Compare commits

...

11 Commits

Author SHA1 Message Date
Andy Lee
2e7b2d29dc style 2025-09-17 16:42:19 -07:00
Andy Lee
bc4d02c2d3 chore: fix ruff warnings (RUF059, F401) 2025-09-17 16:18:48 -07:00
Andy Lee
b5ce34ad82 style 2025-09-17 16:00:37 -07:00
Andy Lee
6c15e6ad23 fix(core): package chunking utils for AST chunking; re-export in apps; CLI imports packaged utils 2025-09-17 15:57:05 -07:00
GitHub Actions
c5a29f849a chore: release v0.3.4 2025-09-16 20:45:22 +00:00
Yichuan Wang
3b8dc6368e Ast fork (#92) 2025-09-08 18:43:31 -07:00
Aiden Huang
e309f292de docs(mcp): add root llms.txt for MCP discovery; update MCP README to reference it; refs #76 (#91) 2025-09-07 14:39:58 -07:00
AWS Mcleod
0d9f92ea0f Add grep search functionality - Issue #86 (#87)
* Add grep search functionality to LeannSearcher

- Add use_grep parameter to search method
- Implement grep-based search on .jsonl files
- Add fallback Python regex search
- Support same SearchResult format as semantic search

Addresses issue #86

* fix: resolve linting errors

* docs: add grep search example

* docs: add grep search to README examples

* refactor: remove regex fallback, move grep example to features section

* docs: add grep search to Advanced Features with comprehensive guide
2025-09-05 13:48:07 -07:00
GitHub Actions
b0b353d279 chore: release v0.3.3 2025-09-02 21:29:56 +00:00
Andy Lee
4dffdfedbe feat: Add ARM64 Linux wheel support for leann-backend-hnsw (#83)
* feat: Add ARM64 Linux wheel support for leann-backend-hnsw

* fix: Use OpenBLAS for ARM64 Linux builds instead of Intel MKL

* fix: Configure Faiss with SVE optimization for ARM64 builds

- Set FAISS_OPT_LEVEL to "sve" for ARM64 architecture
- Disable x86-specific SIMD instructions (AVX2, AVX512, SSE4.1)
- Use ARM64-native SVE optimization as per Faiss conda build scripts
- Add architecture detection and proper configuration messages

Fixes compilation error: "xmmintrin.h: No such file or directory"
on ubuntu-24.04-arm runners.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Apply ARM64 compatibility fix directly to Faiss submodule

- Modify faiss/impl/pq.cpp to use x86-specific preprocessor conditions
- Remove patch file approach in favor of direct submodule modification
- Update CMakeLists.txt to reflect the submodule changes
- Fixes ARM64 Linux compilation by preventing x86 SIMD header inclusion

This resolves the "xmmintrin.h: No such file or directory" error
when building ARM64 Linux wheels for Docker compatibility.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* chore: Update Faiss submodule to include ARM64 compatibility fix

- Points to commit ed96ff7d with x86-specific preprocessor conditions
- Enables successful ARM64 Linux wheel builds

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* retrigger ci

* fix: Use different optimization levels for ARM64 based on platform

- Use SVE optimization only for ARM64 Linux
- Use generic optimization for ARM64 macOS to avoid clang SVE issues
- Fixes macOS ARM64 compilation errors with SVE instructions

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* feat: Update DiskANN submodule with OpenBLAS fallback support

- Points to commit 5c396c4 with ARM64 Linux OpenBLAS support
- Enables DiskANN to build on ARM64 Linux using standard BLAS libraries
- Resolves Intel MKL dependency issues for Docker ARM64 deployments

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Update DiskANN submodule with ZeroMQ polling configuration

- Points to commit 3a1016e with explicit polling method setup
- Resolves ZeroMQ autodetection issues on ARM64 Linux
- Ensures stable cross-platform ZeroMQ builds

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* retrigger ci

* fix: Update DiskANN submodule with ARM64 compiler flags fix

- Points to commit a0dc600 with architecture-specific compiler flags
- Removes x86 SIMD flags on ARM64 Linux to fix compilation errors
- Enables successful ARM64 Linux wheel builds

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Update DiskANN submodule with ARM64 compiler flags fix

- Points to commit 0921664 with architecture-specific compiler flags
- Removes x86 SIMD flags on ARM64 Linux to fix compilation errors
- Enables successful ARM64 Linux wheel builds

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* retrigger ci

* fix: Update DiskANN submodule with cross-platform prefetch support

- Points to commit 39192d6 with unified prefetch macros
- Replaces all Intel-specific _mm_prefetch calls with cross-platform macros
- Enables ARM64 Linux compatibility while maintaining x86 performance
- Resolves all remaining compilation errors for ARM64 builds

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Update DiskANN submodule with corrected ARM64 compatibility fixes

- Points to commit 3cb87a8 with proper x86 platform detection
- Includes ARM64 fallback for AVXDistanceInnerProductFloat function
- Resolves all remaining '__m256 was not declared' compilation errors
- Enables successful ARM64 Linux wheel builds for Docker compatibility

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Update DiskANN submodule with template type handling fix

- Points to commit d396bc3 with corrected template type handling
- Fixes DistanceInnerProduct template instantiation for int8_t/uint8_t types
- Resolves 'cannot convert const signed char* to const float*' error
- Completes ARM64 Linux compilation compatibility

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Update DiskANN submodule with DistanceFastL2::norm template fix

- Points to commit 69d9a99 with corrected template type handling
- Fixes DistanceFastL2::norm template instantiation for int8_t/uint8_t types
- Resolves another 'cannot convert const signed char* to const float*' error
- Continues ARM64 Linux compilation compatibility improvements

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Update DiskANN submodule with LAPACKE header detection

- Points to commit 64a9e01 with LAPACKE header path configuration
- Adds pkg-config based detection for LAPACKE include directories
- Resolves 'lapacke.h: No such file or directory' compilation error
- Completes OpenBLAS integration for ARM64 Linux builds

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Update DiskANN submodule with enhanced LAPACKE header detection

- Points to commit 18d0721 with fallback LAPACKE header search paths
- Checks multiple standard locations for lapacke.h on various systems
- Improves ARM64 Linux compatibility for OpenBLAS builds
- Should resolve 'lapacke.h: No such file or directory' errors

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Add liblapacke-dev package for ARM64 Linux builds

