refactor: nits

This commit is contained in:
Andy Lee
2025-07-16 15:39:58 -07:00
parent 7b9406a3ea
commit 2a1a152073
4 changed files with 102 additions and 62 deletions

View File

@@ -1,6 +1,5 @@
import numpy as np
import os
import json
import struct
from pathlib import Path
from typing import Dict, Any, List, Literal
@@ -12,17 +11,20 @@ from leann.registry import register_backend
from leann.interface import (
LeannBackendFactoryInterface,
LeannBackendBuilderInterface,
LeannBackendSearcherInterface
LeannBackendSearcherInterface,
)
def _get_diskann_metrics():
from . import _diskannpy as diskannpy
from . import _diskannpy as diskannpy # type: ignore
return {
"mips": diskannpy.Metric.INNER_PRODUCT,
"l2": diskannpy.Metric.L2,
"cosine": diskannpy.Metric.COSINE,
}
@contextlib.contextmanager
def chdir(path):
original_dir = os.getcwd()
@@ -32,13 +34,15 @@ def chdir(path):
finally:
os.chdir(original_dir)
def _write_vectors_to_bin(data: np.ndarray, file_path: Path):
num_vectors, dim = data.shape
with open(file_path, 'wb') as f:
f.write(struct.pack('I', num_vectors))
f.write(struct.pack('I', dim))
with open(file_path, "wb") as f:
f.write(struct.pack("I", num_vectors))
f.write(struct.pack("I", dim))
f.write(data.tobytes())
@register_backend("diskann")
class DiskannBackend(LeannBackendFactoryInterface):
@staticmethod
@@ -49,6 +53,7 @@ class DiskannBackend(LeannBackendFactoryInterface):
def searcher(index_path: str, **kwargs) -> LeannBackendSearcherInterface:
return DiskannSearcher(index_path, **kwargs)
class DiskannBuilder(LeannBackendBuilderInterface):
def __init__(self, **kwargs):
self.build_params = kwargs
@@ -67,32 +72,46 @@ class DiskannBuilder(LeannBackendBuilderInterface):
label_map = {i: str_id for i, str_id in enumerate(ids)}
label_map_file = index_dir / "leann.labels.map"
with open(label_map_file, 'wb') as f:
with open(label_map_file, "wb") as f:
pickle.dump(label_map, f)
build_kwargs = {**self.build_params, **kwargs}
metric_enum = _get_diskann_metrics().get(build_kwargs.get("distance_metric", "mips").lower())
metric_enum = _get_diskann_metrics().get(
build_kwargs.get("distance_metric", "mips").lower()
)
if metric_enum is None:
raise ValueError(f"Unsupported distance_metric.")
raise ValueError("Unsupported distance_metric.")
try:
from . import _diskannpy as diskannpy
from . import _diskannpy as diskannpy # type: ignore
with chdir(index_dir):
diskannpy.build_disk_float_index(
metric_enum, data_filename, index_prefix,
build_kwargs.get("complexity", 64), build_kwargs.get("graph_degree", 32),
build_kwargs.get("search_memory_maximum", 4.0), build_kwargs.get("build_memory_maximum", 8.0),
build_kwargs.get("num_threads", 8), build_kwargs.get("pq_disk_bytes", 0), ""
metric_enum,
data_filename,
index_prefix,
build_kwargs.get("complexity", 64),
build_kwargs.get("graph_degree", 32),
build_kwargs.get("search_memory_maximum", 4.0),
build_kwargs.get("build_memory_maximum", 8.0),
build_kwargs.get("num_threads", 8),
build_kwargs.get("pq_disk_bytes", 0),
"",
)
finally:
temp_data_file = index_dir / data_filename
if temp_data_file.exists():
os.remove(temp_data_file)
class DiskannSearcher(BaseSearcher):
def __init__(self, index_path: str, **kwargs):
super().__init__(index_path, backend_module_name="leann_backend_diskann.embedding_server", **kwargs)
from . import _diskannpy as diskannpy
super().__init__(
index_path,
backend_module_name="leann_backend_diskann.embedding_server",
**kwargs,
)
from . import _diskannpy as diskannpy # type: ignore
distance_metric = kwargs.get("distance_metric", "mips").lower()
metric_enum = _get_diskann_metrics().get(distance_metric)
@@ -104,23 +123,33 @@ class DiskannSearcher(BaseSearcher):
