Files
LEANN/docs/configuration-guide.md

284 lines
11 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# LEANN Configuration Guide
This guide helps you optimize LEANN for different use cases and understand the trade-offs between various configuration options.
## Getting Started: Simple is Better
When first trying LEANN, start with a small dataset to quickly validate your approach:
**For document RAG**: The default `data/` directory works perfectly - includes 2 AI research papers, Pride and Prejudice literature, and a technical report
```bash
python -m apps.document_rag --query "What techniques does LEANN use?"
```
**For other data sources**: Limit the dataset size for quick testing
```bash
# WeChat: Test with recent messages only
python -m apps.wechat_rag --max-items 100 --query "What did we discuss about the project timeline?"
# Browser history: Last few days
python -m apps.browser_rag --max-items 500 --query "Find documentation about vector databases"
# Email: Recent inbox
python -m apps.email_rag --max-items 200 --query "Who sent updates about the deployment status?"
```
Once validated, scale up gradually:
- 100 documents → 1,000 → 10,000 → full dataset (`--max-items -1`)
- This helps identify issues early before committing to long processing times
## Embedding Model Selection: Understanding the Trade-offs
Based on our experience developing LEANN, embedding models fall into three categories:
### Small Models (< 100M parameters)
**Example**: `sentence-transformers/all-MiniLM-L6-v2` (22M params)
- **Pros**: Lightweight, fast for both indexing and inference
- **Cons**: Lower semantic understanding, may miss nuanced relationships
- **Use when**: Speed is critical, handling simple queries, interactive mode, or just experimenting with LEANN. If time is not a constraint, consider using a larger/better embedding model
### Medium Models (100M-500M parameters)
**Example**: `facebook/contriever` (110M params), `BAAI/bge-base-en-v1.5` (110M params)
- **Pros**: Balanced performance, good multilingual support, reasonable speed
- **Cons**: Requires more compute than small models
- **Use when**: Need quality results without extreme compute requirements, general-purpose RAG applications
### Large Models (500M+ parameters)
**Example**: `Qwen/Qwen3-Embedding-0.6B` (600M params), `intfloat/multilingual-e5-large` (560M params)
- **Pros**: Best semantic understanding, captures complex relationships, excellent multilingual support. **Qwen3-Embedding-0.6B achieves nearly OpenAI API performance!**
- **Cons**: Slower inference, longer index build times
- **Use when**: Quality is paramount and you have sufficient compute resources. **Highly recommended** for production use
### Quick Start: OpenAI Embeddings (Fastest Setup)
For immediate testing without local model downloads:
```bash
# Set OpenAI embeddings (requires OPENAI_API_KEY)
--embedding-mode openai --embedding-model text-embedding-3-small
```
<details>
<summary><strong>Cloud vs Local Trade-offs</strong></summary>
**OpenAI Embeddings** (`text-embedding-3-small/large`)
- **Pros**: No local compute needed, consistently fast, high quality
- **Cons**: Requires API key, costs money, data leaves your system, [known limitations with certain languages](https://yichuan-w.github.io/blog/lessons_learned_in_dev_leann/)
- **When to use**: Prototyping, non-sensitive data, need immediate results
**Local Embeddings**
- **Pros**: Complete privacy, no ongoing costs, full control, can sometimes outperform OpenAI embeddings
- **Cons**: Slower than cloud APIs, requires local compute resources
- **When to use**: Production systems, sensitive data, cost-sensitive applications
</details>
## Index Selection: Matching Your Scale
### HNSW (Hierarchical Navigable Small World)
**Best for**: Small to medium datasets (< 10M vectors) - **Default and recommended for extreme low storage**
- Full recomputation required
- High memory usage during build phase
- Excellent recall (95%+)
```bash
# Optimal for most use cases
--backend-name hnsw --graph-degree 32 --build-complexity 64
```
### DiskANN
**Best for**: Performance-critical applications and large datasets - **Production-ready with automatic graph partitioning**
**How it works:**
- **Product Quantization (PQ) + Real-time Reranking**: Uses compressed PQ codes for fast graph traversal, then recomputes exact embeddings for final candidates
- **Automatic Graph Partitioning**: When `is_recompute=True`, automatically partitions large indices and safely removes redundant files to save storage
- **Superior Speed-Accuracy Trade-off**: Faster search than HNSW while maintaining high accuracy
**Trade-offs compared to HNSW:**
-**Faster search latency** (typically 2-8x speedup)
-**Better scaling** for large datasets
-**Smart storage management** with automatic partitioning
-**Better graph locality** with `--ldg-times` parameter for SSD optimization
- ⚠️ **Slightly larger index size** due to PQ tables and graph metadata
```bash
# Recommended for most use cases
--backend-name diskann --graph-degree 32 --build-complexity 64
# For large-scale deployments
--backend-name diskann --graph-degree 64 --build-complexity 128
```
**Performance Benchmark**: Run `python benchmarks/diskann_vs_hnsw_speed_comparison.py` to compare DiskANN and HNSW on your system.
