Files
LEANN/apps/colqwen_rag.py
aakash 9b7353f336 Fix linting errors in colqwen_rag.py and test_colqwen_reproduction.py
- Add noqa comments for E402 errors (imports after sys.path modifications)
- Remove unused variable assignment in colqwen_rag.py
- Use importlib.util.find_spec for dependency checks instead of unused imports
- Fix import ordering in test_colqwen_reproduction.py
2025-11-11 05:12:49 -08:00

365 lines
14 KiB
Python

#!/usr/bin/env python3
"""
ColQwen RAG - Easy-to-use multimodal PDF retrieval with ColQwen2/ColPali
Usage:
python -m apps.colqwen_rag build --pdfs ./my_pdfs/ --index my_index
python -m apps.colqwen_rag search my_index "How does attention work?"
python -m apps.colqwen_rag ask my_index --interactive
"""
import argparse
import os
import sys
from pathlib import Path
from typing import Optional, cast
# Add LEANN packages to path
_repo_root = Path(__file__).resolve().parents[1]
_leann_core_src = _repo_root / "packages" / "leann-core" / "src"
_leann_hnsw_pkg = _repo_root / "packages" / "leann-backend-hnsw"
if str(_leann_core_src) not in sys.path:
sys.path.append(str(_leann_core_src))
if str(_leann_hnsw_pkg) not in sys.path:
sys.path.append(str(_leann_hnsw_pkg))
import torch # noqa: E402
from colpali_engine import ColPali, ColPaliProcessor, ColQwen2, ColQwen2Processor # noqa: E402
from colpali_engine.utils.torch_utils import ListDataset # noqa: E402
from pdf2image import convert_from_path # noqa: E402
from PIL import Image # noqa: E402
from torch.utils.data import DataLoader # noqa: E402
from tqdm import tqdm # noqa: E402
# Import the existing multi-vector implementation
sys.path.append(str(_repo_root / "apps" / "multimodal" / "vision-based-pdf-multi-vector"))
from leann_multi_vector import LeannMultiVector # noqa: E402
class ColQwenRAG:
"""Easy-to-use ColQwen RAG system for multimodal PDF retrieval."""
def __init__(self, model_type: str = "colpali"):
"""
Initialize ColQwen RAG system.
Args:
model_type: "colqwen2" or "colpali"
"""
self.model_type = model_type
self.device = self._get_device()
# Use float32 on MPS to avoid memory issues, float16 on CUDA, bfloat16 on CPU
if self.device.type == "mps":
self.dtype = torch.float32
elif self.device.type == "cuda":
self.dtype = torch.float16
else:
self.dtype = torch.bfloat16
print(f"🚀 Initializing {model_type.upper()} on {self.device} with {self.dtype}")
# Load model and processor with MPS-optimized settings
try:
if model_type == "colqwen2":
self.model_name = "vidore/colqwen2-v1.0"
if self.device.type == "mps":
# For MPS, load on CPU first then move to avoid memory allocation issues
self.model = ColQwen2.from_pretrained(
self.model_name,
torch_dtype=self.dtype,
device_map="cpu",
low_cpu_mem_usage=True,
).eval()
self.model = self.model.to(self.device)
else:
self.model = ColQwen2.from_pretrained(
self.model_name,
torch_dtype=self.dtype,
device_map=self.device,
low_cpu_mem_usage=True,
).eval()
self.processor = ColQwen2Processor.from_pretrained(self.model_name)
else: # colpali
self.model_name = "vidore/colpali-v1.2"
if self.device.type == "mps":
# For MPS, load on CPU first then move to avoid memory allocation issues
self.model = ColPali.from_pretrained(
self.model_name,
torch_dtype=self.dtype,
device_map="cpu",
low_cpu_mem_usage=True,
).eval()
self.model = self.model.to(self.device)
else:
self.model = ColPali.from_pretrained(
self.model_name,
torch_dtype=self.dtype,
device_map=self.device,
low_cpu_mem_usage=True,
).eval()
self.processor = ColPaliProcessor.from_pretrained(self.model_name)
except Exception as e:
if "memory" in str(e).lower() or "offload" in str(e).lower():
print(f"⚠️ Memory constraint on {self.device}, using CPU with optimizations...")
