feat: different search_args and docstrings
This commit is contained in:
@@ -3,7 +3,7 @@ import os
|
||||
import json
|
||||
import struct
|
||||
from pathlib import Path
|
||||
from typing import Dict, Any, List
|
||||
from typing import Dict, Any, List, Literal
|
||||
import contextlib
|
||||
import pickle
|
||||
|
||||
@@ -108,24 +108,69 @@ class DiskannSearcher(BaseSearcher):
|
||||
kwargs.get("num_nodes_to_cache", 0), 1, self.zmq_port, "", ""
|
||||
)
|
||||
|
||||
def search(self, query: np.ndarray, top_k: int, **kwargs) -> Dict[str, Any]:
|
||||
recompute = kwargs.get("recompute_beighbor_embeddings", False)
|
||||
if recompute:
|
||||
def search(self, query: np.ndarray, top_k: int,
|
||||
complexity: int = 64,
|
||||
beam_width: int = 1,
|
||||
prune_ratio: float = 0.0,
|
||||
recompute_embeddings: bool = False,
|
||||
pruning_strategy: Literal["global", "local", "proportional"] = "global",
|
||||
zmq_port: int = 5557,
|
||||
batch_recompute: bool = False,
|
||||
dedup_node_dis: bool = False,
|
||||
**kwargs) -> Dict[str, Any]:
|
||||
"""
|
||||
Search for nearest neighbors using DiskANN index.
|
||||
|
||||
Args:
|
||||
query: Query vectors (B, D) where B is batch size, D is dimension
|
||||
top_k: Number of nearest neighbors to return
|
||||
complexity: Search complexity/candidate list size, higher = more accurate but slower
|
||||
beam_width: Number of parallel IO requests per iteration
|
||||
prune_ratio: Ratio of neighbors to prune via approximate distance (0.0-1.0)
|
||||
recompute_embeddings: Whether to fetch fresh embeddings from server
|
||||
pruning_strategy: PQ candidate selection strategy:
|
||||
- "global": Use global pruning strategy (default)
|
||||
- "local": Use local pruning strategy
|
||||
- "proportional": Not supported in DiskANN, falls back to global
|
||||
zmq_port: ZMQ port for embedding server
|
||||
batch_recompute: Whether to batch neighbor recomputation (DiskANN-specific)
|
||||
dedup_node_dis: Whether to cache and reuse distance computations (DiskANN-specific)
|
||||
**kwargs: Additional DiskANN-specific parameters (for legacy compatibility)
|
||||
|
||||
Returns:
|
||||
Dict with 'labels' (list of lists) and 'distances' (ndarray)
|
||||
"""
|
||||
# DiskANN doesn't support "proportional" strategy
|
||||
if pruning_strategy == "proportional":
|
||||
raise NotImplementedError("DiskANN backend does not support 'proportional' pruning strategy. Use 'global' or 'local' instead.")
|
||||
|
||||
# Use recompute_embeddings parameter
|
||||
use_recompute = recompute_embeddings
|
||||
if use_recompute:
|
||||
meta_file_path = self.index_dir / f"{self.index_path.name}.meta.json"
|
||||
if not meta_file_path.exists():
|
||||
raise RuntimeError(f"FATAL: Recompute mode enabled but metadata file not found: {meta_file_path}")
|
||||
zmq_port = kwargs.get("zmq_port", self.zmq_port)
|
||||
raise RuntimeError(f"FATAL: Recompute enabled but metadata file not found: {meta_file_path}")
|
||||
self._ensure_server_running(str(meta_file_path), port=zmq_port, **kwargs)
|
||||
|
||||
if query.dtype != np.float32:
|
||||
query = query.astype(np.float32)
|
||||
|
||||
# Map pruning_strategy to DiskANN's global_pruning parameter
|
||||
if pruning_strategy == "local":
|
||||
use_global_pruning = False
|
||||
else: # "global"
|
||||
use_global_pruning = True
|
||||
|
||||
labels, distances = self._index.batch_search(