- Add liblapacke-dev to ARM64 dependencies alongside libopenblas-dev
- Provides lapacke.h header file needed for LAPACK C interface
- Fixes 'lapacke.h: No such file or directory' compilation error
- Enables complete OpenBLAS + LAPACKE support for ARM64 wheel builds

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Update DiskANN submodule with cosine_similarity.h x86 intrinsics fix

- Points to commit dbb17eb with corrected conditional compilation
- Fixes immintrin.h inclusion for ARM64 compatibility in cosine_similarity.h
- Resolves 'immintrin.h: No such file or directory' error
- Continues systematic ARM64 Linux compilation fixes

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Update DiskANN submodule with LAPACKE library linking fix

- Points to commit 19f9603 with explicit LAPACKE library discovery and linking
- Resolves 'undefined symbol: LAPACKE_sgesdd' runtime error on ARM64 Linux
- Completes ARM64 Linux wheel build compatibility for Docker deployments

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-09-02 14:27:06 -07:00
Yichuan Wang
d41e467df9 [CLI] More robust leann list and leann build (#84)
* chore(submodule): bump faiss to latest storage-efficient build

* [chore] add slack to share use case

* [cli] better gitignore / better leann list

* [cli] fix # 81
2025-09-01 18:36:27 -07:00
24 changed files with 577 additions and 185 deletions

View File

@@ -54,6 +54,17 @@ jobs:
python: '3.12'
- os: ubuntu-22.04
python: '3.13'
# ARM64 Linux builds
- os: ubuntu-24.04-arm
python: '3.9'
- os: ubuntu-24.04-arm
python: '3.10'
- os: ubuntu-24.04-arm
python: '3.11'
- os: ubuntu-24.04-arm
python: '3.12'
- os: ubuntu-24.04-arm
python: '3.13'
- os: macos-14
python: '3.9'
- os: macos-14
@@ -108,13 +119,46 @@ jobs:
pkg-config libabsl-dev libaio-dev libprotobuf-dev \
patchelf
# Install Intel MKL for DiskANN
wget -q https://registrationcenter-download.intel.com/akdlm/IRC_NAS/79153e0f-74d7-45af-b8c2-258941adf58a/intel-onemkl-2025.0.0.940.sh
sudo sh intel-onemkl-2025.0.0.940.sh -a --components intel.oneapi.lin.mkl.devel --action install --eula accept -s
source /opt/intel/oneapi/setvars.sh
echo "MKLROOT=/opt/intel/oneapi/mkl/latest" >> $GITHUB_ENV
echo "LD_LIBRARY_PATH=/opt/intel/oneapi/compiler/latest/linux/compiler/lib/intel64_lin" >> $GITHUB_ENV
echo "LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/intel/oneapi/mkl/latest/lib/intel64" >> $GITHUB_ENV
# Debug: Show system information
echo "🔍 System Information:"
echo "Architecture: $(uname -m)"
echo "OS: $(uname -a)"
echo "CPU info: $(lscpu | head -5)"
# Install math library based on architecture
ARCH=$(uname -m)
echo "🔍 Setting up math library for architecture: $ARCH"
if [[ "$ARCH" == "x86_64" ]]; then
# Install Intel MKL for DiskANN on x86_64
echo "📦 Installing Intel MKL for x86_64..."
wget -q https://registrationcenter-download.intel.com/akdlm/IRC_NAS/79153e0f-74d7-45af-b8c2-258941adf58a/intel-onemkl-2025.0.0.940.sh
sudo sh intel-onemkl-2025.0.0.940.sh -a --components intel.oneapi.lin.mkl.devel --action install --eula accept -s
source /opt/intel/oneapi/setvars.sh
echo "MKLROOT=/opt/intel/oneapi/mkl/latest" >> $GITHUB_ENV
echo "LD_LIBRARY_PATH=/opt/intel/oneapi/compiler/latest/linux/compiler/lib/intel64_lin" >> $GITHUB_ENV
echo "LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/intel/oneapi/mkl/latest/lib/intel64" >> $GITHUB_ENV
echo "✅ Intel MKL installed for x86_64"
# Debug: Check MKL installation
echo "🔍 MKL Installation Check:"
ls -la /opt/intel/oneapi/mkl/latest/ || echo "MKL directory not found"
ls -la /opt/intel/oneapi/mkl/latest/lib/ || echo "MKL lib directory not found"
elif [[ "$ARCH" == "aarch64" ]]; then
# Use OpenBLAS for ARM64 (MKL installer not compatible with ARM64)
echo "📦 Installing OpenBLAS for ARM64..."
sudo apt-get install -y libopenblas-dev liblapack-dev liblapacke-dev
echo "✅ OpenBLAS installed for ARM64"
# Debug: Check OpenBLAS installation
echo "🔍 OpenBLAS Installation Check:"
dpkg -l | grep openblas || echo "OpenBLAS package not found"
ls -la /usr/lib/aarch64-linux-gnu/openblas/ || echo "OpenBLAS directory not found"
fi
# Debug: Show final library paths
echo "🔍 Final LD_LIBRARY_PATH: $LD_LIBRARY_PATH"
- name: Install system dependencies (macOS)
if: runner.os == 'macOS'

1
.gitignore vendored
View File

@@ -22,6 +22,7 @@ demo/experiment_results/**/*.json
*.sh
*.txt
!CMakeLists.txt
!llms.txt
latency_breakdown*.json
experiment_results/eval_results/diskann/*.json
aws/

4
.gitmodules vendored
View File

@@ -14,3 +14,7 @@
[submodule "packages/leann-backend-hnsw/third_party/libzmq"]
path = packages/leann-backend-hnsw/third_party/libzmq
url = https://github.com/zeromq/libzmq.git
[submodule "packages/astchunk-leann"]
path = packages/astchunk-leann
url = git@github.com:yichuan-w/astchunk-leann.git
branch = main

View File

@@ -656,6 +656,19 @@ results = searcher.search(
📖 **[Complete Metadata filtering guide →](docs/metadata_filtering.md)**
### 🔍 Grep Search
For exact text matching instead of semantic search, use the `use_grep` parameter:
```python
# Exact text search
results = searcher.search("bananacrocodile", use_grep=True, top_k=1)
```
**Use cases**: Finding specific code patterns, error messages, function names, or exact phrases where semantic similarity isn't needed.
📖 **[Complete grep search guide →](docs/grep_search.md)**
## 🏗️ Architecture & How It Works
<p align="center">

