381 lines
13 KiB
Python
381 lines
13 KiB
Python
"""
|
|
Dynamic add example for LEANN using HNSW backend without recompute.
|
|
|
|
- Builds a base index from a directory of documents
|
|
- Incrementally adds new documents without recomputing stored embeddings
|
|
|
|
Defaults:
|
|
- Base data: /Users/yichuan/Desktop/code/LEANN/leann/data
|
|
- Incremental data: /Users/yichuan/Desktop/code/LEANN/leann/test_add
|
|
- Index path: <index_dir>/documents.leann
|
|
|
|
Usage examples:
|
|
uv run python examples/dynamic_add_leann_no_recompute.py --build-base \
|
|
--base-dir /Users/yichuan/Desktop/code/LEANN/leann/data \
|
|
--index-dir ./test_doc_files
|
|
|
|
uv run python examples/dynamic_add_leann_no_recompute.py --add-incremental \
|
|
--add-dir /Users/yichuan/Desktop/code/LEANN/leann/test_add \
|
|
--index-dir ./test_doc_files
|
|
|
|
Quick recompute test (both true):
|
|
# Recompute build
|
|
uv run python examples/dynamic_add_leann_no_recompute.py --build-base \
|
|
--recompute-build --ef-construction 200 \
|
|
--base-dir /Users/yichuan/Desktop/code/LEANN/leann/data \
|
|
--index-dir ./test_doc_files --index-name documents.leann
|
|
|
|
# Recompute add
|
|
uv run python examples/dynamic_add_leann_no_recompute.py --add-incremental \
|
|
--recompute-add --ef-construction 32 \
|
|
--add-dir /Users/yichuan/Desktop/code/LEANN/leann/test_add \
|
|
--index-dir ./test_doc_files --index-name documents.leann
|
|
"""
|
|
|
|
import argparse
|
|
import json
|
|
import pickle
|
|
import sys
|
|
from pathlib import Path
|
|
from typing import Any, Optional
|
|
|
|
# Ensure we can import from the local packages and apps folders
|
|
ROOT = Path(__file__).resolve().parents[1]
|
|
CORE_SRC = ROOT / "packages" / "leann-core" / "src"
|
|
HNSW_PKG_DIR = ROOT / "packages" / "leann-backend-hnsw"
|
|
APPS_DIR = ROOT / "apps"
|
|
|
|
|
|
# Prefer the installed backend if available (it contains the compiled extension)
|
|
def _prefer_installed(pkg_name: str) -> bool:
|
|
try:
|
|
import importlib
|
|
import importlib.util
|
|
|
|
spec = importlib.util.find_spec(pkg_name)
|
|
if spec and spec.origin and "site-packages" in spec.origin:
|
|
# ensure the faiss shim/extension is importable from the installed package
|
|
importlib.import_module(f"{pkg_name}.faiss")
|
|
return True
|
|
except Exception:
|
|
pass
|
|
return False
|
|
|
|
|
|
# Prepend paths, but only add the repo backend if the installed one is not present
|
|
paths_to_prepend = [CORE_SRC, APPS_DIR]
|
|
if not _prefer_installed("leann_backend_hnsw"):
|
|
paths_to_prepend.insert(1, HNSW_PKG_DIR)
|
|
|
|
for p in paths_to_prepend:
|
|
p_str = str(p)
|
|
if p_str not in sys.path:
|
|
sys.path.insert(0, p_str)
|
|
|
|
# Defer non-stdlib imports until after sys.path setup within functions (avoid E402)
|
|
|
|
|
|
def _load_documents(data_dir: str, required_exts: Optional[list[str]] = None) -> list[Any]:
|
|
from llama_index.core import SimpleDirectoryReader # type: ignore
|
|
|
|
reader_kwargs: dict[str, Any] = {"recursive": True, "encoding": "utf-8"}
|
|
if required_exts:
|
|
reader_kwargs["required_exts"] = required_exts
|
|
documents = SimpleDirectoryReader(data_dir, **reader_kwargs).load_data(show_progress=True)
|
|
return documents
|
|
|
|
|
|
def _ensure_index_dir(index_dir: Path) -> None:
|
|
index_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
def _index_files(index_path: Path) -> tuple[Path, Path, Path]:
|
|
"""Return (passages.jsonl, passages.idx, index.index) paths for a given index base path.
|
|
|
|
Note: HNSWBackend writes the FAISS index using the stem (without .leann),
|
|
i.e., for base 'documents.leann' the file is 'documents.index'. We prefer the
|
|
existing file among candidates.
|
|
"""
|
|
passages_file = index_path.parent / f"{index_path.name}.passages.jsonl"
|
|
offsets_file = index_path.parent / f"{index_path.name}.passages.idx"
|
|
candidate_name_index = index_path.parent / f"{index_path.name}.index"
|
|
candidate_stem_index = index_path.parent / f"{index_path.stem}.index"
|
|
index_file = candidate_stem_index if candidate_stem_index.exists() else candidate_name_index
|
|
return passages_file, offsets_file, index_file
|
|
|
|
|
|
def _read_meta(index_path: Path) -> dict[str, Any]:
|
|
meta_path = index_path.parent / f"{index_path.name}.meta.json"
|
|
if not meta_path.exists():
|
|
raise FileNotFoundError(f"Metadata file not found: {meta_path}")
|
|
with open(meta_path, encoding="utf-8") as f:
|
|
return json.load(f)
|
|
|
|
|
|
def _autodetect_index_base(index_dir: Path) -> Optional[Path]:
|
|
"""If exactly one *.leann.meta.json exists, return its base path (without .meta.json)."""
