feat: add comprehensive configuration guide and update README
- Create docs/configuration-guide.md with detailed guidance on: - Embedding model selection (small/medium/large) - Index selection (HNSW vs DiskANN) - LLM engine and model comparison - Parameter tuning (build/search complexity, top-k) - Performance optimization tips - Deep dive into LEANN's recomputation feature - Update README.md to link to the configuration guide - Include latest 2025 model recommendations (Qwen3, DeepSeek-R1, O3-mini)
This commit is contained in:
@@ -170,12 +170,7 @@ ollama pull llama3.2:1b
|
||||
|
||||
LEANN provides flexible parameters for embedding models, search strategies, and data processing to fit your specific needs.
|
||||
|
||||
📚 **Having trouble with configuration?** Check our [Configuration Guide](docs/configuration-guide.md) for:
|
||||
- Quick start configurations for each use case
|
||||
- Solutions for "embedding too slow" issues
|
||||
- How to choose the right chat model
|
||||
- Fixing poor search quality
|
||||
- Performance optimization tips
|
||||
📚 **Having trouble with configuration?** Check our [Configuration Guide](docs/configuration-guide.md) for detailed optimization tips, model selection advice, and solutions to common issues like slow embeddings or poor search quality.
|
||||
|
||||
<details>
|
||||
<summary><strong>📋 Click to expand: Common Parameters (Available in All Examples)</strong></summary>
|
||||
|
||||
@@ -4,11 +4,23 @@ This guide helps you optimize LEANN for different use cases and understand the t
|
||||
|
||||
## Getting Started: Simple is Better
|
||||
|
||||
When first trying LEANN, start with a small dataset to quickly validate your approach. Use the default `data/` directory which contains just a few files - this lets you test the full pipeline in minutes rather than hours.
|
||||
When first trying LEANN, start with a small dataset to quickly validate your approach:
|
||||
|
||||
**For document RAG**: The default `data/` directory works perfectly - just a few PDFs let you test in minutes
|
||||
```bash
|
||||
# Quick test with minimal data
|
||||
python -m apps.document_rag --max-items 100 --query "What techniques does LEANN use?"
|
||||
python -m apps.document_rag --query "What techniques does LEANN use?"
|
||||
```
|
||||
|
||||
**For other data sources**: Limit the dataset size for quick testing
|
||||
```bash
|
||||
# WeChat: Test with recent messages only
|
||||
python -m apps.wechat_rag --max-items 100 --query "昨天聊了什么"
|
||||
|
||||
# Browser history: Last few days
|
||||
python -m apps.browser_rag --max-items 500 --query "AI papers I read"
|
||||
|
||||
# Email: Recent inbox
|
||||
python -m apps.email_rag --max-items 200 --query "meeting schedules"
|
||||
```
|
||||
|
||||
Once validated, scale up gradually:
|
||||
@@ -19,23 +31,23 @@ Once validated, scale up gradually:
|
||||
|
||||
Based on our experience developing LEANN, embedding models fall into three categories:
|
||||
|
||||
### Small Models (384-768 dims)
|
||||
**Example**: `sentence-transformers/all-MiniLM-L6-v2`
|
||||
- **Pros**: Fast inference (10-50ms, 384 dims), good for real-time applications
|
||||
### Small Models (< 100M parameters)
|
||||
**Example**: `sentence-transformers/all-MiniLM-L6-v2` (22M params)
|
||||
- **Pros**: Lightweight, fast for both indexing and inference
|
||||
- **Cons**: Lower semantic understanding, may miss nuanced relationships
|
||||
- **Use when**: Speed is critical, handling simple queries
|
||||
- **Use when**: Speed is critical, handling simple queries, on interactive mode or just experimenting with LEANN
|
||||
|
||||
### Medium Models (768-1024 dims)
|
||||
**Example**: `facebook/contriever`
|
||||
### Medium Models (100M-500M parameters)
|
||||
**Example**: `facebook/contriever` (110M params), `BAAI/bge-base-en-v1.5` (110M params)
|
||||
- **Pros**: Balanced performance, good multilingual support, reasonable speed
|
||||