View File

@@ -1,16 +1,38 @@
"""
Chunking utilities for LEANN RAG applications.
Provides AST-aware and traditional text chunking functionality.
"""Unified chunking utilities facade.
This module re-exports the packaged utilities from `leann.chunking_utils` so
that both repo apps (importing `chunking`) and installed wheels share one
single implementation. When running from the repo without installation, it
adds the `packages/leann-core/src` directory to `sys.path` as a fallback.
"""
from .utils import (
CODE_EXTENSIONS,
create_ast_chunks,
create_text_chunks,
create_traditional_chunks,
detect_code_files,
get_language_from_extension,
)
import sys
from pathlib import Path
try:
from leann.chunking_utils import (
CODE_EXTENSIONS,
create_ast_chunks,
create_text_chunks,
create_traditional_chunks,
detect_code_files,
get_language_from_extension,
)
except Exception: # pragma: no cover - best-effort fallback for dev environment
repo_root = Path(__file__).resolve().parents[2]
leann_src = repo_root / "packages" / "leann-core" / "src"
if leann_src.exists():
sys.path.insert(0, str(leann_src))
from leann.chunking_utils import (
CODE_EXTENSIONS,
create_ast_chunks,
create_text_chunks,
create_traditional_chunks,
detect_code_files,
get_language_from_extension,
)
else:
raise
__all__ = [
"CODE_EXTENSIONS",

View File

@@ -74,7 +74,7 @@ class ChromeHistoryReader(BaseReader):
if count >= max_count and max_count > 0:
break
last_visit, url, title, visit_count, typed_count, hidden = row
last_visit, url, title, visit_count, typed_count, _hidden = row
# Create document content with metadata embedded in text
doc_content = f"""