|
|
candidates = list(index_dir.glob("*.leann.meta.json"))
|
|
if len(candidates) == 1:
|
|
meta = candidates[0]
|
|
base = meta.with_suffix("") # remove .json
|
|
base = base.with_suffix("") # remove .meta
|
|
return base
|
|
return None
|
|
|
|
|
|
def _load_offset_map(offsets_file: Path) -> dict[str, int]:
|
|
if not offsets_file.exists():
|
|
return {}
|
|
with open(offsets_file, "rb") as f:
|
|
return pickle.load(f)
|
|
|
|
|
|
def _next_numeric_id(existing_ids: list[str]) -> int:
|
|
numeric_ids = [int(x) for x in existing_ids if x.isdigit()]
|
|
if not numeric_ids:
|
|
return 0
|
|
return max(numeric_ids) + 1
|
|
|
|
|
|
def build_base_index(
|
|
base_dir: str,
|
|
index_dir: str,
|
|
index_name: str,
|
|
embedding_model: str,
|
|
embedding_mode: str,
|
|
chunk_size: int,
|
|
chunk_overlap: int,
|
|
file_types: Optional[list[str]] = None,
|
|
max_items: int = -1,
|
|
ef_construction: Optional[int] = None,
|
|
recompute_build: bool = False,
|
|
) -> str:
|
|
print(f"Building base index from: {base_dir}")
|
|
documents = _load_documents(base_dir, required_exts=file_types)
|
|
if not documents:
|
|
raise ValueError(f"No documents found in base_dir: {base_dir}")
|
|
|
|
from chunking import create_text_chunks
|
|
|
|
texts = create_text_chunks(
|
|
documents,
|
|
chunk_size=chunk_size,
|
|
chunk_overlap=chunk_overlap,
|
|
use_ast_chunking=False,
|
|
)
|
|
if max_items > 0 and len(texts) > max_items:
|
|
texts = texts[:max_items]
|
|
print(f"Limiting to {max_items} chunks")
|
|
|
|
index_dir_path = Path(index_dir)
|
|
_ensure_index_dir(index_dir_path)
|
|
index_path = index_dir_path / index_name
|
|
|
|
print("Creating HNSW index (non-compact)...")
|
|
from leann.api import LeannBuilder
|
|
from leann.registry import register_project_directory
|
|
|
|
builder = LeannBuilder(
|
|
backend_name="hnsw",
|
|
embedding_model=embedding_model,
|
|
embedding_mode=embedding_mode,
|
|
is_recompute=recompute_build,
|
|
is_compact=False,
|
|
efConstruction=(ef_construction if ef_construction is not None else 200),
|
|
)
|
|
for t in texts:
|
|
builder.add_text(t)
|
|
builder.build_index(str(index_path))
|
|
|
|
# Register for discovery
|
|
register_project_directory(Path.cwd())
|
|
|
|
print(f"Base index built at: {index_path}")
|
|
return str(index_path)
|
|
|
|
|
|
def add_incremental(
|
|
add_dir: str,
|
|
index_dir: str,
|
|
index_name: Optional[str] = None,
|
|
embedding_model: Optional[str] = None,
|
|
embedding_mode: Optional[str] = None,
|
|
chunk_size: int = 256,
|
|
chunk_overlap: int = 128,
|
|
file_types: Optional[list[str]] = None,
|
|
max_items: int = -1,
|
|
ef_construction: Optional[int] = None,
|
|
recompute_add: bool = False,
|
|
) -> str:
|
|
print(f"Adding incremental data from: {add_dir}")
|
|
index_dir_path = Path(index_dir)
|
|
index_path = index_dir_path / (index_name or "documents.leann")
|
|
|
|
# If specified base doesn't exist, try to auto-detect an existing base
|
|
try:
|
|
_read_meta(index_path)
|
|
except FileNotFoundError:
|
|
auto_base = _autodetect_index_base(index_dir_path)
|
|
if auto_base is not None:
|
|
print(f"Auto-detected index base: {auto_base.name}")
|
|
index_path = auto_base
|
|
_read_meta(index_path)
|
|
else:
|
|
raise FileNotFoundError(
|
|
f"No index metadata found for base '{index_path.name}'. Build base first with --build-base "
|
|
f"or provide --index-name to match an existing index (e.g., 'test_doc_files.leann')."
