Compare commits

...

6 Commits

Author SHA1 Message Date
Andy Lee
61b1691448 feat: Add Google Gemini API support for chat and embeddings
- Add GeminiChat class with gemini-2.5-flash model support
- Add compute_embeddings_gemini function with text-embedding-004 model
- Update get_llm factory to support "gemini" type
- Update API documentation to include gemini embedding mode
- Support temperature, max_tokens, top_p parameters for Gemini chat
- Support batch embedding processing with progress bars
- Add proper error handling and API key validation
2025-08-15 17:52:37 -07:00
Yichuan Wang
bee2167ee3 docs: update READMEs (MCP docs + conclusion polish)
- Polish conclusion in packages/leann-mcp/README.md
- Sync root README wording and links
2025-08-15 17:21:23 -07:00
yichuan520030910320
ef980d70b3 [MCP]update MCP of claude code 2025-08-15 14:29:59 -07:00
Andy Lee
db3c63c441 Docs/Core: Low-Resource Setups, SkyPilot Option, and No-Recompute (#45)
* docs: add SkyPilot template and instructions for running embeddings/index build on cloud GPU

* docs: add low-resource note in README; point to config guide; suggest OpenAI embeddings, SkyPilot remote build, and --no-recompute

* docs: consolidate low-resource guidance into config guide; README points to it

* cli: add --no-recompute and --no-recompute-embeddings flags; docs: clarify HNSW requires --no-compact when disabling recompute

* docs: dedupe recomputation guidance; keep single Low-resource setups section

* sky: expand leann-build.yaml with configurable params and flags (backend, recompute, compact, embedding options)

* hnsw: auto-disable compact when --no-recompute is used; docs: expand SkyPilot with -e overrides and copy-back example

* docs+sky: simplify SkyPilot flow (auto-build on launch, rsync copy-back); clarify HNSW auto non-compact when no-recompute

* feat: auto compact for hnsw when recompute

* reader: non-destructive portability (relative hints + fallback); fix comments; sky: refine yaml

* cli: unify flags to --recompute/--no-recompute for build/search/ask; docs: update references

* chore: remove

* hnsw: move pruned/no-recompute assertion into backend; api: drop global assertion; docs: will adjust after benchmarking

* cli: use argparse.BooleanOptionalAction for paired flags (--recompute/--compact) across build/search/ask

* docs: a real example on recompute

* benchmarks: fix and extend HNSW+DiskANN recompute vs no-recompute; docs: add fresh numbers and DiskANN notes

* benchmarks: unify HNSW & DiskANN into one clean script; isolate groups, fixed ports, warm-up, param complexity

* docs: diskann recompute

* core: auto-cleanup for LeannSearcher/LeannChat (__enter__/__exit__/__del__); ensure server terminate/kill robustness; benchmarks: use searcher.cleanup(); docs: suggest uv run

* fix: hang on warnings

* docs: boolean flags

* docs: leann help
2025-08-15 12:03:19 -07:00
yichuan520030910320
00eeadb9dd upd pkg 2025-08-14 14:39:45 -07:00
yichuan520030910320
42c8370709 add chunk size in leann build& fix batch size in oai& docs 2025-08-14 13:14:14 -07:00
18 changed files with 779 additions and 139 deletions

