reproduce docvqa results and add debug file

This commit is contained in:
yichuan-w
2025-12-03 08:54:55 +00:00
parent 07afe546ea
commit 1c690e4a8a
5 changed files with 450 additions and 222 deletions

View File

@@ -0,0 +1,132 @@
#!/usr/bin/env python3
"""Simple test script to test colqwen2 forward pass with a single image."""
import os
import sys
from pathlib import Path
# Add the current directory to path to import leann_multi_vector
sys.path.insert(0, str(Path(__file__).parent))
from PIL import Image
import torch
from leann_multi_vector import _load_colvision, _embed_images, _ensure_repo_paths_importable
# Ensure repo paths are importable
_ensure_repo_paths_importable(__file__)
# Set environment variable
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def create_test_image():
"""Create a simple test image."""
# Create a simple RGB image (800x600)
img = Image.new('RGB', (800, 600), color='white')
return img
def load_test_image_from_file():
"""Try to load an image from the indexes directory if available."""
# Try to find an existing image in the indexes directory
indexes_dir = Path(__file__).parent / "indexes"
# Look for images in common locations
possible_paths = [
indexes_dir / "vidore_fastplaid" / "images",
indexes_dir / "colvision_large.leann.images",
indexes_dir / "colvision.leann.images",
]
for img_dir in possible_paths:
if img_dir.exists():
# Find first image file
for ext in ['.png', '.jpg', '.jpeg']:
for img_file in img_dir.glob(f'*{ext}'):
print(f"Loading test image from: {img_file}")
return Image.open(img_file)
return None
def main():
print("=" * 60)
print("Testing ColQwen2 Forward Pass")
print("=" * 60)
# Step 1: Load or create test image
print("\n[Step 1] Loading test image...")
test_image = load_test_image_from_file()
if test_image is None:
print("No existing image found, creating a simple test image...")
test_image = create_test_image()
else:
print(f"✓ Loaded image: {test_image.size} ({test_image.mode})")
# Convert to RGB if needed
if test_image.mode != 'RGB':
test_image = test_image.convert('RGB')
print(f"✓ Converted to RGB: {test_image.size}")
# Step 2: Load model
print("\n[Step 2] Loading ColQwen2 model...")
try:
model_name, model, processor, device_str, device, dtype = _load_colvision("colqwen2")
print(f"✓ Model loaded: {model_name}")
print(f"✓ Device: {device_str}, dtype: {dtype}")
# Print model info
if hasattr(model, 'device'):
print(f"✓ Model device: {model.device}")
if hasattr(model, 'dtype'):
print(f"✓ Model dtype: {model.dtype}")
except Exception as e:
print(f"✗ Error loading model: {e}")
import traceback
traceback.print_exc()
return
# Step 3: Test forward pass
print("\n[Step 3] Running forward pass...")
try:
# Use the _embed_images function which handles batching and forward pass
images = [test_image]
print(f"Processing {len(images)} image(s)...")
doc_vecs = _embed_images(model, processor, images)
print(f"✓ Forward pass completed!")
print(f"✓ Number of embeddings: {len(doc_vecs)}")
if len(doc_vecs) > 0:
emb = doc_vecs[0]
print(f"✓ Embedding shape: {emb.shape}")
print(f"✓ Embedding dtype: {emb.dtype}")
print(f"✓ Embedding stats:")
print(f" - Min: {emb.min().item():.4f}")
print(f" - Max: {emb.max().item():.4f}")
print(f" - Mean: {emb.mean().item():.4f}")
print(f" - Std: {emb.std().item():.4f}")
# Check for NaN or Inf
if torch.isnan(emb).any():
print("⚠ Warning: Embedding contains NaN values!")
if torch.isinf(emb).any():
print("⚠ Warning: Embedding contains Inf values!")
except Exception as e:
print(f"✗ Error during forward pass: {e}")
import traceback
traceback.print_exc()
return
print("\n" + "=" * 60)
print("Test completed successfully!")
print("=" * 60)
if __name__ == "__main__":
main()

View File

@@ -227,28 +227,26 @@ def _embed_queries(model, processor, queries: list[str]) -> list[Any]:
# 2. Manually adds: query_prefix + text + query_augmentation_token * 10
# 3. Calls processor.process_queries(batch) where batch is now a list of strings
# 4. process_queries adds: query_prefix + text + suffix (suffix = query_augmentation_token * 10)
#
#
# This results in duplicate addition: query_prefix is added twice, query_augmentation_token * 20 total
# We need to match this exactly to reproduce MTEB results
all_embeds = []
batch_size = 32 # Match MTEB's default batch_size
with torch.no_grad():
for i in tqdm(range(0, len(queries), batch_size), desc="Embedding queries"):
batch_queries = queries[i:i + batch_size]
batch_queries = queries[i : i + batch_size]
# Match MTEB: manually add query_prefix + text + query_augmentation_token * 10
# Then process_queries will add them again (resulting in 20 augmentation tokens total)
batch = [
processor.query_prefix
+ t
+ processor.query_augmentation_token * 10
processor.query_prefix + t + processor.query_augmentation_token * 10
for t in batch_queries
]
inputs = processor.process_queries(batch)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
if model.device.type == "cuda":
with torch.autocast(
device_type="cuda",
@@ -257,10 +255,10 @@ def _embed_queries(model, processor, queries: list[str]) -> list[Any]:
outs = model(**inputs)
else:
outs = model(**inputs)
# Match MTEB: convert to float32 on CPU
all_embeds.extend(list(torch.unbind(outs.cpu().to(torch.float32))))
return all_embeds
@@ -309,74 +307,82 @@ def _build_fast_plaid_index(
) -> tuple[Any, float]:
"""
Build a Fast-Plaid index from document embeddings.
