Compare commits

..

7 Commits

Author SHA1 Message Date
GitHub Actions
b6ab6f1993 chore: release v0.2.5 2025-08-08 22:32:27 +00:00
joshuashaffer
9f2e82a838 Propagate hosts argument for ollama through chat.py (#21)
* Propigate hosts argument for ollama through chat.py

* Apply suggestions from code review

Good AI slop suggestions.

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

---------

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-08-08 15:31:15 -07:00
yichuan520030910320
0b2b799d5a [README]fix instructions in cli 2025-08-08 01:04:13 -07:00
yichuan520030910320
0f790fbbd9 docs: polish README and add optimized MCP integration image
- Improve grammar and sentence structure in MCP section
- Add proper markdown image formatting with relative paths
- Optimize mcp_leann.png size (1.3MB -> 224KB)
- Update data description to be more specific about Chinese content
2025-08-08 00:58:36 -07:00
GitHub Actions
387ae21eba chore: release v0.2.4 2025-08-08 07:14:51 +00:00
Andy Lee
3cc329c3e7 fix: remove hardcoded paths from MCP server and documentation 2025-08-08 00:08:56 -07:00
Andy Lee
5567302316 feat: promote Claude Code integration as primary RAG feature 2025-08-07 23:19:19 -07:00
10 changed files with 45 additions and 184 deletions

View File

@@ -6,6 +6,7 @@
<img src="https://img.shields.io/badge/Python-3.9%2B-blue.svg" alt="Python 3.9+">
<img src="https://img.shields.io/badge/License-MIT-green.svg" alt="MIT License">
<img src="https://img.shields.io/badge/Platform-Linux%20%7C%20macOS-lightgrey" alt="Platform">
<img src="https://img.shields.io/badge/MCP-Native%20Integration-blue?style=flat-square" alt="MCP Integration">
</p>
<h2 align="center" tabindex="-1" class="heading-element" dir="auto">
@@ -16,9 +17,10 @@ LEANN is an innovative vector database that democratizes personal AI. Transform
LEANN achieves this through *graph-based selective recomputation* with *high-degree preserving pruning*, computing embeddings on-demand instead of storing them all. [Illustration Fig →](#-architecture--how-it-works) | [Paper →](https://arxiv.org/abs/2506.08276)
**Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can search your **[file system](#-personal-data-manager-process-any-documents-pdf-txt-md)**, **[emails](#-your-personal-email-secretary-rag-on-apple-mail)**, **[browser history](#-time-machine-for-the-web-rag-your-entire-browser-history)**, **[chat history](#-wechat-detective-unlock-your-golden-memories)**, or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy.
**Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can semantic search your **[file system](#-personal-data-manager-process-any-documents-pdf-txt-md)**, **[emails](#-your-personal-email-secretary-rag-on-apple-mail)**, **[browser history](#-time-machine-for-the-web-rag-your-entire-browser-history)**, **[chat history](#-wechat-detective-unlock-your-golden-memories)**, **[codebase](#-claude-code-integration-transform-your-development-workflow)**\* , or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy.
> **🚀 NEW: Claude Code Integration!** LEANN now provides native MCP integration for Claude Code users. Index your codebase and get intelligent code assistance directly in Claude Code. [Setup Guide →](packages/leann-mcp/README.md)
\* Claude Code only supports basic `grep`-style keyword search. **LEANN** is a drop-in **semantic search MCP service fully compatible with Claude Code**, unlocking intelligent retrieval without changing your workflow.
@@ -28,7 +30,7 @@ LEANN achieves this through *graph-based selective recomputation* with *high-deg
<img src="assets/effects.png" alt="LEANN vs Traditional Vector DB Storage Comparison" width="70%">
</p>
> **The numbers speak for themselves:** Index 60 million Wikipedia chunks in just 6GB instead of 201GB. From emails to browser history, everything fits on your laptop. [See detailed benchmarks for different applications below ↓](#storage-comparison)
> **The numbers speak for themselves:** Index 60 million text chunks in just 6GB instead of 201GB. From emails to browser history, everything fits on your laptop. [See detailed benchmarks for different applications below ↓](#storage-comparison)
🔒 **Privacy:** Your data never leaves your laptop. No OpenAI, no cloud, no "terms of service".
@@ -221,7 +223,7 @@ Ask questions directly about your personal PDFs, documents, and any directory co
<img src="videos/paper_clear.gif" alt="LEANN Document Search Demo" width="600">
</p>
The example below asks a question about summarizing our paper (uses default data in `data/`, which is a directory with diverse data sources: two papers, Pride and Prejudice, and a README in Chinese) and this is the **easiest example** to run here:
The example below asks a question about summarizing our paper (uses default data in `data/`, which is a directory with diverse data sources: two papers, Pride and Prejudice, and a Technical report about LLM in Huawei in Chinese), and this is the **easiest example** to run here:
```bash
source .venv/bin/activate # Don't forget to activate the virtual environment
@@ -416,7 +418,26 @@ Once the index is built, you can ask questions like:
</details>
### 🚀 Claude Code Integration: Transform Your Development Workflow!
**The future of code assistance is here.** Transform your development workflow with LEANN's native MCP integration for Claude Code. Index your entire codebase and get intelligent code assistance directly in your IDE.
**Key features:**
- 🔍 **Semantic code search** across your entire project
- 📚 **Context-aware assistance** for debugging and development
- 🚀 **Zero-config setup** with automatic language detection
```bash
# Install LEANN globally for MCP integration
uv tool install leann-core
# Setup is automatic - just start using Claude Code!
```
Try our fully agentic pipeline with auto query rewriting, semantic search planning, and more:
![LEANN MCP Integration](assets/mcp_leann.png)
**Ready to supercharge your coding?** [Complete Setup Guide →](packages/leann-mcp/README.md)
## 🖥️ Command Line Interface
@@ -446,11 +467,8 @@ leann --help
### Usage Examples
```bash
# Build an index from current directory (default)
leann build my-docs
# Or from specific directory
leann build my-docs --docs ./documents
# build from a specific directory, and my_docs is the index name
leann build my-docs --docs ./your_documents
# Search your documents
leann search my-docs "machine learning concepts"

