzmq>=23.0.0",
|
||||
"msgpack>=1.0.0",
|
||||
|
||||
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
||||
|
||||
[project]
|
||||
name = "leann-core"
|
||||
version = "0.2.2"
|
||||
version = "0.2.5"
|
||||
description = "Core API and plugin system for LEANN"
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.9"
|
||||
|
||||
@@ -17,12 +17,12 @@ logging.basicConfig(level=logging.INFO)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def check_ollama_models() -> list[str]:
|
||||
def check_ollama_models(host: str) -> list[str]:
|
||||
"""Check available Ollama models and return a list"""
|
||||
try:
|
||||
import requests
|
||||
|
||||
response = requests.get("http://localhost:11434/api/tags", timeout=5)
|
||||
response = requests.get(f"{host}/api/tags", timeout=5)
|
||||
if response.status_code == 200:
|
||||
data = response.json()
|
||||
return [model["name"] for model in data.get("models", [])]
|
||||
@@ -309,10 +309,12 @@ def search_hf_models(query: str, limit: int = 10) -> list[str]:
|
||||
return search_hf_models_fuzzy(query, limit)
|
||||
|
||||
|
||||
def validate_model_and_suggest(model_name: str, llm_type: str) -> str | None:
|
||||
def validate_model_and_suggest(
|
||||
model_name: str, llm_type: str, host: str = "http://localhost:11434"
|
||||
) -> str | None:
|
||||
"""Validate model name and provide suggestions if invalid"""
|
||||
if llm_type == "ollama":
|
||||
available_models = check_ollama_models()
|
||||
available_models = check_ollama_models(host)
|
||||
if available_models and model_name not in available_models:
|
||||
error_msg = f"Model '{model_name}' not found in your local Ollama installation."
|
||||
|
||||
@@ -469,7 +471,7 @@ class OllamaChat(LLMInterface):
|
||||
requests.get(host)
|
||||
|
||||
# Pre-check model availability with helpful suggestions
|
||||
model_error = validate_model_and_suggest(model, "ollama")
|
||||
model_error = validate_model_and_suggest(model, "ollama", host)
|
||||
if model_error:
|
||||
raise ValueError(model_error)
|
||||
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import json
|
||||
import os
|
||||
import subprocess
|
||||
import sys
|
||||
|
||||
@@ -62,10 +61,6 @@ def handle_request(request):
|
||||
tool_name = request["params"]["name"]
|
||||
args = request["params"].get("arguments", {})
|
||||
|
||||
# Set working directory and environment
|
||||
env = os.environ.copy()
|
||||
cwd = "/Users/andyl/Projects/LEANN-RAG"
|
||||
|
||||
try:
|
||||
if tool_name == "leann_search":
|
||||
cmd = [
|
||||
@@ -76,18 +71,14 @@ def handle_request(request):
|
||||
"--recompute-embeddings",
|
||||
f"--top-k={args.get('top_k', 5)}",
|
||||
]
|
||||
result = subprocess.run(cmd, capture_output=True, text=True, cwd=cwd, env=env)
|
||||
result = subprocess.run(cmd, capture_output=True, text=True)
|
||||
|
||||
elif tool_name == "leann_ask":
|
||||
cmd = f'echo "{args["question"]}" | leann ask {args["index_name"]} --recompute-embeddings --llm ollama --model qwen3:8b'
|
||||
result = subprocess.run(
|
||||
cmd, shell=True, capture_output=True, text=True, cwd=cwd, env=env
|
||||
)
|
||||
result = subprocess.run(cmd, shell=True, capture_output=True, text=True)
|
||||
|
||||
elif tool_name == "leann_list":
|
||||
result = subprocess.run(
|
||||
["leann", "list"], capture_output=True, text=True, cwd=cwd, env=env
|
||||
)
|
||||
result = subprocess.run(["leann", "list"], capture_output=True, text=True)
|
||||
|
||||
return {
|
||||
"jsonrpc": "2.0",
|
||||
|
||||
@@ -7,7 +7,7 @@ Intelligent code assistance using LEANN's vector search directly in Claude Code.
|
||||
First, install LEANN CLI globally:
|
||||
|
||||
```bash
|
||||
uv tool install leann
|
||||
uv tool install leann-core
|
||||
```
|
||||
|
||||
This makes the `leann` command available system-wide, which `leann_mcp` requires.
|
||||
@@ -30,7 +30,7 @@ claude mcp add leann-server -- leann_mcp
|
||||
|
||||
```bash
|
||||
# Build an index for your project
|
||||
leann build my-project
|
||||
leann build my-project --docs ./ #change to your doc PATH
|
||||
|
||||
# Start Claude Code
|
||||
claude
|
||||
|
||||
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
||||
|
||||
[project]
|
||||
name = "leann"
|
||||
version = "0.2.2"
|
||||
version = "0.2.5"
|
||||
description = "LEANN - The smallest vector index in the world. RAG Everything with LEANN!"
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.9"
|
||||
|
||||
Reference in New Issue
Block a user