Compare commits

..

42 Commits

Author SHA1 Message Date
Andy Lee
80330f8d97 fix: remove whitespace from blank line
🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-08-11 00:04:32 +00:00
Andy Lee
4772a5bb18 feat: add process group management to prevent hanging subprocesses
- Add start_new_session=True to subprocess.Popen for better isolation
- Use os.killpg() to terminate entire process groups instead of single processes
- Import signal module for SIGTERM/SIGKILL handling
- This ensures child processes of embedding servers are also cleaned up

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-08-10 22:11:12 +00:00
Andy Lee
3d67205670 fix: remove Chinese comments to pass ruff check
🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-08-10 08:31:21 +00:00
Andy Lee
4de709ad4b feat: add ZMQ timeout configurations to prevent hanging
- Add RCVTIMEO (300s) to prevent recv operations from hanging indefinitely
- Add SNDTIMEO (300s) to prevent send operations from hanging indefinitely
- Add IMMEDIATE mode to avoid message queue blocking
- Applied to both api.py and searcher_base.py ZMQ socket connections

This ensures ZMQ operations timeout gracefully instead of hanging the process
when embedding servers become unresponsive.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-08-10 08:30:02 +00:00
Andy Lee
48c82ee3e3 fix: remove strict parameter from zip() for Python 3.9 compatibility
The strict parameter for zip() was added in Python 3.10.
Remove it to support Python 3.9.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-08-10 00:58:42 +00:00
Andy Lee
6d1ac4a503 fix: use Python 3.9 compatible builtin generics
- Convert List[str] to list[str], Dict[str, Any] to dict[str, Any], etc.
- Use ruff --unsafe-fixes to automatically apply all type annotation updates
- Remove deprecated typing imports (List, Dict, Tuple) where no longer needed
- Keep Optional[str] syntax (union operator | not supported in Python 3.9)

Now all type annotations are Python 3.9 compatible with modern builtin generics.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-08-10 00:38:33 +00:00
Andy Lee
ffba435252 fix: Python 3.9 compatibility - replace union types and builtin generics
- Replace 'str | None' with 'Optional[str]'
- Replace 'list[str]' with 'List[str]'
- Replace 'dict[' with 'Dict['
- Replace 'tuple[' with 'Tuple['
- Add missing typing imports (List, Dict, Tuple)

Fixes TypeError: unsupported operand type(s) for |: 'type' and 'NoneType'

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-08-10 00:29:46 +00:00
Andy Lee
728fa42ad5 style: run ruff format on modified files
- Format diskann_backend.py and conftest.py according to ruff standards

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-08-10 00:11:16 +00:00
Andy Lee
bce8aca3fa fix: ensure newline at end of conftest.py for ruff compliance 2025-08-09 23:56:18 +00:00
Andy Lee
f4e41e4353 style: fix ruff formatting issues in conftest.py
- Fix import sorting and organization
- Remove trailing whitespace
- Add proper newline at end of file

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-08-09 23:53:31 +00:00
Andy Lee
75c7b047d7 Merge branch 'main' into fix/clean-hang-solution 2025-08-09 16:49:51 -07:00
Andy Lee
490329dc66 fix: clean and simple hang prevention solution
This commit provides a minimal, focused fix for CI hanging issues by addressing the root causes:

**Key Changes:**

1. **ZMQ Resource Management:**
   - Remove `context.term()` calls that were causing hangs
   - Add `socket.setsockopt(zmq.LINGER, 0)` to prevent blocking on close
   - Keep socket operations simple with default timeouts (no artificial limits)

2. **Process Cleanup:**
   - Add timeout (1s) to final `process.wait()` in embedding server manager
   - Prevent infinite waiting that was causing CI hangs

3. **Resource Cleanup Methods:**
   - Add simple `cleanup()` methods to searchers and API classes
   - Focus on C++ object destruction for DiskANN backend
   - Avoid complex cleanup logic that could introduce new issues

4. **Basic Test Safety:**
   - Simple pytest-timeout configuration (300s)
   - Basic test session cleanup using psutil
   - Minimal conftest.py without complex logic

**Philosophy:**
This solution avoids the complex multi-layered fixes from the previous PR chain.
Instead, it targets the specific root causes:
- ZMQ context termination blocking
- Process wait() without timeout
- C++ resource leaks in backends

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-08-09 23:45:18 +00:00
Andy Lee
575b354976 style: organize imports per ruff; finish py39 Optional changes
- Fix import ordering in embedding servers and graph_partition_simple
- Remove duplicate Optional import
- Complete Optional[...] replacements
2025-08-07 15:06:25 -07:00
Andy Lee
65bbff1d93 fix(py39): replace union type syntax in chat.py
- validate_model_and_suggest: str | None -> Optional[str]
- OpenAIChat.__init__: api_key: str | None -> Optional[str]
- get_llm: dict[str, Any] | None -> Optional[dict[str, Any]]

Ensures Python 3.9 compatibility for CI macOS 3.9.
2025-08-07 15:01:09 -07:00
Andy Lee
df798d350d ci(macOS): set MACOSX_DEPLOYMENT_TARGET back to 13.3
- Fix build failure: 'sgesdd_' only available on macOS 13.3+
- Keep other CI improvements (local builds, find-links installs)
2025-08-07 14:38:32 -07:00
Andy Lee
3fa6b2aa17 ci: allow resolving third-party deps from index; still prefer local wheels for our packages
- Remove --no-index so numpy/scipy/etc can be resolved on Python 3.13
- Keep --find-links to force our packages from local dist

Fixes: dependency resolution failure on Ubuntu Python 3.13 (numpy missing)
2025-08-07 13:29:30 -07:00
Andy Lee
ba95554fe7 ci: build all packages on all platforms; install from local wheels only
- Build leann-core and leann on macOS too
- Install all packages via --find-links and --no-index across platforms
- Lower macOS MACOSX_DEPLOYMENT_TARGET to 12.0 for wider compatibility

This ensures consistency and avoids PyPI drift while improving macOS compatibility.
2025-08-07 13:00:11 -07:00
Andy Lee
677eb0bae3 fix: Python 3.9 compatibility - replace Union type syntax
- Replace 'int | None' with 'Optional[int]' everywhere
- Replace 'subprocess.Popen | None' with 'Optional[subprocess.Popen]'
- Add Optional import to all affected files
- Update ruff target-version from py310 to py39
- The '|' syntax for Union types was introduced in Python 3.10 (PEP 604)

Fixes TypeError: unsupported operand type(s) for |: 'type' and 'NoneType'
2025-08-07 12:54:16 -07:00
Andy Lee
9cdfcec331 fix: resolve dependency issues in CI package installation
- Ubuntu: Install all packages from local builds with --no-index
- macOS: Install core packages from PyPI, backends from local builds
- Remove --no-index for macOS backend installation to allow dependency resolution
- Pin versions when installing from PyPI to ensure consistency

Fixes error: 'leann-core was not found in the provided package locations'
2025-08-07 12:20:42 -07:00
Andy Lee
f30d1a2530 fix: ensure venv uses correct Python version from matrix
- Explicitly specify Python version when creating venv with uv
- Prevents mismatch between build Python (e.g., 3.10) and test Python
- Fixes: _diskannpy.cpython-310-x86_64-linux-gnu.so in Python 3.11 error

