Compare commits
42 Commits
fix-mac-in
...
fix/clean-
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
80330f8d97 | ||
|
|
4772a5bb18 | ||
|
|
3d67205670 | ||
|
|
4de709ad4b | ||
|
|
48c82ee3e3 | ||
|
|
6d1ac4a503 | ||
|
|
ffba435252 | ||
|
|
728fa42ad5 | ||
|
|
bce8aca3fa | ||
|
|
f4e41e4353 | ||
|
|
75c7b047d7 | ||
|
|
490329dc66 | ||
|
|
575b354976 | ||
|
|
65bbff1d93 | ||
|
|
df798d350d | ||
|
|
3fa6b2aa17 | ||
|
|
ba95554fe7 | ||
|
|
677eb0bae3 | ||
|
|
9cdfcec331 | ||
|
|
f30d1a2530 | ||
|
|
df69a49123 | ||
|
|
65b54ff905 | ||
|
|
4db3e94f35 | ||
|
|
a2568f3ddc | ||
|
|
45bdad4fa7 | ||
|
|
8b538d1ef9 | ||
|
|
ada8bcbc70 | ||
|
|
6061e8f2de | ||
|
|
9842ad8330 | ||
|
|
7d920f9071 | ||
|
|
f28f15000c | ||
|
|
1d657fd9f6 | ||
|
|
d217adbe40 | ||
|
|
f790ec634f | ||
|
|
b8da9d7b12 | ||
|
|
0cb0463929 | ||
|
|
b982241249 | ||
|
|
c66f197e1d | ||
|
|
4a1353761a | ||
|
|
a72090d2ab | ||
|
|
669e622430 | ||
|
|
77d7b60a61 |
87
.github/workflows/build-reusable.yml
vendored
87
.github/workflows/build-reusable.yml
vendored
@@ -28,7 +28,7 @@ jobs:
|
||||
|
||||
- name: Install ruff
|
||||
run: |
|
||||
uv tool install ruff
|
||||
uv tool install ruff==0.12.7
|
||||
|
||||
- name: Run ruff check
|
||||
run: |
|
||||
@@ -54,26 +54,16 @@ jobs:
|
||||
python: '3.12'
|
||||
- os: ubuntu-22.04
|
||||
python: '3.13'
|
||||
- os: macos-14
|
||||
- os: macos-latest
|
||||
python: '3.9'
|
||||
- os: macos-14
|
||||
- os: macos-latest
|
||||
python: '3.10'
|
||||
- os: macos-14
|
||||
- os: macos-latest
|
||||
python: '3.11'
|
||||
- os: macos-14
|
||||
- os: macos-latest
|
||||
python: '3.12'
|
||||
- os: macos-14
|
||||
- os: macos-latest
|
||||
python: '3.13'
|
||||
- os: macos-13
|
||||
python: '3.9'
|
||||
- os: macos-13
|
||||
python: '3.10'
|
||||
- os: macos-13
|
||||
python: '3.11'
|
||||
- os: macos-13
|
||||
python: '3.12'
|
||||
# Note: macos-13 + Python 3.13 excluded due to PyTorch compatibility
|
||||
# (PyTorch 2.5+ supports Python 3.13 but not Intel Mac x86_64)
|
||||
runs-on: ${{ matrix.os }}
|
||||
|
||||
steps:
|
||||
@@ -119,56 +109,41 @@ jobs:
|
||||
uv pip install --system delocate
|
||||
fi
|
||||
|
||||
- name: Set macOS environment variables
|
||||
if: runner.os == 'macOS'
|
||||
run: |
|
||||
# Use brew --prefix to automatically detect Homebrew installation path
|
||||
HOMEBREW_PREFIX=$(brew --prefix)
|
||||
echo "HOMEBREW_PREFIX=${HOMEBREW_PREFIX}" >> $GITHUB_ENV
|
||||
echo "OpenMP_ROOT=${HOMEBREW_PREFIX}/opt/libomp" >> $GITHUB_ENV
|
||||
|
||||
# Set CMAKE_PREFIX_PATH to let CMake find all packages automatically
|
||||
echo "CMAKE_PREFIX_PATH=${HOMEBREW_PREFIX}" >> $GITHUB_ENV
|
||||
|
||||
# Set compiler flags for OpenMP (required for both backends)
|
||||
echo "LDFLAGS=-L${HOMEBREW_PREFIX}/opt/libomp/lib" >> $GITHUB_ENV
|
||||
echo "CPPFLAGS=-I${HOMEBREW_PREFIX}/opt/libomp/include" >> $GITHUB_ENV
|
||||
|
||||
- name: Build packages
|
||||
run: |
|
||||
# Build core (platform independent)
|
||||
# Build core (platform independent) on all platforms for consistency
|
||||
cd packages/leann-core
|
||||
uv build
|
||||
cd ../..
|
||||
|
||||
# Build HNSW backend
|
||||
cd packages/leann-backend-hnsw
|
||||
if [[ "${{ matrix.os }}" == macos-* ]]; then
|
||||
# Use system clang for better compatibility
|
||||
if [ "${{ matrix.os }}" == "macos-latest" ]; then
|
||||
# Use system clang instead of homebrew LLVM for better compatibility
|
||||
export CC=clang
|
||||
export CXX=clang++
|
||||
export MACOSX_DEPLOYMENT_TARGET=11.0
|
||||
uv build --wheel --python ${{ matrix.python }} --find-links ${GITHUB_WORKSPACE}/packages/leann-core/dist
|
||||
uv build --wheel --python python
|
||||
else
|
||||
uv build --wheel --python ${{ matrix.python }} --find-links ${GITHUB_WORKSPACE}/packages/leann-core/dist
|
||||
uv build --wheel --python python
|
||||
fi
|
||||
cd ../..
|
||||
|
||||
# Build DiskANN backend
|
||||
cd packages/leann-backend-diskann
|
||||
if [[ "${{ matrix.os }}" == macos-* ]]; then
|
||||
# Use system clang for better compatibility
|
||||
if [ "${{ matrix.os }}" == "macos-latest" ]; then
|
||||
# Use system clang instead of homebrew LLVM for better compatibility
|
||||
export CC=clang
|
||||
export CXX=clang++
|
||||
# DiskANN requires macOS 13.3+ for sgesdd_ LAPACK function
|
||||
# sgesdd_ is only available on macOS 13.3+
|
||||
export MACOSX_DEPLOYMENT_TARGET=13.3
|
||||
uv build --wheel --python ${{ matrix.python }} --find-links ${GITHUB_WORKSPACE}/packages/leann-core/dist
|
||||
uv build --wheel --python python
|
||||
else
|
||||
uv build --wheel --python ${{ matrix.python }} --find-links ${GITHUB_WORKSPACE}/packages/leann-core/dist
|
||||
uv build --wheel --python python
|
||||
fi
|
||||
cd ../..
|
||||
|
||||
# Build meta package (platform independent)
|
||||
# Build meta package (platform independent) on all platforms
|
||||
cd packages/leann
|
||||
uv build
|
||||
cd ../..
|
||||
@@ -185,10 +160,15 @@ jobs:
|
||||
fi
|
||||
cd ../..
|
||||
|
||||
# Repair DiskANN wheel
|
||||
# Repair DiskANN wheel - use show first to debug
|
||||
cd packages/leann-backend-diskann
|
||||
if [ -d dist ]; then
|
||||
echo "Checking DiskANN wheel contents before repair:"
|
||||
unzip -l dist/*.whl | grep -E "\.so|\.pyd|_diskannpy" || echo "No .so files found"
|
||||
auditwheel show dist/*.whl || echo "auditwheel show failed"
|
||||
auditwheel repair dist/*.whl -w dist_repaired
|
||||
echo "Checking DiskANN wheel contents after repair:"
|
||||
unzip -l dist_repaired/*.whl | grep -E "\.so|\.pyd|_diskannpy" || echo "No .so files found after repair"
|
||||
rm -rf dist
|
||||
mv dist_repaired dist
|
||||
fi
|
||||
@@ -220,22 +200,29 @@ jobs:
|
||||
echo "📦 Built packages:"
|
||||
find packages/*/dist -name "*.whl" -o -name "*.tar.gz" | sort
|
||||
|
||||
|
||||
- name: Install built packages for testing
|
||||
run: |
|
||||
# Create a virtual environment with the correct Python version
|
||||
uv venv --python ${{ matrix.python }}
|
||||
uv venv --python python${{ matrix.python }}
|
||||
source .venv/bin/activate || source .venv/Scripts/activate
|
||||
|
||||
# Install packages using --find-links to prioritize local builds
|
||||
uv pip install --find-links packages/leann-core/dist --find-links packages/leann-backend-hnsw/dist --find-links packages/leann-backend-diskann/dist packages/leann-core/dist/*.whl || uv pip install --find-links packages/leann-core/dist packages/leann-core/dist/*.tar.gz
|
||||
uv pip install --find-links packages/leann-core/dist packages/leann-backend-hnsw/dist/*.whl
|
||||
uv pip install --find-links packages/leann-core/dist packages/leann-backend-diskann/dist/*.whl
|
||||
uv pip install packages/leann/dist/*.whl || uv pip install packages/leann/dist/*.tar.gz
|
||||
# Install the built wheels directly to ensure we use locally built packages
|
||||
# Use only locally built wheels on all platforms for full consistency
|
||||
FIND_LINKS="--find-links packages/leann-core/dist --find-links packages/leann/dist"
|
||||
FIND_LINKS="$FIND_LINKS --find-links packages/leann-backend-hnsw/dist --find-links packages/leann-backend-diskann/dist"
|
||||
|
||||
uv pip install leann-core leann leann-backend-hnsw leann-backend-diskann \
|
||||
$FIND_LINKS --force-reinstall
|
||||
|
||||
# Install test dependencies using extras
|
||||
uv pip install -e ".[test]"
|
||||
|
||||
# Debug: Check if _diskannpy module is installed correctly
|
||||
echo "Checking installed DiskANN module structure:"
|
||||
python -c "import leann_backend_diskann; print('leann_backend_diskann location:', leann_backend_diskann.__file__)" || echo "Failed to import leann_backend_diskann"
|
||||
python -c "from leann_backend_diskann import _diskannpy; print('_diskannpy imported successfully')" || echo "Failed to import _diskannpy"
|
||||
ls -la $(python -c "import leann_backend_diskann; import os; print(os.path.dirname(leann_backend_diskann.__file__))" 2>/dev/null) 2>/dev/null || echo "Failed to list module directory"
|
||||
|
||||
- name: Run tests with pytest
|
||||
env:
|
||||
CI: true # Mark as CI environment to skip memory-intensive tests
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
repos:
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v4.5.0
|
||||
rev: v5.0.0
|
||||
hooks:
|
||||
- id: trailing-whitespace
|
||||
- id: end-of-file-fixer
|
||||
@@ -10,7 +10,7 @@ repos:
|
||||
- id: debug-statements
|
||||
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.2.1
|
||||
rev: v0.12.7 # Fixed version to match pyproject.toml
|
||||
hooks:
|
||||
- id: ruff
|
||||
- id: ruff-format
|
||||
|
||||
20
README.md
20
README.md
@@ -3,11 +3,10 @@
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<img src="https://img.shields.io/badge/Python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12%20%7C%203.13-blue.svg" alt="Python Versions">
|
||||
<img src="https://github.com/yichuan-w/LEANN/actions/workflows/build-and-publish.yml/badge.svg" alt="CI Status">
|
||||
<img src="https://img.shields.io/badge/Platform-Ubuntu%20%7C%20macOS%20(ARM64%2FIntel)-lightgrey" alt="Platform">
|
||||
<img src="https://img.shields.io/badge/Python-3.9%2B-blue.svg" alt="Python 3.9+">
|
||||
<img src="https://img.shields.io/badge/License-MIT-green.svg" alt="MIT License">
|
||||
<img src="https://img.shields.io/badge/MCP-Native%20Integration-blue" alt="MCP Integration">
|
||||
<img src="https://img.shields.io/badge/Platform-Linux%20%7C%20macOS-lightgrey" alt="Platform">
|
||||
<img src="https://img.shields.io/badge/MCP-Native%20Integration-blue?style=flat-square" alt="MCP Integration">
|
||||
</p>
|
||||
|
||||
<h2 align="center" tabindex="-1" class="heading-element" dir="auto">
|
||||
@@ -98,7 +97,6 @@ uv sync
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
## Quick Start
|
||||
|
||||
Our declarative API makes RAG as easy as writing a config file.
|
||||
@@ -190,7 +188,7 @@ All RAG examples share these common parameters. **Interactive mode** is availabl
|
||||
--force-rebuild # Force rebuild index even if it exists
|
||||
|
||||
# Embedding Parameters
|
||||
--embedding-model MODEL # e.g., facebook/contriever, text-embedding-3-small, nomic-embed-text, mlx-community/Qwen3-Embedding-0.6B-8bit or nomic-embed-text
|
||||
--embedding-model MODEL # e.g., facebook/contriever, text-embedding-3-small, nomic-embed-text, or mlx-community/multilingual-e5-base-mlx
|
||||
--embedding-mode MODE # sentence-transformers, openai, mlx, or ollama
|
||||
|
||||
# LLM Parameters (Text generation models)
|
||||
@@ -455,7 +453,7 @@ leann --help
|
||||
**To make it globally available:**
|
||||
```bash
|
||||
# Install the LEANN CLI globally using uv tool
|
||||
uv tool install leann
|
||||
uv tool install leann-core
|
||||
|
||||
# Now you can use leann from anywhere without activating venv
|
||||
leann --help
|
||||
@@ -543,12 +541,16 @@ Options:
|
||||
- **Dynamic batching:** Efficiently batch embedding computations for GPU utilization
|
||||
- **Two-level search:** Smart graph traversal that prioritizes promising nodes
|
||||
|
||||
**Backends:** HNSW (default) for most use cases, with optional DiskANN support for billion-scale datasets.
|
||||
**Backends:**
|
||||
- **HNSW** (default): Ideal for most datasets with maximum storage savings through full recomputation
|
||||
- **DiskANN**: Advanced option with superior search performance, using PQ-based graph traversal with real-time reranking for the best speed-accuracy trade-off
|
||||
|
||||
## Benchmarks
|
||||
|
||||
**[DiskANN vs HNSW Performance Comparison →](benchmarks/diskann_vs_hnsw_speed_comparison.py)** - Compare search performance between both backends
|
||||
|
||||
**[Simple Example: Compare LEANN vs FAISS →](benchmarks/compare_faiss_vs_leann.py)** - See storage savings in action
|
||||
|
||||
**[Simple Example: Compare LEANN vs FAISS →](benchmarks/compare_faiss_vs_leann.py)**
|
||||
### 📊 Storage Comparison
|
||||
|
||||
| System | DPR (2.1M) | Wiki (60M) | Chat (400K) | Email (780K) | Browser (38K) |
|
||||
|
||||
@@ -1,9 +1,24 @@
|
||||
# 🧪 Leann Sanity Checks
|
||||
# 🧪 LEANN Benchmarks & Testing
|
||||
|
||||
This directory contains comprehensive sanity checks for the Leann system, ensuring all components work correctly across different configurations.
|
||||
This directory contains performance benchmarks and comprehensive tests for the LEANN system, including backend comparisons and sanity checks across different configurations.
|
||||
|
||||
## 📁 Test Files
|
||||
|
||||
### `diskann_vs_hnsw_speed_comparison.py`
|
||||
Performance comparison between DiskANN and HNSW backends:
|
||||
- ✅ **Search latency** comparison with both backends using recompute
|
||||
- ✅ **Index size** and **build time** measurements
|
||||
- ✅ **Score validity** testing (ensures no -inf scores)
|
||||
- ✅ **Configurable dataset sizes** for different scales
|
||||
|
||||
```bash
|
||||
# Quick comparison with 500 docs, 10 queries
|
||||
python benchmarks/diskann_vs_hnsw_speed_comparison.py
|
||||
|
||||
# Large-scale comparison with 2000 docs, 20 queries
|
||||
python benchmarks/diskann_vs_hnsw_speed_comparison.py 2000 20
|
||||
```
|
||||
|
||||
### `test_distance_functions.py`
|
||||
Tests all supported distance functions across DiskANN backend:
|
||||
- ✅ **MIPS** (Maximum Inner Product Search)
|
||||
|
||||
268
benchmarks/diskann_vs_hnsw_speed_comparison.py
Normal file
268
benchmarks/diskann_vs_hnsw_speed_comparison.py
Normal file
@@ -0,0 +1,268 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
DiskANN vs HNSW Search Performance Comparison
|
||||
|
||||
This benchmark compares search performance between DiskANN and HNSW backends:
|
||||
- DiskANN: With graph partitioning enabled (is_recompute=True)
|
||||
- HNSW: With recompute enabled (is_recompute=True)
|
||||
- Tests performance across different dataset sizes
|
||||
- Measures search latency, recall, and index size
|
||||
"""
|
||||
|
||||
import gc
|
||||
import tempfile
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def create_test_texts(n_docs: int) -> list[str]:
|
||||
"""Create synthetic test documents for benchmarking."""
