- All examples now have --embedding-mode parameter (unified interface benefit) - Default is 'sentence-transformers' (consistent with original behavior) - Users can now use OpenAI or MLX embeddings with any data source - Maintains functional equivalence with original scripts
99 lines
3.2 KiB
Python
99 lines
3.2 KiB
Python
"""
|
|
Document RAG example using the unified interface.
|
|
Supports PDF, TXT, MD, and other document formats.
|
|
"""
|
|
|
|
import sys
|
|
from pathlib import Path
|
|
|
|
# Add parent directory to path for imports
|
|
sys.path.insert(0, str(Path(__file__).parent))
|
|
|
|
from base_rag_example import BaseRAGExample, create_text_chunks
|
|
from llama_index.core import SimpleDirectoryReader
|
|
|
|
|
|
class DocumentRAG(BaseRAGExample):
|
|
"""RAG example for document processing (PDF, TXT, MD, etc.)."""
|
|
|
|
def __init__(self):
|
|
super().__init__(
|
|
name="Document",
|
|
description="Process and query documents (PDF, TXT, MD, etc.) with LEANN",
|
|
default_index_name="test_doc_files",
|
|
)
|
|
|
|
def _add_specific_arguments(self, parser):
|
|
"""Add document-specific arguments."""
|
|
doc_group = parser.add_argument_group("Document Parameters")
|
|
doc_group.add_argument(
|
|
"--data-dir",
|
|
type=str,
|
|
default="examples/data",
|
|
help="Directory containing documents to index (default: examples/data)",
|
|
)
|
|
doc_group.add_argument(
|
|
"--file-types",
|
|
nargs="+",
|
|
default=[".pdf", ".txt", ".md"],
|
|
help="File types to process (default: .pdf .txt .md)",
|
|
)
|
|
doc_group.add_argument(
|
|
"--chunk-size", type=int, default=256, help="Text chunk size (default: 256)"
|
|
)
|
|
doc_group.add_argument(
|
|
"--chunk-overlap", type=int, default=128, help="Text chunk overlap (default: 128)"
|
|
)
|
|
|
|
async def load_data(self, args) -> list[str]:
|
|
"""Load documents and convert to text chunks."""
|
|
print(f"Loading documents from: {args.data_dir}")
|
|
print(f"File types: {args.file_types}")
|
|
|
|
# Check if data directory exists
|
|
data_path = Path(args.data_dir)
|
|
if not data_path.exists():
|
|
raise ValueError(f"Data directory not found: {args.data_dir}")
|
|
|
|
# Load documents
|
|
documents = SimpleDirectoryReader(
|
|
args.data_dir,
|
|
recursive=True,
|
|
encoding="utf-8",
|
|
required_exts=args.file_types,
|
|
).load_data(show_progress=True)
|
|
|
|
if not documents:
|
|
print(f"No documents found in {args.data_dir} with extensions {args.file_types}")
|
|
return []
|
|
|
|
print(f"Loaded {len(documents)} documents")
|
|
|
|
# Convert to text chunks
|
|
all_texts = create_text_chunks(
|
|
documents, chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
|
|
)
|
|
|
|
# Apply max_items limit if specified
|
|
if args.max_items > 0 and len(all_texts) > args.max_items:
|
|
print(f"Limiting to {args.max_items} chunks (from {len(all_texts)})")
|
|
all_texts = all_texts[: args.max_items]
|
|
|
|
return all_texts
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import asyncio
|
|
|
|
# Example queries for document RAG
|
|
print("\n📄 Document RAG Example")
|
|
print("=" * 50)
|
|
print("\nExample queries you can try:")
|
|
print("- 'What are the main techniques LEANN uses?'")
|
|
print("- 'Summarize the key findings in these papers'")
|
|
print("- 'What is the storage reduction achieved by LEANN?'")
|
|
print("\nOr run without --query for interactive mode\n")
|
|
|
|
rag = DocumentRAG()
|
|
asyncio.run(rag.run())
|