self.device = torch.device("cpu")
self.dtype = torch.float32
if model_type == "colqwen2":
self.model = ColQwen2.from_pretrained(
self.model_name,
torch_dtype=self.dtype,
device_map="cpu",
low_cpu_mem_usage=True,
).eval()
else:
self.model = ColPali.from_pretrained(
self.model_name,
torch_dtype=self.dtype,
device_map="cpu",
low_cpu_mem_usage=True,
).eval()
else:
raise
def _get_device(self):
"""Auto-select best available device."""
if torch.cuda.is_available():
return torch.device("cuda")
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
return torch.device("mps")
else:
return torch.device("cpu")
def build_index(self, pdf_paths: list[str], index_name: str, pages_dir: Optional[str] = None):
"""
Build multimodal index from PDF files.
Args:
pdf_paths: List of PDF file paths
index_name: Name for the index
pages_dir: Directory to save page images (optional)
"""
print(f"Building index '{index_name}' from {len(pdf_paths)} PDFs...")
# Convert PDFs to images
all_images = []
all_metadata = []
if pages_dir:
os.makedirs(pages_dir, exist_ok=True)
for pdf_path in tqdm(pdf_paths, desc="Converting PDFs"):
try:
images = convert_from_path(pdf_path, dpi=150)
pdf_name = Path(pdf_path).stem
for i, image in enumerate(images):
# Save image if pages_dir specified
if pages_dir:
image_path = Path(pages_dir) / f"{pdf_name}_page_{i + 1}.png"
image.save(image_path)
all_images.append(image)
all_metadata.append(
{
"pdf_path": pdf_path,
"pdf_name": pdf_name,
"page_number": i + 1,
"image_path": str(image_path) if pages_dir else None,
}
)
except Exception as e:
print(f"❌ Error processing {pdf_path}: {e}")
continue
print(f"📄 Converted {len(all_images)} pages from {len(pdf_paths)} PDFs")
print(f"All metadata: {all_metadata}")
# Generate embeddings
print("🧠 Generating embeddings...")
embeddings = self._embed_images(all_images)
# Build LEANN index
print("🔍 Building LEANN index...")
leann_mv = LeannMultiVector(
index_path=index_name,
dim=embeddings.shape[-1],
embedding_model_name=self.model_type,
)
# Create collection and insert data
leann_mv.create_collection()
for i, (embedding, metadata) in enumerate(zip(embeddings, all_metadata)):
data = {
"doc_id": i,
"filepath": metadata.get("image_path", ""),
"colbert_vecs": embedding.numpy(), # Convert tensor to numpy
}
leann_mv.insert(data)
# Build the index
leann_mv.create_index()
print(f"✅ Index '{index_name}' built successfully!")
return leann_mv
def search(self, index_name: str, query: str, top_k: int = 5):
"""
Search the index with a text query.
Args:
index_name: Name of the index to search
query: Text query
top_k: Number of results to return
"""
print(f"🔍 Searching '{index_name}' for: '{query}'")
# Load index
leann_mv = LeannMultiVector(
index_path=index_name,
dim=128, # Will be updated when loading
embedding_model_name=self.model_type,
)
# Generate query embedding
query_embedding = self._embed_query(query)
# Search (returns list of (score, doc_id) tuples)
search_results = leann_mv.search(query_embedding.numpy(), topk=top_k)
# Display results
print(f"\n📋 Top {len(search_results)} results:")
for i, (score, doc_id) in enumerate(search_results, 1):
# Get metadata for this doc_id (we need to load the metadata)
print(f"{i}. Score: {score:.3f} | Doc ID: {doc_id}")
return search_results
def ask(self, index_name: str, interactive: bool = False):
"""
Interactive Q&A with the indexed documents.