|
||||
np.random.seed(42)
|
||||
topics = [
|
||||
"machine learning and artificial intelligence",
|
||||
"natural language processing and text analysis",
|
||||
"computer vision and image recognition",
|
||||
"data science and statistical analysis",
|
||||
"deep learning and neural networks",
|
||||
"information retrieval and search engines",
|
||||
"database systems and data management",
|
||||
"software engineering and programming",
|
||||
"cybersecurity and network protection",
|
||||
"cloud computing and distributed systems",
|
||||
]
|
||||
|
||||
texts = []
|
||||
for i in range(n_docs):
|
||||
topic = topics[i % len(topics)]
|
||||
variation = np.random.randint(1, 100)
|
||||
text = (
|
||||
f"This is document {i} about {topic}. Content variation {variation}. "
|
||||
f"Additional information about {topic} with details and examples. "
|
||||
f"Technical discussion of {topic} including implementation aspects."
|
||||
)
|
||||
texts.append(text)
|
||||
|
||||
return texts
|
||||
|
||||
|
||||
def benchmark_backend(
|
||||
backend_name: str, texts: list[str], test_queries: list[str], backend_kwargs: dict[str, Any]
|
||||
) -> dict[str, float]:
|
||||
"""Benchmark a specific backend with the given configuration."""
|
||||
from leann.api import LeannBuilder, LeannSearcher
|
||||
|
||||
print(f"\n🔧 Testing {backend_name.upper()} backend...")
|
||||
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
index_path = str(Path(temp_dir) / f"benchmark_{backend_name}.leann")
|
||||
|
||||
# Build index
|
||||
print(f"📦 Building {backend_name} index with {len(texts)} documents...")
|
||||
start_time = time.time()
|
||||
|
||||
builder = LeannBuilder(
|
||||
backend_name=backend_name,
|
||||
embedding_model="facebook/contriever",
|
||||
embedding_mode="sentence-transformers",
|
||||
**backend_kwargs,
|
||||
)
|
||||
|
||||
for text in texts:
|
||||
builder.add_text(text)
|
||||
|
||||
builder.build_index(index_path)
|
||||
build_time = time.time() - start_time
|
||||
|
||||
# Measure index size
|
||||
index_dir = Path(index_path).parent
|
||||
index_files = list(index_dir.glob(f"{Path(index_path).stem}.*"))
|
||||
total_size = sum(f.stat().st_size for f in index_files if f.is_file())
|
||||
size_mb = total_size / (1024 * 1024)
|
||||
|
||||
print(f" ✅ Build completed in {build_time:.2f}s, index size: {size_mb:.1f}MB")
|
||||
|
||||
# Search benchmark
|
||||
print("🔍 Running search benchmark...")
|
||||
searcher = LeannSearcher(index_path)
|
||||
|
||||
search_times = []
|
||||
all_results = []
|
||||
|
||||
for query in test_queries:
|
||||
start_time = time.time()
|
||||
results = searcher.search(query, top_k=5)
|
||||
search_time = time.time() - start_time
|
||||
search_times.append(search_time)
|
||||
all_results.append(results)
|
||||
|
||||
avg_search_time = np.mean(search_times) * 1000 # Convert to ms
|
||||
print(f" ✅ Average search time: {avg_search_time:.1f}ms")
|
||||
|
||||
# Check for valid scores (detect -inf issues)
|
||||
all_scores = [
|
||||
result.score
|
||||
for results in all_results
|
||||
for result in results
|
||||
if result.score is not None
|
||||
]
|
||||
valid_scores = [
|
||||
score for score in all_scores if score != float("-inf") and score != float("inf")
|
||||
]
|
||||
score_validity_rate = len(valid_scores) / len(all_scores) if all_scores else 0
|
||||
|
||||
# Clean up
|
||||
try:
|
||||
if hasattr(searcher, "__del__"):
|
||||
searcher.__del__()
|
||||
del searcher
|
||||
del builder
|
||||
gc.collect()
|
||||
except Exception as e:
|
||||
print(f"⚠️ Warning: Resource cleanup error: {e}")
|
||||
|
||||
return {
|
||||
"build_time": build_time,
|
||||
"avg_search_time_ms": avg_search_time,
|
||||
"index_size_mb": size_mb,
|
||||
"score_validity_rate": score_validity_rate,
|
||||
}
|
||||
|
||||
|
||||
def run_comparison(n_docs: int = 500, n_queries: int = 10):
|
||||
"""Run performance comparison between DiskANN and HNSW."""
|
||||
print("🚀 Starting DiskANN vs HNSW Performance Comparison")
|
||||
print(f"📊 Dataset: {n_docs} documents, {n_queries} test queries")
|
||||
|
||||
# Create test data
|
||||
texts = create_test_texts(n_docs)
|
||||
test_queries = [
|
||||
"machine learning algorithms",
|
||||
"natural language processing",
|
||||
"computer vision techniques",
|
||||
"data analysis methods",
|
||||
"neural network architectures",
|
||||
"database query optimization",
|
||||
"software development practices",
|
||||
"security vulnerabilities",
|
||||
"cloud infrastructure",
|
||||
"distributed computing",
|
||||
][:n_queries]
|
||||
|
||||
# HNSW benchmark
|
||||
hnsw_results = benchmark_backend(
|
||||
backend_name="hnsw",
|
||||
texts=texts,
|
||||
test_queries=test_queries,
|
||||
backend_kwargs={
|
||||
"is_recompute": True, # Enable recompute for fair comparison
|
||||
"M": 16,
|
||||
"efConstruction": 200,
|
||||
},
|
||||
)
|
||||
|
||||
# DiskANN benchmark
|
||||
diskann_results = benchmark_backend(
|
||||
backend_name="diskann",
|
||||
texts=texts,
|
||||
test_queries=test_queries,
|
||||
backend_kwargs={
|
||||
"is_recompute": True, # Enable graph partitioning
|
||||
"num_neighbors": 32,
|
||||
"search_list_size": 50,
|
||||
},
|
||||
)
|
||||
|
||||
# Performance comparison
|
||||
print("\n📈 Performance Comparison Results")
|
||||
print(f"{'=' * 60}")
|
||||
print(f"{'Metric':<25} {'HNSW':<15} {'DiskANN':<15} {'Speedup':<10}")
|
||||
print(f"{'-' * 60}")
|
||||
|
||||
# Build time comparison
|
||||
build_speedup = hnsw_results["build_time"] / diskann_results["build_time"]
|
||||
print(
|
||||
f"{'Build Time (s)':<25} {hnsw_results['build_time']:<15.2f} {diskann_results['build_time']:<15.2f} {build_speedup:<10.2f}x"
|
||||
)
|
||||
|
||||
# Search time comparison
|
||||
search_speedup = hnsw_results["avg_search_time_ms"] / diskann_results["avg_search_time_ms"]
|
||||
print(
|
||||
f"{'Search Time (ms)':<25} {hnsw_results['avg_search_time_ms']:<15.1f} {diskann_results['avg_search_time_ms']:<15.1f} {search_speedup:<10.2f}x"
|
||||
)
|
||||
|
||||
# Index size comparison
|
||||
size_ratio = diskann_results["index_size_mb"] / hnsw_results["index_size_mb"]
|
||||
print(
|
||||
f"{'Index Size (MB)':<25} {hnsw_results['index_size_mb']:<15.1f} {diskann_results['index_size_mb']:<15.1f} {size_ratio:<10.2f}x"
|
||||
)
|
||||
|
||||
# Score validity
|
||||
print(
|
||||
f"{'Score Validity (%)':<25} {hnsw_results['score_validity_rate'] * 100:<15.1f} {diskann_results['score_validity_rate'] * 100:<15.1f}"
|
||||
)
|
||||
|
||||
print(f"{'=' * 60}")
|
||||
print("\n🎯 Summary:")
|
||||
if search_speedup > 1:
|
||||
print(f" DiskANN is {search_speedup:.2f}x faster than HNSW for search")
|
||||
else:
|
||||
print(f" HNSW is {1 / search_speedup:.2f}x faster than DiskANN for search")
|
||||
|
||||
if size_ratio > 1:
|
||||
print(f" DiskANN uses {size_ratio:.2f}x more storage than HNSW")
|
||||
else:
|
||||
print(f" DiskANN uses {1 / size_ratio:.2f}x less storage than HNSW")
|
||||
|
||||
print(
|
||||
f" Both backends achieved {min(hnsw_results['score_validity_rate'], diskann_results['score_validity_rate']) * 100:.1f}% score validity"
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import sys
|
||||
|
||||
try:
|
||||
# Handle help request
|
||||
if len(sys.argv) > 1 and sys.argv[1] in ["-h", "--help", "help"]:
|
||||
print("DiskANN vs HNSW Performance Comparison")
|
||||
print("=" * 50)
|
||||
print(f"Usage: python {sys.argv[0]} [n_docs] [n_queries]")
|
||||
print()
|
||||
print("Arguments:")
|
||||
print(" n_docs Number of documents to index (default: 500)")
|
||||
print(" n_queries Number of test queries to run (default: 10)")
|
||||
print()
|
||||
print("Examples:")
|
||||
print(" python benchmarks/diskann_vs_hnsw_speed_comparison.py")
|
||||
print(" python benchmarks/diskann_vs_hnsw_speed_comparison.py 1000")
|
||||
print(" python benchmarks/diskann_vs_hnsw_speed_comparison.py 2000 20")
|
||||
sys.exit(0)
|
||||
|
||||
# Parse command line arguments
|
||||
n_docs = int(sys.argv[1]) if len(sys.argv) > 1 else 500
|
||||
n_queries = int(sys.argv[2]) if len(sys.argv) > 2 else 10
|
||||
|
||||
print("DiskANN vs HNSW Performance Comparison")
|
||||
print("=" * 50)
|
||||
print(f"Dataset: {n_docs} documents, {n_queries} queries")
|
||||
print()
|
||||
|
||||
run_comparison(n_docs=n_docs, n_queries=n_queries)
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print("\n⚠️ Benchmark interrupted by user")
|
||||
sys.exit(130)
|
||||
except Exception as e:
|
||||
print(f"\n❌ Benchmark failed: {e}")
|
||||
sys.exit(1)
|
||||
finally:
|
||||
# Ensure clean exit
|
||||
try:
|
||||
gc.collect()
|
||||
print("\n🧹 Cleanup completed")
|
||||
except Exception:
|
||||
pass
|
||||
sys.exit(0)
|
||||
82
data/huawei_pangu.md
Normal file
82
data/huawei_pangu.md
Normal file
@@ -0,0 +1,82 @@
|
||||
# 盘古之殇:华为诺亚盘古大模型研发历程的心酸与黑暗
|
||||
|
||||
各位好,
|
||||
|
||||
我是一名盘古大模型团队,华为诺亚方舟实验室的员工。
|
||||
|
||||
首先为自证身份,列举一些细节:
|
||||
|
||||
1. 现诺亚主任,前算法应用部部长,后改名为小模型实验室的主任王云鹤。前诺亚主任:姚骏(大家称姚老师)。几个实验室主任:唐睿明(明哥,明队,已离职),尚利峰,张维(维哥),郝建业(郝老师),刘武龙(称呼为武龙所)等。其他骨干成员和专家陆续有很多人离职。
|
||||
2. 我们隶属于“四野”这个组织。四野下属有许多纵队,基础语言大模型是四纵。王云鹤的小模型是十六纵队。我们参加过苏州的集结,有各种月份的时间节点。在苏州攻关会颁发任务令,需要在节点前达成目标。苏州集结会把各地的人员都集中在苏州研究所,平常住宾馆,比如在甪直的酒店,与家人孩子天各一方。
|
||||
3. 在苏州集结的时候周六默认上班,非常辛苦,不过周六有下午茶,有一次还有小龙虾。在苏州研究所的工位搬迁过一次,从一栋楼换到了另一栋。苏州研究所楼栋都是欧式装修,门口有大坡,里面景色很不错。去苏州集结一般至少要去一周,甚至更久,多的人甚至一两个月都回不了家。
|
||||
4. 诺亚曾经传说是研究型的,但是来了之后因为在四野做大模型项目,项目成员完全变成了交付型的,且充满了例会,评审,汇报。很多时候做实验都要申请。团队需要对接终端小艺,华为云,ICT等诸多业务线,交付压力不小。
|
||||
5. 诺亚研发的盘古模型早期内部代号叫做“盘古智子”,一开始只有内部需要申请试用的网页版,到后续迫于压力在welink上接入和公测开放。
|
||||
|
||||
这些天发生关于质疑盘古大模型抄袭千问的事情闹的沸沸扬扬。作为一个盘古团队的成员,我最近夜夜辗转反侧,难以入眠。盘古的品牌受到如此大的影响,一方面,我自私的为我的职业发展担忧,也为自己过去的努力工作感到不值。另一方面,由于有人开始揭露这些事情我内心又感到大快人心。在多少个日日夜夜,我们对内部某些人一次次靠着造假而又获得了无数利益的行为咬牙切齿而又无能为力。这种压抑和羞辱也逐渐消磨了我对华为的感情,让我在这里的时日逐渐浑浑噩噩,迷茫无措,时常怀疑自己的人生和自我价值。
|
||||
|
||||
我承认我是一个懦弱的人,作为一个小小的打工人,我不仅不敢和王云鹤等内部手眼通天的人做对,更不敢和华为这样的庞然大物做对。我很怕失去我的工作,毕竟我也有家人和孩子,所以我打心眼里很佩服揭露者。但是,看到内部还在试图洗地掩盖事实,蒙蔽公众的时候,我实在不能容忍了。我也希望勇敢一次,顺从自己本心。就算自损八百,我也希望能伤敌一千。我决定把我在这里的所见所闻(部分来自于同事口述)公布出来,关于盘古大模型的“传奇故事”:
|
||||
|
||||
华为确实主要在昇腾卡上训练大模型(小模型实验室有不少英伟达的卡,他们之前也会用来训练,后面转移到昇腾)。曾经我被华为“打造世界第二选择”的决心而折服,我本身也曾经对华为有深厚的感情。我们陪着昇腾一步步摸爬滚打,从充满bug到现在能训出模型,付出了巨大的心血和代价。
|
||||
|
||||
最初我们的算力非常有限,在910A上训练模型。那会只支持fp16,训练的稳定性远不如bf16。盘古的moe开始很早,23年就主要是训练38Bmoe模型和后续的71B dense模型。71B的dense模型通过扩增变成了第一代的135Bdense模型,后面主力模型也逐渐在910B上训练。
|
||||
|
||||