BIN
assets/mcp_leann.png Normal file
View File

Binary file not shown.

After

Width:  |  Height:  |  Size: 224 KiB

View File

@@ -1,150 +0,0 @@
# Claude Code x LEANN 集成指南
## ✅ 现状:已经可以工作!
好消息LEANN CLI已经完全可以在Claude Code中使用无需任何修改
## 🚀 立即开始
### 1. 激活环境
```bash
# 在LEANN项目目录下
source .venv/bin/activate.fish # fish shell
# 或
source .venv/bin/activate # bash shell
```
### 2. 基本命令
#### 查看现有索引
```bash
leann list
```
#### 搜索文档
```bash
leann search my-docs "machine learning" --recompute-embeddings
```
#### 问答对话
```bash
echo "What is machine learning?" | leann ask my-docs --llm ollama --model qwen3:8b --recompute-embeddings
```
#### 构建新索引
```bash
leann build project-docs --docs ./src --recompute-embeddings
```
## 💡 Claude Code 使用技巧
### 在Claude Code中直接使用
1. **激活环境**
```bash
cd /Users/andyl/Projects/LEANN-RAG
source .venv/bin/activate.fish
```
2. **搜索代码库**
```bash
leann search my-docs "authentication patterns" --recompute-embeddings --top-k 10
```
3. **智能问答**
```bash
echo "How does the authentication system work?" | leann ask my-docs --llm ollama --model qwen3:8b --recompute-embeddings
```
### 批量操作示例
```bash
# 构建项目文档索引
leann build project-docs --docs ./docs --force
# 搜索多个关键词
leann search project-docs "API authentication" --recompute-embeddings
leann search project-docs "database schema" --recompute-embeddings
leann search project-docs "deployment guide" --recompute-embeddings
# 问答模式
echo "What are the API endpoints?" | leann ask project-docs --recompute-embeddings
```
## 🎯 Claude 可以立即执行的工作流
### 代码分析工作流
```bash
# 1. 构建代码库索引
leann build codebase --docs ./src --backend hnsw --recompute-embeddings
# 2. 分析架构
echo "What is the overall architecture?" | leann ask codebase --recompute-embeddings
# 3. 查找特定功能
leann search codebase "user authentication" --recompute-embeddings --top-k 5
# 4. 理解实现细节
echo "How is user authentication implemented?" | leann ask codebase --recompute-embeddings
```
### 文档理解工作流
```bash
# 1. 索引项目文档
leann build docs --docs ./docs --recompute-embeddings
# 2. 快速查找信息
leann search docs "installation requirements" --recompute-embeddings
# 3. 获取详细说明
echo "What are the system requirements?" | leann ask docs --recompute-embeddings
```
## ⚠️ 重要提示
1. **必须使用 `--recompute-embeddings`** - 这是关键参数,不加会报错
2. **需要先激活虚拟环境** - 确保有LEANN的Python环境
3. **Ollama需要预先安装** - ask功能需要本地LLM
## 🔥 立即可用的Claude提示词
```
Help me analyze this codebase using LEANN:
1. First, activate the environment:
cd /Users/andyl/Projects/LEANN-RAG && source .venv/bin/activate.fish
2. Build an index of the source code:
leann build codebase --docs ./src --recompute-embeddings
3. Search for authentication patterns:
leann search codebase "authentication middleware" --recompute-embeddings --top-k 10
4. Ask about the authentication system:
echo "How does user authentication work in this codebase?" | leann ask codebase --recompute-embeddings
Please execute these commands and help me understand the code structure.
```
## 📈 下一步改进计划
虽然现在已经可以用,但还可以进一步优化:
1. **简化命令** - 默认启用recompute-embeddings
2. **配置文件** - 避免重复输入参数
3. **状态管理** - 自动检测环境和索引
4. **输出格式** - 更适合Claude解析的格式
但这些都是锦上添花,现在就能用起来!
## 🎉 总结
**LEANN现在就可以在Claude Code中完美工作**
- ✅ 搜索功能正常
- ✅ RAG问答功能正常
- ✅ 索引构建功能正常
- ✅ 支持多种数据源
- ✅ 支持本地LLM
只需要记住加上 `--recompute-embeddings` 参数就行!

