* refactor: Unify examples interface with BaseRAGExample - Create BaseRAGExample base class for all RAG examples - Refactor 4 examples to use unified interface: - document_rag.py (replaces main_cli_example.py) - email_rag.py (replaces mail_reader_leann.py) - browser_rag.py (replaces google_history_reader_leann.py) - wechat_rag.py (replaces wechat_history_reader_leann.py) - Maintain 100% parameter compatibility with original files - Add interactive mode support for all examples - Unify parameter names (--max-items replaces --max-emails/--max-entries) - Update README.md with new examples usage - Add PARAMETER_CONSISTENCY.md documenting all parameter mappings - Keep main_cli_example.py for backward compatibility with migration notice All default values, LeannBuilder parameters, and chunking settings remain identical to ensure full compatibility with existing indexes. * fix: Update CI tests for new unified examples interface - Rename test_main_cli.py to test_document_rag.py - Update all references from main_cli_example.py to document_rag.py - Update tests/README.md documentation The tests now properly test the new unified interface while maintaining the same test coverage and functionality. * fix: Fix pre-commit issues and update tests - Fix import sorting and unused imports - Update type annotations to use built-in types (list, dict) instead of typing.List/Dict - Fix trailing whitespace and end-of-file issues - Fix Chinese fullwidth comma to regular comma - Update test_main_cli.py to test_document_rag.py - Add backward compatibility test for main_cli_example.py - Pass all pre-commit hooks (ruff, ruff-format, etc.) * refactor: Remove old example scripts and migration references - Delete old example scripts (mail_reader_leann.py, google_history_reader_leann.py, etc.) - Remove migration hints and backward compatibility - Update tests to use new unified examples directly - Clean up all references to old script names - Users now only see the new unified interface * fix: Restore embedding-mode parameter to all examples - All examples now have --embedding-mode parameter (unified interface benefit) - Default is 'sentence-transformers' (consistent with original behavior) - Users can now use OpenAI or MLX embeddings with any data source - Maintains functional equivalence with original scripts * docs: Improve parameter categorization in README - Clearly separate core (shared) vs specific parameters - Move LLM and embedding examples to 'Example Commands' section - Add descriptive comments for all specific parameters - Keep only truly data-source-specific parameters in specific sections * docs: Make example commands more representative - Add default values to parameter descriptions - Replace generic examples with real-world use cases - Focus on data-source-specific features in examples - Remove redundant demonstrations of common parameters * docs: Reorganize parameter documentation structure - Move common parameters to a dedicated section before all examples - Rename sections to 'X-Specific Arguments' for clarity - Remove duplicate common parameters from individual examples - Better information architecture for users * docs: polish applications * docs: Add CLI installation instructions - Add two installation options: venv and global uv tool - Clearly explain when to use each option - Make CLI more accessible for daily use * docs: Clarify CLI global installation process - Explain the transition from venv to global installation - Add upgrade command for global installation - Make it clear that global install allows usage without venv activation * docs: Add collapsible section for CLI installation - Wrap CLI installation instructions in details/summary tags - Keep consistent with other collapsible sections in README - Improve document readability and navigation * style: format * docs: Fix collapsible sections - Make Common Parameters collapsible (as it's lengthy reference material) - Keep CLI Installation visible (important for users to see immediately) - Better information hierarchy * docs: Add introduction for Common Parameters section - Add 'Flexible Configuration' heading with descriptive sentence - Create parallel structure with 'Generation Model Setup' section - Improve document flow and readability * docs: nit * fix: Fix issues in unified examples - Add smart path detection for data directory - Fix add_texts -> add_text method call - Handle both running from project root and examples directory * fix: Fix async/await and add_text issues in unified examples - Remove incorrect await from chat.ask() calls (not async) - Fix add_texts -> add_text method calls - Verify search-complexity correctly maps to efSearch parameter - All examples now run successfully * feat: Address review comments - Add complexity parameter to LeannChat initialization (default: search_complexity) - Fix chunk-size default in README documentation (256, not 2048) - Add more index building parameters as CLI arguments: - --backend-name (hnsw/diskann) - --graph-degree (default: 32) - --build-complexity (default: 64) - --no-compact (disable compact storage) - --no-recompute (disable embedding recomputation) - Update README to document all new parameters * feat: Add chunk-size parameters and improve file type filtering - Add --chunk-size and --chunk-overlap parameters to all RAG examples - Preserve original default values for each data source: - Document: 256/128 (optimized for general documents) - Email: 256/25 (smaller overlap for email threads) - Browser: 256/128 (standard for web content) - WeChat: 192/64 (smaller chunks for chat messages) - Make --file-types optional filter instead of restriction in document_rag - Update README to clarify interactive mode and parameter usage - Fix LLM default model documentation (gpt-4o, not gpt-4o-mini) * feat: Update documentation based on review feedback - Add MLX embedding example to README - Clarify examples/data content description (two papers, Pride and Prejudice, Chinese README) - Move chunk parameters to common parameters section - Remove duplicate chunk parameters from document-specific section * docs: Emphasize diverse data sources in examples/data description * fix: update default embedding models for better performance - Change WeChat, Browser, and Email RAG examples to use all-MiniLM-L6-v2 - Previous Qwen/Qwen3-Embedding-0.6B was too slow for these use cases - all-MiniLM-L6-v2 is a fast 384-dim model, ideal for large-scale personal data * add response highlight * change rebuild logic * fix some example * feat: check if k is larger than #docs * fix: WeChat history reader bugs and refactor wechat_rag to use unified architecture * fix email wrong -1 to process all file * refactor: reorgnize all examples/ and test/ * refactor: reorganize examples and add link checker * fix: add init.py * fix: handle certificate errors in link checker * fix wechat * merge * docs: update README to use proper module imports for apps - Change from 'python apps/xxx.py' to 'python -m apps.xxx' - More professional and pythonic module calling - Ensures proper module resolution and imports - Better separation between apps/ (production tools) and examples/ (demos) --------- Co-authored-by: yichuan520030910320 <yichuan_wang@berkeley.edu>
107 lines
3.5 KiB
Python
107 lines
3.5 KiB
Python
"""
|
|
Document RAG example using the unified interface.
