Compare commits

..

8 Commits

Author SHA1 Message Date
GitHub Actions
609fa62fd5 chore: release v0.2.8 2025-08-12 19:04:51 +00:00
Yichuan Wang
eab13434ef feat: support multiple input formats for --docs argument (#39) 2025-08-12 10:30:31 -07:00
yichuan520030910320
b2390ccc14 [Ollama] fix ollama recompute 2025-08-12 00:24:20 -07:00
Andy Lee
e8fca2c84a fix: detect and report Ollama embedding dimension inconsistency (#37)
- Add validation for embedding dimension consistency in Ollama mode
- Provide clear error message with troubleshooting steps when dimensions mismatch
- Fail fast instead of silent fallback to prevent data corruption

Fixes #31
2025-08-11 17:41:52 -07:00
yichuan520030910320
790ae14f69 fix missing file 2025-08-11 17:35:45 -07:00
yichuan520030910320
ac363072e6 Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-08-11 17:31:04 -07:00
yichuan520030910320
93465af46c docs: update README fix wrong data file 2025-08-11 17:29:54 -07:00
Andy Lee
792ece67dc ci: add Mac Intel (x86_64) build support (#26)
* ci: add Mac Intel (x86_64) build support

* fix: auto-detect Homebrew path for Intel vs Apple Silicon Macs

This fixes the hardcoded /opt/homebrew path which only works on Apple
Silicon Macs. Intel Macs use /usr/local as the Homebrew prefix.

* fix: auto-detect Homebrew paths for both DiskANN and HNSW backends

- Fix DiskANN CMakeLists.txt path reference
- Add macOS environment variable detection for OpenMP_ROOT
- Support both Intel (/usr/local) and Apple Silicon (/opt/homebrew) paths

* fix: improve macOS build reliability with proper OpenMP path detection

- Add proper CMAKE_PREFIX_PATH and OpenMP_ROOT detection for both Intel and Apple Silicon Macs
- Set LDFLAGS and CPPFLAGS for all Homebrew packages to ensure CMake can find them
- Apply CMAKE_ARGS to both HNSW and DiskANN backends for consistent builds
- Fix hardcoded paths that caused build failures on Intel Macs (macos-13)

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: add abseil library path for protobuf compilation on macOS

- Include abseil in CMAKE_PREFIX_PATH for both Intel and Apple Silicon Macs
- Add explicit absl_DIR CMake variable to help find abseil for protobuf
- Fixes 'absl/log/absl_log.h' file not found error during compilation

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: add abseil include path to CPPFLAGS for both Intel and Apple Silicon

- Add -I/opt/homebrew/opt/abseil/include to CPPFLAGS for Apple Silicon
- Add -I/usr/local/opt/abseil/include to CPPFLAGS for Intel
- Fixes 'absl/log/absl_log.h' file not found by ensuring abseil headers are in compiler include path

Root cause: CMAKE_PREFIX_PATH alone wasn't sufficient - compiler needs explicit -I flags

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: clean build system and Python 3.9 compatibility

Build system improvements:
- Simplify macOS environment detection using brew --prefix
- Remove complex hardcoded paths and CMAKE_ARGS
- Let CMake automatically find Homebrew packages via CMAKE_PREFIX_PATH
- Clean separation between Intel (/usr/local) and Apple Silicon (/opt/homebrew)

Python 3.9 compatibility:
- Set ruff target-version to py39 to match project requirements
- Replace str | None with Union[str, None] in type annotations
- Add Union imports where needed
- Fix core interface, CLI, chat, and embedding server files

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: type

* fix: ensure CMAKE_PREFIX_PATH is passed to backend builds

- Add CMAKE_ARGS with CMAKE_PREFIX_PATH and OpenMP_ROOT for both HNSW and DiskANN backends
- This ensures CMake can find Homebrew packages on both Intel (/usr/local) and Apple Silicon (/opt/homebrew)
- Fixes the issue where CMake was still looking for hardcoded paths instead of using detected ones

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: configure CMake paths in pyproject.toml for proper Homebrew detection

- Add CMAKE_PREFIX_PATH and OpenMP_ROOT environment variable mapping in both backends
- Remove CMAKE_ARGS from GitHub Actions workflow (cleaner separation)
- Ensure scikit-build-core correctly uses environment variables for CMake configuration
- This should fix the hardcoded /opt/homebrew paths on Intel Macs

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: remove hardcoded /opt/homebrew paths from DiskANN CMake

- Auto-detect Homebrew libomp path using OpenMP_ROOT environment variable
- Fallback to CMAKE_PREFIX_PATH/opt/libomp if OpenMP_ROOT not set
- Final fallback to brew --prefix libomp for auto-detection
- Maintains backwards compatibility with old hardcoded path
- Fixes Intel Mac builds that were failing due to hardcoded Apple Silicon paths

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: update DiskANN submodule with macOS Intel/Apple Silicon compatibility fixes

- Auto-detect Homebrew libomp path using OpenMP_ROOT environment variable
- Exclude mkl_set_num_threads on macOS (uses Accelerate framework instead of MKL)
- Fixes compilation on Intel Macs by using correct /usr/local paths

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: update DiskANN submodule with SIMD function name corrections

- Fix _mm128_loadu_ps to _mm_loadu_ps (and similar functions)
- This is a known issue in upstream DiskANN code where incorrect function names were used
- Resolves compilation errors on macOS Intel builds

References: Known DiskANN issue with SIMD intrinsics naming

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: update DiskANN submodule with type cast fix for signed char templates

- Add missing type casts (float*)a and (float*)b in SSE2 version
- This matches the existing type casts in the AVX version
- Fixes compilation error when instantiating DistanceInnerProduct<int8_t>
- Resolves "cannot initialize const float* with const signed char*" error

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: update Faiss submodule with override keyword fix

- Add missing override keyword to IDSelectorModulo::is_member function
- Fixes C++ compilation warning that was treated as error due to -Werror flag
- Resolves "warning: 'is_member' overrides a member function but is not marked 'override'"
- Improves code conformance to modern C++ best practices

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: update Faiss submodule with override keyword fix

* fix: update DiskANN submodule with additional type cast fix

- Add missing type cast in DistanceFastL2::norm function SSE2 version
- Fixes const float* = const signed char* compilation error
- Ensures consistent type casting across all SIMD code paths
- Resolves template instantiation error for DistanceFastL2<int8_t>

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* debug: simplify wheel compatibility checking

- Fix YAML syntax error in debug step
- Use simpler approach to show platform tags and wheel names
- This will help identify platform tag compatibility issues

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: use correct Python version for wheel builds

- Replace --python python with --python ${{ matrix.python }}
- This ensures wheels are built for the correct Python version in each matrix job
- Fixes Python version mismatch where cp39 wheels were used in cp311 environments

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: resolve wheel installation conflicts in CI matrix builds

Fix issue where multiple Python versions' wheels in the same dist directory
caused installation conflicts during CI testing. The problem occurred when
matrix builds for different Python versions accumulated wheels in shared
directories, and uv pip install would find incompatible wheels.

Changes:
- Add Python version detection using matrix.python variable
- Convert Python version to wheel tag format (e.g., 3.11 -> cp311)
- Use find with version-specific pattern matching to select correct wheels
- Add explicit error handling if no matching wheel is found

This ensures each CI job installs only wheels compatible with its specific
Python version, preventing "A path dependency is incompatible with the
current platform" errors.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: ensure virtual environment uses correct Python version in CI

Fix issue where uv venv was creating virtual environments with a different
Python version than specified in the matrix, causing wheel compatibility
errors. The problem occurred when the system had multiple Python versions
and uv venv defaulted to a different version than intended.

Changes:
- Add --python ${{ matrix.python }} flag to uv venv command
- Ensures virtual environment matches the matrix-specified Python version
- Fixes "The wheel is compatible with CPython 3.X but you're using CPython 3.Y" errors

This ensures wheel installation selects and installs the correctly built
wheels that match the runtime Python version.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: complete Python 3.9 type annotation compatibility fixes

Fix remaining Python 3.9 incompatible type annotations throughout the
leann-core package that were causing test failures in CI. The union operator
(|) syntax for type hints was introduced in Python 3.10 and causes
"TypeError: unsupported operand type(s) for |" errors in Python 3.9.

Changes:
- Convert dict[str, Any] | None to Optional[dict[str, Any]]
- Convert int | None to Optional[int]
- Convert subprocess.Popen | None to Optional[subprocess.Popen]
- Convert LeannBackendFactoryInterface | None to Optional[LeannBackendFactoryInterface]
- Add missing Optional imports to all affected files

This resolves all test failures related to type annotation syntax and ensures
compatibility with Python 3.9 as specified in pyproject.toml.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: complete Python 3.9 type annotation fixes in backend packages

Fix remaining Python 3.9 incompatible type annotations in backend packages
that were causing test failures. The union operator (|) syntax for type hints
was introduced in Python 3.10 and causes "TypeError: unsupported operand
type(s) for |" errors in Python 3.9.

Changes in leann-backend-diskann:
- Convert zmq_port: int | None to Optional[int] in diskann_backend.py
- Convert passages_file: str | None to Optional[str] in diskann_embedding_server.py
- Add Optional imports to both files

Changes in leann-backend-hnsw:
- Convert zmq_port: int | None to Optional[int] in hnsw_backend.py
- Add Optional import

This resolves the final test failures related to type annotation syntax and
ensures full Python 3.9 compatibility across all packages.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: remove Python 3.10+ zip strict parameter for Python 3.9 compatibility

Remove the strict=False parameter from zip() call in api.py as it was
introduced in Python 3.10 and causes "TypeError: zip() takes no keyword
arguments" in Python 3.9.

The strict parameter controls whether zip() raises an exception when the
iterables have different lengths. Since we're not relying on this behavior
and the code works correctly without it, removing it maintains the same
functionality while ensuring Python 3.9 compatibility.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: ensure leann-core package is built on all platforms, not just Ubuntu

This fixes the issue where CI was installing leann-core from PyPI instead of
using locally built package with Python 3.9 compatibility fixes.

* fix: build and install leann meta package on all platforms

The leann meta package is pure Python and platform-independent, so there's
no reason to restrict it to Ubuntu only. This ensures all platforms use
consistent local builds instead of falling back to PyPI versions.

* fix: restrict MLX dependencies to Apple Silicon Macs only

MLX framework only supports Apple Silicon (ARM64) Macs, not Intel x86_64.
Add platform_machine == 'arm64' condition to prevent installation failures
on Intel Macs (macos-13).

* cleanup: simplify CI configuration

- Remove debug step with non-existent 'uv pip debug' command
- Simplify wheel installation logic - let uv handle compatibility
- Use -e .[test] instead of manually listing all test dependencies

* fix: install backend wheels before meta packages

Install backend wheels first to ensure they're available when core/meta
packages are installed, preventing uv from trying to resolve backend
dependencies from PyPI.

* fix: use local leann-core when building backend packages

Add --find-links to backend builds to ensure they use the locally built
leann-core with fixed MLX dependencies instead of downloading from PyPI.

Also bump leann-core version to 0.2.8 to ensure clean dependency resolution.

* fix: use absolute path for find-links and upgrade backend version

- Use GITHUB_WORKSPACE for absolute path to ensure find-links works
- Upgrade leann-backend-hnsw to 0.2.8 to match leann-core version

* fix: use absolute path for find-links and upgrade backend version

- Use GITHUB_WORKSPACE for absolute path to ensure find-links works
- Upgrade leann-backend-hnsw to 0.2.8 to match leann-core version

* fix: correct version consistency for --find-links to work properly

- All packages now use version 0.2.7 consistently
- Backend packages can find exact leann-core==0.2.7 from local build
- This ensures --find-links works during CI builds instead of falling back to PyPI

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: revert all packages to consistent version 0.2.7

- This PR should not bump versions, only fix Intel Mac build
- Version bumps should be done in release_manual workflow
- All packages now use 0.2.7 consistently for --find-links to work

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: use --find-links during package installation to avoid PyPI MLX conflicts

- Backend wheels contain Requires-Dist: leann-core==0.2.7
- Without --find-links, uv resolves this from PyPI which has MLX for all Darwin
- With --find-links, uv uses local leann-core with proper platform restrictions
- Root cause: dependency resolution happens at install time, not just build time
- Local test confirms this fixes Intel Mac MLX dependency issues

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: restrict MLX dependencies to ARM64 Macs in workspace pyproject.toml

- Root pyproject.toml also had MLX dependencies without platform_machine restriction
- This caused test dependency installation to fail on Intel Macs
- Now consistent with packages/leann-core/pyproject.toml platform restrictions

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* chore: cleanup unused files and fix GitHub Actions warnings

- Remove unused packages/leann-backend-diskann/CMakeLists.txt
  (DiskANN uses cmake.source-dir=third_party/DiskANN instead)
- Replace macos-latest with macos-14 to avoid migration warnings
  (macos-latest will migrate to macOS 15 on August 4, 2025)
- Keep packages/leann-backend-hnsw/CMakeLists.txt (needed for Faiss config)

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: properly handle Python 3.13 support with PyTorch compatibility

- Support Python 3.13 on most platforms (Ubuntu, ARM64 Mac)
- Exclude Intel Mac + Python 3.13 combination due to PyTorch wheel availability
- PyTorch <2.5 supports Intel Mac but not Python 3.13
- PyTorch 2.5+ supports Python 3.13 but not Intel Mac x86_64
- Document limitation in CI configuration comments
- Update README badges with detailed Python version support and CI status

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-08-11 16:39:58 -07:00
41 changed files with 589 additions and 2559 deletions

View File

@@ -5,16 +5,7 @@ on:
branches: [ main ]
pull_request:
branches: [ main ]
workflow_dispatch:
inputs:
debug_enabled:
type: boolean
description: 'Run with tmate debugging enabled (SSH access to runner)'
required: false
default: false
jobs:
build:
uses: ./.github/workflows/build-reusable.yml
with:
debug_enabled: ${{ github.event_name == 'workflow_dispatch' && inputs.debug_enabled || false }}