|
||||
query, query.shape[0], top_k,
|
||||
kwargs.get("complexity", 256), kwargs.get("beam_width", 4), self.num_threads,
|
||||
kwargs.get("USE_DEFERRED_FETCH", False), kwargs.get("skip_search_reorder", False),
|
||||
recompute, kwargs.get("dedup_node_dis", False), kwargs.get("prune_ratio", 0.0),
|
||||
kwargs.get("batch_recompute", False), kwargs.get("global_pruning", False)
|
||||
complexity, beam_width, self.num_threads,
|
||||
kwargs.get("USE_DEFERRED_FETCH", False),
|
||||
kwargs.get("skip_search_reorder", False),
|
||||
use_recompute,
|
||||
dedup_node_dis,
|
||||
prune_ratio,
|
||||
batch_recompute,
|
||||
use_global_pruning
|
||||
)
|
||||
|
||||
string_labels = [[self.label_map.get(int_label, f"unknown_{int_label}") for int_label in batch_labels] for batch_labels in labels]
|
||||
|
||||
@@ -2,7 +2,7 @@ import numpy as np
|
||||
import os
|
||||
import json
|
||||
from pathlib import Path
|
||||
from typing import Dict, Any, List
|
||||
from typing import Dict, Any, List, Literal
|
||||
import pickle
|
||||
import shutil
|
||||
|
||||
@@ -13,17 +13,20 @@ from leann.registry import register_backend
|
||||
from leann.interface import (
|
||||
LeannBackendFactoryInterface,
|
||||
LeannBackendBuilderInterface,
|
||||
LeannBackendSearcherInterface
|
||||
LeannBackendSearcherInterface,
|
||||
)
|
||||
|
||||
|
||||
def get_metric_map():
|
||||
from . import faiss
|
||||
|
||||
return {
|
||||
"mips": faiss.METRIC_INNER_PRODUCT,
|
||||
"l2": faiss.METRIC_L2,
|
||||
"cosine": faiss.METRIC_INNER_PRODUCT,
|
||||
}
|
||||
|
||||
|
||||
@register_backend("hnsw")
|
||||
class HNSWBackend(LeannBackendFactoryInterface):
|
||||
@staticmethod
|
||||
@@ -34,6 +37,7 @@ class HNSWBackend(LeannBackendFactoryInterface):
|
||||
def searcher(index_path: str, **kwargs) -> LeannBackendSearcherInterface:
|
||||
return HNSWSearcher(index_path, **kwargs)
|
||||
|
||||
|
||||
class HNSWBuilder(LeannBackendBuilderInterface):
|
||||
def __init__(self, **kwargs):
|
||||
self.build_params = kwargs.copy()
|
||||
@@ -46,6 +50,7 @@ class HNSWBuilder(LeannBackendBuilderInterface):
|
||||
|
||||
def build(self, data: np.ndarray, ids: List[str], index_path: str, **kwargs):
|
||||
from . import faiss
|
||||
|
||||
path = Path(index_path)
|
||||
index_dir = path.parent
|
||||
index_prefix = path.stem
|
||||
@@ -56,7 +61,7 @@ class HNSWBuilder(LeannBackendBuilderInterface):
|
||||
|
||||
label_map = {i: str_id for i, str_id in enumerate(ids)}
|
||||
label_map_file = index_dir / "leann.labels.map"
|
||||
with open(label_map_file, 'wb') as f:
|
||||
with open(label_map_file, "wb") as f:
|
||||
pickle.dump(label_map, f)
|
||||
|
||||
metric_enum = get_metric_map().get(self.distance_metric.lower())
|
||||
@@ -85,9 +90,7 @@ class HNSWBuilder(LeannBackendBuilderInterface):
|
||||
csr_temp_file = index_file.with_suffix(".csr.tmp")
|
||||
|
||||
success = convert_hnsw_graph_to_csr(
|
||||
str(index_file),
|
||||
str(csr_temp_file),
|
||||
prune_embeddings=self.is_recompute
|
||||
str(index_file), str(csr_temp_file), prune_embeddings=self.is_recompute
|
||||
)
|
||||
|
||||
if success:
|
||||
@@ -95,16 +98,25 @@ class HNSWBuilder(LeannBackendBuilderInterface):
|
||||
index_file_old = index_file.with_suffix(".old")
|
||||
shutil.move(str(index_file), str(index_file_old))
|
||||
shutil.move(str(csr_temp_file), str(index_file))
|
||||
