Compare commits

...

16 Commits

Author SHA1 Message Date
Andy Lee
6b465d5a0f fix: Use uv venv for Arch Linux CI wheel installation
- Use astral-sh/setup-uv@v4 action for consistency with other jobs
- Create virtual environment with uv venv to bypass PEP 668 restrictions
- Install wheels using uv pip install for faster dependency resolution
- Maintain tool consistency across the entire CI pipeline

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-08-16 17:11:04 -07:00
Andy Lee
46905e0687 feat: Improve DiskANN cross-platform compatibility and add Arch Linux support (#66)
* feat: Enhance CLI with improved list and smart remove commands

##  New Features

### 🏠 Enhanced `leann list` command
- **Better UX**: Current project shown first with clear separation
- **Visual improvements**: Icons (🏠/📂), better formatting, size info
- **Smart guidance**: Context-aware usage examples and getting started tips

### 🛡️ Smart `leann remove` command
- **Safety first**: Always shows ALL matching indexes across projects
- **Intelligent handling**:
  - Single match: Clear location display with cross-project warnings
  - Multiple matches: Interactive selection with final confirmation
- **Prevents accidents**: No more deleting wrong indexes due to name conflicts
- **User-friendly**: 'c' to cancel, clear visual hierarchy, detailed info

### 🔧 Technical improvements
- **Clean logging**: Hide debug messages for better CLI experience
- **Comprehensive search**: Always scan all projects for transparency
- **Error handling**: Graceful handling of edge cases and user input

## 🎯 Impact
- **Safer**: Eliminates risk of accidental index deletion
- **Clearer**: Users always know what they're operating on
- **Smarter**: Automatic detection and handling of common scenarios

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* chore: vscode ruff, and format

* fix: Update DiskANN submodule with MKL linking improvements

Updates DiskANN submodule to include fix for MKL linking issues:
- Replaces global link_libraries() with target-specific linking
- Uses dynamic MKL linking (mkl_rt) for better cross-platform compatibility
- Prevents MKL contamination of unrelated targets (like zlib tests)
- Resolves build failures on strict linkers (Arch Linux) while maintaining Ubuntu compatibility

DiskANN commit: c593831 - fix: Replace global MKL linking with target-specific approach

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* chore: all linux deps

* fix: Update Intel MKL download link to avoid 403 error

- Replace problematic Intel download URL that returns 403 Forbidden
- Use general Intel oneAPI MKL page instead of specific download parameters
- This fixes the lychee link checker CI failure

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Configure lychee to use browser User-Agent for Intel links

- Replace domain exclusion with browser User-Agent to properly check Intel links
- Intel website blocks automated tools but allows browser-like requests
- This enables proper link validation while avoiding 403 Forbidden errors

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Use curl User-Agent for lychee link checking

Intel website has specific anti-bot logic:
- Blocks browser User-Agents (returns 403)
- Blocks lychee default User-Agent (returns 403)
- Allows curl User-Agent (returns 200)

This enables proper link validation for Intel documentation.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-08-16 14:42:20 -07:00
Andy Lee
838ade231e 🔗 Auto-register apps: Universal index discovery (#64)
* feat: Enhance CLI with improved list and smart remove commands

##  New Features

### 🏠 Enhanced `leann list` command
- **Better UX**: Current project shown first with clear separation
- **Visual improvements**: Icons (🏠/📂), better formatting, size info
- **Smart guidance**: Context-aware usage examples and getting started tips

### 🛡️ Smart `leann remove` command
- **Safety first**: Always shows ALL matching indexes across projects
- **Intelligent handling**:
  - Single match: Clear location display with cross-project warnings
  - Multiple matches: Interactive selection with final confirmation
- **Prevents accidents**: No more deleting wrong indexes due to name conflicts
- **User-friendly**: 'c' to cancel, clear visual hierarchy, detailed info

### 🔧 Technical improvements
- **Clean logging**: Hide debug messages for better CLI experience
- **Comprehensive search**: Always scan all projects for transparency
- **Error handling**: Graceful handling of edge cases and user input

## 🎯 Impact
- **Safer**: Eliminates risk of accidental index deletion
- **Clearer**: Users always know what they're operating on
- **Smarter**: Automatic detection and handling of common scenarios

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* chore: vscode ruff, and format

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-08-16 11:50:25 -07:00
Andy Lee
da6540decd feat: Enhance CLI with improved list and smart remove commands (#63)
- **Better UX**: Current project shown first with clear separation
- **Visual improvements**: Icons (🏠/📂), better formatting, size info
- **Smart guidance**: Context-aware usage examples and getting started tips

- **Safety first**: Always shows ALL matching indexes across projects
- **Intelligent handling**:
  - Single match: Clear location display with cross-project warnings
  - Multiple matches: Interactive selection with final confirmation
- **Prevents accidents**: No more deleting wrong indexes due to name conflicts
- **User-friendly**: 'c' to cancel, clear visual hierarchy, detailed info

- **Clean logging**: Hide debug messages for better CLI experience
- **Comprehensive search**: Always scan all projects for transparency
- **Error handling**: Graceful handling of edge cases and user input

- **Safer**: Eliminates risk of accidental index deletion
- **Clearer**: Users always know what they're operating on
- **Smarter**: Automatic detection and handling of common scenarios
2025-08-15 23:49:47 -07:00
yichuan520030910320
39e18a7c11 [chore] remove gitattribute 2025-08-15 23:12:24 -07:00
Andy Lee
6bde28584b feat: Add Google Gemini API support for chat and embeddings (#57)
- Add GeminiChat class with gemini-2.5-flash model support
- Add compute_embeddings_gemini function with text-embedding-004 model
- Update get_llm factory to support "gemini" type
- Update API documentation to include gemini embedding mode
- Support temperature, max_tokens, top_p parameters for Gemini chat
- Support batch embedding processing with progress bars
- Add proper error handling and API key validation
2025-08-15 21:54:11 -07:00
yichuan520030910320
f62632c41f [readme]update arch linux install 2025-08-15 21:41:34 -07:00
yichuan520030910320
27708243ca update system support 2025-08-15 21:32:53 -07:00
GitHub Actions
9a1e4652ca chore: release v0.3.0 2025-08-16 00:54:47 +00:00
Andy Lee
14e84d9e2d fix(core): skip empty/invalid chunks before embedding; guard OpenAI embeddings (#55)
Avoid 400 errors from OpenAI when chunker yields empty strings by filtering
invalid texts in LeannBuilder.build_index. Add validation fail-fast in
OpenAI embedding path to surface upstream issues earlier. Keeps passages and
embeddings aligned during build.

Refs #54
2025-08-15 17:53:53 -07:00
Yichuan Wang
2dcfca19ff style: apply ruff format (#56) 2025-08-15 17:48:33 -07:00
Yichuan Wang
bee2167ee3 docs: update READMEs (MCP docs + conclusion polish)
- Polish conclusion in packages/leann-mcp/README.md
- Sync root README wording and links
2025-08-15 17:21:23 -07:00
yichuan520030910320
ef980d70b3 [MCP]update MCP of claude code 2025-08-15 14:29:59 -07:00
Andy Lee
db3c63c441 Docs/Core: Low-Resource Setups, SkyPilot Option, and No-Recompute (#45)
* docs: add SkyPilot template and instructions for running embeddings/index build on cloud GPU

* docs: add low-resource note in README; point to config guide; suggest OpenAI embeddings, SkyPilot remote build, and --no-recompute

* docs: consolidate low-resource guidance into config guide; README points to it

* cli: add --no-recompute and --no-recompute-embeddings flags; docs: clarify HNSW requires --no-compact when disabling recompute

* docs: dedupe recomputation guidance; keep single Low-resource setups section

* sky: expand leann-build.yaml with configurable params and flags (backend, recompute, compact, embedding options)

* hnsw: auto-disable compact when --no-recompute is used; docs: expand SkyPilot with -e overrides and copy-back example

* docs+sky: simplify SkyPilot flow (auto-build on launch, rsync copy-back); clarify HNSW auto non-compact when no-recompute

* feat: auto compact for hnsw when recompute

* reader: non-destructive portability (relative hints + fallback); fix comments; sky: refine yaml

* cli: unify flags to --recompute/--no-recompute for build/search/ask; docs: update references

* chore: remove

* hnsw: move pruned/no-recompute assertion into backend; api: drop global assertion; docs: will adjust after benchmarking

* cli: use argparse.BooleanOptionalAction for paired flags (--recompute/--compact) across build/search/ask

* docs: a real example on recompute

* benchmarks: fix and extend HNSW+DiskANN recompute vs no-recompute; docs: add fresh numbers and DiskANN notes

* benchmarks: unify HNSW & DiskANN into one clean script; isolate groups, fixed ports, warm-up, param complexity

* docs: diskann recompute

* core: auto-cleanup for LeannSearcher/LeannChat (__enter__/__exit__/__del__); ensure server terminate/kill robustness; benchmarks: use searcher.cleanup(); docs: suggest uv run

* fix: hang on warnings

* docs: boolean flags

* docs: leann help
2025-08-15 12:03:19 -07:00
yichuan520030910320
00eeadb9dd upd pkg 2025-08-14 14:39:45 -07:00
yichuan520030910320
42c8370709 add chunk size in leann build& fix batch size in oai& docs 2025-08-14 13:14:14 -07:00
31 changed files with 1406 additions and 254 deletions

1
.gitattributes vendored
View File

@@ -1 +0,0 @@
paper_plot/data/big_graph_degree_data.npz filter=lfs diff=lfs merge=lfs -text

View File

@@ -87,7 +87,7 @@ jobs:
runs-on: ${{ matrix.os }}
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v5
with:
ref: ${{ inputs.ref }}
submodules: recursive
@@ -98,21 +98,23 @@ jobs:
python-version: ${{ matrix.python }}
- name: Install uv
uses: astral-sh/setup-uv@v4
uses: astral-sh/setup-uv@v6
- name: Install system dependencies (Ubuntu)
if: runner.os == 'Linux'
run: |
sudo apt-get update
sudo apt-get install -y libomp-dev libboost-all-dev protobuf-compiler libzmq3-dev \
pkg-config libopenblas-dev patchelf libabsl-dev libaio-dev libprotobuf-dev
pkg-config libabsl-dev libaio-dev libprotobuf-dev \
patchelf
# Install Intel MKL for DiskANN
wget -q https://registrationcenter-download.intel.com/akdlm/IRC_NAS/79153e0f-74d7-45af-b8c2-258941adf58a/intel-onemkl-2025.0.0.940.sh
sudo sh intel-onemkl-2025.0.0.940.sh -a --components intel.oneapi.lin.mkl.devel --action install --eula accept -s
source /opt/intel/oneapi/setvars.sh
echo "MKLROOT=/opt/intel/oneapi/mkl/latest" >> $GITHUB_ENV
echo "LD_LIBRARY_PATH=/opt/intel/oneapi/mkl/latest/lib/intel64:$LD_LIBRARY_PATH" >> $GITHUB_ENV
echo "LD_LIBRARY_PATH=/opt/intel/oneapi/compiler/latest/linux/compiler/lib/intel64_lin" >> $GITHUB_ENV
echo "LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/intel/oneapi/mkl/latest/lib/intel64" >> $GITHUB_ENV
- name: Install system dependencies (macOS)
if: runner.os == 'macOS'
@@ -304,3 +306,53 @@ jobs:
with:
name: packages-${{ matrix.os }}-py${{ matrix.python }}
path: packages/*/dist/
arch-smoke:
name: Arch Linux smoke test (install & import)
needs: build
runs-on: ubuntu-latest
container:
image: archlinux:latest
steps:
- name: Prepare system
run: |
pacman -Syu --noconfirm
pacman -S --noconfirm python python-pip gcc git zlib openssl
- name: Download ALL wheel artifacts from this run
uses: actions/download-artifact@v5
with:
# Don't specify name, download all artifacts
path: ./wheels
- name: Install uv
uses: astral-sh/setup-uv@v6
- name: Create virtual environment and install wheels
run: |
uv venv
source .venv/bin/activate || source .venv/Scripts/activate
uv pip install --find-links wheels leann-core
uv pip install --find-links wheels leann-backend-hnsw
uv pip install --find-links wheels leann-backend-diskann
uv pip install --find-links wheels leann
- name: Import & tiny runtime check
env:
OMP_NUM_THREADS: 1
MKL_NUM_THREADS: 1
run: |
source .venv/bin/activate || source .venv/Scripts/activate
python - <<'PY'
import leann
import leann_backend_hnsw as h
import leann_backend_diskann as d
from leann import LeannBuilder, LeannSearcher
b = LeannBuilder(backend_name="hnsw")
b.add_text("hello arch")
b.build_index("arch_demo.leann")
s = LeannSearcher("arch_demo.leann")
print("search:", s.search("hello", top_k=1))
PY