View File

@@ -8,11 +8,6 @@ on:
required: false
type: string
default: ''
debug_enabled:
description: 'Enable tmate debugging session for troubleshooting'
required: false
type: boolean
default: false
jobs:
lint:
@@ -33,7 +28,7 @@ jobs:
- name: Install ruff
run: |
uv tool install ruff==0.12.7
uv tool install ruff
- name: Run ruff check
run: |
@@ -59,16 +54,26 @@ jobs:
python: '3.12'
- os: ubuntu-22.04
python: '3.13'
- os: macos-latest
- os: macos-14
python: '3.9'
- os: macos-latest
- os: macos-14
python: '3.10'
- os: macos-latest
- os: macos-14
python: '3.11'
- os: macos-latest
- os: macos-14
python: '3.12'
- os: macos-latest
- os: macos-14
python: '3.13'
- os: macos-13
python: '3.9'
- os: macos-13
python: '3.10'
- os: macos-13
python: '3.11'
- os: macos-13
python: '3.12'
# Note: macos-13 + Python 3.13 excluded due to PyTorch compatibility
# (PyTorch 2.5+ supports Python 3.13 but not Intel Mac x86_64)
runs-on: ${{ matrix.os }}
steps:
@@ -114,41 +119,56 @@ jobs:
uv pip install --system delocate
fi
- name: Set macOS environment variables
if: runner.os == 'macOS'
run: |
# Use brew --prefix to automatically detect Homebrew installation path
HOMEBREW_PREFIX=$(brew --prefix)
echo "HOMEBREW_PREFIX=${HOMEBREW_PREFIX}" >> $GITHUB_ENV
echo "OpenMP_ROOT=${HOMEBREW_PREFIX}/opt/libomp" >> $GITHUB_ENV
# Set CMAKE_PREFIX_PATH to let CMake find all packages automatically
echo "CMAKE_PREFIX_PATH=${HOMEBREW_PREFIX}" >> $GITHUB_ENV
# Set compiler flags for OpenMP (required for both backends)
echo "LDFLAGS=-L${HOMEBREW_PREFIX}/opt/libomp/lib" >> $GITHUB_ENV
echo "CPPFLAGS=-I${HOMEBREW_PREFIX}/opt/libomp/include" >> $GITHUB_ENV
- name: Build packages
run: |
# Build core (platform independent) on all platforms for consistency
# Build core (platform independent)
cd packages/leann-core
uv build
cd ../..
# Build HNSW backend
cd packages/leann-backend-hnsw
if [ "${{ matrix.os }}" == "macos-latest" ]; then
# Use system clang instead of homebrew LLVM for better compatibility
if [[ "${{ matrix.os }}" == macos-* ]]; then
# Use system clang for better compatibility
export CC=clang
export CXX=clang++
export MACOSX_DEPLOYMENT_TARGET=11.0
uv build --wheel --python python
uv build --wheel --python ${{ matrix.python }} --find-links ${GITHUB_WORKSPACE}/packages/leann-core/dist
else
uv build --wheel --python python
uv build --wheel --python ${{ matrix.python }} --find-links ${GITHUB_WORKSPACE}/packages/leann-core/dist
fi
cd ../..
# Build DiskANN backend
cd packages/leann-backend-diskann
if [ "${{ matrix.os }}" == "macos-latest" ]; then
# Use system clang instead of homebrew LLVM for better compatibility
if [[ "${{ matrix.os }}" == macos-* ]]; then
# Use system clang for better compatibility
export CC=clang
export CXX=clang++
# sgesdd_ is only available on macOS 13.3+
# DiskANN requires macOS 13.3+ for sgesdd_ LAPACK function
export MACOSX_DEPLOYMENT_TARGET=13.3
uv build --wheel --python python
uv build --wheel --python ${{ matrix.python }} --find-links ${GITHUB_WORKSPACE}/packages/leann-core/dist
else
uv build --wheel --python python
uv build --wheel --python ${{ matrix.python }} --find-links ${GITHUB_WORKSPACE}/packages/leann-core/dist
fi
cd ../..
# Build meta package (platform independent) on all platforms
# Build meta package (platform independent)
cd packages/leann
uv build
cd ../..
@@ -165,15 +185,10 @@ jobs:
fi
cd ../..
# Repair DiskANN wheel - use show first to debug
# Repair DiskANN wheel
cd packages/leann-backend-diskann
if [ -d dist ]; then
echo "Checking DiskANN wheel contents before repair:"
unzip -l dist/*.whl | grep -E "\.so|\.pyd|_diskannpy" || echo "No .so files found"
auditwheel show dist/*.whl || echo "auditwheel show failed"
auditwheel repair dist/*.whl -w dist_repaired
echo "Checking DiskANN wheel contents after repair:"
unzip -l dist_repaired/*.whl | grep -E "\.so|\.pyd|_diskannpy" || echo "No .so files found after repair"
rm -rf dist
mv dist_repaired dist
fi
@@ -205,71 +220,23 @@ jobs:
echo "📦 Built packages:"
find packages/*/dist -name "*.whl" -o -name "*.tar.gz" | sort
- name: Install built packages for testing
run: |
# Create a virtual environment with the correct Python version
uv venv --python python${{ matrix.python }}
uv venv --python ${{ matrix.python }}
source .venv/bin/activate || source .venv/Scripts/activate
# Install the built wheels directly to ensure we use locally built packages
# Use only locally built wheels on all platforms for full consistency
FIND_LINKS="--find-links packages/leann-core/dist --find-links packages/leann/dist"
FIND_LINKS="$FIND_LINKS --find-links packages/leann-backend-hnsw/dist --find-links packages/leann-backend-diskann/dist"
uv pip install leann-core leann leann-backend-hnsw leann-backend-diskann \
$FIND_LINKS --force-reinstall
# Install packages using --find-links to prioritize local builds
uv pip install --find-links packages/leann-core/dist --find-links packages/leann-backend-hnsw/dist --find-links packages/leann-backend-diskann/dist packages/leann-core/dist/*.whl || uv pip install --find-links packages/leann-core/dist packages/leann-core/dist/*.tar.gz
uv pip install --find-links packages/leann-core/dist packages/leann-backend-hnsw/dist/*.whl
uv pip install --find-links packages/leann-core/dist packages/leann-backend-diskann/dist/*.whl
uv pip install packages/leann/dist/*.whl || uv pip install packages/leann/dist/*.tar.gz
# Install test dependencies using extras
uv pip install -e ".[test]"
# Debug: Check if _diskannpy module is installed correctly
echo "Checking installed DiskANN module structure:"
python -c "import leann_backend_diskann; print('leann_backend_diskann location:', leann_backend_diskann.__file__)" || echo "Failed to import leann_backend_diskann"
python -c "from leann_backend_diskann import _diskannpy; print('_diskannpy imported successfully')" || echo "Failed to import _diskannpy"
ls -la $(python -c "import leann_backend_diskann; import os; print(os.path.dirname(leann_backend_diskann.__file__))" 2>/dev/null) 2>/dev/null || echo "Failed to list module directory"
# Extra debugging for Python 3.13
if [[ "${{ matrix.python }}" == "3.13" ]]; then
echo "=== Python 3.13 Debug Info ==="
echo "Python version details:"
python --version
python -c "import sys; print(f'sys.version_info: {sys.version_info}')"
echo "Pytest version:"
python -m pytest --version
echo "Testing basic pytest collection:"
if [[ "$RUNNER_OS" == "Linux" ]]; then
timeout --signal=INT 10 python -m pytest --collect-only tests/test_ci_minimal.py -v || echo "Collection timed out or failed"
else
# No timeout on macOS/Windows
python -m pytest --collect-only tests/test_ci_minimal.py -v || echo "Collection failed"
fi
echo "Testing single simple test:"
if [[ "$RUNNER_OS" == "Linux" ]]; then
timeout --signal=INT 10 python -m pytest tests/test_ci_minimal.py::test_package_imports --full-trace -v || echo "Simple test timed out or failed"
else
# No timeout on macOS/Windows
python -m pytest tests/test_ci_minimal.py::test_package_imports --full-trace -v || echo "Simple test failed"
fi
fi
# Enable tmate debugging session if requested
- name: Setup tmate session for debugging
if: ${{ inputs.debug_enabled }}
uses: mxschmitt/action-tmate@v3
with:
detached: true
timeout-minutes: 30
limit-access-to-actor: true
- name: Run tests with pytest
# Timeout hierarchy:
# 1. Individual test timeout: 20s (see pyproject.toml markers)
# 2. Pytest session timeout: 300s (see pyproject.toml [tool.pytest.ini_options])
# 3. Outer shell timeout: 360s (300s + 60s buffer for cleanup)
# 4. GitHub Actions job timeout: 6 hours (default)
env:
CI: true # Mark as CI environment to skip memory-intensive tests
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
@@ -282,165 +249,8 @@ jobs:
# Activate virtual environment
source .venv/bin/activate || source .venv/Scripts/activate
# Define comprehensive diagnostic function
diag() {
echo "===== COMPREHENSIVE DIAGNOSTICS BEGIN ====="
date
echo ""
echo "### Current Shell Info ###"
echo "Shell PID: $$"
echo "Shell PPID: $PPID"
echo "Current directory: $(pwd)"
echo ""
echo "### Process Tree (full) ###"
pstree -ap 2>/dev/null || ps auxf || true
echo ""
echo "### All Python/Pytest Processes ###"
ps -ef | grep -E 'python|pytest' | grep -v grep || true
echo ""
echo "### Embedding Server Processes ###"
ps -ef | grep -E 'embedding|zmq|diskann' | grep -v grep || true
echo ""
echo "### Network Listeners ###"
ss -ltnp 2>/dev/null || netstat -ltn 2>/dev/null || true
echo ""
echo "### Open File Descriptors (lsof) ###"
lsof -p $$ 2>/dev/null | head -20 || true
echo ""
echo "### Zombie Processes ###"
ps aux | grep '<defunct>' || echo "No zombie processes"
echo ""
echo "### Current Jobs ###"
jobs -l || true
echo ""
echo "### /proc/PID/fd for current shell ###"
ls -la /proc/$$/fd 2>/dev/null || true
echo ""
echo "===== COMPREHENSIVE DIAGNOSTICS END ====="
}
# Enable verbose logging for debugging
export PYTHONUNBUFFERED=1
export PYTEST_CURRENT_TEST=1
# Run all tests with extensive logging
if [[ "$RUNNER_OS" == "Linux" ]]; then
echo "🚀 Starting Linux test execution with timeout..."
echo "Current time: $(date)"
echo "Shell PID: $$"
echo "Python: $(python --version)"
echo "Pytest: $(pytest --version)"
# Show environment variables for debugging
echo "📦 Environment variables:"
env | grep -E "PYTHON|PYTEST|CI|RUNNER" | sort
# Set trap for diagnostics
trap diag INT TERM EXIT
echo "📋 Pre-test diagnostics:"
ps -ef | grep -E 'python|pytest' | grep -v grep || echo "No python/pytest processes before test"
# Check for any listening ports before test
echo "🔌 Pre-test network state:"
ss -ltn 2>/dev/null | grep -E "555[0-9]|556[0-9]" || echo "No embedding server ports open"
# Set timeouts - outer must be larger than pytest's internal timeout
# IMPORTANT: Keep PYTEST_TIMEOUT_SEC in sync with pyproject.toml [tool.pytest.ini_options] timeout
PYTEST_TIMEOUT_SEC=${PYTEST_TIMEOUT_SEC:-300} # Default 300s, matches pyproject.toml
BUFFER_SEC=${TIMEOUT_BUFFER_SEC:-60} # Buffer for cleanup after pytest timeout
OUTER_TIMEOUT_SEC=${OUTER_TIMEOUT_SEC:-$((PYTEST_TIMEOUT_SEC + BUFFER_SEC))}
echo "⏰ Timeout configuration:"
echo " - Pytest internal timeout: ${PYTEST_TIMEOUT_SEC}s (from pyproject.toml)"
echo " - Cleanup buffer: ${BUFFER_SEC}s"
echo " - Outer shell timeout: ${OUTER_TIMEOUT_SEC}s (${PYTEST_TIMEOUT_SEC}s + ${BUFFER_SEC}s buffer)"
echo " - This ensures pytest can complete its own timeout handling and cleanup"
echo "🏃 Running pytest with ${OUTER_TIMEOUT_SEC}s outer timeout..."
# Export for inner shell
export PYTEST_TIMEOUT_SEC OUTER_TIMEOUT_SEC BUFFER_SEC
timeout --preserve-status --signal=INT --kill-after=10 ${OUTER_TIMEOUT_SEC} bash -c '
echo "⏱️ Pytest starting at: $(date)"
echo "Running command: pytest tests/ -vv --maxfail=3 --tb=short --capture=no"
# Run pytest with maximum verbosity and no output capture
pytest tests/ -vv --maxfail=3 --tb=short --capture=no --log-cli-level=DEBUG 2>&1 | tee pytest.log
PYTEST_EXIT=${PIPESTATUS[0]}
echo "✅ Pytest finished at: $(date) with exit code: $PYTEST_EXIT"
echo "Last 20 lines of pytest output:"
tail -20 pytest.log || true
# Immediately check for leftover processes
echo "🔍 Post-pytest process check:"
ps -ef | grep -E "python|pytest|embedding" | grep -v grep || echo "No leftover processes"
# Clean up any children before exit
echo "🧹 Cleaning up child processes..."
pkill -TERM -P $$ 2>/dev/null || true
sleep 0.5
pkill -KILL -P $$ 2>/dev/null || true
echo "📊 Final check before exit:"
ps -ef | grep -E "python|pytest|embedding" | grep -v grep || echo "All clean"
exit $PYTEST_EXIT
'
EXIT_CODE=$?
echo "🔚 Timeout command exited with code: $EXIT_CODE"
if [ $EXIT_CODE -eq 124 ]; then
echo "⚠️ TIMEOUT TRIGGERED - Tests took more than ${OUTER_TIMEOUT_SEC} seconds!"
echo "📸 Capturing full diagnostics..."
diag
# Run diagnostic script if available
if [ -f scripts/diagnose_hang.sh ]; then
echo "🔍 Running diagnostic script..."
bash scripts/diagnose_hang.sh || true
fi
# More aggressive cleanup
echo "💀 Killing all Python processes owned by runner..."
pkill -9 -u runner python || true
pkill -9 -u runner pytest || true
elif [ $EXIT_CODE -ne 0 ]; then
echo "❌ Tests failed with exit code: $EXIT_CODE"
else
echo "✅ All tests passed!"
fi
# Always show final state
echo "📍 Final state check:"
ps -ef | grep -E 'python|pytest|embedding' | grep -v grep || echo "No Python processes remaining"
exit $EXIT_CODE
else
# For macOS/Windows, run without GNU timeout
echo "🚀 Running tests on $RUNNER_OS..."
pytest tests/ -vv --maxfail=3 --tb=short --capture=no --log-cli-level=INFO
fi
# Provide tmate session on test failure for debugging
- name: Setup tmate session on failure
if: ${{ failure() && (inputs.debug_enabled || contains(github.event.head_commit.message, '[debug]')) }}
uses: mxschmitt/action-tmate@v3
with:
timeout-minutes: 30
limit-access-to-actor: true
# Run all tests
pytest tests/
- name: Run sanity checks (optional)
run: |

View File

@@ -1,6 +1,6 @@
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v5.0.0
rev: v4.5.0
hooks:
- id: trailing-whitespace
- id: end-of-file-fixer
@@ -10,7 +10,7 @@ repos:
- id: debug-statements
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.12.7 # Fixed version to match pyproject.toml
rev: v0.2.1
hooks:
- id: ruff
- id: ruff-format

View File

@@ -3,10 +3,11 @@
</p>
<p align="center">
<img src="https://img.shields.io/badge/Python-3.9%2B-blue.svg" alt="Python 3.9+">
<img src="https://img.shields.io/badge/Python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12%20%7C%203.13-blue.svg" alt="Python Versions">
<img src="https://github.com/yichuan-w/LEANN/actions/workflows/build-and-publish.yml/badge.svg" alt="CI Status">
<img src="https://img.shields.io/badge/Platform-Ubuntu%20%7C%20macOS%20(ARM64%2FIntel)-lightgrey" alt="Platform">
<img src="https://img.shields.io/badge/License-MIT-green.svg" alt="MIT License">
<img src="https://img.shields.io/badge/Platform-Linux%20%7C%20macOS-lightgrey" alt="Platform">
<img src="https://img.shields.io/badge/MCP-Native%20Integration-blue?style=flat-square" alt="MCP Integration">
<img src="https://img.shields.io/badge/MCP-Native%20Integration-blue" alt="MCP Integration">
</p>
<h2 align="center" tabindex="-1" class="heading-element" dir="auto">
@@ -189,7 +190,7 @@ All RAG examples share these common parameters. **Interactive mode** is availabl
--force-rebuild # Force rebuild index even if it exists
# Embedding Parameters
--embedding-model MODEL # e.g., facebook/contriever, text-embedding-3-small, nomic-embed-text, mlx-community/Qwen3-Embedding-0.6B-8bit or nomic-embed-text
--embedding-model MODEL # e.g., facebook/contriever, text-embedding-3-small, nomic-embed-text,mlx-community/Qwen3-Embedding-0.6B-8bit or nomic-embed-text
--embedding-mode MODE # sentence-transformers, openai, mlx, or ollama
# LLM Parameters (Text generation models)
@@ -454,7 +455,7 @@ leann --help
**To make it globally available:**
```bash
# Install the LEANN CLI globally using uv tool
uv tool install leann-core
uv tool install leann
# Now you can use leann from anywhere without activating venv
leann --help
@@ -467,7 +468,7 @@ leann --help
### Usage Examples
```bash
# build from a specific directory, and my_docs is the index name
# build from a specific directory, and my_docs is the index name(Here you can also build from multiple dict or multiple files)
leann build my-docs --docs ./your_documents
# Search your documents
@@ -542,16 +543,12 @@ Options:
- **Dynamic batching:** Efficiently batch embedding computations for GPU utilization
- **Two-level search:** Smart graph traversal that prioritizes promising nodes
**Backends:**
- **HNSW** (default): Ideal for most datasets with maximum storage savings through full recomputation
- **DiskANN**: Advanced option with superior search performance, using PQ-based graph traversal with real-time reranking for the best speed-accuracy trade-off
**Backends:** HNSW (default) for most use cases, with optional DiskANN support for billion-scale datasets.
## Benchmarks
**[DiskANN vs HNSW Performance Comparison →](benchmarks/diskann_vs_hnsw_speed_comparison.py)** - Compare search performance between both backends
**[Simple Example: Compare LEANN vs FAISS →](benchmarks/compare_faiss_vs_leann.py)** - See storage savings in action
**[Simple Example: Compare LEANN vs FAISS →](benchmarks/compare_faiss_vs_leann.py)**
### 📊 Storage Comparison
| System | DPR (2.1M) | Wiki (60M) | Chat (400K) | Email (780K) | Browser (38K) |
@@ -610,8 +607,9 @@ We welcome more contributors! Feel free to open issues or submit PRs.
This work is done at [**Berkeley Sky Computing Lab**](https://sky.cs.berkeley.edu/).
---
## Star History
[![Star History Chart](https://api.star-history.com/svg?repos=yichuan-w/LEANN&type=Date)](https://www.star-history.com/#yichuan-w/LEANN&Date)
<p align="center">
<strong>⭐ Star us on GitHub if Leann is useful for your research or applications!</strong>
</p>

View File

@@ -178,9 +178,6 @@ class BaseRAGExample(ABC):
config["host"] = args.llm_host
elif args.llm == "hf":
config["model"] = args.llm_model or "Qwen/Qwen2.5-1.5B-Instruct"
elif args.llm == "simulated":
# Simulated LLM doesn't need additional configuration
pass
return config

View File

@@ -1,24 +1,9 @@
# 🧪 LEANN Benchmarks & Testing
# 🧪 Leann Sanity Checks
This directory contains performance benchmarks and comprehensive tests for the LEANN system, including backend comparisons and sanity checks across different configurations.
This directory contains comprehensive sanity checks for the Leann system, ensuring all components work correctly across different configurations.
## 📁 Test Files
### `diskann_vs_hnsw_speed_comparison.py`
Performance comparison between DiskANN and HNSW backends:
-**Search latency** comparison with both backends using recompute
-**Index size** and **build time** measurements
-**Score validity** testing (ensures no -inf scores)
-**Configurable dataset sizes** for different scales
```bash
# Quick comparison with 500 docs, 10 queries
python benchmarks/diskann_vs_hnsw_speed_comparison.py
# Large-scale comparison with 2000 docs, 20 queries
python benchmarks/diskann_vs_hnsw_speed_comparison.py 2000 20
```
### `test_distance_functions.py`
Tests all supported distance functions across DiskANN backend:
-**MIPS** (Maximum Inner Product Search)

