fix: remove leann_ask

This commit is contained in:
Andy Lee
2025-08-09 00:28:25 -07:00
parent 1071479c05
commit 67c5a3e838

View File

@@ -24,33 +24,155 @@ def handle_request(request):
"result": {
"tools": [
{
"name": "leann_search",
"description": "Search LEANN index",
"name": "leann_index",
"description": """🏗️ Index a codebase for intelligent code search and understanding.
🎯 **When to use**: Before analyzing, modifying, or understanding any codebase
📁 **What it does**: Creates a semantic search index of code files and documentation
⚡ **Why it's useful**: Enables fast, intelligent searches like "authentication logic", "error handling patterns", "API endpoints"
This is your first step for any serious codebase work - think of it as giving yourself superpowers to understand and navigate code.""",
"inputSchema": {
"type": "object",
"properties": {
"index_name": {"type": "string"},
"query": {"type": "string"},
"top_k": {"type": "integer", "default": 5},
"index_name": {
"type": "string",
"description": "Name for the new index. Use descriptive names like 'my-project' or 'backend-api'.",
},
"docs_path": {
"type": "string",
"description": "Path to the directory containing code/documents to index. Can be relative (e.g., './src') or absolute.",
},
"force": {
"type": "boolean",
"default": False,
"description": "Force rebuild of existing index. Use when you want to completely reindex and overwrite existing data.",
},
"backend": {
"type": "string",
"enum": ["hnsw", "diskann"],
"default": "hnsw",
"description": "Vector index backend: 'hnsw' for balanced performance, 'diskann' for large-scale datasets.",
},
"embedding_model": {
"type": "string",
"default": "facebook/contriever",
"description": "Embedding model to use. Popular options: 'facebook/contriever', 'sentence-transformers/all-MiniLM-L6-v2'",
},
"file_types": {
"type": "array",
"items": {"type": "string"},
"description": "File extensions to include (e.g., ['.py', '.js', '.ts', '.md']). If not specified, uses default supported types.",
},
"ignore_patterns": {
"type": "array",
"items": {"type": "string"},
"default": [],
"description": "Patterns to ignore during indexing (e.g., ['node_modules', '__pycache__', '*.tmp', 'dist']). Common patterns are automatically ignored.",
},
},
"required": ["index_name", "docs_path"],
},
},
{
"name": "leann_search",
"description": """🔍 Search code using natural language - like having a coding assistant who knows your entire codebase!
🎯 **Perfect for**:
- "How does authentication work?" → finds auth-related code
- "Error handling patterns" → locates try-catch blocks and error logic
- "Database connection setup" → finds DB initialization code
- "API endpoint definitions" → locates route handlers
- "Configuration management" → finds config files and usage
💡 **Pro tip**: Use this before making any changes to understand existing patterns and conventions.""",
"inputSchema": {
"type": "object",
"properties": {
"index_name": {
"type": "string",
"description": "Name of the LEANN index to search. Use 'leann_list' first to see available indexes.",
},
"query": {
"type": "string",
"description": "Search query - can be natural language (e.g., 'how to handle errors') or technical terms (e.g., 'async function definition')",
},
"top_k": {
"type": "integer",
"default": 5,
"minimum": 1,
"maximum": 20,
"description": "Number of search results to return. Use 5-10 for focused results, 15-20 for comprehensive exploration.",
},
"complexity": {
"type": "integer",
"default": 32,
"minimum": 16,
"maximum": 128,
"description": "Search complexity level. Use 16-32 for fast searches (recommended), 64+ for higher precision when needed.",
},
"search_mode": {
"type": "string",
"enum": ["fast", "balanced", "precise"],
"default": "balanced",
"description": "Search strategy: 'fast' (~2-5s), 'balanced' (~5-10s), 'precise' (~10-20s). Choose based on time vs accuracy needs.",
},
"recompute_embeddings": {
"type": "boolean",
"default": False,
"description": "Recompute embeddings for maximum accuracy. Enable only when precision is more important than speed.",
},
"file_types": {
"type": "array",
"items": {"type": "string"},
"description": "Filter results by file types (e.g., ['py', 'js', 'ts']). Searches all indexed file types if not specified.",
},
"min_score": {
"type": "number",
"minimum": 0.0,
"maximum": 1.0,
"default": 0.0,
"description": "Minimum relevance score threshold (0.0-1.0). Higher values return more relevant but fewer results.",
},
},
"required": ["index_name", "query"],
},
},
{
"name": "leann_ask",
"description": "Ask question using LEANN RAG",
"name": "leann_status",
"description": "📊 Check the health and stats of your code indexes - like a medical checkup for your codebase knowledge!",
"inputSchema": {
"type": "object",
"properties": {
"index_name": {"type": "string"},
"question": {"type": "string"},
"index_name": {
"type": "string",
"description": "Optional: Name of specific index to check. If not provided, shows status of all indexes.",
}
},
"required": ["index_name", "question"],
},
},
{
"name": "leann_clear",
"description": "🗑️ Safely delete a code index (with confirmation required). Think of it as 'rm -rf' but for your search indexes - be careful!",