71B和135B模型都有一个巨大的硬伤就是tokenizer。当时使用的tokenizer编码效率极低,每个单个的符号,数字,空格,乃至汉字都会占用一个token。可想而知这会非常浪费算力,且使得模型的效果很差。这时候小模型实验室正好有个自己训的词表。姚老师当时怀疑是不是模型的tokenizer不好(虽然事后来看,他的怀疑是无疑正确的),于是就决定,让71B和135B换tokenizer,因为小模型实验室曾经尝试过。团队缝合了两个tokenizer,开始了tokenizer的更换。71B模型的更换失败了,而135B因为采用了更精细的embedding初始化策略,续训了至少1T的数据后词表总算更换成功,但可想而知,效果并不会变好。
|
||||
|
||||
于此同期,阿里和智谱等国内其他公司在GPU上训练,且已经摸索出了正确的方法,盘古和竞品的差距越来越大。内部一个230B从头训练的dense模型又因为各种原因训练失败,导致项目的状况几乎陷入绝境。面临几个节点的压力以及内部对盘古的强烈质疑时,团队的士气低迷到了极点。团队在算力极其有限的时候,做出了很多努力和挣扎。比如,团队偶然发现当时的38B moe并没有预期moe的效果。于是去掉了moe参数,还原为了13B的dense模型。由于38B的moe源自很早的pangu alpha 13B,架构相对落后,团队进行了一系列的操作,比如切换绝对位置编码到rope,去掉bias,切换为rmsnorm。同时鉴于tokenizer的一些失败和换词表的经验,这个模型的词表也更换为了王云鹤的小模型实验室7B模型所使用的词表。后面这个13B模型进行了扩增续训,变成了第二代38B dense模型(在几个月内这个模型都是主要的盘古中档位模型),曾经具有一定的竞争力。但是,由于更大的135B模型架构落后,且更换词表模型损伤巨大(后续分析发现当时更换的缝合词表有更严重的bug),续训后也与千问等当时国内领先模型存在很大差距。这时由于内部的质疑声和领导的压力也越来越大。团队的状态几乎陷入了绝境。
|
||||
|
||||
在这种情况下,王云鹤和他的小模型实验室出手了。他们声称是从旧的135B参数继承改造而来,通过训练短短的几百B数据,各项指标平均提升了十个点左右。实际上,这就是他们套壳应用到大模型的第一次杰作。华为的外行领导内行,使得领导完全对于这种扯淡的事情没有概念,他们只会觉得肯定是有什么算法创新。经过内部的分析,他们实际上是使用Qwen 1.5 110B续训而来,通过加层,扩增ffn维度,添加盘古pi论文的一些机制得来,凑够了大概135B的参数。实际上,旧的135B有107层,而这个模型只有82层,各种配置也都不一样。新的来路不明的135B训练完很多参数的分布也和Qwen 110B几乎一模一样。连模型代码的类名当时都是Qwen,甚至懒得改名。后续这个模型就是所谓的135B V2。而这个模型当时也提供给了很多下游,甚至包括外部客户。
|
||||
|
||||
这件事对于我们这些认真诚实做事的同事们带来了巨大的冲击,内部很多人其实都知道这件事,甚至包括终端和华为云。我们都戏称以后别叫盘古模型了,叫千古吧。当时团队成员就想向bcg举报了,毕竟这已经是重大的业务造假了。但是后面据说被领导拦了下来,因为更高级别的领导(比如姚老师,以及可能熊总和查老)其实后面也知道了,但是并不管,因为通过套壳拿出好的结果,对他们也是有利的。这件事使得当时团队几位最强的同事开始心灰意冷,离职跑路也逐渐成为挂在嘴边的事。
|
||||
|
||||
此时,盘古似乎迎来了转机。由于前面所述的这些盘古模型基本都是续训和改造而来,当时诺亚完全没有掌握从头训练的技术,何况还是在昇腾的NPU上进行训练。在当时团队的核心成员的极力争取下,盘古开始了第三代模型的训练,付出了巨大的努力后,在数据架构和训练算法方面都与业界逐渐接轨,而这其中的艰辛和小模型实验室的人一点关系都没有。
|
||||
|
||||
一开始团队成员毫无信心,只从一个13B的模型开始训练,但是后面发现效果还不错,于是这个模型后续再次进行了一次参数扩增,变成了第三代的38B,代号38B V3。想必很多产品线的兄弟都对这个模型很熟悉。当时这个模型的tokenizer是基于llama的词表进行扩展的(也是业界常见的做法)。而当时王云鹤的实验室做出来了另一个词表(也就是后续pangu系列的词表)。当时两个词表还被迫进行了一次赛马,最终没有明显的好坏结论。于是,领导当即决定,应该统一词表,使用王云鹤他们的。于是,在后续从头训练的135B V3(也就是对外的Pangu Ultra),便是采用了这个tokenizer。这也解释了很多使用我们模型的兄弟的疑惑,为什么当时同为V3代的两个不同档位的模型,会使用不同的tokenizer。
|
||||
|
||||
|
||||
我们打心眼里觉得,135B V3是我们四纵团队当时的骄傲。这是第一个真正意义上的,华为全栈自研,正经从头训练的千亿级别的模型,且效果与24年同期竞品可比的。写到这里我已经热泪盈眶,太不容易了。当时为了稳定训练,团队做了大量实验对比,并且多次在模型梯度出现异常的时候进行及时回退重启。这个模型真正做到了后面技术报告所说的训练全程没有一个loss spike。我们克服了不知道多少困难,我们做到了,我们愿用生命和荣誉保证这个模型训练的真实性。多少个凌晨,我们为了它的训练而不眠。在被内部心声骂的一文不值的时候,我们有多么不甘,有多少的委屈,我们挺住了。
|
||||
|
||||
我们这帮人是真的在为打磨国产算力底座燃烧自己的青春啊……客居他乡,我们放弃了家庭,放弃了假期,放弃了健康,放弃了娱乐,抛头颅洒热血,其中的艰辛与困苦,寥寥数笔不足以概括其万一。在各种动员大会上,当时口号中喊出的盘古必胜,华为必胜,我们心里是真的深深被感动。
|
||||
|
||||
然而,我们的所有辛苦的成果,经常被小模型实验室轻飘飘的拿走了。数据,直接要走。代码,直接要走,还要求我们配合适配到能一键运行。我们当时戏称小模型实验室为点鼠标实验室。我们付出辛苦,他们取得荣耀。果然应了那句话,你在负重前行是因为有人替你岁月静好。在这种情况下,越来越多的战友再也坚持不下去了,选择了离开。看到身边那些优秀的同事一个个离职,我的内心又感叹又难过。在这种作战一样的环境下,我们比起同事来说更像是战友。他们在技术上也有无数值得我学习的地方,堪称良师。看到他们去了诸如字节Seed,Deepseek,月之暗面,腾讯和快手等等很多出色的团队,我打心眼里为他们高兴和祝福,脱离了这个辛苦却肮脏的地方。我至今还对一位离职同事的话记忆犹新,ta说:“来这里是我技术生涯中的耻辱,在这里再呆每一天都是浪费生命”。话虽难听却让我无言以对。我担心我自己技术方面的积累不足,以及没法适应互联网公司高淘汰的环境,让我多次想离职的心始终没有迈出这一步。
|
||||
|
||||
盘古除了dense模型,后续也启动了moe的探索。一开始训练的是一个224B的moe模型。而与之平行的,小模型实验室也开启了第二次主要的套壳行动(次要的插曲可能还包括一些别的模型,比如math模型),即这次流传甚广的pangu pro moe 72B。这个模型内部自称是从小模型实验室的7B扩增上来的(就算如此,这也与技术报告不符,何况是套壳qwen 2.5的14b续训)。还记得他们训了没几天,内部的评测就立刻追上了当时的38B V3。AI系统实验室很多兄弟因为需要适配模型,都知道他们的套壳行动,只是迫于各种原因,无法伸张正义。实际上,对于后续训了很久很久的这个模型,Honestagi能够分析出这个量级的相似性我已经很诧异了,因为这个模型为了续训洗参数,所付出的算力甚至早就足够从头训一个同档位的模型了。听同事说他们为了洗掉千问的水印,采取了不少办法,甚至包括故意训了脏数据。这也为学术界研究模型血缘提供了一个前所未有的特殊模范吧。以后新的血缘方法提出可以拿出来溜溜。
|
||||
|
||||
24年底和25年初,在Deepseek v3和r1发布之后,由于其惊艳的技术水平,团队受到了巨大的冲击,也受到了更大的质疑。于是为了紧跟潮流,盘古模仿Deepseek的模型尺寸,开启了718B moe的训练。这个时候,小模型实验室再次出手了。他们选择了套壳Deepseekv3续训。他们通过冻住Deepseek加载的参数,进行训练。连任务加载ckpt的目录都是deepseekv3,改都不改,何其嚣张?与之相反,一些有真正技术信仰的同事,在从头训练另一个718B的moe。但其中出现了各种各样的问题。但是很显然,这个模型怎么可能比直接套壳的好呢?如果不是团队leader坚持,早就被叫停了。
|
||||
|
||||
华为的流程管理之繁重,严重拖累了大模型的研发节奏,例如版本管理,模型血缘,各种流程化,各种可追溯。讽刺的是,小模型实验室的模型似乎从来不受这些流程的约束,想套壳就套壳,想续训就续训,算力源源不断的伸手拿走。这种强烈到近乎魔幻的对比,说明了当前流程管理的情况:只许州官放火,不许百姓点灯。何其可笑?何其可悲?何其可恶?何其可耻!
|
||||
|
||||
HonestAGI的事情出来后,内部让大家不停的研讨分析,如何公关和“回应”。诚然,这个原文的分析也许不够有力,给了王云鹤与小模型实验室他们狡辩和颠倒黑白的机会。为此,这两天我内心感到作呕,时时怀疑自己的人生意义以及苍天无眼。我不奉陪了,我要离职了,同时我也在申请从盘古部分技术报告的作者名单中移除。曾经在这些技术报告上署名是我一生都无法抹除的污点。当时我没想到,他们竟然猖狂到敢开源。我没想到,他们敢如此愚弄世人,大肆宣发。当时,我也许是存了侥幸心理,没有拒绝署名。我相信很多扎实做事的战友,也只是被迫上了贼船,或者不知情。但这件事已经无法挽回,我希望我的余生能够坚持扎实做真正有意义的事,为我当时的软弱和不坚定赎罪。
|
||||
|
||||
深夜写到这里,我已经泪流满面,泣不成声。还记得一些出色的同事离职时,我苦笑问他们要不要发个长长的心声惯例帖,揭露一下现状。对方说:不了,浪费时间,而且我也怕揭露出来你们过的更糟。我当时一下黯然神伤,因为曾经共同为了理想奋斗过的战友已经彻底对华为彻底灰心了。当时大家调侃,我们用着当年共产党的小米加步枪,组织却有着堪比当年国民党的作风。
|
||||
|
||||
曾几何时,我为我们用着小米加步枪打败洋枪洋炮而自豪。
|
||||
|
||||
现在,我累了,我想投降。
|
||||
|
||||
其实时至今日,我还是真心希望华为能认真吸取教训,能做好盘古,把盘古做到世界一流,把昇腾变成英伟达的水平。内部的劣币驱逐良币,使得诺亚乃至华为在短时间内急剧流失了大量出色的大模型人才。相信他们也正在如Deepseek等各个团队闪耀着,施展着他们的抱负才华,为中美在AI的激烈竞赛中奉献力量。我时常感叹,华为不是没有人才,而是根本不知道怎么留住人才。如果给这些人合适的环境,合适的资源,更少的枷锁,更少的政治斗争,盘古何愁不成?
|
||||
|
||||
最后:我以生命,人格和荣誉发誓,我写的以上所有内容均为真实(至少在我有限的认知范围内)。我没有那么高的技术水平以及机会去做详尽扎实的分析,也不敢直接用内部记录举证,怕因为信息安全抓到。但是我相信我很多曾经的战友,会为我作证。在华为内部的兄弟,包括我们曾经服务过的产品线兄弟们,相信本文的无数细节能和你们的印象对照,印证我的说法。你们可能也曾经被蒙骗,但这些残酷的真相不会被尘封。我们奋战过的痕迹,也不应该被扭曲和埋葬。
|
||||
|
||||
写了这么多,某些人肯定想把我找出来,抹杀掉。公司搞不好也想让我噤声乃至追责。如果真的这样,我,乃至我的家人的人身乃至生命安全可能都会受到威胁。为了自我保护,我近期每天会跟大家报平安。
|
||||
|
||||
如果我消失了,就当是我为了真理和理想,为了华为乃至中国能够更好地发展算力和AI而牺牲了吧,我愿埋葬于那片曾经奋斗过的地方。
|
||||
|
||||
诺亚,再见
|
||||
|
||||
2025年7月6日凌晨 写于深圳
|
||||
|
||||
---
|
||||
|
||||
各位好,
|
||||
|
||||
感谢大家的关心与祝福。我目前暂时安全,但公司应该在进行排查与某些名单收集,后续情况未知。
|
||||
|
||||
我补充一些细节,以免某些人继续颠倒黑白。
|
||||
|
||||
关于135B V2,小模型实验室在迅速地完成套壳并拿完所有套壳带来的好处后(比如任务令表彰和及时激励),因为不想继续支撑下游应用和模型迭代,又把这个烫手山芋甩给了四纵。确实技高一筹,直接把四纵的兄弟们拉下水。同事提供过去一个老旧的模型,最终拿回了一个当时一个魔改的先进的千问。做大模型的人,自己做的模型就像自己孩子一样熟悉,不要把别人都当傻子。就像自家儿子出门一趟,回来个别人家孩子。
|
||||
|
||||
盘古report的署名是不符合学术规范的。例如,135B V3有不少有技术贡献的人,因为作者名额数量限制,劳动成果没有得到应有的回报,团队内曾经有不小的意见。这个模型当时是大家智慧和汗水的结晶,甚至是团队当时的精神支柱,支撑着不少兄弟们继续留在诺亚。所谓的名额限制,以及挂名了一些毫无技术贡献的人(如一些小模型实验室的人),让兄弟们何其心寒。
|
||||
|
||||
---
|
||||
|
||||
暂时平安。另外,支持我勇于说出真相的战友们 https://github.com/HW-whistleblower/True-Story-of-Pangu/issues/317
|
||||
@@ -97,16 +97,30 @@ ollama pull nomic-embed-text
|
||||
```
|
||||
|
||||
### DiskANN
|
||||
**Best for**: Large datasets (> 10M vectors, 10GB+ index size) - **⚠️ Beta version, still in active development**
|
||||
- Uses Product Quantization (PQ) for coarse filtering during graph traversal
|
||||
- Novel approach: stores only PQ codes, performs rerank with exact computation in final step
|
||||
- Implements a corner case of double-queue: prunes all neighbors and recomputes at the end
|
||||
**Best for**: Performance-critical applications and large datasets - **Production-ready with automatic graph partitioning**
|
||||
|
||||
**How it works:**
|
||||
- **Product Quantization (PQ) + Real-time Reranking**: Uses compressed PQ codes for fast graph traversal, then recomputes exact embeddings for final candidates
|
||||
- **Automatic Graph Partitioning**: When `is_recompute=True`, automatically partitions large indices and safely removes redundant files to save storage
|
||||
- **Superior Speed-Accuracy Trade-off**: Faster search than HNSW while maintaining high accuracy
|
||||
|
||||
**Trade-offs compared to HNSW:**
|
||||
- ✅ **Faster search latency** (typically 2-8x speedup)
|
||||
- ✅ **Better scaling** for large datasets
|
||||
- ✅ **Smart storage management** with automatic partitioning
|
||||
- ✅ **Better graph locality** with `--ldg-times` parameter for SSD optimization
|
||||
- ⚠️ **Slightly larger index size** due to PQ tables and graph metadata
|
||||
|
||||
```bash
|
||||
# For billion-scale deployments
|
||||
# Recommended for most use cases
|
||||
--backend-name diskann --graph-degree 32 --build-complexity 64
|
||||
|
||||
# For large-scale deployments
|
||||
--backend-name diskann --graph-degree 64 --build-complexity 128
|
||||
```
|
||||
|
||||
**Performance Benchmark**: Run `python benchmarks/diskann_vs_hnsw_speed_comparison.py` to compare DiskANN and HNSW on your system.
|
||||
|
||||
## LLM Selection: Engine and Model Comparison
|
||||
|
||||
### LLM Engines
|
||||
@@ -222,15 +236,9 @@ python apps/document_rag.py --query "What are the main techniques LEANN explores
|
||||
|
||||
3. **Use MLX on Apple Silicon** (optional optimization):
|
||||
```bash
|
||||
--embedding-mode mlx --embedding-model mlx-community/Qwen3-Embedding-0.6B-8bit
|
||||
--embedding-mode mlx --embedding-model mlx-community/multilingual-e5-base-mlx
|
||||
```
|
||||
MLX might not be the best choice, as we tested and found that it only offers 1.3x acceleration compared to HF, so maybe using ollama is a better choice for embedding generation
|
||||
|
||||
4. **Use Ollama**
|
||||
```bash
|
||||
--embedding-mode ollama --embedding-model nomic-embed-text
|
||||
```
|
||||
To discover additional embedding models in ollama, check out https://ollama.com/search?c=embedding or read more about embedding models at https://ollama.com/blog/embedding-models, please do check the model size that works best for you
|
||||
### If Search Quality is Poor
|
||||
|
||||
1. **Increase retrieval count**:
|
||||
@@ -283,3 +291,4 @@ LEANN's recomputation feature provides exact distance calculations but can be di
|
||||
- [Lessons Learned Developing LEANN](https://yichuan-w.github.io/blog/lessons_learned_in_dev_leann/)
|
||||
- [LEANN Technical Paper](https://arxiv.org/abs/2506.08276)
|
||||
- [DiskANN Original Paper](https://papers.nips.cc/paper/2019/file/09853c7fb1d3f8ee67a61b6bf4a7f8e6-Paper.pdf)
|
||||
- [SSD-based Graph Partitioning](https://github.com/SonglinLife/SSD_BASED_PLAN)
|
||||
|
||||
8
packages/leann-backend-diskann/CMakeLists.txt
Normal file
8
packages/leann-backend-diskann/CMakeLists.txt
Normal file
@@ -0,0 +1,8 @@
|
||||
# packages/leann-backend-diskann/CMakeLists.txt (simplified version)
|
||||
|
||||
cmake_minimum_required(VERSION 3.20)
|
||||
project(leann_backend_diskann_wrapper)
|
||||
|
||||
# Tell CMake to directly enter the DiskANN submodule and execute its own CMakeLists.txt
|
||||
# DiskANN will handle everything itself, including compiling Python bindings
|
||||
add_subdirectory(src/third_party/DiskANN)
|
||||
@@ -1 +1,7 @@
|
||||
from . import diskann_backend as diskann_backend
|
||||
from . import graph_partition
|
||||
|
||||
# Export main classes and functions
|
||||
from .graph_partition import GraphPartitioner, partition_graph
|
||||
|
||||
__all__ = ["GraphPartitioner", "diskann_backend", "graph_partition", "partition_graph"]
|
||||
|
||||
@@ -137,6 +137,71 @@ class DiskannBuilder(LeannBackendBuilderInterface):
|
||||
def __init__(self, **kwargs):
|
||||
self.build_params = kwargs
|
||||
|
||||
def _safe_cleanup_after_partition(self, index_dir: Path, index_prefix: str):
|
||||
"""
|
||||
Safely cleanup files after partition.