Args:
index_path: Path to save the Fast-Plaid index
doc_vecs: List of document embeddings (each is a tensor with shape [num_tokens, embedding_dim])
filepaths: List of filepath identifiers for each document
images: List of PIL Images corresponding to each document
Returns:
Tuple of (FastPlaid index object, build_time_in_seconds)
"""
import torch
from fast_plaid import search as fast_plaid_search
print(f" Preparing {len(doc_vecs)} document embeddings for Fast-Plaid...")
_t0 = time.perf_counter()
# Convert doc_vecs to list of tensors
documents_embeddings = []
for i, vec in enumerate(doc_vecs):
if i % 1000 == 0:
print(f" Converting embedding {i}/{len(doc_vecs)}...")
if not isinstance(vec, torch.Tensor):
vec = torch.tensor(vec) if isinstance(vec, np.ndarray) else torch.from_numpy(np.array(vec))
vec = (
torch.tensor(vec)
if isinstance(vec, np.ndarray)
else torch.from_numpy(np.array(vec))
)
# Ensure float32 for Fast-Plaid
if vec.dtype != torch.float32:
vec = vec.float()
documents_embeddings.append(vec)
print(f" Converted {len(documents_embeddings)} embeddings")
if len(documents_embeddings) > 0:
print(f" First embedding shape: {documents_embeddings[0].shape}")
print(f" First embedding dtype: {documents_embeddings[0].dtype}")
# Prepare metadata for Fast-Plaid
print(f" Preparing metadata for {len(filepaths)} documents...")
metadata_list = []
for i, filepath in enumerate(filepaths):
metadata_list.append({
"filepath": filepath,
"index": i,
})
metadata_list.append(
{
"filepath": filepath,
"index": i,
}
)
# Create Fast-Plaid index
print(f" Creating FastPlaid object with index path: {index_path}")
try:
fast_plaid_index = fast_plaid_search.FastPlaid(index=index_path)
print(f" FastPlaid object created successfully")
print(" FastPlaid object created successfully")
except Exception as e:
print(f" Error creating FastPlaid object: {type(e).__name__}: {e}")
import traceback
traceback.print_exc()
raise
print(f" Calling fast_plaid_index.create() with {len(documents_embeddings)} documents...")
try:
fast_plaid_index.create(
documents_embeddings=documents_embeddings,
metadata=metadata_list,
)
print(f" Fast-Plaid index created successfully")
print(" Fast-Plaid index created successfully")
except Exception as e:
print(f" Error creating Fast-Plaid index: {type(e).__name__}: {e}")
import traceback
traceback.print_exc()
raise
build_secs = time.perf_counter() - _t0
# Save images separately (Fast-Plaid doesn't store images)
print(f" Saving {len(images)} images...")
images_dir = Path(index_path) / "images"
@@ -384,7 +390,7 @@ def _build_fast_plaid_index(
for i, img in enumerate(tqdm(images, desc="Saving images")):
img_path = images_dir / f"doc_{i}.png"
img.save(str(img_path))
return fast_plaid_index, build_secs
@@ -392,30 +398,30 @@ def _fast_plaid_index_exists(index_path: str) -> bool:
"""
Check if Fast-Plaid index exists by checking for key files.
This avoids creating the FastPlaid object which may trigger memory allocation.
Args:
index_path: Path to the Fast-Plaid index
Returns:
True if index appears to exist, False otherwise
"""
index_path_obj = Path(index_path)
if not index_path_obj.exists() or not index_path_obj.is_dir():
return False
# Fast-Plaid creates a SQLite database file for metadata
# Check for metadata.db as the most reliable indicator
metadata_db = index_path_obj / "metadata.db"
if metadata_db.exists() and metadata_db.stat().st_size > 0:
return True
# Also check if directory has any files (might be incomplete index)
try:
if any(index_path_obj.iterdir()):
return True
except Exception:
pass
return False
@@ -424,20 +430,20 @@ def _load_fast_plaid_index_if_exists(index_path: str) -> Optional[Any]:
Load Fast-Plaid index if it exists.
First checks if index files exist, then creates the FastPlaid object.
The actual index data loading happens lazily when search is called.
Args:
index_path: Path to the Fast-Plaid index
Returns:
FastPlaid index object if exists, None otherwise
"""
try:
from fast_plaid import search as fast_plaid_search
# First check if index files exist without creating the object
if not _fast_plaid_index_exists(index_path):
return None
# Now try to create FastPlaid object
# This may trigger some memory allocation, but the full index loading is deferred
fast_plaid_index = fast_plaid_search.FastPlaid(index=index_path)
@@ -459,81 +465,105 @@ def _search_fast_plaid(
) -> tuple[list[tuple[float, int]], float]:
"""
Search Fast-Plaid index with a query embedding.