|
|
)
|
|
|
|
# Prepare validated context from core (checks backend/no-recompute and resolves embedding defaults)
|
|
from leann.api import create_incremental_add_context, incremental_add_texts_with_context
|
|
|
|
ctx = create_incremental_add_context(
|
|
str(index_path),
|
|
embedding_model=embedding_model,
|
|
embedding_mode=embedding_mode,
|
|
data_dir=add_dir,
|
|
required_exts=file_types,
|
|
chunk_size=chunk_size,
|
|
chunk_overlap=chunk_overlap,
|
|
max_items=max_items,
|
|
)
|
|
|
|
# Use prepared texts from context to perform the add
|
|
prepared_texts = ctx.prepared_texts or []
|
|
if not prepared_texts:
|
|
print("No new chunks to add.")
|
|
return str(index_path)
|
|
|
|
added = incremental_add_texts_with_context(
|
|
ctx,
|
|
prepared_texts,
|
|
ef_construction=ef_construction,
|
|
recompute=recompute_add,
|
|
)
|
|
|
|
print(f"Incremental add completed. Added {added} chunks. Index: {index_path}")
|
|
return str(index_path)
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(
|
|
description="Dynamic add to LEANN HNSW index without recompute",
|
|
formatter_class=argparse.RawDescriptionHelpFormatter,
|
|
)
|
|
|
|
parser.add_argument("--build-base", action="store_true", help="Build base index")
|
|
parser.add_argument("--add-incremental", action="store_true", help="Add incremental data")
|
|
|
|
parser.add_argument(
|
|
"--base-dir",
|
|
type=str,
|
|
default="/Users/yichuan/Desktop/code/LEANN/leann/data",
|
|
help="Base data directory",
|
|
)
|
|
parser.add_argument(
|
|
"--add-dir",
|
|
type=str,
|
|
default="/Users/yichuan/Desktop/code/LEANN/leann/test_add",
|
|
help="Incremental data directory",
|
|
)
|
|
parser.add_argument(
|
|
"--index-dir",
|
|
type=str,
|
|
default="./test_doc_files",
|
|
help="Directory containing the index",
|
|
)
|
|
parser.add_argument(
|
|
"--index-name",
|
|
type=str,
|
|
default="documents.leann",
|
|
help=(
|
|
"Index base file name. If you built via document_rag.py, use 'test_doc_files.leann'. "
|
|
"Default: documents.leann"
|
|
),
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--embedding-model",
|
|
type=str,
|
|
default="facebook/contriever",
|
|
help="Embedding model name",
|
|
)
|
|
parser.add_argument(
|
|
"--embedding-mode",
|
|
type=str,
|
|
default="sentence-transformers",
|
|
choices=["sentence-transformers", "openai", "mlx", "ollama"],
|
|
help="Embedding backend mode",
|
|
)
|
|
|
|
parser.add_argument("--chunk-size", type=int, default=256)
|
|
parser.add_argument("--chunk-overlap", type=int, default=128)
|
|
parser.add_argument("--file-types", nargs="+", default=None)
|
|
parser.add_argument("--max-items", type=int, default=-1)
|
|
parser.add_argument("--ef-construction", type=int, default=32)
|
|
parser.add_argument(
|
|
"--recompute-add", action="store_true", help="Enable recompute-mode add (non-compact only)"
|
|
)
|
|
parser.add_argument(
|
|
"--recompute-build",
|
|
action="store_true",
|
|
help="Enable recompute-mode base build (non-compact only)",
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
if not args.build_base and not args.add_incremental:
|
|
print("Nothing to do. Use --build-base and/or --add-incremental.")
|
|
return
|
|
|
|
index_path_str: Optional[str] = None
|
|
|
|
if args.build_base:
|
|
index_path_str = build_base_index(
|
|
base_dir=args.base_dir,
|
|
index_dir=args.index_dir,
|
|
index_name=args.index_name,
|
|
embedding_model=args.embedding_model,
|
|
embedding_mode=args.embedding_mode,
|
|
chunk_size=args.chunk_size,
|
|
chunk_overlap=args.chunk_overlap,
|
|
file_types=args.file_types,
|
|
max_items=args.max_items,
|
|
ef_construction=args.ef_construction,
|
|
recompute_build=args.recompute_build,
|
|
)
|
|
|
|
if args.add_incremental:
|
|
index_path_str = add_incremental(
|
|
add_dir=args.add_dir,
|
|
index_dir=args.index_dir,
|
|
index_name=args.index_name,
|
|
embedding_model=args.embedding_model,
|
|
embedding_mode=args.embedding_mode,
|
|
chunk_size=args.chunk_size,
|
|
chunk_overlap=args.chunk_overlap,
|
|
file_types=args.file_types,
|
|
max_items=args.max_items,
|
|
ef_construction=args.ef_construction,
|
|
recompute_add=args.recompute_add,
|
|
)
|
|
|
|
# Optional: quick test query using searcher
|
|
if index_path_str:
|
|
try:
|
|
from leann.api import LeannSearcher
|
|
|
|
searcher = LeannSearcher(index_path_str)
|
|
query = "what is LEANN?"
|
|
if args.add_incremental:
|
|
query = "what is the multi vector search and how it works?"
|
|
results = searcher.search(query, top_k=5)
|
|
if results:
|
|
print(f"Sample result: {results[0].text[:80]}...")
|
|
except Exception:
|
|
pass
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|