View File

@@ -14,6 +14,6 @@ jobs:
- uses: actions/checkout@v4
- uses: lycheeverse/lychee-action@v2
with:
args: --no-progress --insecure README.md docs/ apps/ examples/ benchmarks/
args: --no-progress --insecure --user-agent 'curl/7.68.0' README.md docs/ apps/ examples/ benchmarks/
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

1
.gitignore vendored
View File

@@ -18,6 +18,7 @@ demo/experiment_results/**/*.json
*.eml
*.emlx
*.json
!.vscode/*.json
*.sh
*.txt
!CMakeLists.txt

5
.vscode/extensions.json vendored Normal file
View File

@@ -0,0 +1,5 @@
{
"recommendations": [
"charliermarsh.ruff",
]
}

22
.vscode/settings.json vendored Normal file
View File

@@ -0,0 +1,22 @@
{
"python.defaultInterpreterPath": ".venv/bin/python",
"python.terminal.activateEnvironment": true,
"[python]": {
"editor.defaultFormatter": "charliermarsh.ruff",
"editor.formatOnSave": true,
"editor.codeActionsOnSave": {
"source.organizeImports": "explicit",
"source.fixAll": "explicit"
},
"editor.insertSpaces": true,
"editor.tabSize": 4
},
"ruff.enable": true,
"files.watcherExclude": {
"**/.venv/**": true,
"**/__pycache__/**": true,
"**/*.egg-info/**": true,
"**/build/**": true,
"**/dist/**": true
}
}

160
README.md
View File

@@ -5,7 +5,7 @@
<p align="center">
<img src="https://img.shields.io/badge/Python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12%20%7C%203.13-blue.svg" alt="Python Versions">
<img src="https://github.com/yichuan-w/LEANN/actions/workflows/build-and-publish.yml/badge.svg" alt="CI Status">
<img src="https://img.shields.io/badge/Platform-Ubuntu%20%7C%20macOS%20(ARM64%2FIntel)-lightgrey" alt="Platform">
<img src="https://img.shields.io/badge/Platform-Ubuntu%20%26%20Arch%20%26%20WSL%20%7C%20macOS%20(ARM64%2FIntel)-lightgrey" alt="Platform">
<img src="https://img.shields.io/badge/License-MIT-green.svg" alt="MIT License">
<img src="https://img.shields.io/badge/MCP-Native%20Integration-blue" alt="MCP Integration">
</p>
@@ -31,7 +31,7 @@ LEANN achieves this through *graph-based selective recomputation* with *high-deg
<img src="assets/effects.png" alt="LEANN vs Traditional Vector DB Storage Comparison" width="70%">
</p>
> **The numbers speak for themselves:** Index 60 million text chunks in just 6GB instead of 201GB. From emails to browser history, everything fits on your laptop. [See detailed benchmarks for different applications below ↓](#storage-comparison)
> **The numbers speak for themselves:** Index 60 million text chunks in just 6GB instead of 201GB. From emails to browser history, everything fits on your laptop. [See detailed benchmarks for different applications below ↓](#-storage-comparison)
🔒 **Privacy:** Your data never leaves your laptop. No OpenAI, no cloud, no "terms of service".
@@ -70,6 +70,8 @@ uv venv
source .venv/bin/activate
uv pip install leann
```
<!--
> Low-resource? See “Low-resource setups” in the [Configuration Guide](docs/configuration-guide.md#low-resource-setups). -->
<details>
<summary>
@@ -85,15 +87,60 @@ git submodule update --init --recursive
```
**macOS:**
Note: DiskANN requires MacOS 13.3 or later.
```bash
brew install llvm libomp boost protobuf zeromq pkgconf
CC=$(brew --prefix llvm)/bin/clang CXX=$(brew --prefix llvm)/bin/clang++ uv sync
brew install libomp boost protobuf zeromq pkgconf
uv sync --extra diskann
```
**Linux:**
**Linux (Ubuntu/Debian):**
Note: On Ubuntu 20.04, you may need to build a newer Abseil and pin Protobuf (e.g., v3.20.x) for building DiskANN. See [Issue #30](https://github.com/yichuan-w/LEANN/issues/30) for a step-by-step note.
You can manually install [Intel oneAPI MKL](https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html) instead of `libmkl-full-dev` for DiskANN. You can also use `libopenblas-dev` for building HNSW only, by removing `--extra diskann` in the command below.
```bash
sudo apt-get install libomp-dev libboost-all-dev protobuf-compiler libabsl-dev libmkl-full-dev libaio-dev libzmq3-dev
uv sync
sudo apt-get update && sudo apt-get install -y \
libomp-dev libboost-all-dev protobuf-compiler libzmq3-dev \
pkg-config libabsl-dev libaio-dev libprotobuf-dev \
libmkl-full-dev
uv sync --extra diskann
```
**Linux (Arch Linux):**
```bash
sudo pacman -Syu && sudo pacman -S --needed base-devel cmake pkgconf git gcc \
boost boost-libs protobuf abseil-cpp libaio zeromq
# For MKL in DiskANN
sudo pacman -S --needed base-devel git
git clone https://aur.archlinux.org/paru-bin.git
cd paru-bin && makepkg -si
paru -S intel-oneapi-mkl intel-oneapi-compiler
source /opt/intel/oneapi/setvars.sh
uv sync --extra diskann
```
**Linux (RHEL / CentOS Stream / Oracle / Rocky / AlmaLinux):**
See [Issue #50](https://github.com/yichuan-w/LEANN/issues/50) for more details.
```bash
sudo dnf groupinstall -y "Development Tools"
sudo dnf install -y libomp-devel boost-devel protobuf-compiler protobuf-devel \
abseil-cpp-devel libaio-devel zeromq-devel pkgconf-pkg-config
# For MKL in DiskANN
sudo dnf install -y intel-oneapi-mkl intel-oneapi-mkl-devel \
intel-oneapi-openmp || sudo dnf install -y intel-oneapi-compiler
source /opt/intel/oneapi/setvars.sh
uv sync --extra diskann
```
</details>
@@ -184,34 +231,34 @@ All RAG examples share these common parameters. **Interactive mode** is availabl
```bash
# Core Parameters (General preprocessing for all examples)
--index-dir DIR # Directory to store the index (default: current directory)
--query "YOUR QUESTION" # Single query mode. Omit for interactive chat (type 'quit' to exit), and now you can play with your index interactively
--max-items N # Limit data preprocessing (default: -1, process all data)
--force-rebuild # Force rebuild index even if it exists
--index-dir DIR # Directory to store the index (default: current directory)
--query "YOUR QUESTION" # Single query mode. Omit for interactive chat (type 'quit' to exit), and now you can play with your index interactively
--max-items N # Limit data preprocessing (default: -1, process all data)
--force-rebuild # Force rebuild index even if it exists
# Embedding Parameters
--embedding-model MODEL # e.g., facebook/contriever, text-embedding-3-small, mlx-community/Qwen3-Embedding-0.6B-8bit or nomic-embed-text
--embedding-mode MODE # sentence-transformers, openai, mlx, or ollama
--embedding-model MODEL # e.g., facebook/contriever, text-embedding-3-small, mlx-community/Qwen3-Embedding-0.6B-8bit or nomic-embed-text
--embedding-mode MODE # sentence-transformers, openai, mlx, or ollama
# LLM Parameters (Text generation models)
--llm TYPE # LLM backend: openai, ollama, or hf (default: openai)
--llm-model MODEL # Model name (default: gpt-4o) e.g., gpt-4o-mini, llama3.2:1b, Qwen/Qwen2.5-1.5B-Instruct
--thinking-budget LEVEL # Thinking budget for reasoning models: low/medium/high (supported by o3, o3-mini, GPT-Oss:20b, and other reasoning models)
--llm TYPE # LLM backend: openai, ollama, or hf (default: openai)
--llm-model MODEL # Model name (default: gpt-4o) e.g., gpt-4o-mini, llama3.2:1b, Qwen/Qwen2.5-1.5B-Instruct
--thinking-budget LEVEL # Thinking budget for reasoning models: low/medium/high (supported by o3, o3-mini, GPT-Oss:20b, and other reasoning models)
# Search Parameters
--top-k N # Number of results to retrieve (default: 20)
--search-complexity N # Search complexity for graph traversal (default: 32)
--top-k N # Number of results to retrieve (default: 20)
--search-complexity N # Search complexity for graph traversal (default: 32)
# Chunking Parameters
--chunk-size N # Size of text chunks (default varies by source: 256 for most, 192 for WeChat)
--chunk-overlap N # Overlap between chunks (default varies: 25-128 depending on source)
--chunk-size N # Size of text chunks (default varies by source: 256 for most, 192 for WeChat)
--chunk-overlap N # Overlap between chunks (default varies: 25-128 depending on source)
# Index Building Parameters
--backend-name NAME # Backend to use: hnsw or diskann (default: hnsw)
--graph-degree N # Graph degree for index construction (default: 32)
--build-complexity N # Build complexity for index construction (default: 64)
--no-compact # Disable compact index storage (compact storage IS enabled to save storage by default)
--no-recompute # Disable embedding recomputation (recomputation IS enabled to save storage by default)
--backend-name NAME # Backend to use: hnsw or diskann (default: hnsw)
--graph-degree N # Graph degree for index construction (default: 32)
--build-complexity N # Build complexity for index construction (default: 64)
--compact / --no-compact # Use compact storage (default: true). Must be `no-compact` for `no-recompute` build.
--recompute / --no-recompute # Enable/disable embedding recomputation (default: enabled). Should not do a `no-recompute` search in a `recompute` build.
```
</details>
@@ -424,21 +471,21 @@ Once the index is built, you can ask questions like:
**The future of code assistance is here.** Transform your development workflow with LEANN's native MCP integration for Claude Code. Index your entire codebase and get intelligent code assistance directly in your IDE.
**Key features:**
- 🔍 **Semantic code search** across your entire project
- 🔍 **Semantic code search** across your entire project, fully local index and lightweight
- 📚 **Context-aware assistance** for debugging and development
- 🚀 **Zero-config setup** with automatic language detection
```bash
# Install LEANN globally for MCP integration
uv tool install leann-core
uv tool install leann-core --with leann
claude mcp add --scope user leann-server -- leann_mcp
# Setup is automatic - just start using Claude Code!
```
Try our fully agentic pipeline with auto query rewriting, semantic search planning, and more:
![LEANN MCP Integration](assets/mcp_leann.png)
**Ready to supercharge your coding?** [Complete Setup Guide →](packages/leann-mcp/README.md)
**🔥 Ready to supercharge your coding?** [Complete Setup Guide →](packages/leann-mcp/README.md)
## 🖥️ Command Line Interface
@@ -455,7 +502,8 @@ leann --help
**To make it globally available:**
```bash
# Install the LEANN CLI globally using uv tool
uv tool install leann-core
uv tool install leann-core --with leann
# Now you can use leann from anywhere without activating venv
leann --help
@@ -479,30 +527,35 @@ leann ask my-docs --interactive
# List all your indexes
leann list
# Remove an index
leann remove my-docs
```
**Key CLI features:**
- Auto-detects document formats (PDF, TXT, MD, DOCX)
- Auto-detects document formats (PDF, TXT, MD, DOCX, PPTX + code files)
- Smart text chunking with overlap
- Multiple LLM providers (Ollama, OpenAI, HuggingFace)
- Organized index storage in `~/.leann/indexes/`
- Organized index storage in `.leann/indexes/` (project-local)
- Support for advanced search parameters
<details>
<summary><strong>📋 Click to expand: Complete CLI Reference</strong></summary>
You can use `leann --help`, or `leann build --help`, `leann search --help`, `leann ask --help`, `leann list --help`, `leann remove --help` to get the complete CLI reference.
**Build Command:**
```bash
leann build INDEX_NAME --docs DIRECTORY [OPTIONS]
leann build INDEX_NAME --docs DIRECTORY|FILE [DIRECTORY|FILE ...] [OPTIONS]
Options:
--backend {hnsw,diskann} Backend to use (default: hnsw)
--embedding-model MODEL Embedding model (default: facebook/contriever)
--graph-degree N Graph degree (default: 32)
--complexity N Build complexity (default: 64)
--force Force rebuild existing index
--compact Use compact storage (default: true)
--recompute Enable recomputation (default: true)
--graph-degree N Graph degree (default: 32)
--complexity N Build complexity (default: 64)
--force Force rebuild existing index
--compact / --no-compact Use compact storage (default: true). Must be `no-compact` for `no-recompute` build.
--recompute / --no-recompute Enable recomputation (default: true)
```
**Search Command:**
@@ -510,9 +563,9 @@ Options:
leann search INDEX_NAME QUERY [OPTIONS]
Options:
--top-k N Number of results (default: 5)
--complexity N Search complexity (default: 64)
--recompute-embeddings Use recomputation for highest accuracy
--top-k N Number of results (default: 5)
--complexity N Search complexity (default: 64)
--recompute / --no-recompute Enable/disable embedding recomputation (default: enabled). Should not do a `no-recompute` search in a `recompute` build.
--pruning-strategy {global,local,proportional}
```
@@ -527,6 +580,31 @@ Options:
--top-k N Retrieval count (default: 20)
```
**List Command:**
```bash
leann list
# Lists all indexes across all projects with status indicators:
# ✅ - Index is complete and ready to use
# ❌ - Index is incomplete or corrupted
# 📁 - CLI-created index (in .leann/indexes/)
# 📄 - App-created index (*.leann.meta.json files)
```
**Remove Command:**
```bash
leann remove INDEX_NAME [OPTIONS]
Options:
--force, -f Force removal without confirmation
# Smart removal: automatically finds and safely removes indexes
# - Shows all matching indexes across projects
# - Requires confirmation for cross-project removal
# - Interactive selection when multiple matches found
# - Supports both CLI and app-created indexes
```
</details>
## 🏗️ Architecture & How It Works