View File

@@ -1,268 +0,0 @@
#!/usr/bin/env python3
"""
DiskANN vs HNSW Search Performance Comparison
This benchmark compares search performance between DiskANN and HNSW backends:
- DiskANN: With graph partitioning enabled (is_recompute=True)
- HNSW: With recompute enabled (is_recompute=True)
- Tests performance across different dataset sizes
- Measures search latency, recall, and index size
"""
import gc
import tempfile
import time
from pathlib import Path
from typing import Any
import numpy as np
def create_test_texts(n_docs: int) -> list[str]:
"""Create synthetic test documents for benchmarking."""
np.random.seed(42)
topics = [
"machine learning and artificial intelligence",
"natural language processing and text analysis",
"computer vision and image recognition",
"data science and statistical analysis",
"deep learning and neural networks",
"information retrieval and search engines",
"database systems and data management",
"software engineering and programming",
"cybersecurity and network protection",
"cloud computing and distributed systems",
]
texts = []
for i in range(n_docs):
topic = topics[i % len(topics)]
variation = np.random.randint(1, 100)
text = (
f"This is document {i} about {topic}. Content variation {variation}. "
f"Additional information about {topic} with details and examples. "
f"Technical discussion of {topic} including implementation aspects."
)
texts.append(text)
return texts
def benchmark_backend(
backend_name: str, texts: list[str], test_queries: list[str], backend_kwargs: dict[str, Any]
) -> dict[str, float]:
"""Benchmark a specific backend with the given configuration."""
from leann.api import LeannBuilder, LeannSearcher
print(f"\n🔧 Testing {backend_name.upper()} backend...")
with tempfile.TemporaryDirectory() as temp_dir:
index_path = str(Path(temp_dir) / f"benchmark_{backend_name}.leann")
# Build index
print(f"📦 Building {backend_name} index with {len(texts)} documents...")
start_time = time.time()
builder = LeannBuilder(
backend_name=backend_name,
embedding_model="facebook/contriever",
embedding_mode="sentence-transformers",
**backend_kwargs,
)
for text in texts:
builder.add_text(text)
builder.build_index(index_path)
build_time = time.time() - start_time
# Measure index size
index_dir = Path(index_path).parent
index_files = list(index_dir.glob(f"{Path(index_path).stem}.*"))
total_size = sum(f.stat().st_size for f in index_files if f.is_file())
size_mb = total_size / (1024 * 1024)
print(f" ✅ Build completed in {build_time:.2f}s, index size: {size_mb:.1f}MB")
# Search benchmark
print("🔍 Running search benchmark...")
searcher = LeannSearcher(index_path)
search_times = []
all_results = []
for query in test_queries:
start_time = time.time()
results = searcher.search(query, top_k=5)
search_time = time.time() - start_time
search_times.append(search_time)
all_results.append(results)
avg_search_time = np.mean(search_times) * 1000 # Convert to ms
print(f" ✅ Average search time: {avg_search_time:.1f}ms")
# Check for valid scores (detect -inf issues)
all_scores = [
result.score
for results in all_results
for result in results
if result.score is not None
]
valid_scores = [
score for score in all_scores if score != float("-inf") and score != float("inf")
]
score_validity_rate = len(valid_scores) / len(all_scores) if all_scores else 0
# Clean up
try:
if hasattr(searcher, "__del__"):
searcher.__del__()
del searcher
del builder
gc.collect()
except Exception as e:
print(f"⚠️ Warning: Resource cleanup error: {e}")
return {
"build_time": build_time,
"avg_search_time_ms": avg_search_time,
"index_size_mb": size_mb,
"score_validity_rate": score_validity_rate,
}
def run_comparison(n_docs: int = 500, n_queries: int = 10):
"""Run performance comparison between DiskANN and HNSW."""
print("🚀 Starting DiskANN vs HNSW Performance Comparison")
print(f"📊 Dataset: {n_docs} documents, {n_queries} test queries")
# Create test data
texts = create_test_texts(n_docs)
test_queries = [
"machine learning algorithms",
"natural language processing",
"computer vision techniques",
"data analysis methods",
"neural network architectures",
"database query optimization",
"software development practices",
"security vulnerabilities",
"cloud infrastructure",
"distributed computing",
][:n_queries]
# HNSW benchmark
hnsw_results = benchmark_backend(
backend_name="hnsw",
texts=texts,
test_queries=test_queries,
backend_kwargs={
"is_recompute": True, # Enable recompute for fair comparison
"M": 16,
"efConstruction": 200,
},
)
# DiskANN benchmark
diskann_results = benchmark_backend(
backend_name="diskann",
texts=texts,
test_queries=test_queries,
backend_kwargs={
"is_recompute": True, # Enable graph partitioning
"num_neighbors": 32,
"search_list_size": 50,
},
)
# Performance comparison
print("\n📈 Performance Comparison Results")
print(f"{'=' * 60}")
print(f"{'Metric':<25} {'HNSW':<15} {'DiskANN':<15} {'Speedup':<10}")
print(f"{'-' * 60}")
# Build time comparison
build_speedup = hnsw_results["build_time"] / diskann_results["build_time"]
print(
f"{'Build Time (s)':<25} {hnsw_results['build_time']:<15.2f} {diskann_results['build_time']:<15.2f} {build_speedup:<10.2f}x"
)
# Search time comparison
search_speedup = hnsw_results["avg_search_time_ms"] / diskann_results["avg_search_time_ms"]
print(
f"{'Search Time (ms)':<25} {hnsw_results['avg_search_time_ms']:<15.1f} {diskann_results['avg_search_time_ms']:<15.1f} {search_speedup:<10.2f}x"
)
# Index size comparison
size_ratio = diskann_results["index_size_mb"] / hnsw_results["index_size_mb"]
print(
f"{'Index Size (MB)':<25} {hnsw_results['index_size_mb']:<15.1f} {diskann_results['index_size_mb']:<15.1f} {size_ratio:<10.2f}x"
)
# Score validity
print(
f"{'Score Validity (%)':<25} {hnsw_results['score_validity_rate'] * 100:<15.1f} {diskann_results['score_validity_rate'] * 100:<15.1f}"
)
print(f"{'=' * 60}")
print("\n🎯 Summary:")
if search_speedup > 1:
print(f" DiskANN is {search_speedup:.2f}x faster than HNSW for search")
else:
print(f" HNSW is {1 / search_speedup:.2f}x faster than DiskANN for search")
if size_ratio > 1:
print(f" DiskANN uses {size_ratio:.2f}x more storage than HNSW")
else:
print(f" DiskANN uses {1 / size_ratio:.2f}x less storage than HNSW")
print(
f" Both backends achieved {min(hnsw_results['score_validity_rate'], diskann_results['score_validity_rate']) * 100:.1f}% score validity"
)
if __name__ == "__main__":
import sys
try:
# Handle help request
if len(sys.argv) > 1 and sys.argv[1] in ["-h", "--help", "help"]:
print("DiskANN vs HNSW Performance Comparison")
print("=" * 50)
print(f"Usage: python {sys.argv[0]} [n_docs] [n_queries]")
print()
print("Arguments:")
print(" n_docs Number of documents to index (default: 500)")
print(" n_queries Number of test queries to run (default: 10)")
print()
print("Examples:")
print(" python benchmarks/diskann_vs_hnsw_speed_comparison.py")
print(" python benchmarks/diskann_vs_hnsw_speed_comparison.py 1000")
print(" python benchmarks/diskann_vs_hnsw_speed_comparison.py 2000 20")
sys.exit(0)
# Parse command line arguments
n_docs = int(sys.argv[1]) if len(sys.argv) > 1 else 500
n_queries = int(sys.argv[2]) if len(sys.argv) > 2 else 10
print("DiskANN vs HNSW Performance Comparison")
print("=" * 50)
print(f"Dataset: {n_docs} documents, {n_queries} queries")
print()
run_comparison(n_docs=n_docs, n_queries=n_queries)
except KeyboardInterrupt:
print("\n⚠️ Benchmark interrupted by user")
sys.exit(130)
except Exception as e:
print(f"\n❌ Benchmark failed: {e}")
sys.exit(1)
finally:
# Ensure clean exit
try:
gc.collect()
print("\n🧹 Cleanup completed")
except Exception:
pass
sys.exit(0)