Args:
fast_plaid_index: FastPlaid index object
query_vec: Query embedding tensor with shape [num_tokens, embedding_dim]
top_k: Number of top results to return
Returns:
Tuple of (results_list, search_time_in_seconds)
results_list: List of (score, doc_id) tuples
"""
import torch
_t0 = time.perf_counter()
# Ensure query is a torch tensor
if not isinstance(query_vec, torch.Tensor):
q_vec_tensor = torch.tensor(query_vec) if isinstance(query_vec, np.ndarray) else torch.from_numpy(np.array(query_vec))
q_vec_tensor = (
torch.tensor(query_vec)
if isinstance(query_vec, np.ndarray)
else torch.from_numpy(np.array(query_vec))
)
else:
q_vec_tensor = query_vec
# Fast-Plaid expects shape [num_queries, num_tokens, embedding_dim]
if q_vec_tensor.dim() == 2:
q_vec_tensor = q_vec_tensor.unsqueeze(0) # [1, num_tokens, embedding_dim]
# Perform search
scores = fast_plaid_index.search(
queries_embeddings=q_vec_tensor,
top_k=top_k,
show_progress=True,
)
search_secs = time.perf_counter() - _t0
# Convert Fast-Plaid results to same format as LEANN: list of (score, doc_id) tuples
results = []
if scores and len(scores) > 0:
query_results = scores[0]
# Fast-Plaid returns (doc_id, score), convert to (score, doc_id) to match LEANN format
results = [(float(score), int(doc_id)) for doc_id, score in query_results]
return results, search_secs
def _get_fast_plaid_image(index_path: str, doc_id: int) -> Optional[Image.Image]:
"""
Retrieve image for a document from Fast-Plaid index.
Args:
index_path: Path to the Fast-Plaid index
doc_id: Document ID
doc_id: Document ID returned by Fast-Plaid search
Returns:
PIL Image if found, None otherwise
Note: Uses metadata['index'] to get the actual file index, as Fast-Plaid
doc_id may differ from the file naming index.
"""
# First get metadata to find the actual index used for file naming
metadata = _get_fast_plaid_metadata(index_path, doc_id)
if metadata is None:
# Fallback: try using doc_id directly
file_index = doc_id
else:
# Use the 'index' field from metadata, which matches the file naming
file_index = metadata.get("index", doc_id)
images_dir = Path(index_path) / "images"
image_path = images_dir / f"doc_{doc_id}.png"
image_path = images_dir / f"doc_{file_index}.png"
if image_path.exists():
return Image.open(image_path)
# If not found with index, try doc_id as fallback
if file_index != doc_id:
fallback_path = images_dir / f"doc_{doc_id}.png"
if fallback_path.exists():
return Image.open(fallback_path)
return None
def _get_fast_plaid_metadata(index_path: str, doc_id: int) -> Optional[dict]:
"""
Retrieve metadata for a document from Fast-Plaid index.
Args:
index_path: Path to the Fast-Plaid index
doc_id: Document ID
Returns:
Dictionary with metadata if found, None otherwise
"""
try:
from fast_plaid import filtering
metadata_list = filtering.get(index=index_path, subset=[doc_id])
if metadata_list and len(metadata_list) > 0:
return metadata_list[0]
@@ -1053,18 +1083,18 @@ class ViDoReBenchmarkEvaluator:
A reusable class for evaluating ViDoRe benchmarks (v1 and v2).
This class encapsulates common functionality for building indexes, searching, and evaluating.
"""
def __init__(
self,
model_name: str,
use_fast_plaid: bool = False,
top_k: int = 100,
first_stage_k: int = 500,
k_values: list[int] = None,
k_values: Optional[list[int]] = None,
):
"""
Initialize the evaluator.
Args:
model_name: Model name ("colqwen2" or "colpali")
use_fast_plaid: Whether to use Fast-Plaid instead of LEANN
@@ -1077,19 +1107,21 @@ class ViDoReBenchmarkEvaluator:
self.top_k = top_k
self.first_stage_k = first_stage_k
self.k_values = k_values if k_values is not None else [1, 3, 5, 10, 100]
# Load model once (can be reused across tasks)
self._model = None
self._processor = None
self._model_name_actual = None
def _load_model_if_needed(self):
"""Lazy load the model."""
if self._model is None:
print(f"\nLoading model: {self.model_name}")
self._model_name_actual, self._model, self._processor, _, _, _ = _load_colvision(self.model_name)
self._model_name_actual, self._model, self._processor, _, _, _ = _load_colvision(
self.model_name
)
print(f"Model loaded: {self._model_name_actual}")
def build_index_from_corpus(
self,
corpus: dict[str, Image.Image],
@@ -1098,31 +1130,31 @@ class ViDoReBenchmarkEvaluator:
) -> tuple[Any, list[str]]:
"""
Build index from corpus images.
Args:
corpus: dict mapping corpus_id to PIL Image
index_path: Path to save/load the index
rebuild: Whether to rebuild even if index exists
Returns:
tuple: (retriever or fast_plaid_index object, list of corpus_ids in order)
"""
self._load_model_if_needed()
# Ensure consistent ordering
corpus_ids = sorted(corpus.keys())
images = [corpus[cid] for cid in corpus_ids]
if self.use_fast_plaid:
# Check if Fast-Plaid index exists
if not rebuild and _load_fast_plaid_index_if_exists(index_path) is not None:
print(f"Fast-Plaid index already exists at {index_path}")
return _load_fast_plaid_index_if_exists(index_path), corpus_ids
print(f"Building Fast-Plaid index at {index_path}...")
print("Embedding images...")
doc_vecs = _embed_images(self._model, self._processor, images)
fast_plaid_index, build_time = _build_fast_plaid_index(
index_path, doc_vecs, corpus_ids, images
)
@@ -1135,15 +1167,15 @@ class ViDoReBenchmarkEvaluator:
if retriever is not None:
print(f"LEANN index already exists at {index_path}")
return retriever, corpus_ids
print(f"Building LEANN index at {index_path}...")
print("Embedding images...")
doc_vecs = _embed_images(self._model, self._processor, images)
retriever = _build_index(index_path, doc_vecs, corpus_ids, images)
print(f"LEANN index built")
print("LEANN index built")
return retriever, corpus_ids
def search_queries(
self,
queries: dict[str, str],
@@ -1154,34 +1186,34 @@ class ViDoReBenchmarkEvaluator:
) -> dict[str, dict[str, float]]:
"""
Search queries against the index.