View File

@@ -10,6 +10,7 @@ from typing import Any
import dotenv
from leann.api import LeannBuilder, LeannChat
from leann.registry import register_project_directory
from llama_index.core.node_parser import SentenceSplitter
dotenv.load_dotenv()
@@ -214,6 +215,11 @@ class BaseRAGExample(ABC):
builder.build_index(index_path)
print(f"Index saved to: {index_path}")
# Register project directory so leann list can discover this index
# The index is saved as args.index_dir/index_name.leann
# We want to register the current working directory where the app is run
register_project_directory(Path.cwd())
return index_path
async def run_interactive_chat(self, args, index_path: str):

View File

@@ -0,0 +1,148 @@
import argparse
import os
import time
from pathlib import Path
from leann import LeannBuilder, LeannSearcher
def _meta_exists(index_path: str) -> bool:
p = Path(index_path)
return (p.parent / f"{p.stem}.meta.json").exists()
def ensure_index(index_path: str, backend_name: str, num_docs: int, is_recompute: bool) -> None:
# if _meta_exists(index_path):
# return
kwargs = {}
if backend_name == "hnsw":
kwargs["is_compact"] = is_recompute
builder = LeannBuilder(
backend_name=backend_name,
embedding_model=os.getenv("LEANN_EMBED_MODEL", "facebook/contriever"),
embedding_mode=os.getenv("LEANN_EMBED_MODE", "sentence-transformers"),
graph_degree=32,
complexity=64,
is_recompute=is_recompute,
num_threads=4,
**kwargs,
)
for i in range(num_docs):
builder.add_text(
f"This is a test document number {i}. It contains some repeated text for benchmarking."
)
builder.build_index(index_path)
def _bench_group(
index_path: str,
recompute: bool,
query: str,
repeats: int,
complexity: int = 32,
top_k: int = 10,
) -> float:
# Independent searcher per group; fixed port when recompute
searcher = LeannSearcher(index_path=index_path)
# Warm-up once
_ = searcher.search(
query,
top_k=top_k,
complexity=complexity,
recompute_embeddings=recompute,
)
def _once() -> float:
t0 = time.time()
_ = searcher.search(
query,
top_k=top_k,
complexity=complexity,
recompute_embeddings=recompute,
)
return time.time() - t0
if repeats <= 1:
t = _once()
else:
vals = [_once() for _ in range(repeats)]
vals.sort()
t = vals[len(vals) // 2]
searcher.cleanup()
return t
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--num-docs", type=int, default=5000)
parser.add_argument("--repeats", type=int, default=3)
parser.add_argument("--complexity", type=int, default=32)
args = parser.parse_args()
base = Path.cwd() / ".leann" / "indexes" / f"bench_n{args.num_docs}"
base.parent.mkdir(parents=True, exist_ok=True)
# ---------- Build HNSW variants ----------
hnsw_r = str(base / f"hnsw_recompute_n{args.num_docs}.leann")
hnsw_nr = str(base / f"hnsw_norecompute_n{args.num_docs}.leann")
ensure_index(hnsw_r, "hnsw", args.num_docs, True)
ensure_index(hnsw_nr, "hnsw", args.num_docs, False)
# ---------- Build DiskANN variants ----------
diskann_r = str(base / "diskann_r.leann")
diskann_nr = str(base / "diskann_nr.leann")
ensure_index(diskann_r, "diskann", args.num_docs, True)
ensure_index(diskann_nr, "diskann", args.num_docs, False)
# ---------- Helpers ----------
def _size_for(prefix: str) -> int:
p = Path(prefix)
base_dir = p.parent
stem = p.stem
total = 0
for f in base_dir.iterdir():
if f.is_file() and f.name.startswith(stem):
total += f.stat().st_size
return total
# ---------- HNSW benchmark ----------
t_hnsw_r = _bench_group(
hnsw_r, True, "test document number 42", repeats=args.repeats, complexity=args.complexity
)
t_hnsw_nr = _bench_group(
hnsw_nr, False, "test document number 42", repeats=args.repeats, complexity=args.complexity
)
size_hnsw_r = _size_for(hnsw_r)
size_hnsw_nr = _size_for(hnsw_nr)
print("Benchmark results (HNSW):")
print(f" recompute=True: search_time={t_hnsw_r:.3f}s, size={size_hnsw_r / 1024 / 1024:.1f}MB")
print(
f" recompute=False: search_time={t_hnsw_nr:.3f}s, size={size_hnsw_nr / 1024 / 1024:.1f}MB"
)
print(" Expectation: no-recompute should be faster but larger on disk.")
# ---------- DiskANN benchmark ----------
t_diskann_r = _bench_group(
diskann_r, True, "DiskANN R test doc 123", repeats=args.repeats, complexity=args.complexity
)
t_diskann_nr = _bench_group(
diskann_nr,
False,
"DiskANN NR test doc 123",
repeats=args.repeats,
complexity=args.complexity,
)
size_diskann_r = _size_for(diskann_r)
size_diskann_nr = _size_for(diskann_nr)
print("\nBenchmark results (DiskANN):")
print(f" build(recompute=True, partition): size={size_diskann_r / 1024 / 1024:.1f}MB")
print(f" build(recompute=False): size={size_diskann_nr / 1024 / 1024:.1f}MB")
print(f" search recompute=True (final rerank): {t_diskann_r:.3f}s")
print(f" search recompute=False (PQ only): {t_diskann_nr:.3f}s")
if __name__ == "__main__":
main()

View File

@@ -10,6 +10,7 @@ This benchmark compares search performance between DiskANN and HNSW backends:
"""
import gc
import multiprocessing as mp
import tempfile
import time
from pathlib import Path
@@ -17,6 +18,12 @@ from typing import Any
import numpy as np
# Prefer 'fork' start method to avoid POSIX semaphore leaks on macOS
try:
mp.set_start_method("fork", force=True)
except Exception:
pass
def create_test_texts(n_docs: int) -> list[str]:
"""Create synthetic test documents for benchmarking."""
@@ -113,10 +120,10 @@ def benchmark_backend(
]
score_validity_rate = len(valid_scores) / len(all_scores) if all_scores else 0
# Clean up
# Clean up (ensure embedding server shutdown and object GC)
try:
if hasattr(searcher, "__del__"):
searcher.__del__()
if hasattr(searcher, "cleanup"):
searcher.cleanup()
del searcher
del builder
gc.collect()
@@ -259,10 +266,21 @@ if __name__ == "__main__":
print(f"\n❌ Benchmark failed: {e}")
sys.exit(1)
finally:
# Ensure clean exit
# Ensure clean exit (forceful to prevent rare hangs from atexit/threads)
try:
gc.collect()
print("\n🧹 Cleanup completed")
# Flush stdio to ensure message is visible before hard-exit
try:
import sys as _sys
_sys.stdout.flush()
_sys.stderr.flush()
except Exception:
pass
except Exception:
pass
sys.exit(0)
# Use os._exit to bypass atexit handlers that may hang in rare cases
import os as _os
_os._exit(0)