The issue: uv venv was defaulting to Python 3.11 regardless of matrix version
2025-08-07 12:01:11 -07:00
Andy Lee
df69a49123 fix: ensure CI installs correct Python version wheel packages
- Use --find-links with --no-index to let uv select correct wheel
- Prevents installing wrong Python version wheel (e.g., cp310 for Python 3.11)
- Fixes ImportError: _diskannpy.cpython-310-x86_64-linux-gnu.so in Python 3.11

The issue was that *.whl glob matched all Python versions, causing
uv to potentially install a cp310 wheel in a Python 3.11 environment.
2025-08-07 11:31:25 -07:00
Andy Lee
65b54ff905 fix: remove invalid --plat argument from auditwheel repair
- Remove '--plat linux_x86_64' which is not a valid platform tag
- Let auditwheel automatically determine the correct platform
- Based on CI output, it will use manylinux_2_35_x86_64

This was causing auditwheel repair to fail, preventing proper wheel repair
2025-08-07 11:04:34 -07:00
Andy Lee
4db3e94f35 debug: add more CI diagnostics for DiskANN module import issue
- Check wheel contents before and after auditwheel repair
- Verify _diskannpy module installation after pip install
- List installed package directory structure
- Add explicit platform tag for auditwheel repair

This helps diagnose why ImportError: cannot import name '_diskannpy' occurs
2025-08-07 10:55:09 -07:00
Andy Lee
a2568f3ddc fix: force install local wheels in CI to prevent PyPI version conflicts
- Change from --find-links to direct wheel installation with --force-reinstall
- This ensures CI uses locally built packages with latest source code
- Prevents uv from using PyPI packages with same version number but old code
- Fixes CI test failures where old code (without metadata_file_path) was used

Root cause: CI was installing leann-backend-diskann v0.2.1 from PyPI
instead of the locally built wheel with same version number.
2025-08-07 00:36:07 -07:00
Andy Lee
45bdad4fa7 debug: add detailed logging for CI path resolution debugging
- Add logging in DiskANN embedding server to show metadata_file_path
- Add debug logging in PassageManager to trace path resolution
- This will help identify why CI fails to find passage files
2025-08-07 00:00:12 -07:00
Andy Lee
8b538d1ef9 fix: use uv tool install for ruff instead of uv pip install
- uv tool install is the correct way to install CLI tools like ruff
- uv pip install --system is for Python packages, not tools
2025-08-06 22:57:18 -07:00
Andy Lee
ada8bcbc70 fix: pin ruff version to 0.12.7 across all environments
- Pin ruff==0.12.7 in pyproject.toml dev dependencies
- Update CI to use exact ruff version instead of latest
- Add comments explaining version pinning rationale
- Ensures consistent formatting across local, CI, and pre-commit
2025-08-06 22:56:32 -07:00
Andy Lee
6061e8f2de fix: format test files with latest ruff version for CI compatibility 2025-08-06 22:53:40 -07:00
Andy Lee
9842ad8330 fix: update pre-commit ruff version and format compliance 2025-08-06 22:33:15 -07:00
Andy Lee
7d920f9071 docs: add ldg-times parameter for diskann graph locality optimization 2025-08-06 22:23:02 -07:00
Andy Lee
f28f15000c docs: highlight diskann readiness and add performance comparison 2025-08-06 22:10:56 -07:00
Andy Lee
1d657fd9f6 tests: diskann and partition 2025-08-06 21:59:51 -07:00
Andy Lee
d217adbe40 fix: diskann building and partitioning 2025-08-06 21:32:03 -07:00
Andy Lee
f790ec634f chore: more data 2025-08-06 21:28:14 -07:00
Andy Lee
b8da9d7b12 docs: tool cli install 2025-08-06 21:28:05 -07:00
Andy Lee
0cb0463929 fix: always use relative path in metadata 2025-08-06 21:27:43 -07:00
yichuan520030910320
b982241249 add a path related fix 2025-08-05 23:35:48 -07:00
yichuan520030910320
c66f197e1d ruff 2025-08-05 23:24:55 -07:00
yichuan520030910320
4a1353761a merge 2025-08-05 23:23:07 -07:00
yichuan520030910320
a72090d2ab merge 2025-08-05 23:22:48 -07:00
yichuan520030910320
669e622430 chore: Update DiskANN submodule to latest with graph partition tools
- Update DiskANN submodule to commit b2dc4ea
- Includes graph partition tools and CMake integration
- Enables graph partitioning functionality in DiskANN backend
2025-08-05 23:14:19 -07:00
yichuan520030910320
77d7b60a61 feat: Add graph partition support for DiskANN backend
- Add GraphPartitioner class for advanced graph partitioning
- Add partition_graph_simple function for easy-to-use partitioning
- Add pybind11 dependency for C++ executable building
- Update __init__.py to export partition functions
- Include test scripts for partition functionality

The partition functionality allows optimizing disk-based indices
for better search performance and memory efficiency.
2025-08-05 23:11:09 -07:00
31 changed files with 5146 additions and 4148 deletions

View File

@@ -28,7 +28,7 @@ jobs:
- name: Install ruff - name: Install ruff
run: | run: |
uv tool install ruff uv tool install ruff==0.12.7
- name: Run ruff check - name: Run ruff check
run: | run: |
@@ -111,12 +111,10 @@ jobs:
- name: Build packages - name: Build packages
run: | run: |
# Build core (platform independent) # Build core (platform independent) on all platforms for consistency
if [[ "${{ matrix.os }}" == ubuntu-* ]]; then cd packages/leann-core
cd packages/leann-core uv build
uv build cd ../..
cd ../..
fi
# Build HNSW backend # Build HNSW backend
cd packages/leann-backend-hnsw cd packages/leann-backend-hnsw
@@ -137,7 +135,7 @@ jobs:
# Use system clang instead of homebrew LLVM for better compatibility # Use system clang instead of homebrew LLVM for better compatibility
export CC=clang export CC=clang
export CXX=clang++ export CXX=clang++
# DiskANN requires macOS 13.3+ for sgesdd_ LAPACK function # sgesdd_ is only available on macOS 13.3+
export MACOSX_DEPLOYMENT_TARGET=13.3 export MACOSX_DEPLOYMENT_TARGET=13.3
uv build --wheel --python python uv build --wheel --python python
else else
@@ -145,12 +143,10 @@ jobs:
fi fi
cd ../.. cd ../..
# Build meta package (platform independent) # Build meta package (platform independent) on all platforms
if [[ "${{ matrix.os }}" == ubuntu-* ]]; then cd packages/leann
cd packages/leann uv build
uv build cd ../..
cd ../..
fi
- name: Repair wheels (Linux) - name: Repair wheels (Linux)
if: runner.os == 'Linux' if: runner.os == 'Linux'
@@ -164,10 +160,15 @@ jobs:
fi fi
cd ../.. cd ../..
# Repair DiskANN wheel # Repair DiskANN wheel - use show first to debug
cd packages/leann-backend-diskann cd packages/leann-backend-diskann
if [ -d dist ]; then if [ -d dist ]; then
echo "Checking DiskANN wheel contents before repair:"
unzip -l dist/*.whl | grep -E "\.so|\.pyd|_diskannpy" || echo "No .so files found"
auditwheel show dist/*.whl || echo "auditwheel show failed"
auditwheel repair dist/*.whl -w dist_repaired auditwheel repair dist/*.whl -w dist_repaired
echo "Checking DiskANN wheel contents after repair:"
unzip -l dist_repaired/*.whl | grep -E "\.so|\.pyd|_diskannpy" || echo "No .so files found after repair"
rm -rf dist rm -rf dist
mv dist_repaired dist mv dist_repaired dist
fi fi
@@ -201,22 +202,27 @@ jobs:
- name: Install built packages for testing - name: Install built packages for testing
run: | run: |
# Create a virtual environment # Create a virtual environment with the correct Python version
uv venv uv venv --python python${{ matrix.python }}
source .venv/bin/activate || source .venv/Scripts/activate source .venv/bin/activate || source .venv/Scripts/activate
# Install the built wheels # Install the built wheels directly to ensure we use locally built packages
# Use --find-links to let uv choose the correct wheel for the platform # Use only locally built wheels on all platforms for full consistency
if [[ "${{ matrix.os }}" == ubuntu-* ]]; then FIND_LINKS="--find-links packages/leann-core/dist --find-links packages/leann/dist"
uv pip install leann-core --find-links packages/leann-core/dist FIND_LINKS="$FIND_LINKS --find-links packages/leann-backend-hnsw/dist --find-links packages/leann-backend-diskann/dist"
uv pip install leann --find-links packages/leann/dist
fi uv pip install leann-core leann leann-backend-hnsw leann-backend-diskann \
uv pip install leann-backend-hnsw --find-links packages/leann-backend-hnsw/dist $FIND_LINKS --force-reinstall
uv pip install leann-backend-diskann --find-links packages/leann-backend-diskann/dist
# Install test dependencies using extras # Install test dependencies using extras
uv pip install -e ".[test]" uv pip install -e ".[test]"
# Debug: Check if _diskannpy module is installed correctly
echo "Checking installed DiskANN module structure:"
python -c "import leann_backend_diskann; print('leann_backend_diskann location:', leann_backend_diskann.__file__)" || echo "Failed to import leann_backend_diskann"
python -c "from leann_backend_diskann import _diskannpy; print('_diskannpy imported successfully')" || echo "Failed to import _diskannpy"
ls -la $(python -c "import leann_backend_diskann; import os; print(os.path.dirname(leann_backend_diskann.__file__))" 2>/dev/null) 2>/dev/null || echo "Failed to list module directory"
- name: Run tests with pytest - name: Run tests with pytest
env: env:
CI: true # Mark as CI environment to skip memory-intensive tests CI: true # Mark as CI environment to skip memory-intensive tests