View File

@@ -31,7 +31,7 @@ LEANN achieves this through *graph-based selective recomputation* with *high-deg
<img src="assets/effects.png" alt="LEANN vs Traditional Vector DB Storage Comparison" width="70%">
</p>
> **The numbers speak for themselves:** Index 60 million text chunks in just 6GB instead of 201GB. From emails to browser history, everything fits on your laptop. [See detailed benchmarks for different applications below ↓](#storage-comparison)
> **The numbers speak for themselves:** Index 60 million text chunks in just 6GB instead of 201GB. From emails to browser history, everything fits on your laptop. [See detailed benchmarks for different applications below ↓](#-storage-comparison)
🔒 **Privacy:** Your data never leaves your laptop. No OpenAI, no cloud, no "terms of service".
@@ -70,6 +70,8 @@ uv venv
source .venv/bin/activate
uv pip install leann
```
<!--
> Low-resource? See “Low-resource setups” in the [Configuration Guide](docs/configuration-guide.md#low-resource-setups). -->
<details>
<summary>
@@ -184,34 +186,34 @@ All RAG examples share these common parameters. **Interactive mode** is availabl
```bash
# Core Parameters (General preprocessing for all examples)
--index-dir DIR # Directory to store the index (default: current directory)
--query "YOUR QUESTION" # Single query mode. Omit for interactive chat (type 'quit' to exit), and now you can play with your index interactively
--max-items N # Limit data preprocessing (default: -1, process all data)
--force-rebuild # Force rebuild index even if it exists
--index-dir DIR # Directory to store the index (default: current directory)
--query "YOUR QUESTION" # Single query mode. Omit for interactive chat (type 'quit' to exit), and now you can play with your index interactively
--max-items N # Limit data preprocessing (default: -1, process all data)
--force-rebuild # Force rebuild index even if it exists
# Embedding Parameters
--embedding-model MODEL # e.g., facebook/contriever, text-embedding-3-small, mlx-community/Qwen3-Embedding-0.6B-8bit or nomic-embed-text
--embedding-mode MODE # sentence-transformers, openai, mlx, or ollama
--embedding-model MODEL # e.g., facebook/contriever, text-embedding-3-small, mlx-community/Qwen3-Embedding-0.6B-8bit or nomic-embed-text
--embedding-mode MODE # sentence-transformers, openai, mlx, or ollama
# LLM Parameters (Text generation models)
--llm TYPE # LLM backend: openai, ollama, or hf (default: openai)
--llm-model MODEL # Model name (default: gpt-4o) e.g., gpt-4o-mini, llama3.2:1b, Qwen/Qwen2.5-1.5B-Instruct
--thinking-budget LEVEL # Thinking budget for reasoning models: low/medium/high (supported by o3, o3-mini, GPT-Oss:20b, and other reasoning models)
--llm TYPE # LLM backend: openai, ollama, or hf (default: openai)
--llm-model MODEL # Model name (default: gpt-4o) e.g., gpt-4o-mini, llama3.2:1b, Qwen/Qwen2.5-1.5B-Instruct
--thinking-budget LEVEL # Thinking budget for reasoning models: low/medium/high (supported by o3, o3-mini, GPT-Oss:20b, and other reasoning models)
# Search Parameters
--top-k N # Number of results to retrieve (default: 20)
--search-complexity N # Search complexity for graph traversal (default: 32)
--top-k N # Number of results to retrieve (default: 20)
--search-complexity N # Search complexity for graph traversal (default: 32)
# Chunking Parameters
--chunk-size N # Size of text chunks (default varies by source: 256 for most, 192 for WeChat)
--chunk-overlap N # Overlap between chunks (default varies: 25-128 depending on source)
--chunk-size N # Size of text chunks (default varies by source: 256 for most, 192 for WeChat)
--chunk-overlap N # Overlap between chunks (default varies: 25-128 depending on source)
# Index Building Parameters
--backend-name NAME # Backend to use: hnsw or diskann (default: hnsw)
--graph-degree N # Graph degree for index construction (default: 32)
--build-complexity N # Build complexity for index construction (default: 64)
--no-compact # Disable compact index storage (compact storage IS enabled to save storage by default)
--no-recompute # Disable embedding recomputation (recomputation IS enabled to save storage by default)
--backend-name NAME # Backend to use: hnsw or diskann (default: hnsw)
--graph-degree N # Graph degree for index construction (default: 32)
--build-complexity N # Build complexity for index construction (default: 64)
--compact / --no-compact # Use compact storage (default: true). Must be `no-compact` for `no-recompute` build.
--recompute / --no-recompute # Enable/disable embedding recomputation (default: enabled). Should not do a `no-recompute` search in a `recompute` build.
```
</details>
@@ -424,21 +426,21 @@ Once the index is built, you can ask questions like:
**The future of code assistance is here.** Transform your development workflow with LEANN's native MCP integration for Claude Code. Index your entire codebase and get intelligent code assistance directly in your IDE.
**Key features:**
- 🔍 **Semantic code search** across your entire project
- 🔍 **Semantic code search** across your entire project, fully local index and lightweight
- 📚 **Context-aware assistance** for debugging and development
- 🚀 **Zero-config setup** with automatic language detection
```bash
# Install LEANN globally for MCP integration
uv tool install leann-core
uv tool install leann-core --with leann
claude mcp add --scope user leann-server -- leann_mcp
# Setup is automatic - just start using Claude Code!
```
Try our fully agentic pipeline with auto query rewriting, semantic search planning, and more:
![LEANN MCP Integration](assets/mcp_leann.png)
**Ready to supercharge your coding?** [Complete Setup Guide →](packages/leann-mcp/README.md)
**🔥 Ready to supercharge your coding?** [Complete Setup Guide →](packages/leann-mcp/README.md)
## 🖥️ Command Line Interface
@@ -455,7 +457,8 @@ leann --help
**To make it globally available:**
```bash
# Install the LEANN CLI globally using uv tool
uv tool install leann-core
uv tool install leann-core --with leann
# Now you can use leann from anywhere without activating venv
leann --help
@@ -482,27 +485,29 @@ leann list
```
**Key CLI features:**
- Auto-detects document formats (PDF, TXT, MD, DOCX)
- Auto-detects document formats (PDF, TXT, MD, DOCX, PPTX + code files)
- Smart text chunking with overlap
- Multiple LLM providers (Ollama, OpenAI, HuggingFace)
- Organized index storage in `~/.leann/indexes/`
- Organized index storage in `.leann/indexes/` (project-local)
- Support for advanced search parameters
<details>
<summary><strong>📋 Click to expand: Complete CLI Reference</strong></summary>
You can use `leann --help`, or `leann build --help`, `leann search --help`, `leann ask --help` to get the complete CLI reference.
**Build Command:**
```bash
leann build INDEX_NAME --docs DIRECTORY [OPTIONS]
leann build INDEX_NAME --docs DIRECTORY|FILE [DIRECTORY|FILE ...] [OPTIONS]
Options:
--backend {hnsw,diskann} Backend to use (default: hnsw)
--embedding-model MODEL Embedding model (default: facebook/contriever)
--graph-degree N Graph degree (default: 32)
--complexity N Build complexity (default: 64)
--force Force rebuild existing index
--compact Use compact storage (default: true)
--recompute Enable recomputation (default: true)
--graph-degree N Graph degree (default: 32)
--complexity N Build complexity (default: 64)
--force Force rebuild existing index
--compact / --no-compact Use compact storage (default: true). Must be `no-compact` for `no-recompute` build.
--recompute / --no-recompute Enable recomputation (default: true)
```
**Search Command:**
@@ -510,9 +515,9 @@ Options:
leann search INDEX_NAME QUERY [OPTIONS]
Options:
--top-k N Number of results (default: 5)
--complexity N Search complexity (default: 64)
--recompute-embeddings Use recomputation for highest accuracy
--top-k N Number of results (default: 5)
--complexity N Search complexity (default: 64)
--recompute / --no-recompute Enable/disable embedding recomputation (default: enabled). Should not do a `no-recompute` search in a `recompute` build.
--pruning-strategy {global,local,proportional}
```