View File

@@ -97,30 +97,16 @@ ollama pull nomic-embed-text
```
### DiskANN
**Best for**: Performance-critical applications and large datasets - **Production-ready with automatic graph partitioning**
**How it works:**
- **Product Quantization (PQ) + Real-time Reranking**: Uses compressed PQ codes for fast graph traversal, then recomputes exact embeddings for final candidates
- **Automatic Graph Partitioning**: When `is_recompute=True`, automatically partitions large indices and safely removes redundant files to save storage
- **Superior Speed-Accuracy Trade-off**: Faster search than HNSW while maintaining high accuracy
**Trade-offs compared to HNSW:**
-**Faster search latency** (typically 2-8x speedup)
-**Better scaling** for large datasets
-**Smart storage management** with automatic partitioning
-**Better graph locality** with `--ldg-times` parameter for SSD optimization
- ⚠️ **Slightly larger index size** due to PQ tables and graph metadata
**Best for**: Large datasets (> 10M vectors, 10GB+ index size) - **⚠️ Beta version, still in active development**
- Uses Product Quantization (PQ) for coarse filtering during graph traversal
- Novel approach: stores only PQ codes, performs rerank with exact computation in final step
- Implements a corner case of double-queue: prunes all neighbors and recomputes at the end
```bash
# Recommended for most use cases
--backend-name diskann --graph-degree 32 --build-complexity 64
# For large-scale deployments
# For billion-scale deployments
--backend-name diskann --graph-degree 64 --build-complexity 128
```
**Performance Benchmark**: Run `python benchmarks/diskann_vs_hnsw_speed_comparison.py` to compare DiskANN and HNSW on your system.
## LLM Selection: Engine and Model Comparison
### LLM Engines
@@ -297,4 +283,3 @@ LEANN's recomputation feature provides exact distance calculations but can be di
- [Lessons Learned Developing LEANN](https://yichuan-w.github.io/blog/lessons_learned_in_dev_leann/)
- [LEANN Technical Paper](https://arxiv.org/abs/2506.08276)
- [DiskANN Original Paper](https://papers.nips.cc/paper/2019/file/09853c7fb1d3f8ee67a61b6bf4a7f8e6-Paper.pdf)
- [SSD-based Graph Partitioning](https://github.com/SonglinLife/SSD_BASED_PLAN)

View File

@@ -1,8 +0,0 @@
# packages/leann-backend-diskann/CMakeLists.txt (simplified version)
cmake_minimum_required(VERSION 3.20)
project(leann_backend_diskann_wrapper)
# Tell CMake to directly enter the DiskANN submodule and execute its own CMakeLists.txt
# DiskANN will handle everything itself, including compiling Python bindings
add_subdirectory(src/third_party/DiskANN)

View File

@@ -1,7 +1 @@
from . import diskann_backend as diskann_backend
from . import graph_partition
# Export main classes and functions
from .graph_partition import GraphPartitioner, partition_graph
__all__ = ["GraphPartitioner", "diskann_backend", "graph_partition", "partition_graph"]

View File

@@ -137,71 +137,6 @@ class DiskannBuilder(LeannBackendBuilderInterface):
def __init__(self, **kwargs):
self.build_params = kwargs
def _safe_cleanup_after_partition(self, index_dir: Path, index_prefix: str):
"""
Safely cleanup files after partition.
In partition mode, C++ doesn't read _disk.index content,
so we can delete it if all derived files exist.
"""
disk_index_file = index_dir / f"{index_prefix}_disk.index"
beam_search_file = index_dir / f"{index_prefix}_disk_beam_search.index"
# Required files that C++ partition mode needs
# Note: C++ generates these with _disk.index suffix
disk_suffix = "_disk.index"
required_files = [
f"{index_prefix}{disk_suffix}_medoids.bin", # Critical: assert fails if missing
# Note: _centroids.bin is not created in single-shot build - C++ handles this automatically
f"{index_prefix}_pq_pivots.bin", # PQ table
f"{index_prefix}_pq_compressed.bin", # PQ compressed vectors
]
# Check if all required files exist
missing_files = []
for filename in required_files:
file_path = index_dir / filename
if not file_path.exists():
missing_files.append(filename)
if missing_files:
logger.warning(
f"Cannot safely delete _disk.index - missing required files: {missing_files}"
)
logger.info("Keeping all original files for safety")
return
# Calculate space savings
space_saved = 0
files_to_delete = []
if disk_index_file.exists():
space_saved += disk_index_file.stat().st_size
files_to_delete.append(disk_index_file)
if beam_search_file.exists():
space_saved += beam_search_file.stat().st_size
files_to_delete.append(beam_search_file)
# Safe to delete!
for file_to_delete in files_to_delete:
try:
os.remove(file_to_delete)
logger.info(f"✅ Safely deleted: {file_to_delete.name}")
except Exception as e:
logger.warning(f"Failed to delete {file_to_delete.name}: {e}")
if space_saved > 0:
space_saved_mb = space_saved / (1024 * 1024)
logger.info(f"💾 Space saved: {space_saved_mb:.1f} MB")
# Show what files are kept
logger.info("📁 Kept essential files for partition mode:")
for filename in required_files:
file_path = index_dir / filename
if file_path.exists():
size_mb = file_path.stat().st_size / (1024 * 1024)
logger.info(f" - {filename} ({size_mb:.1f} MB)")
def build(self, data: np.ndarray, ids: list[str], index_path: str, **kwargs):
path = Path(index_path)
index_dir = path.parent
@@ -216,17 +151,6 @@ class DiskannBuilder(LeannBackendBuilderInterface):
_write_vectors_to_bin(data, index_dir / data_filename)
build_kwargs = {**self.build_params, **kwargs}
# Extract is_recompute from nested backend_kwargs if needed
is_recompute = build_kwargs.get("is_recompute", False)
if not is_recompute and "backend_kwargs" in build_kwargs:
is_recompute = build_kwargs["backend_kwargs"].get("is_recompute", False)
# Flatten all backend_kwargs parameters to top level for compatibility
if "backend_kwargs" in build_kwargs:
nested_params = build_kwargs.pop("backend_kwargs")
build_kwargs.update(nested_params)
metric_enum = _get_diskann_metrics().get(
build_kwargs.get("distance_metric", "mips").lower()
)
@@ -261,30 +185,6 @@ class DiskannBuilder(LeannBackendBuilderInterface):
build_kwargs.get("pq_disk_bytes", 0),
"",
)
# Auto-partition if is_recompute is enabled
if build_kwargs.get("is_recompute", False):
logger.info("is_recompute=True, starting automatic graph partitioning...")
from .graph_partition import partition_graph
# Partition the index using absolute paths
# Convert to absolute paths to avoid issues with working directory changes
absolute_index_dir = Path(index_dir).resolve()
absolute_index_prefix_path = str(absolute_index_dir / index_prefix)
disk_graph_path, partition_bin_path = partition_graph(
index_prefix_path=absolute_index_prefix_path,
output_dir=str(absolute_index_dir),
partition_prefix=index_prefix,
)
# Safe cleanup: In partition mode, C++ doesn't read _disk.index content
# but still needs the derived files (_medoids.bin, _centroids.bin, etc.)
self._safe_cleanup_after_partition(index_dir, index_prefix)
logger.info("✅ Graph partitioning completed successfully!")
logger.info(f" - Disk graph: {disk_graph_path}")
logger.info(f" - Partition file: {partition_bin_path}")
finally:
temp_data_file = index_dir / data_filename
if temp_data_file.exists():
@@ -313,26 +213,7 @@ class DiskannSearcher(BaseSearcher):
# For DiskANN, we need to reinitialize the index when zmq_port changes
# Store the initialization parameters for later use
# Note: C++ load method expects the BASE path (without _disk.index suffix)
# C++ internally constructs: index_prefix + "_disk.index"
index_name = self.index_path.stem # "simple_test.leann" -> "simple_test"
diskann_index_prefix = str(self.index_dir / index_name) # /path/to/simple_test
full_index_prefix = diskann_index_prefix # /path/to/simple_test (base path)
# Auto-detect partition files and set partition_prefix
partition_graph_file = self.index_dir / f"{index_name}_disk_graph.index"
partition_bin_file = self.index_dir / f"{index_name}_partition.bin"
partition_prefix = ""
if partition_graph_file.exists() and partition_bin_file.exists():
# C++ expects full path prefix, not just filename
partition_prefix = str(self.index_dir / index_name) # /path/to/simple_test
logger.info(
f"✅ Detected partition files, using partition_prefix='{partition_prefix}'"
)
else:
logger.debug("No partition files detected, using standard index files")
full_index_prefix = str(self.index_dir / self.index_path.stem)
self._init_params = {
"metric_enum": metric_enum,
"full_index_prefix": full_index_prefix,
@@ -340,14 +221,8 @@ class DiskannSearcher(BaseSearcher):
"num_nodes_to_cache": kwargs.get("num_nodes_to_cache", 0),
"cache_mechanism": 1,
"pq_prefix": "",
"partition_prefix": partition_prefix,
"partition_prefix": "",
}
# Log partition configuration for debugging
if partition_prefix:
logger.info(
f"✅ Detected partition files, using partition_prefix='{partition_prefix}'"
)
self._diskannpy = diskannpy
self._current_zmq_port = None
self._index = None
@@ -459,25 +334,3 @@ class DiskannSearcher(BaseSearcher):
string_labels = [[str(int_label) for int_label in batch_labels] for batch_labels in labels]
return {"labels": string_labels, "distances": distances}
def cleanup(self):
"""Cleanup DiskANN-specific resources including C++ index."""
# Call parent cleanup first
super().cleanup()
# Delete the C++ index to trigger destructors
try:
if hasattr(self, "_index") and self._index is not None:
del self._index
self._index = None
self._current_zmq_port = None
except Exception:
pass
# Force garbage collection to ensure C++ objects are destroyed
try:
import gc
gc.collect()
except Exception:
pass

View File

@@ -81,8 +81,7 @@ def create_diskann_embedding_server(
with open(passages_file) as f:
meta = json.load(f)
logger.info(f"Loading PassageManager with metadata_file_path: {passages_file}")
passages = PassageManager(meta["passage_sources"], metadata_file_path=passages_file)
passages = PassageManager(meta["passage_sources"])
logger.info(
f"Loaded PassageManager with {len(passages.global_offset_map)} passages from metadata"
)
@@ -100,7 +99,6 @@ def create_diskann_embedding_server(
socket = context.socket(
zmq.REP
) # REP socket for both BaseSearcher and DiskANN C++ REQ clients
socket.setsockopt(zmq.LINGER, 0) # Don't block on close
socket.bind(f"tcp://*:{zmq_port}")
logger.info(f"DiskANN ZMQ REP server listening on port {zmq_port}")

View File

@@ -1,299 +0,0 @@
#!/usr/bin/env python3
"""
Graph Partition Module for LEANN DiskANN Backend
This module provides Python bindings for the graph partition functionality
of DiskANN, allowing users to partition disk-based indices for better
performance.
"""
import os
import shutil
import subprocess
import tempfile
from pathlib import Path
from typing import Optional
class GraphPartitioner:
"""
A Python interface for DiskANN's graph partition functionality.
This class provides methods to partition disk-based indices for improved
search performance and memory efficiency.
"""
def __init__(self, build_type: str = "release"):
"""
Initialize the GraphPartitioner.
Args:
build_type: Build type for the executables ("debug" or "release")
"""
self.build_type = build_type
self._ensure_executables()
def _get_executable_path(self, name: str) -> str:
"""Get the path to a graph partition executable."""
# Get the directory where this Python module is located
module_dir = Path(__file__).parent
# Navigate to the graph_partition directory
graph_partition_dir = module_dir.parent / "third_party" / "DiskANN" / "graph_partition"
executable_path = graph_partition_dir / "build" / self.build_type / "graph_partition" / name
if not executable_path.exists():
raise FileNotFoundError(f"Executable {name} not found at {executable_path}")
return str(executable_path)
def _ensure_executables(self):
"""Ensure that the required executables are built."""
try:
self._get_executable_path("partitioner")
self._get_executable_path("index_relayout")
except FileNotFoundError:
# Try to build the executables automatically
print("Executables not found, attempting to build them...")
self._build_executables()
def _build_executables(self):
"""Build the required executables."""
graph_partition_dir = (
Path(__file__).parent.parent / "third_party" / "DiskANN" / "graph_partition"
)
original_dir = os.getcwd()
try:
os.chdir(graph_partition_dir)
# Clean any existing build
if (graph_partition_dir / "build").exists():
shutil.rmtree(graph_partition_dir / "build")
# Run the build script
cmd = ["./build.sh", self.build_type, "split_graph", "/tmp/dummy"]
subprocess.run(cmd, capture_output=True, text=True, cwd=graph_partition_dir)
# Check if executables were created
partitioner_path = self._get_executable_path("partitioner")
relayout_path = self._get_executable_path("index_relayout")
print(f"✅ Built partitioner: {partitioner_path}")
print(f"✅ Built index_relayout: {relayout_path}")
except Exception as e:
raise RuntimeError(f"Failed to build executables: {e}")
finally:
os.chdir(original_dir)
def partition_graph(
self,
index_prefix_path: str,
output_dir: Optional[str] = None,
partition_prefix: Optional[str] = None,
**kwargs,
) -> tuple[str, str]:
"""
Partition a disk-based index for improved performance.
Args:
index_prefix_path: Path to the index prefix (e.g., "/path/to/index")
output_dir: Output directory for results (defaults to parent of index_prefix_path)
partition_prefix: Prefix for output files (defaults to basename of index_prefix_path)
**kwargs: Additional parameters for graph partitioning:
- gp_times: Number of LDG partition iterations (default: 10)
- lock_nums: Number of lock nodes (default: 10)
- cut: Cut adjacency list degree (default: 100)
- scale_factor: Scale factor (default: 1)
- data_type: Data type (default: "float")
- thread_nums: Number of threads (default: 10)
Returns:
Tuple of (disk_graph_index_path, partition_bin_path)
Raises:
RuntimeError: If the partitioning process fails
"""
# Set default parameters
params = {
"gp_times": 10,
"lock_nums": 10,
"cut": 100,
"scale_factor": 1,
"data_type": "float",
"thread_nums": 10,
**kwargs,
}
# Determine output directory
if output_dir is None:
output_dir = str(Path(index_prefix_path).parent)
# Create output directory if it doesn't exist
Path(output_dir).mkdir(parents=True, exist_ok=True)
# Determine partition prefix
if partition_prefix is None:
partition_prefix = Path(index_prefix_path).name
# Get executable paths
partitioner_path = self._get_executable_path("partitioner")
relayout_path = self._get_executable_path("index_relayout")
# Create temporary directory for processing
with tempfile.TemporaryDirectory() as temp_dir:
# Change to the graph_partition directory for temporary files
graph_partition_dir = (
Path(__file__).parent.parent / "third_party" / "DiskANN" / "graph_partition"
)
original_dir = os.getcwd()
try:
os.chdir(graph_partition_dir)
# Create temporary data directory
temp_data_dir = Path(temp_dir) / "data"
temp_data_dir.mkdir(parents=True, exist_ok=True)
# Set up paths for temporary files
graph_path = temp_data_dir / "starling" / "_M_R_L_B" / "GRAPH"
graph_gp_path = (
graph_path
/ f"GP_TIMES_{params['gp_times']}_LOCK_{params['lock_nums']}_GP_USE_FREQ0_CUT{params['cut']}_SCALE{params['scale_factor']}"
)
graph_gp_path.mkdir(parents=True, exist_ok=True)
# Find input index file
old_index_file = f"{index_prefix_path}_disk_beam_search.index"
if not os.path.exists(old_index_file):
old_index_file = f"{index_prefix_path}_disk.index"
if not os.path.exists(old_index_file):
raise RuntimeError(f"Index file not found: {old_index_file}")
# Run partitioner
gp_file_path = graph_gp_path / "_part.bin"
partitioner_cmd = [
partitioner_path,
"--index_file",
old_index_file,
"--data_type",
params["data_type"],
"--gp_file",
str(gp_file_path),
"-T",
str(params["thread_nums"]),
"--ldg_times",
str(params["gp_times"]),
"--scale",
str(params["scale_factor"]),
"--mode",
"1",
]
print(f"Running partitioner: {' '.join(partitioner_cmd)}")
result = subprocess.run(
partitioner_cmd, capture_output=True, text=True, cwd=graph_partition_dir
)
if result.returncode != 0:
raise RuntimeError(
f"Partitioner failed with return code {result.returncode}.\n"
f"stdout: {result.stdout}\n"
f"stderr: {result.stderr}"
)
# Run relayout
part_tmp_index = graph_gp_path / "_part_tmp.index"
relayout_cmd = [
relayout_path,
old_index_file,
str(gp_file_path),
params["data_type"],
"1",
]
print(f"Running relayout: {' '.join(relayout_cmd)}")
result = subprocess.run(
relayout_cmd, capture_output=True, text=True, cwd=graph_partition_dir
)
if result.returncode != 0:
raise RuntimeError(
f"Relayout failed with return code {result.returncode}.\n"
f"stdout: {result.stdout}\n"
f"stderr: {result.stderr}"
)
# Copy results to output directory
disk_graph_path = Path(output_dir) / f"{partition_prefix}_disk_graph.index"
partition_bin_path = Path(output_dir) / f"{partition_prefix}_partition.bin"
shutil.copy2(part_tmp_index, disk_graph_path)
shutil.copy2(gp_file_path, partition_bin_path)
print(f"Results copied to: {output_dir}")
return str(disk_graph_path), str(partition_bin_path)
finally:
os.chdir(original_dir)
def get_partition_info(self, partition_bin_path: str) -> dict:
"""
Get information about a partition file.
Args:
partition_bin_path: Path to the partition binary file
Returns:
Dictionary containing partition information
"""
if not os.path.exists(partition_bin_path):
raise FileNotFoundError(f"Partition file not found: {partition_bin_path}")
# For now, return basic file information
# In the future, this could parse the binary file for detailed info
stat = os.stat(partition_bin_path)
return {
"file_size": stat.st_size,
"file_path": partition_bin_path,
"modified_time": stat.st_mtime,
}
def partition_graph(
index_prefix_path: str,
output_dir: Optional[str] = None,
partition_prefix: Optional[str] = None,
build_type: str = "release",
**kwargs,
) -> tuple[str, str]:
"""
Convenience function to partition a graph index.
Args:
index_prefix_path: Path to the index prefix
output_dir: Output directory (defaults to parent of index_prefix_path)
partition_prefix: Prefix for output files (defaults to basename of index_prefix_path)
build_type: Build type for executables ("debug" or "release")
**kwargs: Additional parameters for graph partitioning
Returns:
Tuple of (disk_graph_index_path, partition_bin_path)
"""
partitioner = GraphPartitioner(build_type=build_type)
return partitioner.partition_graph(index_prefix_path, output_dir, partition_prefix, **kwargs)
# Example usage:
if __name__ == "__main__":
# Example: partition an index
try:
disk_graph_path, partition_bin_path = partition_graph(
"/path/to/your/index_prefix", gp_times=10, lock_nums=10, cut=100
)
print("Partitioning completed successfully!")
print(f"Disk graph index: {disk_graph_path}")
print(f"Partition binary: {partition_bin_path}")
except Exception as e:
print(f"Partitioning failed: {e}")

View File

@@ -1,137 +0,0 @@
#!/usr/bin/env python3
"""
Simplified Graph Partition Module for LEANN DiskANN Backend
This module provides a simple Python interface for graph partitioning
that directly calls the existing executables.
"""
import os
import subprocess
import tempfile
from pathlib import Path
from typing import Optional
def partition_graph_simple(
index_prefix_path: str, output_dir: Optional[str] = None, **kwargs
) -> tuple[str, str]:
"""
Simple function to partition a graph index.
Args:
index_prefix_path: Path to the index prefix (e.g., "/path/to/index")
output_dir: Output directory (defaults to parent of index_prefix_path)
**kwargs: Additional parameters for graph partitioning
Returns:
Tuple of (disk_graph_index_path, partition_bin_path)
"""
# Set default parameters
params = {
"gp_times": 10,
"lock_nums": 10,
"cut": 100,
"scale_factor": 1,
"data_type": "float",
"thread_nums": 10,
**kwargs,
}
# Determine output directory
if output_dir is None:
output_dir = str(Path(index_prefix_path).parent)
# Find the graph_partition directory
current_file = Path(__file__)
graph_partition_dir = current_file.parent.parent / "third_party" / "DiskANN" / "graph_partition"
if not graph_partition_dir.exists():
raise RuntimeError(f"Graph partition directory not found: {graph_partition_dir}")
# Find input index file
old_index_file = f"{index_prefix_path}_disk_beam_search.index"
if not os.path.exists(old_index_file):
old_index_file = f"{index_prefix_path}_disk.index"
if not os.path.exists(old_index_file):
raise RuntimeError(f"Index file not found: {old_index_file}")
# Create temporary directory for processing
with tempfile.TemporaryDirectory() as temp_dir:
temp_data_dir = Path(temp_dir) / "data"
temp_data_dir.mkdir(parents=True, exist_ok=True)
# Set up paths for temporary files
graph_path = temp_data_dir / "starling" / "_M_R_L_B" / "GRAPH"
graph_gp_path = (
graph_path
/ f"GP_TIMES_{params['gp_times']}_LOCK_{params['lock_nums']}_GP_USE_FREQ0_CUT{params['cut']}_SCALE{params['scale_factor']}"
)
graph_gp_path.mkdir(parents=True, exist_ok=True)
# Run the build script with our parameters
cmd = [str(graph_partition_dir / "build.sh"), "release", "split_graph", index_prefix_path]
# Set environment variables for parameters
env = os.environ.copy()
env.update(
{
"GP_TIMES": str(params["gp_times"]),
"GP_LOCK_NUMS": str(params["lock_nums"]),
"GP_CUT": str(params["cut"]),
"GP_SCALE_F": str(params["scale_factor"]),
"DATA_TYPE": params["data_type"],
"GP_T": str(params["thread_nums"]),
}
)
print(f"Running graph partition with command: {' '.join(cmd)}")
print(f"Working directory: {graph_partition_dir}")
# Run the command
result = subprocess.run(
cmd, env=env, capture_output=True, text=True, cwd=graph_partition_dir
)
if result.returncode != 0:
print(f"Command failed with return code {result.returncode}")
print(f"stdout: {result.stdout}")
print(f"stderr: {result.stderr}")
raise RuntimeError(
f"Graph partitioning failed with return code {result.returncode}.\n"
f"stdout: {result.stdout}\n"
f"stderr: {result.stderr}"
)
# Check if output files were created
disk_graph_path = Path(output_dir) / "_disk_graph.index"
partition_bin_path = Path(output_dir) / "_partition.bin"
if not disk_graph_path.exists():
raise RuntimeError(f"Expected output file not found: {disk_graph_path}")
if not partition_bin_path.exists():
raise RuntimeError(f"Expected output file not found: {partition_bin_path}")
print("✅ Partitioning completed successfully!")
print(f" Disk graph index: {disk_graph_path}")
print(f" Partition binary: {partition_bin_path}")
return str(disk_graph_path), str(partition_bin_path)
# Example usage
if __name__ == "__main__":
try:
disk_graph_path, partition_bin_path = partition_graph_simple(
"/Users/yichuan/Desktop/release2/leann/diskannbuild/test_doc_files",
gp_times=5,
lock_nums=5,
cut=50,
)
print("Success! Output files:")
print(f" - {disk_graph_path}")
print(f" - {partition_bin_path}")
except Exception as e:
print(f"Error: {e}")

View File

@@ -4,8 +4,8 @@ build-backend = "scikit_build_core.build"
[project]
name = "leann-backend-diskann"
version = "0.2.7"
dependencies = ["leann-core==0.2.7", "numpy", "protobuf>=3.19.0"]
version = "0.2.8"
dependencies = ["leann-core==0.2.8", "numpy", "protobuf>=3.19.0"]
[tool.scikit-build]
# Key: simplified CMake path
@@ -17,3 +17,5 @@ editable.mode = "redirect"
cmake.build-type = "Release"
build.verbose = true
build.tool-args = ["-j8"]
# Let CMake find packages via Homebrew prefix
cmake.define = {CMAKE_PREFIX_PATH = {env = "CMAKE_PREFIX_PATH"}, OpenMP_ROOT = {env = "OpenMP_ROOT"}}

View File

@@ -5,11 +5,20 @@ set(CMAKE_CXX_COMPILER_WORKS 1)
# Set OpenMP path for macOS
if(APPLE)
set(OpenMP_C_FLAGS "-Xpreprocessor -fopenmp -I/opt/homebrew/opt/libomp/include")
set(OpenMP_CXX_FLAGS "-Xpreprocessor -fopenmp -I/opt/homebrew/opt/libomp/include")
# Detect Homebrew installation path (Apple Silicon vs Intel)
if(EXISTS "/opt/homebrew/opt/libomp")
set(HOMEBREW_PREFIX "/opt/homebrew")
elseif(EXISTS "/usr/local/opt/libomp")
set(HOMEBREW_PREFIX "/usr/local")
else()
message(FATAL_ERROR "Could not find libomp installation. Please install with: brew install libomp")
endif()
set(OpenMP_C_FLAGS "-Xpreprocessor -fopenmp -I${HOMEBREW_PREFIX}/opt/libomp/include")
set(OpenMP_CXX_FLAGS "-Xpreprocessor -fopenmp -I${HOMEBREW_PREFIX}/opt/libomp/include")
set(OpenMP_C_LIB_NAMES "omp")
set(OpenMP_CXX_LIB_NAMES "omp")
set(OpenMP_omp_LIBRARY "/opt/homebrew/opt/libomp/lib/libomp.dylib")
set(OpenMP_omp_LIBRARY "${HOMEBREW_PREFIX}/opt/libomp/lib/libomp.dylib")