|
||||
In partition mode, C++ doesn't read _disk.index content,
|
||||
so we can delete it if all derived files exist.
|
||||
"""
|
||||
disk_index_file = index_dir / f"{index_prefix}_disk.index"
|
||||
beam_search_file = index_dir / f"{index_prefix}_disk_beam_search.index"
|
||||
|
||||
# Required files that C++ partition mode needs
|
||||
# Note: C++ generates these with _disk.index suffix
|
||||
disk_suffix = "_disk.index"
|
||||
required_files = [
|
||||
f"{index_prefix}{disk_suffix}_medoids.bin", # Critical: assert fails if missing
|
||||
# Note: _centroids.bin is not created in single-shot build - C++ handles this automatically
|
||||
f"{index_prefix}_pq_pivots.bin", # PQ table
|
||||
f"{index_prefix}_pq_compressed.bin", # PQ compressed vectors
|
||||
]
|
||||
|
||||
# Check if all required files exist
|
||||
missing_files = []
|
||||
for filename in required_files:
|
||||
file_path = index_dir / filename
|
||||
if not file_path.exists():
|
||||
missing_files.append(filename)
|
||||
|
||||
if missing_files:
|
||||
logger.warning(
|
||||
f"Cannot safely delete _disk.index - missing required files: {missing_files}"
|
||||
)
|
||||
logger.info("Keeping all original files for safety")
|
||||
return
|
||||
|
||||
# Calculate space savings
|
||||
space_saved = 0
|
||||
files_to_delete = []
|
||||
|
||||
if disk_index_file.exists():
|
||||
space_saved += disk_index_file.stat().st_size
|
||||
files_to_delete.append(disk_index_file)
|
||||
|
||||
if beam_search_file.exists():
|
||||
space_saved += beam_search_file.stat().st_size
|
||||
files_to_delete.append(beam_search_file)
|
||||
|
||||
# Safe to delete!
|
||||
for file_to_delete in files_to_delete:
|
||||
try:
|
||||
os.remove(file_to_delete)
|
||||
logger.info(f"✅ Safely deleted: {file_to_delete.name}")
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to delete {file_to_delete.name}: {e}")
|
||||
|
||||
if space_saved > 0:
|
||||
space_saved_mb = space_saved / (1024 * 1024)
|
||||
logger.info(f"💾 Space saved: {space_saved_mb:.1f} MB")
|
||||
|
||||
# Show what files are kept
|
||||
logger.info("📁 Kept essential files for partition mode:")
|
||||
for filename in required_files:
|
||||
file_path = index_dir / filename
|
||||
if file_path.exists():
|
||||
size_mb = file_path.stat().st_size / (1024 * 1024)
|
||||
logger.info(f" - {filename} ({size_mb:.1f} MB)")
|
||||
|
||||
def build(self, data: np.ndarray, ids: list[str], index_path: str, **kwargs):
|
||||
path = Path(index_path)
|
||||
index_dir = path.parent
|
||||
@@ -151,6 +216,17 @@ class DiskannBuilder(LeannBackendBuilderInterface):
|
||||
_write_vectors_to_bin(data, index_dir / data_filename)
|
||||
|
||||
build_kwargs = {**self.build_params, **kwargs}
|
||||
|
||||
# Extract is_recompute from nested backend_kwargs if needed
|
||||
is_recompute = build_kwargs.get("is_recompute", False)
|
||||
if not is_recompute and "backend_kwargs" in build_kwargs:
|
||||
is_recompute = build_kwargs["backend_kwargs"].get("is_recompute", False)
|
||||
|
||||
# Flatten all backend_kwargs parameters to top level for compatibility
|
||||
if "backend_kwargs" in build_kwargs:
|
||||
nested_params = build_kwargs.pop("backend_kwargs")
|
||||
build_kwargs.update(nested_params)
|
||||
|
||||
metric_enum = _get_diskann_metrics().get(
|
||||
build_kwargs.get("distance_metric", "mips").lower()
|
||||
)
|
||||
@@ -185,6 +261,30 @@ class DiskannBuilder(LeannBackendBuilderInterface):
|
||||
build_kwargs.get("pq_disk_bytes", 0),
|
||||
"",
|
||||
)
|
||||
|
||||
# Auto-partition if is_recompute is enabled
|
||||
if build_kwargs.get("is_recompute", False):
|
||||
logger.info("is_recompute=True, starting automatic graph partitioning...")
|
||||
from .graph_partition import partition_graph
|
||||
|
||||
# Partition the index using absolute paths
|
||||
# Convert to absolute paths to avoid issues with working directory changes
|
||||
absolute_index_dir = Path(index_dir).resolve()
|
||||
absolute_index_prefix_path = str(absolute_index_dir / index_prefix)
|
||||
disk_graph_path, partition_bin_path = partition_graph(
|
||||
index_prefix_path=absolute_index_prefix_path,
|
||||
output_dir=str(absolute_index_dir),
|
||||
partition_prefix=index_prefix,
|
||||
)
|
||||
|
||||
# Safe cleanup: In partition mode, C++ doesn't read _disk.index content
|
||||
# but still needs the derived files (_medoids.bin, _centroids.bin, etc.)
|
||||
self._safe_cleanup_after_partition(index_dir, index_prefix)
|
||||
|
||||
logger.info("✅ Graph partitioning completed successfully!")
|
||||
logger.info(f" - Disk graph: {disk_graph_path}")
|
||||
logger.info(f" - Partition file: {partition_bin_path}")
|
||||
|
||||
finally:
|
||||
temp_data_file = index_dir / data_filename
|
||||
if temp_data_file.exists():
|
||||
@@ -213,7 +313,26 @@ class DiskannSearcher(BaseSearcher):
|
||||
|
||||
# For DiskANN, we need to reinitialize the index when zmq_port changes
|
||||
# Store the initialization parameters for later use
|
||||
full_index_prefix = str(self.index_dir / self.index_path.stem)
|
||||
# Note: C++ load method expects the BASE path (without _disk.index suffix)
|
||||
# C++ internally constructs: index_prefix + "_disk.index"
|
||||
index_name = self.index_path.stem # "simple_test.leann" -> "simple_test"
|
||||
diskann_index_prefix = str(self.index_dir / index_name) # /path/to/simple_test
|
||||
full_index_prefix = diskann_index_prefix # /path/to/simple_test (base path)
|
||||
|
||||
# Auto-detect partition files and set partition_prefix
|
||||
partition_graph_file = self.index_dir / f"{index_name}_disk_graph.index"
|
||||
partition_bin_file = self.index_dir / f"{index_name}_partition.bin"
|
||||
|
||||
partition_prefix = ""
|
||||
if partition_graph_file.exists() and partition_bin_file.exists():
|
||||
# C++ expects full path prefix, not just filename
|
||||
partition_prefix = str(self.index_dir / index_name) # /path/to/simple_test
|
||||
logger.info(
|
||||
f"✅ Detected partition files, using partition_prefix='{partition_prefix}'"
|
||||
)
|
||||
else:
|
||||
logger.debug("No partition files detected, using standard index files")
|
||||
|
||||
self._init_params = {
|
||||
"metric_enum": metric_enum,
|
||||
"full_index_prefix": full_index_prefix,
|
||||
@@ -221,8 +340,14 @@ class DiskannSearcher(BaseSearcher):
|
||||
"num_nodes_to_cache": kwargs.get("num_nodes_to_cache", 0),
|
||||
"cache_mechanism": 1,
|
||||
"pq_prefix": "",
|
||||
"partition_prefix": "",
|
||||
"partition_prefix": partition_prefix,
|
||||
}
|
||||
|
||||
# Log partition configuration for debugging
|
||||
if partition_prefix:
|
||||
logger.info(
|
||||
f"✅ Detected partition files, using partition_prefix='{partition_prefix}'"
|
||||
)
|
||||
self._diskannpy = diskannpy
|
||||
self._current_zmq_port = None
|
||||
self._index = None
|
||||
@@ -334,3 +459,25 @@ class DiskannSearcher(BaseSearcher):
|
||||
string_labels = [[str(int_label) for int_label in batch_labels] for batch_labels in labels]
|
||||
|
||||
return {"labels": string_labels, "distances": distances}
|
||||
|
||||
def cleanup(self):
|
||||
"""Cleanup DiskANN-specific resources including C++ index."""
|
||||
# Call parent cleanup first
|
||||
super().cleanup()
|
||||
|
||||
# Delete the C++ index to trigger destructors
|
||||
try:
|
||||
if hasattr(self, "_index") and self._index is not None:
|
||||
del self._index
|
||||
self._index = None
|
||||
self._current_zmq_port = None
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
# Force garbage collection to ensure C++ objects are destroyed
|
||||
try:
|
||||
import gc
|
||||
|
||||
gc.collect()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
@@ -81,7 +81,8 @@ def create_diskann_embedding_server(
|
||||
with open(passages_file) as f:
|
||||
meta = json.load(f)
|
||||
|
||||
passages = PassageManager(meta["passage_sources"])
|
||||
logger.info(f"Loading PassageManager with metadata_file_path: {passages_file}")
|
||||
passages = PassageManager(meta["passage_sources"], metadata_file_path=passages_file)
|
||||
logger.info(
|
||||
f"Loaded PassageManager with {len(passages.global_offset_map)} passages from metadata"
|
||||
)
|
||||
|
||||
@@ -0,0 +1,299 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Graph Partition Module for LEANN DiskANN Backend
|
||||
|
||||
This module provides Python bindings for the graph partition functionality
|
||||
of DiskANN, allowing users to partition disk-based indices for better
|
||||
performance.
|
||||
"""
|
||||
|
||||
import os
|
||||
import shutil
|
||||
import subprocess
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
|
||||
class GraphPartitioner:
|
||||
"""
|
||||
A Python interface for DiskANN's graph partition functionality.
|
||||
|
||||
This class provides methods to partition disk-based indices for improved
|
||||
search performance and memory efficiency.
|
||||
"""
|
||||
|
||||
def __init__(self, build_type: str = "release"):
|
||||
"""
|
||||
Initialize the GraphPartitioner.
|
||||
|
||||
Args:
|
||||
build_type: Build type for the executables ("debug" or "release")
|
||||
"""
|
||||
self.build_type = build_type
|
||||
self._ensure_executables()
|
||||
|
||||
def _get_executable_path(self, name: str) -> str:
|
||||
"""Get the path to a graph partition executable."""
|
||||
# Get the directory where this Python module is located
|
||||
module_dir = Path(__file__).parent
|
||||
# Navigate to the graph_partition directory
|
||||
graph_partition_dir = module_dir.parent / "third_party" / "DiskANN" / "graph_partition"
|
||||
executable_path = graph_partition_dir / "build" / self.build_type / "graph_partition" / name
|
||||
|
||||
if not executable_path.exists():
|
||||
raise FileNotFoundError(f"Executable {name} not found at {executable_path}")
|
||||
|
||||
return str(executable_path)
|
||||
|
||||
def _ensure_executables(self):
|
||||
"""Ensure that the required executables are built."""
|
||||
try:
|
||||
self._get_executable_path("partitioner")
|
||||
self._get_executable_path("index_relayout")
|
||||
except FileNotFoundError:
|
||||
# Try to build the executables automatically
|
||||
print("Executables not found, attempting to build them...")
|
||||
self._build_executables()
|
||||
|
||||
def _build_executables(self):
|
||||
"""Build the required executables."""
|
||||
graph_partition_dir = (
|
||||
Path(__file__).parent.parent / "third_party" / "DiskANN" / "graph_partition"
|
||||
)
|
||||
original_dir = os.getcwd()
|
||||
|
||||
try:
|
||||
os.chdir(graph_partition_dir)
|
||||
|
||||
# Clean any existing build
|
||||
if (graph_partition_dir / "build").exists():
|
||||
shutil.rmtree(graph_partition_dir / "build")
|
||||
|
||||
# Run the build script
|
||||
cmd = ["./build.sh", self.build_type, "split_graph", "/tmp/dummy"]
|
||||
subprocess.run(cmd, capture_output=True, text=True, cwd=graph_partition_dir)
|
||||
|
||||
# Check if executables were created
|
||||
partitioner_path = self._get_executable_path("partitioner")
|
||||
relayout_path = self._get_executable_path("index_relayout")
|
||||
|
||||
print(f"✅ Built partitioner: {partitioner_path}")
|
||||
print(f"✅ Built index_relayout: {relayout_path}")
|
||||
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"Failed to build executables: {e}")
|
||||
finally:
|
||||
os.chdir(original_dir)
|
||||
|
||||
def partition_graph(
|
||||
self,
|
||||
index_prefix_path: str,
|
||||
output_dir: Optional[str] = None,
|
||||
partition_prefix: Optional[str] = None,
|
||||
**kwargs,
|
||||
) -> tuple[str, str]:
|
||||
"""
|
||||
Partition a disk-based index for improved performance.
|
||||
|
||||
Args:
|
||||
index_prefix_path: Path to the index prefix (e.g., "/path/to/index")
|
||||
output_dir: Output directory for results (defaults to parent of index_prefix_path)
|
||||
partition_prefix: Prefix for output files (defaults to basename of index_prefix_path)
|
||||
**kwargs: Additional parameters for graph partitioning:
|
||||
- gp_times: Number of LDG partition iterations (default: 10)
|
||||
- lock_nums: Number of lock nodes (default: 10)
|
||||
- cut: Cut adjacency list degree (default: 100)
|
||||
- scale_factor: Scale factor (default: 1)
|
||||
- data_type: Data type (default: "float")
|
||||
- thread_nums: Number of threads (default: 10)
|
||||
|
||||
Returns:
|
||||
Tuple of (disk_graph_index_path, partition_bin_path)
|
||||
|
||||
Raises:
|
||||
RuntimeError: If the partitioning process fails
|
||||
"""
|
||||
# Set default parameters
|
||||
params = {
|
||||
"gp_times": 10,
|
||||
"lock_nums": 10,
|
||||
"cut": 100,
|
||||
"scale_factor": 1,
|
||||
"data_type": "float",
|
||||
"thread_nums": 10,
|
||||
**kwargs,
|
||||
}
|
||||
|
||||
# Determine output directory
|
||||
if output_dir is None:
|
||||
output_dir = str(Path(index_prefix_path).parent)
|
||||
|
||||
# Create output directory if it doesn't exist
|
||||
Path(output_dir).mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Determine partition prefix
|
||||
if partition_prefix is None:
|
||||
partition_prefix = Path(index_prefix_path).name
|
||||
|
||||
# Get executable paths
|
||||
partitioner_path = self._get_executable_path("partitioner")
|
||||
relayout_path = self._get_executable_path("index_relayout")
|
||||
|
||||
# Create temporary directory for processing
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
# Change to the graph_partition directory for temporary files
|
||||
graph_partition_dir = (
|
||||
Path(__file__).parent.parent / "third_party" / "DiskANN" / "graph_partition"
|
||||
)
|
||||
original_dir = os.getcwd()
|
||||
|
||||
try:
|
||||
os.chdir(graph_partition_dir)
|
||||
|
||||
# Create temporary data directory
|
||||
temp_data_dir = Path(temp_dir) / "data"
|
||||
temp_data_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Set up paths for temporary files
|
||||
graph_path = temp_data_dir / "starling" / "_M_R_L_B" / "GRAPH"
|
||||
graph_gp_path = (
|
||||
graph_path
|
||||
/ f"GP_TIMES_{params['gp_times']}_LOCK_{params['lock_nums']}_GP_USE_FREQ0_CUT{params['cut']}_SCALE{params['scale_factor']}"
|
||||
)
|
||||
graph_gp_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Find input index file
|
||||
old_index_file = f"{index_prefix_path}_disk_beam_search.index"
|
||||
if not os.path.exists(old_index_file):
|
||||
old_index_file = f"{index_prefix_path}_disk.index"
|
||||
|
||||
if not os.path.exists(old_index_file):
|
||||
raise RuntimeError(f"Index file not found: {old_index_file}")
|
||||
|
||||
# Run partitioner
|
||||
gp_file_path = graph_gp_path / "_part.bin"
|
||||
partitioner_cmd = [
|
||||
partitioner_path,
|
||||
"--index_file",
|
||||
old_index_file,
|
||||
"--data_type",
|
||||
params["data_type"],
|
||||
"--gp_file",
|
||||
str(gp_file_path),
|
||||
"-T",
|
||||
str(params["thread_nums"]),
|
||||
"--ldg_times",
|
||||
str(params["gp_times"]),
|
||||
"--scale",
|
||||
str(params["scale_factor"]),
|
||||
"--mode",
|
||||
"1",
|
||||
]
|
||||
|
||||
print(f"Running partitioner: {' '.join(partitioner_cmd)}")
|
||||
result = subprocess.run(
|
||||
partitioner_cmd, capture_output=True, text=True, cwd=graph_partition_dir
|
||||
)
|
||||
|
||||
if result.returncode != 0:
|
||||
raise RuntimeError(
|
||||
f"Partitioner failed with return code {result.returncode}.\n"
|
||||
f"stdout: {result.stdout}\n"
|
||||
f"stderr: {result.stderr}"
|
||||
)
|
||||
|
||||
# Run relayout
|
||||
part_tmp_index = graph_gp_path / "_part_tmp.index"
|
||||
relayout_cmd = [
|
||||
relayout_path,
|
||||
old_index_file,
|
||||
str(gp_file_path),
|
||||
params["data_type"],
|
||||
"1",
|
||||
]
|
||||
|
||||
print(f"Running relayout: {' '.join(relayout_cmd)}")
|
||||
result = subprocess.run(
|
||||
relayout_cmd, capture_output=True, text=True, cwd=graph_partition_dir
|
||||
)
|
||||
|
||||
if result.returncode != 0:
|
||||
raise RuntimeError(
|
||||
f"Relayout failed with return code {result.returncode}.\n"
|
||||
f"stdout: {result.stdout}\n"
|
||||
f"stderr: {result.stderr}"
|
||||
)
|
||||
|
||||
# Copy results to output directory
|
||||
disk_graph_path = Path(output_dir) / f"{partition_prefix}_disk_graph.index"
|
||||
partition_bin_path = Path(output_dir) / f"{partition_prefix}_partition.bin"
|
||||
|
||||
shutil.copy2(part_tmp_index, disk_graph_path)
|
||||
shutil.copy2(gp_file_path, partition_bin_path)
|
||||
|
||||
print(f"Results copied to: {output_dir}")
|
||||
return str(disk_graph_path), str(partition_bin_path)
|
||||
|
||||
finally:
|
||||
os.chdir(original_dir)
|
||||
|
||||
def get_partition_info(self, partition_bin_path: str) -> dict:
|
||||
"""
|
||||
Get information about a partition file.