View File

@@ -97,29 +97,23 @@ ollama pull nomic-embed-text
```
### DiskANN
**Best for**: Performance-critical applications and large datasets - **Production-ready with automatic graph partitioning**
**Best for**: Large datasets, especially when you want `recompute=True`.
**How it works:**
- **Product Quantization (PQ) + Real-time Reranking**: Uses compressed PQ codes for fast graph traversal, then recomputes exact embeddings for final candidates
- **Automatic Graph Partitioning**: When `is_recompute=True`, automatically partitions large indices and safely removes redundant files to save storage
- **Superior Speed-Accuracy Trade-off**: Faster search than HNSW while maintaining high accuracy
**Key advantages:**
- **Faster search** on large datasets (3x+ speedup vs HNSW in many cases)
- **Smart storage**: `recompute=True` enables automatic graph partitioning for smaller indexes
- **Better scaling**: Designed for 100k+ documents
**Trade-offs compared to HNSW:**
- **Faster search latency** (typically 2-8x speedup)
- **Better scaling** for large datasets
-**Smart storage management** with automatic partitioning
-**Better graph locality** with `--ldg-times` parameter for SSD optimization
- ⚠️ **Slightly larger index size** due to PQ tables and graph metadata
**Recompute behavior:**
- `recompute=True` (recommended): Pure PQ traversal + final reranking - faster and enables partitioning
- `recompute=False`: PQ + partial real distances during traversal - slower but higher accuracy
```bash
# Recommended for most use cases
--backend-name diskann --graph-degree 32 --build-complexity 64
# For large-scale deployments
--backend-name diskann --graph-degree 64 --build-complexity 128
```
**Performance Benchmark**: Run `python benchmarks/diskann_vs_hnsw_speed_comparison.py` to compare DiskANN and HNSW on your system.
**Performance Benchmark**: Run `uv run benchmarks/diskann_vs_hnsw_speed_comparison.py` to compare DiskANN and HNSW on your system.
## LLM Selection: Engine and Model Comparison
@@ -273,24 +267,114 @@ Every configuration choice involves trade-offs:
The key is finding the right balance for your specific use case. Start small and simple, measure performance, then scale up only where needed.
## Deep Dive: Critical Configuration Decisions
## Low-resource setups
### When to Disable Recomputation
If you dont have a local GPU or builds/searches are too slow, use one or more of the options below.
LEANN's recomputation feature provides exact distance calculations but can be disabled for extreme QPS requirements:
### 1) Use OpenAI embeddings (no local compute)
Fastest path with zero local GPU requirements. Set your API key and use OpenAI embeddings during build and search:
```bash
--no-recompute # Disable selective recomputation
export OPENAI_API_KEY=sk-...
# Build with OpenAI embeddings
leann build my-index \
--embedding-mode openai \
--embedding-model text-embedding-3-small
# Search with OpenAI embeddings (recompute at query time)
leann search my-index "your query" \
--recompute
```
**Trade-offs**:
- **With recomputation** (default): Exact distances, best quality, higher latency, minimal storage (only stores metadata, recomputes embeddings on-demand)
- **Without recomputation**: Must store full embeddings, significantly higher memory and storage usage (10-100x more), but faster search
### 2) Run remote builds with SkyPilot (cloud GPU)
Offload embedding generation and index building to a GPU VM using [SkyPilot](https://skypilot.readthedocs.io/en/latest/). A template is provided at `sky/leann-build.yaml`.
```bash
# One-time: install and configure SkyPilot
pip install skypilot
# Launch with defaults (L4:1) and mount ./data to ~/leann-data; the build runs automatically
sky launch -c leann-gpu sky/leann-build.yaml
# Override parameters via -e key=value (optional)
sky launch -c leann-gpu sky/leann-build.yaml \
-e index_name=my-index \
-e backend=hnsw \
-e embedding_mode=sentence-transformers \
-e embedding_model=Qwen/Qwen3-Embedding-0.6B
# Copy the built index back to your local .leann (use rsync)
rsync -Pavz leann-gpu:~/.leann/indexes/my-index ./.leann/indexes/
```
### 3) Disable recomputation to trade storage for speed
If you need lower latency and have more storage/memory, disable recomputation. This stores full embeddings and avoids recomputing at search time.
```bash
# Build without recomputation (HNSW requires non-compact in this mode)
leann build my-index --no-recompute --no-compact
# Search without recomputation
leann search my-index "your query" --no-recompute
```
When to use:
- Extreme low latency requirements (high QPS, interactive assistants)
- Read-heavy workloads where storage is cheaper than latency
- No always-available GPU
Constraints:
- HNSW: when `--no-recompute` is set, LEANN automatically disables compact mode during build
- DiskANN: supported; `--no-recompute` skips selective recompute during search
Storage impact:
- Storing N embeddings of dimension D with float32 requires approximately N × D × 4 bytes
- Example: 1,000,000 chunks × 768 dims × 4 bytes ≈ 2.86 GB (plus graph/metadata)
Converting an existing index (rebuild required):
```bash
# Rebuild in-place (ensure you still have original docs or can regenerate chunks)
leann build my-index --force --no-recompute --no-compact
```
Python API usage:
```python
from leann import LeannSearcher
searcher = LeannSearcher("/path/to/my-index.leann")
results = searcher.search("your query", top_k=10, recompute_embeddings=False)
```
Trade-offs:
- Lower latency and fewer network hops at query time
- Significantly higher storage (10100× vs selective recomputation)
- Slightly larger memory footprint during build and search
Quick benchmark results (`benchmarks/benchmark_no_recompute.py` with 5k texts, complexity=32):
- HNSW
```text
recompute=True: search_time=0.818s, size=1.1MB
recompute=False: search_time=0.012s, size=16.6MB
```
- DiskANN
```text
recompute=True: search_time=0.041s, size=5.9MB
recompute=False: search_time=0.013s, size=24.6MB
```
Conclusion:
- **HNSW**: `no-recompute` is significantly faster (no embedding recomputation) but requires much more storage (stores all embeddings)
- **DiskANN**: `no-recompute` uses PQ + partial real distances during traversal (slower but higher accuracy), while `recompute=True` uses pure PQ traversal + final reranking (faster traversal, enables build-time partitioning for smaller storage)
**Disable when**:
- You have abundant storage and memory
- Need extremely low latency (< 100ms)
- Running a read-heavy workload where storage cost is acceptable
## Further Reading

View File

@@ -441,9 +441,14 @@ class DiskannSearcher(BaseSearcher):
else: # "global"
use_global_pruning = True
# Perform search with suppressed C++ output based on log level
use_deferred_fetch = kwargs.get("USE_DEFERRED_FETCH", True)
recompute_neighors = False
# Strategy:
# - Traversal always uses PQ distances
# - If recompute_embeddings=True, do a single final rerank via deferred fetch
# (fetch embeddings for the final candidate set only)
# - Do not recompute neighbor distances along the path
use_deferred_fetch = True if recompute_embeddings else False
recompute_neighors = False # Expected typo. For backward compatibility.
with suppress_cpp_output_if_needed():
labels, distances = self._index.batch_search(
query,

View File

@@ -4,8 +4,8 @@ build-backend = "scikit_build_core.build"
[project]
name = "leann-backend-diskann"
version = "0.2.9"
dependencies = ["leann-core==0.2.9", "numpy", "protobuf>=3.19.0"]
version = "0.3.0"
dependencies = ["leann-core==0.3.0", "numpy", "protobuf>=3.19.0"]
[tool.scikit-build]
# Key: simplified CMake path

View File

@@ -54,12 +54,13 @@ class HNSWBuilder(LeannBackendBuilderInterface):
self.efConstruction = self.build_params.setdefault("efConstruction", 200)
self.distance_metric = self.build_params.setdefault("distance_metric", "mips")
self.dimensions = self.build_params.get("dimensions")
if not self.is_recompute:
if self.is_compact:
# TODO: support this case @andy
raise ValueError(
"is_recompute is False, but is_compact is True. This is not compatible now. change is compact to False and you can use the original HNSW index."
)
if not self.is_recompute and self.is_compact:
# Auto-correct: non-recompute requires non-compact storage for HNSW
logger.warning(
"is_recompute=False requires non-compact HNSW. Forcing is_compact=False."
)
self.is_compact = False
self.build_params["is_compact"] = False
def build(self, data: np.ndarray, ids: list[str], index_path: str, **kwargs):
from . import faiss # type: ignore
@@ -184,9 +185,11 @@ class HNSWSearcher(BaseSearcher):
"""
from . import faiss # type: ignore
if not recompute_embeddings:
if self.is_pruned:
raise RuntimeError("Recompute is required for pruned index.")
if not recompute_embeddings and self.is_pruned:
raise RuntimeError(
"Recompute is required for pruned/compact HNSW index. "
"Re-run search with --recompute, or rebuild with --no-recompute and --no-compact."
)
if recompute_embeddings:
if zmq_port is None:
raise ValueError("zmq_port must be provided if recompute_embeddings is True")

View File

@@ -6,10 +6,10 @@ build-backend = "scikit_build_core.build"
[project]
name = "leann-backend-hnsw"
version = "0.2.9"
version = "0.3.0"
description = "Custom-built HNSW (Faiss) backend for the Leann toolkit."
dependencies = [
"leann-core==0.2.9",
"leann-core==0.3.0",
"numpy",
"pyzmq>=23.0.0",
"msgpack>=1.0.0",

View File

@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
[project]
name = "leann-core"
version = "0.2.9"
version = "0.3.0"
description = "Core API and plugin system for LEANN"
readme = "README.md"
requires-python = ">=3.9"

View File

@@ -46,6 +46,7 @@ def compute_embeddings(
- "sentence-transformers": Use sentence-transformers library (default)
- "mlx": Use MLX backend for Apple Silicon
- "openai": Use OpenAI embedding API
- "gemini": Use Google Gemini embedding API
use_server: Whether to use embedding server (True for search, False for build)
Returns:
@@ -204,6 +205,18 @@ class LeannBuilder:
**backend_kwargs,
):
self.backend_name = backend_name
# Normalize incompatible combinations early (for consistent metadata)
if backend_name == "hnsw":
is_recompute = backend_kwargs.get("is_recompute", True)
is_compact = backend_kwargs.get("is_compact", True)
if is_recompute is False and is_compact is True:
warnings.warn(
"HNSW with is_recompute=False requires non-compact storage. Forcing is_compact=False.",
UserWarning,
stacklevel=2,
)
backend_kwargs["is_compact"] = False
backend_factory: Optional[LeannBackendFactoryInterface] = BACKEND_REGISTRY.get(backend_name)
if backend_factory is None:
raise ValueError(f"Backend '{backend_name}' not found or not registered.")
@@ -294,6 +307,23 @@ class LeannBuilder:
def build_index(self, index_path: str):
if not self.chunks:
raise ValueError("No chunks added.")
# Filter out invalid/empty text chunks early to keep passage and embedding counts aligned
valid_chunks: list[dict[str, Any]] = []
skipped = 0
for chunk in self.chunks:
text = chunk.get("text", "")
if isinstance(text, str) and text.strip():
valid_chunks.append(chunk)
else:
skipped += 1
if skipped > 0:
print(
f"Warning: Skipping {skipped} empty/invalid text chunk(s). Processing {len(valid_chunks)} valid chunks"
)
self.chunks = valid_chunks
if not self.chunks:
raise ValueError("All provided chunks are empty or invalid. Nothing to index.")
if self.dimensions is None:
self.dimensions = len(
compute_embeddings(
@@ -523,6 +553,7 @@ class LeannSearcher:
self.embedding_model = self.meta_data["embedding_model"]
# Support both old and new format
self.embedding_mode = self.meta_data.get("embedding_mode", "sentence-transformers")
# Delegate portability handling to PassageManager
self.passage_manager = PassageManager(
self.meta_data.get("passage_sources", []), metadata_file_path=self.meta_path_str
)
@@ -583,7 +614,7 @@ class LeannSearcher:
zmq_port=zmq_port,
)
# logger.info(f" Generated embedding shape: {query_embedding.shape}")
time.time() - start_time
# time.time() - start_time
# logger.info(f" Embedding time: {embedding_time} seconds")
start_time = time.time()
@@ -649,8 +680,26 @@ class LeannSearcher:
This method should be called after you're done using the searcher,
especially in test environments or batch processing scenarios.
"""
if hasattr(self.backend_impl, "embedding_server_manager"):
