Alexia Jolicoeur-Martineau 3302f7de2c Update README.md
2025-10-07 09:30:42 -04:00
2025-10-07 09:26:04 -04:00
2025-10-07 09:26:04 -04:00
2025-10-07 09:26:04 -04:00
2025-10-07 09:26:04 -04:00
2025-10-07 09:26:04 -04:00
2025-10-07 09:26:04 -04:00
2025-10-07 09:26:04 -04:00
2025-10-07 09:26:04 -04:00
2025-10-07 09:26:04 -04:00
2025-10-07 09:26:04 -04:00
2025-10-07 09:30:42 -04:00
2025-10-07 09:26:04 -04:00

Less is More: Recursive Reasoning with Tiny Networks

This is the codebase for the paper: "Less is More: Recursive Reasoning with Tiny Networks" were we present a recursive reasoning approach that achieves amazing scores of 45% on ARC-AGI-1 and 8% on ARC-AGI-2 using a tiny 7M parameters neural network.

Paper

How TRM works

Tiny Recursion Model (TRM) recursively improves its predicted answer y with a tiny network. It starts with the embedded input question x and initial embedded answer y and latent z. For up to K improvements steps, it tries to improve its answer y. It does so by i) recursively updating n times its latent z given the question x, current answer y, and current latent z (recursive reasoning), and then ii) updating its answer y given the current answer y and current latent z. This recursive process allows the model to progressively improve its answer (potentially addressing any errors from its previous answer) in an extremely parameter-efficient manner while minimizing overfitting.

Requirements

  • Python 3.10 (or similar)
  • Cuda 12.6.0 (or similar)
pip install --upgrade pip wheel setuptools
pip install --pre --upgrade torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu126 # install torch based on your cuda version
pip install -r requirements.txt # install requirements
pip install --no-cache-dir --no-build-isolation adam-atan2 
wandb login YOUR-LOGIN # login if you want the logger to sync results to your Weights & Biases (https://wandb.ai/)

Dataset Preparation

# ARC-AGI-1
python -m dataset.build_arc_dataset \
  --input-file-prefix kaggle/combined/arc-agi \
  --output-dir data/arc1concept-aug-1000 \
  --subsets training evaluation concept \
  --test-set-name evaluation

# ARC-AGI-2
python -m dataset.build_arc_dataset \
  --input-file-prefix kaggle/combined/arc-agi \
  --output-dir data/arc2concept-aug-1000 \
  --subsets training2 evaluation2 concept \
  --test-set-name evaluation2

## Note: You cannot train on both ARC-AGI-1 and ARC-AGI-2 and evaluate them both because ARC-AGI-2 training data contains some ARC-AGI-1 eval data

# Sudoku-Extreme
python dataset/build_sudoku_dataset.py --output-dir data/sudoku-extreme-1k-aug-1000  --subsample-size 1000 --num-aug 1000  # 1000 examples, 1000 augments

# Maze-Hard
python dataset/build_maze_dataset.py # 1000 examples, 8 augments

Experiments

ARC-AGI (assuming 4 H-100 GPUs):

run_name="pretrain_att_arc12concept_4"
torchrun --nproc-per-node 4 --rdzv_backend=c10d --rdzv_endpoint=localhost:0 --nnodes=1 pretrain.py \
arch=trm \
data_paths="[data/arc12concept-aug-1000]" \
arch.L_layers=2 \
arch.H_cycles=3 arch.L_cycles=4 \
+run_name=${run_name} ema=True

Runtime: ~3 days

Sudoku-Extreme (assuming 1 L40S GPU):

run_name="pretrain_mlp_t_sudoku"
python pretrain.py \
arch=trm \
data_paths="[data/sudoku-extreme-1k-aug-1000]" \
evaluators="[]" \
epochs=50000 eval_interval=5000 \
lr=1e-4 puzzle_emb_lr=1e-4 weight_decay=1.0 puzzle_emb_weight_decay=1.0 \
arch.mlp_t=True arch.pos_encodings=none \
arch.L_layers=2 \
arch.H_cycles=3 arch.L_cycles=6 \
+run_name=${run_name} ema=True

run_name="pretrain_att_sudoku"
python pretrain.py \
arch=trm \
data_paths="[data/sudoku-extreme-1k-aug-1000]" \
evaluators="[]" \
epochs=50000 eval_interval=5000 \
lr=1e-4 puzzle_emb_lr=1e-4 weight_decay=1.0 puzzle_emb_weight_decay=1.0 \
arch.L_layers=2 \
arch.H_cycles=3 arch.L_cycles=6 \
+run_name=${run_name} ema=True

Runtime: < 36 hours

Maze-Hard (assuming 4 L40S GPUs):

run_name="pretrain_att_maze30x30"
torchrun --nproc-per-node 4 --rdzv_backend=c10d --rdzv_endpoint=localhost:0 --nnodes=1 pretrain.py \
arch=trm \
data_paths="[data/maze-30x30-hard-1k]" \
evaluators="[]" \
epochs=50000 eval_interval=5000 \
lr=1e-4 puzzle_emb_lr=1e-4 weight_decay=1.0 puzzle_emb_weight_decay=1.0 \
arch.L_layers=2 \
arch.H_cycles=3 arch.L_cycles=4 \
+run_name=${run_name} ema=True

Runtime: < 24 hours

Reference

If you find our work useful, please consider citing:

@misc{jolicoeurmartineau2025morerecursivereasoningtiny,
      title={Less is More: Recursive Reasoning with Tiny Networks}, 
      author={Alexia Jolicoeur-Martineau},
      year={2025},
      eprint={2510.04871},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2510.04871}, 
}

and the Hierarchical Reasoning Model (HRM):

@misc{wang2025hierarchicalreasoningmodel,
      title={Hierarchical Reasoning Model}, 
      author={Guan Wang and Jin Li and Yuhao Sun and Xing Chen and Changling Liu and Yue Wu and Meng Lu and Sen Song and Yasin Abbasi Yadkori},
      year={2025},
      eprint={2506.21734},
      archivePrefix={arXiv},
      primaryClass={cs.AI},
      url={https://arxiv.org/abs/2506.21734}, 
}

This code is based on the Hierarchical Reasoning Model code and the Hierarchical Reasoning Model Analysis code.

Description
No description provided
Readme MIT 191 MiB
Languages
Python 100%