feat: different search_args and docstrings

This commit is contained in:
Andy Lee
2025-07-16 15:25:58 -07:00
parent c3fb949693
commit 7b9406a3ea
5 changed files with 231 additions and 65 deletions

View File

@@ -175,7 +175,7 @@ class EmbeddingServerManager:
self.backend_module_name = backend_module_name
self.server_process: Optional[subprocess.Popen] = None
self.server_port: Optional[int] = None
atexit.register(self.stop_server)
# atexit.register(self.stop_server)
def start_server(self, port: int, model_name: str, **kwargs) -> bool:
"""

View File

@@ -1,42 +1,55 @@
from abc import ABC, abstractmethod
import numpy as np
from typing import Dict, Any
from typing import Dict, Any, Literal
class LeannBackendBuilderInterface(ABC):
"""用于构建索引的后端接口"""
"""Backend interface for building indexes"""
@abstractmethod
def build(self, data: np.ndarray, index_path: str, **kwargs) -> None:
"""构建索引
"""Build index
Args:
data: 向量数据 (N, D)
index_path: 索引保存路径
**kwargs: 后端特定的构建参数
data: Vector data (N, D)
index_path: Path to save index
**kwargs: Backend-specific build parameters
"""
pass
class LeannBackendSearcherInterface(ABC):
"""用于搜索的后端接口"""
"""Backend interface for searching"""
@abstractmethod
def __init__(self, index_path: str, **kwargs):
"""初始化搜索器
"""Initialize searcher
Args:
index_path: 索引文件路径
**kwargs: 后端特定的加载参数
index_path: Path to index file
**kwargs: Backend-specific loading parameters
"""
pass
@abstractmethod
def search(self, query: np.ndarray, top_k: int, **kwargs) -> Dict[str, Any]:
"""搜索最近邻
def search(self, query: np.ndarray, top_k: int,
complexity: int = 64,
beam_width: int = 1,
prune_ratio: float = 0.0,
recompute_embeddings: bool = False,
pruning_strategy: Literal["global", "local", "proportional"] = "global",
zmq_port: int = 5557,
**kwargs) -> Dict[str, Any]:
"""Search for nearest neighbors
Args:
query: 查询向量 (1, D) 或 (B, D)
top_k: 返回的最近邻数量
**kwargs: 搜索参数
query: Query vectors (B, D) where B is batch size, D is dimension
top_k: Number of nearest neighbors to return
complexity: Search complexity/candidate list size, higher = more accurate but slower
beam_width: Number of parallel search paths/IO requests per iteration
prune_ratio: Ratio of neighbors to prune via approximate distance (0.0-1.0)
recompute_embeddings: Whether to fetch fresh embeddings from server vs use stored PQ codes
pruning_strategy: PQ candidate selection strategy - "global", "local", or "proportional"
zmq_port: ZMQ port for embedding server communication
**kwargs: Backend-specific parameters
Returns:
{"labels": [...], "distances": [...]}
@@ -44,16 +57,16 @@ class LeannBackendSearcherInterface(ABC):
pass
class LeannBackendFactoryInterface(ABC):
"""后端工厂接口"""
"""Backend factory interface"""
@staticmethod
@abstractmethod
def builder(**kwargs) -> LeannBackendBuilderInterface:
"""创建 Builder 实例"""
"""Create Builder instance"""
pass
@staticmethod
@abstractmethod
def searcher(index_path: str, **kwargs) -> LeannBackendSearcherInterface:
"""创建 Searcher 实例"""
"""Create Searcher instance"""
pass

View File

@@ -1,9 +1,8 @@
import json
import pickle
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Dict, Any, List
from typing import Dict, Any, Literal
import numpy as np
@@ -40,7 +39,9 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
self.embedding_model = self.meta.get("embedding_model")
if not self.embedding_model:
print("WARNING: embedding_model not found in meta.json. Recompute will fail.")
print(
"WARNING: embedding_model not found in meta.json. Recompute will fail."
)
self.label_map = self._load_label_map()
@@ -54,7 +55,7 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
meta_path = self.index_dir / f"{self.index_path.name}.meta.json"
if not meta_path.exists():
raise FileNotFoundError(f"Leann metadata file not found at {meta_path}")
with open(meta_path, 'r', encoding='utf-8') as f:
with open(meta_path, "r", encoding="utf-8") as f:
return json.load(f)
def _load_label_map(self) -> Dict[int, str]:
@@ -62,16 +63,20 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
label_map_file = self.index_dir / "leann.labels.map"
if not label_map_file.exists():
raise FileNotFoundError(f"Label map file not found: {label_map_file}")
with open(label_map_file, 'rb') as f:
with open(label_map_file, "rb") as f:
return pickle.load(f)
def _ensure_server_running(self, passages_source_file: str, port: int, **kwargs) -> None:
def _ensure_server_running(
self, passages_source_file: str, port: int, **kwargs
) -> None:
"""
Ensures the embedding server is running if recompute is needed.
This is a helper for subclasses.
"""
if not self.embedding_model:
raise ValueError("Cannot use recompute mode without 'embedding_model' in meta.json.")
raise ValueError(
"Cannot use recompute mode without 'embedding_model' in meta.json."
)
server_started = self.embedding_server_manager.start_server(
port=port,
@@ -85,15 +90,38 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
raise RuntimeError(f"Failed to start embedding server on port {port}")
@abstractmethod
def search(self, query: np.ndarray, top_k: int, **kwargs) -> Dict[str, Any]:
def search(
self,
query: np.ndarray,
top_k: int,
complexity: int = 64,
beam_width: int = 1,
prune_ratio: float = 0.0,
recompute_embeddings: bool = False,
pruning_strategy: Literal["global", "local", "proportional"] = "global",
zmq_port: int = 5557,
**kwargs,
) -> Dict[str, Any]:
"""
Search for the top_k nearest neighbors of the query vector.
Must be implemented by subclasses.
Args:
query: Query vectors (B, D) where B is batch size, D is dimension
top_k: Number of nearest neighbors to return
complexity: Search complexity/candidate list size, higher = more accurate but slower
beam_width: Number of parallel search paths/IO requests per iteration
prune_ratio: Ratio of neighbors to prune via approximate distance (0.0-1.0)
recompute_embeddings: Whether to fetch fresh embeddings from server vs use stored PQ codes
pruning_strategy: PQ candidate selection strategy - "global" (default), "local", or "proportional"
zmq_port: ZMQ port for embedding server communication
**kwargs: Backend-specific parameters (e.g., batch_size, dedup_node_dis, etc.)
Returns:
Dict with 'labels' (list of lists) and 'distances' (ndarray)
"""
pass
def __del__(self):
"""Ensures the embedding server is stopped when the searcher is destroyed."""
if hasattr(self, 'embedding_server_manager'):
if hasattr(self, "embedding_server_manager"):
self.embedding_server_manager.stop_server()