self.backend_impl.embedding_server_manager.stop_server()
backend = getattr(self.backend_impl, "embedding_server_manager", None)
if backend is not None:
backend.stop_server()
# Enable automatic cleanup patterns
def __enter__(self):
return self
def __exit__(self, exc_type, exc, tb):
try:
self.cleanup()
except Exception:
pass
def __del__(self):
try:
self.cleanup()
except Exception:
# Avoid noisy errors during interpreter shutdown
pass
class LeannChat:
@@ -730,3 +779,19 @@ class LeannChat:
"""
if hasattr(self.searcher, "cleanup"):
self.searcher.cleanup()
# Enable automatic cleanup patterns
def __enter__(self):
return self
def __exit__(self, exc_type, exc, tb):
try:
self.cleanup()
except Exception:
pass
def __del__(self):
try:
self.cleanup()
except Exception:
pass

View File

@@ -422,7 +422,6 @@ class LLMInterface(ABC):
top_k=10,
complexity=64,
beam_width=8,
USE_DEFERRED_FETCH=True,
skip_search_reorder=True,
recompute_beighbor_embeddings=True,
dedup_node_dis=True,
@@ -434,7 +433,6 @@ class LLMInterface(ABC):
Supported kwargs:
- complexity (int): Search complexity parameter (default: 32)
- beam_width (int): Beam width for search (default: 4)
- USE_DEFERRED_FETCH (bool): Enable deferred fetch mode (default: False)
- skip_search_reorder (bool): Skip search reorder step (default: False)
- recompute_beighbor_embeddings (bool): Enable ZMQ embedding server for neighbor recomputation (default: False)
- dedup_node_dis (bool): Deduplicate nodes by distance (default: False)
@@ -682,6 +680,60 @@ class HFChat(LLMInterface):
return response.strip()
class GeminiChat(LLMInterface):
"""LLM interface for Google Gemini models."""
def __init__(self, model: str = "gemini-2.5-flash", api_key: Optional[str] = None):
self.model = model
self.api_key = api_key or os.getenv("GEMINI_API_KEY")
if not self.api_key:
raise ValueError(
"Gemini API key is required. Set GEMINI_API_KEY environment variable or pass api_key parameter."
)
logger.info(f"Initializing Gemini Chat with model='{model}'")
try:
import google.genai as genai
self.client = genai.Client(api_key=self.api_key)
except ImportError:
raise ImportError(
"The 'google-genai' library is required for Gemini models. Please install it with 'uv pip install google-genai'."
)
def ask(self, prompt: str, **kwargs) -> str:
logger.info(f"Sending request to Gemini with model {self.model}")
try:
from google.genai.types import GenerateContentConfig
generation_config = GenerateContentConfig(
temperature=kwargs.get("temperature", 0.7),
max_output_tokens=kwargs.get("max_tokens", 1000),
)
# Handle top_p parameter
if "top_p" in kwargs:
generation_config.top_p = kwargs["top_p"]
response = self.client.models.generate_content(
model=self.model,
contents=prompt,
config=generation_config,
)
# Handle potential None response text
response_text = response.text
if response_text is None:
logger.warning("Gemini returned None response text")
return ""
return response_text.strip()
except Exception as e:
logger.error(f"Error communicating with Gemini: {e}")
return f"Error: Could not get a response from Gemini. Details: {e}"
class OpenAIChat(LLMInterface):
"""LLM interface for OpenAI models."""
@@ -795,6 +847,8 @@ def get_llm(llm_config: Optional[dict[str, Any]] = None) -> LLMInterface:
return HFChat(model_name=model or "deepseek-ai/deepseek-llm-7b-chat")
elif llm_type == "openai":
return OpenAIChat(model=model or "gpt-4o", api_key=llm_config.get("api_key"))
elif llm_type == "gemini":
return GeminiChat(model=model or "gemini-2.5-flash", api_key=llm_config.get("api_key"))
elif llm_type == "simulated":
return SimulatedChat()
else:

View File

@@ -1,13 +1,14 @@
import argparse
import asyncio
from pathlib import Path
from typing import Union
from typing import Optional, Union
from llama_index.core import SimpleDirectoryReader
from llama_index.core.node_parser import SentenceSplitter
from tqdm import tqdm
from .api import LeannBuilder, LeannChat, LeannSearcher
from .registry import register_project_directory
def extract_pdf_text_with_pymupdf(file_path: str) -> str:
@@ -72,7 +73,7 @@ class LeannCLI:
def create_parser(self) -> argparse.ArgumentParser:
parser = argparse.ArgumentParser(
prog="leann",
description="LEANN - Local Enhanced AI Navigation",
description="The smallest vector index in the world. RAG Everything with LEANN!",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
@@ -84,6 +85,7 @@ Examples:
leann search my-docs "query" # Search in my-docs index
leann ask my-docs "question" # Ask my-docs index
leann list # List all stored indexes
leann remove my-docs # Remove an index (local first, then global)
""",
)
@@ -102,9 +104,18 @@ Examples:
help="Documents directories and/or files (default: current directory)",
)
build_parser.add_argument(
"--backend", type=str, default="hnsw", choices=["hnsw", "diskann"]
"--backend",
type=str,
default="hnsw",
choices=["hnsw", "diskann"],
help="Backend to use (default: hnsw)",
)
build_parser.add_argument(
"--embedding-model",
type=str,
default="facebook/contriever",
help="Embedding model (default: facebook/contriever)",
)
build_parser.add_argument("--embedding-model", type=str, default="facebook/contriever")
build_parser.add_argument(
"--embedding-mode",
type=str,
@@ -112,36 +123,88 @@ Examples:
choices=["sentence-transformers", "openai", "mlx", "ollama"],
help="Embedding backend mode (default: sentence-transformers)",
)
build_parser.add_argument("--force", "-f", action="store_true", help="Force rebuild")
build_parser.add_argument("--graph-degree", type=int, default=32)
build_parser.add_argument("--complexity", type=int, default=64)
build_parser.add_argument(
"--force", "-f", action="store_true", help="Force rebuild existing index"
)
build_parser.add_argument(
"--graph-degree", type=int, default=32, help="Graph degree (default: 32)"
)
build_parser.add_argument(
"--complexity", type=int, default=64, help="Build complexity (default: 64)"
)
build_parser.add_argument("--num-threads", type=int, default=1)
build_parser.add_argument("--compact", action="store_true", default=True)
build_parser.add_argument("--recompute", action="store_true", default=True)
build_parser.add_argument(
"--compact",
action=argparse.BooleanOptionalAction,
default=True,
help="Use compact storage (default: true). Must be `no-compact` for `no-recompute` build.",
)
build_parser.add_argument(
"--recompute",
action=argparse.BooleanOptionalAction,
default=True,
help="Enable recomputation (default: true)",
)
build_parser.add_argument(
"--file-types",
type=str,
help="Comma-separated list of file extensions to include (e.g., '.txt,.pdf,.pptx'). If not specified, uses default supported types.",
)
build_parser.add_argument(
"--include-hidden",
action=argparse.BooleanOptionalAction,
default=False,
help="Include hidden files and directories (paths starting with '.') during indexing (default: false)",
)
build_parser.add_argument(
"--doc-chunk-size",
type=int,
default=256,
help="Document chunk size in tokens/characters (default: 256)",
)
build_parser.add_argument(
"--doc-chunk-overlap",
type=int,
default=128,
help="Document chunk overlap (default: 128)",
)
build_parser.add_argument(
"--code-chunk-size",
type=int,
default=512,
help="Code chunk size in tokens/lines (default: 512)",
)
build_parser.add_argument(
"--code-chunk-overlap",
type=int,
default=50,
help="Code chunk overlap (default: 50)",
)
# Search command
search_parser = subparsers.add_parser("search", help="Search documents")
search_parser.add_argument("index_name", help="Index name")
search_parser.add_argument("query", help="Search query")
search_parser.add_argument("--top-k", type=int, default=5)
search_parser.add_argument("--complexity", type=int, default=64)
search_parser.add_argument(
"--top-k", type=int, default=5, help="Number of results (default: 5)"
)
search_parser.add_argument(
"--complexity", type=int, default=64, help="Search complexity (default: 64)"
)
search_parser.add_argument("--beam-width", type=int, default=1)
search_parser.add_argument("--prune-ratio", type=float, default=0.0)
search_parser.add_argument(
"--recompute-embeddings",
action="store_true",
"--recompute",
dest="recompute_embeddings",
action=argparse.BooleanOptionalAction,
default=True,
help="Recompute embeddings (default: True)",
help="Enable/disable embedding recomputation (default: enabled). Should not do a `no-recompute` search in a `recompute` build.",
)
search_parser.add_argument(
"--pruning-strategy",
choices=["global", "local", "proportional"],
default="global",
help="Pruning strategy (default: global)",
)
# Ask command
@@ -152,19 +215,27 @@ Examples:
type=str,
default="ollama",
choices=["simulated", "ollama", "hf", "openai"],
help="LLM provider (default: ollama)",
)
ask_parser.add_argument(
"--model", type=str, default="qwen3:8b", help="Model name (default: qwen3:8b)"
)
ask_parser.add_argument("--model", type=str, default="qwen3:8b")
ask_parser.add_argument("--host", type=str, default="http://localhost:11434")
ask_parser.add_argument("--interactive", "-i", action="store_true")
ask_parser.add_argument("--top-k", type=int, default=20)
ask_parser.add_argument(
"--interactive", "-i", action="store_true", help="Interactive chat mode"
)
ask_parser.add_argument(
"--top-k", type=int, default=20, help="Retrieval count (default: 20)"
)
ask_parser.add_argument("--complexity", type=int, default=32)
ask_parser.add_argument("--beam-width", type=int, default=1)
ask_parser.add_argument("--prune-ratio", type=float, default=0.0)
ask_parser.add_argument(
"--recompute-embeddings",
action="store_true",
"--recompute",
dest="recompute_embeddings",
action=argparse.BooleanOptionalAction,
default=True,
help="Recompute embeddings (default: True)",
help="Enable/disable embedding recomputation during ask (default: enabled)",
)
ask_parser.add_argument(
"--pruning-strategy",
@@ -182,35 +253,18 @@ Examples:
# List command
subparsers.add_parser("list", help="List all indexes")
# Remove command
remove_parser = subparsers.add_parser("remove", help="Remove an index")
remove_parser.add_argument("index_name", help="Index name to remove")
remove_parser.add_argument(
"--force", "-f", action="store_true", help="Force removal without confirmation"
)
return parser
def register_project_dir(self):
"""Register current project directory in global registry"""
global_registry = Path.home() / ".leann" / "projects.json"
global_registry.parent.mkdir(exist_ok=True)
current_dir = str(Path.cwd())
# Load existing registry
projects = []
if global_registry.exists():
try:
import json
with open(global_registry) as f:
projects = json.load(f)
except Exception:
projects = []
# Add current directory if not already present
if current_dir not in projects:
projects.append(current_dir)
# Save registry
import json
with open(global_registry, "w") as f:
json.dump(projects, f, indent=2)
register_project_directory()
def _build_gitignore_parser(self, docs_dir: str):
"""Build gitignore parser using gitignore-parser library."""
@@ -270,8 +324,6 @@ Examples:
return False
def list_indexes(self):
print("Stored LEANN indexes:")
# Get all project directories with .leann
global_registry = Path.home() / ".leann" / "projects.json"
all_projects = []
@@ -297,58 +349,326 @@ Examples:
if (current_path / ".leann" / "indexes").exists() and current_path not in valid_projects:
valid_projects.append(current_path)
if not valid_projects:
print(
"No indexes found. Use 'leann build <name> --docs <dir> [<dir2> ...]' to create one."
)
return
total_indexes = 0
current_dir = Path.cwd()
# Separate current and other projects
other_projects = []
for project_path in valid_projects:
indexes_dir = project_path / ".leann" / "indexes"
if not indexes_dir.exists():
continue
if project_path != current_path:
other_projects.append(project_path)
index_dirs = [d for d in indexes_dir.iterdir() if d.is_dir()]
if not index_dirs:
continue
print("📚 LEANN Indexes")
print("=" * 50)
# Show project header
if project_path == current_dir:
print(f"\n📁 Current project ({project_path}):")
else:
print(f"\n📂 {project_path}:")
total_indexes = 0
current_indexes_count = 0
for index_dir in index_dirs:
# Show current project first (most important)
print("\n🏠 Current Project")
print(f" {current_path}")
print(" " + "" * 45)
current_indexes = self._discover_indexes_in_project(current_path)
if current_indexes:
for idx in current_indexes:
total_indexes += 1
index_name = index_dir.name
meta_file = index_dir / "documents.leann.meta.json"