|
||||
|
||||
Args:
|
||||
partition_bin_path: Path to the partition binary file
|
||||
|
||||
Returns:
|
||||
Dictionary containing partition information
|
||||
"""
|
||||
if not os.path.exists(partition_bin_path):
|
||||
raise FileNotFoundError(f"Partition file not found: {partition_bin_path}")
|
||||
|
||||
# For now, return basic file information
|
||||
# In the future, this could parse the binary file for detailed info
|
||||
stat = os.stat(partition_bin_path)
|
||||
return {
|
||||
"file_size": stat.st_size,
|
||||
"file_path": partition_bin_path,
|
||||
"modified_time": stat.st_mtime,
|
||||
}
|
||||
|
||||
|
||||
def partition_graph(
|
||||
index_prefix_path: str,
|
||||
output_dir: Optional[str] = None,
|
||||
partition_prefix: Optional[str] = None,
|
||||
build_type: str = "release",
|
||||
**kwargs,
|
||||
) -> tuple[str, str]:
|
||||
"""
|
||||
Convenience function to partition a graph index.
|
||||
|
||||
Args:
|
||||
index_prefix_path: Path to the index prefix
|
||||
output_dir: Output directory (defaults to parent of index_prefix_path)
|
||||
partition_prefix: Prefix for output files (defaults to basename of index_prefix_path)
|
||||
build_type: Build type for executables ("debug" or "release")
|
||||
**kwargs: Additional parameters for graph partitioning
|
||||
|
||||
Returns:
|
||||
Tuple of (disk_graph_index_path, partition_bin_path)
|
||||
"""
|
||||
partitioner = GraphPartitioner(build_type=build_type)
|
||||
return partitioner.partition_graph(index_prefix_path, output_dir, partition_prefix, **kwargs)
|
||||
|
||||
|
||||
# Example usage:
|
||||
if __name__ == "__main__":
|
||||
# Example: partition an index
|
||||
try:
|
||||
disk_graph_path, partition_bin_path = partition_graph(
|
||||
"/path/to/your/index_prefix", gp_times=10, lock_nums=10, cut=100
|
||||
)
|
||||
print("Partitioning completed successfully!")
|
||||
print(f"Disk graph index: {disk_graph_path}")
|
||||
print(f"Partition binary: {partition_bin_path}")
|
||||
except Exception as e:
|
||||
print(f"Partitioning failed: {e}")
|
||||
@@ -0,0 +1,137 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Simplified Graph Partition Module for LEANN DiskANN Backend
|
||||
|
||||
This module provides a simple Python interface for graph partitioning
|
||||
that directly calls the existing executables.
|
||||
"""
|
||||
|
||||
import os
|
||||
import subprocess
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
|
||||
def partition_graph_simple(
|
||||
index_prefix_path: str, output_dir: Optional[str] = None, **kwargs
|
||||
) -> tuple[str, str]:
|
||||
"""
|
||||
Simple function to partition a graph index.
|
||||
|
||||
Args:
|
||||
index_prefix_path: Path to the index prefix (e.g., "/path/to/index")
|
||||
output_dir: Output directory (defaults to parent of index_prefix_path)
|
||||
**kwargs: Additional parameters for graph partitioning
|
||||
|
||||
Returns:
|
||||
Tuple of (disk_graph_index_path, partition_bin_path)
|
||||
"""
|
||||
# Set default parameters
|
||||
params = {
|
||||
"gp_times": 10,
|
||||
"lock_nums": 10,
|
||||
"cut": 100,
|
||||
"scale_factor": 1,
|
||||
"data_type": "float",
|
||||
"thread_nums": 10,
|
||||
**kwargs,
|
||||
}
|
||||
|
||||
# Determine output directory
|
||||
if output_dir is None:
|
||||
output_dir = str(Path(index_prefix_path).parent)
|
||||
|
||||
# Find the graph_partition directory
|
||||
current_file = Path(__file__)
|
||||
graph_partition_dir = current_file.parent.parent / "third_party" / "DiskANN" / "graph_partition"
|
||||
|
||||
if not graph_partition_dir.exists():
|
||||
raise RuntimeError(f"Graph partition directory not found: {graph_partition_dir}")
|
||||
|
||||
# Find input index file
|
||||
old_index_file = f"{index_prefix_path}_disk_beam_search.index"
|
||||
if not os.path.exists(old_index_file):
|
||||
old_index_file = f"{index_prefix_path}_disk.index"
|
||||
|
||||
if not os.path.exists(old_index_file):
|
||||
raise RuntimeError(f"Index file not found: {old_index_file}")
|
||||
|
||||
# Create temporary directory for processing
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
temp_data_dir = Path(temp_dir) / "data"
|
||||
temp_data_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Set up paths for temporary files
|
||||
graph_path = temp_data_dir / "starling" / "_M_R_L_B" / "GRAPH"
|
||||
graph_gp_path = (
|
||||
graph_path
|
||||
/ f"GP_TIMES_{params['gp_times']}_LOCK_{params['lock_nums']}_GP_USE_FREQ0_CUT{params['cut']}_SCALE{params['scale_factor']}"
|
||||
)
|
||||
graph_gp_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Run the build script with our parameters
|
||||
cmd = [str(graph_partition_dir / "build.sh"), "release", "split_graph", index_prefix_path]
|
||||
|
||||
# Set environment variables for parameters
|
||||
env = os.environ.copy()
|
||||
env.update(
|
||||
{
|
||||
"GP_TIMES": str(params["gp_times"]),
|
||||
"GP_LOCK_NUMS": str(params["lock_nums"]),
|
||||
"GP_CUT": str(params["cut"]),
|
||||
"GP_SCALE_F": str(params["scale_factor"]),
|
||||
"DATA_TYPE": params["data_type"],
|
||||
"GP_T": str(params["thread_nums"]),
|
||||
}
|
||||
)
|
||||
|
||||
print(f"Running graph partition with command: {' '.join(cmd)}")
|
||||
print(f"Working directory: {graph_partition_dir}")
|
||||
|
||||
# Run the command
|
||||
result = subprocess.run(
|
||||
cmd, env=env, capture_output=True, text=True, cwd=graph_partition_dir
|
||||
)
|
||||
|
||||
if result.returncode != 0:
|
||||
print(f"Command failed with return code {result.returncode}")
|
||||
print(f"stdout: {result.stdout}")
|
||||
print(f"stderr: {result.stderr}")
|
||||
raise RuntimeError(
|
||||
f"Graph partitioning failed with return code {result.returncode}.\n"
|
||||
f"stdout: {result.stdout}\n"
|
||||
f"stderr: {result.stderr}"
|
||||
)
|
||||
|
||||
# Check if output files were created
|
||||
disk_graph_path = Path(output_dir) / "_disk_graph.index"
|
||||
partition_bin_path = Path(output_dir) / "_partition.bin"
|
||||
|
||||
if not disk_graph_path.exists():
|
||||
raise RuntimeError(f"Expected output file not found: {disk_graph_path}")
|
||||
|
||||
if not partition_bin_path.exists():
|
||||
raise RuntimeError(f"Expected output file not found: {partition_bin_path}")
|
||||
|
||||
print("✅ Partitioning completed successfully!")
|
||||
print(f" Disk graph index: {disk_graph_path}")
|
||||
print(f" Partition binary: {partition_bin_path}")
|
||||
|
||||
return str(disk_graph_path), str(partition_bin_path)
|
||||
|
||||
|
||||
# Example usage
|
||||
if __name__ == "__main__":
|
||||
try:
|
||||
disk_graph_path, partition_bin_path = partition_graph_simple(
|
||||
"/Users/yichuan/Desktop/release2/leann/diskannbuild/test_doc_files",
|
||||
gp_times=5,
|
||||
lock_nums=5,
|
||||
cut=50,
|
||||
)
|
||||
print("Success! Output files:")
|
||||
print(f" - {disk_graph_path}")
|
||||
print(f" - {partition_bin_path}")
|
||||
except Exception as e:
|
||||
print(f"Error: {e}")
|
||||
@@ -4,8 +4,8 @@ build-backend = "scikit_build_core.build"
|
||||
|
||||
[project]
|
||||
name = "leann-backend-diskann"
|
||||
version = "0.2.7"
|
||||
dependencies = ["leann-core==0.2.7", "numpy", "protobuf>=3.19.0"]
|
||||
version = "0.2.5"
|
||||
dependencies = ["leann-core==0.2.5", "numpy", "protobuf>=3.19.0"]
|
||||
|
||||
[tool.scikit-build]
|
||||
# Key: simplified CMake path
|
||||
@@ -17,5 +17,3 @@ editable.mode = "redirect"
|
||||
cmake.build-type = "Release"
|
||||
build.verbose = true
|
||||
build.tool-args = ["-j8"]
|
||||
# Let CMake find packages via Homebrew prefix
|
||||
cmake.define = {CMAKE_PREFIX_PATH = {env = "CMAKE_PREFIX_PATH"}, OpenMP_ROOT = {env = "OpenMP_ROOT"}}
|
||||
|
||||
Submodule packages/leann-backend-diskann/third_party/DiskANN updated: 04048bb302...b2dc4ea2c7
@@ -5,20 +5,11 @@ set(CMAKE_CXX_COMPILER_WORKS 1)
|
||||
|
||||
# Set OpenMP path for macOS
|
||||
if(APPLE)
|
||||
# Detect Homebrew installation path (Apple Silicon vs Intel)
|
||||
if(EXISTS "/opt/homebrew/opt/libomp")
|
||||
set(HOMEBREW_PREFIX "/opt/homebrew")
|
||||
elseif(EXISTS "/usr/local/opt/libomp")
|
||||
set(HOMEBREW_PREFIX "/usr/local")
|
||||
else()
|
||||
message(FATAL_ERROR "Could not find libomp installation. Please install with: brew install libomp")
|
||||
endif()
|
||||
|
||||
set(OpenMP_C_FLAGS "-Xpreprocessor -fopenmp -I${HOMEBREW_PREFIX}/opt/libomp/include")
|
||||
set(OpenMP_CXX_FLAGS "-Xpreprocessor -fopenmp -I${HOMEBREW_PREFIX}/opt/libomp/include")
|
||||
set(OpenMP_C_FLAGS "-Xpreprocessor -fopenmp -I/opt/homebrew/opt/libomp/include")
|
||||
set(OpenMP_CXX_FLAGS "-Xpreprocessor -fopenmp -I/opt/homebrew/opt/libomp/include")
|
||||
set(OpenMP_C_LIB_NAMES "omp")
|
||||
set(OpenMP_CXX_LIB_NAMES "omp")
|
||||
set(OpenMP_omp_LIBRARY "${HOMEBREW_PREFIX}/opt/libomp/lib/libomp.dylib")
|
||||
set(OpenMP_omp_LIBRARY "/opt/homebrew/opt/libomp/lib/libomp.dylib")
|
||||
|
||||
# Force use of system libc++ to avoid version mismatch
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -stdlib=libc++")
|
||||
|
||||
@@ -10,7 +10,7 @@ import sys
|
||||
import threading
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import Union
|
||||
from typing import Optional
|
||||
|
||||
import msgpack
|
||||
import numpy as np
|
||||
@@ -34,7 +34,7 @@ if not logger.handlers:
|
||||
|
||||
|
||||
def create_hnsw_embedding_server(
|
||||
passages_file: Union[str, None] = None,
|
||||
passages_file: Optional[str] = None,
|
||||
zmq_port: int = 5555,
|
||||
model_name: str = "sentence-transformers/all-mpnet-base-v2",
|
||||
distance_metric: str = "mips",
|
||||
@@ -82,19 +82,8 @@ def create_hnsw_embedding_server(
|
||||
with open(passages_file) as f:
|
||||
meta = json.load(f)
|
||||
|
||||
# Convert relative paths to absolute paths based on metadata file location
|
||||
metadata_dir = Path(passages_file).parent.parent # Go up one level from the metadata file
|
||||
passage_sources = []
|
||||
for source in meta["passage_sources"]:
|
||||
source_copy = source.copy()
|
||||
# Convert relative paths to absolute paths
|
||||
if not Path(source_copy["path"]).is_absolute():
|
||||
source_copy["path"] = str(metadata_dir / source_copy["path"])
|
||||
if not Path(source_copy["index_path"]).is_absolute():
|
||||
source_copy["index_path"] = str(metadata_dir / source_copy["index_path"])
|
||||
passage_sources.append(source_copy)
|
||||
|
||||
passages = PassageManager(passage_sources)
|
||||
# Let PassageManager handle path resolution uniformly
|
||||
passages = PassageManager(meta["passage_sources"], metadata_file_path=passages_file)
|
||||
logger.info(
|
||||
f"Loaded PassageManager with {len(passages.global_offset_map)} passages from metadata"
|
||||
)
|
||||
|
||||
@@ -6,10 +6,10 @@ build-backend = "scikit_build_core.build"
|
||||
|
||||
[project]
|
||||
name = "leann-backend-hnsw"
|
||||
version = "0.2.7"
|
||||
version = "0.2.5"
|
||||
description = "Custom-built HNSW (Faiss) backend for the Leann toolkit."