# Force use of system libc++ to avoid version mismatch
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -stdlib=libc++")

View File

@@ -1,6 +1,5 @@
import argparse
import gc # Import garbage collector interface
import logging
import os
import struct
import sys
@@ -8,12 +7,6 @@ import time
import numpy as np
# Set up logging to avoid print buffer issues
logger = logging.getLogger(__name__)
LOG_LEVEL = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
log_level = getattr(logging, LOG_LEVEL, logging.WARNING)
logger.setLevel(log_level)
# --- FourCCs (add more if needed) ---
INDEX_HNSW_FLAT_FOURCC = int.from_bytes(b"IHNf", "little")
# Add other HNSW fourccs if you expect different storage types inside HNSW
@@ -250,12 +243,6 @@ def convert_hnsw_graph_to_csr(input_filename, output_filename, prune_embeddings=
output_filename: Output CSR index file
prune_embeddings: Whether to prune embedding storage (write NULL storage marker)
"""
# Disable buffering for print statements to avoid deadlock in CI/pytest
import functools
global print
print = functools.partial(print, flush=True)
print(f"Starting conversion: {input_filename} -> {output_filename}")
start_time = time.time()
original_hnsw_data = {}

View File

@@ -245,25 +245,3 @@ class HNSWSearcher(BaseSearcher):
string_labels = [[str(int_label) for int_label in batch_labels] for batch_labels in labels]
return {"labels": string_labels, "distances": distances}
def cleanup(self):
"""Cleanup HNSW-specific resources including C++ ZMQ connections."""
# Call parent cleanup first
super().cleanup()
# Additional cleanup for C++ side ZMQ connections
# The ZmqDistanceComputer in C++ uses ZMQ connections that need cleanup
try:
# Delete the index to trigger C++ destructors
if hasattr(self, "index"):
del self.index
except Exception:
pass
# Force garbage collection to ensure C++ objects are destroyed
try:
import gc
gc.collect()
except Exception:
pass

View File

@@ -10,7 +10,7 @@ import sys
import threading
import time
from pathlib import Path
from typing import Optional
from typing import Union
import msgpack
import numpy as np
@@ -34,7 +34,7 @@ if not logger.handlers:
def create_hnsw_embedding_server(
passages_file: Optional[str] = None,
passages_file: Union[str, None] = None,
zmq_port: int = 5555,
model_name: str = "sentence-transformers/all-mpnet-base-v2",
distance_metric: str = "mips",
@@ -82,8 +82,19 @@ def create_hnsw_embedding_server(
with open(passages_file) as f:
meta = json.load(f)
# Let PassageManager handle path resolution uniformly
passages = PassageManager(meta["passage_sources"], metadata_file_path=passages_file)
# Convert relative paths to absolute paths based on metadata file location
metadata_dir = Path(passages_file).parent.parent # Go up one level from the metadata file
passage_sources = []
for source in meta["passage_sources"]:
source_copy = source.copy()
# Convert relative paths to absolute paths
if not Path(source_copy["path"]).is_absolute():
source_copy["path"] = str(metadata_dir / source_copy["path"])
if not Path(source_copy["index_path"]).is_absolute():
source_copy["index_path"] = str(metadata_dir / source_copy["index_path"])
passage_sources.append(source_copy)
passages = PassageManager(passage_sources)
logger.info(
f"Loaded PassageManager with {len(passages.global_offset_map)} passages from metadata"
)
@@ -92,7 +103,6 @@ def create_hnsw_embedding_server(
"""ZMQ server thread"""
context = zmq.Context()
socket = context.socket(zmq.REP)
socket.setsockopt(zmq.LINGER, 0) # Don't block on close
socket.bind(f"tcp://*:{zmq_port}")
logger.info(f"HNSW ZMQ server listening on port {zmq_port}")

View File

@@ -6,10 +6,10 @@ build-backend = "scikit_build_core.build"
[project]
name = "leann-backend-hnsw"
version = "0.2.7"
version = "0.2.8"
description = "Custom-built HNSW (Faiss) backend for the Leann toolkit."
dependencies = [
"leann-core==0.2.7",
"leann-core==0.2.8",
"numpy",
"pyzmq>=23.0.0",
"msgpack>=1.0.0",
@@ -22,6 +22,8 @@ cmake.build-type = "Release"
build.verbose = true
build.tool-args = ["-j8"]
# CMake definitions to optimize compilation
# CMake definitions to optimize compilation and find Homebrew packages
[tool.scikit-build.cmake.define]
CMAKE_BUILD_PARALLEL_LEVEL = "8"
CMAKE_PREFIX_PATH = {env = "CMAKE_PREFIX_PATH"}
OpenMP_ROOT = {env = "OpenMP_ROOT"}

View File

@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
[project]
name = "leann-core"
version = "0.2.7"
version = "0.2.8"
description = "Core API and plugin system for LEANN"
readme = "README.md"
requires-python = ">=3.9"
@@ -33,8 +33,8 @@ dependencies = [
"pdfplumber>=0.10.0",
"nbconvert>=7.0.0", # For .ipynb file support
"gitignore-parser>=0.1.12", # For proper .gitignore handling
"mlx>=0.26.3; sys_platform == 'darwin'",
"mlx-lm>=0.26.0; sys_platform == 'darwin'",
"mlx>=0.26.3; sys_platform == 'darwin' and platform_machine == 'arm64'",
"mlx-lm>=0.26.0; sys_platform == 'darwin' and platform_machine == 'arm64'",
]
[project.optional-dependencies]

View File

@@ -87,26 +87,21 @@ def compute_embeddings_via_server(chunks: list[str], model_name: str, port: int)
# Connect to embedding server
context = zmq.Context()
socket = context.socket(zmq.REQ)
socket.setsockopt(zmq.LINGER, 0) # Don't block on close
socket.setsockopt(zmq.RCVTIMEO, 1000) # 1s timeout on receive
socket.setsockopt(zmq.SNDTIMEO, 1000) # 1s timeout on send
socket.setsockopt(zmq.IMMEDIATE, 1) # Don't wait for connection
socket.connect(f"tcp://localhost:{port}")
try:
# Send chunks to server for embedding computation
request = chunks
socket.send(msgpack.packb(request))
# Send chunks to server for embedding computation
request = chunks
socket.send(msgpack.packb(request))
# Receive embeddings from server
response = socket.recv()
embeddings_list = msgpack.unpackb(response)
# Receive embeddings from server
response = socket.recv()
embeddings_list = msgpack.unpackb(response)
# Convert back to numpy array
embeddings = np.array(embeddings_list, dtype=np.float32)
finally:
socket.close(linger=0)
context.term()
# Convert back to numpy array
embeddings = np.array(embeddings_list, dtype=np.float32)
socket.close()
context.term()
return embeddings
@@ -120,9 +115,7 @@ class SearchResult:
class PassageManager:
def __init__(
self, passage_sources: list[dict[str, Any]], metadata_file_path: Optional[str] = None
):
def __init__(self, passage_sources: list[dict[str, Any]]):
self.offset_maps = {}
self.passage_files = {}
self.global_offset_map = {} # Combined map for fast lookup
@@ -132,26 +125,10 @@ class PassageManager:
passage_file = source["path"]
index_file = source["index_path"] # .idx file
# Fix path resolution - relative paths should be relative to metadata file directory
# Fix path resolution for Colab and other environments
if not Path(index_file).is_absolute():
if metadata_file_path:
# Resolve relative to metadata file directory
metadata_dir = Path(metadata_file_path).parent
logger.debug(
f"PassageManager: Resolving relative paths from metadata_dir: {metadata_dir}"
)
index_file = str((metadata_dir / index_file).resolve())
passage_file = str((metadata_dir / passage_file).resolve())
logger.debug(f"PassageManager: Resolved index_file: {index_file}")
else:
# Fallback to current directory resolution (legacy behavior)
logger.warning(
"PassageManager: No metadata_file_path provided, using fallback resolution from cwd"
)
logger.debug(f"PassageManager: Current working directory: {Path.cwd()}")
index_file = str(Path(index_file).resolve())
passage_file = str(Path(passage_file).resolve())
logger.debug(f"PassageManager: Fallback resolved index_file: {index_file}")
# If relative path, try to resolve it properly
index_file = str(Path(index_file).resolve())
if not Path(index_file).exists():
raise FileNotFoundError(f"Passage index file not found: {index_file}")
@@ -337,8 +314,8 @@ class LeannBuilder:
"passage_sources": [
{
"type": "jsonl",
"path": passages_file.name, # Use relative path (just filename)
"index_path": offset_file.name, # Use relative path (just filename)
"path": str(passages_file),
"index_path": str(offset_file),
}
],
}
@@ -453,8 +430,8 @@ class LeannBuilder:
"passage_sources": [
{
"type": "jsonl",
"path": passages_file.name, # Use relative path (just filename)
"index_path": offset_file.name, # Use relative path (just filename)
"path": str(passages_file),
"index_path": str(offset_file),
}
],
"built_from_precomputed_embeddings": True,
@@ -496,9 +473,7 @@ class LeannSearcher:
self.embedding_model = self.meta_data["embedding_model"]
# Support both old and new format
self.embedding_mode = self.meta_data.get("embedding_mode", "sentence-transformers")
self.passage_manager = PassageManager(
self.meta_data.get("passage_sources", []), metadata_file_path=self.meta_path_str
)
self.passage_manager = PassageManager(self.meta_data.get("passage_sources", []))
backend_factory = BACKEND_REGISTRY.get(backend_name)
if backend_factory is None:
raise ValueError(f"Backend '{backend_name}' not found.")
@@ -571,13 +546,13 @@ class LeannSearcher:
zmq_port=zmq_port,
**kwargs,
)
time.time() - start_time
# logger.info(f" Search time: {search_time} seconds")
logger.info(f" Backend returned: labels={len(results.get('labels', [[]])[0])} results")
enriched_results = []
if "labels" in results and "distances" in results:
logger.info(f" Processing {len(results['labels'][0])} passage IDs:")
# Python 3.9 does not support zip(strict=...); lengths are expected to match
for i, (string_id, dist) in enumerate(
zip(results["labels"][0], results["distances"][0])
):
@@ -605,39 +580,13 @@ class LeannSearcher:
)
except KeyError:
RED = "\033[91m"
RESET = "\033[0m"
logger.error(
f" {RED}{RESET} [{i + 1:2d}] ID: '{string_id}' -> {RED}ERROR: Passage not found!{RESET}"
)
# Define color codes outside the loop for final message
GREEN = "\033[92m"
RESET = "\033[0m"
logger.info(f" {GREEN}✓ Final enriched results: {len(enriched_results)} passages{RESET}")
return enriched_results
def cleanup(self):
"""Explicitly cleanup embedding server and ZMQ resources.
This method should be called after you're done using the searcher,
especially in test environments or batch processing scenarios.
"""
# Stop embedding server
if hasattr(self.backend_impl, "embedding_server_manager"):
self.backend_impl.embedding_server_manager.stop_server()
# Set ZMQ linger but don't terminate global context
try:
import zmq
# Just set linger on the global instance
ctx = zmq.Context.instance()
ctx.linger = 0
# NEVER call ctx.term() or destroy() on the global instance
# That would block waiting for all sockets to close
except Exception:
pass
class LeannChat:
def __init__(
@@ -707,12 +656,3 @@ class LeannChat:
except (KeyboardInterrupt, EOFError):
print("\nGoodbye!")
break
def cleanup(self):
"""Explicitly cleanup embedding server resources.
This method should be called after you're done using the chat interface,
especially in test environments or batch processing scenarios.
"""
if hasattr(self.searcher, "cleanup"):
self.searcher.cleanup()

View File

@@ -1,9 +1,11 @@
import argparse
import asyncio
from pathlib import Path
from typing import Union
from llama_index.core import SimpleDirectoryReader
from llama_index.core.node_parser import SentenceSplitter
from tqdm import tqdm
from .api import LeannBuilder, LeannChat, LeannSearcher
@@ -74,11 +76,14 @@ class LeannCLI:
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
leann build my-docs --docs ./documents # Build index named my-docs
leann build my-ppts --docs ./ --file-types .pptx,.pdf # Index only PowerPoint and PDF files
leann search my-docs "query" # Search in my-docs index
leann ask my-docs "question" # Ask my-docs index
leann list # List all stored indexes
leann build my-docs --docs ./documents # Build index from directory
leann build my-code --docs ./src ./tests ./config # Build index from multiple directories
leann build my-files --docs ./file1.py ./file2.txt ./docs/ # Build index from files and directories
leann build my-mixed --docs ./readme.md ./src/ ./config.json # Build index from mixed files/dirs
leann build my-ppts --docs ./ --file-types .pptx,.pdf # Index only PowerPoint and PDF files
leann search my-docs "query" # Search in my-docs index
leann ask my-docs "question" # Ask my-docs index
leann list # List all stored indexes
""",
)
@@ -90,7 +95,11 @@ Examples:
"index_name", nargs="?", help="Index name (default: current directory name)"
)
build_parser.add_argument(
"--docs", type=str, default=".", help="Documents directory (default: current directory)"
"--docs",
type=str,
nargs="+",
default=["."],
help="Documents directories and/or files (default: current directory)",
)
build_parser.add_argument(
"--backend", type=str, default="hnsw", choices=["hnsw", "diskann"]
@@ -234,6 +243,32 @@ Examples:
"""Check if a file should be excluded using gitignore parser."""
return gitignore_matches(str(relative_path))
def _is_git_submodule(self, path: Path) -> bool:
"""Check if a path is a git submodule."""
try:
# Find the git repo root
current_dir = Path.cwd()
while current_dir != current_dir.parent:
if (current_dir / ".git").exists():
gitmodules_path = current_dir / ".gitmodules"
if gitmodules_path.exists():
# Read .gitmodules to check if this path is a submodule
gitmodules_content = gitmodules_path.read_text()
# Convert path to relative to git root
try:
relative_path = path.resolve().relative_to(current_dir)
# Check if this path appears in .gitmodules
return f"path = {relative_path}" in gitmodules_content
except ValueError:
# Path is not under git root
return False
break
current_dir = current_dir.parent
return False
except Exception:
# If anything goes wrong, assume it's not a submodule
return False
def list_indexes(self):
print("Stored LEANN indexes:")
@@ -263,7 +298,9 @@ Examples:
valid_projects.append(current_path)
if not valid_projects:
print("No indexes found. Use 'leann build <name> --docs <dir>' to create one.")
print(
"No indexes found. Use 'leann build <name> --docs <dir> [<dir2> ...]' to create one."
)
return
total_indexes = 0
@@ -310,56 +347,88 @@ Examples:
print(f' leann search {example_name} "your query"')
print(f" leann ask {example_name} --interactive")
def load_documents(self, docs_dir: str, custom_file_types: str | None = None):
print(f"Loading documents from {docs_dir}...")
def load_documents(
self, docs_paths: Union[str, list], custom_file_types: Union[str, None] = None
):
# Handle both single path (string) and multiple paths (list) for backward compatibility
if isinstance(docs_paths, str):
docs_paths = [docs_paths]
# Separate files and directories
files = []
directories = []
for path in docs_paths:
path_obj = Path(path)
if path_obj.is_file():
files.append(str(path_obj))
elif path_obj.is_dir():
# Check if this is a git submodule - if so, skip it
if self._is_git_submodule(path_obj):
print(f"⚠️ Skipping git submodule: {path}")
continue
directories.append(str(path_obj))
else:
print(f"⚠️ Warning: Path '{path}' does not exist, skipping...")
continue
# Print summary of what we're processing
total_items = len(files) + len(directories)
items_desc = []
if files:
items_desc.append(f"{len(files)} file{'s' if len(files) > 1 else ''}")
if directories:
items_desc.append(
f"{len(directories)} director{'ies' if len(directories) > 1 else 'y'}"
)
print(f"Loading documents from {' and '.join(items_desc)} ({total_items} total):")
if files:
print(f" 📄 Files: {', '.join([Path(f).name for f in files])}")
if directories:
print(f" 📁 Directories: {', '.join(directories)}")
if custom_file_types:
print(f"Using custom file types: {custom_file_types}")
# Build gitignore parser
gitignore_matches = self._build_gitignore_parser(docs_dir)
all_documents = []
# Try to use better PDF parsers first, but only if PDFs are requested
documents = []
docs_path = Path(docs_dir)
# First, process individual files if any
if files:
print(f"\n🔄 Processing {len(files)} individual file{'s' if len(files) > 1 else ''}...")
# Check if we should process PDFs
should_process_pdfs = custom_file_types is None or ".pdf" in custom_file_types
# Load individual files using SimpleDirectoryReader with input_files
# Note: We skip gitignore filtering for explicitly specified files
try:
# Group files by their parent directory for efficient loading
from collections import defaultdict
if should_process_pdfs:
for file_path in docs_path.rglob("*.pdf"):
# Check if file matches any exclude pattern
relative_path = file_path.relative_to(docs_path)
if self._should_exclude_file(relative_path, gitignore_matches):
continue
files_by_dir = defaultdict(list)
for file_path in files:
parent_dir = str(Path(file_path).parent)
files_by_dir[parent_dir].append(file_path)
print(f"Processing PDF: {file_path}")
# Try PyMuPDF first (best quality)
text = extract_pdf_text_with_pymupdf(str(file_path))
if text is None:
# Try pdfplumber
text = extract_pdf_text_with_pdfplumber(str(file_path))
if text:
# Create a simple document structure
from llama_index.core import Document
doc = Document(text=text, metadata={"source": str(file_path)})
documents.append(doc)
else:
# Fallback to default reader
print(f"Using default reader for {file_path}")
# Load files from each parent directory
for parent_dir, file_list in files_by_dir.items():
print(
f" Loading {len(file_list)} file{'s' if len(file_list) > 1 else ''} from {parent_dir}"
)
try:
default_docs = SimpleDirectoryReader(
str(file_path.parent),
file_docs = SimpleDirectoryReader(
parent_dir,
input_files=file_list,
filename_as_id=True,
required_exts=[file_path.suffix],
).load_data()
documents.extend(default_docs)
all_documents.extend(file_docs)
print(
f" ✅ Loaded {len(file_docs)} document{'s' if len(file_docs) > 1 else ''}"
)
except Exception as e:
print(f"Warning: Could not process {file_path}: {e}")
print(f"Warning: Could not load files from {parent_dir}: {e}")
# Load other file types with default reader
except Exception as e:
print(f"❌ Error processing individual files: {e}")
# Define file extensions to process
if custom_file_types:
# Parse custom file types from comma-separated string
code_extensions = [ext.strip() for ext in custom_file_types.split(",") if ext.strip()]
@@ -421,41 +490,106 @@ Examples:
".py",
".jl",
]
# Try to load other file types, but don't fail if none are found
try:
# Create a custom file filter function using our PathSpec
def file_filter(file_path: str) -> bool:
"""Return True if file should be included (not excluded)"""
try:
docs_path_obj = Path(docs_dir)
file_path_obj = Path(file_path)
relative_path = file_path_obj.relative_to(docs_path_obj)
return not self._should_exclude_file(relative_path, gitignore_matches)
except (ValueError, OSError):
return True # Include files that can't be processed
other_docs = SimpleDirectoryReader(
docs_dir,
recursive=True,
encoding="utf-8",
required_exts=code_extensions,
file_extractor={}, # Use default extractors
filename_as_id=True,
).load_data(show_progress=True)
# Process each directory
if directories:
print(
f"\n🔄 Processing {len(directories)} director{'ies' if len(directories) > 1 else 'y'}..."
)
# Filter documents after loading based on gitignore rules
filtered_docs = []
for doc in other_docs:
file_path = doc.metadata.get("file_path", "")
if file_filter(file_path):
filtered_docs.append(doc)
for docs_dir in directories:
print(f"Processing directory: {docs_dir}")
# Build gitignore parser for each directory
gitignore_matches = self._build_gitignore_parser(docs_dir)
documents.extend(filtered_docs)
except ValueError as e:
if "No files found" in str(e):
print("No additional files found for other supported types.")
else:
raise e
# Try to use better PDF parsers first, but only if PDFs are requested
documents = []
docs_path = Path(docs_dir)
# Check if we should process PDFs
should_process_pdfs = custom_file_types is None or ".pdf" in custom_file_types
if should_process_pdfs:
for file_path in docs_path.rglob("*.pdf"):
# Check if file matches any exclude pattern
try:
relative_path = file_path.relative_to(docs_path)
if self._should_exclude_file(relative_path, gitignore_matches):
continue
except ValueError:
# Skip files that can't be made relative to docs_path
print(f"⚠️ Skipping file outside directory scope: {file_path}")
continue
print(f"Processing PDF: {file_path}")
# Try PyMuPDF first (best quality)
text = extract_pdf_text_with_pymupdf(str(file_path))
if text is None:
# Try pdfplumber
text = extract_pdf_text_with_pdfplumber(str(file_path))
if text:
# Create a simple document structure
from llama_index.core import Document
doc = Document(text=text, metadata={"source": str(file_path)})
documents.append(doc)
else:
# Fallback to default reader
print(f"Using default reader for {file_path}")
try:
default_docs = SimpleDirectoryReader(
str(file_path.parent),
filename_as_id=True,
required_exts=[file_path.suffix],
).load_data()
documents.extend(default_docs)
except Exception as e:
print(f"Warning: Could not process {file_path}: {e}")
# Load other file types with default reader
try:
# Create a custom file filter function using our PathSpec
def file_filter(
file_path: str, docs_dir=docs_dir, gitignore_matches=gitignore_matches
) -> bool:
"""Return True if file should be included (not excluded)"""
try:
docs_path_obj = Path(docs_dir)
file_path_obj = Path(file_path)
relative_path = file_path_obj.relative_to(docs_path_obj)
return not self._should_exclude_file(relative_path, gitignore_matches)
except (ValueError, OSError):
return True # Include files that can't be processed
other_docs = SimpleDirectoryReader(
docs_dir,
recursive=True,
encoding="utf-8",
required_exts=code_extensions,
file_extractor={}, # Use default extractors
filename_as_id=True,
).load_data(show_progress=True)
# Filter documents after loading based on gitignore rules
filtered_docs = []
for doc in other_docs:
file_path = doc.metadata.get("file_path", "")
if file_filter(file_path):
filtered_docs.append(doc)
documents.extend(filtered_docs)
except ValueError as e:
if "No files found" in str(e):
print(f"No additional files found for other supported types in {docs_dir}.")
else:
raise e
all_documents.extend(documents)
print(f"Loaded {len(documents)} documents from {docs_dir}")
documents = all_documents
all_texts = []
@@ -506,7 +640,9 @@ Examples:
".jl",
}
for doc in documents:
print("start chunking documents")
# Add progress bar for document chunking
for doc in tqdm(documents, desc="Chunking documents", unit="doc"):
# Check if this is a code file based on source path
source_path = doc.metadata.get("source", "")
is_code_file = any(source_path.endswith(ext) for ext in code_file_exts)
@@ -522,7 +658,7 @@ Examples:
return all_texts
async def build_index(self, args):
docs_dir = args.docs
docs_paths = args.docs
# Use current directory name if index_name not provided
if args.index_name:
index_name = args.index_name
@@ -533,13 +669,25 @@ Examples:
index_dir = self.indexes_dir / index_name
index_path = self.get_index_path(index_name)
print(f"📂 Indexing: {Path(docs_dir).resolve()}")
# Display all paths being indexed with file/directory distinction
files = [p for p in docs_paths if Path(p).is_file()]
directories = [p for p in docs_paths if Path(p).is_dir()]
print(f"📂 Indexing {len(docs_paths)} path{'s' if len(docs_paths) > 1 else ''}:")
if files:
print(f" 📄 Files ({len(files)}):")
for i, file_path in enumerate(files, 1):
print(f" {i}. {Path(file_path).resolve()}")
if directories:
print(f" 📁 Directories ({len(directories)}):")
for i, dir_path in enumerate(directories, 1):
print(f" {i}. {Path(dir_path).resolve()}")
if index_dir.exists() and not args.force:
print(f"Index '{index_name}' already exists. Use --force to rebuild.")
return
all_texts = self.load_documents(docs_dir, args.file_types)
all_texts = self.load_documents(docs_paths, args.file_types)
if not all_texts:
print("No documents found")
return
@@ -575,7 +723,7 @@ Examples:
if not self.index_exists(index_name):
print(
f"Index '{index_name}' not found. Use 'leann build {index_name} --docs <dir>' to create it."
f"Index '{index_name}' not found. Use 'leann build {index_name} --docs <dir> [<dir2> ...]' to create it."
)
return
@@ -602,7 +750,7 @@ Examples:
if not self.index_exists(index_name):
print(
f"Index '{index_name}' not found. Use 'leann build {index_name} --docs <dir>' to create it."
f"Index '{index_name}' not found. Use 'leann build {index_name} --docs <dir> [<dir2> ...]' to create it."
)
return

View File