View File

@@ -0,0 +1,148 @@
import argparse
import os
import time
from pathlib import Path
from leann import LeannBuilder, LeannSearcher
def _meta_exists(index_path: str) -> bool:
p = Path(index_path)
return (p.parent / f"{p.stem}.meta.json").exists()
def ensure_index(index_path: str, backend_name: str, num_docs: int, is_recompute: bool) -> None:
# if _meta_exists(index_path):
# return
kwargs = {}
if backend_name == "hnsw":
kwargs["is_compact"] = is_recompute
builder = LeannBuilder(
backend_name=backend_name,
embedding_model=os.getenv("LEANN_EMBED_MODEL", "facebook/contriever"),
embedding_mode=os.getenv("LEANN_EMBED_MODE", "sentence-transformers"),
graph_degree=32,
complexity=64,
is_recompute=is_recompute,
num_threads=4,
**kwargs,
)
for i in range(num_docs):
builder.add_text(
f"This is a test document number {i}. It contains some repeated text for benchmarking."
)
builder.build_index(index_path)
def _bench_group(
index_path: str,
recompute: bool,
query: str,
repeats: int,
complexity: int = 32,
top_k: int = 10,
) -> float:
# Independent searcher per group; fixed port when recompute
searcher = LeannSearcher(index_path=index_path)
# Warm-up once
_ = searcher.search(
query,
top_k=top_k,
complexity=complexity,
recompute_embeddings=recompute,
)
def _once() -> float:
t0 = time.time()
_ = searcher.search(
query,
top_k=top_k,
complexity=complexity,
recompute_embeddings=recompute,
)
return time.time() - t0
if repeats <= 1:
t = _once()
else:
vals = [_once() for _ in range(repeats)]
vals.sort()
t = vals[len(vals) // 2]
searcher.cleanup()
return t
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--num-docs", type=int, default=5000)
parser.add_argument("--repeats", type=int, default=3)
parser.add_argument("--complexity", type=int, default=32)
args = parser.parse_args()
base = Path.cwd() / ".leann" / "indexes" / f"bench_n{args.num_docs}"
base.parent.mkdir(parents=True, exist_ok=True)
# ---------- Build HNSW variants ----------
hnsw_r = str(base / f"hnsw_recompute_n{args.num_docs}.leann")
hnsw_nr = str(base / f"hnsw_norecompute_n{args.num_docs}.leann")
ensure_index(hnsw_r, "hnsw", args.num_docs, True)
ensure_index(hnsw_nr, "hnsw", args.num_docs, False)
# ---------- Build DiskANN variants ----------
diskann_r = str(base / "diskann_r.leann")
diskann_nr = str(base / "diskann_nr.leann")
ensure_index(diskann_r, "diskann", args.num_docs, True)
ensure_index(diskann_nr, "diskann", args.num_docs, False)
# ---------- Helpers ----------
def _size_for(prefix: str) -> int:
p = Path(prefix)
base_dir = p.parent
stem = p.stem
total = 0
for f in base_dir.iterdir():
if f.is_file() and f.name.startswith(stem):
total += f.stat().st_size
return total
# ---------- HNSW benchmark ----------
t_hnsw_r = _bench_group(
hnsw_r, True, "test document number 42", repeats=args.repeats, complexity=args.complexity
)
t_hnsw_nr = _bench_group(
hnsw_nr, False, "test document number 42", repeats=args.repeats, complexity=args.complexity
)
size_hnsw_r = _size_for(hnsw_r)
size_hnsw_nr = _size_for(hnsw_nr)
print("Benchmark results (HNSW):")
print(f" recompute=True: search_time={t_hnsw_r:.3f}s, size={size_hnsw_r / 1024 / 1024:.1f}MB")
print(
f" recompute=False: search_time={t_hnsw_nr:.3f}s, size={size_hnsw_nr / 1024 / 1024:.1f}MB"
)
print(" Expectation: no-recompute should be faster but larger on disk.")
# ---------- DiskANN benchmark ----------
t_diskann_r = _bench_group(
diskann_r, True, "DiskANN R test doc 123", repeats=args.repeats, complexity=args.complexity
)
t_diskann_nr = _bench_group(
diskann_nr,
False,
"DiskANN NR test doc 123",
repeats=args.repeats,
complexity=args.complexity,
)
size_diskann_r = _size_for(diskann_r)
size_diskann_nr = _size_for(diskann_nr)
print("\nBenchmark results (DiskANN):")
print(f" build(recompute=True, partition): size={size_diskann_r / 1024 / 1024:.1f}MB")
print(f" build(recompute=False): size={size_diskann_nr / 1024 / 1024:.1f}MB")
print(f" search recompute=True (final rerank): {t_diskann_r:.3f}s")
print(f" search recompute=False (PQ only): {t_diskann_nr:.3f}s")
if __name__ == "__main__":
main()

View File

@@ -10,6 +10,7 @@ This benchmark compares search performance between DiskANN and HNSW backends:
"""
import gc
import multiprocessing as mp
import tempfile
import time
from pathlib import Path
@@ -17,6 +18,12 @@ from typing import Any
import numpy as np
# Prefer 'fork' start method to avoid POSIX semaphore leaks on macOS
try:
mp.set_start_method("fork", force=True)
except Exception:
pass
def create_test_texts(n_docs: int) -> list[str]:
"""Create synthetic test documents for benchmarking."""
@@ -113,10 +120,10 @@ def benchmark_backend(
]
score_validity_rate = len(valid_scores) / len(all_scores) if all_scores else 0
# Clean up
# Clean up (ensure embedding server shutdown and object GC)
try:
if hasattr(searcher, "__del__"):
searcher.__del__()
if hasattr(searcher, "cleanup"):
searcher.cleanup()
del searcher
del builder
gc.collect()
@@ -259,10 +266,21 @@ if __name__ == "__main__":
print(f"\n❌ Benchmark failed: {e}")
sys.exit(1)
finally:
# Ensure clean exit
# Ensure clean exit (forceful to prevent rare hangs from atexit/threads)
try:
gc.collect()
print("\n🧹 Cleanup completed")
# Flush stdio to ensure message is visible before hard-exit
try:
import sys as _sys
_sys.stdout.flush()
_sys.stderr.flush()
except Exception:
pass
except Exception:
pass
sys.exit(0)
# Use os._exit to bypass atexit handlers that may hang in rare cases
import os as _os
_os._exit(0)