status = "" if meta_file.exists() else ""
current_indexes_count += 1
type_icon = "📁" if idx["type"] == "cli" else "📄"
print(f" {current_indexes_count}. {type_icon} {idx['name']} {idx['status']}")
if idx["size_mb"] > 0:
print(f" 📦 Size: {idx['size_mb']:.1f} MB")
else:
print(" 📭 No indexes in current project")
print(f" {total_indexes}. {index_name} [{status}]")
if status == "":
size_mb = sum(f.stat().st_size for f in index_dir.iterdir() if f.is_file()) / (
1024 * 1024
# Show other projects (reference information)
if other_projects:
print("\n\n🗂️ Other Projects")
print(" " + "" * 45)
for project_path in other_projects:
project_indexes = self._discover_indexes_in_project(project_path)
if not project_indexes:
continue
print(f"\n 📂 {project_path.name}")
print(f" {project_path}")
for idx in project_indexes:
total_indexes += 1
type_icon = "📁" if idx["type"] == "cli" else "📄"
print(f"{type_icon} {idx['name']} {idx['status']}")
if idx["size_mb"] > 0:
print(f" 📦 {idx['size_mb']:.1f} MB")
# Summary and usage info
print("\n" + "=" * 50)
if total_indexes == 0:
print("💡 Get started:")
print(" leann build my-docs --docs ./documents")
else:
projects_count = len(
[
p
for p in valid_projects
if (p / ".leann" / "indexes").exists()
and list((p / ".leann" / "indexes").iterdir())
]
)
print(f"📊 Total: {total_indexes} indexes across {projects_count} projects")
if current_indexes_count > 0:
print("\n💫 Quick start (current project):")
# Get first index from current project for example
current_indexes_dir = current_path / ".leann" / "indexes"
if current_indexes_dir.exists():
current_index_dirs = [d for d in current_indexes_dir.iterdir() if d.is_dir()]
if current_index_dirs:
example_name = current_index_dirs[0].name
print(f' leann search {example_name} "your query"')
print(f" leann ask {example_name} --interactive")
else:
print("\n💡 Create your first index:")
print(" leann build my-docs --docs ./documents")
def _discover_indexes_in_project(self, project_path: Path):
"""Discover all indexes in a project directory (both CLI and apps formats)"""
indexes = []
# 1. CLI format: .leann/indexes/index_name/
cli_indexes_dir = project_path / ".leann" / "indexes"
if cli_indexes_dir.exists():
for index_dir in cli_indexes_dir.iterdir():
if index_dir.is_dir():
meta_file = index_dir / "documents.leann.meta.json"
status = "" if meta_file.exists() else ""
size_mb = 0
if meta_file.exists():
try:
size_mb = sum(
f.stat().st_size for f in index_dir.iterdir() if f.is_file()
) / (1024 * 1024)
except (OSError, PermissionError):
pass
indexes.append(
{
"name": index_dir.name,
"type": "cli",
"status": status,
"size_mb": size_mb,
"path": index_dir,
}
)
print(f" Size: {size_mb:.1f} MB")
if total_indexes > 0:
print(f"\nTotal: {total_indexes} indexes across {len(valid_projects)} projects")
print("\nUsage (current project only):")
# 2. Apps format: *.leann.meta.json files anywhere in the project
for meta_file in project_path.rglob("*.leann.meta.json"):
if meta_file.is_file():
# Extract index name from filename (remove .leann.meta.json extension)
index_name = meta_file.name.replace(".leann.meta.json", "")
# Show example from current project
current_indexes_dir = current_dir / ".leann" / "indexes"
if current_indexes_dir.exists():
current_index_dirs = [d for d in current_indexes_dir.iterdir() if d.is_dir()]
if current_index_dirs:
example_name = current_index_dirs[0].name
print(f' leann search {example_name} "your query"')
print(f" leann ask {example_name} --interactive")
# Apps indexes are considered complete if the .leann.meta.json file exists
status = ""
# Calculate total size of all related files
size_mb = 0
try:
index_dir = meta_file.parent
for related_file in index_dir.glob(f"{index_name}.leann*"):
size_mb += related_file.stat().st_size / (1024 * 1024)
except (OSError, PermissionError):
pass
indexes.append(
{
"name": index_name,
"type": "app",
"status": status,
"size_mb": size_mb,
"path": meta_file,
}
)
return indexes
def remove_index(self, index_name: str, force: bool = False):
"""Safely remove an index - always show all matches for transparency"""
# Always do a comprehensive search for safety
print(f"🔍 Searching for all indexes named '{index_name}'...")
all_matches = self._find_all_matching_indexes(index_name)
if not all_matches:
print(f"❌ Index '{index_name}' not found in any project.")
return False
if len(all_matches) == 1:
return self._remove_single_match(all_matches[0], index_name, force)
else:
return self._remove_from_multiple_matches(all_matches, index_name, force)
def _find_all_matching_indexes(self, index_name: str):
"""Find all indexes with the given name across all projects"""
matches = []
# Get all registered projects
global_registry = Path.home() / ".leann" / "projects.json"
all_projects = []
if global_registry.exists():
try:
import json
with open(global_registry) as f:
all_projects = json.load(f)
except Exception:
pass
# Always include current project
current_path = Path.cwd()
if str(current_path) not in all_projects:
all_projects.append(str(current_path))
# Search across all projects
for project_dir in all_projects:
project_path = Path(project_dir)
if not project_path.exists():
continue
index_dir = project_path / ".leann" / "indexes" / index_name
if index_dir.exists():
is_current = project_path == current_path
matches.append(
{"project_path": project_path, "index_dir": index_dir, "is_current": is_current}
)
# Sort: current project first, then by project name
matches.sort(key=lambda x: (not x["is_current"], x["project_path"].name))
return matches
def _remove_single_match(self, match, index_name: str, force: bool):
"""Handle removal when only one match is found"""
project_path = match["project_path"]
index_dir = match["index_dir"]
is_current = match["is_current"]
if is_current:
location_info = "current project"
emoji = "🏠"
else:
location_info = f"other project '{project_path.name}'"
emoji = "📂"
print(f"✅ Found 1 index named '{index_name}':")
print(f" {emoji} Location: {location_info}")
print(f" 📍 Path: {project_path}")
if not force:
if not is_current:
print("\n⚠️ CROSS-PROJECT REMOVAL!")
print(" This will delete the index from another project.")
response = input(f" ❓ Confirm removal from {location_info}? (y/N): ").strip().lower()
if response not in ["y", "yes"]:
print(" ❌ Removal cancelled.")
return False
return self._delete_index_directory(
index_dir, index_name, project_path if not is_current else None
)
def _remove_from_multiple_matches(self, matches, index_name: str, force: bool):
"""Handle removal when multiple matches are found"""
print(f"⚠️ Found {len(matches)} indexes named '{index_name}':")
print(" " + "" * 50)
for i, match in enumerate(matches, 1):
project_path = match["project_path"]
is_current = match["is_current"]
if is_current:
print(f" {i}. 🏠 Current project")
print(f" 📍 {project_path}")
else:
print(f" {i}. 📂 {project_path.name}")
print(f" 📍 {project_path}")
# Show size info
try:
size_mb = sum(
f.stat().st_size for f in match["index_dir"].iterdir() if f.is_file()
) / (1024 * 1024)
print(f" 📦 Size: {size_mb:.1f} MB")
except (OSError, PermissionError):
pass
print(" " + "" * 50)
if force:
print(" ❌ Multiple matches found, but --force specified.")
print(" Please run without --force to choose which one to remove.")
return False
try:
choice = input(
f" ❓ Which one to remove? (1-{len(matches)}, or 'c' to cancel): "
).strip()
if choice.lower() == "c":
print(" ❌ Removal cancelled.")
return False
choice_idx = int(choice) - 1
if 0 <= choice_idx < len(matches):
selected_match = matches[choice_idx]
project_path = selected_match["project_path"]
index_dir = selected_match["index_dir"]
is_current = selected_match["is_current"]
location = "current project" if is_current else f"'{project_path.name}' project"
print(f" 🎯 Selected: Remove from {location}")
# Final confirmation for safety
confirm = input(
f" ❓ FINAL CONFIRMATION - Type '{index_name}' to proceed: "
).strip()
if confirm != index_name:
print(" ❌ Confirmation failed. Removal cancelled.")
return False
return self._delete_index_directory(
index_dir, index_name, project_path if not is_current else None
)
else:
print(" ❌ Invalid choice. Removal cancelled.")
return False
except (ValueError, KeyboardInterrupt):
print("\n ❌ Invalid input. Removal cancelled.")
return False
def _delete_index_directory(
self, index_dir: Path, index_name: str, project_path: Optional[Path] = None
):
"""Actually delete the index directory"""
try:
import shutil
shutil.rmtree(index_dir)
if project_path:
print(f"✅ Index '{index_name}' removed from {project_path.name}")
else:
print(f"✅ Index '{index_name}' removed successfully")
return True
except Exception as e:
print(f"❌ Error removing index '{index_name}': {e}")
return False
def load_documents(
self, docs_paths: Union[str, list], custom_file_types: Union[str, None] = None
self,
docs_paths: Union[str, list],
custom_file_types: Union[str, None] = None,
include_hidden: bool = False,
):
# Handle both single path (string) and multiple paths (list) for backward compatibility
if isinstance(docs_paths, str):
@@ -392,6 +712,10 @@ Examples:
all_documents = []
# Helper to detect hidden path components
def _path_has_hidden_segment(p: Path) -> bool:
return any(part.startswith(".") and part not in [".", ".."] for part in p.parts)
# First, process individual files if any
if files:
print(f"\n🔄 Processing {len(files)} individual file{'s' if len(files) > 1 else ''}...")
@@ -404,8 +728,12 @@ Examples:
files_by_dir = defaultdict(list)
for file_path in files:
parent_dir = str(Path(file_path).parent)
files_by_dir[parent_dir].append(file_path)
file_path_obj = Path(file_path)
if not include_hidden and _path_has_hidden_segment(file_path_obj):
print(f" ⚠️ Skipping hidden file: {file_path}")
continue
parent_dir = str(file_path_obj.parent)
files_by_dir[parent_dir].append(str(file_path_obj))
# Load files from each parent directory
for parent_dir, file_list in files_by_dir.items():
@@ -416,6 +744,7 @@ Examples:
file_docs = SimpleDirectoryReader(
parent_dir,
input_files=file_list,
# exclude_hidden only affects directory scans; input_files are explicit
filename_as_id=True,
).load_data()
all_documents.extend(file_docs)
@@ -514,6 +843,8 @@ Examples:
# Check if file matches any exclude pattern
try:
relative_path = file_path.relative_to(docs_path)
if not include_hidden and _path_has_hidden_segment(relative_path):
continue
if self._should_exclude_file(relative_path, gitignore_matches):
continue
except ValueError:
@@ -541,6 +872,7 @@ Examples:
try:
default_docs = SimpleDirectoryReader(
str(file_path.parent),
exclude_hidden=not include_hidden,
filename_as_id=True,
required_exts=[file_path.suffix],
).load_data()
@@ -569,6 +901,7 @@ Examples:
encoding="utf-8",
required_exts=code_extensions,
file_extractor={}, # Use default extractors
exclude_hidden=not include_hidden,
filename_as_id=True,
).load_data(show_progress=True)
@@ -687,7 +1020,40 @@ Examples:
print(f"Index '{index_name}' already exists. Use --force to rebuild.")
return
all_texts = self.load_documents(docs_paths, args.file_types)
# Configure chunking based on CLI args before loading documents
# Guard against invalid configurations
doc_chunk_size = max(1, int(args.doc_chunk_size))
doc_chunk_overlap = max(0, int(args.doc_chunk_overlap))
if doc_chunk_overlap >= doc_chunk_size:
print(
f"⚠️ Adjusting doc chunk overlap from {doc_chunk_overlap} to {doc_chunk_size - 1} (must be < chunk size)"
)
doc_chunk_overlap = doc_chunk_size - 1
code_chunk_size = max(1, int(args.code_chunk_size))
code_chunk_overlap = max(0, int(args.code_chunk_overlap))
if code_chunk_overlap >= code_chunk_size:
print(
f"⚠️ Adjusting code chunk overlap from {code_chunk_overlap} to {code_chunk_size - 1} (must be < chunk size)"
)
code_chunk_overlap = code_chunk_size - 1
self.node_parser = SentenceSplitter(
chunk_size=doc_chunk_size,
chunk_overlap=doc_chunk_overlap,
separator=" ",
paragraph_separator="\n\n",
)
self.code_parser = SentenceSplitter(
chunk_size=code_chunk_size,
chunk_overlap=code_chunk_overlap,
separator="\n",
paragraph_separator="\n\n",
)
all_texts = self.load_documents(
docs_paths, args.file_types, include_hidden=args.include_hidden
)
if not all_texts:
print("No documents found")
return
@@ -824,6 +1190,8 @@ Examples:
if args.command == "list":
self.list_indexes()
elif args.command == "remove":
self.remove_index(args.index_name, args.force)
elif args.command == "build":