print(f"INFO: Replaced original index with {mode_str} version at '{index_file}'")
|
||||
print(
|
||||
f"INFO: Replaced original index with {mode_str} version at '{index_file}'"
|
||||
)
|
||||
else:
|
||||
# Clean up and fail fast
|
||||
if csr_temp_file.exists():
|
||||
os.remove(csr_temp_file)
|
||||
raise RuntimeError("CSR conversion failed - cannot proceed with compact format")
|
||||
raise RuntimeError(
|
||||
"CSR conversion failed - cannot proceed with compact format"
|
||||
)
|
||||
|
||||
|
||||
class HNSWSearcher(BaseSearcher):
|
||||
def __init__(self, index_path: str, **kwargs):
|
||||
super().__init__(index_path, backend_module_name="leann_backend_hnsw.hnsw_embedding_server", **kwargs)
|
||||
super().__init__(
|
||||
index_path,
|
||||
backend_module_name="leann_backend_hnsw.hnsw_embedding_server",
|
||||
**kwargs,
|
||||
)
|
||||
from . import faiss
|
||||
|
||||
self.distance_metric = self.meta.get("distance_metric", "mips").lower()
|
||||
@@ -113,8 +125,8 @@ class HNSWSearcher(BaseSearcher):
|
||||
raise ValueError(f"Unsupported distance_metric '{self.distance_metric}'.")
|
||||
|
||||
self.is_compact, self.is_pruned = (
|
||||
self.meta.get('is_compact', True),
|
||||
self.meta.get('is_pruned', True)
|
||||
self.meta.get("is_compact", True),
|
||||
self.meta.get("is_pruned", True),
|
||||
)
|
||||
|
||||
index_file = self.index_dir / f"{self.index_path.stem}.index"
|
||||
@@ -130,14 +142,50 @@ class HNSWSearcher(BaseSearcher):
|
||||
|
||||
self._index = faiss.read_index(str(index_file), faiss.IO_FLAG_MMAP, hnsw_config)
|
||||
|
||||
def search(self, query: np.ndarray, top_k: int, **kwargs) -> Dict[str, Any]:
|
||||
from . import faiss
|
||||
def search(
|
||||
self,
|
||||
query: np.ndarray,
|
||||
top_k: int,
|
||||
complexity: int = 64,
|
||||
beam_width: int = 1,
|
||||
prune_ratio: float = 0.0,
|
||||
recompute_embeddings: bool = False,
|
||||
pruning_strategy: Literal["global", "local", "proportional"] = "global",
|
||||
zmq_port: int = 5557,
|
||||
batch_size: int = 0,
|
||||
**kwargs,
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Search for nearest neighbors using HNSW index.
|
||||
|
||||
if self.is_pruned:
|
||||
Args:
|
||||
query: Query vectors (B, D) where B is batch size, D is dimension
|
||||
top_k: Number of nearest neighbors to return
|
||||
complexity: Search complexity/efSearch, higher = more accurate but slower
|
||||
beam_width: Number of parallel search paths/beam_size
|
||||
prune_ratio: Ratio of neighbors to prune via PQ (0.0-1.0)
|
||||
recompute_embeddings: Whether to fetch fresh embeddings from server
|
||||
pruning_strategy: PQ candidate selection strategy:
|
||||
- "global": Use global PQ queue size for selection (default)
|
||||
- "local": Local pruning, sort and select best candidates
|
||||
- "proportional": Base selection on new neighbor count ratio
|
||||
zmq_port: ZMQ port for embedding server
|
||||
batch_size: Neighbor processing batch size, 0=disabled (HNSW-specific)
|
||||
**kwargs: Additional HNSW-specific parameters (for legacy compatibility)
|
||||
|
||||
Returns:
|
||||
Dict with 'labels' (list of lists) and 'distances' (ndarray)
|
||||
"""
|
||||
from . import faiss # type: ignore
|
||||
|
||||
# Use recompute_embeddings parameter
|
||||
use_recompute = recompute_embeddings or self.is_pruned
|
||||
if use_recompute:
|
||||