full_index_prefix = str(self.index_dir / self.index_path.stem)
self._index = diskannpy.StaticDiskFloatIndex(
metric_enum, full_index_prefix, self.num_threads,
kwargs.get("num_nodes_to_cache", 0), 1, self.zmq_port, "", ""
metric_enum,
full_index_prefix,
self.num_threads,
kwargs.get("num_nodes_to_cache", 0),
1,
self.zmq_port,
"",
"",
)
def search(self, query: np.ndarray, top_k: int,
complexity: int = 64,
beam_width: int = 1,
prune_ratio: float = 0.0,
recompute_embeddings: bool = False,
pruning_strategy: Literal["global", "local", "proportional"] = "global",
zmq_port: int = 5557,
batch_recompute: bool = False,
dedup_node_dis: bool = False,
**kwargs) -> Dict[str, Any]:
def search(
self,
query: np.ndarray,
top_k: int,
complexity: int = 64,
beam_width: int = 1,
prune_ratio: float = 0.0,
recompute_embeddings: bool = False,
pruning_strategy: Literal["global", "local", "proportional"] = "global",
zmq_port: int = 5557,
batch_recompute: bool = False,
dedup_node_dis: bool = False,
**kwargs,
) -> Dict[str, Any]:
"""
Search for nearest neighbors using DiskANN index.
Args:
query: Query vectors (B, D) where B is batch size, D is dimension
top_k: Number of nearest neighbors to return
@@ -130,26 +159,30 @@ class DiskannSearcher(BaseSearcher):
recompute_embeddings: Whether to fetch fresh embeddings from server
pruning_strategy: PQ candidate selection strategy:
- "global": Use global pruning strategy (default)
- "local": Use local pruning strategy
- "local": Use local pruning strategy
- "proportional": Not supported in DiskANN, falls back to global
zmq_port: ZMQ port for embedding server
batch_recompute: Whether to batch neighbor recomputation (DiskANN-specific)
dedup_node_dis: Whether to cache and reuse distance computations (DiskANN-specific)
**kwargs: Additional DiskANN-specific parameters (for legacy compatibility)
Returns:
Dict with 'labels' (list of lists) and 'distances' (ndarray)
"""
# DiskANN doesn't support "proportional" strategy
if pruning_strategy == "proportional":
raise NotImplementedError("DiskANN backend does not support 'proportional' pruning strategy. Use 'global' or 'local' instead.")
raise NotImplementedError(
"DiskANN backend does not support 'proportional' pruning strategy. Use 'global' or 'local' instead."
)
# Use recompute_embeddings parameter
use_recompute = recompute_embeddings
if use_recompute:
meta_file_path = self.index_dir / f"{self.index_path.name}.meta.json"
if not meta_file_path.exists():
raise RuntimeError(f"FATAL: Recompute enabled but metadata file not found: {meta_file_path}")
raise RuntimeError(
f"FATAL: Recompute enabled but metadata file not found: {meta_file_path}"
)
self._ensure_server_running(str(meta_file_path), port=zmq_port, **kwargs)
if query.dtype != np.float32:
@@ -162,17 +195,27 @@ class DiskannSearcher(BaseSearcher):
use_global_pruning = True
labels, distances = self._index.batch_search(
query, query.shape[0], top_k,
complexity, beam_width, self.num_threads,
kwargs.get("USE_DEFERRED_FETCH", False),
query,
query.shape[0],
top_k,
complexity,
beam_width,
self.num_threads,
kwargs.get("USE_DEFERRED_FETCH", False),
kwargs.get("skip_search_reorder", False),
use_recompute,
dedup_node_dis,
use_recompute,
dedup_node_dis,
prune_ratio,
batch_recompute,
use_global_pruning
batch_recompute,
use_global_pruning,
)
string_labels = [[self.label_map.get(int_label, f"unknown_{int_label}") for int_label in batch_labels] for batch_labels in labels]
string_labels = [
[
self.label_map.get(int_label, f"unknown_{int_label}")
for int_label in batch_labels
]
for batch_labels in labels
]
return {"labels": string_labels, "distances": distances}
return {"labels": string_labels, "distances": distances}