- **Cons**: Requires more compute than small models
|
||||
- **Use when**: Need quality results without extreme compute requirements
|
||||
- **Use when**: Need quality results without extreme compute requirements, general-purpose RAG applications
|
||||
|
||||
### Large Models (1024+ dims)
|
||||
**Example**: `Qwen/Qwen3-Embedding`
|
||||
### Large Models (500M+ parameters)
|
||||
**Example**: `Qwen/Qwen3-Embedding-0.6B` (600M params), `intfloat/multilingual-e5-large` (560M params)
|
||||
- **Pros**: Best semantic understanding, captures complex relationships, excellent multilingual support
|
||||
- **Cons**: Slow inference, high memory usage, may overfit on small datasets
|
||||
- **Use when**: Quality is paramount and you have sufficient compute
|
||||
- **Cons**: Slower inference, longer index build times
|
||||
- **Use when**: Quality is paramount and you have sufficient compute resources
|
||||
|
||||
### Cloud vs Local Trade-offs
|
||||
|
||||
@@ -45,16 +57,15 @@ Based on our experience developing LEANN, embedding models fall into three categ
|
||||
- **When to use**: Prototyping, non-sensitive data, need immediate results
|
||||
|
||||
**Local Embeddings**
|
||||
- **Pros**: Complete privacy, no ongoing costs, full control
|
||||
- **Cons**: Requires GPU for good performance, setup complexity
|
||||
- **Pros**: Complete privacy, no ongoing costs, full control, can sometimes outperform OpenAI embeddings
|
||||
- **Cons**: Slower than cloud APIs, requires local compute resources
|
||||
- **When to use**: Production systems, sensitive data, cost-sensitive applications
|
||||
|
||||
## Index Selection: Matching Your Scale
|
||||
|
||||
### HNSW (Hierarchical Navigable Small World)
|
||||
**Best for**: Small to medium datasets (< 10M vectors)
|
||||
- Fast search (1-10ms latency)
|
||||
- Full recomputation required (no double queue optimization)
|
||||
- Full recomputation required
|
||||
- High memory usage during build phase
|
||||
- Excellent recall (95%+)
|
||||
|
||||
@@ -65,8 +76,8 @@ Based on our experience developing LEANN, embedding models fall into three categ
|
||||
|
||||
### DiskANN
|
||||
**Best for**: Large datasets (> 10M vectors, 10GB+ index size)
|
||||
- Uses Product Quantization (PQ) for coarse filtering in double queue architecture
|
||||
- Extremely fast search through selective recomputation
|
||||
- Uses Product Quantization (PQ) for coarse filtering during graph traversal
|
||||
- Recomputes only top candidates for exact distance calculation
|
||||
|
||||
```bash
|
||||
# For billion-scale deployments
|
||||
@@ -84,24 +95,14 @@ Based on our experience developing LEANN, embedding models fall into three categ
|
||||
|
||||
**Ollama** (`--llm ollama`)
|
||||
- **Pros**: Fully local, free, privacy-preserving, good model variety
|
||||
- **Cons**: Requires local GPU/CPU resources, slower than cloud
|
||||
- **Cons**: Requires local GPU/CPU resources, slower than cloud APIs, need to pre-download models by `ollama pull`
|
||||
- **Models**: `qwen3:1.7b` (best general quality), `deepseek-r1:1.5b` (reasoning)
|
||||
|
||||
**HuggingFace** (`--llm hf`)
|
||||
- **Pros**: Free tier available, huge model selection, direct model loading (vs Ollama's server-based approach)
|
||||
- **Cons**: API rate limits, local mode needs significant resources, more complex setup
|
||||
- **Cons**: More complex initial setup
|
||||
- **Models**: `Qwen/Qwen3-1.7B-FP8`
|
||||
|
||||
|
||||
### Model Size Trade-offs
|
||||
|
||||
| Model Size | Speed | Quality | Memory | Use Case |
|
||||
|------------|-------|---------|---------|----------|
|
||||
| 1B params | 50-100 tok/s | Basic | 2-4GB | Quick answers, simple queries |
|
||||
| 3B params | 20-50 tok/s | Good | 4-8GB | General purpose RAG |
|
||||
| 7B params | 10-20 tok/s | Excellent | 8-16GB | Complex reasoning |
|
||||
| 13B+ params | 5-10 tok/s | Best | 16-32GB+ | Research, detailed analysis |
|
||||
|
||||
## Parameter Tuning Guide
|
||||
|
||||
