* refactor: Unify examples interface with BaseRAGExample - Create BaseRAGExample base class for all RAG examples - Refactor 4 examples to use unified interface: - document_rag.py (replaces main_cli_example.py) - email_rag.py (replaces mail_reader_leann.py) - browser_rag.py (replaces google_history_reader_leann.py) - wechat_rag.py (replaces wechat_history_reader_leann.py) - Maintain 100% parameter compatibility with original files - Add interactive mode support for all examples - Unify parameter names (--max-items replaces --max-emails/--max-entries) - Update README.md with new examples usage - Add PARAMETER_CONSISTENCY.md documenting all parameter mappings - Keep main_cli_example.py for backward compatibility with migration notice All default values, LeannBuilder parameters, and chunking settings remain identical to ensure full compatibility with existing indexes. * fix: Update CI tests for new unified examples interface - Rename test_main_cli.py to test_document_rag.py - Update all references from main_cli_example.py to document_rag.py - Update tests/README.md documentation The tests now properly test the new unified interface while maintaining the same test coverage and functionality. * fix: Fix pre-commit issues and update tests - Fix import sorting and unused imports - Update type annotations to use built-in types (list, dict) instead of typing.List/Dict - Fix trailing whitespace and end-of-file issues - Fix Chinese fullwidth comma to regular comma - Update test_main_cli.py to test_document_rag.py - Add backward compatibility test for main_cli_example.py - Pass all pre-commit hooks (ruff, ruff-format, etc.) * refactor: Remove old example scripts and migration references - Delete old example scripts (mail_reader_leann.py, google_history_reader_leann.py, etc.) - Remove migration hints and backward compatibility - Update tests to use new unified examples directly - Clean up all references to old script names - Users now only see the new unified interface * fix: Restore embedding-mode parameter to all examples - All examples now have --embedding-mode parameter (unified interface benefit) - Default is 'sentence-transformers' (consistent with original behavior) - Users can now use OpenAI or MLX embeddings with any data source - Maintains functional equivalence with original scripts * docs: Improve parameter categorization in README - Clearly separate core (shared) vs specific parameters - Move LLM and embedding examples to 'Example Commands' section - Add descriptive comments for all specific parameters - Keep only truly data-source-specific parameters in specific sections * docs: Make example commands more representative - Add default values to parameter descriptions - Replace generic examples with real-world use cases - Focus on data-source-specific features in examples - Remove redundant demonstrations of common parameters * docs: Reorganize parameter documentation structure - Move common parameters to a dedicated section before all examples - Rename sections to 'X-Specific Arguments' for clarity - Remove duplicate common parameters from individual examples - Better information architecture for users * docs: polish applications * docs: Add CLI installation instructions - Add two installation options: venv and global uv tool - Clearly explain when to use each option - Make CLI more accessible for daily use * docs: Clarify CLI global installation process - Explain the transition from venv to global installation - Add upgrade command for global installation - Make it clear that global install allows usage without venv activation * docs: Add collapsible section for CLI installation - Wrap CLI installation instructions in details/summary tags - Keep consistent with other collapsible sections in README - Improve document readability and navigation * style: format * docs: Fix collapsible sections - Make Common Parameters collapsible (as it's lengthy reference material) - Keep CLI Installation visible (important for users to see immediately) - Better information hierarchy * docs: Add introduction for Common Parameters section - Add 'Flexible Configuration' heading with descriptive sentence - Create parallel structure with 'Generation Model Setup' section - Improve document flow and readability * docs: nit * fix: Fix issues in unified examples - Add smart path detection for data directory - Fix add_texts -> add_text method call - Handle both running from project root and examples directory * fix: Fix async/await and add_text issues in