View File

@@ -4,8 +4,8 @@ build-backend = "scikit_build_core.build"
[project]
name = "leann-backend-diskann"
version = "0.2.2"
dependencies = ["leann-core==0.2.2", "numpy", "protobuf>=3.19.0"]
version = "0.2.5"
dependencies = ["leann-core==0.2.5", "numpy", "protobuf>=3.19.0"]
[tool.scikit-build]
# Key: simplified CMake path

View File

@@ -6,10 +6,10 @@ build-backend = "scikit_build_core.build"
[project]
name = "leann-backend-hnsw"
version = "0.2.2"
version = "0.2.5"
description = "Custom-built HNSW (Faiss) backend for the Leann toolkit."
dependencies = [
"leann-core==0.2.2",
"leann-core==0.2.5",
"numpy",
"pyzmq>=23.0.0",
"msgpack>=1.0.0",

View File

@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
[project]
name = "leann-core"
version = "0.2.2"
version = "0.2.5"
description = "Core API and plugin system for LEANN"
readme = "README.md"
requires-python = ">=3.9"

View File

@@ -17,12 +17,12 @@ logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def check_ollama_models() -> list[str]:
def check_ollama_models(host: str) -> list[str]:
"""Check available Ollama models and return a list"""
try:
import requests
response = requests.get("http://localhost:11434/api/tags", timeout=5)
response = requests.get(f"{host}/api/tags", timeout=5)
if response.status_code == 200:
data = response.json()
return [model["name"] for model in data.get("models", [])]
@@ -309,10 +309,12 @@ def search_hf_models(query: str, limit: int = 10) -> list[str]:
return search_hf_models_fuzzy(query, limit)
def validate_model_and_suggest(model_name: str, llm_type: str) -> str | None:
def validate_model_and_suggest(
model_name: str, llm_type: str, host: str = "http://localhost:11434"
) -> str | None:
"""Validate model name and provide suggestions if invalid"""
if llm_type == "ollama":
available_models = check_ollama_models()
available_models = check_ollama_models(host)
if available_models and model_name not in available_models:
error_msg = f"Model '{model_name}' not found in your local Ollama installation."
@@ -469,7 +471,7 @@ class OllamaChat(LLMInterface):
requests.get(host)
# Pre-check model availability with helpful suggestions
model_error = validate_model_and_suggest(model, "ollama")
model_error = validate_model_and_suggest(model, "ollama", host)
if model_error:
raise ValueError(model_error)

View File

@@ -1,7 +1,6 @@
#!/usr/bin/env python3
import json
import os
import subprocess
import sys
@@ -62,10 +61,6 @@ def handle_request(request):
tool_name = request["params"]["name"]
args = request["params"].get("arguments", {})
# Set working directory and environment
env = os.environ.copy()
cwd = "/Users/andyl/Projects/LEANN-RAG"
try:
if tool_name == "leann_search":
cmd = [
@@ -76,18 +71,14 @@ def handle_request(request):
"--recompute-embeddings",
f"--top-k={args.get('top_k', 5)}",
]
result = subprocess.run(cmd, capture_output=True, text=True, cwd=cwd, env=env)
result = subprocess.run(cmd, capture_output=True, text=True)
elif tool_name == "leann_ask":
cmd = f'echo "{args["question"]}" | leann ask {args["index_name"]} --recompute-embeddings --llm ollama --model qwen3:8b'
result = subprocess.run(
cmd, shell=True, capture_output=True, text=True, cwd=cwd, env=env
)
result = subprocess.run(cmd, shell=True, capture_output=True, text=True)
elif tool_name == "leann_list":
result = subprocess.run(
["leann", "list"], capture_output=True, text=True, cwd=cwd, env=env
)
result = subprocess.run(["leann", "list"], capture_output=True, text=True)
return {
"jsonrpc": "2.0",

View File

@@ -7,7 +7,7 @@ Intelligent code assistance using LEANN's vector search directly in Claude Code.
First, install LEANN CLI globally:
```bash
uv tool install leann
uv tool install leann-core
```
This makes the `leann` command available system-wide, which `leann_mcp` requires.
@@ -30,7 +30,7 @@ claude mcp add leann-server -- leann_mcp
```bash
# Build an index for your project
leann build my-project
leann build my-project --docs ./ #change to your doc PATH
# Start Claude Code
claude

View File

@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
[project]
name = "leann"
version = "0.2.2"
version = "0.2.5"
description = "LEANN - The smallest vector index in the world. RAG Everything with LEANN!"
readme = "README.md"
requires-python = ">=3.9"