@@ -6,7 +6,6 @@ Preserves all optimization parameters to ensure performance
import logging
import os
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import Any
import numpy as np
@@ -374,7 +373,9 @@ def compute_embeddings_ollama(
texts: list[str], model_name: str, is_build: bool = False, host: str = "http://localhost:11434"
) -> np.ndarray:
"""
Compute embeddings using Ollama API.
Compute embeddings using Ollama API with simplified batch processing.
Uses batch size of 32 for MPS/CPU and 128 for CUDA to optimize performance.
Args:
texts: List of texts to compute embeddings for
@@ -438,12 +439,19 @@ def compute_embeddings_ollama(
if any(emb in base_name for emb in ["embed", "bge", "minilm", "e5"]):
embedding_models.append(model)
# Check if model exists (handle versioned names)
model_found = any(
model_name == name.split(":")[0] or model_name == name for name in model_names
)
# Check if model exists (handle versioned names) and resolve to full name
resolved_model_name = None
for name in model_names:
# Exact match
if model_name == name:
resolved_model_name = name
break
# Match without version tag (use the versioned name)
elif model_name == name.split(":")[0]:
resolved_model_name = name
break
if not model_found:
if not resolved_model_name:
error_msg = f"❌ Model '{model_name}' not found in local Ollama.\n\n"
# Suggest pulling the model
@@ -465,6 +473,11 @@ def compute_embeddings_ollama(
error_msg += "\n📚 Browse more: https://ollama.com/library"
raise ValueError(error_msg)
# Use the resolved model name for all subsequent operations
if resolved_model_name != model_name:
logger.info(f"Resolved model name '{model_name}' to '{resolved_model_name}'")
model_name = resolved_model_name
# Verify the model supports embeddings by testing it
try:
test_response = requests.post(
@@ -485,138 +498,148 @@ def compute_embeddings_ollama(
except requests.exceptions.RequestException as e:
logger.warning(f"Could not verify model existence: {e}")
# Process embeddings with optimized concurrent processing
import requests
# Determine batch size based on device availability
# Check for CUDA/MPS availability using torch if available
batch_size = 32 # Default for MPS/CPU
try:
import torch
def get_single_embedding(text_idx_tuple):
"""Helper function to get embedding for a single text."""
text, idx = text_idx_tuple
max_retries = 3
retry_count = 0
if torch.cuda.is_available():
batch_size = 128 # CUDA gets larger batch size
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
batch_size = 32 # MPS gets smaller batch size
except ImportError:
# If torch is not available, use conservative batch size
batch_size = 32
# Truncate very long texts to avoid API issues
truncated_text = text[:8000] if len(text) > 8000 else text
logger.info(f"Using batch size: {batch_size}")
while retry_count < max_retries:
try:
response = requests.post(
f"{host}/api/embeddings",
json={"model": model_name, "prompt": truncated_text},
timeout=30,
)
response.raise_for_status()
def get_batch_embeddings(batch_texts):
"""Get embeddings for a batch of texts."""
all_embeddings = []
failed_indices = []
result = response.json()
embedding = result.get("embedding")
for i, text in enumerate(batch_texts):
max_retries = 3
retry_count = 0
if embedding is None:
raise ValueError(f"No embedding returned for text {idx}")
return idx, embedding
except requests.exceptions.Timeout:
retry_count += 1
if retry_count >= max_retries:
logger.warning(f"Timeout for text {idx} after {max_retries} retries")
return idx, None
except Exception as e:
if retry_count >= max_retries - 1:
logger.error(f"Failed to get embedding for text {idx}: {e}")
return idx, None
retry_count += 1
return idx, None
# Determine if we should use concurrent processing
use_concurrent = (
len(texts) > 5 and not is_build
) # Don't use concurrent in build mode to avoid overwhelming
max_workers = min(4, len(texts)) # Limit concurrent requests to avoid overwhelming Ollama
all_embeddings = [None] * len(texts) # Pre-allocate list to maintain order
failed_indices = []
if use_concurrent:
logger.info(
f"Using concurrent processing with {max_workers} workers for {len(texts)} texts"
)
with ThreadPoolExecutor(max_workers=max_workers) as executor:
# Submit all tasks
future_to_idx = {
executor.submit(get_single_embedding, (text, idx)): idx
for idx, text in enumerate(texts)
}
# Add progress bar for concurrent processing
try:
if is_build or len(texts) > 10:
from tqdm import tqdm
futures_iterator = tqdm(
as_completed(future_to_idx),
total=len(texts),
desc="Computing Ollama embeddings",
)
else:
futures_iterator = as_completed(future_to_idx)
except ImportError:
futures_iterator = as_completed(future_to_idx)
# Collect results as they complete
for future in futures_iterator:
# Truncate very long texts to avoid API issues
truncated_text = text[:8000] if len(text) > 8000 else text
while retry_count < max_retries:
try:
idx, embedding = future.result()
if embedding is not None:
all_embeddings[idx] = embedding
else:
failed_indices.append(idx)
response = requests.post(
f"{host}/api/embeddings",
json={"model": model_name, "prompt": truncated_text},
timeout=30,
)
response.raise_for_status()
result = response.json()
embedding = result.get("embedding")
if embedding is None:
raise ValueError(f"No embedding returned for text {i}")
if not isinstance(embedding, list) or len(embedding) == 0:
raise ValueError(f"Invalid embedding format for text {i}")
all_embeddings.append(embedding)
break
except requests.exceptions.Timeout:
retry_count += 1
if retry_count >= max_retries:
logger.warning(f"Timeout for text {i} after {max_retries} retries")
failed_indices.append(i)
all_embeddings.append(None)
break
except Exception as e:
idx = future_to_idx[future]
logger.error(f"Exception for text {idx}: {e}")
failed_indices.append(idx)
retry_count += 1
if retry_count >= max_retries:
logger.error(f"Failed to get embedding for text {i}: {e}")
failed_indices.append(i)
all_embeddings.append(None)
break
return all_embeddings, failed_indices
# Process texts in batches
all_embeddings = []
all_failed_indices = []
# Setup progress bar if needed
show_progress = is_build or len(texts) > 10
try:
if show_progress:
from tqdm import tqdm
except ImportError:
show_progress = False
# Process batches
num_batches = (len(texts) + batch_size - 1) // batch_size
if show_progress:
batch_iterator = tqdm(range(num_batches), desc="Computing Ollama embeddings")
else:
# Sequential processing with progress bar
show_progress = is_build or len(texts) > 10
batch_iterator = range(num_batches)
try:
if show_progress:
from tqdm import tqdm
for batch_idx in batch_iterator:
start_idx = batch_idx * batch_size
end_idx = min(start_idx + batch_size, len(texts))
batch_texts = texts[start_idx:end_idx]
iterator = tqdm(
enumerate(texts), total=len(texts), desc="Computing Ollama embeddings"
)
else:
iterator = enumerate(texts)
except ImportError:
iterator = enumerate(texts)
batch_embeddings, batch_failed = get_batch_embeddings(batch_texts)
for idx, text in iterator:
result_idx, embedding = get_single_embedding((text, idx))
if embedding is not None:
all_embeddings[idx] = embedding
else:
failed_indices.append(idx)
# Adjust failed indices to global indices
global_failed = [start_idx + idx for idx in batch_failed]
all_failed_indices.extend(global_failed)
all_embeddings.extend(batch_embeddings)
# Handle failed embeddings
if failed_indices:
if len(failed_indices) == len(texts):
if all_failed_indices:
if len(all_failed_indices) == len(texts):
raise RuntimeError("Failed to compute any embeddings")
logger.warning(f"Failed to compute embeddings for {len(failed_indices)}/{len(texts)} texts")
logger.warning(
f"Failed to compute embeddings for {len(all_failed_indices)}/{len(texts)} texts"
)
# Use zero embeddings as fallback for failed ones
valid_embedding = next((e for e in all_embeddings if e is not None), None)
if valid_embedding:
embedding_dim = len(valid_embedding)
for idx in failed_indices:
all_embeddings[idx] = [0.0] * embedding_dim
for i, embedding in enumerate(all_embeddings):
if embedding is None:
all_embeddings[i] = [0.0] * embedding_dim
# Remove None values and convert to numpy array
# Remove None values
all_embeddings = [e for e in all_embeddings if e is not None]
if not all_embeddings:
raise RuntimeError("No valid embeddings were computed")
# Validate embedding dimensions
expected_dim = len(all_embeddings[0])
inconsistent_dims = []
for i, embedding in enumerate(all_embeddings):
if len(embedding) != expected_dim:
inconsistent_dims.append((i, len(embedding)))
if inconsistent_dims:
error_msg = f"Ollama returned inconsistent embedding dimensions. Expected {expected_dim}, but got:\n"
for idx, dim in inconsistent_dims[:10]: # Show first 10 inconsistent ones
error_msg += f" - Text {idx}: {dim} dimensions\n"
if len(inconsistent_dims) > 10:
error_msg += f" ... and {len(inconsistent_dims) - 10} more\n"
error_msg += f"\nThis is likely an Ollama API bug with model '{model_name}'. Please try:\n"
error_msg += "1. Restart Ollama service: 'ollama serve'\n"
error_msg += f"2. Re-pull the model: 'ollama pull {model_name}'\n"
error_msg += (
"3. Use sentence-transformers instead: --embedding-mode sentence-transformers\n"
)
error_msg += "4. Report this issue to Ollama: https://github.com/ollama/ollama/issues"
raise ValueError(error_msg)
# Convert to numpy array and normalize
embeddings = np.array(all_embeddings, dtype=np.float32)

View File

@@ -1,7 +1,6 @@
import atexit
import logging
import os
import signal
import socket
import subprocess
import sys
@@ -305,24 +304,13 @@ class EmbeddingServerManager:
project_root = Path(__file__).parent.parent.parent.parent.parent
logger.info(f"Command: {' '.join(command)}")
# In CI environment, redirect output to avoid buffer deadlock
# Embedding servers use many print statements that can fill buffers
is_ci = os.environ.get("CI") == "true"
if is_ci:
stdout_target = subprocess.DEVNULL
stderr_target = subprocess.DEVNULL
logger.info("CI environment detected, redirecting embedding server output to DEVNULL")
else:
stdout_target = None # Direct to console for visible logs
stderr_target = None # Direct to console for visible logs
# IMPORTANT: Use a new session so we can manage the whole process group reliably
# Let server output go directly to console
# The server will respect LEANN_LOG_LEVEL environment variable
self.server_process = subprocess.Popen(
command,
cwd=project_root,
stdout=stdout_target,
stderr=stderr_target,
start_new_session=True,
stdout=None, # Direct to console
stderr=None, # Direct to console
)
self.server_port = port
logger.info(f"Server process started with PID: {self.server_process.pid}")
@@ -364,13 +352,7 @@ class EmbeddingServerManager:
logger.info(
f"Terminating server process (PID: {self.server_process.pid}) for backend {self.backend_module_name}..."
)
# Try terminating the whole process group first (POSIX)
try:
pgid = os.getpgid(self.server_process.pid)
os.killpg(pgid, signal.SIGTERM)
except Exception:
# Fallback to terminating just the process
self.server_process.terminate()
self.server_process.terminate()
try:
self.server_process.wait(timeout=3)
@@ -379,11 +361,7 @@ class EmbeddingServerManager:
logger.warning(
f"Server process {self.server_process.pid} did not terminate gracefully within 3 seconds, killing it."
)
try:
pgid = os.getpgid(self.server_process.pid)
os.killpg(pgid, signal.SIGKILL)
except Exception:
self.server_process.kill()
self.server_process.kill()
try:
self.server_process.wait(timeout=2)
logger.info(f"Server process {self.server_process.pid} killed successfully.")
@@ -393,21 +371,23 @@ class EmbeddingServerManager:
)
# Don't hang indefinitely
# Clean up process resources without waiting
# The process should already be terminated/killed above
# Don't wait here as it can hang CI indefinitely
# Clean up process resources to prevent resource tracker warnings
try:
self.server_process.wait() # Ensure process is fully cleaned up
except Exception:
pass
self.server_process = None
def _launch_server_process_colab(self, command: list, port: int) -> None:
"""Launch the server process with Colab-specific settings."""
logger.info(f"Colab Command: {' '.join(command)}")
# In Colab, redirect to DEVNULL to avoid pipe blocking
# PIPE without reading can cause hangs
# In Colab, we need to be more careful about process management
self.server_process = subprocess.Popen(
command,
stdout=subprocess.DEVNULL,
stderr=subprocess.DEVNULL,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
)
self.server_port = port

View File

@@ -1,5 +1,5 @@
from abc import ABC, abstractmethod
from typing import Any, Literal, Optional
from typing import Any, Literal, Union
import numpy as np
@@ -35,7 +35,7 @@ class LeannBackendSearcherInterface(ABC):
@abstractmethod
def _ensure_server_running(
self, passages_source_file: str, port: Optional[int], **kwargs
self, passages_source_file: str, port: Union[int, None], **kwargs
) -> int:
"""Ensure server is running"""
pass
@@ -50,7 +50,7 @@ class LeannBackendSearcherInterface(ABC):
prune_ratio: float = 0.0,
recompute_embeddings: bool = False,
pruning_strategy: Literal["global", "local", "proportional"] = "global",
zmq_port: Optional[int] = None,
zmq_port: Union[int, None] = None,
**kwargs,
) -> dict[str, Any]:
"""Search for nearest neighbors
@@ -76,7 +76,7 @@ class LeannBackendSearcherInterface(ABC):
self,
query: str,
use_server_if_available: bool = True,
zmq_port: Optional[int] = None,
zmq_port: Union[int, None] = None,
) -> np.ndarray:
"""Compute embedding for a query string

View File

@@ -132,15 +132,10 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
import msgpack
import zmq
context = None
socket = None
try:
context = zmq.Context()
socket = context.socket(zmq.REQ)
socket.setsockopt(zmq.LINGER, 0) # Don't block on close
socket.setsockopt(zmq.RCVTIMEO, 5000) # 5 second timeout
socket.setsockopt(zmq.SNDTIMEO, 5000) # 5 second timeout
socket.setsockopt(zmq.IMMEDIATE, 1) # Don't wait for connection
socket.setsockopt(zmq.RCVTIMEO, 30000) # 30 second timeout
socket.connect(f"tcp://localhost:{zmq_port}")
# Send embedding request
@@ -152,6 +147,9 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
response_bytes = socket.recv()
response = msgpack.unpackb(response_bytes)
socket.close()
context.term()
# Convert response to numpy array
if isinstance(response, list) and len(response) > 0:
return np.array(response, dtype=np.float32)
@@ -160,11 +158,6 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
except Exception as e:
raise RuntimeError(f"Failed to compute embeddings via server: {e}")
finally:
if socket:
socket.close(linger=0)
if context:
context.term()
@abstractmethod
def search(
@@ -198,27 +191,7 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
"""
pass
def cleanup(self):
"""Cleanup resources including embedding server and ZMQ connections."""
# Stop embedding server
def __del__(self):
"""Ensures the embedding server is stopped when the searcher is destroyed."""
if hasattr(self, "embedding_server_manager"):
self.embedding_server_manager.stop_server()
# Set ZMQ linger but don't terminate global context
try:
import zmq
# Just set linger on the global instance
ctx = zmq.Context.instance()
ctx.linger = 0
# NEVER call ctx.term() on the global instance
except Exception:
pass
def __del__(self):
"""Ensures resources are cleaned up when the searcher is destroyed."""
try:
self.cleanup()
except Exception:
# Ignore errors during destruction
pass

View File

@@ -45,6 +45,42 @@ leann build my-project --docs ./
claude
```
## 🚀 Advanced Usage Examples
### Index Entire Git Repository
```bash
# Index all tracked files in your git repository, note right now we will skip submodules, but we can add it back easily if you want
leann build my-repo --docs $(git ls-files) --embedding-mode sentence-transformers --embedding-model all-MiniLM-L6-v2 --backend hnsw
# Index only specific file types from git
leann build my-python-code --docs $(git ls-files "*.py") --embedding-mode sentence-transformers --embedding-model all-MiniLM-L6-v2 --backend hnsw
```
### Multiple Directories and Files
```bash
# Index multiple directories
leann build my-codebase --docs ./src ./tests ./docs ./config --embedding-mode sentence-transformers --embedding-model all-MiniLM-L6-v2 --backend hnsw
# Mix files and directories
leann build my-project --docs ./README.md ./src/ ./package.json ./docs/ --embedding-mode sentence-transformers --embedding-model all-MiniLM-L6-v2 --backend hnsw
# Specific files only
leann build my-configs --docs ./tsconfig.json ./package.json ./webpack.config.js --embedding-mode sentence-transformers --embedding-model all-MiniLM-L6-v2 --backend hnsw
```
### Advanced Git Integration
```bash
# Index recently modified files
leann build recent-changes --docs $(git diff --name-only HEAD~10..HEAD) --embedding-mode sentence-transformers --embedding-model all-MiniLM-L6-v2 --backend hnsw
# Index files matching pattern
leann build frontend --docs $(git ls-files "*.tsx" "*.ts" "*.jsx" "*.js") --embedding-mode sentence-transformers --embedding-model all-MiniLM-L6-v2 --backend hnsw
# Index documentation and config files
leann build docs-and-configs --docs $(git ls-files "*.md" "*.yml" "*.yaml" "*.json" "*.toml") --embedding-mode sentence-transformers --embedding-model all-MiniLM-L6-v2 --backend hnsw
```
**Try this in Claude Code:**
```
Help me understand this codebase. List available indexes and search for authentication patterns.

View File

@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
[project]
name = "leann"
version = "0.2.7"
version = "0.2.8"
description = "LEANN - The smallest vector index in the world. RAG Everything with LEANN!"
readme = "README.md"
requires-python = ">=3.9"

View File

@@ -40,10 +40,9 @@ dependencies = [
# Other dependencies
"ipykernel==6.29.5",
"msgpack>=1.1.1",
"mlx>=0.26.3; sys_platform == 'darwin'",
"mlx-lm>=0.26.0; sys_platform == 'darwin'",
"mlx>=0.26.3; sys_platform == 'darwin' and platform_machine == 'arm64'",
"mlx-lm>=0.26.0; sys_platform == 'darwin' and platform_machine == 'arm64'",
"psutil>=5.8.0",
"pybind11>=3.0.0",
"pathspec>=0.12.1",
"nbconvert>=7.16.6",
"gitignore-parser>=0.1.12",
@@ -51,21 +50,19 @@ dependencies = [
[project.optional-dependencies]
dev = [
"pytest>=8.3.0", # Minimum version for Python 3.13 support
"pytest-cov>=5.0",
"pytest-xdist>=3.5", # For parallel test execution
"pytest>=7.0",
"pytest-cov>=4.0",
"pytest-xdist>=3.0", # For parallel test execution
"black>=23.0",
"ruff==0.12.7", # Fixed version to ensure consistent formatting across all environments
"ruff>=0.1.0",
"matplotlib",
"huggingface-hub>=0.20.0",
"pre-commit>=3.5.0",
]
test = [
"pytest>=8.3.0", # Minimum version for Python 3.13 support
"pytest-timeout>=2.3",
"anyio>=4.0", # For async test support (includes pytest plugin)
"psutil>=5.9.0", # For process cleanup in tests
"pytest>=7.0",
"pytest-timeout>=2.0",
"llama-index-core>=0.12.0",
"llama-index-readers-file>=0.4.0",
"python-dotenv>=1.0.0",
@@ -157,8 +154,7 @@ markers = [
"slow: marks tests as slow (deselect with '-m \"not slow\"')",
"openai: marks tests that require OpenAI API key",
]
timeout = 300 # Reduced from 600s (10min) to 300s (5min) for CI safety
timeout_method = "thread" # Use thread method to avoid non-daemon thread issues
timeout = 600
addopts = [
"-v",
"--tb=short",

View File

@@ -1,103 +0,0 @@
#!/bin/bash
# Diagnostic script for debugging CI hangs
echo "========================================="
echo " CI HANG DIAGNOSTIC SCRIPT"
echo "========================================="
echo ""
echo "📅 Current time: $(date)"
echo "🖥️ Hostname: $(hostname)"
echo "👤 User: $(whoami)"
echo "📂 Working directory: $(pwd)"
echo ""
echo "=== PYTHON ENVIRONMENT ==="
python --version 2>&1 || echo "Python not found"
pip list 2>&1 | head -20 || echo "pip not available"
echo ""
echo "=== PROCESS INFORMATION ==="
echo "Current shell PID: $$"
echo "Parent PID: $PPID"
echo ""
echo "All Python processes:"
ps aux | grep -E "[p]ython" || echo "No Python processes"
echo ""
echo "All pytest processes:"
ps aux | grep -E "[p]ytest" || echo "No pytest processes"
echo ""
echo "Embedding server processes:"
ps aux | grep -E "[e]mbedding_server" || echo "No embedding server processes"
echo ""
echo "Zombie processes:"
ps aux | grep "<defunct>" || echo "No zombie processes"
echo ""
echo "=== NETWORK INFORMATION ==="
echo "Network listeners on typical embedding server ports:"
ss -ltn 2>/dev/null | grep -E ":555[0-9]|:556[0-9]" || netstat -ltn 2>/dev/null | grep -E ":555[0-9]|:556[0-9]" || echo "No listeners on embedding ports"
echo ""
echo "All network listeners:"
ss -ltn 2>/dev/null | head -20 || netstat -ltn 2>/dev/null | head -20 || echo "Cannot get network info"
echo ""
echo "=== FILE DESCRIPTORS ==="
echo "Open files for current shell:"
lsof -p $$ 2>/dev/null | head -20 || echo "lsof not available"
echo ""
if [ -d "/proc/$$" ]; then
echo "File descriptors for current shell (/proc/$$/fd):"
ls -la /proc/$$/fd 2>/dev/null | head -20 || echo "Cannot access /proc/$$/fd"
echo ""
fi
echo "=== SYSTEM RESOURCES ==="
echo "Memory usage:"
free -h 2>/dev/null || vm_stat 2>/dev/null || echo "Cannot get memory info"
echo ""
echo "Disk usage:"
df -h . 2>/dev/null || echo "Cannot get disk info"
echo ""
echo "CPU info:"
nproc 2>/dev/null || sysctl -n hw.ncpu 2>/dev/null || echo "Cannot get CPU info"
echo ""
echo "=== PYTHON SPECIFIC CHECKS ==="
python -c "
import sys
import os
print(f'Python executable: {sys.executable}')
print(f'Python path: {sys.path[:3]}...')
print(f'Environment PYTHONPATH: {os.environ.get(\"PYTHONPATH\", \"Not set\")}')
print(f'Site packages: {[p for p in sys.path if \"site-packages\" in p][:2]}')
" 2>&1 || echo "Cannot run Python diagnostics"
echo ""
echo "=== ZMQ SPECIFIC CHECKS ==="
python -c "
try:
import zmq
print(f'ZMQ version: {zmq.zmq_version()}')
print(f'PyZMQ version: {zmq.pyzmq_version()}')
ctx = zmq.Context.instance()
print(f'ZMQ context instance: {ctx}')
except Exception as e:
print(f'ZMQ check failed: {e}')
" 2>&1 || echo "Cannot check ZMQ"
echo ""
echo "=== PYTEST CHECK ==="
pytest --version 2>&1 || echo "pytest not found"
echo ""
echo "=== END OF DIAGNOSTICS ==="
echo "Generated at: $(date)"

View File

@@ -6,11 +6,10 @@ This directory contains automated tests for the LEANN project using pytest.
### `test_readme_examples.py`
Tests the examples shown in README.md:
- The basic example code that users see first (parametrized for both HNSW and DiskANN backends)
- The basic example code that users see first
- Import statements work correctly
- Different backend options (HNSW, DiskANN)
- Different LLM configuration options (parametrized for both backends)
- **All main README examples are tested with both HNSW and DiskANN backends using pytest parametrization**
- Different LLM configuration options
### `test_basic.py`
Basic functionality tests that verify:
@@ -26,16 +25,6 @@ Tests the document RAG example functionality:
- Tests error handling with invalid parameters
- Verifies that normalized embeddings are detected and cosine distance is used
### `test_diskann_partition.py`
Tests DiskANN graph partitioning functionality:
- Tests DiskANN index building without partitioning (baseline)
- Tests automatic graph partitioning with `is_recompute=True`
- Verifies that partition files are created and large files are cleaned up for storage saving
- Tests search functionality with partitioned indices
- Validates medoid and max_base_norm file generation and usage
- Includes performance comparison between DiskANN (with partition) and HNSW
- **Note**: These tests are skipped in CI due to hardware requirements and computation time
## Running Tests
### Install test dependencies:
@@ -65,23 +54,15 @@ pytest tests/ -m "not openai"
# Skip slow tests
pytest tests/ -m "not slow"
# Run DiskANN partition tests (requires local machine, not CI)
pytest tests/test_diskann_partition.py
```
### Run with specific backend:
```bash
# Test only HNSW backend
pytest tests/test_basic.py::test_backend_basic[hnsw]
pytest tests/test_readme_examples.py::test_readme_basic_example[hnsw]
# Test only DiskANN backend
pytest tests/test_basic.py::test_backend_basic[diskann]
pytest tests/test_readme_examples.py::test_readme_basic_example[diskann]
# All DiskANN tests (parametrized + specialized partition tests)
pytest tests/ -k diskann
```
## CI/CD Integration