View File

@@ -1,6 +1,5 @@
import numpy as np
import os
import json
from pathlib import Path
from typing import Dict, Any, List, Literal
import pickle
@@ -18,7 +17,7 @@ from leann.interface import (
def get_metric_map():
from . import faiss
from . import faiss # type: ignore
return {
"mips": faiss.METRIC_INNER_PRODUCT,
@@ -49,7 +48,7 @@ class HNSWBuilder(LeannBackendBuilderInterface):
self.dimensions = self.build_params.get("dimensions")
def build(self, data: np.ndarray, ids: List[str], index_path: str, **kwargs):
from . import faiss
from . import faiss # type: ignore
path = Path(index_path)
index_dir = path.parent
@@ -117,7 +116,7 @@ class HNSWSearcher(BaseSearcher):
backend_module_name="leann_backend_hnsw.hnsw_embedding_server",
**kwargs,
)
from . import faiss
from . import faiss # type: ignore
self.distance_metric = self.meta.get("distance_metric", "mips").lower()
metric_enum = get_metric_map().get(self.distance_metric)

View File

@@ -14,8 +14,7 @@ import torch
from .registry import BACKEND_REGISTRY
from .interface import LeannBackendFactoryInterface
# --- The Correct, Verified Embedding Logic from old_code.py ---
from .chat import get_llm
def compute_embeddings(
@@ -28,7 +27,7 @@ def compute_embeddings(
from sentence_transformers import SentenceTransformer
except ImportError as e:
raise RuntimeError(
f"sentence-transformers not available. Install with: pip install sentence-transformers"
"sentence-transformers not available. Install with: uv pip install sentence-transformers"
) from e
# Load model using sentence-transformers
@@ -61,7 +60,7 @@ def compute_embeddings_mlx(chunks: List[str], model_name: str) -> np.ndarray:
from mlx_lm.utils import load
except ImportError as e:
raise RuntimeError(
f"MLX or related libraries not available. Install with: uv pip install mlx mlx-lm"
"MLX or related libraries not available. Install with: uv pip install mlx mlx-lm"
) from e
print(
@@ -75,7 +74,7 @@ def compute_embeddings_mlx(chunks: List[str], model_name: str) -> np.ndarray:
all_embeddings = []
for chunk in chunks:
# Tokenize
token_ids = tokenizer.encode(chunk)
token_ids = tokenizer.encode(chunk) # type: ignore
# Convert to MLX array and add batch dimension
input_ids = mx.array([token_ids])
@@ -95,9 +94,6 @@ def compute_embeddings_mlx(chunks: List[str], model_name: str) -> np.ndarray:
return np.stack(all_embeddings)
# --- Core API Classes (Restored and Unchanged) ---
@dataclass
class SearchResult:
id: str
@@ -255,7 +251,7 @@ class LeannSearcher:
self.backend_impl = backend_factory.searcher(index_path, **final_kwargs)
def search(self, query: str, top_k: int = 5, **search_kwargs) -> List[SearchResult]:
print(f"🔍 DEBUG LeannSearcher.search() called:")
print("🔍 DEBUG LeannSearcher.search() called:")
print(f" Query: '{query}'")
print(f" Top_k: {top_k}")
print(f" Search kwargs: {search_kwargs}")
@@ -302,12 +298,13 @@ class LeannSearcher:
return enriched_results
from .chat import get_llm
class LeannChat:
def __init__(
self, index_path: str, llm_config: Optional[Dict[str, Any]] = None, enable_warmup: bool = False, **kwargs
self,
index_path: str,
llm_config: Optional[Dict[str, Any]] = None,
enable_warmup: bool = False,
**kwargs,
):
self.searcher = LeannSearcher(index_path, enable_warmup=enable_warmup, **kwargs)
self.llm = get_llm(llm_config)

View File

@@ -1,16 +1,17 @@
from abc import ABC, abstractmethod
import numpy as np
from typing import Dict, Any, Literal
from typing import Dict, Any, List, Literal
class LeannBackendBuilderInterface(ABC):
"""Backend interface for building indexes"""
@abstractmethod
def build(self, data: np.ndarray, index_path: str, **kwargs) -> None:
def build(self, data: np.ndarray, ids: List[str], index_path: str, **kwargs) -> None:
"""Build index
Args:
data: Vector data (N, D)
ids: List of string IDs for each vector
index_path: Path to save index
**kwargs: Backend-specific build parameters
"""
@@ -47,7 +48,7 @@ class LeannBackendSearcherInterface(ABC):
beam_width: Number of parallel search paths/IO requests per iteration
prune_ratio: Ratio of neighbors to prune via approximate distance (0.0-1.0)
recompute_embeddings: Whether to fetch fresh embeddings from server vs use stored PQ codes
pruning_strategy: PQ candidate selection strategy - "global", "local", or "proportional"
pruning_strategy: PQ candidate selection strategy - "global" (default), "local", or "proportional"
zmq_port: ZMQ port for embedding server communication
**kwargs: Backend-specific parameters