meta_file_path = self.index_dir / f"{self.index_path.name}.meta.json"
|
||||
if not meta_file_path.exists():
|
||||
raise RuntimeError(f"FATAL: Index is pruned but metadata file not found: {meta_file_path}")
|
||||
zmq_port = kwargs.get("zmq_port", 5557)
|
||||
raise RuntimeError(
|
||||
f"FATAL: Recompute enabled but metadata file not found: {meta_file_path}"
|
||||
)
|
||||
self._ensure_server_running(str(meta_file_path), port=zmq_port, **kwargs)
|
||||
|
||||
if query.dtype != np.float32:
|
||||
@@ -146,16 +194,48 @@ class HNSWSearcher(BaseSearcher):
|
||||
faiss.normalize_L2(query)
|
||||
|
||||
params = faiss.SearchParametersHNSW()
|
||||
params.zmq_port = kwargs.get("zmq_port", 5557)
|
||||
params.efSearch = kwargs.get("complexity", 32)
|
||||
params.beam_size = kwargs.get("beam_width", 1)
|
||||
params.zmq_port = zmq_port
|
||||
params.efSearch = complexity
|
||||
params.beam_size = beam_width
|
||||
|
||||
batch_size = query.shape[0]
|
||||
distances = np.empty((batch_size, top_k), dtype=np.float32)
|
||||
labels = np.empty((batch_size, top_k), dtype=np.int64)
|
||||
# PQ pruning: direct mapping to HNSW's pq_pruning_ratio
|
||||
params.pq_pruning_ratio = prune_ratio
|
||||
|
||||
self._index.search(query.shape[0], faiss.swig_ptr(query), top_k, faiss.swig_ptr(distances), faiss.swig_ptr(labels), params)
|
||||
# Map pruning_strategy to HNSW parameters
|
||||
if pruning_strategy == "local":
|
||||
params.local_prune = True
|
||||
params.send_neigh_times_ratio = 0.0
|
||||
elif pruning_strategy == "proportional":
|
||||
params.local_prune = False
|
||||
params.send_neigh_times_ratio = (
|
||||
1.0 # Any value > 1e-6 triggers proportional mode
|
||||
)
|
||||
else: # "global"
|
||||
params.local_prune = False
|
||||
params.send_neigh_times_ratio = 0.0
|
||||
|
||||
string_labels = [[self.label_map.get(int_label, f"unknown_{int_label}") for int_label in batch_labels] for batch_labels in labels]
|
||||
# HNSW-specific batch processing parameter
|
||||
params.batch_size = batch_size
|
||||
|
||||
return {"labels": string_labels, "distances": distances}
|
||||
batch_size_query = query.shape[0]
|
||||
distances = np.empty((batch_size_query, top_k), dtype=np.float32)
|
||||
labels = np.empty((batch_size_query, top_k), dtype=np.int64)
|
||||
|
||||
self._index.search(
|
||||
query.shape[0],
|
||||
faiss.swig_ptr(query),
|
||||
top_k,
|
||||
faiss.swig_ptr(distances),
|
||||
faiss.swig_ptr(labels),
|
||||
params,
|
||||
)
|
||||
|
||||
string_labels = [
|
||||
[
|
||||
self.label_map.get(int_label, f"unknown_{int_label}")
|
||||
for int_label in batch_labels
|
||||
]
|
||||
for batch_labels in labels
|
||||
]
|
||||
|
||||
return {"labels": string_labels, "distances": distances}
|
||||
|
||||
@@ -175,7 +175,7 @@ class EmbeddingServerManager:
|
||||
self.backend_module_name = backend_module_name
|
||||
self.server_process: Optional[subprocess.Popen] = None
|
||||
self.server_port: Optional[int] = None
|
||||
atexit.register(self.stop_server)
|
||||
# atexit.register(self.stop_server)
|
||||
|
||||
def start_server(self, port: int, model_name: str, **kwargs) -> bool:
|
||||
"""
|
||||
|
||||
@@ -1,42 +1,55 @@
|
||||
from abc import ABC, abstractmethod
|
||||
import numpy as np
|
||||
from typing import Dict, Any
|
||||
from typing import Dict, Any, Literal
|
||||
|
||||
class LeannBackendBuilderInterface(ABC):
|
||||