View File

@@ -1,6 +1,6 @@
repos: repos:
- repo: https://github.com/pre-commit/pre-commit-hooks - repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.5.0 rev: v5.0.0
hooks: hooks:
- id: trailing-whitespace - id: trailing-whitespace
- id: end-of-file-fixer - id: end-of-file-fixer
@@ -10,7 +10,7 @@ repos:
- id: debug-statements - id: debug-statements
- repo: https://github.com/astral-sh/ruff-pre-commit - repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.2.1 rev: v0.12.7 # Fixed version to match pyproject.toml
hooks: hooks:
- id: ruff - id: ruff
- id: ruff-format - id: ruff-format

View File

@@ -97,7 +97,6 @@ uv sync
</details> </details>
## Quick Start ## Quick Start
Our declarative API makes RAG as easy as writing a config file. Our declarative API makes RAG as easy as writing a config file.
@@ -189,7 +188,7 @@ All RAG examples share these common parameters. **Interactive mode** is availabl
--force-rebuild # Force rebuild index even if it exists --force-rebuild # Force rebuild index even if it exists
# Embedding Parameters # Embedding Parameters
--embedding-model MODEL # e.g., facebook/contriever, text-embedding-3-small, nomic-embed-text, mlx-community/Qwen3-Embedding-0.6B-8bit or nomic-embed-text --embedding-model MODEL # e.g., facebook/contriever, text-embedding-3-small, nomic-embed-text, or mlx-community/multilingual-e5-base-mlx
--embedding-mode MODE # sentence-transformers, openai, mlx, or ollama --embedding-mode MODE # sentence-transformers, openai, mlx, or ollama
# LLM Parameters (Text generation models) # LLM Parameters (Text generation models)
@@ -454,7 +453,7 @@ leann --help
**To make it globally available:** **To make it globally available:**
```bash ```bash
# Install the LEANN CLI globally using uv tool # Install the LEANN CLI globally using uv tool
uv tool install leann uv tool install leann-core
# Now you can use leann from anywhere without activating venv # Now you can use leann from anywhere without activating venv
leann --help leann --help
@@ -542,12 +541,16 @@ Options:
- **Dynamic batching:** Efficiently batch embedding computations for GPU utilization - **Dynamic batching:** Efficiently batch embedding computations for GPU utilization
- **Two-level search:** Smart graph traversal that prioritizes promising nodes - **Two-level search:** Smart graph traversal that prioritizes promising nodes
**Backends:** HNSW (default) for most use cases, with optional DiskANN support for billion-scale datasets. **Backends:**
- **HNSW** (default): Ideal for most datasets with maximum storage savings through full recomputation
- **DiskANN**: Advanced option with superior search performance, using PQ-based graph traversal with real-time reranking for the best speed-accuracy trade-off
## Benchmarks ## Benchmarks
**[DiskANN vs HNSW Performance Comparison →](benchmarks/diskann_vs_hnsw_speed_comparison.py)** - Compare search performance between both backends
**[Simple Example: Compare LEANN vs FAISS →](benchmarks/compare_faiss_vs_leann.py)** - See storage savings in action
**[Simple Example: Compare LEANN vs FAISS →](benchmarks/compare_faiss_vs_leann.py)**
### 📊 Storage Comparison ### 📊 Storage Comparison
| System | DPR (2.1M) | Wiki (60M) | Chat (400K) | Email (780K) | Browser (38K) | | System | DPR (2.1M) | Wiki (60M) | Chat (400K) | Email (780K) | Browser (38K) |

View File

@@ -1,9 +1,24 @@
# 🧪 Leann Sanity Checks # 🧪 LEANN Benchmarks & Testing
This directory contains comprehensive sanity checks for the Leann system, ensuring all components work correctly across different configurations. This directory contains performance benchmarks and comprehensive tests for the LEANN system, including backend comparisons and sanity checks across different configurations.
## 📁 Test Files ## 📁 Test Files
### `diskann_vs_hnsw_speed_comparison.py`
Performance comparison between DiskANN and HNSW backends:
-**Search latency** comparison with both backends using recompute
-**Index size** and **build time** measurements
-**Score validity** testing (ensures no -inf scores)
-**Configurable dataset sizes** for different scales
```bash
# Quick comparison with 500 docs, 10 queries
python benchmarks/diskann_vs_hnsw_speed_comparison.py
# Large-scale comparison with 2000 docs, 20 queries
python benchmarks/diskann_vs_hnsw_speed_comparison.py 2000 20
```
### `test_distance_functions.py` ### `test_distance_functions.py`
Tests all supported distance functions across DiskANN backend: Tests all supported distance functions across DiskANN backend:
-**MIPS** (Maximum Inner Product Search) -**MIPS** (Maximum Inner Product Search)

View File

@@ -0,0 +1,268 @@
#!/usr/bin/env python3
"""
DiskANN vs HNSW Search Performance Comparison
This benchmark compares search performance between DiskANN and HNSW backends:
- DiskANN: With graph partitioning enabled (is_recompute=True)
- HNSW: With recompute enabled (is_recompute=True)
- Tests performance across different dataset sizes
- Measures search latency, recall, and index size
"""
import gc
import tempfile
import time
from pathlib import Path
from typing import Any
import numpy as np
def create_test_texts(n_docs: int) -> list[str]:
"""Create synthetic test documents for benchmarking."""
np.random.seed(42)
topics = [
"machine learning and artificial intelligence",
"natural language processing and text analysis",
"computer vision and image recognition",
"data science and statistical analysis",
"deep learning and neural networks",
"information retrieval and search engines",
"database systems and data management",
"software engineering and programming",
"cybersecurity and network protection",
"cloud computing and distributed systems",
]
texts = []
for i in range(n_docs):
topic = topics[i % len(topics)]
variation = np.random.randint(1, 100)
text = (
f"This is document {i} about {topic}. Content variation {variation}. "
f"Additional information about {topic} with details and examples. "
f"Technical discussion of {topic} including implementation aspects."
)
texts.append(text)
return texts
def benchmark_backend(
backend_name: str, texts: list[str], test_queries: list[str], backend_kwargs: dict[str, Any]
) -> dict[str, float]:
"""Benchmark a specific backend with the given configuration."""
from leann.api import LeannBuilder, LeannSearcher
print(f"\n🔧 Testing {backend_name.upper()} backend...")
with tempfile.TemporaryDirectory() as temp_dir:
index_path = str(Path(temp_dir) / f"benchmark_{backend_name}.leann")
# Build index
print(f"📦 Building {backend_name} index with {len(texts)} documents...")
start_time = time.time()
builder = LeannBuilder(
backend_name=backend_name,
embedding_model="facebook/contriever",
embedding_mode="sentence-transformers",
**backend_kwargs,
)
for text in texts:
builder.add_text(text)
builder.build_index(index_path)
build_time = time.time() - start_time
# Measure index size
index_dir = Path(index_path).parent
index_files = list(index_dir.glob(f"{Path(index_path).stem}.*"))
total_size = sum(f.stat().st_size for f in index_files if f.is_file())
size_mb = total_size / (1024 * 1024)
print(f" ✅ Build completed in {build_time:.2f}s, index size: {size_mb:.1f}MB")
# Search benchmark
print("🔍 Running search benchmark...")
searcher = LeannSearcher(index_path)
search_times = []
all_results = []
for query in test_queries:
start_time = time.time()
results = searcher.search(query, top_k=5)
search_time = time.time() - start_time
search_times.append(search_time)
all_results.append(results)
avg_search_time = np.mean(search_times) * 1000 # Convert to ms
print(f" ✅ Average search time: {avg_search_time:.1f}ms")
# Check for valid scores (detect -inf issues)
all_scores = [
result.score
for results in all_results
for result in results
if result.score is not None
]
valid_scores = [
score for score in all_scores if score != float("-inf") and score != float("inf")
]
score_validity_rate = len(valid_scores) / len(all_scores) if all_scores else 0
# Clean up
try:
if hasattr(searcher, "__del__"):
searcher.__del__()
del searcher
del builder
gc.collect()
except Exception as e:
print(f"⚠️ Warning: Resource cleanup error: {e}")
return {
"build_time": build_time,
"avg_search_time_ms": avg_search_time,
"index_size_mb": size_mb,
"score_validity_rate": score_validity_rate,
}
def run_comparison(n_docs: int = 500, n_queries: int = 10):
"""Run performance comparison between DiskANN and HNSW."""
print("🚀 Starting DiskANN vs HNSW Performance Comparison")
print(f"📊 Dataset: {n_docs} documents, {n_queries} test queries")
# Create test data
texts = create_test_texts(n_docs)
test_queries = [
"machine learning algorithms",
"natural language processing",
"computer vision techniques",
"data analysis methods",
"neural network architectures",
"database query optimization",
"software development practices",
"security vulnerabilities",
"cloud infrastructure",
"distributed computing",
][:n_queries]
# HNSW benchmark
hnsw_results = benchmark_backend(
backend_name="hnsw",
texts=texts,