View File

@@ -26,6 +26,21 @@ leann build my-code-index --docs ./src --use-ast-chunking
uv pip install -e "."
```
#### For normal users (PyPI install)
- Use `pip install leann` or `uv pip install leann`.
- `astchunk` is pulled automatically from PyPI as a dependency; no extra steps.
#### For developers (from source, editable)
```bash
git clone https://github.com/yichuan-w/LEANN.git leann
cd leann
git submodule update --init --recursive
uv sync
```
- This repo vendors `astchunk` as a git submodule at `packages/astchunk-leann` (our fork).
- `[tool.uv.sources]` maps the `astchunk` package to that path in editable mode.
- You can edit code under `packages/astchunk-leann` and Python will use your changes immediately (no separate `pip install astchunk` needed).
## Best Practices
### When to Use AST Chunking

149
docs/grep_search.md Normal file
View File

@@ -0,0 +1,149 @@
# LEANN Grep Search Usage Guide
## Overview
LEANN's grep search functionality provides exact text matching for finding specific code patterns, error messages, function names, or exact phrases in your indexed documents.
## Basic Usage
### Simple Grep Search
```python
from leann.api import LeannSearcher
searcher = LeannSearcher("your_index_path")
# Exact text search
results = searcher.search("def authenticate_user", use_grep=True, top_k=5)
for result in results:
print(f"Score: {result.score}")
print(f"Text: {result.text[:100]}...")
print("-" * 40)
```
### Comparison: Semantic vs Grep Search
```python
# Semantic search - finds conceptually similar content
semantic_results = searcher.search("machine learning algorithms", top_k=3)
# Grep search - finds exact text matches
grep_results = searcher.search("def train_model", use_grep=True, top_k=3)
```
## When to Use Grep Search
### Use Cases
- **Code Search**: Finding specific function definitions, class names, or variable references
- **Error Debugging**: Locating exact error messages or stack traces
- **Documentation**: Finding specific API endpoints or exact terminology
### Examples
```python
# Find function definitions
functions = searcher.search("def __init__", use_grep=True)
# Find import statements
imports = searcher.search("from sklearn import", use_grep=True)
# Find specific error types
errors = searcher.search("FileNotFoundError", use_grep=True)
# Find TODO comments
todos = searcher.search("TODO:", use_grep=True)
# Find configuration entries
configs = searcher.search("server_port=", use_grep=True)
```
## Technical Details
### How It Works
1. **File Location**: Grep search operates on the raw text stored in `.jsonl` files
2. **Command Execution**: Uses the system `grep` command with case-insensitive search
3. **Result Processing**: Parses JSON lines and extracts text and metadata
4. **Scoring**: Simple frequency-based scoring based on query term occurrences
### Search Process
```
Query: "def train_model"
grep -i -n "def train_model" documents.leann.passages.jsonl
Parse matching JSON lines
Calculate scores based on term frequency
Return top_k results
```
### Scoring Algorithm
```python
# Term frequency in document
score = text.lower().count(query.lower())
```
Results are ranked by score (highest first), with higher scores indicating more occurrences of the search term.
## Error Handling
### Common Issues
#### Grep Command Not Found
```
RuntimeError: grep command not found. Please install grep or use semantic search.
```
**Solution**: Install grep on your system:
- **Ubuntu/Debian**: `sudo apt-get install grep`
- **macOS**: grep is pre-installed
- **Windows**: Use WSL or install grep via Git Bash/MSYS2
#### No Results Found
```python
# Check if your query exists in the raw data
results = searcher.search("your_query", use_grep=True)
if not results:
print("No exact matches found. Try:")
print("1. Check spelling and case")
print("2. Use partial terms")
print("3. Switch to semantic search")
```
## Complete Example
```python
#!/usr/bin/env python3
"""
Grep Search Example
Demonstrates grep search for exact text matching.
"""
from leann.api import LeannSearcher
def demonstrate_grep_search():
# Initialize searcher
searcher = LeannSearcher("my_index")
print("=== Function Search ===")
functions = searcher.search("def __init__", use_grep=True, top_k=5)
for i, result in enumerate(functions, 1):
print(f"{i}. Score: {result.score}")
print(f" Preview: {result.text[:60]}...")
print()
print("=== Error Search ===")
errors = searcher.search("FileNotFoundError", use_grep=True, top_k=3)
for result in errors:
print(f"Content: {result.text.strip()}")
print("-" * 40)
if __name__ == "__main__":
demonstrate_grep_search()
```

View File

@@ -0,0 +1,35 @@
"""
Grep Search Example
Shows how to use grep-based text search instead of semantic search.
Useful when you need exact text matches rather than meaning-based results.
"""
from leann import LeannSearcher
# Load your index
searcher = LeannSearcher("my-documents.leann")
# Regular semantic search
print("=== Semantic Search ===")
results = searcher.search("machine learning algorithms", top_k=3)
for result in results:
print(f"Score: {result.score:.3f}")
print(f"Text: {result.text[:80]}...")
print()
# Grep-based search for exact text matches
print("=== Grep Search ===")
results = searcher.search("def train_model", top_k=3, use_grep=True)
for result in results:
print(f"Score: {result.score}")
print(f"Text: {result.text[:80]}...")
print()
# Find specific error messages
error_results = searcher.search("FileNotFoundError", use_grep=True)
print(f"Found {len(error_results)} files mentioning FileNotFoundError")
# Search for function definitions
func_results = searcher.search("class SearchResult", use_grep=True, top_k=5)
print(f"Found {len(func_results)} class definitions")

28
llms.txt Normal file
View File

@@ -0,0 +1,28 @@
# llms.txt — LEANN MCP and Agent Integration
product: LEANN
homepage: https://github.com/yichuan-w/LEANN
contact: https://github.com/yichuan-w/LEANN/issues
# Installation
install: uv tool install leann-core --with leann
# MCP Server Entry Point
mcp.server: leann_mcp
mcp.protocol_version: 2024-11-05
# Tools
mcp.tools: leann_list, leann_search
mcp.tool.leann_list.description: List available LEANN indexes
mcp.tool.leann_list.input: {}
mcp.tool.leann_search.description: Semantic search across a named LEANN index
mcp.tool.leann_search.input.index_name: string, required
mcp.tool.leann_search.input.query: string, required
mcp.tool.leann_search.input.top_k: integer, optional, default=5, min=1, max=20
mcp.tool.leann_search.input.complexity: integer, optional, default=32, min=16, max=128
# Notes
note: Build indexes with `leann build <name> --docs <files...>` before searching.
example.add: claude mcp add --scope user leann-server -- leann_mcp