"""用于构建索引的后端接口"""
|
||||
"""Backend interface for building indexes"""
|
||||
|
||||
@abstractmethod
|
||||
def build(self, data: np.ndarray, index_path: str, **kwargs) -> None:
|
||||
"""构建索引
|
||||
"""Build index
|
||||
|
||||
Args:
|
||||
data: 向量数据 (N, D)
|
||||
index_path: 索引保存路径
|
||||
**kwargs: 后端特定的构建参数
|
||||
data: Vector data (N, D)
|
||||
index_path: Path to save index
|
||||
**kwargs: Backend-specific build parameters
|
||||
"""
|
||||
pass
|
||||
|
||||
class LeannBackendSearcherInterface(ABC):
|
||||
"""用于搜索的后端接口"""
|
||||
"""Backend interface for searching"""
|
||||
|
||||
@abstractmethod
|
||||
def __init__(self, index_path: str, **kwargs):
|
||||
"""初始化搜索器
|
||||
"""Initialize searcher
|
||||
|
||||
Args:
|
||||
index_path: 索引文件路径
|
||||
**kwargs: 后端特定的加载参数
|
||||
index_path: Path to index file
|
||||
**kwargs: Backend-specific loading parameters
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def search(self, query: np.ndarray, top_k: int, **kwargs) -> Dict[str, Any]:
|
||||
"""搜索最近邻
|
||||
def search(self, query: np.ndarray, top_k: int,
|
||||
complexity: int = 64,
|
||||
beam_width: int = 1,
|
||||
prune_ratio: float = 0.0,
|
||||
recompute_embeddings: bool = False,
|
||||
pruning_strategy: Literal["global", "local", "proportional"] = "global",
|
||||
zmq_port: int = 5557,
|
||||
**kwargs) -> Dict[str, Any]:
|
||||
"""Search for nearest neighbors
|
||||
|
||||
Args:
|
||||
query: 查询向量 (1, D) 或 (B, D)
|
||||
top_k: 返回的最近邻数量
|
||||
**kwargs: 搜索参数
|
||||
query: Query vectors (B, D) where B is batch size, D is dimension
|
||||
top_k: Number of nearest neighbors to return
|
||||
complexity: Search complexity/candidate list size, higher = more accurate but slower
|
||||
beam_width: Number of parallel search paths/IO requests per iteration
|
||||
prune_ratio: Ratio of neighbors to prune via approximate distance (0.0-1.0)
|
||||
recompute_embeddings: Whether to fetch fresh embeddings from server vs use stored PQ codes
|
||||
pruning_strategy: PQ candidate selection strategy - "global", "local", or "proportional"
|
||||
zmq_port: ZMQ port for embedding server communication
|
||||
**kwargs: Backend-specific parameters
|
||||
|
||||
Returns:
|
||||
{"labels": [...], "distances": [...]}
|
||||
@@ -44,16 +57,16 @@ class LeannBackendSearcherInterface(ABC):
|
||||
pass
|
||||
|
||||
class LeannBackendFactoryInterface(ABC):
|
||||
"""后端工厂接口"""
|
||||
"""Backend factory interface"""
|
||||
|
||||
@staticmethod
|
||||
@abstractmethod
|
||||
def builder(**kwargs) -> LeannBackendBuilderInterface:
|
||||
"""创建 Builder 实例"""
|
||||
"""Create Builder instance"""
|
||||
pass
|
||||
|
||||
@staticmethod
|
||||
@abstractmethod
|
||||
def searcher(index_path: str, **kwargs) -> LeannBackendSearcherInterface:
|
||||
"""创建 Searcher 实例"""
|
||||
"""Create Searcher instance"""
|
||||
pass
|
||||
@@ -1,9 +1,8 @@
|
||||
|
||||
import json
|
||||
import pickle
|
||||
from abc import ABC, abstractmethod
|
||||
from pathlib import Path
|
||||
from typing import Dict, Any, List
|
||||
from typing import Dict, Any, Literal
|
||||
|
||||
import numpy as np
|
||||
|
||||
@@ -40,7 +39,9 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
|
||||
|
||||
self.embedding_model = self.meta.get("embedding_model")
|
||||
if not self.embedding_model:
|
||||
print("WARNING: embedding_model not found in meta.json. Recompute will fail.")