test_queries=test_queries,
backend_kwargs={
"is_recompute": True, # Enable recompute for fair comparison
"M": 16,
"efConstruction": 200,
},
)
# DiskANN benchmark
diskann_results = benchmark_backend(
backend_name="diskann",
texts=texts,
test_queries=test_queries,
backend_kwargs={
"is_recompute": True, # Enable graph partitioning
"num_neighbors": 32,
"search_list_size": 50,
},
)
# Performance comparison
print("\n📈 Performance Comparison Results")
print(f"{'=' * 60}")
print(f"{'Metric':<25} {'HNSW':<15} {'DiskANN':<15} {'Speedup':<10}")
print(f"{'-' * 60}")
# Build time comparison
build_speedup = hnsw_results["build_time"] / diskann_results["build_time"]
print(
f"{'Build Time (s)':<25} {hnsw_results['build_time']:<15.2f} {diskann_results['build_time']:<15.2f} {build_speedup:<10.2f}x"
)
# Search time comparison
search_speedup = hnsw_results["avg_search_time_ms"] / diskann_results["avg_search_time_ms"]
print(
f"{'Search Time (ms)':<25} {hnsw_results['avg_search_time_ms']:<15.1f} {diskann_results['avg_search_time_ms']:<15.1f} {search_speedup:<10.2f}x"
)
# Index size comparison
size_ratio = diskann_results["index_size_mb"] / hnsw_results["index_size_mb"]
print(
f"{'Index Size (MB)':<25} {hnsw_results['index_size_mb']:<15.1f} {diskann_results['index_size_mb']:<15.1f} {size_ratio:<10.2f}x"
)
# Score validity
print(
f"{'Score Validity (%)':<25} {hnsw_results['score_validity_rate'] * 100:<15.1f} {diskann_results['score_validity_rate'] * 100:<15.1f}"
)
print(f"{'=' * 60}")
print("\n🎯 Summary:")
if search_speedup > 1:
print(f" DiskANN is {search_speedup:.2f}x faster than HNSW for search")
else:
print(f" HNSW is {1 / search_speedup:.2f}x faster than DiskANN for search")
if size_ratio > 1:
print(f" DiskANN uses {size_ratio:.2f}x more storage than HNSW")
else:
print(f" DiskANN uses {1 / size_ratio:.2f}x less storage than HNSW")
print(
f" Both backends achieved {min(hnsw_results['score_validity_rate'], diskann_results['score_validity_rate']) * 100:.1f}% score validity"
)
if __name__ == "__main__":
import sys
try:
# Handle help request
if len(sys.argv) > 1 and sys.argv[1] in ["-h", "--help", "help"]:
print("DiskANN vs HNSW Performance Comparison")
print("=" * 50)
print(f"Usage: python {sys.argv[0]} [n_docs] [n_queries]")
print()
print("Arguments:")
print(" n_docs Number of documents to index (default: 500)")
print(" n_queries Number of test queries to run (default: 10)")
print()
print("Examples:")
print(" python benchmarks/diskann_vs_hnsw_speed_comparison.py")
print(" python benchmarks/diskann_vs_hnsw_speed_comparison.py 1000")
print(" python benchmarks/diskann_vs_hnsw_speed_comparison.py 2000 20")
sys.exit(0)
# Parse command line arguments
n_docs = int(sys.argv[1]) if len(sys.argv) > 1 else 500
n_queries = int(sys.argv[2]) if len(sys.argv) > 2 else 10
print("DiskANN vs HNSW Performance Comparison")
print("=" * 50)
print(f"Dataset: {n_docs} documents, {n_queries} queries")
print()
run_comparison(n_docs=n_docs, n_queries=n_queries)
except KeyboardInterrupt:
print("\n⚠️ Benchmark interrupted by user")
sys.exit(130)
except Exception as e:
print(f"\n❌ Benchmark failed: {e}")
sys.exit(1)
finally:
# Ensure clean exit
try:
gc.collect()
print("\n🧹 Cleanup completed")
except Exception:
pass
sys.exit(0)

82
data/huawei_pangu.md Normal file
View File

@@ -0,0 +1,82 @@
# 盘古之殇:华为诺亚盘古大模型研发历程的心酸与黑暗
各位好,
我是一名盘古大模型团队,华为诺亚方舟实验室的员工。
首先为自证身份,列举一些细节:
1. 现诺亚主任,前算法应用部部长,后改名为小模型实验室的主任王云鹤。前诺亚主任:姚骏(大家称姚老师)。几个实验室主任:唐睿明(明哥,明队,已离职),尚利峰,张维(维哥),郝建业(郝老师),刘武龙(称呼为武龙所)等。其他骨干成员和专家陆续有很多人离职。
2. 我们隶属于“四野”这个组织。四野下属有许多纵队,基础语言大模型是四纵。王云鹤的小模型是十六纵队。我们参加过苏州的集结,有各种月份的时间节点。在苏州攻关会颁发任务令,需要在节点前达成目标。苏州集结会把各地的人员都集中在苏州研究所,平常住宾馆,比如在甪直的酒店,与家人孩子天各一方。
3. 在苏州集结的时候周六默认上班,非常辛苦,不过周六有下午茶,有一次还有小龙虾。在苏州研究所的工位搬迁过一次,从一栋楼换到了另一栋。苏州研究所楼栋都是欧式装修,门口有大坡,里面景色很不错。去苏州集结一般至少要去一周,甚至更久,多的人甚至一两个月都回不了家。
4. 诺亚曾经传说是研究型的但是来了之后因为在四野做大模型项目项目成员完全变成了交付型的且充满了例会评审汇报。很多时候做实验都要申请。团队需要对接终端小艺华为云ICT等诸多业务线交付压力不小。
5. 诺亚研发的盘古模型早期内部代号叫做“盘古智子”一开始只有内部需要申请试用的网页版到后续迫于压力在welink上接入和公测开放。
这些天发生关于质疑盘古大模型抄袭千问的事情闹的沸沸扬扬。作为一个盘古团队的成员,我最近夜夜辗转反侧,难以入眠。盘古的品牌受到如此大的影响,一方面,我自私的为我的职业发展担忧,也为自己过去的努力工作感到不值。另一方面,由于有人开始揭露这些事情我内心又感到大快人心。在多少个日日夜夜,我们对内部某些人一次次靠着造假而又获得了无数利益的行为咬牙切齿而又无能为力。这种压抑和羞辱也逐渐消磨了我对华为的感情,让我在这里的时日逐渐浑浑噩噩,迷茫无措,时常怀疑自己的人生和自我价值。
我承认我是一个懦弱的人,作为一个小小的打工人,我不仅不敢和王云鹤等内部手眼通天的人做对,更不敢和华为这样的庞然大物做对。我很怕失去我的工作,毕竟我也有家人和孩子,所以我打心眼里很佩服揭露者。但是,看到内部还在试图洗地掩盖事实,蒙蔽公众的时候,我实在不能容忍了。我也希望勇敢一次,顺从自己本心。就算自损八百,我也希望能伤敌一千。我决定把我在这里的所见所闻(部分来自于同事口述)公布出来,关于盘古大模型的“传奇故事”:
华为确实主要在昇腾卡上训练大模型小模型实验室有不少英伟达的卡他们之前也会用来训练后面转移到昇腾。曾经我被华为“打造世界第二选择”的决心而折服我本身也曾经对华为有深厚的感情。我们陪着昇腾一步步摸爬滚打从充满bug到现在能训出模型付出了巨大的心血和代价。