|
|
Supports PDF, TXT, MD, and other document formats.
|
|
"""
|
|
|
|
import sys
|
|
from pathlib import Path
|
|
|
|
# Add parent directory to path for imports
|
|
sys.path.insert(0, str(Path(__file__).parent))
|
|
|
|
from base_rag_example import BaseRAGExample, create_text_chunks
|
|
from llama_index.core import SimpleDirectoryReader
|
|
|
|
|
|
class DocumentRAG(BaseRAGExample):
|
|
"""RAG example for document processing (PDF, TXT, MD, etc.)."""
|
|
|
|
def __init__(self):
|
|
super().__init__(
|
|
name="Document",
|
|
description="Process and query documents (PDF, TXT, MD, etc.) with LEANN",
|
|
default_index_name="test_doc_files",
|
|
)
|
|
|
|
def _add_specific_arguments(self, parser):
|
|
"""Add document-specific arguments."""
|
|
doc_group = parser.add_argument_group("Document Parameters")
|
|
doc_group.add_argument(
|
|
"--data-dir",
|
|
type=str,
|
|
default="data",
|
|
help="Directory containing documents to index (default: data)",
|
|
)
|
|
doc_group.add_argument(
|
|
"--file-types",
|
|
nargs="+",
|
|
default=None,
|
|
help="Filter by file types (e.g., .pdf .txt .md). If not specified, all supported types are processed",
|
|
)
|
|
doc_group.add_argument(
|
|
"--chunk-size", type=int, default=256, help="Text chunk size (default: 256)"
|
|
)
|
|
doc_group.add_argument(
|
|
"--chunk-overlap", type=int, default=128, help="Text chunk overlap (default: 128)"
|
|
)
|
|
|
|
async def load_data(self, args) -> list[str]:
|
|
"""Load documents and convert to text chunks."""
|
|
print(f"Loading documents from: {args.data_dir}")
|
|
if args.file_types:
|
|
print(f"Filtering by file types: {args.file_types}")
|
|
else:
|
|
print("Processing all supported file types")
|
|
|
|
# Check if data directory exists
|
|
data_path = Path(args.data_dir)
|
|
if not data_path.exists():
|
|
raise ValueError(f"Data directory not found: {args.data_dir}")
|
|
|
|
# Load documents
|
|
reader_kwargs = {
|
|
"recursive": True,
|
|
"encoding": "utf-8",
|
|
}
|
|
if args.file_types:
|
|
reader_kwargs["required_exts"] = args.file_types
|
|
|
|
documents = SimpleDirectoryReader(args.data_dir, **reader_kwargs).load_data(
|
|
show_progress=True
|
|
)
|
|
|
|
if not documents:
|
|
print(f"No documents found in {args.data_dir} with extensions {args.file_types}")
|
|
return []
|
|
|
|
print(f"Loaded {len(documents)} documents")
|
|
|
|
# Convert to text chunks
|
|
all_texts = create_text_chunks(
|
|
documents, chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
|
|
)
|
|
|
|
# Apply max_items limit if specified
|
|
if args.max_items > 0 and len(all_texts) > args.max_items:
|
|
print(f"Limiting to {args.max_items} chunks (from {len(all_texts)})")
|
|
all_texts = all_texts[: args.max_items]
|
|
|
|
return all_texts
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import asyncio
|
|
|
|
# Example queries for document RAG
|
|
print("\n📄 Document RAG Example")
|
|
print("=" * 50)
|
|
print("\nExample queries you can try:")
|
|
print("- 'What are the main techniques LEANN uses?'")
|
|
print("- 'What is the technique DLPM?'")
|
|
print("- 'Who does Elizabeth Bennet marry?'")
|
|
print("- 'What is the problem of developing pan gu model? (盘古大模型开发中遇到什么问题?)'")
|
|
print("\nOr run without --query for interactive mode\n")
|
|
|
|
rag = DocumentRAG()
|
|
asyncio.run(rag.run())
|