View File

@@ -97,29 +97,23 @@ ollama pull nomic-embed-text
```
### DiskANN
**Best for**: Performance-critical applications and large datasets - **Production-ready with automatic graph partitioning**
**Best for**: Large datasets, especially when you want `recompute=True`.
**How it works:**
- **Product Quantization (PQ) + Real-time Reranking**: Uses compressed PQ codes for fast graph traversal, then recomputes exact embeddings for final candidates
- **Automatic Graph Partitioning**: When `is_recompute=True`, automatically partitions large indices and safely removes redundant files to save storage
- **Superior Speed-Accuracy Trade-off**: Faster search than HNSW while maintaining high accuracy
**Key advantages:**
- **Faster search** on large datasets (3x+ speedup vs HNSW in many cases)
- **Smart storage**: `recompute=True` enables automatic graph partitioning for smaller indexes
- **Better scaling**: Designed for 100k+ documents
**Trade-offs compared to HNSW:**
- **Faster search latency** (typically 2-8x speedup)
- **Better scaling** for large datasets
-**Smart storage management** with automatic partitioning
-**Better graph locality** with `--ldg-times` parameter for SSD optimization
- ⚠️ **Slightly larger index size** due to PQ tables and graph metadata
**Recompute behavior:**
- `recompute=True` (recommended): Pure PQ traversal + final reranking - faster and enables partitioning
- `recompute=False`: PQ + partial real distances during traversal - slower but higher accuracy
```bash
# Recommended for most use cases
--backend-name diskann --graph-degree 32 --build-complexity 64
# For large-scale deployments
--backend-name diskann --graph-degree 64 --build-complexity 128
```
**Performance Benchmark**: Run `python benchmarks/diskann_vs_hnsw_speed_comparison.py` to compare DiskANN and HNSW on your system.
**Performance Benchmark**: Run `uv run benchmarks/diskann_vs_hnsw_speed_comparison.py` to compare DiskANN and HNSW on your system.
## LLM Selection: Engine and Model Comparison
@@ -273,24 +267,114 @@ Every configuration choice involves trade-offs:
The key is finding the right balance for your specific use case. Start small and simple, measure performance, then scale up only where needed.
## Deep Dive: Critical Configuration Decisions
## Low-resource setups
### When to Disable Recomputation
If you dont have a local GPU or builds/searches are too slow, use one or more of the options below.
LEANN's recomputation feature provides exact distance calculations but can be disabled for extreme QPS requirements:
### 1) Use OpenAI embeddings (no local compute)
Fastest path with zero local GPU requirements. Set your API key and use OpenAI embeddings during build and search:
```bash
--no-recompute # Disable selective recomputation
export OPENAI_API_KEY=sk-...
# Build with OpenAI embeddings
leann build my-index \
--embedding-mode openai \
--embedding-model text-embedding-3-small
# Search with OpenAI embeddings (recompute at query time)
leann search my-index "your query" \
--recompute
```
**Trade-offs**:
- **With recomputation** (default): Exact distances, best quality, higher latency, minimal storage (only stores metadata, recomputes embeddings on-demand)
- **Without recomputation**: Must store full embeddings, significantly higher memory and storage usage (10-100x more), but faster search
### 2) Run remote builds with SkyPilot (cloud GPU)
Offload embedding generation and index building to a GPU VM using [SkyPilot](https://skypilot.readthedocs.io/en/latest/). A template is provided at `sky/leann-build.yaml`.
```bash
# One-time: install and configure SkyPilot
pip install skypilot
# Launch with defaults (L4:1) and mount ./data to ~/leann-data; the build runs automatically
sky launch -c leann-gpu sky/leann-build.yaml
# Override parameters via -e key=value (optional)
sky launch -c leann-gpu sky/leann-build.yaml \
-e index_name=my-index \
-e backend=hnsw \
-e embedding_mode=sentence-transformers \
-e embedding_model=Qwen/Qwen3-Embedding-0.6B
# Copy the built index back to your local .leann (use rsync)
rsync -Pavz leann-gpu:~/.leann/indexes/my-index ./.leann/indexes/
```
### 3) Disable recomputation to trade storage for speed
If you need lower latency and have more storage/memory, disable recomputation. This stores full embeddings and avoids recomputing at search time.
```bash
# Build without recomputation (HNSW requires non-compact in this mode)
leann build my-index --no-recompute --no-compact
# Search without recomputation
leann search my-index "your query" --no-recompute
```
When to use:
- Extreme low latency requirements (high QPS, interactive assistants)
- Read-heavy workloads where storage is cheaper than latency
- No always-available GPU
Constraints:
- HNSW: when `--no-recompute` is set, LEANN automatically disables compact mode during build
- DiskANN: supported; `--no-recompute` skips selective recompute during search
Storage impact:
- Storing N embeddings of dimension D with float32 requires approximately N × D × 4 bytes
- Example: 1,000,000 chunks × 768 dims × 4 bytes ≈ 2.86 GB (plus graph/metadata)
Converting an existing index (rebuild required):
```bash
# Rebuild in-place (ensure you still have original docs or can regenerate chunks)
leann build my-index --force --no-recompute --no-compact
```
Python API usage:
```python
from leann import LeannSearcher
searcher = LeannSearcher("/path/to/my-index.leann")
results = searcher.search("your query", top_k=10, recompute_embeddings=False)
```
Trade-offs:
- Lower latency and fewer network hops at query time
- Significantly higher storage (10100× vs selective recomputation)
- Slightly larger memory footprint during build and search
Quick benchmark results (`benchmarks/benchmark_no_recompute.py` with 5k texts, complexity=32):
- HNSW
```text
recompute=True: search_time=0.818s, size=1.1MB
recompute=False: search_time=0.012s, size=16.6MB
```
- DiskANN
```text
recompute=True: search_time=0.041s, size=5.9MB
recompute=False: search_time=0.013s, size=24.6MB
```
Conclusion:
- **HNSW**: `no-recompute` is significantly faster (no embedding recomputation) but requires much more storage (stores all embeddings)
- **DiskANN**: `no-recompute` uses PQ + partial real distances during traversal (slower but higher accuracy), while `recompute=True` uses pure PQ traversal + final reranking (faster traversal, enables build-time partitioning for smaller storage)
**Disable when**:
- You have abundant storage and memory
- Need extremely low latency (< 100ms)
- Running a read-heavy workload where storage cost is acceptable
## Further Reading

View File

@@ -441,9 +441,14 @@ class DiskannSearcher(BaseSearcher):
else: # "global"
use_global_pruning = True
# Perform search with suppressed C++ output based on log level
use_deferred_fetch = kwargs.get("USE_DEFERRED_FETCH", True)
recompute_neighors = False
# Strategy:
# - Traversal always uses PQ distances
# - If recompute_embeddings=True, do a single final rerank via deferred fetch
# (fetch embeddings for the final candidate set only)
# - Do not recompute neighbor distances along the path
use_deferred_fetch = True if recompute_embeddings else False
recompute_neighors = False # Expected typo. For backward compatibility.
with suppress_cpp_output_if_needed():
labels, distances = self._index.batch_search(