View File

@@ -1,301 +0,0 @@
"""Global test configuration and cleanup fixtures."""
import faulthandler
import os
import signal
import time
from collections.abc import Generator
import pytest
# Enable faulthandler to dump stack traces
faulthandler.enable()
@pytest.fixture(scope="session", autouse=True)
def _ci_backtraces():
"""Dump stack traces before CI timeout to diagnose hanging."""
if os.getenv("CI") == "true":
# Dump stack traces 10s before the 180s timeout
faulthandler.dump_traceback_later(170, repeat=True)
yield
faulthandler.cancel_dump_traceback_later()
@pytest.fixture(scope="session", autouse=True)
def global_test_cleanup() -> Generator:
"""Global cleanup fixture that runs after all tests.
This ensures all ZMQ connections and child processes are properly cleaned up,
preventing the test runner from hanging on exit.
"""
yield
# Cleanup after all tests
print("\n🧹 Running global test cleanup...")
# 1. Force cleanup of any LeannSearcher instances
try:
import gc
# Force garbage collection to trigger __del__ methods
gc.collect()
time.sleep(0.2)
except Exception:
pass
# 2. Set ZMQ linger but DON'T term Context.instance()
# Terminating the global instance can block if other code still has sockets
try:
import zmq
# Just set linger on the global instance, don't terminate it
ctx = zmq.Context.instance()
ctx.linger = 0
# Do NOT call ctx.term() or ctx.destroy() on the global instance!
# That would block waiting for all sockets to close
except Exception:
pass
# Kill any leftover child processes (including grandchildren)
try:
import psutil
current_process = psutil.Process()
# Get ALL descendants recursively
children = current_process.children(recursive=True)
if children:
print(f"\n⚠️ Cleaning up {len(children)} leftover child processes...")
# First try to terminate gracefully
for child in children:
try:
print(f" Terminating {child.pid} ({child.name()})")
child.terminate()
except (psutil.NoSuchProcess, psutil.AccessDenied):
pass
# Wait a bit for processes to terminate
gone, alive = psutil.wait_procs(children, timeout=2)
# Force kill any remaining processes
for child in alive:
try:
print(f" Force killing process {child.pid} ({child.name()})")
child.kill()
except (psutil.NoSuchProcess, psutil.AccessDenied):
pass
# Final wait to ensure cleanup
psutil.wait_procs(alive, timeout=1)
except ImportError:
# psutil not installed, try basic process cleanup
try:
# Send SIGTERM to all child processes
os.killpg(os.getpgid(os.getpid()), signal.SIGTERM)
except Exception:
pass
except Exception as e:
print(f"Warning: Error during process cleanup: {e}")
# List and clean up remaining threads
try:
import threading
threads = [t for t in threading.enumerate() if t is not threading.main_thread()]
if threads:
print(f"\n⚠️ {len(threads)} non-main threads still running:")
for t in threads:
print(f" - {t.name} (daemon={t.daemon})")
# Force cleanup of pytest-timeout threads that block exit
if "pytest_timeout" in t.name and not t.daemon:
print(f" 🔧 Converting pytest-timeout thread to daemon: {t.name}")
try:
t.daemon = True
print(" ✓ Converted to daemon thread")
except Exception as e:
print(f" ✗ Failed: {e}")
# Check if only daemon threads remain
non_daemon = [
t for t in threading.enumerate() if t is not threading.main_thread() and not t.daemon
]
if non_daemon:
print(f"\n⚠️ {len(non_daemon)} non-daemon threads still blocking exit")
# Force exit in CI to prevent hanging
if os.environ.get("CI") == "true":
print("🔨 Forcing exit in CI environment...")
os._exit(0)
except Exception as e:
print(f"Thread cleanup error: {e}")
@pytest.fixture
def auto_cleanup_searcher():
"""Fixture that automatically cleans up LeannSearcher instances."""
searchers = []
def register(searcher):
"""Register a searcher for cleanup."""
searchers.append(searcher)
return searcher
yield register
# Cleanup all registered searchers
for searcher in searchers:
try:
searcher.cleanup()
except Exception:
pass
# Force garbage collection
import gc
gc.collect()
time.sleep(0.1)
@pytest.fixture(scope="session", autouse=True)
def _reap_children():
"""Reap all child processes at session end as a safety net."""
yield
# Final aggressive cleanup
try:
import psutil
me = psutil.Process()
kids = me.children(recursive=True)
for p in kids:
try:
p.terminate()
except Exception:
pass
_, alive = psutil.wait_procs(kids, timeout=2)
for p in alive:
try:
p.kill()
except Exception:
pass
except Exception:
pass
@pytest.fixture(autouse=True)
def cleanup_after_each_test():
"""Cleanup after each test to prevent resource leaks."""
yield
# Force garbage collection to trigger any __del__ methods
import gc
gc.collect()
# Give a moment for async cleanup
time.sleep(0.1)
def pytest_configure(config):
"""Configure pytest with better timeout handling."""
# Set default timeout method to thread if not specified
if not config.getoption("--timeout-method", None):
config.option.timeout_method = "thread"
# Add more logging
print(f"🔧 Pytest configured at {time.strftime('%Y-%m-%d %H:%M:%S')}")
print(f" Python version: {os.sys.version}")
print(f" Platform: {os.sys.platform}")
def pytest_sessionstart(session):
"""Called after the Session object has been created."""
print(f"🏁 Pytest session starting at {time.strftime('%Y-%m-%d %H:%M:%S')}")
print(f" Session ID: {id(session)}")
# Show initial process state
try:
import psutil
current = psutil.Process()
print(f" Current PID: {current.pid}")
print(f" Parent PID: {current.ppid()}")
children = current.children(recursive=True)
if children:
print(f" ⚠️ Already have {len(children)} child processes at start!")
except Exception:
pass
def pytest_sessionfinish(session, exitstatus):
"""Called after whole test run finished."""
print(f"🏁 Pytest session finishing at {time.strftime('%Y-%m-%d %H:%M:%S')}")
print(f" Exit status: {exitstatus}")
# Aggressive cleanup before pytest exits
print("🧹 Starting aggressive cleanup...")
# First, clean up child processes
try:
import psutil
current = psutil.Process()
children = current.children(recursive=True)
if children:
print(f" Found {len(children)} child processes to clean up:")
for child in children:
try:
print(f" - PID {child.pid}: {child.name()} (status: {child.status()})")
child.terminate()
except Exception as e:
print(f" - Failed to terminate {child.pid}: {e}")
# Wait briefly then kill
time.sleep(0.5)
_, alive = psutil.wait_procs(children, timeout=1)
for child in alive:
try:
print(f" - Force killing {child.pid}")
child.kill()
except Exception:
pass
else:
print(" No child processes found")
except Exception as e:
print(f" Process cleanup error: {e}")
# Second, clean up problematic threads
try:
import threading
threads = [t for t in threading.enumerate() if t is not threading.main_thread()]
if threads:
print(f" Found {len(threads)} non-main threads:")
for t in threads:
print(f" - {t.name} (daemon={t.daemon})")
# Convert pytest-timeout threads to daemon so they don't block exit
if "pytest_timeout" in t.name and not t.daemon:
try:
t.daemon = True
print(" ✓ Converted to daemon")
except Exception:
pass
# Force exit if non-daemon threads remain in CI
non_daemon = [
t for t in threading.enumerate() if t is not threading.main_thread() and not t.daemon
]
if non_daemon and os.environ.get("CI") == "true":
print(f" ⚠️ {len(non_daemon)} non-daemon threads remain, forcing exit...")
os._exit(exitstatus or 0)
except Exception as e:
print(f" Thread cleanup error: {e}")
print(f"✅ Pytest exiting at {time.strftime('%Y-%m-%d %H:%M:%S')}")

View File

@@ -7,7 +7,6 @@ import tempfile
from pathlib import Path
import pytest
from test_timeout import ci_timeout
def test_imports():
@@ -20,7 +19,6 @@ def test_imports():
os.environ.get("CI") == "true", reason="Skip model tests in CI to avoid MPS memory issues"
)
@pytest.mark.parametrize("backend_name", ["hnsw", "diskann"])
@ci_timeout(120) # 2 minute timeout for backend tests
def test_backend_basic(backend_name):
"""Test basic functionality for each backend."""
from leann.api import LeannBuilder, LeannSearcher, SearchResult
@@ -70,7 +68,6 @@ def test_backend_basic(backend_name):
@pytest.mark.skipif(
os.environ.get("CI") == "true", reason="Skip model tests in CI to avoid MPS memory issues"
)
@ci_timeout(180) # 3 minute timeout for large index test
def test_large_index():
"""Test with larger dataset."""
from leann.api import LeannBuilder, LeannSearcher

