feat: different search_args and docstrings
This commit is contained in:
@@ -2,7 +2,7 @@ import numpy as np
|
||||
import os
|
||||
import json
|
||||
from pathlib import Path
|
||||
from typing import Dict, Any, List
|
||||
from typing import Dict, Any, List, Literal
|
||||
import pickle
|
||||
import shutil
|
||||
|
||||
@@ -13,17 +13,20 @@ from leann.registry import register_backend
|
||||
from leann.interface import (
|
||||
LeannBackendFactoryInterface,
|
||||
LeannBackendBuilderInterface,
|
||||
LeannBackendSearcherInterface
|
||||
LeannBackendSearcherInterface,
|
||||
)
|
||||
|
||||
|
||||
def get_metric_map():
|
||||
from . import faiss
|
||||
|
||||
return {
|
||||
"mips": faiss.METRIC_INNER_PRODUCT,
|
||||
"l2": faiss.METRIC_L2,
|
||||
"cosine": faiss.METRIC_INNER_PRODUCT,
|
||||
}
|
||||
|
||||
|
||||
@register_backend("hnsw")
|
||||
class HNSWBackend(LeannBackendFactoryInterface):
|
||||
@staticmethod
|
||||
@@ -34,6 +37,7 @@ class HNSWBackend(LeannBackendFactoryInterface):
|
||||
def searcher(index_path: str, **kwargs) -> LeannBackendSearcherInterface:
|
||||
return HNSWSearcher(index_path, **kwargs)
|
||||
|
||||
|
||||
class HNSWBuilder(LeannBackendBuilderInterface):
|
||||
def __init__(self, **kwargs):
|
||||
self.build_params = kwargs.copy()
|
||||
@@ -46,6 +50,7 @@ class HNSWBuilder(LeannBackendBuilderInterface):
|
||||
|
||||
def build(self, data: np.ndarray, ids: List[str], index_path: str, **kwargs):
|
||||
from . import faiss
|
||||
|
||||
path = Path(index_path)
|
||||
index_dir = path.parent
|
||||
index_prefix = path.stem
|
||||
@@ -56,7 +61,7 @@ class HNSWBuilder(LeannBackendBuilderInterface):
|
||||
|
||||
label_map = {i: str_id for i, str_id in enumerate(ids)}
|
||||
label_map_file = index_dir / "leann.labels.map"
|
||||
with open(label_map_file, 'wb') as f:
|
||||
with open(label_map_file, "wb") as f:
|
||||
pickle.dump(label_map, f)
|
||||
|
||||
metric_enum = get_metric_map().get(self.distance_metric.lower())
|
||||
@@ -85,9 +90,7 @@ class HNSWBuilder(LeannBackendBuilderInterface):
|
||||
csr_temp_file = index_file.with_suffix(".csr.tmp")
|
||||
|
||||
success = convert_hnsw_graph_to_csr(
|
||||
str(index_file),
|
||||
str(csr_temp_file),
|
||||
prune_embeddings=self.is_recompute
|
||||
str(index_file), str(csr_temp_file), prune_embeddings=self.is_recompute
|
||||
)
|
||||
|
||||
if success:
|
||||
@@ -95,16 +98,25 @@ class HNSWBuilder(LeannBackendBuilderInterface):
|
||||
index_file_old = index_file.with_suffix(".old")
|
||||
shutil.move(str(index_file), str(index_file_old))
|
||||
shutil.move(str(csr_temp_file), str(index_file))
|
||||
print(f"INFO: Replaced original index with {mode_str} version at '{index_file}'")
|
||||
print(
|
||||
f"INFO: Replaced original index with {mode_str} version at '{index_file}'"
|
||||
)
|
||||
else:
|
||||
# Clean up and fail fast
|
||||
if csr_temp_file.exists():
|
||||
os.remove(csr_temp_file)
|
||||
raise RuntimeError("CSR conversion failed - cannot proceed with compact format")
|
||||
raise RuntimeError(
|
||||
"CSR conversion failed - cannot proceed with compact format"
|
||||
)
|
||||
|
||||
|
||||
class HNSWSearcher(BaseSearcher):
|
||||
def __init__(self, index_path: str, **kwargs):
|
||||
super().__init__(index_path, backend_module_name="leann_backend_hnsw.hnsw_embedding_server", **kwargs)
|
||||
super().__init__(
|
||||
index_path,
|
||||
backend_module_name="leann_backend_hnsw.hnsw_embedding_server",
|
||||
**kwargs,
|
||||
)
|
||||
from . import faiss
|
||||
|
||||
self.distance_metric = self.meta.get("distance_metric", "mips").lower()
|
||||
@@ -113,8 +125,8 @@ class HNSWSearcher(BaseSearcher):
|
||||
raise ValueError(f"Unsupported distance_metric '{self.distance_metric}'.")
|
||||
|
||||
self.is_compact, self.is_pruned = (
|
||||
self.meta.get('is_compact', True),
|
||||
self.meta.get('is_pruned', True)
|
||||
self.meta.get("is_compact", True),
|
||||
self.meta.get("is_pruned", True),
|
||||
)
|
||||
|
||||
index_file = self.index_dir / f"{self.index_path.stem}.index"
|
||||
@@ -130,14 +142,50 @@ class HNSWSearcher(BaseSearcher):
|
||||
|
||||
self._index = faiss.read_index(str(index_file), faiss.IO_FLAG_MMAP, hnsw_config)
|
||||
|
||||
def search(self, query: np.ndarray, top_k: int, **kwargs) -> Dict[str, Any]:
|
||||
from . import faiss
|
||||
def search(
|
||||
self,
|
||||
query: np.ndarray,
|
||||
top_k: int,
|
||||
complexity: int = 64,
|
||||
beam_width: int = 1,
|
||||
prune_ratio: float = 0.0,
|
||||
recompute_embeddings: bool = False,
|
||||
pruning_strategy: Literal["global", "local", "proportional"] = "global",
|
||||
zmq_port: int = 5557,
|
||||
batch_size: int = 0,
|
||||
**kwargs,
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Search for nearest neighbors using HNSW index.