|
||||
print(
|
||||
"WARNING: embedding_model not found in meta.json. Recompute will fail."
|
||||
)
|
||||
|
||||
self.label_map = self._load_label_map()
|
||||
|
||||
@@ -54,7 +55,7 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
|
||||
meta_path = self.index_dir / f"{self.index_path.name}.meta.json"
|
||||
if not meta_path.exists():
|
||||
raise FileNotFoundError(f"Leann metadata file not found at {meta_path}")
|
||||
with open(meta_path, 'r', encoding='utf-8') as f:
|
||||
with open(meta_path, "r", encoding="utf-8") as f:
|
||||
return json.load(f)
|
||||
|
||||
def _load_label_map(self) -> Dict[int, str]:
|
||||
@@ -62,16 +63,20 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
|
||||
label_map_file = self.index_dir / "leann.labels.map"
|
||||
if not label_map_file.exists():
|
||||
raise FileNotFoundError(f"Label map file not found: {label_map_file}")
|
||||
with open(label_map_file, 'rb') as f:
|
||||
with open(label_map_file, "rb") as f:
|
||||
return pickle.load(f)
|
||||
|
||||
def _ensure_server_running(self, passages_source_file: str, port: int, **kwargs) -> None:
|
||||
def _ensure_server_running(
|
||||
self, passages_source_file: str, port: int, **kwargs
|
||||
) -> None:
|
||||
"""
|
||||
Ensures the embedding server is running if recompute is needed.
|
||||
This is a helper for subclasses.
|
||||
"""
|
||||
if not self.embedding_model:
|
||||
raise ValueError("Cannot use recompute mode without 'embedding_model' in meta.json.")
|
||||
raise ValueError(
|
||||
"Cannot use recompute mode without 'embedding_model' in meta.json."
|
||||
)
|
||||
|
||||
server_started = self.embedding_server_manager.start_server(
|
||||
port=port,
|
||||
@@ -85,15 +90,38 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
|
||||
raise RuntimeError(f"Failed to start embedding server on port {port}")
|
||||
|
||||
@abstractmethod
|
||||
def search(self, query: np.ndarray, top_k: int, **kwargs) -> Dict[str, Any]:
|
||||
def search(
|
||||
self,
|
||||
query: np.ndarray,
|
||||
top_k: int,
|
||||
complexity: int = 64,
|
||||
beam_width: int = 1,
|
||||
prune_ratio: float = 0.0,
|
||||
recompute_embeddings: bool = False,
|
||||
pruning_strategy: Literal["global", "local", "proportional"] = "global",
|
||||
zmq_port: int = 5557,
|
||||
**kwargs,
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Search for the top_k nearest neighbors of the query vector.
|
||||
Must be implemented by subclasses.
|
||||
|
||||
Args:
|
||||
query: Query vectors (B, D) where B is batch size, D is dimension
|
||||
top_k: Number of nearest neighbors to return
|
||||
complexity: Search complexity/candidate list size, higher = more accurate but slower
|
||||
beam_width: Number of parallel search paths/IO requests per iteration
|
||||
prune_ratio: Ratio of neighbors to prune via approximate distance (0.0-1.0)
|
||||
recompute_embeddings: Whether to fetch fresh embeddings from server vs use stored PQ codes
|
||||
pruning_strategy: PQ candidate selection strategy - "global" (default), "local", or "proportional"
|
||||
zmq_port: ZMQ port for embedding server communication
|
||||
**kwargs: Backend-specific parameters (e.g., batch_size, dedup_node_dis, etc.)
|
||||
|
||||
Returns:
|
||||
Dict with 'labels' (list of lists) and 'distances' (ndarray)
|
||||
"""
|
||||
pass
|
||||
|
||||
def __del__(self):
|
||||
"""Ensures the embedding server is stopped when the searcher is destroyed."""
|
||||
if hasattr(self, 'embedding_server_manager'):
|
||||
if hasattr(self, "embedding_server_manager"):
|
||||
self.embedding_server_manager.stop_server()
|
||||
|
||||
|
||||
Reference in New Issue
Block a user