## LLM Selection: Engine and Model Comparison
### LLM Engines
**OpenAI** (`--llm openai`)
- **Pros**: Best quality, consistent performance, no local resources needed
- **Cons**: Costs money ($0.15-2.5 per million tokens), requires internet, data privacy concerns
- **Models**: `gpt-4o-mini` (fast, cheap), `gpt-4o` (best quality), `o3` (reasoning), `o3-mini` (reasoning, cheaper)
- **Thinking Budget**: Use `--thinking-budget low/medium/high` for o-series reasoning models (o3, o3-mini, o4-mini)
- **Note**: Our current default, but we recommend switching to Ollama for most use cases
**Ollama** (`--llm ollama`)
- **Pros**: Fully local, free, privacy-preserving, good model variety
- **Cons**: Requires local GPU/CPU resources, slower than cloud APIs, need to install extra [ollama app](https://github.com/ollama/ollama?tab=readme-ov-file#ollama) and pre-download models by `ollama pull`
- **Models**: `qwen3:0.6b` (ultra-fast), `qwen3:1.7b` (balanced), `qwen3:4b` (good quality), `qwen3:7b` (high quality), `deepseek-r1:1.5b` (reasoning)
- **Thinking Budget**: Use `--thinking-budget low/medium/high` for reasoning models like GPT-Oss:20b
**HuggingFace** (`--llm hf`)
- **Pros**: Free tier available, huge model selection, direct model loading (vs Ollama's server-based approach)
- **Cons**: More complex initial setup
- **Models**: `Qwen/Qwen3-1.7B-FP8`
## Parameter Tuning Guide
### Search Complexity Parameters
**`--build-complexity`** (index building)
- Controls thoroughness during index construction
- Higher = better recall but slower build
- Recommendations:
- 32: Quick prototyping
- 64: Balanced (default)
- 128: Production systems
- 256: Maximum quality
**`--search-complexity`** (query time)
- Controls search thoroughness
- Higher = better results but slower
- Recommendations:
- 16: Fast/Interactive search
- 32: High quality with diversity
- 64+: Maximum accuracy
### Top-K Selection
**`--top-k`** (number of retrieved chunks)
- More chunks = better context but slower LLM processing
- Should be always smaller than `--search-complexity`
- Guidelines:
- 10-20: General questions (default: 20)
- 30+: Complex multi-hop reasoning requiring comprehensive context
**Trade-off formula**:
- Retrieval time ∝ log(n) × search_complexity
- LLM processing time ∝ top_k × chunk_size
- Total context = top_k × chunk_size tokens
### Thinking Budget for Reasoning Models
**`--thinking-budget`** (reasoning effort level)
- Controls the computational effort for reasoning models
- Options: `low`, `medium`, `high`
- Guidelines:
- `low`: Fast responses, basic reasoning (default for simple queries)
- `medium`: Balanced speed and reasoning depth
- `high`: Maximum reasoning effort, best for complex analytical questions
- **Supported Models**:
- **Ollama**: `gpt-oss:20b`, `gpt-oss:120b`
- **OpenAI**: `o3`, `o3-mini`, `o4-mini`, `o1` (o-series reasoning models)
- **Note**: Models without reasoning support will show a warning and proceed without reasoning parameters
- **Example**: `--thinking-budget high` for complex analytical questions