### Search Complexity Parameters
|
||||
@@ -146,44 +147,6 @@ Based on our experience developing LEANN, embedding models fall into three categ
|
||||
- HNSW: 16-32 (default: 32)
|
||||
- DiskANN: 32-128 (default: 64)
|
||||
|
||||
## Common Configurations by Use Case
|
||||
|
||||
### 1. Quick Experimentation
|
||||
```bash
|
||||
python -m apps.document_rag \
|
||||
--max-items 1000 \
|
||||
--embedding-model sentence-transformers/all-MiniLM-L6-v2 \
|
||||
--backend-name hnsw \
|
||||
--llm ollama --llm-model llama3.2:1b
|
||||
```
|
||||
|
||||
### 2. Personal Knowledge Base
|
||||
```bash
|
||||
python -m apps.document_rag \
|
||||
--embedding-model facebook/contriever \
|
||||
--chunk-size 512 --chunk-overlap 128 \
|
||||
--backend-name hnsw \
|
||||
--llm ollama --llm-model llama3.2:3b
|
||||
```
|
||||
|
||||
### 3. Production RAG System
|
||||
```bash
|
||||
python -m apps.document_rag \
|
||||
--embedding-model BAAI/bge-base-en-v1.5 \
|
||||
--chunk-size 256 --chunk-overlap 64 \
|
||||
--backend-name diskann \
|
||||
--llm openai --llm-model gpt-4o-mini \
|
||||
--top-k 20 --search-complexity 64
|
||||
```
|
||||
|
||||
### 4. Multi-lingual Support (e.g., WeChat)
|
||||
```bash
|
||||
python -m apps.wechat_rag \
|
||||
--embedding-model intfloat/multilingual-e5-base \
|
||||
--chunk-size 192 --chunk-overlap 48 \
|
||||
--backend-name hnsw \
|
||||
--llm ollama --llm-model qwen3:8b
|
||||
```
|
||||
|
||||
## Performance Optimization Checklist
|
||||
|
||||
@@ -202,9 +165,9 @@ python -m apps.wechat_rag \
|
||||
--embedding-mode mlx --embedding-model mlx-community/multilingual-e5-base-mlx
|
||||
```
|
||||
|
||||
3. **Process in batches**:
|
||||
3. **Limit dataset size for testing**:
|
||||
```bash
|
||||
--max-items 10000 # Process incrementally
|
||||
--max-items 1000 # Process first 1k items only
|
||||
```
|
||||
|
||||
### If Search Quality is Poor
|
||||
@@ -233,10 +196,10 @@ Every configuration choice involves trade-offs:
|
||||
|
||||
| Factor | Small/Fast | Large/Quality |
|
||||
|--------|------------|---------------|
|
||||
| Embedding Model | all-MiniLM-L6-v2 | BAAI/bge-large |
|
||||
| Chunk Size | 128 tokens | 512 tokens |
|
||||
| Embedding Model | `all-MiniLM-L6-v2` | `Qwen/Qwen3-Embedding-0.6B` |
|
||||
| Chunk Size | 512 tokens | 128 tokens |
|
||||
| Index Type | HNSW | DiskANN |
|
||||
| LLM | llama3.2:1b | gpt-4o |
|
||||
| LLM | `qwen3:1.7b` | `gpt-4o` |
|
||||
|
||||
The key is finding the right balance for your specific use case. Start small and simple, measure performance, then scale up only where needed.
|
||||
|
||||
@@ -251,22 +214,13 @@ LEANN's recomputation feature provides exact distance calculations but can be di
|
||||
```
|
||||
|
||||
**Trade-offs**:
|
||||
- **With recomputation** (default): Exact distances, best quality, higher latency
|
||||
- **Without recomputation**: Approximate distances via PQ, 2-5x faster, significantly lower memory and storage usage
|
||||
- **With recomputation** (default): Exact distances, best quality, higher latency, minimal storage (only stores metadata, recomputes embeddings on-demand)
|
||||
- **Without recomputation**: Must store full embeddings, significantly higher memory and storage usage (10-100x more), but faster search
|
||||
|
||||
**Disable when**:
|
||||
- QPS requirements > 1000/sec
|
||||
- Slight accuracy loss is acceptable
|
||||
- Running on resource-constrained hardware
|
||||
|
||||
## Performance Monitoring
|
||||
|
||||
Key metrics to watch:
|
||||
- Index build time
|
||||
- Query latency (p50, p95, p99)
|
||||
- Memory usage during build and search
|
||||
- Disk I/O patterns (for DiskANN)
|
||||
- Recomputation ratio (% of candidates recomputed)
|
||||
- You have abundant storage and memory
|
||||
- Need extremely low latency (< 100ms)
|
||||
- Running a read-heavy workload where storage cost is acceptable
|
||||
|
||||
## Further Reading
|
||||
|
||||
|
||||
Reference in New Issue
Block a user