Args:
queries: dict mapping query_id to query text
corpus_ids: list of corpus_ids in the same order as the index
index_or_retriever: index or retriever object
fast_plaid_index_path: path to Fast-Plaid index (for metadata)
task_prompt: Optional dict with prompt for query (e.g., {"query": "..."})
Returns:
results: dict mapping query_id to dict of {corpus_id: score}
"""
self._load_model_if_needed()
print(f"Searching {len(queries)} queries (top_k={self.top_k})...")
query_ids = list(queries.keys())
query_texts = [queries[qid] for qid in query_ids]
# Note: ColPaliEngineWrapper does NOT use task prompt from metadata
# It uses query_prefix + text + query_augmentation_token (handled in _embed_queries)
# So we don't append task_prompt here to match MTEB behavior
# Embed queries
print("Embedding queries...")
query_vecs = _embed_queries(self._model, self._processor, query_texts)
results = {}
for query_id, query_vec in zip(tqdm(query_ids, desc="Searching"), query_vecs):
if self.use_fast_plaid:
# Fast-Plaid search
@@ -1194,47 +1226,51 @@ class ViDoReBenchmarkEvaluator:
else:
# LEANN search
import torch
query_np = query_vec.float().numpy() if isinstance(query_vec, torch.Tensor) else query_vec
search_results = index_or_retriever.search_exact_all(query_np, topk=self.top_k)
query_np = (
query_vec.float().numpy() if isinstance(query_vec, torch.Tensor) else query_vec
)
search_results = index_or_retriever.search_exact(query_np, topk=self.top_k)
query_results = {}
for score, doc_id in search_results:
if doc_id < len(corpus_ids):
corpus_id = corpus_ids[doc_id]
query_results[corpus_id] = float(score)
results[query_id] = query_results
return results
@staticmethod
def evaluate_results(
results: dict[str, dict[str, float]],
qrels: dict[str, dict[str, int]],
k_values: list[int] = None,
k_values: Optional[list[int]] = None,
) -> dict[str, float]:
"""
Evaluate retrieval results using NDCG and other metrics.
Args:
results: dict mapping query_id to dict of {corpus_id: score}
qrels: dict mapping query_id to dict of {corpus_id: relevance_score}
k_values: List of k values for evaluation metrics
Returns:
Dictionary of metric scores
"""
try:
import pytrec_eval
from mteb._evaluators.retrieval_metrics import (
calculate_retrieval_scores,
make_score_dict,
)
except ImportError:
raise ImportError("pytrec_eval is required for evaluation. Install with: pip install pytrec-eval")
raise ImportError(
"pytrec_eval is required for evaluation. Install with: pip install pytrec-eval"
)
if k_values is None:
k_values = [1, 3, 5, 10, 100]
# Check if we have any queries to evaluate
if len(results) == 0:
print("Warning: No queries to evaluate. Returning zero scores.")
@@ -1246,38 +1282,42 @@ class ViDoReBenchmarkEvaluator:
scores[f"precision_at_{k}"] = 0.0
scores[f"mrr_at_{k}"] = 0.0
return scores
print(f"Evaluating results with k_values={k_values}...")
print(f"Before filtering: {len(results)} results, {len(qrels)} qrels")
# Filter to ensure qrels and results have the same query set
# This matches MTEB behavior: only evaluate queries that exist in both
# pytrec_eval only evaluates queries in qrels, so we need to ensure
# results contains all queries in qrels, and filter out queries not in qrels
results_filtered = {qid: res for qid, res in results.items() if qid in qrels}
qrels_filtered = {qid: rel_docs for qid, rel_docs in qrels.items() if qid in results_filtered}
qrels_filtered = {
qid: rel_docs for qid, rel_docs in qrels.items() if qid in results_filtered
}
print(f"After filtering: {len(results_filtered)} results, {len(qrels_filtered)} qrels")
if len(results_filtered) != len(qrels_filtered):
print(f"Warning: Mismatch between results ({len(results_filtered)}) and qrels ({len(qrels_filtered)}) queries")
print(
f"Warning: Mismatch between results ({len(results_filtered)}) and qrels ({len(qrels_filtered)}) queries"
)
missing_in_results = set(qrels.keys()) - set(results.keys())
if missing_in_results:
print(f"Queries in qrels but not in results: {len(missing_in_results)} queries")
print(f"First 5 missing queries: {list(missing_in_results)[:5]}")
# Convert qrels to pytrec_eval format
qrels_pytrec = {}
for qid, rel_docs in qrels_filtered.items():
qrels_pytrec[qid] = {did: score for did, score in rel_docs.items()}
qrels_pytrec[qid] = dict(rel_docs.items())
# Evaluate
eval_result = calculate_retrieval_scores(
results=results_filtered,
qrels=qrels_pytrec,
k_values=k_values,
)
# Format scores
scores = make_score_dict(
ndcg=eval_result.ndcg,
@@ -1290,5 +1330,5 @@ class ViDoReBenchmarkEvaluator:
cv_recall=eval_result.cv_recall,
task_scores={},
)
return scores

View File

@@ -83,7 +83,7 @@ INDEX_PATH: str = "./indexes/colvision_large.leann"
# These are now command-line arguments (see CLI overrides section)
TOPK: int = 3
FIRST_STAGE_K: int = 500
REBUILD_INDEX: bool = False
REBUILD_INDEX: bool = True
# Artifacts
SAVE_TOP_IMAGE: Optional[str] = "./figures/retrieved_page.png"
@@ -122,11 +122,18 @@ parser.add_argument(
default="./indexes/colvision_fastplaid",
help="Path to the Fast-Plaid index. Default: './indexes/colvision_fastplaid'",
)
parser.add_argument(
"--topk",
type=int,
default=TOPK,
help=f"Number of top results to retrieve. Default: {TOPK}",
)
cli_args, _unknown = parser.parse_known_args()
SEARCH_METHOD: str = cli_args.search_method
QUERY = cli_args.query # Override QUERY with CLI argument if provided
USE_FAST_PLAID: bool = cli_args.use_fast_plaid
FAST_PLAID_INDEX_PATH: str = cli_args.fast_plaid_index_path
TOPK: int = cli_args.topk # Override TOPK with CLI argument if provided
# %%
@@ -399,7 +406,7 @@ if need_to_build_index:
f"No images found in {PAGES_DIR}. Provide PDF path in PDF variable or ensure images exist."
