add leann and llamaindex email infra, and need to align the results

This commit is contained in:
yichuan520030910320
2025-07-09 16:27:11 -07:00
parent 04c9684488
commit 558126c46e
2 changed files with 128 additions and 2 deletions

View File

@@ -0,0 +1,121 @@
import os
import asyncio
import dotenv
from pathlib import Path
from typing import List, Any
from leann.api import LeannBuilder, LeannSearcher, LeannChat
from mail_reader_llamaindex import EmlxReader
from llama_index.core.node_parser import SentenceSplitter
dotenv.load_dotenv()
def create_leann_index(mail_path: str, index_path: str = "mail_index.leann", max_count: int = 1000):
"""
Create LEANN index from mail data.
Args:
mail_path: Path to the mail directory
index_path: Path to save the LEANN index
max_count: Maximum number of emails to process
"""
print("Creating LEANN index from mail data...")
# Load documents using EmlxReader from mail_reader_llamaindex
reader = EmlxReader()
documents = reader.load_data(mail_path, max_count=max_count)
if not documents:
print("No documents loaded. Exiting.")
return None
print(f"Loaded {len(documents)} email documents")
# Create text splitter with 256 chunk size
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25)
# Convert Documents to text strings and chunk them
all_texts = []
for doc in documents:
# Split the document into chunks
nodes = text_splitter.get_nodes_from_documents([doc])
for node in nodes:
all_texts.append(node.get_content())
print(f"Created {len(all_texts)} text chunks from {len(documents)} documents")
# Create LEANN index directory
INDEX_DIR = Path(index_path).parent
if not INDEX_DIR.exists():
print(f"--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print(f"--- Building new LEANN index ---")
print(f"\n[PHASE 1] Building Leann index...")
# Use HNSW backend for better macOS compatibility
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="facebook/contriever",
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1 # Force single-threaded mode
)
print(f"Adding {len(all_texts)} email chunks to index...")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(index_path)
print(f"\nLEANN index built at {index_path}!")
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
return index_path
async def query_leann_index(index_path: str, query: str):
"""
Query the LEANN index.
Args:
index_path: Path to the LEANN index
query: The query string
"""
print(f"\n[PHASE 2] Starting Leann chat session...")
chat = LeannChat(index_path=index_path)
print(f"You: {query}")
chat_response = chat.ask(
query,
top_k=5,
recompute_beighbor_embeddings=True,
complexity=32,
beam_width=1
)
print(f"Leann: {chat_response}")
async def main():
mail_path = "/Users/yichuan/Library/Mail/V10/0FCA0879-FD8C-4B7E-83BF-FDDA930791C5/[Gmail].mbox/All Mail.mbox/78BA5BE1-8819-4F9A-9613-EB63772F1DD0/Data/9/Messages"
INDEX_DIR = Path("./mail_index_leann")
INDEX_PATH = str(INDEX_DIR / "mail_documents.leann")
# Create or load the LEANN index
index_path = create_leann_index(mail_path, INDEX_PATH, max_count=1000)
if index_path:
# Example queries
queries = [
"Hows Berkeley Graduate Student Instructor",
"how's the icloud related advertisement saying"
]
for query in queries:
print("\n" + "="*60)
await query_leann_index(index_path, query)
if __name__ == "__main__":
asyncio.run(main())

View File

@@ -122,10 +122,15 @@ def create_and_save_index(mail_path: str, save_dir: str = "mail_index_embedded",
# Create text splitter with small chunk size (no metadata constraints)
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25)
# Create index
# Create index with Facebook Contriever embedding model
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
embed_model = HuggingFaceEmbedding(model_name="facebook/contriever")
index = VectorStoreIndex.from_documents(
documents,
transformations=[text_splitter]
transformations=[text_splitter],
embed_model=embed_model
)
# Save the index