|
||||
dependencies = [
|
||||
"leann-core==0.2.7",
|
||||
"leann-core==0.2.5",
|
||||
"numpy",
|
||||
"pyzmq>=23.0.0",
|
||||
"msgpack>=1.0.0",
|
||||
@@ -22,8 +22,6 @@ cmake.build-type = "Release"
|
||||
build.verbose = true
|
||||
build.tool-args = ["-j8"]
|
||||
|
||||
# CMake definitions to optimize compilation and find Homebrew packages
|
||||
# CMake definitions to optimize compilation
|
||||
[tool.scikit-build.cmake.define]
|
||||
CMAKE_BUILD_PARALLEL_LEVEL = "8"
|
||||
CMAKE_PREFIX_PATH = {env = "CMAKE_PREFIX_PATH"}
|
||||
OpenMP_ROOT = {env = "OpenMP_ROOT"}
|
||||
|
||||
Submodule packages/leann-backend-hnsw/third_party/faiss updated: 4a2c0d67d3...ff22e2c86b
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
||||
|
||||
[project]
|
||||
name = "leann-core"
|
||||
version = "0.2.7"
|
||||
version = "0.2.5"
|
||||
description = "Core API and plugin system for LEANN"
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.9"
|
||||
@@ -31,10 +31,8 @@ dependencies = [
|
||||
"PyPDF2>=3.0.0",
|
||||
"pymupdf>=1.23.0",
|
||||
"pdfplumber>=0.10.0",
|
||||
"nbconvert>=7.0.0", # For .ipynb file support
|
||||
"gitignore-parser>=0.1.12", # For proper .gitignore handling
|
||||
"mlx>=0.26.3; sys_platform == 'darwin' and platform_machine == 'arm64'",
|
||||
"mlx-lm>=0.26.0; sys_platform == 'darwin' and platform_machine == 'arm64'",
|
||||
"mlx>=0.26.3; sys_platform == 'darwin'",
|
||||
"mlx-lm>=0.26.0; sys_platform == 'darwin'",
|
||||
]
|
||||
|
||||
[project.optional-dependencies]
|
||||
|
||||
@@ -87,21 +87,26 @@ def compute_embeddings_via_server(chunks: list[str], model_name: str, port: int)
|
||||
# Connect to embedding server
|
||||
context = zmq.Context()
|
||||
socket = context.socket(zmq.REQ)
|
||||
socket.setsockopt(zmq.LINGER, 0) # Don't block on close
|
||||
socket.setsockopt(zmq.RCVTIMEO, 300000)
|
||||
socket.setsockopt(zmq.SNDTIMEO, 300000)
|
||||
socket.setsockopt(zmq.IMMEDIATE, 1)
|
||||
socket.connect(f"tcp://localhost:{port}")
|
||||
|
||||
# Send chunks to server for embedding computation
|
||||
request = chunks
|
||||
socket.send(msgpack.packb(request))
|
||||
try:
|
||||
# Send chunks to server for embedding computation
|
||||
request = chunks
|
||||
socket.send(msgpack.packb(request))
|
||||
|
||||
# Receive embeddings from server
|
||||
response = socket.recv()
|
||||
embeddings_list = msgpack.unpackb(response)
|
||||
# Receive embeddings from server
|
||||
response = socket.recv()
|
||||
embeddings_list = msgpack.unpackb(response)
|
||||
|
||||
# Convert back to numpy array
|
||||
embeddings = np.array(embeddings_list, dtype=np.float32)
|
||||
|
||||
socket.close()
|
||||
context.term()
|
||||
# Convert back to numpy array
|
||||
embeddings = np.array(embeddings_list, dtype=np.float32)
|
||||
finally:
|
||||
socket.close()
|
||||
# Don't call context.term() - this was causing hangs
|
||||
|
||||
return embeddings
|
||||
|
||||
@@ -115,7 +120,9 @@ class SearchResult:
|
||||
|
||||
|
||||
class PassageManager:
|
||||
def __init__(self, passage_sources: list[dict[str, Any]]):
|
||||
def __init__(
|
||||
self, passage_sources: list[dict[str, Any]], metadata_file_path: Optional[str] = None
|
||||
):
|
||||
self.offset_maps = {}
|
||||
self.passage_files = {}
|
||||
self.global_offset_map = {} # Combined map for fast lookup
|
||||
@@ -125,10 +132,26 @@ class PassageManager:
|
||||
passage_file = source["path"]
|
||||
index_file = source["index_path"] # .idx file
|
||||
|
||||
# Fix path resolution for Colab and other environments
|
||||
# Fix path resolution - relative paths should be relative to metadata file directory
|
||||
if not Path(index_file).is_absolute():
|
||||
# If relative path, try to resolve it properly
|
||||
index_file = str(Path(index_file).resolve())
|
||||
if metadata_file_path:
|
||||
# Resolve relative to metadata file directory
|
||||
metadata_dir = Path(metadata_file_path).parent
|
||||
logger.debug(
|
||||
f"PassageManager: Resolving relative paths from metadata_dir: {metadata_dir}"
|
||||
)
|
||||
index_file = str((metadata_dir / index_file).resolve())
|
||||
passage_file = str((metadata_dir / passage_file).resolve())
|
||||
logger.debug(f"PassageManager: Resolved index_file: {index_file}")
|
||||
else:
|
||||
# Fallback to current directory resolution (legacy behavior)
|
||||
logger.warning(
|
||||
"PassageManager: No metadata_file_path provided, using fallback resolution from cwd"
|
||||
)
|
||||
logger.debug(f"PassageManager: Current working directory: {Path.cwd()}")
|
||||
index_file = str(Path(index_file).resolve())
|
||||
passage_file = str(Path(passage_file).resolve())
|
||||
logger.debug(f"PassageManager: Fallback resolved index_file: {index_file}")
|
||||
|
||||
if not Path(index_file).exists():
|
||||
raise FileNotFoundError(f"Passage index file not found: {index_file}")
|
||||
@@ -314,8 +337,8 @@ class LeannBuilder:
|
||||
"passage_sources": [
|
||||
{
|
||||
"type": "jsonl",
|
||||
"path": str(passages_file),
|
||||
"index_path": str(offset_file),
|
||||
"path": passages_file.name, # Use relative path (just filename)
|
||||
"index_path": offset_file.name, # Use relative path (just filename)
|
||||
}
|
||||
],
|
||||
}
|
||||
@@ -430,8 +453,8 @@ class LeannBuilder:
|
||||
"passage_sources": [
|
||||
{
|
||||
"type": "jsonl",
|
||||
"path": str(passages_file),
|
||||
"index_path": str(offset_file),
|
||||
"path": passages_file.name, # Use relative path (just filename)
|
||||
"index_path": offset_file.name, # Use relative path (just filename)
|
||||
}
|
||||
],
|
||||
"built_from_precomputed_embeddings": True,
|
||||
@@ -473,7 +496,9 @@ class LeannSearcher:
|
||||
self.embedding_model = self.meta_data["embedding_model"]
|
||||
# Support both old and new format
|
||||
self.embedding_mode = self.meta_data.get("embedding_mode", "sentence-transformers")
|
||||
self.passage_manager = PassageManager(self.meta_data.get("passage_sources", []))
|
||||
self.passage_manager = PassageManager(
|
||||
self.meta_data.get("passage_sources", []), metadata_file_path=self.meta_path_str
|
||||
)
|
||||
backend_factory = BACKEND_REGISTRY.get(backend_name)
|
||||
if backend_factory is None:
|
||||
raise ValueError(f"Backend '{backend_name}' not found.")
|
||||
@@ -546,7 +571,6 @@ class LeannSearcher:
|
||||
zmq_port=zmq_port,
|
||||
**kwargs,
|
||||
)
|
||||
time.time() - start_time
|
||||
# logger.info(f" Search time: {search_time} seconds")
|
||||
logger.info(f" Backend returned: labels={len(results.get('labels', [[]])[0])} results")
|
||||
|
||||
@@ -587,6 +611,11 @@ class LeannSearcher:
|
||||
logger.info(f" {GREEN}✓ Final enriched results: {len(enriched_results)} passages{RESET}")
|
||||
return enriched_results
|
||||
|
||||
def cleanup(self):
|
||||
"""Cleanup embedding server and other resources."""
|
||||
if hasattr(self.backend_impl, "cleanup"):
|
||||
self.backend_impl.cleanup()
|
||||
|
||||
|
||||
class LeannChat:
|
||||
def __init__(
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import argparse
|
||||
import asyncio
|
||||
from pathlib import Path
|
||||
from typing import Union
|
||||
from typing import Optional
|
||||
|
||||
from llama_index.core import SimpleDirectoryReader
|
||||
from llama_index.core.node_parser import SentenceSplitter
|
||||
@@ -87,9 +87,7 @@ Examples:
|
||||
|
||||
# Build command
|
||||
build_parser = subparsers.add_parser("build", help="Build document index")
|
||||
build_parser.add_argument(
|
||||
"index_name", nargs="?", help="Index name (default: current directory name)"
|
||||
)
|
||||
build_parser.add_argument("index_name", help="Index name")
|
||||
build_parser.add_argument(
|
||||
"--docs", type=str, default=".", help="Documents directory (default: current directory)"
|
||||
)
|
||||
@@ -204,37 +202,6 @@ Examples:
|
||||
with open(global_registry, "w") as f:
|
||||
json.dump(projects, f, indent=2)
|
||||
|
||||
def _build_gitignore_parser(self, docs_dir: str):
|
||||
"""Build gitignore parser using gitignore-parser library."""
|
||||
from gitignore_parser import parse_gitignore
|
||||
|
||||
# Try to parse the root .gitignore
|
||||
gitignore_path = Path(docs_dir) / ".gitignore"
|
||||
|
||||
if gitignore_path.exists():
|
||||
try:
|
||||
# gitignore-parser automatically handles all subdirectory .gitignore files!
|
||||
matches = parse_gitignore(str(gitignore_path))
|
||||
print(f"📋 Loaded .gitignore from {docs_dir} (includes all subdirectories)")
|
||||
return matches
|
||||
except Exception as e:
|
||||
print(f"Warning: Could not parse .gitignore: {e}")
|
||||
else:
|
||||
print("📋 No .gitignore found")
|
||||
|
||||
# Fallback: basic pattern matching for essential files
|
||||
essential_patterns = {".git", ".DS_Store", "__pycache__", "node_modules", ".venv", "venv"}
|
||||
|
||||
def basic_matches(file_path):
|
||||
path_parts = Path(file_path).parts
|
||||
return any(part in essential_patterns for part in path_parts)
|
||||
|
||||
return basic_matches
|
||||
|
||||
def _should_exclude_file(self, relative_path: Path, gitignore_matches) -> bool:
|
||||
"""Check if a file should be excluded using gitignore parser."""
|
||||
return gitignore_matches(str(relative_path))
|
||||
|
||||
def list_indexes(self):
|
||||
print("Stored LEANN indexes:")
|
||||
|
||||
@@ -311,54 +278,39 @@ Examples:
|
||||
print(f' leann search {example_name} "your query"')
|
||||
print(f" leann ask {example_name} --interactive")
|
||||
|
||||
def load_documents(self, docs_dir: str, custom_file_types: Union[str, None] = None):
|
||||
def load_documents(self, docs_dir: str, custom_file_types: Optional[str] = None):
|
||||
print(f"Loading documents from {docs_dir}...")
|
||||
if custom_file_types:
|
||||
print(f"Using custom file types: {custom_file_types}")
|
||||
|
||||
# Build gitignore parser
|
||||
gitignore_matches = self._build_gitignore_parser(docs_dir)
|
||||
|
||||
# Try to use better PDF parsers first, but only if PDFs are requested
|
||||
# Try to use better PDF parsers first
|
||||
documents = []
|
||||
docs_path = Path(docs_dir)
|
||||
|
||||
# Check if we should process PDFs
|
||||
should_process_pdfs = custom_file_types is None or ".pdf" in custom_file_types
|
||||
for file_path in docs_path.rglob("*.pdf"):
|
||||
print(f"Processing PDF: {file_path}")
|
||||
|
||||
if should_process_pdfs:
|
||||
for file_path in docs_path.rglob("*.pdf"):
|
||||
# Check if file matches any exclude pattern
|
||||
relative_path = file_path.relative_to(docs_path)
|
||||
if self._should_exclude_file(relative_path, gitignore_matches):
|
||||
continue
|
||||
# Try PyMuPDF first (best quality)
|
||||
text = extract_pdf_text_with_pymupdf(str(file_path))
|
||||
if text is None:
|
||||
# Try pdfplumber
|
||||
text = extract_pdf_text_with_pdfplumber(str(file_path))
|
||||
|
||||
print(f"Processing PDF: {file_path}")
|
||||
if text:
|
||||
# Create a simple document structure
|
||||
from llama_index.core import Document
|
||||
|
||||
# Try PyMuPDF first (best quality)
|
||||
text = extract_pdf_text_with_pymupdf(str(file_path))
|
||||
if text is None:
|
||||
# Try pdfplumber
|
||||
text = extract_pdf_text_with_pdfplumber(str(file_path))
|
||||
|
||||
if text:
|
||||
# Create a simple document structure
|
||||
from llama_index.core import Document
|
||||
|
||||
doc = Document(text=text, metadata={"source": str(file_path)})
|
||||
documents.append(doc)
|
||||
else:
|
||||
# Fallback to default reader
|
||||
print(f"Using default reader for {file_path}")
|
||||
try:
|
||||
default_docs = SimpleDirectoryReader(
|
||||
str(file_path.parent),
|
||||
filename_as_id=True,
|
||||
required_exts=[file_path.suffix],
|
||||
).load_data()
|
||||
documents.extend(default_docs)
|
||||
except Exception as e:
|
||||
print(f"Warning: Could not process {file_path}: {e}")
|
||||
doc = Document(text=text, metadata={"source": str(file_path)})
|
||||
documents.append(doc)
|
||||
else:
|
||||
# Fallback to default reader
|
||||
print(f"Using default reader for {file_path}")
|
||||
default_docs = SimpleDirectoryReader(
|
||||
str(file_path.parent),
|
||||
filename_as_id=True,
|
||||
required_exts=[file_path.suffix],
|
||||
).load_data()
|
||||
documents.extend(default_docs)
|
||||
|
||||
# Load other file types with default reader
|
||||
if custom_file_types:
|
||||
@@ -424,34 +376,13 @@ Examples:
|
||||
]
|
||||
# Try to load other file types, but don't fail if none are found
|
||||
try:
|
||||
# Create a custom file filter function using our PathSpec
|
||||
def file_filter(file_path: str) -> bool:
|
||||
"""Return True if file should be included (not excluded)"""
|
||||
try:
|
||||
docs_path_obj = Path(docs_dir)
|
||||
file_path_obj = Path(file_path)
|
||||
relative_path = file_path_obj.relative_to(docs_path_obj)
|
||||
return not self._should_exclude_file(relative_path, gitignore_matches)
|
||||
except (ValueError, OSError):
|
||||
return True # Include files that can't be processed
|
||||
|
||||
other_docs = SimpleDirectoryReader(
|
||||
docs_dir,
|
||||
recursive=True,
|
||||
encoding="utf-8",
|
||||
required_exts=code_extensions,
|
||||
file_extractor={}, # Use default extractors
|
||||
filename_as_id=True,
|
||||
).load_data(show_progress=True)
|
||||
|
||||
# Filter documents after loading based on gitignore rules
|
||||
filtered_docs = []
|
||||
for doc in other_docs:
|
||||
file_path = doc.metadata.get("file_path", "")
|
||||
if file_filter(file_path):
|
||||
filtered_docs.append(doc)
|
||||
|
||||
documents.extend(filtered_docs)
|
||||
documents.extend(other_docs)
|
||||
except ValueError as e:
|
||||
if "No files found" in str(e):
|
||||
print("No additional files found for other supported types.")
|
||||
@@ -524,13 +455,7 @@ Examples:
|
||||
|
||||
async def build_index(self, args):
|
||||
docs_dir = args.docs
|
||||
# Use current directory name if index_name not provided
|
||||
if args.index_name:
|
||||
index_name = args.index_name
|
||||
else:
|
||||
index_name = Path.cwd().name
|
||||
print(f"Using current directory name as index: '{index_name}'")
|
||||
|
||||
index_name = args.index_name
|
||||
index_dir = self.indexes_dir / index_name
|
||||
index_path = self.get_index_path(index_name)
|
||||
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import atexit
|
||||
import logging
|
||||
import os
|
||||
import signal
|
||||
import socket
|
||||
import subprocess
|
||||
import sys
|
||||
@@ -311,6 +312,7 @@ class EmbeddingServerManager:
|
||||
cwd=project_root,
|
||||
stdout=None, # Direct to console
|
||||
stderr=None, # Direct to console
|
||||
start_new_session=True, # Create new process group for better cleanup
|
||||
)
|
||||
self.server_port = port
|
||||
logger.info(f"Server process started with PID: {self.server_process.pid}")
|
||||
@@ -352,7 +354,14 @@ class EmbeddingServerManager:
|
||||
logger.info(
|
||||
f"Terminating server process (PID: {self.server_process.pid}) for backend {self.backend_module_name}..."
|
||||
)
|
||||
self.server_process.terminate()
|
||||
|
||||
# Try terminating the whole process group first
|
||||
try:
|
||||
pgid = os.getpgid(self.server_process.pid)
|
||||
os.killpg(pgid, signal.SIGTERM)
|
||||
except Exception:
|
||||
# Fallback to terminating just the process
|
||||
self.server_process.terminate()
|
||||
|
||||
try:
|
||||
self.server_process.wait(timeout=3)
|
||||
@@ -361,7 +370,13 @@ class EmbeddingServerManager:
|
||||
logger.warning(
|
||||
f"Server process {self.server_process.pid} did not terminate gracefully within 3 seconds, killing it."
|
||||
)
|
||||
self.server_process.kill()
|
||||
# Try killing the whole process group
|
||||
try:
|
||||
pgid = os.getpgid(self.server_process.pid)
|
||||
os.killpg(pgid, signal.SIGKILL)
|
||||
except Exception:
|
||||
# Fallback to killing just the process
|
||||
self.server_process.kill()
|
||||
try:
|
||||
self.server_process.wait(timeout=2)
|
||||
logger.info(f"Server process {self.server_process.pid} killed successfully.")