)
print(f"Loaded {len(images)} images")
# Memory check before loading model
try:
import psutil
@@ -426,10 +433,10 @@ try:
import sys
print(f" Python version: {sys.version}")
print(f" Python executable: {sys.executable}")
model_name, model, processor, device_str, device, dtype = _load_colvision(MODEL)
print(f"✓ Using model={model_name}, device={device_str}, dtype={dtype}")
# Memory check after loading model
try:
import psutil
@@ -457,7 +464,7 @@ if need_to_build_index:
print("Step 4: Building index...")
print(f" Number of images: {len(images)}")
print(f" Number of filepaths: {len(filepaths)}")
try:
print(" Embedding images...")
doc_vecs = _embed_images(model, processor, images)
@@ -468,7 +475,7 @@ if need_to_build_index:
import traceback
traceback.print_exc()
raise
if USE_FAST_PLAID:
# Build Fast-Plaid index
print(" Building Fast-Plaid index...")
@@ -523,13 +530,13 @@ if USE_FAST_PLAID:
fast_plaid_index = _load_fast_plaid_index_if_exists(FAST_PLAID_INDEX_PATH)
if fast_plaid_index is None:
raise RuntimeError(f"Fast-Plaid index not found at {FAST_PLAID_INDEX_PATH}")
results, search_secs = _search_fast_plaid(fast_plaid_index, q_vec, TOPK)
print(f"[Timing] Fast-Plaid Search: {search_secs:.3f}s")
else:
# Original LEANN search
query_np = q_vec.float().numpy()
if SEARCH_METHOD == "ann":
results = retriever.search(query_np, topk=TOPK, first_stage_k=FIRST_STAGE_K)
search_secs = time.perf_counter() - _t0
@@ -548,7 +555,10 @@ if not results:
print("No results found.")
else:
print(f'Top {len(results)} results for query: "{QUERY}"')
print("\n[DEBUG] Retrieval details:")
top_images: list[Image.Image] = []
image_hashes = {} # Track image hashes to detect duplicates
for rank, (score, doc_id) in enumerate(results, start=1):
# Retrieve image and metadata based on index type
if USE_FAST_PLAID:
@@ -557,7 +567,7 @@ else:
if image is None:
print(f"Warning: Could not find image for doc_id {doc_id}")
continue
metadata = _get_fast_plaid_metadata(FAST_PLAID_INDEX_PATH, doc_id)
path = metadata.get("filepath", f"doc_{doc_id}") if metadata else f"doc_{doc_id}"
top_images.append(image)
@@ -571,9 +581,27 @@ else:
metadata = retriever.get_metadata(doc_id)
path = metadata.get("filepath", "unknown") if metadata else "unknown"
top_images.append(image)
# For HF dataset, path is a descriptive identifier, not a real file path
print(f"{rank}) MaxSim: {score:.4f}, Page: {path}")
# Calculate image hash to detect duplicates
import hashlib
import io
# Convert image to bytes for hashing
img_bytes = io.BytesIO()
image.save(img_bytes, format='PNG')
image_bytes = img_bytes.getvalue()
image_hash = hashlib.md5(image_bytes).hexdigest()[:8]
# Check if this image was already seen
duplicate_info = ""
if image_hash in image_hashes:
duplicate_info = f" [DUPLICATE of rank {image_hashes[image_hash]}]"
else:
image_hashes[image_hash] = rank
# Print detailed information
print(f"{rank}) doc_id={doc_id}, MaxSim={score:.4f}, Page={path}, ImageHash={image_hash}{duplicate_info}")
if metadata:
print(f" Metadata: {metadata}")
if SAVE_TOP_IMAGE:
from pathlib import Path as _Path

View File

@@ -11,13 +11,13 @@ This script uses the interface from leann_multi_vector.py to:
Usage:
# Evaluate all ViDoRe v1 tasks
python vidore_v1_benchmark.py --model colqwen2 --tasks all
# Evaluate specific task
python vidore_v1_benchmark.py --model colqwen2 --task VidoreArxivQARetrieval
# Use Fast-Plaid index
python vidore_v1_benchmark.py --model colqwen2 --use-fast-plaid --fast-plaid-index-path ./indexes/vidore_fastplaid
# Rebuild index
python vidore_v1_benchmark.py --model colqwen2 --rebuild-index
"""
@@ -28,11 +28,9 @@ import os
from typing import Optional
from datasets import load_dataset
from PIL import Image
from leann_multi_vector import (
_ensure_repo_paths_importable,
ViDoReBenchmarkEvaluator,
_ensure_repo_paths_importable,
)
_ensure_repo_paths_importable(__file__)
@@ -100,25 +98,25 @@ def load_vidore_v1_data(
):
"""
Load ViDoRe v1 dataset.