example.verify: claude mcp list | cat

View File

@@ -4,8 +4,8 @@ build-backend = "scikit_build_core.build"
[project]
name = "leann-backend-diskann"
version = "0.3.2"
dependencies = ["leann-core==0.3.2", "numpy", "protobuf>=3.19.0"]
version = "0.3.4"
dependencies = ["leann-core==0.3.4", "numpy", "protobuf>=3.19.0"]
[tool.scikit-build]
# Key: simplified CMake path

View File

@@ -49,9 +49,28 @@ set(BUILD_TESTING OFF CACHE BOOL "" FORCE)
set(FAISS_ENABLE_C_API OFF CACHE BOOL "" FORCE)
set(FAISS_OPT_LEVEL "generic" CACHE STRING "" FORCE)
# Disable additional SIMD versions to speed up compilation
# Disable x86-specific SIMD optimizations (important for ARM64 compatibility)
set(FAISS_ENABLE_AVX2 OFF CACHE BOOL "" FORCE)
set(FAISS_ENABLE_AVX512 OFF CACHE BOOL "" FORCE)
set(FAISS_ENABLE_SSE4_1 OFF CACHE BOOL "" FORCE)
# ARM64-specific configuration
if(CMAKE_SYSTEM_PROCESSOR MATCHES "aarch64|arm64")
message(STATUS "Configuring Faiss for ARM64 architecture")
if(CMAKE_SYSTEM_NAME STREQUAL "Linux")
# Use SVE optimization level for ARM64 Linux (as seen in Faiss conda build)
set(FAISS_OPT_LEVEL "sve" CACHE STRING "" FORCE)
message(STATUS "Setting FAISS_OPT_LEVEL to 'sve' for ARM64 Linux")
else()
# Use generic optimization for other ARM64 platforms (like macOS)
set(FAISS_OPT_LEVEL "generic" CACHE STRING "" FORCE)
message(STATUS "Setting FAISS_OPT_LEVEL to 'generic' for ARM64 ${CMAKE_SYSTEM_NAME}")
endif()
# ARM64 compatibility: Faiss submodule has been modified to fix x86 header inclusion
message(STATUS "Using ARM64-compatible Faiss submodule")
endif()
# Additional optimization options from INSTALL.md
set(CMAKE_BUILD_TYPE "Release" CACHE STRING "" FORCE)

View File

@@ -6,10 +6,10 @@ build-backend = "scikit_build_core.build"
[project]
name = "leann-backend-hnsw"
version = "0.3.2"
version = "0.3.4"
description = "Custom-built HNSW (Faiss) backend for the Leann toolkit."
dependencies = [
"leann-core==0.3.2",
"leann-core==0.3.4",
"numpy",
"pyzmq>=23.0.0",
"msgpack>=1.0.0",

View File

@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
[project]
name = "leann-core"
version = "0.3.2"
version = "0.3.4"
description = "Core API and plugin system for LEANN"
readme = "README.md"
requires-python = ">=3.9"

View File

@@ -6,6 +6,8 @@ with the correct, original embedding logic from the user's reference code.
import json
import logging
import pickle
import re
import subprocess
import time
import warnings
from dataclasses import dataclass, field
@@ -653,6 +655,7 @@ class LeannSearcher:
expected_zmq_port: int = 5557,
metadata_filters: Optional[dict[str, dict[str, Union[str, int, float, bool, list]]]] = None,
batch_size: int = 0,
use_grep: bool = False,
**kwargs,
) -> list[SearchResult]:
"""
@@ -679,6 +682,10 @@ class LeannSearcher:
Returns:
List of SearchResult objects with text, metadata, and similarity scores
"""
# Handle grep search
if use_grep:
return self._grep_search(query, top_k)
logger.info("🔍 LeannSearcher.search() called:")
logger.info(f" Query: '{query}'")
logger.info(f" Top_k: {top_k}")
@@ -795,9 +802,96 @@ class LeannSearcher:
logger.info(f" {GREEN}✓ Final enriched results: {len(enriched_results)} passages{RESET}")
return enriched_results
def _find_jsonl_file(self) -> Optional[str]:
"""Find the .jsonl file containing raw passages for grep search"""
index_path = Path(self.meta_path_str).parent
potential_files = [
index_path / "documents.leann.passages.jsonl",
index_path.parent / "documents.leann.passages.jsonl",
]
for file_path in potential_files:
if file_path.exists():
return str(file_path)
return None
def _grep_search(self, query: str, top_k: int = 5) -> list[SearchResult]:
"""Perform grep-based search on raw passages"""
jsonl_file = self._find_jsonl_file()
if not jsonl_file:
raise FileNotFoundError("No .jsonl passages file found for grep search")
try:
cmd = ["grep", "-i", "-n", query, jsonl_file]
result = subprocess.run(cmd, capture_output=True, text=True, check=False)
if result.returncode == 1:
return []
elif result.returncode != 0:
raise RuntimeError(f"Grep failed: {result.stderr}")
matches = []
for line in result.stdout.strip().split("\n"):
if not line:
continue
parts = line.split(":", 1)
if len(parts) != 2:
continue
try:
data = json.loads(parts[1])
text = data.get("text", "")
score = text.lower().count(query.lower())
matches.append(
SearchResult(
id=data.get("id", parts[0]),
text=text,
metadata=data.get("metadata", {}),
score=float(score),
)
)
except json.JSONDecodeError:
continue
matches.sort(key=lambda x: x.score, reverse=True)
return matches[:top_k]
except FileNotFoundError:
raise RuntimeError(
"grep command not found. Please install grep or use semantic search."
)
def _python_regex_search(self, query: str, top_k: int = 5) -> list[SearchResult]:
"""Fallback regex search"""
jsonl_file = self._find_jsonl_file()
if not jsonl_file:
raise FileNotFoundError("No .jsonl file found")
pattern = re.compile(re.escape(query), re.IGNORECASE)
matches = []
with open(jsonl_file, encoding="utf-8") as f:
for line_num, line in enumerate(f, 1):
if pattern.search(line):
try:
data = json.loads(line.strip())
matches.append(
SearchResult(
id=data.get("id", str(line_num)),
text=data.get("text", ""),
metadata=data.get("metadata", {}),
score=float(len(pattern.findall(data.get("text", "")))),
)
)
except json.JSONDecodeError:
continue
matches.sort(key=lambda x: x.score, reverse=True)
return matches[:top_k]
def cleanup(self):
"""Explicitly cleanup embedding server resources.
This method should be called after you're done using the searcher,
especially in test environments or batch processing scenarios.
"""
@@ -853,6 +947,7 @@ class LeannChat:
expected_zmq_port: int = 5557,
metadata_filters: Optional[dict[str, dict[str, Union[str, int, float, bool, list]]]] = None,
batch_size: int = 0,
use_grep: bool = False,
**search_kwargs,
):
if llm_kwargs is None:

View File

@@ -1,6 +1,6 @@
"""
Enhanced chunking utilities with AST-aware code chunking support.
Provides unified interface for both traditional and AST-based text chunking.
Packaged within leann-core so installed wheels can import it reliably.
"""
import logging
@@ -22,30 +22,9 @@ CODE_EXTENSIONS = {
".jsx": "typescript",
}
# Default chunk parameters for different content types
DEFAULT_CHUNK_PARAMS = {
"code": {
"max_chunk_size": 512,
"chunk_overlap": 64,
},
"text": {
"chunk_size": 256,
"chunk_overlap": 128,
},
}
def detect_code_files(documents, code_extensions=None) -> tuple[list, list]:
"""
Separate documents into code files and regular text files.
Args:
documents: List of LlamaIndex Document objects
code_extensions: Dict mapping file extensions to languages (defaults to CODE_EXTENSIONS)
Returns:
Tuple of (code_documents, text_documents)
"""
"""Separate documents into code files and regular text files."""