|
||||
|
||||
if self.is_pruned:
|
||||
Args:
|
||||
query: Query vectors (B, D) where B is batch size, D is dimension
|
||||
top_k: Number of nearest neighbors to return
|
||||
complexity: Search complexity/efSearch, higher = more accurate but slower
|
||||
beam_width: Number of parallel search paths/beam_size
|
||||
prune_ratio: Ratio of neighbors to prune via PQ (0.0-1.0)
|
||||
recompute_embeddings: Whether to fetch fresh embeddings from server
|
||||
pruning_strategy: PQ candidate selection strategy:
|
||||
- "global": Use global PQ queue size for selection (default)
|
||||
- "local": Local pruning, sort and select best candidates
|
||||
- "proportional": Base selection on new neighbor count ratio
|
||||
zmq_port: ZMQ port for embedding server
|
||||
batch_size: Neighbor processing batch size, 0=disabled (HNSW-specific)
|
||||
**kwargs: Additional HNSW-specific parameters (for legacy compatibility)
|
||||
|
||||
Returns:
|
||||
Dict with 'labels' (list of lists) and 'distances' (ndarray)
|
||||
"""
|
||||
from . import faiss # type: ignore
|
||||
|
||||
# Use recompute_embeddings parameter
|
||||
use_recompute = recompute_embeddings or self.is_pruned
|
||||
if use_recompute:
|
||||
meta_file_path = self.index_dir / f"{self.index_path.name}.meta.json"
|
||||
if not meta_file_path.exists():
|
||||
raise RuntimeError(f"FATAL: Index is pruned but metadata file not found: {meta_file_path}")
|
||||
zmq_port = kwargs.get("zmq_port", 5557)
|
||||
raise RuntimeError(
|
||||
f"FATAL: Recompute enabled but metadata file not found: {meta_file_path}"
|
||||
)
|
||||
self._ensure_server_running(str(meta_file_path), port=zmq_port, **kwargs)
|
||||
|
||||
if query.dtype != np.float32:
|
||||
@@ -146,16 +194,48 @@ class HNSWSearcher(BaseSearcher):
|
||||
faiss.normalize_L2(query)
|
||||
|
||||
params = faiss.SearchParametersHNSW()
|
||||
params.zmq_port = kwargs.get("zmq_port", 5557)
|
||||
params.efSearch = kwargs.get("complexity", 32)
|
||||
params.beam_size = kwargs.get("beam_width", 1)
|
||||
params.zmq_port = zmq_port
|
||||
params.efSearch = complexity
|
||||
params.beam_size = beam_width
|
||||
|
||||
batch_size = query.shape[0]
|
||||
distances = np.empty((batch_size, top_k), dtype=np.float32)
|
||||
labels = np.empty((batch_size, top_k), dtype=np.int64)
|
||||
# PQ pruning: direct mapping to HNSW's pq_pruning_ratio
|
||||
params.pq_pruning_ratio = prune_ratio
|
||||
|
||||
self._index.search(query.shape[0], faiss.swig_ptr(query), top_k, faiss.swig_ptr(distances), faiss.swig_ptr(labels), params)
|
||||
# Map pruning_strategy to HNSW parameters
|
||||
if pruning_strategy == "local":
|
||||
params.local_prune = True
|
||||
params.send_neigh_times_ratio = 0.0
|
||||
elif pruning_strategy == "proportional":
|
||||
params.local_prune = False
|
||||
params.send_neigh_times_ratio = (
|
||||
1.0 # Any value > 1e-6 triggers proportional mode
|
||||
)
|
||||
else: # "global"
|
||||
params.local_prune = False
|
||||
params.send_neigh_times_ratio = 0.0
|
||||
|
||||
string_labels = [[self.label_map.get(int_label, f"unknown_{int_label}") for int_label in batch_labels] for batch_labels in labels]
|
||||
# HNSW-specific batch processing parameter
|
||||
params.batch_size = batch_size
|
||||
|
||||
return {"labels": string_labels, "distances": distances}
|
||||
batch_size_query = query.shape[0]
|
||||
distances = np.empty((batch_size_query, top_k), dtype=np.float32)
|
||||
labels = np.empty((batch_size_query, top_k), dtype=np.int64)
|
||||
|
||||
self._index.search(
|
||||
query.shape[0],
|
||||
faiss.swig_ptr(query),
|
||||
top_k,
|
||||
faiss.swig_ptr(distances),
|
||||
faiss.swig_ptr(labels),
|
||||
params,
|
||||
)
|
||||
|
||||
string_labels = [
|
||||
[
|
||||
self.label_map.get(int_label, f"unknown_{int_label}")
|
||||
for int_label in batch_labels
|
||||
]
|
||||
for batch_labels in labels
|
||||
]
|
||||
|
||||
return {"labels": string_labels, "distances": distances}
|
||||
|
||||
Reference in New Issue
Block a user