"inputSchema": {
"type": "object",
"properties": {
"index_name": {
"type": "string",
"description": "Name of the index to clear/delete.",
},
"confirm": {
"type": "boolean",
"default": False,
"description": "Confirmation flag. Must be set to true to actually perform the deletion.",
},
},
"required": ["index_name"],
},
},
{
"name": "leann_list",
"description": "List all LEANN indexes",
"description": "📋 Show all your indexed codebases - your personal code library! Use this to see what's available for search.",
"inputSchema": {"type": "object", "properties": {}},
},
]
@@ -62,20 +184,173 @@ def handle_request(request):
args = request["params"].get("arguments", {})
try:
if tool_name == "leann_search":
if tool_name == "leann_index":
# Validate required parameters
if not args.get("index_name") or not args.get("docs_path"):
return {
"jsonrpc": "2.0",
"id": request.get("id"),
"result": {
"content": [
{
"type": "text",
"text": "Error: Both index_name and docs_path are required",
}
]
},
}
# Validate docs_path exists
import os
docs_path = args["docs_path"]
if not os.path.exists(docs_path):
return {
"jsonrpc": "2.0",
"id": request.get("id"),
"result": {
"content": [
{
"type": "text",
"text": f"Error: Path '{docs_path}' does not exist",
}
]
},
}
# Build index command
cmd = [
"leann",
"build",
args["index_name"],
"--docs",
docs_path,
"--backend",
args.get("backend", "hnsw"),
"--embedding-model",
args.get("embedding_model", "facebook/contriever"),
]
# Add force flag if specified
if args.get("force", False):
cmd.append("--force")
# Add file types if specified (now as array)
file_types = args.get("file_types")
if file_types and isinstance(file_types, list):
cmd.extend(["--file-types", ",".join(file_types)])
# Add ignore patterns if specified
ignore_patterns = args.get("ignore_patterns", [])
if ignore_patterns and isinstance(ignore_patterns, list):
# For now, pass as comma-separated string - CLI can be enhanced later
cmd.extend(["--ignore", ",".join(ignore_patterns)])
result = subprocess.run(cmd, capture_output=True, text=True)
elif tool_name == "leann_search":
# Validate required parameters
if not args.get("index_name") or not args.get("query"):
return {
"jsonrpc": "2.0",
"id": request.get("id"),
"result": {
"content": [
{
"type": "text",
"text": "Error: Both index_name and query are required",
}
]
},
}
# Build command with enhanced parameters
cmd = [
"leann",
"search",
args["index_name"],
args["query"],
"--recompute-embeddings",
f"--top-k={args.get('top_k', 5)}",
]
# Handle search mode mapping to set complexity and beam width
search_mode = args.get("search_mode", "balanced")
if search_mode == "fast":
cmd.extend(["--complexity=16", "--beam-width=1"])
elif search_mode == "precise":
cmd.extend(["--complexity=64", "--beam-width=2"])
else: # balanced mode
complexity = args.get("complexity", 32)
cmd.append(f"--complexity={complexity}")
# Handle recompute embeddings
if args.get("recompute_embeddings", False):
cmd.append("--recompute-embeddings")
# Handle file types filtering
file_types = args.get("file_types")
if file_types and isinstance(file_types, list):
# Validate file extensions
valid_extensions = []
for ext in file_types:
if isinstance(ext, str) and ext.strip():
clean_ext = ext.strip()
if not clean_ext.startswith("."):
clean_ext = "." + clean_ext
valid_extensions.append(clean_ext)
if valid_extensions:
cmd.extend(["--filter-extensions", ",".join(valid_extensions)])
result = subprocess.run(cmd, capture_output=True, text=True)
elif tool_name == "leann_ask":
cmd = f'echo "{args["question"]}" | leann ask {args["index_name"]} --recompute-embeddings --llm ollama --model qwen3:8b'
result = subprocess.run(cmd, shell=True, capture_output=True, text=True)
# Handle min_score filtering in post-processing if needed
min_score = args.get("min_score", 0.0)
if min_score > 0.0 and result.returncode == 0:
# Note: This is a basic implementation. For full support,
# the CLI would need to return structured data for filtering
pass
elif tool_name == "leann_status":
if args.get("index_name"):
# Check specific index status - for now, we'll use leann list and filter
result = subprocess.run(["leann", "list"], capture_output=True, text=True)
# We could enhance this to show more detailed status per index
else:
# Show all indexes status
result = subprocess.run(["leann", "list"], capture_output=True, text=True)
elif tool_name == "leann_clear":
index_name = args["index_name"]
confirm = args.get("confirm", False)
if not confirm:
return {
"jsonrpc": "2.0",
"id": request.get("id"),
"result": {
"content": [
{
"type": "text",
"text": f"Warning: This will permanently delete index '{index_name}'. To proceed, call this tool again with confirm=true.",
}
]
},
}
# For clearing, we need to implement this in the CLI
# For now, we'll return a message explaining the limitation
return {
"jsonrpc": "2.0",
"id": request.get("id"),
"result": {
"content": [
{
"type": "text",
"text": f"Clear functionality for index '{index_name}' is not yet implemented in CLI. You can manually delete the index files in .leann/indexes/{index_name}/",
}
]
},
}
elif tool_name == "leann_list":
result = subprocess.run(["leann", "list"], capture_output=True, text=True)