unified examples - Remove incorrect await from chat.ask() calls (not async) - Fix add_texts -> add_text method calls - Verify search-complexity correctly maps to efSearch parameter - All examples now run successfully * feat: Address review comments - Add complexity parameter to LeannChat initialization (default: search_complexity) - Fix chunk-size default in README documentation (256, not 2048) - Add more index building parameters as CLI arguments: - --backend-name (hnsw/diskann) - --graph-degree (default: 32) - --build-complexity (default: 64) - --no-compact (disable compact storage) - --no-recompute (disable embedding recomputation) - Update README to document all new parameters * feat: Add chunk-size parameters and improve file type filtering - Add --chunk-size and --chunk-overlap parameters to all RAG examples - Preserve original default values for each data source: - Document: 256/128 (optimized for general documents) - Email: 256/25 (smaller overlap for email threads) - Browser: 256/128 (standard for web content) - WeChat: 192/64 (smaller chunks for chat messages) - Make --file-types optional filter instead of restriction in document_rag - Update README to clarify interactive mode and parameter usage - Fix LLM default model documentation (gpt-4o, not gpt-4o-mini) * feat: Update documentation based on review feedback - Add MLX embedding example to README - Clarify examples/data content description (two papers, Pride and Prejudice, Chinese README) - Move chunk parameters to common parameters section - Remove duplicate chunk parameters from document-specific section * docs: Emphasize diverse data sources in examples/data description * fix: update default embedding models for better performance - Change WeChat, Browser, and Email RAG examples to use all-MiniLM-L6-v2 - Previous Qwen/Qwen3-Embedding-0.6B was too slow for these use cases - all-MiniLM-L6-v2 is a fast 384-dim model, ideal for large-scale personal data * add response highlight * change rebuild logic * fix some example * feat: check if k is larger than #docs * fix: WeChat history reader bugs and refactor wechat_rag to use unified architecture * fix email wrong -1 to process all file * refactor: reorgnize all examples/ and test/ * refactor: reorganize examples and add link checker * fix: add init.py * fix: handle certificate errors in link checker * fix wechat * merge * docs: update README to use proper module imports for apps - Change from 'python apps/xxx.py' to 'python -m apps.xxx' - More professional and pythonic module calling - Ensures proper module resolution and imports - Better separation between apps/ (production tools) and examples/ (demos) --------- Co-authored-by: yichuan520030910320 <yichuan_wang@berkeley.edu>
171 lines
5.8 KiB
Python
171 lines
5.8 KiB
Python
"""
|
|
Browser History RAG example using the unified interface.
|
|
Supports Chrome browser history.
|
|
"""
|
|
|
|
import os
|
|
import sys
|
|
from pathlib import Path
|
|
|
|
# Add parent directory to path for imports
|
|
sys.path.insert(0, str(Path(__file__).parent))
|
|
|
|
from base_rag_example import BaseRAGExample, create_text_chunks
|
|
|
|
from .history_data.history import ChromeHistoryReader
|
|
|
|
|
|
class BrowserRAG(BaseRAGExample):
|
|
"""RAG example for Chrome browser history."""
|
|
|
|
def __init__(self):
|
|
# Set default values BEFORE calling super().__init__
|
|
self.embedding_model_default = (
|
|
"sentence-transformers/all-MiniLM-L6-v2" # Fast 384-dim model
|
|
)
|
|
|
|
super().__init__(
|
|
name="Browser History",
|
|
description="Process and query Chrome browser history with LEANN",
|
|
default_index_name="google_history_index",
|
|
)
|
|
|
|
def _add_specific_arguments(self, parser):
|
|
"""Add browser-specific arguments."""
|
|
browser_group = parser.add_argument_group("Browser Parameters")
|
|
browser_group.add_argument(
|
|
"--chrome-profile",
|
|
type=str,
|
|
default=None,
|
|
help="Path to Chrome profile directory (auto-detected if not specified)",
|
|
)
|
|
browser_group.add_argument(
|
|
"--auto-find-profiles",
|
|
action="store_true",
|
|
default=True,
|
|
help="Automatically find all Chrome profiles (default: True)",
|
|
)
|
|
browser_group.add_argument(
|
|
"--chunk-size", type=int, default=256, help="Text chunk size (default: 256)"
|
|
)
|
|
browser_group.add_argument(
|
|
"--chunk-overlap", type=int, default=128, help="Text chunk overlap (default: 128)"
|
|
)
|
|
|
|
def _get_chrome_base_path(self) -> Path:
|
|
"""Get the base Chrome profile path based on OS."""