|
||||
@@ -373,7 +388,12 @@ class EmbeddingServerManager:
|
||||
|
||||
# Clean up process resources to prevent resource tracker warnings
|
||||
try:
|
||||
self.server_process.wait() # Ensure process is fully cleaned up
|
||||
self.server_process.wait(timeout=1) # Give it one final chance with timeout
|
||||
except subprocess.TimeoutExpired:
|
||||
logger.warning(
|
||||
f"Process {self.server_process.pid} still hanging after all kill attempts"
|
||||
)
|
||||
# Don't wait indefinitely - just abandon it
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any, Literal, Union
|
||||
from typing import Any, Literal, Optional
|
||||
|
||||
import numpy as np
|
||||
|
||||
@@ -35,7 +35,7 @@ class LeannBackendSearcherInterface(ABC):
|
||||
|
||||
@abstractmethod
|
||||
def _ensure_server_running(
|
||||
self, passages_source_file: str, port: Union[int, None], **kwargs
|
||||
self, passages_source_file: str, port: Optional[int], **kwargs
|
||||
) -> int:
|
||||
"""Ensure server is running"""
|
||||
pass
|
||||
@@ -50,7 +50,7 @@ class LeannBackendSearcherInterface(ABC):
|
||||
prune_ratio: float = 0.0,
|
||||
recompute_embeddings: bool = False,
|
||||
pruning_strategy: Literal["global", "local", "proportional"] = "global",
|
||||
zmq_port: Union[int, None] = None,
|
||||
zmq_port: Optional[int] = None,
|
||||
**kwargs,
|
||||
) -> dict[str, Any]:
|
||||
"""Search for nearest neighbors
|
||||
@@ -76,7 +76,7 @@ class LeannBackendSearcherInterface(ABC):
|
||||
self,
|
||||
query: str,
|
||||
use_server_if_available: bool = True,
|
||||
zmq_port: Union[int, None] = None,
|
||||
zmq_port: Optional[int] = None,
|
||||
) -> np.ndarray:
|
||||
"""Compute embedding for a query string
|
||||
|
||||
|
||||
@@ -25,61 +25,32 @@ def handle_request(request):
|
||||
"tools": [
|
||||
{
|
||||
"name": "leann_search",
|
||||
"description": """🔍 Search code using natural language - like having a coding assistant who knows your entire codebase!
|
||||
|
||||
🎯 **Perfect for**:
|
||||
- "How does authentication work?" → finds auth-related code
|
||||
- "Error handling patterns" → locates try-catch blocks and error logic
|
||||
- "Database connection setup" → finds DB initialization code
|
||||
- "API endpoint definitions" → locates route handlers
|
||||
- "Configuration management" → finds config files and usage
|
||||
|
||||
💡 **Pro tip**: Use this before making any changes to understand existing patterns and conventions.""",
|
||||
"description": "Search LEANN index",
|
||||
"inputSchema": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"index_name": {
|
||||
"type": "string",
|
||||
"description": "Name of the LEANN index to search. Use 'leann_list' first to see available indexes.",
|
||||
},
|
||||
"query": {
|
||||
"type": "string",
|
||||
"description": "Search query - can be natural language (e.g., 'how to handle errors') or technical terms (e.g., 'async function definition')",
|
||||
},
|
||||
"top_k": {
|
||||
"type": "integer",
|
||||
"default": 5,
|
||||
"minimum": 1,
|
||||
"maximum": 20,
|
||||
"description": "Number of search results to return. Use 5-10 for focused results, 15-20 for comprehensive exploration.",
|
||||
},
|
||||
"complexity": {
|
||||
"type": "integer",
|
||||
"default": 32,
|
||||
"minimum": 16,
|
||||
"maximum": 128,
|
||||
"description": "Search complexity level. Use 16-32 for fast searches (recommended), 64+ for higher precision when needed.",
|
||||
},
|
||||
"index_name": {"type": "string"},
|
||||
"query": {"type": "string"},
|
||||
"top_k": {"type": "integer", "default": 5},
|
||||
},
|
||||
"required": ["index_name", "query"],
|
||||
},
|
||||
},
|
||||
{
|
||||
"name": "leann_status",
|
||||
"description": "📊 Check the health and stats of your code indexes - like a medical checkup for your codebase knowledge!",
|
||||
"name": "leann_ask",
|
||||
"description": "Ask question using LEANN RAG",
|
||||
"inputSchema": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"index_name": {
|
||||
"type": "string",
|
||||
"description": "Optional: Name of specific index to check. If not provided, shows status of all indexes.",
|
||||
}
|
||||
"index_name": {"type": "string"},
|
||||
"question": {"type": "string"},
|
||||
},
|
||||
"required": ["index_name", "question"],
|
||||
},
|
||||
},
|
||||
{
|
||||
"name": "leann_list",
|
||||
"description": "📋 Show all your indexed codebases - your personal code library! Use this to see what's available for search.",
|
||||
"description": "List all LEANN indexes",
|
||||
"inputSchema": {"type": "object", "properties": {}},
|
||||
},
|
||||
]
|
||||
@@ -92,41 +63,19 @@ def handle_request(request):
|
||||
|
||||
try:
|
||||
if tool_name == "leann_search":
|
||||
# Validate required parameters
|
||||
if not args.get("index_name") or not args.get("query"):
|
||||
return {
|
||||
"jsonrpc": "2.0",
|
||||
"id": request.get("id"),
|
||||
"result": {
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "Error: Both index_name and query are required",
|
||||
}
|
||||
]
|
||||
},
|
||||
}
|
||||
|
||||
# Build simplified command
|
||||
cmd = [
|
||||
"leann",
|
||||
"search",
|
||||
args["index_name"],
|
||||
args["query"],
|
||||
"--recompute-embeddings",
|
||||
f"--top-k={args.get('top_k', 5)}",
|
||||
f"--complexity={args.get('complexity', 32)}",
|
||||
]
|
||||
|
||||
result = subprocess.run(cmd, capture_output=True, text=True)
|
||||
|
||||
elif tool_name == "leann_status":
|
||||
if args.get("index_name"):
|
||||
# Check specific index status - for now, we'll use leann list and filter
|
||||
result = subprocess.run(["leann", "list"], capture_output=True, text=True)
|
||||
# We could enhance this to show more detailed status per index
|
||||
else:
|
||||
# Show all indexes status
|
||||
result = subprocess.run(["leann", "list"], capture_output=True, text=True)
|
||||
elif tool_name == "leann_ask":
|
||||
cmd = f'echo "{args["question"]}" | leann ask {args["index_name"]} --recompute-embeddings --llm ollama --model qwen3:8b'
|
||||
result = subprocess.run(cmd, shell=True, capture_output=True, text=True)
|
||||
|
||||
elif tool_name == "leann_list":
|
||||
result = subprocess.run(["leann", "list"], capture_output=True, text=True)
|
||||
|
||||
@@ -132,10 +132,15 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
|
||||
import msgpack
|
||||
import zmq
|
||||
|
||||
context = None
|
||||
socket = None
|
||||
try:
|
||||
context = zmq.Context()
|
||||
socket = context.socket(zmq.REQ)
|
||||
socket.setsockopt(zmq.RCVTIMEO, 30000) # 30 second timeout
|
||||
socket.setsockopt(zmq.LINGER, 0) # Don't block on close
|
||||
socket.setsockopt(zmq.RCVTIMEO, 300000)
|
||||
socket.setsockopt(zmq.SNDTIMEO, 300000)
|
||||
socket.setsockopt(zmq.IMMEDIATE, 1)
|
||||
socket.connect(f"tcp://localhost:{zmq_port}")
|
||||
|
||||
# Send embedding request
|
||||
@@ -147,9 +152,6 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
|
||||
response_bytes = socket.recv()
|
||||
response = msgpack.unpackb(response_bytes)
|
||||
|
||||
socket.close()
|
||||
context.term()
|
||||
|
||||
# Convert response to numpy array
|
||||
if isinstance(response, list) and len(response) > 0:
|
||||
return np.array(response, dtype=np.float32)
|
||||
@@ -158,6 +160,10 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
|
||||
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"Failed to compute embeddings via server: {e}")
|
||||
finally:
|
||||
if socket:
|
||||
socket.close()
|
||||
# Don't call context.term() - this was causing hangs
|
||||
|
||||
@abstractmethod
|
||||
def search(
|
||||
@@ -191,7 +197,15 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
|
||||
"""
|
||||
pass
|
||||
|
||||
def __del__(self):
|
||||
"""Ensures the embedding server is stopped when the searcher is destroyed."""
|
||||
def cleanup(self):
|
||||
"""Cleanup resources including embedding server."""
|
||||
if hasattr(self, "embedding_server_manager"):
|
||||
self.embedding_server_manager.stop_server()
|
||||
|
||||
def __del__(self):
|
||||
"""Ensures resources are cleaned up when the searcher is destroyed."""
|
||||
try:
|
||||
self.cleanup()
|
||||
except Exception:
|
||||
# Ignore errors during destruction
|
||||
pass
|
||||
|
||||
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
||||
|
||||
[project]
|
||||
name = "leann"
|
||||
version = "0.2.7"
|
||||
version = "0.2.5"
|
||||
description = "LEANN - The smallest vector index in the world. RAG Everything with LEANN!"
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.9"
|
||||
|
||||
@@ -40,12 +40,10 @@ dependencies = [
|
||||
# Other dependencies
|
||||
"ipykernel==6.29.5",
|
||||
"msgpack>=1.1.1",
|
||||
"mlx>=0.26.3; sys_platform == 'darwin' and platform_machine == 'arm64'",
|
||||
"mlx-lm>=0.26.0; sys_platform == 'darwin' and platform_machine == 'arm64'",
|
||||
"mlx>=0.26.3; sys_platform == 'darwin'",
|
||||
"mlx-lm>=0.26.0; sys_platform == 'darwin'",
|
||||
"psutil>=5.8.0",
|
||||
"pathspec>=0.12.1",
|
||||
"nbconvert>=7.16.6",
|
||||
"gitignore-parser>=0.1.12",
|
||||
"pybind11>=3.0.0",
|
||||
]
|
||||
|
||||
[project.optional-dependencies]
|
||||
@@ -54,7 +52,7 @@ dev = [
|
||||
"pytest-cov>=4.0",
|
||||
"pytest-xdist>=3.0", # For parallel test execution
|
||||
"black>=23.0",
|
||||
"ruff>=0.1.0",
|
||||
"ruff==0.12.7", # Fixed version to ensure consistent formatting across all environments
|
||||
"matplotlib",
|
||||
"huggingface-hub>=0.20.0",
|
||||
"pre-commit>=3.5.0",
|
||||
@@ -62,7 +60,7 @@ dev = [
|
||||
|
||||
test = [
|
||||
"pytest>=7.0",
|
||||
"pytest-timeout>=2.0",
|
||||
"pytest-timeout>=2.0", # Simple timeout protection for CI
|
||||
"llama-index-core>=0.12.0",
|
||||
"llama-index-readers-file>=0.4.0",
|
||||
"python-dotenv>=1.0.0",
|
||||
@@ -154,7 +152,7 @@ markers = [
|
||||
"slow: marks tests as slow (deselect with '-m \"not slow\"')",
|
||||
"openai: marks tests that require OpenAI API key",
|
||||
]
|
||||
timeout = 600
|
||||
timeout = 300 # Simple timeout for CI safety (5 minutes)
|
||||
addopts = [
|
||||
"-v",
|
||||
"--tb=short",
|
||||
|
||||
@@ -6,10 +6,11 @@ This directory contains automated tests for the LEANN project using pytest.
|
||||
|
||||
### `test_readme_examples.py`
|
||||
Tests the examples shown in README.md:
|
||||
- The basic example code that users see first
|
||||
- The basic example code that users see first (parametrized for both HNSW and DiskANN backends)
|
||||
- Import statements work correctly
|
||||
- Different backend options (HNSW, DiskANN)
|
||||
- Different LLM configuration options
|
||||
- Different LLM configuration options (parametrized for both backends)
|
||||
- **All main README examples are tested with both HNSW and DiskANN backends using pytest parametrization**
|
||||
|
||||
### `test_basic.py`
|
||||
Basic functionality tests that verify:
|
||||
@@ -25,6 +26,16 @@ Tests the document RAG example functionality:
|
||||
- Tests error handling with invalid parameters
|
||||
- Verifies that normalized embeddings are detected and cosine distance is used
|
||||
|
||||
### `test_diskann_partition.py`
|
||||
Tests DiskANN graph partitioning functionality:
|
||||
- Tests DiskANN index building without partitioning (baseline)
|
||||
- Tests automatic graph partitioning with `is_recompute=True`
|
||||
- Verifies that partition files are created and large files are cleaned up for storage saving
|
||||
- Tests search functionality with partitioned indices
|
||||
- Validates medoid and max_base_norm file generation and usage
|
||||
- Includes performance comparison between DiskANN (with partition) and HNSW
|
||||
- **Note**: These tests are skipped in CI due to hardware requirements and computation time
|
||||
|
||||
## Running Tests
|
||||
|
||||
### Install test dependencies:
|
||||
@@ -54,15 +65,23 @@ pytest tests/ -m "not openai"
|
||||
|
||||
# Skip slow tests
|
||||
pytest tests/ -m "not slow"
|
||||
|
||||
# Run DiskANN partition tests (requires local machine, not CI)
|
||||
pytest tests/test_diskann_partition.py
|
||||
```
|
||||
|
||||
### Run with specific backend:
|
||||
```bash
|
||||
# Test only HNSW backend
|
||||
pytest tests/test_basic.py::test_backend_basic[hnsw]
|
||||
pytest tests/test_readme_examples.py::test_readme_basic_example[hnsw]
|
||||
|
||||
# Test only DiskANN backend
|
||||
pytest tests/test_basic.py::test_backend_basic[diskann]
|
||||
pytest tests/test_readme_examples.py::test_readme_basic_example[diskann]
|
||||
|
||||
# All DiskANN tests (parametrized + specialized partition tests)
|
||||
pytest tests/ -k diskann
|
||||
```
|
||||
|
||||
## CI/CD Integration
|
||||
|
||||
41
tests/conftest.py
Normal file
41
tests/conftest.py
Normal file
@@ -0,0 +1,41 @@
|
||||
"""Pytest configuration and fixtures for LEANN tests."""
|
||||
|
||||
import os
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def test_environment():
|
||||
"""Set up test environment variables."""
|
||||
# Mark as test environment to skip memory-intensive operations
|
||||
os.environ["CI"] = "true"
|
||||
yield
|
||||
|
||||
|
||||
@pytest.fixture(scope="session", autouse=True)
|
||||
def cleanup_session():
|
||||
"""Session-level cleanup to ensure no hanging processes."""
|
||||
yield
|
||||
|
||||
# Basic cleanup after all tests
|
||||
try:
|
||||
import os
|
||||
|
||||
import psutil
|
||||
|
||||
current_process = psutil.Process(os.getpid())
|
||||
children = current_process.children(recursive=True)
|
||||
|
||||
for child in children:
|
||||
try:
|
||||
child.terminate()
|
||||
except psutil.NoSuchProcess:
|
||||
pass
|
||||
|
||||
# Give them time to terminate gracefully
|
||||
psutil.wait_procs(children, timeout=3)
|
||||
|
||||
except Exception:
|
||||
# Don't fail tests due to cleanup errors
|
||||
pass
|
||||
369
tests/test_diskann_partition.py
Normal file
369
tests/test_diskann_partition.py
Normal file
@@ -0,0 +1,369 @@
|
||||
"""
|
||||
Test DiskANN graph partitioning functionality.
|
||||
|
||||
Tests the automatic graph partitioning feature that was implemented to save
|
||||
storage space by partitioning large DiskANN indices and safely deleting
|
||||
redundant files while maintaining search functionality.
|
||||
"""
|
||||
|
||||
import os
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
os.environ.get("CI") == "true",
|
||||
reason="Skip DiskANN partition tests in CI - requires specific hardware and large memory",
|
||||
)
|
||||
def test_diskann_without_partition():
|
||||
"""Test DiskANN index building without partition (baseline)."""
|
||||
from leann.api import LeannBuilder, LeannSearcher
|
||||
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
index_path = str(Path(temp_dir) / "test_no_partition.leann")
|
||||
|
||||
# Test data - enough to trigger index building
|
||||
texts = [
|
||||
f"Document {i} discusses topic {i % 10} with detailed analysis of subject {i // 10}."
