99 lines
3.1 KiB
Python
99 lines
3.1 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
Test script to reproduce issue #159: Slow search performance
|
|
Configuration:
|
|
- GPU: A10
|
|
- embedding_model: BAAI/bge-large-zh-v1.5
|
|
- data size: 180M text (~90K chunks)
|
|
- backend: hnsw
|
|
"""
|
|
|
|
import os
|
|
import time
|
|
from pathlib import Path
|
|
|
|
from leann.api import LeannBuilder, LeannSearcher
|
|
|
|
os.environ["LEANN_LOG_LEVEL"] = "DEBUG"
|
|
|
|
# Configuration matching the issue
|
|
INDEX_PATH = "./test_issue_159.leann"
|
|
EMBEDDING_MODEL = "BAAI/bge-large-zh-v1.5"
|
|
BACKEND_NAME = "hnsw"
|
|
|
|
|
|
def generate_test_data(num_chunks=90000, chunk_size=2000):
|
|
"""Generate test data similar to 180MB text (~90K chunks)"""
|
|
# Each chunk is approximately 2000 characters
|
|
# 90K chunks * 2000 chars ≈ 180MB
|
|
chunks = []
|
|
base_text = (
|
|
"这是一个测试文档。LEANN是一个创新的向量数据库, 通过图基选择性重计算实现97%的存储节省。"
|
|
)
|
|
|
|
for i in range(num_chunks):
|
|
chunk = f"{base_text} 文档编号: {i}. " * (chunk_size // len(base_text) + 1)
|
|
chunks.append(chunk[:chunk_size])
|
|
|
|
return chunks
|
|
|
|
|
|
def test_search_performance():
|
|
"""Test search performance with different configurations"""
|
|
print("=" * 80)
|
|
print("Testing LEANN Search Performance (Issue #159)")
|
|
print("=" * 80)
|
|
|
|
meta_path = Path(f"{INDEX_PATH}.meta.json")
|
|
if meta_path.exists():
|
|
print(f"\n✓ Index already exists at {INDEX_PATH}")
|
|
print(" Skipping build phase. Delete the index to rebuild.")
|
|
else:
|
|
print("\n📦 Building index...")
|
|
print(f" Backend: {BACKEND_NAME}")
|
|
print(f" Embedding Model: {EMBEDDING_MODEL}")
|
|
print(" Generating test data (~90K chunks, ~180MB)...")
|
|
|
|
chunks = generate_test_data(num_chunks=90000)
|
|
print(f" Generated {len(chunks)} chunks")
|
|
print(f" Total text size: {sum(len(c) for c in chunks) / (1024 * 1024):.2f} MB")
|
|
|
|
builder = LeannBuilder(
|
|
backend_name=BACKEND_NAME,
|
|
embedding_model=EMBEDDING_MODEL,
|
|
)
|
|
|
|
print(" Adding chunks to builder...")
|
|
start_time = time.time()
|
|
for i, chunk in enumerate(chunks):
|
|
builder.add_text(chunk)
|
|
if (i + 1) % 10000 == 0:
|
|
print(f" Added {i + 1}/{len(chunks)} chunks...")
|
|
|
|
print(" Building index...")
|
|
build_start = time.time()
|
|
builder.build_index(INDEX_PATH)
|
|
build_time = time.time() - build_start
|
|
print(f" ✓ Index built in {build_time:.2f} seconds")
|
|
|
|
# Test search with different complexity values
|
|
print("\n🔍 Testing search performance...")
|
|
searcher = LeannSearcher(INDEX_PATH)
|
|
|
|
test_query = "LEANN向量数据库存储优化"
|
|
|
|
# Test with minimal complexity (8)
|
|
print("\n Test 4: Minimal complexity (8)")
|
|
print(f" Query: '{test_query}'")
|
|
start_time = time.time()
|
|
results = searcher.search(test_query, top_k=10, complexity=8)
|
|
search_time = time.time() - start_time
|
|
print(f" ✓ Search completed in {search_time:.2f} seconds")
|
|
print(f" Results: {len(results)} items")
|
|
|
|
print("\n" + "=" * 80)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_search_performance()
|