query,

View File

@@ -54,12 +54,13 @@ class HNSWBuilder(LeannBackendBuilderInterface):
self.efConstruction = self.build_params.setdefault("efConstruction", 200)
self.distance_metric = self.build_params.setdefault("distance_metric", "mips")
self.dimensions = self.build_params.get("dimensions")
if not self.is_recompute:
if self.is_compact:
# TODO: support this case @andy
raise ValueError(
"is_recompute is False, but is_compact is True. This is not compatible now. change is compact to False and you can use the original HNSW index."
)
if not self.is_recompute and self.is_compact:
# Auto-correct: non-recompute requires non-compact storage for HNSW
logger.warning(
"is_recompute=False requires non-compact HNSW. Forcing is_compact=False."
)
self.is_compact = False
self.build_params["is_compact"] = False
def build(self, data: np.ndarray, ids: list[str], index_path: str, **kwargs):
from . import faiss # type: ignore
@@ -184,9 +185,11 @@ class HNSWSearcher(BaseSearcher):
"""
from . import faiss # type: ignore
if not recompute_embeddings:
if self.is_pruned:
raise RuntimeError("Recompute is required for pruned index.")
if not recompute_embeddings and self.is_pruned:
raise RuntimeError(
"Recompute is required for pruned/compact HNSW index. "
"Re-run search with --recompute, or rebuild with --no-recompute and --no-compact."
)
if recompute_embeddings:
if zmq_port is None:
raise ValueError("zmq_port must be provided if recompute_embeddings is True")

View File

@@ -46,6 +46,7 @@ def compute_embeddings(
- "sentence-transformers": Use sentence-transformers library (default)
- "mlx": Use MLX backend for Apple Silicon
- "openai": Use OpenAI embedding API
- "gemini": Use Google Gemini embedding API
use_server: Whether to use embedding server (True for search, False for build)
Returns:
@@ -204,6 +205,18 @@ class LeannBuilder:
**backend_kwargs,
):
self.backend_name = backend_name
# Normalize incompatible combinations early (for consistent metadata)
if backend_name == "hnsw":
is_recompute = backend_kwargs.get("is_recompute", True)
is_compact = backend_kwargs.get("is_compact", True)
if is_recompute is False and is_compact is True:
warnings.warn(
"HNSW with is_recompute=False requires non-compact storage. Forcing is_compact=False.",
UserWarning,
stacklevel=2,
)
backend_kwargs["is_compact"] = False
backend_factory: Optional[LeannBackendFactoryInterface] = BACKEND_REGISTRY.get(backend_name)
if backend_factory is None:
raise ValueError(f"Backend '{backend_name}' not found or not registered.")
@@ -523,6 +536,7 @@ class LeannSearcher:
self.embedding_model = self.meta_data["embedding_model"]
# Support both old and new format
self.embedding_mode = self.meta_data.get("embedding_mode", "sentence-transformers")
# Delegate portability handling to PassageManager
self.passage_manager = PassageManager(
self.meta_data.get("passage_sources", []), metadata_file_path=self.meta_path_str
)
@@ -652,6 +666,23 @@ class LeannSearcher:
if hasattr(self.backend_impl, "embedding_server_manager"):
self.backend_impl.embedding_server_manager.stop_server()
# Enable automatic cleanup patterns
def __enter__(self):
return self
def __exit__(self, exc_type, exc, tb):
try:
self.cleanup()
except Exception:
pass
def __del__(self):
try:
self.cleanup()
except Exception:
# Avoid noisy errors during interpreter shutdown
pass
class LeannChat:
def __init__(
@@ -730,3 +761,19 @@ class LeannChat:
"""
if hasattr(self.searcher, "cleanup"):
self.searcher.cleanup()
# Enable automatic cleanup patterns
def __enter__(self):
return self
def __exit__(self, exc_type, exc, tb):
try:
self.cleanup()
except Exception:
pass
def __del__(self):
try:
self.cleanup()
except Exception:
pass

View File

@@ -422,7 +422,6 @@ class LLMInterface(ABC):
top_k=10,
complexity=64,
beam_width=8,
USE_DEFERRED_FETCH=True,
skip_search_reorder=True,
recompute_beighbor_embeddings=True,
dedup_node_dis=True,
@@ -434,7 +433,6 @@ class LLMInterface(ABC):
Supported kwargs:
- complexity (int): Search complexity parameter (default: 32)
- beam_width (int): Beam width for search (default: 4)
- USE_DEFERRED_FETCH (bool): Enable deferred fetch mode (default: False)
- skip_search_reorder (bool): Skip search reorder step (default: False)
- recompute_beighbor_embeddings (bool): Enable ZMQ embedding server for neighbor recomputation (default: False)
- dedup_node_dis (bool): Deduplicate nodes by distance (default: False)
@@ -682,6 +680,52 @@ class HFChat(LLMInterface):
return response.strip()
class GeminiChat(LLMInterface):
"""LLM interface for Google Gemini models."""
def __init__(self, model: str = "gemini-2.5-flash", api_key: Optional[str] = None):
self.model = model
self.api_key = api_key or os.getenv("GEMINI_API_KEY")
if not self.api_key:
raise ValueError(
"Gemini API key is required. Set GEMINI_API_KEY environment variable or pass api_key parameter."
)
logger.info(f"Initializing Gemini Chat with model='{model}'")
try:
import google.genai as genai
self.client = genai.Client(api_key=self.api_key)
except ImportError:
raise ImportError(
"The 'google-genai' library is required for Gemini models. Please install it with 'uv pip install google-genai'."
)
def ask(self, prompt: str, **kwargs) -> str:
logger.info(f"Sending request to Gemini with model {self.model}")
try:
# Set generation configuration
generation_config = {
"temperature": kwargs.get("temperature", 0.7),
"max_output_tokens": kwargs.get("max_tokens", 1000),
}
# Handle top_p parameter
if "top_p" in kwargs:
generation_config["top_p"] = kwargs["top_p"]
response = self.client.models.generate_content(
model=self.model, contents=prompt, config=generation_config
)
return response.text.strip()
except Exception as e:
logger.error(f"Error communicating with Gemini: {e}")
return f"Error: Could not get a response from Gemini. Details: {e}"
class OpenAIChat(LLMInterface):
"""LLM interface for OpenAI models."""
@@ -795,6 +839,8 @@ def get_llm(llm_config: Optional[dict[str, Any]] = None) -> LLMInterface:
return HFChat(model_name=model or "deepseek-ai/deepseek-llm-7b-chat")
elif llm_type == "openai":
return OpenAIChat(model=model or "gpt-4o", api_key=llm_config.get("api_key"))
elif llm_type == "gemini":
return GeminiChat(model=model or "gemini-2.5-flash", api_key=llm_config.get("api_key"))
elif llm_type == "simulated":
return SimulatedChat()
else:

View File

@@ -72,7 +72,7 @@ class LeannCLI:
def create_parser(self) -> argparse.ArgumentParser:
parser = argparse.ArgumentParser(
prog="leann",
description="LEANN - Local Enhanced AI Navigation",
description="The smallest vector index in the world. RAG Everything with LEANN!",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
@@ -102,9 +102,18 @@ Examples:
help="Documents directories and/or files (default: current directory)",
)
build_parser.add_argument(
"--backend", type=str, default="hnsw", choices=["hnsw", "diskann"]
"--backend",
type=str,
default="hnsw",
choices=["hnsw", "diskann"],
help="Backend to use (default: hnsw)",
)
build_parser.add_argument(
"--embedding-model",
type=str,
default="facebook/contriever",
help="Embedding model (default: facebook/contriever)",
)
build_parser.add_argument("--embedding-model", type=str, default="facebook/contriever")
build_parser.add_argument(
"--embedding-mode",
type=str,
@@ -112,36 +121,82 @@ Examples:
choices=["sentence-transformers", "openai", "mlx", "ollama"],
help="Embedding backend mode (default: sentence-transformers)",
)
build_parser.add_argument("--force", "-f", action="store_true", help="Force rebuild")
build_parser.add_argument("--graph-degree", type=int, default=32)
build_parser.add_argument("--complexity", type=int, default=64)
build_parser.add_argument(
"--force", "-f", action="store_true", help="Force rebuild existing index"
)
build_parser.add_argument(
"--graph-degree", type=int, default=32, help="Graph degree (default: 32)"
)
build_parser.add_argument(
"--complexity", type=int, default=64, help="Build complexity (default: 64)"
)
build_parser.add_argument("--num-threads", type=int, default=1)
build_parser.add_argument("--compact", action="store_true", default=True)
build_parser.add_argument("--recompute", action="store_true", default=True)
build_parser.add_argument(
"--compact",
action=argparse.BooleanOptionalAction,
default=True,
help="Use compact storage (default: true). Must be `no-compact` for `no-recompute` build.",
)
build_parser.add_argument(
"--recompute",
action=argparse.BooleanOptionalAction,
default=True,
help="Enable recomputation (default: true)",
)
build_parser.add_argument(
"--file-types",
type=str,
help="Comma-separated list of file extensions to include (e.g., '.txt,.pdf,.pptx'). If not specified, uses default supported types.",
)
build_parser.add_argument(
"--doc-chunk-size",
type=int,
default=256,
help="Document chunk size in tokens/characters (default: 256)",
)
build_parser.add_argument(
"--doc-chunk-overlap",
type=int,
default=128,
help="Document chunk overlap (default: 128)",
)
build_parser.add_argument(
"--code-chunk-size",
type=int,
default=512,
help="Code chunk size in tokens/lines (default: 512)",
)
build_parser.add_argument(
"--code-chunk-overlap",
type=int,
default=50,
help="Code chunk overlap (default: 50)",
)
# Search command
search_parser = subparsers.add_parser("search", help="Search documents")
search_parser.add_argument("index_name", help="Index name")
search_parser.add_argument("query", help="Search query")
search_parser.add_argument("--top-k", type=int, default=5)
search_parser.add_argument("--complexity", type=int, default=64)
search_parser.add_argument(
"--top-k", type=int, default=5, help="Number of results (default: 5)"
)
search_parser.add_argument(
"--complexity", type=int, default=64, help="Search complexity (default: 64)"
)
search_parser.add_argument("--beam-width", type=int, default=1)
search_parser.add_argument("--prune-ratio", type=float, default=0.0)
search_parser.add_argument(
"--recompute-embeddings",
action="store_true",
"--recompute",
dest="recompute_embeddings",
action=argparse.BooleanOptionalAction,
default=True,
help="Recompute embeddings (default: True)",
help="Enable/disable embedding recomputation (default: enabled). Should not do a `no-recompute` search in a `recompute` build.",
)
search_parser.add_argument(
"--pruning-strategy",
choices=["global", "local", "proportional"],
default="global",
help="Pruning strategy (default: global)",
)
# Ask command
@@ -152,19 +207,27 @@ Examples:
type=str,
default="ollama",
choices=["simulated", "ollama", "hf", "openai"],
help="LLM provider (default: ollama)",
)
ask_parser.add_argument(
"--model", type=str, default="qwen3:8b", help="Model name (default: qwen3:8b)"
)
ask_parser.add_argument("--model", type=str, default="qwen3:8b")
ask_parser.add_argument("--host", type=str, default="http://localhost:11434")
ask_parser.add_argument("--interactive", "-i", action="store_true")
ask_parser.add_argument("--top-k", type=int, default=20)
ask_parser.add_argument(
"--interactive", "-i", action="store_true", help="Interactive chat mode"
)
ask_parser.add_argument(
"--top-k", type=int, default=20, help="Retrieval count (default: 20)"
)
ask_parser.add_argument("--complexity", type=int, default=32)
ask_parser.add_argument("--beam-width", type=int, default=1)
ask_parser.add_argument("--prune-ratio", type=float, default=0.0)
ask_parser.add_argument(
"--recompute-embeddings",
action="store_true",
"--recompute",
dest="recompute_embeddings",
action=argparse.BooleanOptionalAction,
default=True,
help="Recompute embeddings (default: True)",
help="Enable/disable embedding recomputation during ask (default: enabled)",
)
ask_parser.add_argument(
"--pruning-strategy",
@@ -687,6 +750,37 @@ Examples:
print(f"Index '{index_name}' already exists. Use --force to rebuild.")
return
# Configure chunking based on CLI args before loading documents
# Guard against invalid configurations
doc_chunk_size = max(1, int(args.doc_chunk_size))
doc_chunk_overlap = max(0, int(args.doc_chunk_overlap))
if doc_chunk_overlap >= doc_chunk_size:
print(
f"⚠️ Adjusting doc chunk overlap from {doc_chunk_overlap} to {doc_chunk_size - 1} (must be < chunk size)"
)
doc_chunk_overlap = doc_chunk_size - 1
code_chunk_size = max(1, int(args.code_chunk_size))
code_chunk_overlap = max(0, int(args.code_chunk_overlap))
if code_chunk_overlap >= code_chunk_size:
print(
f"⚠️ Adjusting code chunk overlap from {code_chunk_overlap} to {code_chunk_size - 1} (must be < chunk size)"
)
code_chunk_overlap = code_chunk_size - 1
self.node_parser = SentenceSplitter(
chunk_size=doc_chunk_size,
chunk_overlap=doc_chunk_overlap,
separator=" ",
paragraph_separator="\n\n",
)
self.code_parser = SentenceSplitter(
chunk_size=code_chunk_size,
chunk_overlap=code_chunk_overlap,
separator="\n",
paragraph_separator="\n\n",
)
all_texts = self.load_documents(docs_paths, args.file_types)
if not all_texts:
print("No documents found")

View File

@@ -57,6 +57,8 @@ def compute_embeddings(
return compute_embeddings_mlx(texts, model_name)
elif mode == "ollama":
return compute_embeddings_ollama(texts, model_name, is_build=is_build)
elif mode == "gemini":
return compute_embeddings_gemini(texts, model_name, is_build=is_build)
else:
raise ValueError(f"Unsupported embedding mode: {mode}")
@@ -263,8 +265,16 @@ def compute_embeddings_openai(texts: list[str], model_name: str) -> np.ndarray:
print(f"len of texts: {len(texts)}")
# OpenAI has limits on batch size and input length
max_batch_size = 1000 # Conservative batch size
max_batch_size = 800 # Conservative batch size because the token limit is 300K
all_embeddings = []
# get the avg len of texts
avg_len = sum(len(text) for text in texts) / len(texts)
print(f"avg len of texts: {avg_len}")
# if avg len is less than 1000, use the max batch size
if avg_len > 300:
max_batch_size = 500
# if avg len is less than 1000, use the max batch size
try:
from tqdm import tqdm
@@ -650,3 +660,83 @@ def compute_embeddings_ollama(
logger.info(f"Generated {len(embeddings)} embeddings, dimension: {embeddings.shape[1]}")
return embeddings
def compute_embeddings_gemini(
texts: list[str], model_name: str = "text-embedding-004", is_build: bool = False
) -> np.ndarray:
"""
Compute embeddings using Google Gemini API.
Args:
texts: List of texts to compute embeddings for
model_name: Gemini model name (default: "text-embedding-004")
is_build: Whether this is a build operation (shows progress bar)
Returns:
Embeddings array, shape: (len(texts), embedding_dim)
"""
try:
import os
import google.genai as genai
except ImportError as e:
raise ImportError(f"Google GenAI package not installed: {e}")
api_key = os.getenv("GEMINI_API_KEY")