if code_extensions is None:
code_extensions = CODE_EXTENSIONS
@@ -53,16 +32,10 @@ def detect_code_files(documents, code_extensions=None) -> tuple[list, list]:
text_docs = []
for doc in documents:
# Get file path from metadata
file_path = doc.metadata.get("file_path", "")
if not file_path:
# Fallback to file_name
file_path = doc.metadata.get("file_name", "")
file_path = doc.metadata.get("file_path", "") or doc.metadata.get("file_name", "")
if file_path:
file_ext = Path(file_path).suffix.lower()
if file_ext in code_extensions:
# Add language info to metadata
doc.metadata["language"] = code_extensions[file_ext]
doc.metadata["is_code"] = True
code_docs.append(doc)
@@ -70,7 +43,6 @@ def detect_code_files(documents, code_extensions=None) -> tuple[list, list]:
doc.metadata["is_code"] = False
text_docs.append(doc)
else:
# If no file path, treat as text
doc.metadata["is_code"] = False
text_docs.append(doc)
@@ -79,7 +51,7 @@ def detect_code_files(documents, code_extensions=None) -> tuple[list, list]:
def get_language_from_extension(file_path: str) -> Optional[str]:
"""Get the programming language from file extension."""
"""Return language string from a filename/extension using CODE_EXTENSIONS."""
ext = Path(file_path).suffix.lower()
return CODE_EXTENSIONS.get(ext)
@@ -90,40 +62,26 @@ def create_ast_chunks(
chunk_overlap: int = 64,
metadata_template: str = "default",
) -> list[str]:
"""
Create AST-aware chunks from code documents using astchunk.
"""Create AST-aware chunks from code documents using astchunk.
Args:
documents: List of code documents
max_chunk_size: Maximum characters per chunk
chunk_overlap: Number of AST nodes to overlap between chunks
metadata_template: Template for chunk metadata
Returns:
List of text chunks with preserved code structure
Falls back to traditional chunking if astchunk is unavailable.
"""
try:
from astchunk import ASTChunkBuilder
from astchunk import ASTChunkBuilder # optional dependency
except ImportError as e:
logger.error(f"astchunk not available: {e}")
logger.info("Falling back to traditional chunking for code files")
return create_traditional_chunks(documents, max_chunk_size, chunk_overlap)
all_chunks = []
for doc in documents:
# Get language from metadata (set by detect_code_files)
language = doc.metadata.get("language")
if not language:
logger.warning(
"No language detected for document, falling back to traditional chunking"
)
traditional_chunks = create_traditional_chunks([doc], max_chunk_size, chunk_overlap)
all_chunks.extend(traditional_chunks)
logger.warning("No language detected; falling back to traditional chunking")
all_chunks.extend(create_traditional_chunks([doc], max_chunk_size, chunk_overlap))
continue
try:
# Configure astchunk
configs = {
"max_chunk_size": max_chunk_size,
"language": language,
@@ -131,7 +89,6 @@ def create_ast_chunks(
"chunk_overlap": chunk_overlap if chunk_overlap > 0 else 0,
}
# Add repository-level metadata if available
repo_metadata = {
"file_path": doc.metadata.get("file_path", ""),
"file_name": doc.metadata.get("file_name", ""),
@@ -140,17 +97,13 @@ def create_ast_chunks(
}
configs["repo_level_metadata"] = repo_metadata
# Create chunk builder and process
chunk_builder = ASTChunkBuilder(**configs)
code_content = doc.get_content()
if not code_content or not code_content.strip():
logger.warning("Empty code content, skipping")
continue
chunks = chunk_builder.chunkify(code_content)
# Extract text content from chunks
for chunk in chunks:
if hasattr(chunk, "text"):
chunk_text = chunk.text
@@ -159,7 +112,6 @@ def create_ast_chunks(
elif isinstance(chunk, str):
chunk_text = chunk
else:
# Try to convert to string
chunk_text = str(chunk)
if chunk_text and chunk_text.strip():
@@ -168,12 +120,10 @@ def create_ast_chunks(
logger.info(
f"Created {len(chunks)} AST chunks from {language} file: {doc.metadata.get('file_name', 'unknown')}"
)
except Exception as e:
logger.warning(f"AST chunking failed for {language} file: {e}")
logger.info("Falling back to traditional chunking")
traditional_chunks = create_traditional_chunks([doc], max_chunk_size, chunk_overlap)
all_chunks.extend(traditional_chunks)
all_chunks.extend(create_traditional_chunks([doc], max_chunk_size, chunk_overlap))
return all_chunks
@@ -181,23 +131,10 @@ def create_ast_chunks(
def create_traditional_chunks(
documents, chunk_size: int = 256, chunk_overlap: int = 128
) -> list[str]:
"""
Create traditional text chunks using LlamaIndex SentenceSplitter.
Args:
documents: List of documents to chunk
chunk_size: Size of each chunk in characters
chunk_overlap: Overlap between chunks
Returns:
List of text chunks
"""
# Handle invalid chunk_size values
"""Create traditional text chunks using LlamaIndex SentenceSplitter."""
if chunk_size <= 0:
logger.warning(f"Invalid chunk_size={chunk_size}, using default value of 256")
chunk_size = 256
# Ensure chunk_overlap is not negative and not larger than chunk_size
if chunk_overlap < 0:
chunk_overlap = 0
if chunk_overlap >= chunk_size:
@@ -215,12 +152,9 @@ def create_traditional_chunks(
try:
nodes = node_parser.get_nodes_from_documents([doc])
if nodes:
chunk_texts = [node.get_content() for node in nodes]
all_texts.extend(chunk_texts)
logger.debug(f"Created {len(chunk_texts)} traditional chunks from document")
all_texts.extend(node.get_content() for node in nodes)
except Exception as e:
logger.error(f"Traditional chunking failed for document: {e}")
# As last resort, add the raw content
content = doc.get_content()
if content and content.strip():
all_texts.append(content.strip())
@@ -238,32 +172,13 @@ def create_text_chunks(
code_file_extensions: Optional[list[str]] = None,
ast_fallback_traditional: bool = True,
) -> list[str]:
"""
Create text chunks from documents with optional AST support for code files.
Args:
documents: List of LlamaIndex Document objects
chunk_size: Size for traditional text chunks
chunk_overlap: Overlap for traditional text chunks
use_ast_chunking: Whether to use AST chunking for code files
ast_chunk_size: Size for AST chunks
ast_chunk_overlap: Overlap for AST chunks
code_file_extensions: Custom list of code file extensions
ast_fallback_traditional: Fall back to traditional chunking on AST errors
Returns:
List of text chunks
"""
"""Create text chunks from documents with optional AST support for code files."""
if not documents:
logger.warning("No documents provided for chunking")
return []
# Create a local copy of supported extensions for this function call
local_code_extensions = CODE_EXTENSIONS.copy()
# Update supported extensions if provided
if code_file_extensions:
# Map extensions to languages (simplified mapping)
ext_mapping = {
".py": "python",
".java": "java",
@@ -273,47 +188,32 @@ def create_text_chunks(