Returns:
corpus: dict mapping corpus_id to PIL Image
queries: dict mapping query_id to query text
qrels: dict mapping query_id to dict of {corpus_id: relevance_score}
"""
print(f"Loading dataset: {dataset_path} (split={split})")
# Load queries
query_ds = load_dataset(dataset_path, "queries", split=split, revision=revision)
queries = {}
for row in query_ds:
query_id = f"query-{split}-{row['query-id']}"
queries[query_id] = row["query"]
# Load corpus (images)
corpus_ds = load_dataset(dataset_path, "corpus", split=split, revision=revision)
corpus = {}
for row in corpus_ds:
corpus_id = f"corpus-{split}-{row['corpus-id']}"
@@ -128,11 +126,13 @@ def load_vidore_v1_data(
elif "page_image" in row:
corpus[corpus_id] = row["page_image"]
else:
raise ValueError(f"No image field found in corpus. Available fields: {list(row.keys())}")
raise ValueError(
f"No image field found in corpus. Available fields: {list(row.keys())}"
)
# Load qrels (relevance judgments)
qrels_ds = load_dataset(dataset_path, "qrels", split=split, revision=revision)
qrels = {}
for row in qrels_ds:
query_id = f"query-{split}-{row['query-id']}"
@@ -140,19 +140,25 @@ def load_vidore_v1_data(
if query_id not in qrels:
qrels[query_id] = {}
qrels[query_id][corpus_id] = int(row["score"])
print(f"Loaded {len(queries)} queries, {len(corpus)} corpus items, {len(qrels)} query-relevance mappings")
print(
f"Loaded {len(queries)} queries, {len(corpus)} corpus items, {len(qrels)} query-relevance mappings"
)
# Filter qrels to only include queries that exist
qrels = {qid: rel_docs for qid, rel_docs in qrels.items() if qid in queries}
# Filter out queries without any relevant documents (matching MTEB behavior)
# This is important for correct NDCG calculation
qrels_filtered = {qid: rel_docs for qid, rel_docs in qrels.items() if len(rel_docs) > 0}
queries_filtered = {qid: query_text for qid, query_text in queries.items() if qid in qrels_filtered}
print(f"After filtering queries without positives: {len(queries_filtered)} queries, {len(qrels_filtered)} query-relevance mappings")
queries_filtered = {
qid: query_text for qid, query_text in queries.items() if qid in qrels_filtered
}
print(
f"After filtering queries without positives: {len(queries_filtered)} queries, {len(qrels_filtered)} query-relevance mappings"
)
return corpus, queries_filtered, qrels_filtered
@@ -165,31 +171,35 @@ def evaluate_task(
rebuild_index: bool = False,
top_k: int = 1000,
first_stage_k: int = 500,
k_values: list[int] = [1, 3, 5, 10, 20, 100, 1000],
k_values: Optional[list[int]] = None,
output_dir: Optional[str] = None,
):
"""
Evaluate a single ViDoRe v1 task.
"""
print(f"\n{'='*80}")
print(f"\n{'=' * 80}")
print(f"Evaluating task: {task_name}")
print(f"{'='*80}")
print(f"{'=' * 80}")
# Get task config
if task_name not in VIDORE_V1_TASKS:
raise ValueError(f"Unknown task: {task_name}. Available: {list(VIDORE_V1_TASKS.keys())}")
task_config = VIDORE_V1_TASKS[task_name]
dataset_path = task_config["dataset_path"]
revision = task_config["revision"]
# Load data
corpus, queries, qrels = load_vidore_v1_data(
dataset_path=dataset_path,
revision=revision,
split="test",
)
# Initialize k_values if not provided
if k_values is None:
k_values = [1, 3, 5, 10, 20, 100, 1000]
# Check if we have any queries
if len(queries) == 0:
print(f"\nWarning: No queries found for task {task_name}. Skipping evaluation.")
@@ -202,7 +212,7 @@ def evaluate_task(
scores[f"precision_at_{k}"] = 0.0
scores[f"mrr_at_{k}"] = 0.0
return scores
# Initialize evaluator
evaluator = ViDoReBenchmarkEvaluator(
model_name=model_name,
@@ -211,20 +221,20 @@ def evaluate_task(
first_stage_k=first_stage_k,
k_values=k_values,
)
# Build or load index
index_path_full = index_path if not use_fast_plaid else fast_plaid_index_path
if index_path_full is None:
index_path_full = f"./indexes/{task_name}_{model_name}"
if use_fast_plaid:
index_path_full = f"./indexes/{task_name}_{model_name}_fastplaid"
index_or_retriever, corpus_ids_ordered = evaluator.build_index_from_corpus(
corpus=corpus,
index_path=index_path_full,
rebuild=rebuild_index,
)
# Search queries
task_prompt = task_config.get("prompt")
results = evaluator.search_queries(
@@ -234,32 +244,32 @@ def evaluate_task(
fast_plaid_index_path=fast_plaid_index_path,
task_prompt=task_prompt,
)
# Evaluate
scores = evaluator.evaluate_results(results, qrels, k_values=k_values)
# Print results
print(f"\n{'='*80}")
print(f"\n{'=' * 80}")
print(f"Results for {task_name}:")
print(f"{'='*80}")
print(f"{'=' * 80}")
for metric, value in scores.items():
if isinstance(value, (int, float)):
print(f" {metric}: {value:.5f}")
# Save results
if output_dir:
os.makedirs(output_dir, exist_ok=True)
results_file = os.path.join(output_dir, f"{task_name}_results.json")
scores_file = os.path.join(output_dir, f"{task_name}_scores.json")
with open(results_file, "w") as f:
json.dump(results, f, indent=2)
print(f"\nSaved results to: {results_file}")
with open(scores_file, "w") as f:
json.dump(scores, f, indent=2)
print(f"Saved scores to: {scores_file}")
return scores
@@ -332,12 +342,12 @@ def main():
default="./vidore_v1_results",
help="Output directory for results",
)
args = parser.parse_args()
# Parse k_values
k_values = [int(k.strip()) for k in args.k_values.split(",")]
# Determine tasks to evaluate
if args.task:
tasks_to_eval = [args.task]
@@ -345,9 +355,9 @@ def main():
tasks_to_eval = list(VIDORE_V1_TASKS.keys())
else:
tasks_to_eval = [t.strip() for t in args.tasks.split(",")]
print(f"Tasks to evaluate: {tasks_to_eval}")
# Evaluate each task
all_scores = {}