最初我们的算力非常有限在910A上训练模型。那会只支持fp16训练的稳定性远不如bf16。盘古的moe开始很早23年就主要是训练38Bmoe模型和后续的71B dense模型。71B的dense模型通过扩增变成了第一代的135Bdense模型后面主力模型也逐渐在910B上训练。
71B和135B模型都有一个巨大的硬伤就是tokenizer。当时使用的tokenizer编码效率极低每个单个的符号数字空格乃至汉字都会占用一个token。可想而知这会非常浪费算力且使得模型的效果很差。这时候小模型实验室正好有个自己训的词表。姚老师当时怀疑是不是模型的tokenizer不好虽然事后来看他的怀疑是无疑正确的于是就决定让71B和135B换tokenizer因为小模型实验室曾经尝试过。团队缝合了两个tokenizer开始了tokenizer的更换。71B模型的更换失败了而135B因为采用了更精细的embedding初始化策略续训了至少1T的数据后词表总算更换成功但可想而知效果并不会变好。
于此同期阿里和智谱等国内其他公司在GPU上训练且已经摸索出了正确的方法盘古和竞品的差距越来越大。内部一个230B从头训练的dense模型又因为各种原因训练失败导致项目的状况几乎陷入绝境。面临几个节点的压力以及内部对盘古的强烈质疑时团队的士气低迷到了极点。团队在算力极其有限的时候做出了很多努力和挣扎。比如团队偶然发现当时的38B moe并没有预期moe的效果。于是去掉了moe参数还原为了13B的dense模型。由于38B的moe源自很早的pangu alpha 13B架构相对落后团队进行了一系列的操作比如切换绝对位置编码到rope去掉bias切换为rmsnorm。同时鉴于tokenizer的一些失败和换词表的经验这个模型的词表也更换为了王云鹤的小模型实验室7B模型所使用的词表。后面这个13B模型进行了扩增续训变成了第二代38B dense模型在几个月内这个模型都是主要的盘古中档位模型曾经具有一定的竞争力。但是由于更大的135B模型架构落后且更换词表模型损伤巨大后续分析发现当时更换的缝合词表有更严重的bug续训后也与千问等当时国内领先模型存在很大差距。这时由于内部的质疑声和领导的压力也越来越大。团队的状态几乎陷入了绝境。
在这种情况下王云鹤和他的小模型实验室出手了。他们声称是从旧的135B参数继承改造而来通过训练短短的几百B数据各项指标平均提升了十个点左右。实际上这就是他们套壳应用到大模型的第一次杰作。华为的外行领导内行使得领导完全对于这种扯淡的事情没有概念他们只会觉得肯定是有什么算法创新。经过内部的分析他们实际上是使用Qwen 1.5 110B续训而来通过加层扩增ffn维度添加盘古pi论文的一些机制得来凑够了大概135B的参数。实际上旧的135B有107层而这个模型只有82层各种配置也都不一样。新的来路不明的135B训练完很多参数的分布也和Qwen 110B几乎一模一样。连模型代码的类名当时都是Qwen甚至懒得改名。后续这个模型就是所谓的135B V2。而这个模型当时也提供给了很多下游甚至包括外部客户。
这件事对于我们这些认真诚实做事的同事们带来了巨大的冲击内部很多人其实都知道这件事甚至包括终端和华为云。我们都戏称以后别叫盘古模型了叫千古吧。当时团队成员就想向bcg举报了毕竟这已经是重大的业务造假了。但是后面据说被领导拦了下来因为更高级别的领导比如姚老师以及可能熊总和查老其实后面也知道了但是并不管因为通过套壳拿出好的结果对他们也是有利的。这件事使得当时团队几位最强的同事开始心灰意冷离职跑路也逐渐成为挂在嘴边的事。
此时盘古似乎迎来了转机。由于前面所述的这些盘古模型基本都是续训和改造而来当时诺亚完全没有掌握从头训练的技术何况还是在昇腾的NPU上进行训练。在当时团队的核心成员的极力争取下盘古开始了第三代模型的训练付出了巨大的努力后在数据架构和训练算法方面都与业界逐渐接轨而这其中的艰辛和小模型实验室的人一点关系都没有。
一开始团队成员毫无信心只从一个13B的模型开始训练但是后面发现效果还不错于是这个模型后续再次进行了一次参数扩增变成了第三代的38B代号38B V3。想必很多产品线的兄弟都对这个模型很熟悉。当时这个模型的tokenizer是基于llama的词表进行扩展的也是业界常见的做法。而当时王云鹤的实验室做出来了另一个词表也就是后续pangu系列的词表。当时两个词表还被迫进行了一次赛马最终没有明显的好坏结论。于是领导当即决定应该统一词表使用王云鹤他们的。于是在后续从头训练的135B V3也就是对外的Pangu Ultra便是采用了这个tokenizer。这也解释了很多使用我们模型的兄弟的疑惑为什么当时同为V3代的两个不同档位的模型会使用不同的tokenizer。
我们打心眼里觉得135B V3是我们四纵团队当时的骄傲。这是第一个真正意义上的华为全栈自研正经从头训练的千亿级别的模型且效果与24年同期竞品可比的。写到这里我已经热泪盈眶太不容易了。当时为了稳定训练团队做了大量实验对比并且多次在模型梯度出现异常的时候进行及时回退重启。这个模型真正做到了后面技术报告所说的训练全程没有一个loss spike。我们克服了不知道多少困难我们做到了我们愿用生命和荣誉保证这个模型训练的真实性。多少个凌晨我们为了它的训练而不眠。在被内部心声骂的一文不值的时候我们有多么不甘有多少的委屈我们挺住了。
我们这帮人是真的在为打磨国产算力底座燃烧自己的青春啊……客居他乡,我们放弃了家庭,放弃了假期,放弃了健康,放弃了娱乐,抛头颅洒热血,其中的艰辛与困苦,寥寥数笔不足以概括其万一。在各种动员大会上,当时口号中喊出的盘古必胜,华为必胜,我们心里是真的深深被感动。
然而我们的所有辛苦的成果经常被小模型实验室轻飘飘的拿走了。数据直接要走。代码直接要走还要求我们配合适配到能一键运行。我们当时戏称小模型实验室为点鼠标实验室。我们付出辛苦他们取得荣耀。果然应了那句话你在负重前行是因为有人替你岁月静好。在这种情况下越来越多的战友再也坚持不下去了选择了离开。看到身边那些优秀的同事一个个离职我的内心又感叹又难过。在这种作战一样的环境下我们比起同事来说更像是战友。他们在技术上也有无数值得我学习的地方堪称良师。看到他们去了诸如字节SeedDeepseek月之暗面腾讯和快手等等很多出色的团队我打心眼里为他们高兴和祝福脱离了这个辛苦却肮脏的地方。我至今还对一位离职同事的话记忆犹新ta说“来这里是我技术生涯中的耻辱在这里再呆每一天都是浪费生命”。话虽难听却让我无言以对。我担心我自己技术方面的积累不足以及没法适应互联网公司高淘汰的环境让我多次想离职的心始终没有迈出这一步。
盘古除了dense模型后续也启动了moe的探索。一开始训练的是一个224B的moe模型。而与之平行的小模型实验室也开启了第二次主要的套壳行动次要的插曲可能还包括一些别的模型比如math模型即这次流传甚广的pangu pro moe 72B。这个模型内部自称是从小模型实验室的7B扩增上来的就算如此这也与技术报告不符何况是套壳qwen 2.5的14b续训。还记得他们训了没几天内部的评测就立刻追上了当时的38B V3。AI系统实验室很多兄弟因为需要适配模型都知道他们的套壳行动只是迫于各种原因无法伸张正义。实际上对于后续训了很久很久的这个模型Honestagi能够分析出这个量级的相似性我已经很诧异了因为这个模型为了续训洗参数所付出的算力甚至早就足够从头训一个同档位的模型了。听同事说他们为了洗掉千问的水印采取了不少办法甚至包括故意训了脏数据。这也为学术界研究模型血缘提供了一个前所未有的特殊模范吧。以后新的血缘方法提出可以拿出来溜溜。
24年底和25年初在Deepseek v3和r1发布之后由于其惊艳的技术水平团队受到了巨大的冲击也受到了更大的质疑。于是为了紧跟潮流盘古模仿Deepseek的模型尺寸开启了718B moe的训练。这个时候小模型实验室再次出手了。他们选择了套壳Deepseekv3续训。他们通过冻住Deepseek加载的参数进行训练。连任务加载ckpt的目录都是deepseekv3改都不改何其嚣张与之相反一些有真正技术信仰的同事在从头训练另一个718B的moe。但其中出现了各种各样的问题。但是很显然这个模型怎么可能比直接套壳的好呢如果不是团队leader坚持早就被叫停了。
华为的流程管理之繁重,严重拖累了大模型的研发节奏,例如版本管理,模型血缘,各种流程化,各种可追溯。讽刺的是,小模型实验室的模型似乎从来不受这些流程的约束,想套壳就套壳,想续训就续训,算力源源不断的伸手拿走。这种强烈到近乎魔幻的对比,说明了当前流程管理的情况:只许州官放火,不许百姓点灯。何其可笑?何其可悲?何其可恶?何其可耻!
HonestAGI的事情出来后内部让大家不停的研讨分析如何公关和“回应”。诚然这个原文的分析也许不够有力给了王云鹤与小模型实验室他们狡辩和颠倒黑白的机会。为此这两天我内心感到作呕时时怀疑自己的人生意义以及苍天无眼。我不奉陪了我要离职了同时我也在申请从盘古部分技术报告的作者名单中移除。曾经在这些技术报告上署名是我一生都无法抹除的污点。当时我没想到他们竟然猖狂到敢开源。我没想到他们敢如此愚弄世人大肆宣发。当时我也许是存了侥幸心理没有拒绝署名。我相信很多扎实做事的战友也只是被迫上了贼船或者不知情。但这件事已经无法挽回我希望我的余生能够坚持扎实做真正有意义的事为我当时的软弱和不坚定赎罪。
深夜写到这里,我已经泪流满面,泣不成声。还记得一些出色的同事离职时,我苦笑问他们要不要发个长长的心声惯例帖,揭露一下现状。对方说:不了,浪费时间,而且我也怕揭露出来你们过的更糟。我当时一下黯然神伤,因为曾经共同为了理想奋斗过的战友已经彻底对华为彻底灰心了。当时大家调侃,我们用着当年共产党的小米加步枪,组织却有着堪比当年国民党的作风。
曾几何时,我为我们用着小米加步枪打败洋枪洋炮而自豪。
现在,我累了,我想投降。
其实时至今日我还是真心希望华为能认真吸取教训能做好盘古把盘古做到世界一流把昇腾变成英伟达的水平。内部的劣币驱逐良币使得诺亚乃至华为在短时间内急剧流失了大量出色的大模型人才。相信他们也正在如Deepseek等各个团队闪耀着施展着他们的抱负才华为中美在AI的激烈竞赛中奉献力量。我时常感叹华为不是没有人才而是根本不知道怎么留住人才。如果给这些人合适的环境合适的资源更少的枷锁更少的政治斗争盘古何愁不成