}
for ext in code_file_extensions:
if ext.lower() not in local_code_extensions:
# Try to guess language from extension
if ext.lower() in ext_mapping:
local_code_extensions[ext.lower()] = ext_mapping[ext.lower()]
else:
logger.warning(f"Unsupported extension {ext}, will use traditional chunking")
all_chunks = []
if use_ast_chunking:
# Separate code and text documents using local extensions
code_docs, text_docs = detect_code_files(documents, local_code_extensions)
# Process code files with AST chunking
if code_docs:
logger.info(f"Processing {len(code_docs)} code files with AST chunking")
try:
ast_chunks = create_ast_chunks(
code_docs, max_chunk_size=ast_chunk_size, chunk_overlap=ast_chunk_overlap
all_chunks.extend(
create_ast_chunks(
code_docs, max_chunk_size=ast_chunk_size, chunk_overlap=ast_chunk_overlap
)
)
all_chunks.extend(ast_chunks)
logger.info(f"Created {len(ast_chunks)} AST chunks from code files")
except Exception as e:
logger.error(f"AST chunking failed: {e}")
if ast_fallback_traditional:
logger.info("Falling back to traditional chunking for code files")
traditional_code_chunks = create_traditional_chunks(
code_docs, chunk_size, chunk_overlap
all_chunks.extend(
create_traditional_chunks(code_docs, chunk_size, chunk_overlap)
)
all_chunks.extend(traditional_code_chunks)
else:
raise
# Process text files with traditional chunking
if text_docs:
logger.info(f"Processing {len(text_docs)} text files with traditional chunking")
text_chunks = create_traditional_chunks(text_docs, chunk_size, chunk_overlap)
all_chunks.extend(text_chunks)
logger.info(f"Created {len(text_chunks)} traditional chunks from text files")
all_chunks.extend(create_traditional_chunks(text_docs, chunk_size, chunk_overlap))
else:
# Use traditional chunking for all files
logger.info(f"Processing {len(documents)} documents with traditional chunking")
all_chunks = create_traditional_chunks(documents, chunk_size, chunk_overlap)
logger.info(f"Total chunks created: {len(all_chunks)}")

View File

@@ -1,6 +1,5 @@
import argparse
import asyncio
import sys
from pathlib import Path
from typing import Any, Optional, Union
@@ -322,9 +321,17 @@ Examples:
return basic_matches
def _should_exclude_file(self, relative_path: Path, gitignore_matches) -> bool:
"""Check if a file should be excluded using gitignore parser."""
return gitignore_matches(str(relative_path))
def _should_exclude_file(self, file_path: Path, gitignore_matches) -> bool:
"""Check if a file should be excluded using gitignore parser.
Always match against absolute, posix-style paths for consistency with
gitignore_parser expectations.
"""
try:
absolute_path = file_path.resolve()
except Exception:
absolute_path = Path(str(file_path))
return gitignore_matches(absolute_path.as_posix())
def _is_git_submodule(self, path: Path) -> bool:
"""Check if a path is a git submodule."""
@@ -396,7 +403,9 @@ Examples:
print(f" {current_path}")
print(" " + "" * 45)
current_indexes = self._discover_indexes_in_project(current_path)
current_indexes = self._discover_indexes_in_project(
current_path, exclude_dirs=other_projects
)
if current_indexes:
for idx in current_indexes:
total_indexes += 1
@@ -435,9 +444,14 @@ Examples:
print(" leann build my-docs --docs ./documents")
else:
# Count only projects that have at least one discoverable index
projects_count = sum(
1 for p in valid_projects if len(self._discover_indexes_in_project(p)) > 0
)
projects_count = 0
for p in valid_projects:
if p == current_path:
discovered = self._discover_indexes_in_project(p, exclude_dirs=other_projects)
else:
discovered = self._discover_indexes_in_project(p)
if len(discovered) > 0:
projects_count += 1
print(f"📊 Total: {total_indexes} indexes across {projects_count} projects")
if current_indexes_count > 0:
@@ -454,9 +468,22 @@ Examples:
print("\n💡 Create your first index:")
print(" leann build my-docs --docs ./documents")
def _discover_indexes_in_project(self, project_path: Path):
"""Discover all indexes in a project directory (both CLI and apps formats)"""
def _discover_indexes_in_project(
self, project_path: Path, exclude_dirs: Optional[list[Path]] = None
):
"""Discover all indexes in a project directory (both CLI and apps formats)
exclude_dirs: when provided, skip any APP-format index files that are
located under these directories. This prevents duplicates when the
current project is a parent directory of other registered projects.
"""
indexes = []
exclude_dirs = exclude_dirs or []
# normalize to resolved paths once for comparison
try:
exclude_dirs_resolved = [p.resolve() for p in exclude_dirs]
except Exception:
exclude_dirs_resolved = exclude_dirs
# 1. CLI format: .leann/indexes/index_name/
cli_indexes_dir = project_path / ".leann" / "indexes"
@@ -495,6 +522,17 @@ Examples:
continue
except Exception:
pass
# Skip meta files that live under excluded directories
try:
meta_parent_resolved = meta_file.parent.resolve()
if any(
meta_parent_resolved.is_relative_to(ex_dir)
for ex_dir in exclude_dirs_resolved
):
continue
except Exception:
# best effort; if resolve or comparison fails, do not exclude
pass
# Use the parent directory name as the app index display name
display_name = meta_file.parent.name
# Extract file base used to store files
@@ -1022,7 +1060,8 @@ Examples:
# Try to use better PDF parsers first, but only if PDFs are requested
documents = []
docs_path = Path(docs_dir)
# Use resolved absolute paths to avoid mismatches (symlinks, relative vs absolute)
docs_path = Path(docs_dir).resolve()
# Check if we should process PDFs
should_process_pdfs = custom_file_types is None or ".pdf" in custom_file_types
@@ -1031,10 +1070,15 @@ Examples:
for file_path in docs_path.rglob("*.pdf"):
# Check if file matches any exclude pattern
try:
# Ensure both paths are resolved before computing relativity
file_path_resolved = file_path.resolve()
# Determine directory scope using the non-resolved path to avoid
# misclassifying symlinked entries as outside the docs directory
relative_path = file_path.relative_to(docs_path)
if not include_hidden and _path_has_hidden_segment(relative_path):
continue
if self._should_exclude_file(relative_path, gitignore_matches):
# Use absolute path for gitignore matching
if self._should_exclude_file(file_path_resolved, gitignore_matches):
continue
except ValueError:
# Skip files that can't be made relative to docs_path
@@ -1077,10 +1121,11 @@ Examples:
) -> bool:
"""Return True if file should be included (not excluded)"""
try:
docs_path_obj = Path(docs_dir)
file_path_obj = Path(file_path)
relative_path = file_path_obj.relative_to(docs_path_obj)
return not self._should_exclude_file(relative_path, gitignore_matches)
docs_path_obj = Path(docs_dir).resolve()
file_path_obj = Path(file_path).resolve()