**📖 For detailed usage examples and implementation details, check out [Thinking Budget Documentation](THINKING_BUDGET_FEATURE.md)**
**💡 Quick Examples:**
```bash
# OpenAI o-series reasoning model
python apps/document_rag.py --query "What are the main techniques LEANN explores?" \
--index-dir hnswbuild --backend hnsw \
--llm openai --llm-model o3 --thinking-budget medium
# Ollama reasoning model
python apps/document_rag.py --query "What are the main techniques LEANN explores?" \
--index-dir hnswbuild --backend hnsw \
--llm ollama --llm-model gpt-oss:20b --thinking-budget high
```
### Graph Degree (HNSW/DiskANN)
**`--graph-degree`**
- Number of connections per node in the graph
- Higher = better recall but more memory
- HNSW: 16-32 (default: 32)
- DiskANN: 32-128 (default: 64)
## Performance Optimization Checklist
### If Embedding is Too Slow
1. **Switch to smaller model**:
```bash
# From large model
--embedding-model Qwen/Qwen3-Embedding-0.6B
# To small model
--embedding-model sentence-transformers/all-MiniLM-L6-v2
```
2. **Limit dataset size for testing**:
```bash
--max-items 1000 # Process first 1k items only
```
3. **Use MLX on Apple Silicon** (optional optimization):
```bash
--embedding-mode mlx --embedding-model mlx-community/multilingual-e5-base-mlx
```
### If Search Quality is Poor
1. **Increase retrieval count**:
```bash
--top-k 30 # Retrieve more candidates
```
2. **Upgrade embedding model**:
```bash
# For English
--embedding-model BAAI/bge-base-en-v1.5
# For multilingual
--embedding-model intfloat/multilingual-e5-large
```
## Understanding the Trade-offs
Every configuration choice involves trade-offs:
| Factor | Small/Fast | Large/Quality |
|--------|------------|---------------|
| Embedding Model | `all-MiniLM-L6-v2` | `Qwen/Qwen3-Embedding-0.6B` |
| Chunk Size | 512 tokens | 128 tokens |
| Index Type | HNSW | DiskANN |
| LLM | `qwen3:1.7b` | `gpt-4o` |
The key is finding the right balance for your specific use case. Start small and simple, measure performance, then scale up only where needed.
## Deep Dive: Critical Configuration Decisions
### When to Disable Recomputation
LEANN's recomputation feature provides exact distance calculations but can be disabled for extreme QPS requirements:
```bash
--no-recompute # Disable selective recomputation
```
**Trade-offs**:
- **With recomputation** (default): Exact distances, best quality, higher latency, minimal storage (only stores metadata, recomputes embeddings on-demand)
- **Without recomputation**: Must store full embeddings, significantly higher memory and storage usage (10-100x more), but faster search
**Disable when**:
- You have abundant storage and memory
- Need extremely low latency (< 100ms)
- Running a read-heavy workload where storage cost is acceptable
## Further Reading
- [Lessons Learned Developing LEANN](https://yichuan-w.github.io/blog/lessons_learned_in_dev_leann/)
- [LEANN Technical Paper](https://arxiv.org/abs/2506.08276)
- [DiskANN Original Paper](https://papers.nips.cc/paper/2019/file/09853c7fb1d3f8ee67a61b6bf4a7f8e6-Paper.pdf)
- [SSD-based Graph Partitioning](https://github.com/SonglinLife/SSD_BASED_PLAN)