Args:
index_name: Name of the index to query
interactive: Whether to run in interactive mode
"""
print(f"💬 ColQwen Chat with '{index_name}'")
if interactive:
print("Type 'quit' to exit, 'help' for commands")
while True:
try:
query = input("\n🤔 Your question: ").strip()
if query.lower() in ["quit", "exit", "q"]:
break
elif query.lower() == "help":
print("Commands: quit/exit/q (exit), help (this message)")
continue
elif not query:
continue
self.search(index_name, query, top_k=3)
# TODO: Add answer generation with Qwen-VL
print("\n💡 For detailed answers, we can integrate Qwen-VL here!")
except KeyboardInterrupt:
print("\n👋 Goodbye!")
break
else:
query = input("🤔 Your question: ").strip()
if query:
self.search(index_name, query)
def _embed_images(self, images: list[Image.Image]) -> torch.Tensor:
"""Generate embeddings for a list of images."""
dataset = ListDataset(images)
dataloader = DataLoader(dataset, batch_size=1, shuffle=False, collate_fn=lambda x: x)
embeddings = []
with torch.no_grad():
for batch in tqdm(dataloader, desc="Embedding images"):
batch_images = cast(list, batch)
batch_inputs = self.processor.process_images(batch_images).to(self.device)
batch_embeddings = self.model(**batch_inputs)
embeddings.append(batch_embeddings.cpu())
return torch.cat(embeddings, dim=0)
def _embed_query(self, query: str) -> torch.Tensor:
"""Generate embedding for a text query."""
with torch.no_grad():
query_inputs = self.processor.process_queries([query]).to(self.device)
query_embedding = self.model(**query_inputs)
return query_embedding.cpu()
def main():
parser = argparse.ArgumentParser(description="ColQwen RAG - Easy multimodal PDF retrieval")
subparsers = parser.add_subparsers(dest="command", help="Available commands")
# Build command
build_parser = subparsers.add_parser("build", help="Build index from PDFs")
build_parser.add_argument("--pdfs", required=True, help="Directory containing PDF files")
build_parser.add_argument("--index", required=True, help="Index name")
build_parser.add_argument(
"--model", choices=["colqwen2", "colpali"], default="colqwen2", help="Model to use"
)
build_parser.add_argument("--pages-dir", help="Directory to save page images")
# Search command
search_parser = subparsers.add_parser("search", help="Search the index")
search_parser.add_argument("index", help="Index name")
search_parser.add_argument("query", help="Search query")
search_parser.add_argument("--top-k", type=int, default=5, help="Number of results")
search_parser.add_argument(
"--model", choices=["colqwen2", "colpali"], default="colqwen2", help="Model to use"
)
# Ask command
ask_parser = subparsers.add_parser("ask", help="Interactive Q&A")
ask_parser.add_argument("index", help="Index name")
ask_parser.add_argument("--interactive", action="store_true", help="Interactive mode")
ask_parser.add_argument(
"--model", choices=["colqwen2", "colpali"], default="colqwen2", help="Model to use"
)
args = parser.parse_args()
if not args.command:
parser.print_help()
return
# Initialize ColQwen RAG
if args.command == "build":
colqwen = ColQwenRAG(args.model)
# Get PDF files
pdf_dir = Path(args.pdfs)
if pdf_dir.is_file() and pdf_dir.suffix.lower() == ".pdf":
pdf_paths = [str(pdf_dir)]
elif pdf_dir.is_dir():
pdf_paths = [str(p) for p in pdf_dir.glob("*.pdf")]
else:
print(f"❌ Invalid PDF path: {args.pdfs}")
return
if not pdf_paths:
print(f"❌ No PDF files found in {args.pdfs}")
return
colqwen.build_index(pdf_paths, args.index, args.pages_dir)
elif args.command == "search":
colqwen = ColQwenRAG(args.model)
colqwen.search(args.index, args.query, args.top_k)
elif args.command == "ask":
colqwen = ColQwenRAG(args.model)
colqwen.ask(args.index, args.interactive)
if __name__ == "__main__":
main()