# Use absolute path for gitignore matching
_ = file_path_obj.relative_to(docs_path_obj) # validate scope
return not self._should_exclude_file(file_path_obj, gitignore_matches)
except (ValueError, OSError):
return True # Include files that can't be processed
@@ -1170,13 +1215,8 @@ Examples:
if use_ast:
print("🧠 Using AST-aware chunking for code files")
try:
# Import enhanced chunking utilities
# Add apps directory to path to import chunking utilities
apps_dir = Path(__file__).parent.parent.parent.parent.parent / "apps"
if apps_dir.exists():
sys.path.insert(0, str(apps_dir))
from chunking import create_text_chunks
# Import enhanced chunking utilities from packaged module
from .chunking_utils import create_text_chunks
# Use enhanced chunking with AST support
all_texts = create_text_chunks(
@@ -1191,7 +1231,9 @@ Examples:
)
except ImportError as e:
print(f"⚠️ AST chunking not available ({e}), falling back to traditional chunking")
print(
f"⚠️ AST chunking utilities not available in package ({e}), falling back to traditional chunking"
)
use_ast = False
if not use_ast:

View File

@@ -2,6 +2,8 @@
Transform your development workflow with intelligent code assistance using LEANN's semantic search directly in Claude Code.
For agent-facing discovery details, see `llms.txt` in the repository root.
## Prerequisites
Install LEANN globally for MCP integration (with default backend):

View File

@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
[project]
name = "leann"
version = "0.3.2"
version = "0.3.4"
description = "LEANN - The smallest vector index in the world. RAG Everything with LEANN!"
readme = "README.md"
requires-python = ">=3.9"

View File

@@ -99,6 +99,7 @@ wechat-exporter = "wechat_exporter.main:main"
leann-core = { path = "packages/leann-core", editable = true }
leann-backend-diskann = { path = "packages/leann-backend-diskann", editable = true }
leann-backend-hnsw = { path = "packages/leann-backend-hnsw", editable = true }
astchunk = { path = "packages/astchunk-leann", editable = true }
[tool.ruff]
target-version = "py39"

45
uv.lock generated
View File

@@ -1,5 +1,5 @@
version = 1
revision = 3
revision = 2
requires-python = ">=3.9"
resolution-markers = [
"python_full_version >= '3.12'",
@@ -201,7 +201,7 @@ wheels = [
[[package]]
name = "astchunk"
version = "0.1.0"
source = { registry = "https://pypi.org/simple" }
source = { editable = "packages/astchunk-leann" }
dependencies = [
{ name = "numpy", version = "2.0.2", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" },
{ name = "numpy", version = "2.2.6", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version == '3.10.*'" },
@@ -214,10 +214,31 @@ dependencies = [
{ name = "tree-sitter-python" },
{ name = "tree-sitter-typescript" },
]
sdist = { url = "https://files.pythonhosted.org/packages/db/2a/7a35e2fac7d550265ae2ee40651425083b37555f921d1a1b77c3f525e0df/astchunk-0.1.0.tar.gz", hash = "sha256:f4dff0ef8b3b3bcfeac363384db1e153f74d4c825dc2e35864abfab027713be4", size = 18093, upload-time = "2025-06-19T04:37:25.34Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/be/84/5433ab0e933b572750cb16fd7edf3d6c7902b069461a22ec670042752a4d/astchunk-0.1.0-py3-none-any.whl", hash = "sha256:33ada9fc3620807fdda5846fa1948af463f281a60e0d43d4f3782b6dbb416d24", size = 15396, upload-time = "2025-06-19T04:37:23.87Z" },
[package.metadata]
requires-dist = [
{ name = "black", marker = "extra == 'dev'", specifier = ">=22.0.0" },
{ name = "flake8", marker = "extra == 'dev'", specifier = ">=5.0.0" },
{ name = "isort", marker = "extra == 'dev'", specifier = ">=5.10.0" },
{ name = "mypy", marker = "extra == 'dev'", specifier = ">=1.0.0" },
{ name = "myst-parser", marker = "extra == 'docs'", specifier = ">=0.18.0" },
{ name = "numpy", specifier = ">=1.20.0" },
{ name = "pre-commit", marker = "extra == 'dev'", specifier = ">=2.20.0" },
{ name = "pyrsistent", specifier = ">=0.18.0" },
{ name = "pytest", marker = "extra == 'dev'", specifier = ">=7.0.0" },
{ name = "pytest", marker = "extra == 'test'", specifier = ">=7.0.0" },
{ name = "pytest-cov", marker = "extra == 'dev'", specifier = ">=4.0.0" },
{ name = "pytest-cov", marker = "extra == 'test'", specifier = ">=4.0.0" },
{ name = "pytest-xdist", marker = "extra == 'test'", specifier = ">=2.5.0" },
{ name = "sphinx", marker = "extra == 'docs'", specifier = ">=5.0.0" },
{ name = "sphinx-rtd-theme", marker = "extra == 'docs'", specifier = ">=1.0.0" },
{ name = "tree-sitter", specifier = ">=0.20.0" },
{ name = "tree-sitter-c-sharp", specifier = ">=0.20.0" },
{ name = "tree-sitter-java", specifier = ">=0.20.0" },
{ name = "tree-sitter-python", specifier = ">=0.20.0" },
{ name = "tree-sitter-typescript", specifier = ">=0.20.0" },
]
provides-extras = ["dev", "docs", "test"]
[[package]]
name = "asttokens"
@@ -1564,7 +1585,7 @@ name = "importlib-metadata"
version = "8.7.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "zipp" },
{ name = "zipp", marker = "python_full_version < '3.10'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/76/66/650a33bd90f786193e4de4b3ad86ea60b53c89b669a5c7be931fac31cdb0/importlib_metadata-8.7.0.tar.gz", hash = "sha256:d13b81ad223b890aa16c5471f2ac3056cf76c5f10f82d6f9292f0b415f389000", size = 56641, upload-time = "2025-04-27T15:29:01.736Z" }
wheels = [
@@ -2117,7 +2138,7 @@ wheels = [
[[package]]
name = "leann-backend-diskann"
version = "0.3.2"
version = "0.3.3"
source = { editable = "packages/leann-backend-diskann" }
dependencies = [
{ name = "leann-core" },
@@ -2129,14 +2150,14 @@ dependencies = [
[package.metadata]
requires-dist = [
{ name = "leann-core", specifier = "==0.3.2" },
{ name = "leann-core", specifier = "==0.3.3" },
{ name = "numpy" },
{ name = "protobuf", specifier = ">=3.19.0" },
]
[[package]]
name = "leann-backend-hnsw"
version = "0.3.2"
version = "0.3.3"
source = { editable = "packages/leann-backend-hnsw" }
dependencies = [
{ name = "leann-core" },
@@ -2149,7 +2170,7 @@ dependencies = [
[package.metadata]
requires-dist = [
{ name = "leann-core", specifier = "==0.3.2" },
{ name = "leann-core", specifier = "==0.3.3" },
{ name = "msgpack", specifier = ">=1.0.0" },
{ name = "numpy" },
{ name = "pyzmq", specifier = ">=23.0.0" },
@@ -2157,7 +2178,7 @@ requires-dist = [
[[package]]
name = "leann-core"
version = "0.3.2"
version = "0.3.3"
source = { editable = "packages/leann-core" }
dependencies = [
{ name = "accelerate" },
@@ -2297,7 +2318,7 @@ test = [
[package.metadata]
requires-dist = [
{ name = "astchunk", specifier = ">=0.1.0" },
{ name = "astchunk", editable = "packages/astchunk-leann" },
{ name = "beautifulsoup4", marker = "extra == 'documents'", specifier = ">=4.13.0" },
{ name = "black", marker = "extra == 'dev'", specifier = ">=23.0" },
{ name = "boto3" },