if not api_key:
raise RuntimeError("GEMINI_API_KEY environment variable not set")
# Cache Gemini client
cache_key = "gemini_client"
if cache_key in _model_cache:
client = _model_cache[cache_key]
else:
client = genai.Client(api_key=api_key)
_model_cache[cache_key] = client
logger.info("Gemini client cached")
logger.info(
f"Computing embeddings for {len(texts)} texts using Gemini API, model: '{model_name}'"
)
# Gemini supports batch embedding
max_batch_size = 100 # Conservative batch size for Gemini
all_embeddings = []
try:
from tqdm import tqdm
total_batches = (len(texts) + max_batch_size - 1) // max_batch_size
batch_range = range(0, len(texts), max_batch_size)
batch_iterator = tqdm(
batch_range, desc="Computing embeddings", unit="batch", total=total_batches
)
except ImportError:
# Fallback when tqdm is not available
batch_iterator = range(0, len(texts), max_batch_size)
for i in batch_iterator:
batch_texts = texts[i : i + max_batch_size]
try:
# Use the embed_content method from the new Google GenAI SDK
response = client.models.embed_content(
model=model_name,
contents=batch_texts,
config=genai.types.EmbedContentConfig(
task_type="RETRIEVAL_DOCUMENT" # For document embedding
),
)
# Extract embeddings from response
for embedding_data in response.embeddings:
all_embeddings.append(embedding_data.values)
except Exception as e:
logger.error(f"Batch {i} failed: {e}")
raise
embeddings = np.array(all_embeddings, dtype=np.float32)
logger.info(f"Generated {len(embeddings)} embeddings, dimension: {embeddings.shape[1]}")
return embeddings

View File

@@ -268,8 +268,12 @@ class EmbeddingServerManager:
f"Terminating server process (PID: {self.server_process.pid}) for backend {self.backend_module_name}..."
)
# Use simple termination - our improved server shutdown should handle this properly
self.server_process.terminate()
# Use simple termination first; if the server installed signal handlers,
# it will exit cleanly. Otherwise escalate to kill after a short wait.
try:
self.server_process.terminate()
except Exception:
pass
try:
self.server_process.wait(timeout=5) # Give more time for graceful shutdown
@@ -278,7 +282,10 @@ class EmbeddingServerManager:
logger.warning(
f"Server process {self.server_process.pid} did not terminate within 5 seconds, force killing..."
)
self.server_process.kill()
try:
self.server_process.kill()
except Exception:
pass
try:
self.server_process.wait(timeout=2)
logger.info(f"Server process {self.server_process.pid} killed successfully.")

View File

@@ -64,19 +64,6 @@ def handle_request(request):
"required": ["index_name", "query"],
},
},
{
"name": "leann_status",
"description": "📊 Check the health and stats of your code indexes - like a medical checkup for your codebase knowledge!",
"inputSchema": {
"type": "object",
"properties": {
"index_name": {
"type": "string",
"description": "Optional: Name of specific index to check. If not provided, shows status of all indexes.",
}
},
},
},
{
"name": "leann_list",
"description": "📋 Show all your indexed codebases - your personal code library! Use this to see what's available for search.",
@@ -118,15 +105,6 @@ def handle_request(request):
]
result = subprocess.run(cmd, capture_output=True, text=True)
elif tool_name == "leann_status":
if args.get("index_name"):
# Check specific index status - for now, we'll use leann list and filter
result = subprocess.run(["leann", "list"], capture_output=True, text=True)
# We could enhance this to show more detailed status per index
else:
# Show all indexes status
result = subprocess.run(["leann", "list"], capture_output=True, text=True)
elif tool_name == "leann_list":
result = subprocess.run(["leann", "list"], capture_output=True, text=True)

View File

@@ -13,10 +13,20 @@ This installs the `leann` CLI into an isolated tool environment and includes bot
## 🚀 Quick Setup
Add the LEANN MCP server to Claude Code:
Add the LEANN MCP server to Claude Code. Choose the scope based on how widely you want it available. Below is the command to install it globally; if you prefer a local install, skip this step:
```bash
claude mcp add leann-server -- leann_mcp
# Global (recommended): available in all projects for your user
claude mcp add --scope user leann-server -- leann_mcp
```
- `leann-server`: the display name of the MCP server in Claude Code (you can change it).
- `leann_mcp`: the Python entry point installed with LEANN that starts the MCP server.
Verify it is registered globally:
```bash
claude mcp list | cat
```
## 🛠️ Available Tools
@@ -25,27 +35,36 @@ Once connected, you'll have access to these powerful semantic search tools in Cl
- **`leann_list`** - List all available indexes across your projects
- **`leann_search`** - Perform semantic searches across code and documents
- **`leann_ask`** - Ask natural language questions and get AI-powered answers from your codebase
## 🎯 Quick Start Example
```bash
# Add locally if you did not add it globally (current folder only; default if --scope is omitted)
claude mcp add leann-server -- leann_mcp
# Build an index for your project (change to your actual path)
leann build my-project --docs ./
# See the advanced examples below for more ways to configure indexing
# Set the index name (replace 'my-project' with your own)
leann build my-project --docs $(git ls-files)
# Start Claude Code
claude
```
## 🚀 Advanced Usage Examples
## 🚀 Advanced Usage Examples to build the index
### Index Entire Git Repository
```bash
# Index all tracked files in your git repository, note right now we will skip submodules, but we can add it back easily if you want
# Index all tracked files in your Git repository.
# Note: submodules are currently skipped; we can add them back if needed.
leann build my-repo --docs $(git ls-files) --embedding-mode sentence-transformers --embedding-model all-MiniLM-L6-v2 --backend hnsw
# Index only specific file types from git
# Index only tracked Python files from Git.
leann build my-python-code --docs $(git ls-files "*.py") --embedding-mode sentence-transformers --embedding-model all-MiniLM-L6-v2 --backend hnsw
# If you encounter empty requests caused by empty files (e.g., __init__.py), exclude zero-byte files. Thanks @ww2283 for pointing [that](https://github.com/yichuan-w/LEANN/issues/48) out
leann build leann-prospec-lig --docs $(find ./src -name "*.py" -not -empty) --embedding-mode openai --embedding-model text-embedding-3-small
```
### Multiple Directories and Files
@@ -73,7 +92,7 @@ leann build docs-and-configs --docs $(git ls-files "*.md" "*.yml" "*.yaml" "*.js
```
**Try this in Claude Code:**
## **Try this in Claude Code:**
```
Help me understand this codebase. List available indexes and search for authentication patterns.
```
@@ -82,6 +101,7 @@ Help me understand this codebase. List available indexes and search for authenti
<img src="../../assets/claude_code_leann.png" alt="LEANN in Claude Code" width="80%">
</p>
If you see a prompt asking whether to proceed with LEANN, you can now use it in your chat!
## 🧠 How It Works
@@ -117,3 +137,11 @@ To remove LEANN
```
uv pip uninstall leann leann-backend-hnsw leann-core
```
To globally remove LEANN (for version update)
```
uv tool list | cat
uv tool uninstall leann-core
command -v leann || echo "leann gone"
command -v leann_mcp || echo "leann_mcp gone"
```