for task_name in tasks_to_eval:
@@ -368,14 +378,15 @@ def main():
except Exception as e:
print(f"\nError evaluating {task_name}: {e}")
import traceback
traceback.print_exc()
continue
# Print summary
if all_scores:
print(f"\n{'='*80}")
print(f"\n{'=' * 80}")
print("SUMMARY")
print(f"{'='*80}")
print(f"{'=' * 80}")
for task_name, scores in all_scores.items():
print(f"\n{task_name}:")
# Print main metrics
@@ -386,4 +397,3 @@ def main():
if __name__ == "__main__":
main()

View File

@@ -11,13 +11,13 @@ This script uses the interface from leann_multi_vector.py to:
Usage:
# Evaluate all ViDoRe v2 tasks
python vidore_v2_benchmark.py --model colqwen2 --tasks all
# Evaluate specific task
python vidore_v2_benchmark.py --model colqwen2 --task Vidore2ESGReportsRetrieval
# Use Fast-Plaid index
python vidore_v2_benchmark.py --model colqwen2 --use-fast-plaid --fast-plaid-index-path ./indexes/vidore_fastplaid
# Rebuild index
python vidore_v2_benchmark.py --model colqwen2 --rebuild-index
"""
@@ -28,11 +28,9 @@ import os
from typing import Optional
from datasets import load_dataset
from PIL import Image
from leann_multi_vector import (
_ensure_repo_paths_importable,
ViDoReBenchmarkEvaluator,
_ensure_repo_paths_importable,
)
_ensure_repo_paths_importable(__file__)
@@ -85,51 +83,57 @@ def load_vidore_v2_data(
):
"""
Load ViDoRe v2 dataset.
Returns:
corpus: dict mapping corpus_id to PIL Image
queries: dict mapping query_id to query text
qrels: dict mapping query_id to dict of {corpus_id: relevance_score}
"""
print(f"Loading dataset: {dataset_path} (split={split}, language={language})")
# Load queries
query_ds = load_dataset(dataset_path, "queries", split=split, revision=revision)
# Check if dataset has language field before filtering
has_language_field = len(query_ds) > 0 and "language" in query_ds.column_names
if language and has_language_field:
# Map language name to dataset language field value (e.g., "english" -> "eng-Latn")
dataset_language = LANGUAGE_MAPPING.get(language, language)
query_ds_filtered = query_ds.filter(lambda x: x.get("language") == dataset_language)
# Check if filtering resulted in empty dataset
if len(query_ds_filtered) == 0:
print(f"Warning: No queries found after filtering by language '{language}' (mapped to '{dataset_language}').")
print(
f"Warning: No queries found after filtering by language '{language}' (mapped to '{dataset_language}')."
)
# Try with original language value (dataset might use simple names like 'english')
print(f"Trying with original language value '{language}'...")
query_ds_filtered = query_ds.filter(lambda x: x.get("language") == language)
if len(query_ds_filtered) == 0:
# Try to get a sample to see actual language values
try:
sample_ds = load_dataset(dataset_path, "queries", split=split, revision=revision)
sample_ds = load_dataset(
dataset_path, "queries", split=split, revision=revision
)
if len(sample_ds) > 0 and "language" in sample_ds.column_names:
sample_langs = set(sample_ds["language"])
print(f"Available language values in dataset: {sample_langs}")
except Exception:
pass
else:
print(f"Found {len(query_ds_filtered)} queries using original language value '{language}'")
print(
f"Found {len(query_ds_filtered)} queries using original language value '{language}'"
)
query_ds = query_ds_filtered
queries = {}
for row in query_ds:
query_id = f"query-{split}-{row['query-id']}"
queries[query_id] = row["query"]
# Load corpus (images)
corpus_ds = load_dataset(dataset_path, "corpus", split=split, revision=revision)
corpus = {}
for row in corpus_ds:
corpus_id = f"corpus-{split}-{row['corpus-id']}"
@@ -139,11 +143,13 @@ def load_vidore_v2_data(
elif "page_image" in row:
corpus[corpus_id] = row["page_image"]
else:
raise ValueError(f"No image field found in corpus. Available fields: {list(row.keys())}")
raise ValueError(
f"No image field found in corpus. Available fields: {list(row.keys())}"
)
# Load qrels (relevance judgments)
qrels_ds = load_dataset(dataset_path, "qrels", split=split, revision=revision)
qrels = {}
for row in qrels_ds:
query_id = f"query-{split}-{row['query-id']}"
@@ -151,19 +157,25 @@ def load_vidore_v2_data(
if query_id not in qrels:
qrels[query_id] = {}
qrels[query_id][corpus_id] = int(row["score"])
print(f"Loaded {len(queries)} queries, {len(corpus)} corpus items, {len(qrels)} query-relevance mappings")
print(
f"Loaded {len(queries)} queries, {len(corpus)} corpus items, {len(qrels)} query-relevance mappings"
)
# Filter qrels to only include queries that exist
qrels = {qid: rel_docs for qid, rel_docs in qrels.items() if qid in queries}
# Filter out queries without any relevant documents (matching MTEB behavior)
# This is important for correct NDCG calculation
qrels_filtered = {qid: rel_docs for qid, rel_docs in qrels.items() if len(rel_docs) > 0}
queries_filtered = {qid: query_text for qid, query_text in queries.items() if qid in qrels_filtered}
print(f"After filtering queries without positives: {len(queries_filtered)} queries, {len(qrels_filtered)} query-relevance mappings")
queries_filtered = {
qid: query_text for qid, query_text in queries.items() if qid in qrels_filtered
}
print(
f"After filtering queries without positives: {len(queries_filtered)} queries, {len(qrels_filtered)} query-relevance mappings"
)
return corpus, queries_filtered, qrels_filtered
@@ -177,24 +189,24 @@ def evaluate_task(
rebuild_index: bool = False,
top_k: int = 100,
first_stage_k: int = 500,
k_values: list[int] = [1, 3, 5, 10, 100],
k_values: Optional[list[int]] = None,
output_dir: Optional[str] = None,
):
"""
Evaluate a single ViDoRe v2 task.