最后:我以生命,人格和荣誉发誓,我写的以上所有内容均为真实(至少在我有限的认知范围内)。我没有那么高的技术水平以及机会去做详尽扎实的分析,也不敢直接用内部记录举证,怕因为信息安全抓到。但是我相信我很多曾经的战友,会为我作证。在华为内部的兄弟,包括我们曾经服务过的产品线兄弟们,相信本文的无数细节能和你们的印象对照,印证我的说法。你们可能也曾经被蒙骗,但这些残酷的真相不会被尘封。我们奋战过的痕迹,也不应该被扭曲和埋葬。
写了这么多,某些人肯定想把我找出来,抹杀掉。公司搞不好也想让我噤声乃至追责。如果真的这样,我,乃至我的家人的人身乃至生命安全可能都会受到威胁。为了自我保护,我近期每天会跟大家报平安。
如果我消失了就当是我为了真理和理想为了华为乃至中国能够更好地发展算力和AI而牺牲了吧我愿埋葬于那片曾经奋斗过的地方。
诺亚,再见
2025年7月6日凌晨 写于深圳
---
各位好,
感谢大家的关心与祝福。我目前暂时安全,但公司应该在进行排查与某些名单收集,后续情况未知。
我补充一些细节,以免某些人继续颠倒黑白。
关于135B V2小模型实验室在迅速地完成套壳并拿完所有套壳带来的好处后比如任务令表彰和及时激励因为不想继续支撑下游应用和模型迭代又把这个烫手山芋甩给了四纵。确实技高一筹直接把四纵的兄弟们拉下水。同事提供过去一个老旧的模型最终拿回了一个当时一个魔改的先进的千问。做大模型的人自己做的模型就像自己孩子一样熟悉不要把别人都当傻子。就像自家儿子出门一趟回来个别人家孩子。
盘古report的署名是不符合学术规范的。例如135B V3有不少有技术贡献的人因为作者名额数量限制劳动成果没有得到应有的回报团队内曾经有不小的意见。这个模型当时是大家智慧和汗水的结晶甚至是团队当时的精神支柱支撑着不少兄弟们继续留在诺亚。所谓的名额限制以及挂名了一些毫无技术贡献的人如一些小模型实验室的人让兄弟们何其心寒。
---
暂时平安。另外,支持我勇于说出真相的战友们 https://github.com/HW-whistleblower/True-Story-of-Pangu/issues/317

View File

@@ -97,16 +97,30 @@ ollama pull nomic-embed-text
``` ```
### DiskANN ### DiskANN
**Best for**: Large datasets (> 10M vectors, 10GB+ index size) - **⚠️ Beta version, still in active development** **Best for**: Performance-critical applications and large datasets - **Production-ready with automatic graph partitioning**
- Uses Product Quantization (PQ) for coarse filtering during graph traversal
- Novel approach: stores only PQ codes, performs rerank with exact computation in final step **How it works:**
- Implements a corner case of double-queue: prunes all neighbors and recomputes at the end - **Product Quantization (PQ) + Real-time Reranking**: Uses compressed PQ codes for fast graph traversal, then recomputes exact embeddings for final candidates
- **Automatic Graph Partitioning**: When `is_recompute=True`, automatically partitions large indices and safely removes redundant files to save storage
- **Superior Speed-Accuracy Trade-off**: Faster search than HNSW while maintaining high accuracy
**Trade-offs compared to HNSW:**
-**Faster search latency** (typically 2-8x speedup)
-**Better scaling** for large datasets
-**Smart storage management** with automatic partitioning
-**Better graph locality** with `--ldg-times` parameter for SSD optimization
- ⚠️ **Slightly larger index size** due to PQ tables and graph metadata
```bash ```bash
# For billion-scale deployments # Recommended for most use cases
--backend-name diskann --graph-degree 32 --build-complexity 64
# For large-scale deployments
--backend-name diskann --graph-degree 64 --build-complexity 128 --backend-name diskann --graph-degree 64 --build-complexity 128
``` ```
**Performance Benchmark**: Run `python benchmarks/diskann_vs_hnsw_speed_comparison.py` to compare DiskANN and HNSW on your system.
## LLM Selection: Engine and Model Comparison ## LLM Selection: Engine and Model Comparison
### LLM Engines ### LLM Engines
@@ -222,15 +236,9 @@ python apps/document_rag.py --query "What are the main techniques LEANN explores
3. **Use MLX on Apple Silicon** (optional optimization): 3. **Use MLX on Apple Silicon** (optional optimization):
```bash ```bash
--embedding-mode mlx --embedding-model mlx-community/Qwen3-Embedding-0.6B-8bit --embedding-mode mlx --embedding-model mlx-community/multilingual-e5-base-mlx
``` ```
MLX might not be the best choice, as we tested and found that it only offers 1.3x acceleration compared to HF, so maybe using ollama is a better choice for embedding generation
4. **Use Ollama**
```bash
--embedding-mode ollama --embedding-model nomic-embed-text
```
To discover additional embedding models in ollama, check out https://ollama.com/search?c=embedding or read more about embedding models at https://ollama.com/blog/embedding-models, please do check the model size that works best for you
### If Search Quality is Poor ### If Search Quality is Poor
1. **Increase retrieval count**: 1. **Increase retrieval count**:
@@ -283,3 +291,4 @@ LEANN's recomputation feature provides exact distance calculations but can be di
- [Lessons Learned Developing LEANN](https://yichuan-w.github.io/blog/lessons_learned_in_dev_leann/) - [Lessons Learned Developing LEANN](https://yichuan-w.github.io/blog/lessons_learned_in_dev_leann/)
- [LEANN Technical Paper](https://arxiv.org/abs/2506.08276) - [LEANN Technical Paper](https://arxiv.org/abs/2506.08276)
- [DiskANN Original Paper](https://papers.nips.cc/paper/2019/file/09853c7fb1d3f8ee67a61b6bf4a7f8e6-Paper.pdf) - [DiskANN Original Paper](https://papers.nips.cc/paper/2019/file/09853c7fb1d3f8ee67a61b6bf4a7f8e6-Paper.pdf)
- [SSD-based Graph Partitioning](https://github.com/SonglinLife/SSD_BASED_PLAN)

