refactor: nits

This commit is contained in:
Andy Lee
2025-07-16 15:39:58 -07:00
parent 7b9406a3ea
commit 2a1a152073
4 changed files with 102 additions and 62 deletions

View File

@@ -1,6 +1,5 @@
import numpy as np
import os
import json
import struct
from pathlib import Path
from typing import Dict, Any, List, Literal
@@ -12,17 +11,20 @@ from leann.registry import register_backend
from leann.interface import (
LeannBackendFactoryInterface,
LeannBackendBuilderInterface,
LeannBackendSearcherInterface
LeannBackendSearcherInterface,
)
def _get_diskann_metrics():
from . import _diskannpy as diskannpy
from . import _diskannpy as diskannpy # type: ignore
return {
"mips": diskannpy.Metric.INNER_PRODUCT,
"l2": diskannpy.Metric.L2,
"cosine": diskannpy.Metric.COSINE,
}
@contextlib.contextmanager
def chdir(path):
original_dir = os.getcwd()
@@ -32,13 +34,15 @@ def chdir(path):
finally:
os.chdir(original_dir)
def _write_vectors_to_bin(data: np.ndarray, file_path: Path):
num_vectors, dim = data.shape
with open(file_path, 'wb') as f:
f.write(struct.pack('I', num_vectors))
f.write(struct.pack('I', dim))
with open(file_path, "wb") as f:
f.write(struct.pack("I", num_vectors))
f.write(struct.pack("I", dim))
f.write(data.tobytes())
@register_backend("diskann")
class DiskannBackend(LeannBackendFactoryInterface):
@staticmethod
@@ -49,6 +53,7 @@ class DiskannBackend(LeannBackendFactoryInterface):
def searcher(index_path: str, **kwargs) -> LeannBackendSearcherInterface:
return DiskannSearcher(index_path, **kwargs)
class DiskannBuilder(LeannBackendBuilderInterface):
def __init__(self, **kwargs):
self.build_params = kwargs
@@ -67,32 +72,46 @@ class DiskannBuilder(LeannBackendBuilderInterface):
label_map = {i: str_id for i, str_id in enumerate(ids)}
label_map_file = index_dir / "leann.labels.map"
with open(label_map_file, 'wb') as f:
with open(label_map_file, "wb") as f:
pickle.dump(label_map, f)
build_kwargs = {**self.build_params, **kwargs}
metric_enum = _get_diskann_metrics().get(build_kwargs.get("distance_metric", "mips").lower())
metric_enum = _get_diskann_metrics().get(
build_kwargs.get("distance_metric", "mips").lower()
)
if metric_enum is None:
raise ValueError(f"Unsupported distance_metric.")
raise ValueError("Unsupported distance_metric.")
try:
from . import _diskannpy as diskannpy
from . import _diskannpy as diskannpy # type: ignore
with chdir(index_dir):
diskannpy.build_disk_float_index(
metric_enum, data_filename, index_prefix,
build_kwargs.get("complexity", 64), build_kwargs.get("graph_degree", 32),
build_kwargs.get("search_memory_maximum", 4.0), build_kwargs.get("build_memory_maximum", 8.0),
build_kwargs.get("num_threads", 8), build_kwargs.get("pq_disk_bytes", 0), ""
metric_enum,
data_filename,
index_prefix,
build_kwargs.get("complexity", 64),
build_kwargs.get("graph_degree", 32),
build_kwargs.get("search_memory_maximum", 4.0),
build_kwargs.get("build_memory_maximum", 8.0),
build_kwargs.get("num_threads", 8),
build_kwargs.get("pq_disk_bytes", 0),
"",
)
finally:
temp_data_file = index_dir / data_filename
if temp_data_file.exists():
os.remove(temp_data_file)
class DiskannSearcher(BaseSearcher):
def __init__(self, index_path: str, **kwargs):
super().__init__(index_path, backend_module_name="leann_backend_diskann.embedding_server", **kwargs)
from . import _diskannpy as diskannpy
super().__init__(
index_path,
backend_module_name="leann_backend_diskann.embedding_server",
**kwargs,
)
from . import _diskannpy as diskannpy # type: ignore
distance_metric = kwargs.get("distance_metric", "mips").lower()
metric_enum = _get_diskann_metrics().get(distance_metric)
@@ -104,23 +123,33 @@ class DiskannSearcher(BaseSearcher):