|
||||
for i in range(500)
|
||||
]
|
||||
|
||||
# Build without partition (is_recompute=False)
|
||||
builder = LeannBuilder(
|
||||
backend_name="diskann",
|
||||
embedding_model="facebook/contriever",
|
||||
embedding_mode="sentence-transformers",
|
||||
num_neighbors=32,
|
||||
search_list_size=50,
|
||||
is_recompute=False, # No partition
|
||||
)
|
||||
|
||||
for text in texts:
|
||||
builder.add_text(text)
|
||||
|
||||
builder.build_index(index_path)
|
||||
|
||||
# Verify index was created
|
||||
index_dir = Path(index_path).parent
|
||||
assert index_dir.exists()
|
||||
|
||||
# Check that traditional DiskANN files exist
|
||||
index_prefix = Path(index_path).stem
|
||||
# Core DiskANN files (beam search index may not be created for small datasets)
|
||||
required_files = [
|
||||
f"{index_prefix}_disk.index",
|
||||
f"{index_prefix}_pq_compressed.bin",
|
||||
f"{index_prefix}_pq_pivots.bin",
|
||||
]
|
||||
|
||||
# Check all generated files first for debugging
|
||||
generated_files = [f.name for f in index_dir.glob(f"{index_prefix}*")]
|
||||
print(f"Generated files: {generated_files}")
|
||||
|
||||
for required_file in required_files:
|
||||
file_path = index_dir / required_file
|
||||
assert file_path.exists(), f"Required file {required_file} not found"
|
||||
|
||||
# Ensure no partition files exist in non-partition mode
|
||||
partition_files = [f"{index_prefix}_disk_graph.index", f"{index_prefix}_partition.bin"]
|
||||
|
||||
for partition_file in partition_files:
|
||||
file_path = index_dir / partition_file
|
||||
assert not file_path.exists(), (
|
||||
f"Partition file {partition_file} should not exist in non-partition mode"
|
||||
)
|
||||
|
||||
# Test search functionality
|
||||
searcher = LeannSearcher(index_path)
|
||||
results = searcher.search("topic 3 analysis", top_k=3)
|
||||
|
||||
assert len(results) > 0
|
||||
assert all(result.score is not None and result.score != float("-inf") for result in results)
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
os.environ.get("CI") == "true",
|
||||
reason="Skip DiskANN partition tests in CI - requires specific hardware and large memory",
|
||||
)
|
||||
def test_diskann_with_partition():
|
||||
"""Test DiskANN index building with automatic graph partitioning."""
|
||||
from leann.api import LeannBuilder
|
||||
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
index_path = str(Path(temp_dir) / "test_with_partition.leann")
|
||||
|
||||
# Test data - enough to trigger partitioning
|
||||
texts = [
|
||||
f"Document {i} explores subject {i % 15} with comprehensive coverage of area {i // 15}."
|
||||
for i in range(500)
|
||||
]
|
||||
|
||||
# Build with partition (is_recompute=True)
|
||||
builder = LeannBuilder(
|
||||
backend_name="diskann",
|
||||
embedding_model="facebook/contriever",
|
||||
embedding_mode="sentence-transformers",
|
||||
num_neighbors=32,
|
||||
search_list_size=50,
|
||||
is_recompute=True, # Enable automatic partitioning
|
||||
)
|
||||
|
||||
for text in texts:
|
||||
builder.add_text(text)
|
||||
|
||||
builder.build_index(index_path)
|
||||
|
||||
# Verify index was created
|
||||
index_dir = Path(index_path).parent
|
||||
assert index_dir.exists()
|
||||
|
||||
# Check that partition files exist
|
||||
index_prefix = Path(index_path).stem
|
||||
partition_files = [
|
||||
f"{index_prefix}_disk_graph.index", # Partitioned graph
|
||||
f"{index_prefix}_partition.bin", # Partition metadata
|
||||
f"{index_prefix}_pq_compressed.bin",
|
||||
f"{index_prefix}_pq_pivots.bin",
|
||||
]
|
||||
|
||||
for partition_file in partition_files:
|
||||
file_path = index_dir / partition_file
|
||||
assert file_path.exists(), f"Expected partition file {partition_file} not found"
|
||||
|
||||
# Check that large files were cleaned up (storage saving goal)
|
||||
large_files = [f"{index_prefix}_disk.index", f"{index_prefix}_disk_beam_search.index"]
|
||||
|
||||
for large_file in large_files:
|
||||
file_path = index_dir / large_file
|
||||
assert not file_path.exists(), (
|
||||
f"Large file {large_file} should have been deleted for storage saving"
|
||||
)
|
||||
|
||||
# Verify required auxiliary files for partition mode exist
|
||||
required_files = [
|
||||
f"{index_prefix}_disk.index_medoids.bin",
|
||||
f"{index_prefix}_disk.index_max_base_norm.bin",
|
||||
]
|
||||
|
||||
for req_file in required_files:
|
||||
file_path = index_dir / req_file
|
||||
assert file_path.exists(), (
|
||||
f"Required auxiliary file {req_file} missing for partition mode"
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
os.environ.get("CI") == "true",
|
||||
reason="Skip DiskANN partition tests in CI - requires specific hardware and large memory",
|
||||
)
|
||||
def test_diskann_partition_search_functionality():
|
||||
"""Test that search works correctly with partitioned indices."""
|
||||
from leann.api import LeannBuilder, LeannSearcher
|
||||
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
index_path = str(Path(temp_dir) / "test_partition_search.leann")
|
||||
|
||||
# Create diverse test data
|
||||
texts = [
|
||||
"LEANN is a storage-efficient approximate nearest neighbor search system.",
|
||||
"Graph partitioning helps reduce memory usage in large scale vector search.",
|
||||
"DiskANN provides high-performance disk-based approximate nearest neighbor search.",
|
||||
"Vector embeddings enable semantic search over unstructured text data.",
|
||||
"Approximate nearest neighbor algorithms trade accuracy for speed and storage.",
|
||||
] * 100 # Repeat to get enough data
|
||||
|
||||
# Build with partitioning
|
||||
builder = LeannBuilder(
|
||||
backend_name="diskann",
|
||||
embedding_model="facebook/contriever",
|
||||
embedding_mode="sentence-transformers",
|
||||
is_recompute=True, # Enable partitioning
|
||||
)
|
||||
|
||||
for text in texts:
|
||||
builder.add_text(text)
|
||||
|
||||
builder.build_index(index_path)
|
||||
|
||||
# Test search with partitioned index
|
||||
searcher = LeannSearcher(index_path)
|
||||
|
||||
# Test various queries
|
||||
test_queries = [
|
||||
("vector search algorithms", 5),
|
||||
("LEANN storage efficiency", 3),
|
||||
("graph partitioning memory", 4),
|
||||
("approximate nearest neighbor", 7),
|
||||
]
|
||||
|
||||
for query, top_k in test_queries:
|
||||
results = searcher.search(query, top_k=top_k)
|
||||
|
||||
# Verify search results
|
||||
assert len(results) == top_k, f"Expected {top_k} results for query '{query}'"
|
||||
assert all(result.score is not None for result in results), (
|
||||
"All results should have scores"
|
||||
)
|
||||
assert all(result.score != float("-inf") for result in results), (
|
||||
"No result should have -inf score"
|
||||
)
|
||||
assert all(result.text is not None for result in results), (
|
||||
"All results should have text"
|
||||
)
|
||||
|
||||
# Scores should be in descending order (higher similarity first)
|
||||
scores = [result.score for result in results]
|
||||
assert scores == sorted(scores, reverse=True), (
|
||||
"Results should be sorted by score descending"
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
os.environ.get("CI") == "true",
|
||||
reason="Skip DiskANN partition tests in CI - requires specific hardware and large memory",
|
||||
)
|
||||
def test_diskann_medoid_and_norm_files():
|
||||
"""Test that medoid and max_base_norm files are correctly generated and used."""
|
||||
import struct
|
||||
|
||||
from leann.api import LeannBuilder, LeannSearcher
|
||||
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
index_path = str(Path(temp_dir) / "test_medoid_norm.leann")
|
||||
|
||||
# Small but sufficient dataset
|
||||
texts = [f"Test document {i} with content about subject {i % 10}." for i in range(200)]
|
||||
|
||||
builder = LeannBuilder(
|
||||
backend_name="diskann",
|
||||
embedding_model="facebook/contriever",
|
||||
embedding_mode="sentence-transformers",
|
||||
is_recompute=True,
|
||||
)
|
||||
|
||||
for text in texts:
|
||||
builder.add_text(text)
|
||||
|
||||
builder.build_index(index_path)
|
||||
|
||||
index_dir = Path(index_path).parent
|
||||
index_prefix = Path(index_path).stem
|
||||
|
||||
# Test medoids file
|
||||
medoids_file = index_dir / f"{index_prefix}_disk.index_medoids.bin"
|
||||
assert medoids_file.exists(), "Medoids file should be generated"
|
||||
|
||||
# Read and validate medoids file format
|
||||
with open(medoids_file, "rb") as f:
|
||||
nshards = struct.unpack("<I", f.read(4))[0]
|
||||
one_val = struct.unpack("<I", f.read(4))[0]
|
||||
medoid_id = struct.unpack("<I", f.read(4))[0]
|
||||
|
||||
assert nshards == 1, "Single-shot build should have 1 shard"
|
||||
assert one_val == 1, "Expected value should be 1"
|
||||
assert medoid_id >= 0, "Medoid ID should be valid (not hardcoded 0)"
|
||||
|
||||
# Test max_base_norm file
|
||||
norm_file = index_dir / f"{index_prefix}_disk.index_max_base_norm.bin"
|
||||
assert norm_file.exists(), "Max base norm file should be generated"
|
||||
|
||||
# Read and validate norm file
|
||||
with open(norm_file, "rb") as f:
|
||||
npts = struct.unpack("<I", f.read(4))[0]
|
||||
ndims = struct.unpack("<I", f.read(4))[0]
|
||||
norm_val = struct.unpack("<f", f.read(4))[0]
|
||||
|
||||
assert npts == 1, "Should have 1 norm point"
|
||||
assert ndims == 1, "Should have 1 dimension"
|
||||
assert norm_val > 0, "Norm value should be positive"
|
||||
assert norm_val != float("inf"), "Norm value should be finite"
|
||||
|
||||
# Test that search works with these files
|
||||
searcher = LeannSearcher(index_path)
|
||||
results = searcher.search("test subject", top_k=3)
|
||||
|
||||
# Verify that scores are not -inf (which indicates norm file was loaded correctly)
|
||||
assert len(results) > 0
|
||||
assert all(result.score != float("-inf") for result in results), (
|
||||
"Scores should not be -inf when norm file is correct"
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
os.environ.get("CI") == "true",
|
||||
reason="Skip performance comparison in CI - requires significant compute time",
|
||||
)
|
||||
def test_diskann_vs_hnsw_performance():
|
||||
"""Compare DiskANN (with partition) vs HNSW performance."""
|
||||
import time
|
||||
|
||||
from leann.api import LeannBuilder, LeannSearcher
|
||||
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
# Test data
|
||||
texts = [
|
||||
f"Performance test document {i} covering topic {i % 20} in detail." for i in range(1000)
|
||||
]
|
||||
query = "performance topic test"
|
||||
|
||||
# Test DiskANN with partitioning
|
||||
diskann_path = str(Path(temp_dir) / "perf_diskann.leann")
|
||||
diskann_builder = LeannBuilder(
|
||||
backend_name="diskann",
|
||||
embedding_model="facebook/contriever",
|
||||
embedding_mode="sentence-transformers",
|
||||
is_recompute=True,
|
||||
)
|
||||
|
||||
for text in texts:
|
||||
diskann_builder.add_text(text)
|
||||
|
||||
start_time = time.time()
|
||||
diskann_builder.build_index(diskann_path)
|
||||
|
||||
# Test HNSW
|
||||
hnsw_path = str(Path(temp_dir) / "perf_hnsw.leann")
|
||||
hnsw_builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model="facebook/contriever",
|
||||
embedding_mode="sentence-transformers",
|
||||
is_recompute=True,
|
||||
)
|
||||
|
||||
for text in texts:
|
||||
hnsw_builder.add_text(text)
|
||||
|
||||
start_time = time.time()
|
||||
hnsw_builder.build_index(hnsw_path)
|
||||
|
||||
# Compare search performance
|
||||
diskann_searcher = LeannSearcher(diskann_path)
|
||||
hnsw_searcher = LeannSearcher(hnsw_path)
|
||||
|
||||
# Warm up searches
|
||||
diskann_searcher.search(query, top_k=5)
|
||||
hnsw_searcher.search(query, top_k=5)
|
||||
|
||||
# Timed searches
|
||||
start_time = time.time()
|
||||
diskann_results = diskann_searcher.search(query, top_k=10)
|
||||
diskann_search_time = time.time() - start_time
|
||||
|
||||
start_time = time.time()
|
||||
hnsw_results = hnsw_searcher.search(query, top_k=10)
|
||||
hnsw_search_time = time.time() - start_time
|
||||
|
||||
# Basic assertions
|
||||
assert len(diskann_results) == 10
|
||||
assert len(hnsw_results) == 10
|
||||
assert all(r.score != float("-inf") for r in diskann_results)
|
||||
assert all(r.score != float("-inf") for r in hnsw_results)
|
||||
|
||||
# Performance ratio (informational)
|
||||
if hnsw_search_time > 0:
|
||||
speed_ratio = hnsw_search_time / diskann_search_time
|
||||
print(f"DiskANN search time: {diskann_search_time:.4f}s")
|
||||
print(f"HNSW search time: {hnsw_search_time:.4f}s")
|
||||
print(f"DiskANN is {speed_ratio:.2f}x faster than HNSW")
|
||||
@@ -10,8 +10,9 @@ from pathlib import Path
|
||||
import pytest
|
||||
|
||||
|
||||
def test_readme_basic_example():
|
||||
"""Test the basic example from README.md."""
|
||||
@pytest.mark.parametrize("backend_name", ["hnsw", "diskann"])
|
||||
def test_readme_basic_example(backend_name):
|
||||
"""Test the basic example from README.md with both backends."""
|
||||
# Skip on macOS CI due to MPS environment issues with all-MiniLM-L6-v2
|
||||
if os.environ.get("CI") == "true" and platform.system() == "Darwin":
|
||||
pytest.skip("Skipping on macOS CI due to MPS environment issues with all-MiniLM-L6-v2")
|
||||
@@ -21,18 +22,18 @@ def test_readme_basic_example():
|
||||
from leann.api import SearchResult
|
||||
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
INDEX_PATH = str(Path(temp_dir) / "demo.leann")
|
||||
INDEX_PATH = str(Path(temp_dir) / f"demo_{backend_name}.leann")
|
||||
|
||||
# Build an index
|
||||
# In CI, use a smaller model to avoid memory issues
|
||||
if os.environ.get("CI") == "true":
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
backend_name=backend_name,
|
||||
embedding_model="sentence-transformers/all-MiniLM-L6-v2", # Smaller model
|
||||
dimensions=384, # Smaller dimensions
|
||||
)
|
||||
else:
|
||||
builder = LeannBuilder(backend_name="hnsw")
|
||||
builder = LeannBuilder(backend_name=backend_name)
|
||||
builder.add_text("LEANN saves 97% storage compared to traditional vector databases.")
|
||||
builder.add_text("Tung Tung Tung Sahur called—they need their banana-crocodile hybrid back")
|
||||
builder.build_index(INDEX_PATH)
|
||||
@@ -52,6 +53,9 @@ def test_readme_basic_example():
|
||||
# Verify search results
|
||||
assert len(results) > 0
|
||||
assert isinstance(results[0], SearchResult)
|
||||
assert results[0].score != float("-inf"), (
|
||||
f"should return valid scores, got {results[0].score}"
|
||||
)
|
||||
# The second text about banana-crocodile should be more relevant
|
||||
assert "banana" in results[0].text or "crocodile" in results[0].text
|
||||
|
||||
@@ -110,26 +114,31 @@ def test_backend_options():
|
||||
assert len(list(Path(diskann_path).parent.glob(f"{Path(diskann_path).stem}.*"))) > 0
|
||||
|
||||
|
||||
def test_llm_config_simulated():
|
||||
"""Test simulated LLM configuration option."""
|
||||
@pytest.mark.parametrize("backend_name", ["hnsw", "diskann"])
|
||||
def test_llm_config_simulated(backend_name):
|
||||
"""Test simulated LLM configuration option with both backends."""
|
||||
# Skip on macOS CI due to MPS environment issues with all-MiniLM-L6-v2
|
||||
if os.environ.get("CI") == "true" and platform.system() == "Darwin":
|
||||
pytest.skip("Skipping on macOS CI due to MPS environment issues with all-MiniLM-L6-v2")
|
||||
|
||||
# Skip DiskANN tests in CI due to hardware requirements
|
||||
if os.environ.get("CI") == "true" and backend_name == "diskann":
|
||||
pytest.skip("Skip DiskANN tests in CI - requires specific hardware and large memory")
|
||||
|
||||
from leann import LeannBuilder, LeannChat
|
||||
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
# Build a simple index
|
||||
index_path = str(Path(temp_dir) / "test.leann")
|
||||
index_path = str(Path(temp_dir) / f"test_{backend_name}.leann")
|
||||
# Use smaller model in CI to avoid memory issues
|
||||
if os.environ.get("CI") == "true":
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
backend_name=backend_name,
|
||||
embedding_model="sentence-transformers/all-MiniLM-L6-v2",
|
||||
dimensions=384,
|
||||
)
|
||||
else:
|
||||
builder = LeannBuilder(backend_name="hnsw")
|
||||
builder = LeannBuilder(backend_name=backend_name)
|
||||
builder.add_text("Test document for LLM testing")
|
||||
builder.build_index(index_path)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user