View File

@@ -1,369 +0,0 @@
"""
Test DiskANN graph partitioning functionality.
Tests the automatic graph partitioning feature that was implemented to save
storage space by partitioning large DiskANN indices and safely deleting
redundant files while maintaining search functionality.
"""
import os
import tempfile
from pathlib import Path
import pytest
@pytest.mark.skipif(
os.environ.get("CI") == "true",
reason="Skip DiskANN partition tests in CI - requires specific hardware and large memory",
)
def test_diskann_without_partition():
"""Test DiskANN index building without partition (baseline)."""
from leann.api import LeannBuilder, LeannSearcher
with tempfile.TemporaryDirectory() as temp_dir:
index_path = str(Path(temp_dir) / "test_no_partition.leann")
# Test data - enough to trigger index building
texts = [
f"Document {i} discusses topic {i % 10} with detailed analysis of subject {i // 10}."
for i in range(500)
]
# Build without partition (is_recompute=False)
builder = LeannBuilder(
backend_name="diskann",
embedding_model="facebook/contriever",
embedding_mode="sentence-transformers",
num_neighbors=32,
search_list_size=50,
is_recompute=False, # No partition
)
for text in texts:
builder.add_text(text)
builder.build_index(index_path)
# Verify index was created
index_dir = Path(index_path).parent
assert index_dir.exists()
# Check that traditional DiskANN files exist
index_prefix = Path(index_path).stem
# Core DiskANN files (beam search index may not be created for small datasets)
required_files = [
f"{index_prefix}_disk.index",
f"{index_prefix}_pq_compressed.bin",
f"{index_prefix}_pq_pivots.bin",
]
# Check all generated files first for debugging
generated_files = [f.name for f in index_dir.glob(f"{index_prefix}*")]
print(f"Generated files: {generated_files}")
for required_file in required_files:
file_path = index_dir / required_file
assert file_path.exists(), f"Required file {required_file} not found"
# Ensure no partition files exist in non-partition mode
partition_files = [f"{index_prefix}_disk_graph.index", f"{index_prefix}_partition.bin"]
for partition_file in partition_files:
file_path = index_dir / partition_file
assert not file_path.exists(), (
f"Partition file {partition_file} should not exist in non-partition mode"
)
# Test search functionality
searcher = LeannSearcher(index_path)
results = searcher.search("topic 3 analysis", top_k=3)
assert len(results) > 0
assert all(result.score is not None and result.score != float("-inf") for result in results)
@pytest.mark.skipif(
os.environ.get("CI") == "true",
reason="Skip DiskANN partition tests in CI - requires specific hardware and large memory",
)
def test_diskann_with_partition():
"""Test DiskANN index building with automatic graph partitioning."""
from leann.api import LeannBuilder
with tempfile.TemporaryDirectory() as temp_dir:
index_path = str(Path(temp_dir) / "test_with_partition.leann")
# Test data - enough to trigger partitioning
texts = [
f"Document {i} explores subject {i % 15} with comprehensive coverage of area {i // 15}."
for i in range(500)
]
# Build with partition (is_recompute=True)
builder = LeannBuilder(
backend_name="diskann",
embedding_model="facebook/contriever",
embedding_mode="sentence-transformers",
num_neighbors=32,
search_list_size=50,
is_recompute=True, # Enable automatic partitioning
)
for text in texts:
builder.add_text(text)
builder.build_index(index_path)
# Verify index was created
index_dir = Path(index_path).parent
assert index_dir.exists()
# Check that partition files exist
index_prefix = Path(index_path).stem
partition_files = [
f"{index_prefix}_disk_graph.index", # Partitioned graph
f"{index_prefix}_partition.bin", # Partition metadata
f"{index_prefix}_pq_compressed.bin",
f"{index_prefix}_pq_pivots.bin",
]
for partition_file in partition_files:
file_path = index_dir / partition_file
assert file_path.exists(), f"Expected partition file {partition_file} not found"
# Check that large files were cleaned up (storage saving goal)
large_files = [f"{index_prefix}_disk.index", f"{index_prefix}_disk_beam_search.index"]
for large_file in large_files:
file_path = index_dir / large_file
assert not file_path.exists(), (
f"Large file {large_file} should have been deleted for storage saving"
)
# Verify required auxiliary files for partition mode exist
required_files = [
f"{index_prefix}_disk.index_medoids.bin",
f"{index_prefix}_disk.index_max_base_norm.bin",
]
for req_file in required_files:
file_path = index_dir / req_file
assert file_path.exists(), (
f"Required auxiliary file {req_file} missing for partition mode"
)
@pytest.mark.skipif(
os.environ.get("CI") == "true",
reason="Skip DiskANN partition tests in CI - requires specific hardware and large memory",
)
def test_diskann_partition_search_functionality():
"""Test that search works correctly with partitioned indices."""
from leann.api import LeannBuilder, LeannSearcher
with tempfile.TemporaryDirectory() as temp_dir:
index_path = str(Path(temp_dir) / "test_partition_search.leann")
# Create diverse test data
texts = [
"LEANN is a storage-efficient approximate nearest neighbor search system.",
"Graph partitioning helps reduce memory usage in large scale vector search.",
"DiskANN provides high-performance disk-based approximate nearest neighbor search.",
"Vector embeddings enable semantic search over unstructured text data.",
"Approximate nearest neighbor algorithms trade accuracy for speed and storage.",
] * 100 # Repeat to get enough data
# Build with partitioning
builder = LeannBuilder(
backend_name="diskann",
embedding_model="facebook/contriever",
embedding_mode="sentence-transformers",
is_recompute=True, # Enable partitioning
)
for text in texts:
builder.add_text(text)
builder.build_index(index_path)
# Test search with partitioned index
searcher = LeannSearcher(index_path)
# Test various queries
test_queries = [
("vector search algorithms", 5),
("LEANN storage efficiency", 3),
("graph partitioning memory", 4),
("approximate nearest neighbor", 7),
]
for query, top_k in test_queries:
results = searcher.search(query, top_k=top_k)
# Verify search results
assert len(results) == top_k, f"Expected {top_k} results for query '{query}'"
assert all(result.score is not None for result in results), (
"All results should have scores"
)
assert all(result.score != float("-inf") for result in results), (
"No result should have -inf score"
)
assert all(result.text is not None for result in results), (
"All results should have text"
)
# Scores should be in descending order (higher similarity first)
scores = [result.score for result in results]
assert scores == sorted(scores, reverse=True), (
"Results should be sorted by score descending"
)
@pytest.mark.skipif(
os.environ.get("CI") == "true",
reason="Skip DiskANN partition tests in CI - requires specific hardware and large memory",
)
def test_diskann_medoid_and_norm_files():
"""Test that medoid and max_base_norm files are correctly generated and used."""
import struct
from leann.api import LeannBuilder, LeannSearcher
with tempfile.TemporaryDirectory() as temp_dir:
index_path = str(Path(temp_dir) / "test_medoid_norm.leann")
# Small but sufficient dataset
texts = [f"Test document {i} with content about subject {i % 10}." for i in range(200)]
builder = LeannBuilder(
backend_name="diskann",
embedding_model="facebook/contriever",
embedding_mode="sentence-transformers",
is_recompute=True,
)
for text in texts:
builder.add_text(text)
builder.build_index(index_path)
index_dir = Path(index_path).parent
index_prefix = Path(index_path).stem
# Test medoids file
medoids_file = index_dir / f"{index_prefix}_disk.index_medoids.bin"
assert medoids_file.exists(), "Medoids file should be generated"
# Read and validate medoids file format
with open(medoids_file, "rb") as f:
nshards = struct.unpack("<I", f.read(4))[0]
one_val = struct.unpack("<I", f.read(4))[0]
medoid_id = struct.unpack("<I", f.read(4))[0]
assert nshards == 1, "Single-shot build should have 1 shard"
assert one_val == 1, "Expected value should be 1"
assert medoid_id >= 0, "Medoid ID should be valid (not hardcoded 0)"
# Test max_base_norm file
norm_file = index_dir / f"{index_prefix}_disk.index_max_base_norm.bin"
assert norm_file.exists(), "Max base norm file should be generated"
# Read and validate norm file
with open(norm_file, "rb") as f:
npts = struct.unpack("<I", f.read(4))[0]
ndims = struct.unpack("<I", f.read(4))[0]
norm_val = struct.unpack("<f", f.read(4))[0]
assert npts == 1, "Should have 1 norm point"
assert ndims == 1, "Should have 1 dimension"
assert norm_val > 0, "Norm value should be positive"
assert norm_val != float("inf"), "Norm value should be finite"
# Test that search works with these files
searcher = LeannSearcher(index_path)
results = searcher.search("test subject", top_k=3)
# Verify that scores are not -inf (which indicates norm file was loaded correctly)
assert len(results) > 0
assert all(result.score != float("-inf") for result in results), (
"Scores should not be -inf when norm file is correct"
)
@pytest.mark.skipif(
os.environ.get("CI") == "true",
reason="Skip performance comparison in CI - requires significant compute time",
)
def test_diskann_vs_hnsw_performance():
"""Compare DiskANN (with partition) vs HNSW performance."""
import time
from leann.api import LeannBuilder, LeannSearcher
with tempfile.TemporaryDirectory() as temp_dir:
# Test data
texts = [
f"Performance test document {i} covering topic {i % 20} in detail." for i in range(1000)
]
query = "performance topic test"
# Test DiskANN with partitioning
diskann_path = str(Path(temp_dir) / "perf_diskann.leann")
diskann_builder = LeannBuilder(
backend_name="diskann",
embedding_model="facebook/contriever",
embedding_mode="sentence-transformers",
is_recompute=True,
)
for text in texts:
diskann_builder.add_text(text)
start_time = time.time()
diskann_builder.build_index(diskann_path)
# Test HNSW
hnsw_path = str(Path(temp_dir) / "perf_hnsw.leann")
hnsw_builder = LeannBuilder(
backend_name="hnsw",
embedding_model="facebook/contriever",
embedding_mode="sentence-transformers",
is_recompute=True,
)
for text in texts:
hnsw_builder.add_text(text)
start_time = time.time()
hnsw_builder.build_index(hnsw_path)
# Compare search performance
diskann_searcher = LeannSearcher(diskann_path)
hnsw_searcher = LeannSearcher(hnsw_path)
# Warm up searches
diskann_searcher.search(query, top_k=5)
hnsw_searcher.search(query, top_k=5)
# Timed searches
start_time = time.time()
diskann_results = diskann_searcher.search(query, top_k=10)
diskann_search_time = time.time() - start_time
start_time = time.time()
hnsw_results = hnsw_searcher.search(query, top_k=10)
hnsw_search_time = time.time() - start_time
# Basic assertions
assert len(diskann_results) == 10
assert len(hnsw_results) == 10
assert all(r.score != float("-inf") for r in diskann_results)
assert all(r.score != float("-inf") for r in hnsw_results)
# Performance ratio (informational)
if hnsw_search_time > 0:
speed_ratio = hnsw_search_time / diskann_search_time
print(f"DiskANN search time: {diskann_search_time:.4f}s")
print(f"HNSW search time: {hnsw_search_time:.4f}s")
print(f"DiskANN is {speed_ratio:.2f}x faster than HNSW")

View File

@@ -9,7 +9,6 @@ import tempfile
from pathlib import Path
import pytest
from test_timeout import ci_timeout
@pytest.fixture
@@ -59,10 +58,6 @@ def test_document_rag_simulated(test_data_dir):
@pytest.mark.skipif(not os.environ.get("OPENAI_API_KEY"), reason="OpenAI API key not available")
@pytest.mark.skipif(
os.environ.get("CI") == "true", reason="Skip OpenAI embedding tests in CI to avoid hanging"
)
@ci_timeout(60) # 60 second timeout to avoid hanging on OpenAI API calls
def test_document_rag_openai(test_data_dir):
"""Test document_rag with OpenAI embeddings."""
with tempfile.TemporaryDirectory() as temp_dir:

View File

@@ -8,13 +8,10 @@ import tempfile
from pathlib import Path
import pytest
from test_timeout import ci_timeout
@pytest.mark.parametrize("backend_name", ["hnsw", "diskann"])
@ci_timeout(90) # 90 second timeout for this comprehensive test
def test_readme_basic_example(backend_name):
"""Test the basic example from README.md with both backends."""
def test_readme_basic_example():
"""Test the basic example from README.md."""
# Skip on macOS CI due to MPS environment issues with all-MiniLM-L6-v2
if os.environ.get("CI") == "true" and platform.system() == "Darwin":
pytest.skip("Skipping on macOS CI due to MPS environment issues with all-MiniLM-L6-v2")
@@ -24,18 +21,18 @@ def test_readme_basic_example(backend_name):
from leann.api import SearchResult
with tempfile.TemporaryDirectory() as temp_dir:
INDEX_PATH = str(Path(temp_dir) / f"demo_{backend_name}.leann")
INDEX_PATH = str(Path(temp_dir) / "demo.leann")
# Build an index
# In CI, use a smaller model to avoid memory issues
if os.environ.get("CI") == "true":
builder = LeannBuilder(
backend_name=backend_name,
backend_name="hnsw",
embedding_model="sentence-transformers/all-MiniLM-L6-v2", # Smaller model
dimensions=384, # Smaller dimensions
)
else:
builder = LeannBuilder(backend_name=backend_name)
builder = LeannBuilder(backend_name="hnsw")
builder.add_text("LEANN saves 97% storage compared to traditional vector databases.")
builder.add_text("Tung Tung Tung Sahur called—they need their banana-crocodile hybrid back")
builder.build_index(INDEX_PATH)
@@ -55,9 +52,6 @@ def test_readme_basic_example(backend_name):
# Verify search results
assert len(results) > 0
assert isinstance(results[0], SearchResult)
assert results[0].score != float("-inf"), (
f"should return valid scores, got {results[0].score}"
)
# The second text about banana-crocodile should be more relevant
assert "banana" in results[0].text or "crocodile" in results[0].text
@@ -81,7 +75,6 @@ def test_readme_imports():
assert callable(LeannChat)
@ci_timeout(60) # 60 second timeout
def test_backend_options():
"""Test different backend options mentioned in documentation."""
# Skip on macOS CI due to MPS environment issues with all-MiniLM-L6-v2
@@ -117,32 +110,26 @@ def test_backend_options():
assert len(list(Path(diskann_path).parent.glob(f"{Path(diskann_path).stem}.*"))) > 0
@pytest.mark.parametrize("backend_name", ["hnsw", "diskann"])
@ci_timeout(75) # 75 second timeout for LLM tests
def test_llm_config_simulated(backend_name):
"""Test simulated LLM configuration option with both backends."""
def test_llm_config_simulated():
"""Test simulated LLM configuration option."""
# Skip on macOS CI due to MPS environment issues with all-MiniLM-L6-v2
if os.environ.get("CI") == "true" and platform.system() == "Darwin":
pytest.skip("Skipping on macOS CI due to MPS environment issues with all-MiniLM-L6-v2")
# Skip DiskANN tests in CI due to hardware requirements
if os.environ.get("CI") == "true" and backend_name == "diskann":
pytest.skip("Skip DiskANN tests in CI - requires specific hardware and large memory")
from leann import LeannBuilder, LeannChat
with tempfile.TemporaryDirectory() as temp_dir:
# Build a simple index
index_path = str(Path(temp_dir) / f"test_{backend_name}.leann")
index_path = str(Path(temp_dir) / "test.leann")
# Use smaller model in CI to avoid memory issues
if os.environ.get("CI") == "true":
builder = LeannBuilder(
backend_name=backend_name,
backend_name="hnsw",
embedding_model="sentence-transformers/all-MiniLM-L6-v2",
dimensions=384,
)
else:
builder = LeannBuilder(backend_name=backend_name)
builder = LeannBuilder(backend_name="hnsw")
builder.add_text("Test document for LLM testing")
builder.build_index(index_path)

View File

@@ -1,129 +0,0 @@
"""
Test timeout utilities for CI environments.
"""
import functools
import os
import signal
import sys
from typing import Any, Callable
def timeout_test(seconds: int = 30):
"""
Decorator to add timeout to test functions, especially useful in CI environments.
Args:
seconds: Timeout in seconds (default: 30)
"""
def decorator(func: Callable) -> Callable:
@functools.wraps(func)
def wrapper(*args: Any, **kwargs: Any) -> Any:
# Only apply timeout in CI environment
if os.environ.get("CI") != "true":
return func(*args, **kwargs)
# Set up timeout handler
def timeout_handler(signum, frame):
print(f"\n❌ Test {func.__name__} timed out after {seconds} seconds in CI!")
print("This usually indicates a hanging process or infinite loop.")
# Try to cleanup any hanging processes
try:
import subprocess
subprocess.run(
["pkill", "-f", "embedding_server"], capture_output=True, timeout=2
)
subprocess.run(
["pkill", "-f", "hnsw_embedding"], capture_output=True, timeout=2
)
except Exception:
pass
# Exit with timeout code
sys.exit(124) # Standard timeout exit code
# Set signal handler and alarm
old_handler = signal.signal(signal.SIGALRM, timeout_handler)
signal.alarm(seconds)
try:
result = func(*args, **kwargs)
signal.alarm(0) # Cancel alarm
return result
except Exception:
signal.alarm(0) # Cancel alarm on exception
raise
finally:
# Restore original handler
signal.signal(signal.SIGALRM, old_handler)
return wrapper
return decorator
def ci_timeout(seconds: int = 60):
"""
Timeout decorator specifically for CI environments.
Uses threading for more reliable timeout handling.
Args:
seconds: Timeout in seconds (default: 60)
"""
def decorator(func: Callable) -> Callable:
@functools.wraps(func)
def wrapper(*args: Any, **kwargs: Any) -> Any:
# Only apply in CI
if os.environ.get("CI") != "true":
return func(*args, **kwargs)
import threading
result = [None]
exception = [None]
finished = threading.Event()
def target():
try:
result[0] = func(*args, **kwargs)
except Exception as e:
exception[0] = e
finally:
finished.set()
# Start function in thread
thread = threading.Thread(target=target, daemon=True)
thread.start()
# Wait for completion or timeout
if not finished.wait(timeout=seconds):
print(f"\n💥 CI TIMEOUT: Test {func.__name__} exceeded {seconds}s limit!")
print("This usually indicates hanging embedding servers or infinite loops.")
# Try to cleanup embedding servers
try:
import subprocess
subprocess.run(
["pkill", "-9", "-f", "embedding_server"], capture_output=True, timeout=2
)
subprocess.run(
["pkill", "-9", "-f", "hnsw_embedding"], capture_output=True, timeout=2
)
print("Attempted to kill hanging embedding servers.")
except Exception as e:
print(f"Cleanup failed: {e}")
# Raise TimeoutError instead of sys.exit for better pytest integration
raise TimeoutError(f"Test {func.__name__} timed out after {seconds} seconds")
if exception[0]:
raise exception[0]
return result[0]
return wrapper
return decorator

11
uv.lock generated
View File

@@ -2356,7 +2356,6 @@ dependencies = [
{ name = "pdfplumber" },
{ name = "protobuf" },
{ name = "psutil" },
{ name = "pybind11" },
{ name = "pymupdf" },
{ name = "pypdf2" },
{ name = "pypdfium2" },
@@ -2439,7 +2438,6 @@ requires-dist = [
{ name = "pre-commit", marker = "extra == 'dev'", specifier = ">=3.5.0" },
{ name = "protobuf", specifier = "==4.25.3" },
{ name = "psutil", specifier = ">=5.8.0" },
{ name = "pybind11", specifier = ">=3.0.0" },
{ name = "pymupdf", specifier = ">=1.26.0" },
{ name = "pypdf2", specifier = ">=3.0.0" },
{ name = "pypdfium2", specifier = ">=4.30.0" },
@@ -4360,15 +4358,6 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/10/15/6b30e77872012bbfe8265d42a01d5b3c17ef0ac0f2fae531ad91b6a6c02e/pyarrow-21.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:cdc4c17afda4dab2a9c0b79148a43a7f4e1094916b3e18d8975bfd6d6d52241f", size = 26227521 },
]
[[package]]
name = "pybind11"
version = "3.0.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/ef/83/698d120e257a116f2472c710932023ad779409adf2734d2e940f34eea2c5/pybind11-3.0.0.tar.gz", hash = "sha256:c3f07bce3ada51c3e4b76badfa85df11688d12c46111f9d242bc5c9415af7862", size = 544819, upload-time = "2025-07-10T16:52:09.335Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/41/9c/85f50a5476832c3efc67b6d7997808388236ae4754bf53e1749b3bc27577/pybind11-3.0.0-py3-none-any.whl", hash = "sha256:7c5cac504da5a701b5163f0e6a7ba736c713a096a5378383c5b4b064b753f607", size = 292118, upload-time = "2025-07-10T16:52:07.828Z" },
]
[[package]]
name = "pycparser"
version = "2.22"