full_index_prefix = str(self.index_dir / self.index_path.stem)
self._index = diskannpy.StaticDiskFloatIndex(
metric_enum, full_index_prefix, self.num_threads,
kwargs.get("num_nodes_to_cache", 0), 1, self.zmq_port, "", ""
metric_enum,
full_index_prefix,
self.num_threads,
kwargs.get("num_nodes_to_cache", 0),
1,
self.zmq_port,
"",
"",
)
def search(self, query: np.ndarray, top_k: int,
complexity: int = 64,
beam_width: int = 1,
prune_ratio: float = 0.0,
recompute_embeddings: bool = False,
pruning_strategy: Literal["global", "local", "proportional"] = "global",
zmq_port: int = 5557,
batch_recompute: bool = False,
dedup_node_dis: bool = False,
**kwargs) -> Dict[str, Any]:
def search(
self,
query: np.ndarray,
top_k: int,
complexity: int = 64,
beam_width: int = 1,
prune_ratio: float = 0.0,
recompute_embeddings: bool = False,
pruning_strategy: Literal["global", "local", "proportional"] = "global",
zmq_port: int = 5557,
batch_recompute: bool = False,
dedup_node_dis: bool = False,
**kwargs,
) -> Dict[str, Any]:
"""
Search for nearest neighbors using DiskANN index.
Args:
query: Query vectors (B, D) where B is batch size, D is dimension
top_k: Number of nearest neighbors to return
@@ -130,26 +159,30 @@ class DiskannSearcher(BaseSearcher):
recompute_embeddings: Whether to fetch fresh embeddings from server
pruning_strategy: PQ candidate selection strategy:
- "global": Use global pruning strategy (default)
- "local": Use local pruning strategy
- "local": Use local pruning strategy
- "proportional": Not supported in DiskANN, falls back to global
zmq_port: ZMQ port for embedding server
batch_recompute: Whether to batch neighbor recomputation (DiskANN-specific)
dedup_node_dis: Whether to cache and reuse distance computations (DiskANN-specific)
**kwargs: Additional DiskANN-specific parameters (for legacy compatibility)
Returns:
Dict with 'labels' (list of lists) and 'distances' (ndarray)
"""
# DiskANN doesn't support "proportional" strategy
if pruning_strategy == "proportional":
raise NotImplementedError("DiskANN backend does not support 'proportional' pruning strategy. Use 'global' or 'local' instead.")
raise NotImplementedError(
"DiskANN backend does not support 'proportional' pruning strategy. Use 'global' or 'local' instead."
)
# Use recompute_embeddings parameter
use_recompute = recompute_embeddings
if use_recompute:
meta_file_path = self.index_dir / f"{self.index_path.name}.meta.json"
if not meta_file_path.exists():
raise RuntimeError(f"FATAL: Recompute enabled but metadata file not found: {meta_file_path}")
raise RuntimeError(
f"FATAL: Recompute enabled but metadata file not found: {meta_file_path}"
)
self._ensure_server_running(str(meta_file_path), port=zmq_port, **kwargs)
if query.dtype != np.float32:
@@ -162,17 +195,27 @@ class DiskannSearcher(BaseSearcher):
use_global_pruning = True
labels, distances = self._index.batch_search(
query, query.shape[0], top_k,
complexity, beam_width, self.num_threads,
kwargs.get("USE_DEFERRED_FETCH", False),
query,
query.shape[0],
top_k,
complexity,
beam_width,
self.num_threads,
kwargs.get("USE_DEFERRED_FETCH", False),
kwargs.get("skip_search_reorder", False),
use_recompute,
dedup_node_dis,
use_recompute,
dedup_node_dis,
prune_ratio,
batch_recompute,
use_global_pruning
batch_recompute,
use_global_pruning,
)
string_labels = [[self.label_map.get(int_label, f"unknown_{int_label}") for int_label in batch_labels] for batch_labels in labels]
string_labels = [
[
self.label_map.get(int_label, f"unknown_{int_label}")
for int_label in batch_labels
]
for batch_labels in labels
]
return {"labels": string_labels, "distances": distances}
return {"labels": string_labels, "distances": distances}