refactor: nits
This commit is contained in:
@@ -14,8 +14,7 @@ import torch
|
||||
|
||||
from .registry import BACKEND_REGISTRY
|
||||
from .interface import LeannBackendFactoryInterface
|
||||
|
||||
# --- The Correct, Verified Embedding Logic from old_code.py ---
|
||||
from .chat import get_llm
|
||||
|
||||
|
||||
def compute_embeddings(
|
||||
@@ -28,7 +27,7 @@ def compute_embeddings(
|
||||
from sentence_transformers import SentenceTransformer
|
||||
except ImportError as e:
|
||||
raise RuntimeError(
|
||||
f"sentence-transformers not available. Install with: pip install sentence-transformers"
|
||||
"sentence-transformers not available. Install with: uv pip install sentence-transformers"
|
||||
) from e
|
||||
|
||||
# Load model using sentence-transformers
|
||||
@@ -61,7 +60,7 @@ def compute_embeddings_mlx(chunks: List[str], model_name: str) -> np.ndarray:
|
||||
from mlx_lm.utils import load
|
||||
except ImportError as e:
|
||||
raise RuntimeError(
|
||||
f"MLX or related libraries not available. Install with: uv pip install mlx mlx-lm"
|
||||
"MLX or related libraries not available. Install with: uv pip install mlx mlx-lm"
|
||||
) from e
|
||||
|
||||
print(
|
||||
@@ -75,7 +74,7 @@ def compute_embeddings_mlx(chunks: List[str], model_name: str) -> np.ndarray:
|
||||
all_embeddings = []
|
||||
for chunk in chunks:
|
||||
# Tokenize
|
||||
token_ids = tokenizer.encode(chunk)
|
||||
token_ids = tokenizer.encode(chunk) # type: ignore
|
||||
|
||||
# Convert to MLX array and add batch dimension
|
||||
input_ids = mx.array([token_ids])
|
||||
@@ -95,9 +94,6 @@ def compute_embeddings_mlx(chunks: List[str], model_name: str) -> np.ndarray:
|
||||
return np.stack(all_embeddings)
|
||||
|
||||
|
||||
# --- Core API Classes (Restored and Unchanged) ---
|
||||
|
||||
|
||||
@dataclass
|
||||
class SearchResult:
|
||||
id: str
|
||||
@@ -255,7 +251,7 @@ class LeannSearcher:
|
||||
self.backend_impl = backend_factory.searcher(index_path, **final_kwargs)
|
||||
|
||||
def search(self, query: str, top_k: int = 5, **search_kwargs) -> List[SearchResult]:
|
||||
print(f"🔍 DEBUG LeannSearcher.search() called:")
|
||||
print("🔍 DEBUG LeannSearcher.search() called:")
|
||||
print(f" Query: '{query}'")
|
||||
print(f" Top_k: {top_k}")
|
||||
print(f" Search kwargs: {search_kwargs}")
|
||||
@@ -302,12 +298,13 @@ class LeannSearcher:
|
||||
return enriched_results
|
||||
|
||||
|
||||
from .chat import get_llm
|
||||
|
||||
|
||||
class LeannChat:
|
||||
def __init__(
|
||||
self, index_path: str, llm_config: Optional[Dict[str, Any]] = None, enable_warmup: bool = False, **kwargs
|
||||
self,
|
||||
index_path: str,
|
||||
llm_config: Optional[Dict[str, Any]] = None,
|
||||
enable_warmup: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
self.searcher = LeannSearcher(index_path, enable_warmup=enable_warmup, **kwargs)
|
||||
self.llm = get_llm(llm_config)
|
||||
|
||||
@@ -1,16 +1,17 @@
|
||||
from abc import ABC, abstractmethod
|
||||
import numpy as np
|
||||
from typing import Dict, Any, Literal
|
||||
from typing import Dict, Any, List, Literal
|
||||
|
||||
class LeannBackendBuilderInterface(ABC):
|
||||
"""Backend interface for building indexes"""
|
||||
|
||||
@abstractmethod
|
||||
def build(self, data: np.ndarray, index_path: str, **kwargs) -> None:
|
||||
def build(self, data: np.ndarray, ids: List[str], index_path: str, **kwargs) -> None:
|
||||
"""Build index
|
||||
|
||||
Args:
|
||||
data: Vector data (N, D)
|
||||
ids: List of string IDs for each vector
|
||||
index_path: Path to save index
|
||||
**kwargs: Backend-specific build parameters
|
||||
"""
|
||||
@@ -47,7 +48,7 @@ class LeannBackendSearcherInterface(ABC):
|
||||
beam_width: Number of parallel search paths/IO requests per iteration
|
||||
prune_ratio: Ratio of neighbors to prune via approximate distance (0.0-1.0)
|
||||
recompute_embeddings: Whether to fetch fresh embeddings from server vs use stored PQ codes
|
||||
pruning_strategy: PQ candidate selection strategy - "global", "local", or "proportional"
|
||||
pruning_strategy: PQ candidate selection strategy - "global" (default), "local", or "proportional"
|
||||
zmq_port: ZMQ port for embedding server communication
|
||||
**kwargs: Backend-specific parameters
|
||||
|
||||
|
||||
Reference in New Issue
Block a user