View File

@@ -0,0 +1 @@
__all__ = []

View File

@@ -136,5 +136,9 @@ def export_sqlite(
connection.commit()
if __name__ == "__main__":
def main():
app()
if __name__ == "__main__":
main()

View File

@@ -10,6 +10,7 @@ requires-python = ">=3.9"
dependencies = [
"leann-core",
"leann-backend-hnsw",
"typer>=0.12.3",
"numpy>=1.26.0",
"torch",
"tqdm",
@@ -84,6 +85,11 @@ documents = [
[tool.setuptools]
py-modules = []
packages = ["wechat_exporter"]
package-dir = { "wechat_exporter" = "packages/wechat-exporter" }
[project.scripts]
wechat-exporter = "wechat_exporter.main:main"
[tool.uv.sources]

76
sky/leann-build.yaml Normal file
View File

@@ -0,0 +1,76 @@
name: leann-build
resources:
# Choose a GPU for fast embeddings (examples: L4, A10G, A100). CPU also works but is slower.
accelerators: L4:1
# Optionally pin a cloud, otherwise SkyPilot will auto-select
# cloud: aws
disk_size: 100
envs:
# Build parameters (override with: sky launch -c leann-gpu sky/leann-build.yaml -e key=value)
index_name: my-index
docs: ./data
backend: hnsw # hnsw | diskann
complexity: 64
graph_degree: 32
num_threads: 8
# Embedding selection
embedding_mode: sentence-transformers # sentence-transformers | openai | mlx | ollama
embedding_model: facebook/contriever
# Storage/latency knobs
recompute: true # true => selective recomputation (recommended)
compact: true # for HNSW only
# Optional pass-through
extra_args: ""
# Rebuild control
force: true
# Sync local paths to the remote VM. Adjust as needed.
file_mounts:
# Example: mount your local data directory used for building
~/leann-data: ${docs}
setup: |
set -e
# Install uv (package manager)
curl -LsSf https://astral.sh/uv/install.sh | sh
export PATH="$HOME/.local/bin:$PATH"
# Ensure modern libstdc++ for FAISS (GLIBCXX >= 3.4.30)
sudo apt-get update -y
sudo apt-get install -y libstdc++6 libgomp1
# Also upgrade conda's libstdc++ in base env (Skypilot images include conda)
if command -v conda >/dev/null 2>&1; then
conda install -y -n base -c conda-forge libstdcxx-ng
fi
# Install LEANN CLI and backends into the user environment
uv pip install --upgrade pip
uv pip install leann-core leann-backend-hnsw leann-backend-diskann
run: |
export PATH="$HOME/.local/bin:$PATH"
# Derive flags from env
recompute_flag=""
if [ "${recompute}" = "false" ] || [ "${recompute}" = "0" ]; then
recompute_flag="--no-recompute"
fi
force_flag=""
if [ "${force}" = "true" ] || [ "${force}" = "1" ]; then
force_flag="--force"
fi
# Build command
python -m leann.cli build ${index_name} \
--docs ~/leann-data \
--backend ${backend} \
--complexity ${complexity} \
--graph-degree ${graph_degree} \
--num-threads ${num_threads} \
--embedding-mode ${embedding_mode} \
--embedding-model ${embedding_model} \
${recompute_flag} ${force_flag} ${extra_args}
# Print where the index is stored for downstream rsync
echo "INDEX_OUT_DIR=~/.leann/indexes/${index_name}"

10
uv.lock generated
View File

@@ -2223,7 +2223,7 @@ wheels = [
[[package]]
name = "leann-backend-diskann"
version = "0.2.8"
version = "0.2.9"
source = { editable = "packages/leann-backend-diskann" }
dependencies = [
{ name = "leann-core" },
@@ -2235,14 +2235,14 @@ dependencies = [
[package.metadata]
requires-dist = [
{ name = "leann-core", specifier = "==0.2.8" },
{ name = "leann-core", specifier = "==0.2.9" },
{ name = "numpy" },
{ name = "protobuf", specifier = ">=3.19.0" },
]
[[package]]
name = "leann-backend-hnsw"
version = "0.2.8"
version = "0.2.9"
source = { editable = "packages/leann-backend-hnsw" }
dependencies = [
{ name = "leann-core" },
@@ -2255,7 +2255,7 @@ dependencies = [
[package.metadata]
requires-dist = [
{ name = "leann-core", specifier = "==0.2.8" },
{ name = "leann-core", specifier = "==0.2.9" },
{ name = "msgpack", specifier = ">=1.0.0" },
{ name = "numpy" },
{ name = "pyzmq", specifier = ">=23.0.0" },
@@ -2263,7 +2263,7 @@ requires-dist = [
[[package]]
name = "leann-core"
version = "0.2.8"
version = "0.2.9"
source = { editable = "packages/leann-core" }
dependencies = [
{ name = "accelerate" },