await self.build_index(args)
elif args.command == "search":
@@ -835,10 +1203,15 @@ Examples:
def main():
import logging
import dotenv
dotenv.load_dotenv()
# Set clean logging for CLI usage
logging.getLogger().setLevel(logging.WARNING) # Only show warnings and errors
cli = LeannCLI()
asyncio.run(cli.run())

View File

@@ -57,6 +57,8 @@ def compute_embeddings(
return compute_embeddings_mlx(texts, model_name)
elif mode == "ollama":
return compute_embeddings_ollama(texts, model_name, is_build=is_build)
elif mode == "gemini":
return compute_embeddings_gemini(texts, model_name, is_build=is_build)
else:
raise ValueError(f"Unsupported embedding mode: {mode}")
@@ -244,6 +246,16 @@ def compute_embeddings_openai(texts: list[str], model_name: str) -> np.ndarray:
except ImportError as e:
raise ImportError(f"OpenAI package not installed: {e}")
# Validate input list
if not texts:
raise ValueError("Cannot compute embeddings for empty text list")
# Extra validation: abort early if any item is empty/whitespace
invalid_count = sum(1 for t in texts if not isinstance(t, str) or not t.strip())
if invalid_count > 0:
raise ValueError(
f"Found {invalid_count} empty/invalid text(s) in input. Upstream should filter before calling OpenAI."
)
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
raise RuntimeError("OPENAI_API_KEY environment variable not set")
@@ -263,8 +275,16 @@ def compute_embeddings_openai(texts: list[str], model_name: str) -> np.ndarray:
print(f"len of texts: {len(texts)}")
# OpenAI has limits on batch size and input length
max_batch_size = 1000 # Conservative batch size
max_batch_size = 800 # Conservative batch size because the token limit is 300K
all_embeddings = []
# get the avg len of texts
avg_len = sum(len(text) for text in texts) / len(texts)
print(f"avg len of texts: {avg_len}")
# if avg len is less than 1000, use the max batch size
if avg_len > 300:
max_batch_size = 500
# if avg len is less than 1000, use the max batch size
try:
from tqdm import tqdm
@@ -650,3 +670,83 @@ def compute_embeddings_ollama(
logger.info(f"Generated {len(embeddings)} embeddings, dimension: {embeddings.shape[1]}")
return embeddings
def compute_embeddings_gemini(
texts: list[str], model_name: str = "text-embedding-004", is_build: bool = False
) -> np.ndarray:
"""
Compute embeddings using Google Gemini API.
Args:
texts: List of texts to compute embeddings for
model_name: Gemini model name (default: "text-embedding-004")
is_build: Whether this is a build operation (shows progress bar)
Returns:
Embeddings array, shape: (len(texts), embedding_dim)
"""
try:
import os
import google.genai as genai
except ImportError as e:
raise ImportError(f"Google GenAI package not installed: {e}")
api_key = os.getenv("GEMINI_API_KEY")
if not api_key:
raise RuntimeError("GEMINI_API_KEY environment variable not set")
# Cache Gemini client
cache_key = "gemini_client"
if cache_key in _model_cache:
client = _model_cache[cache_key]
else:
client = genai.Client(api_key=api_key)
_model_cache[cache_key] = client
logger.info("Gemini client cached")
logger.info(
f"Computing embeddings for {len(texts)} texts using Gemini API, model: '{model_name}'"
)
# Gemini supports batch embedding
max_batch_size = 100 # Conservative batch size for Gemini
all_embeddings = []
try:
from tqdm import tqdm
total_batches = (len(texts) + max_batch_size - 1) // max_batch_size
batch_range = range(0, len(texts), max_batch_size)
batch_iterator = tqdm(
batch_range, desc="Computing embeddings", unit="batch", total=total_batches
)
except ImportError:
# Fallback when tqdm is not available
batch_iterator = range(0, len(texts), max_batch_size)
for i in batch_iterator:
batch_texts = texts[i : i + max_batch_size]
try:
# Use the embed_content method from the new Google GenAI SDK
response = client.models.embed_content(
model=model_name,
contents=batch_texts,
config=genai.types.EmbedContentConfig(
task_type="RETRIEVAL_DOCUMENT" # For document embedding
),
)
# Extract embeddings from response
for embedding_data in response.embeddings:
all_embeddings.append(embedding_data.values)
except Exception as e:
logger.error(f"Batch {i} failed: {e}")
raise
embeddings = np.array(all_embeddings, dtype=np.float32)
logger.info(f"Generated {len(embeddings)} embeddings, dimension: {embeddings.shape[1]}")
return embeddings

View File

@@ -268,8 +268,12 @@ class EmbeddingServerManager:
f"Terminating server process (PID: {self.server_process.pid}) for backend {self.backend_module_name}..."
)
# Use simple termination - our improved server shutdown should handle this properly
self.server_process.terminate()
# Use simple termination first; if the server installed signal handlers,
# it will exit cleanly. Otherwise escalate to kill after a short wait.
try:
self.server_process.terminate()
except Exception:
pass
try:
self.server_process.wait(timeout=5) # Give more time for graceful shutdown
@@ -278,7 +282,10 @@ class EmbeddingServerManager:
logger.warning(
f"Server process {self.server_process.pid} did not terminate within 5 seconds, force killing..."
)
self.server_process.kill()
try:
self.server_process.kill()
except Exception:
pass
try:
self.server_process.wait(timeout=2)
logger.info(f"Server process {self.server_process.pid} killed successfully.")

View File

@@ -64,19 +64,6 @@ def handle_request(request):
"required": ["index_name", "query"],
},
},
{
"name": "leann_status",
"description": "📊 Check the health and stats of your code indexes - like a medical checkup for your codebase knowledge!",
"inputSchema": {
"type": "object",
"properties": {
"index_name": {
"type": "string",
"description": "Optional: Name of specific index to check. If not provided, shows status of all indexes.",
}
},
},
},
{
"name": "leann_list",
"description": "📋 Show all your indexed codebases - your personal code library! Use this to see what's available for search.",
@@ -118,15 +105,6 @@ def handle_request(request):
]
result = subprocess.run(cmd, capture_output=True, text=True)
elif tool_name == "leann_status":
if args.get("index_name"):
# Check specific index status - for now, we'll use leann list and filter
result = subprocess.run(["leann", "list"], capture_output=True, text=True)
# We could enhance this to show more detailed status per index
else:
# Show all indexes status
result = subprocess.run(["leann", "list"], capture_output=True, text=True)
elif tool_name == "leann_list":
result = subprocess.run(["leann", "list"], capture_output=True, text=True)

View File

@@ -2,11 +2,17 @@
import importlib
import importlib.metadata
from typing import TYPE_CHECKING
import json
import logging
from pathlib import Path
from typing import TYPE_CHECKING, Optional, Union
if TYPE_CHECKING:
from leann.interface import LeannBackendFactoryInterface
# Set up logger for this module
logger = logging.getLogger(__name__)
BACKEND_REGISTRY: dict[str, "LeannBackendFactoryInterface"] = {}
@@ -14,7 +20,7 @@ def register_backend(name: str):
"""A decorator to register a new backend class."""
def decorator(cls):
print(f"INFO: Registering backend '{name}'")
logger.debug(f"Registering backend '{name}'")
BACKEND_REGISTRY[name] = cls
return cls
@@ -39,3 +45,54 @@ def autodiscover_backends():
# print(f"WARN: Could not import backend module '{backend_module_name}': {e}")
pass
# print("INFO: Backend auto-discovery finished.")
def register_project_directory(project_dir: Optional[Union[str, Path]] = None):
"""
Register a project directory in the global LEANN registry.
This allows `leann list` to discover indexes created by apps or other tools.
Args:
project_dir: Directory to register. If None, uses current working directory.
"""
if project_dir is None:
project_dir = Path.cwd()
else:
project_dir = Path(project_dir)
# Only register directories that have some kind of LEANN content
# Either .leann/indexes/ (CLI format) or *.leann.meta.json files (apps format)
has_cli_indexes = (project_dir / ".leann" / "indexes").exists()
has_app_indexes = any(project_dir.rglob("*.leann.meta.json"))
if not (has_cli_indexes or has_app_indexes):
# Don't register if there are no LEANN indexes
return
global_registry = Path.home() / ".leann" / "projects.json"
global_registry.parent.mkdir(exist_ok=True)
project_str = str(project_dir.resolve())
# Load existing registry
projects = []
if global_registry.exists():
try:
with open(global_registry) as f:
projects = json.load(f)
except Exception:
logger.debug("Could not load existing project registry")
projects = []
# Add project if not already present
if project_str not in projects:
projects.append(project_str)
# Save updated registry
try:
with open(global_registry, "w") as f:
json.dump(projects, f, indent=2)
logger.debug(f"Registered project directory: {project_str}")
except Exception as e:
logger.warning(f"Could not save project registry: {e}")

View File

@@ -13,10 +13,20 @@ This installs the `leann` CLI into an isolated tool environment and includes bot
## 🚀 Quick Setup
Add the LEANN MCP server to Claude Code:
Add the LEANN MCP server to Claude Code. Choose the scope based on how widely you want it available. Below is the command to install it globally; if you prefer a local install, skip this step:
```bash
claude mcp add leann-server -- leann_mcp
# Global (recommended): available in all projects for your user
claude mcp add --scope user leann-server -- leann_mcp
```
- `leann-server`: the display name of the MCP server in Claude Code (you can change it).
- `leann_mcp`: the Python entry point installed with LEANN that starts the MCP server.
Verify it is registered globally:
```bash
claude mcp list | cat
```
## 🛠️ Available Tools
@@ -25,27 +35,36 @@ Once connected, you'll have access to these powerful semantic search tools in Cl
- **`leann_list`** - List all available indexes across your projects
- **`leann_search`** - Perform semantic searches across code and documents
- **`leann_ask`** - Ask natural language questions and get AI-powered answers from your codebase
## 🎯 Quick Start Example
```bash
# Add locally if you did not add it globally (current folder only; default if --scope is omitted)
claude mcp add leann-server -- leann_mcp
# Build an index for your project (change to your actual path)
leann build my-project --docs ./
# See the advanced examples below for more ways to configure indexing
# Set the index name (replace 'my-project' with your own)
leann build my-project --docs $(git ls-files)
# Start Claude Code
claude
```
## 🚀 Advanced Usage Examples
## 🚀 Advanced Usage Examples to build the index
### Index Entire Git Repository
```bash
# Index all tracked files in your git repository, note right now we will skip submodules, but we can add it back easily if you want
# Index all tracked files in your Git repository.
# Note: submodules are currently skipped; we can add them back if needed.
leann build my-repo --docs $(git ls-files) --embedding-mode sentence-transformers --embedding-model all-MiniLM-L6-v2 --backend hnsw
# Index only specific file types from git
# Index only tracked Python files from Git.
leann build my-python-code --docs $(git ls-files "*.py") --embedding-mode sentence-transformers --embedding-model all-MiniLM-L6-v2 --backend hnsw
# If you encounter empty requests caused by empty files (e.g., __init__.py), exclude zero-byte files. Thanks @ww2283 for pointing [that](https://github.com/yichuan-w/LEANN/issues/48) out
leann build leann-prospec-lig --docs $(find ./src -name "*.py" -not -empty) --embedding-mode openai --embedding-model text-embedding-3-small
```
### Multiple Directories and Files
@@ -73,7 +92,7 @@ leann build docs-and-configs --docs $(git ls-files "*.md" "*.yml" "*.yaml" "*.js
```
**Try this in Claude Code:**
## **Try this in Claude Code:**
```
Help me understand this codebase. List available indexes and search for authentication patterns.
```
@@ -82,6 +101,7 @@ Help me understand this codebase. List available indexes and search for authenti
<img src="../../assets/claude_code_leann.png" alt="LEANN in Claude Code" width="80%">
</p>
If you see a prompt asking whether to proceed with LEANN, you can now use it in your chat!
## 🧠 How It Works
@@ -117,3 +137,11 @@ To remove LEANN
```
uv pip uninstall leann leann-backend-hnsw leann-core
```
To globally remove LEANN (for version update)
```
uv tool list | cat
uv tool uninstall leann-core
command -v leann || echo "leann gone"
command -v leann_mcp || echo "leann_mcp gone"
```