"""
print(f"\n{'='*80}")
print(f"\n{'=' * 80}")
print(f"Evaluating task: {task_name}")
print(f"{'='*80}")
print(f"{'=' * 80}")
# Get task config
if task_name not in VIDORE_V2_TASKS:
raise ValueError(f"Unknown task: {task_name}. Available: {list(VIDORE_V2_TASKS.keys())}")
task_config = VIDORE_V2_TASKS[task_name]
dataset_path = task_config["dataset_path"]
revision = task_config["revision"]
# Determine language
if language is None:
# Use first language if multiple available
@@ -206,7 +218,11 @@ def evaluate_task(
language = languages[0]
else:
language = None
# Initialize k_values if not provided
if k_values is None:
k_values = [1, 3, 5, 10, 100]
# Load data
corpus, queries, qrels = load_vidore_v2_data(
dataset_path=dataset_path,
@@ -214,10 +230,12 @@ def evaluate_task(
split="test",
language=language,
)
# Check if we have any queries
if len(queries) == 0:
print(f"\nWarning: No queries found for task {task_name} with language {language}. Skipping evaluation.")
print(
f"\nWarning: No queries found for task {task_name} with language {language}. Skipping evaluation."
)
# Return zero scores
scores = {}
for k in k_values:
@@ -227,7 +245,7 @@ def evaluate_task(
scores[f"precision_at_{k}"] = 0.0
scores[f"mrr_at_{k}"] = 0.0
return scores
# Initialize evaluator
evaluator = ViDoReBenchmarkEvaluator(
model_name=model_name,
@@ -236,20 +254,20 @@ def evaluate_task(
first_stage_k=first_stage_k,
k_values=k_values,
)
# Build or load index
index_path_full = index_path if not use_fast_plaid else fast_plaid_index_path
if index_path_full is None:
index_path_full = f"./indexes/{task_name}_{model_name}"
if use_fast_plaid:
index_path_full = f"./indexes/{task_name}_{model_name}_fastplaid"
index_or_retriever, corpus_ids_ordered = evaluator.build_index_from_corpus(
corpus=corpus,
index_path=index_path_full,
rebuild=rebuild_index,
)
# Search queries
task_prompt = task_config.get("prompt")
results = evaluator.search_queries(
@@ -259,32 +277,32 @@ def evaluate_task(
fast_plaid_index_path=fast_plaid_index_path,
task_prompt=task_prompt,
)
# Evaluate
scores = evaluator.evaluate_results(results, qrels, k_values=k_values)
# Print results
print(f"\n{'='*80}")
print(f"\n{'=' * 80}")
print(f"Results for {task_name}:")
print(f"{'='*80}")
print(f"{'=' * 80}")
for metric, value in scores.items():
if isinstance(value, (int, float)):
print(f" {metric}: {value:.5f}")
# Save results
if output_dir:
os.makedirs(output_dir, exist_ok=True)
results_file = os.path.join(output_dir, f"{task_name}_results.json")
scores_file = os.path.join(output_dir, f"{task_name}_scores.json")
with open(results_file, "w") as f:
json.dump(results, f, indent=2)
print(f"\nSaved results to: {results_file}")
with open(scores_file, "w") as f:
json.dump(scores, f, indent=2)
print(f"Saved scores to: {scores_file}")
return scores
@@ -363,12 +381,12 @@ def main():
default="./vidore_v2_results",
help="Output directory for results",
)
args = parser.parse_args()
# Parse k_values
k_values = [int(k.strip()) for k in args.k_values.split(",")]
# Determine tasks to evaluate
if args.task:
tasks_to_eval = [args.task]
@@ -376,9 +394,9 @@ def main():
tasks_to_eval = list(VIDORE_V2_TASKS.keys())
else:
tasks_to_eval = [t.strip() for t in args.tasks.split(",")]
print(f"Tasks to evaluate: {tasks_to_eval}")
# Evaluate each task
all_scores = {}
for task_name in tasks_to_eval:
@@ -400,14 +418,15 @@ def main():
except Exception as e:
print(f"\nError evaluating {task_name}: {e}")
import traceback
traceback.print_exc()
continue
# Print summary
if all_scores:
print(f"\n{'='*80}")
print(f"\n{'=' * 80}")
print("SUMMARY")
print(f"{'='*80}")
print(f"{'=' * 80}")
for task_name, scores in all_scores.items():
print(f"\n{task_name}:")
# Print main metrics
@@ -418,4 +437,3 @@ def main():
if __name__ == "__main__":
main()