|
|
if sys.platform == "darwin":
|
|
return Path.home() / "Library" / "Application Support" / "Google" / "Chrome"
|
|
elif sys.platform.startswith("linux"):
|
|
return Path.home() / ".config" / "google-chrome"
|
|
elif sys.platform == "win32":
|
|
return Path(os.environ["LOCALAPPDATA"]) / "Google" / "Chrome" / "User Data"
|
|
else:
|
|
raise ValueError(f"Unsupported platform: {sys.platform}")
|
|
|
|
def _find_chrome_profiles(self) -> list[Path]:
|
|
"""Auto-detect all Chrome profiles."""
|
|
base_path = self._get_chrome_base_path()
|
|
if not base_path.exists():
|
|
return []
|
|
|
|
profiles = []
|
|
|
|
# Check Default profile
|
|
default_profile = base_path / "Default"
|
|
if default_profile.exists() and (default_profile / "History").exists():
|
|
profiles.append(default_profile)
|
|
|
|
# Check numbered profiles
|
|
for item in base_path.iterdir():
|
|
if item.is_dir() and item.name.startswith("Profile "):
|
|
if (item / "History").exists():
|
|
profiles.append(item)
|
|
|
|
return profiles
|
|
|
|
async def load_data(self, args) -> list[str]:
|
|
"""Load browser history and convert to text chunks."""
|
|
# Determine Chrome profiles
|
|
if args.chrome_profile and not args.auto_find_profiles:
|
|
profile_dirs = [Path(args.chrome_profile)]
|
|
else:
|
|
print("Auto-detecting Chrome profiles...")
|
|
profile_dirs = self._find_chrome_profiles()
|
|
|
|
# If specific profile given, filter to just that one
|
|
if args.chrome_profile:
|
|
profile_path = Path(args.chrome_profile)
|
|
profile_dirs = [p for p in profile_dirs if p == profile_path]
|
|
|
|
if not profile_dirs:
|
|
print("No Chrome profiles found!")
|
|
print("Please specify --chrome-profile manually")
|
|
return []
|
|
|
|
print(f"Found {len(profile_dirs)} Chrome profiles")
|
|
|
|
# Create reader
|
|
reader = ChromeHistoryReader()
|
|
|
|
# Process each profile
|
|
all_documents = []
|
|
total_processed = 0
|
|
|
|
for i, profile_dir in enumerate(profile_dirs):
|
|
print(f"\nProcessing profile {i + 1}/{len(profile_dirs)}: {profile_dir.name}")
|
|
|
|
try:
|
|
# Apply max_items limit per profile
|
|
max_per_profile = -1
|
|
if args.max_items > 0:
|
|
remaining = args.max_items - total_processed
|
|
if remaining <= 0:
|
|
break
|
|
max_per_profile = remaining
|
|
|
|
# Load history
|
|
documents = reader.load_data(
|
|
chrome_profile_path=str(profile_dir),
|
|
max_count=max_per_profile,
|
|
)
|
|
|
|
if documents:
|
|
all_documents.extend(documents)
|
|
total_processed += len(documents)
|
|
print(f"Processed {len(documents)} history entries from this profile")
|
|
|
|
except Exception as e:
|
|
print(f"Error processing {profile_dir}: {e}")
|
|
continue
|
|
|
|
if not all_documents:
|
|
print("No browser history found to process!")
|
|
return []
|
|
|
|
print(f"\nTotal history entries processed: {len(all_documents)}")
|
|
|
|
# Convert to text chunks
|
|
all_texts = create_text_chunks(
|
|
all_documents, chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
|
|
)
|
|
|
|
return all_texts
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import asyncio
|
|
|
|
# Example queries for browser history RAG
|
|
print("\n🌐 Browser History RAG Example")
|
|
print("=" * 50)
|
|
print("\nExample queries you can try:")
|
|
print("- 'What websites did I visit about machine learning?'")
|
|
print("- 'Find my search history about programming'")
|
|
print("- 'What YouTube videos did I watch recently?'")
|
|
print("- 'Show me websites about travel planning'")
|
|
print("\nNote: Make sure Chrome is closed before running\n")
|
|
|
|
rag = BrowserRAG()
|
|
asyncio.run(rag.run())
|