View File

@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
[project]
name = "leann"
version = "0.2.9"
version = "0.3.0"
description = "LEANN - The smallest vector index in the world. RAG Everything with LEANN!"
readme = "README.md"
requires-python = ">=3.9"

View File

@@ -0,0 +1 @@
__all__ = []

View File

@@ -136,5 +136,9 @@ def export_sqlite(
connection.commit()
if __name__ == "__main__":
def main():
app()
if __name__ == "__main__":
main()

View File

@@ -10,11 +10,10 @@ requires-python = ">=3.9"
dependencies = [
"leann-core",
"leann-backend-hnsw",
"typer>=0.12.3",
"numpy>=1.26.0",
"torch",
"tqdm",
"flask",
"flask_compress",
"datasets>=2.15.0",
"evaluate",
"colorama",
@@ -65,9 +64,7 @@ test = [
"pytest>=7.0",
"pytest-timeout>=2.0",
"llama-index-core>=0.12.0",
"llama-index-readers-file>=0.4.0",
"python-dotenv>=1.0.0",
"sentence-transformers>=2.2.0",
]
diskann = [
@@ -84,6 +81,11 @@ documents = [
[tool.setuptools]
py-modules = []
packages = ["wechat_exporter"]
package-dir = { "wechat_exporter" = "packages/wechat-exporter" }
[project.scripts]
wechat-exporter = "wechat_exporter.main:main"
[tool.uv.sources]
@@ -94,13 +96,8 @@ leann-backend-hnsw = { path = "packages/leann-backend-hnsw", editable = true }
[tool.ruff]
target-version = "py39"
line-length = 100
extend-exclude = [
"third_party",
"*.egg-info",
"__pycache__",
".git",
".venv",
]
extend-exclude = ["third_party"]
[tool.ruff.lint]
select = [
@@ -123,21 +120,12 @@ ignore = [
"RUF012", # mutable class attributes should be annotated with typing.ClassVar
]
[tool.ruff.lint.per-file-ignores]
"test/**/*.py" = ["E402"] # module level import not at top of file (common in tests)
"examples/**/*.py" = ["E402"] # module level import not at top of file (common in examples)
[tool.ruff.format]
quote-style = "double"
indent-style = "space"
skip-magic-trailing-comma = false
line-ending = "auto"
[dependency-groups]
dev = [
"ruff>=0.12.4",
]
[tool.lychee]
accept = ["200", "403", "429", "503"]
timeout = 20

76
sky/leann-build.yaml Normal file
View File

@@ -0,0 +1,76 @@
name: leann-build
resources:
# Choose a GPU for fast embeddings (examples: L4, A10G, A100). CPU also works but is slower.
accelerators: L4:1
# Optionally pin a cloud, otherwise SkyPilot will auto-select
# cloud: aws
disk_size: 100
envs:
# Build parameters (override with: sky launch -c leann-gpu sky/leann-build.yaml -e key=value)
index_name: my-index
docs: ./data
backend: hnsw # hnsw | diskann
complexity: 64
graph_degree: 32
num_threads: 8
# Embedding selection
embedding_mode: sentence-transformers # sentence-transformers | openai | mlx | ollama
embedding_model: facebook/contriever
# Storage/latency knobs
recompute: true # true => selective recomputation (recommended)
compact: true # for HNSW only
# Optional pass-through
extra_args: ""
# Rebuild control
force: true
# Sync local paths to the remote VM. Adjust as needed.
file_mounts:
# Example: mount your local data directory used for building
~/leann-data: ${docs}
setup: |
set -e
# Install uv (package manager)
curl -LsSf https://astral.sh/uv/install.sh | sh
export PATH="$HOME/.local/bin:$PATH"
# Ensure modern libstdc++ for FAISS (GLIBCXX >= 3.4.30)
sudo apt-get update -y
sudo apt-get install -y libstdc++6 libgomp1
# Also upgrade conda's libstdc++ in base env (Skypilot images include conda)
if command -v conda >/dev/null 2>&1; then
conda install -y -n base -c conda-forge libstdcxx-ng
fi
# Install LEANN CLI and backends into the user environment
uv pip install --upgrade pip
uv pip install leann-core leann-backend-hnsw leann-backend-diskann
run: |
export PATH="$HOME/.local/bin:$PATH"
# Derive flags from env
recompute_flag=""
if [ "${recompute}" = "false" ] || [ "${recompute}" = "0" ]; then
recompute_flag="--no-recompute"
fi
force_flag=""
if [ "${force}" = "true" ] || [ "${force}" = "1" ]; then
force_flag="--force"
fi
# Build command
python -m leann.cli build ${index_name} \
--docs ~/leann-data \
--backend ${backend} \
--complexity ${complexity} \
--graph-degree ${graph_degree} \
--num-threads ${num_threads} \
--embedding-mode ${embedding_mode} \
--embedding-model ${embedding_model} \
${recompute_flag} ${force_flag} ${extra_args}
# Print where the index is stored for downstream rsync
echo "INDEX_OUT_DIR=~/.leann/indexes/${index_name}"

10
uv.lock generated
View File

@@ -2223,7 +2223,7 @@ wheels = [
[[package]]
name = "leann-backend-diskann"
version = "0.2.8"
version = "0.2.9"
source = { editable = "packages/leann-backend-diskann" }
dependencies = [
{ name = "leann-core" },
@@ -2235,14 +2235,14 @@ dependencies = [
[package.metadata]
requires-dist = [
{ name = "leann-core", specifier = "==0.2.8" },
{ name = "leann-core", specifier = "==0.2.9" },
{ name = "numpy" },
{ name = "protobuf", specifier = ">=3.19.0" },
]
[[package]]
name = "leann-backend-hnsw"
version = "0.2.8"
version = "0.2.9"
source = { editable = "packages/leann-backend-hnsw" }
dependencies = [
{ name = "leann-core" },
@@ -2255,7 +2255,7 @@ dependencies = [
[package.metadata]
requires-dist = [
{ name = "leann-core", specifier = "==0.2.8" },
{ name = "leann-core", specifier = "==0.2.9" },
{ name = "msgpack", specifier = ">=1.0.0" },
{ name = "numpy" },
{ name = "pyzmq", specifier = ">=23.0.0" },
@@ -2263,7 +2263,7 @@ requires-dist = [
[[package]]
name = "leann-core"
version = "0.2.8"
version = "0.2.9"
source = { editable = "packages/leann-core" }
dependencies = [
{ name = "accelerate" },