View File

@@ -1 +1,7 @@
from . import diskann_backend as diskann_backend from . import diskann_backend as diskann_backend
from . import graph_partition
# Export main classes and functions
from .graph_partition import GraphPartitioner, partition_graph
__all__ = ["GraphPartitioner", "diskann_backend", "graph_partition", "partition_graph"]

View File

@@ -4,7 +4,7 @@ import os
import struct import struct
import sys import sys
from pathlib import Path from pathlib import Path
from typing import Any, Literal from typing import Any, Literal, Optional
import numpy as np import numpy as np
import psutil import psutil
@@ -137,6 +137,71 @@ class DiskannBuilder(LeannBackendBuilderInterface):
def __init__(self, **kwargs): def __init__(self, **kwargs):
self.build_params = kwargs self.build_params = kwargs
def _safe_cleanup_after_partition(self, index_dir: Path, index_prefix: str):
"""
Safely cleanup files after partition.
In partition mode, C++ doesn't read _disk.index content,
so we can delete it if all derived files exist.
"""
disk_index_file = index_dir / f"{index_prefix}_disk.index"
beam_search_file = index_dir / f"{index_prefix}_disk_beam_search.index"
# Required files that C++ partition mode needs
# Note: C++ generates these with _disk.index suffix
disk_suffix = "_disk.index"
required_files = [
f"{index_prefix}{disk_suffix}_medoids.bin", # Critical: assert fails if missing
# Note: _centroids.bin is not created in single-shot build - C++ handles this automatically
f"{index_prefix}_pq_pivots.bin", # PQ table
f"{index_prefix}_pq_compressed.bin", # PQ compressed vectors
]
# Check if all required files exist
missing_files = []
for filename in required_files:
file_path = index_dir / filename
if not file_path.exists():
missing_files.append(filename)
if missing_files:
logger.warning(
f"Cannot safely delete _disk.index - missing required files: {missing_files}"
)
logger.info("Keeping all original files for safety")
return
# Calculate space savings
space_saved = 0
files_to_delete = []
if disk_index_file.exists():
space_saved += disk_index_file.stat().st_size
files_to_delete.append(disk_index_file)
if beam_search_file.exists():
space_saved += beam_search_file.stat().st_size
files_to_delete.append(beam_search_file)
# Safe to delete!
for file_to_delete in files_to_delete:
try:
os.remove(file_to_delete)
logger.info(f"✅ Safely deleted: {file_to_delete.name}")
except Exception as e:
logger.warning(f"Failed to delete {file_to_delete.name}: {e}")
if space_saved > 0:
space_saved_mb = space_saved / (1024 * 1024)
logger.info(f"💾 Space saved: {space_saved_mb:.1f} MB")
# Show what files are kept
logger.info("📁 Kept essential files for partition mode:")
for filename in required_files:
file_path = index_dir / filename
if file_path.exists():
size_mb = file_path.stat().st_size / (1024 * 1024)
logger.info(f" - {filename} ({size_mb:.1f} MB)")
def build(self, data: np.ndarray, ids: list[str], index_path: str, **kwargs): def build(self, data: np.ndarray, ids: list[str], index_path: str, **kwargs):
path = Path(index_path) path = Path(index_path)
index_dir = path.parent index_dir = path.parent
@@ -151,6 +216,17 @@ class DiskannBuilder(LeannBackendBuilderInterface):
_write_vectors_to_bin(data, index_dir / data_filename) _write_vectors_to_bin(data, index_dir / data_filename)
build_kwargs = {**self.build_params, **kwargs} build_kwargs = {**self.build_params, **kwargs}
# Extract is_recompute from nested backend_kwargs if needed
is_recompute = build_kwargs.get("is_recompute", False)
if not is_recompute and "backend_kwargs" in build_kwargs:
is_recompute = build_kwargs["backend_kwargs"].get("is_recompute", False)
# Flatten all backend_kwargs parameters to top level for compatibility
if "backend_kwargs" in build_kwargs:
nested_params = build_kwargs.pop("backend_kwargs")
build_kwargs.update(nested_params)
metric_enum = _get_diskann_metrics().get( metric_enum = _get_diskann_metrics().get(
build_kwargs.get("distance_metric", "mips").lower() build_kwargs.get("distance_metric", "mips").lower()
) )
@@ -185,6 +261,30 @@ class DiskannBuilder(LeannBackendBuilderInterface):
build_kwargs.get("pq_disk_bytes", 0), build_kwargs.get("pq_disk_bytes", 0),
"", "",
) )
# Auto-partition if is_recompute is enabled
if build_kwargs.get("is_recompute", False):
logger.info("is_recompute=True, starting automatic graph partitioning...")
from .graph_partition import partition_graph
# Partition the index using absolute paths
# Convert to absolute paths to avoid issues with working directory changes
absolute_index_dir = Path(index_dir).resolve()
absolute_index_prefix_path = str(absolute_index_dir / index_prefix)
disk_graph_path, partition_bin_path = partition_graph(
index_prefix_path=absolute_index_prefix_path,
output_dir=str(absolute_index_dir),
partition_prefix=index_prefix,
)
# Safe cleanup: In partition mode, C++ doesn't read _disk.index content
# but still needs the derived files (_medoids.bin, _centroids.bin, etc.)
self._safe_cleanup_after_partition(index_dir, index_prefix)
logger.info("✅ Graph partitioning completed successfully!")
logger.info(f" - Disk graph: {disk_graph_path}")
logger.info(f" - Partition file: {partition_bin_path}")
finally: finally:
temp_data_file = index_dir / data_filename temp_data_file = index_dir / data_filename
if temp_data_file.exists(): if temp_data_file.exists():
@@ -213,7 +313,26 @@ class DiskannSearcher(BaseSearcher):
# For DiskANN, we need to reinitialize the index when zmq_port changes # For DiskANN, we need to reinitialize the index when zmq_port changes
# Store the initialization parameters for later use # Store the initialization parameters for later use
full_index_prefix = str(self.index_dir / self.index_path.stem) # Note: C++ load method expects the BASE path (without _disk.index suffix)
# C++ internally constructs: index_prefix + "_disk.index"
index_name = self.index_path.stem # "simple_test.leann" -> "simple_test"
diskann_index_prefix = str(self.index_dir / index_name) # /path/to/simple_test
full_index_prefix = diskann_index_prefix # /path/to/simple_test (base path)
# Auto-detect partition files and set partition_prefix
partition_graph_file = self.index_dir / f"{index_name}_disk_graph.index"
partition_bin_file = self.index_dir / f"{index_name}_partition.bin"
partition_prefix = ""
if partition_graph_file.exists() and partition_bin_file.exists():
# C++ expects full path prefix, not just filename
partition_prefix = str(self.index_dir / index_name) # /path/to/simple_test
logger.info(
f"✅ Detected partition files, using partition_prefix='{partition_prefix}'"
)
else:
logger.debug("No partition files detected, using standard index files")
self._init_params = { self._init_params = {
"metric_enum": metric_enum, "metric_enum": metric_enum,
"full_index_prefix": full_index_prefix, "full_index_prefix": full_index_prefix,
@@ -221,8 +340,14 @@ class DiskannSearcher(BaseSearcher):
"num_nodes_to_cache": kwargs.get("num_nodes_to_cache", 0), "num_nodes_to_cache": kwargs.get("num_nodes_to_cache", 0),
"cache_mechanism": 1, "cache_mechanism": 1,
"pq_prefix": "", "pq_prefix": "",
"partition_prefix": "", "partition_prefix": partition_prefix,
} }
# Log partition configuration for debugging
if partition_prefix:
logger.info(
f"✅ Detected partition files, using partition_prefix='{partition_prefix}'"
)
self._diskannpy = diskannpy self._diskannpy = diskannpy
self._current_zmq_port = None self._current_zmq_port = None
self._index = None self._index = None
@@ -259,7 +384,7 @@ class DiskannSearcher(BaseSearcher):
prune_ratio: float = 0.0, prune_ratio: float = 0.0,
recompute_embeddings: bool = False, recompute_embeddings: bool = False,
pruning_strategy: Literal["global", "local", "proportional"] = "global", pruning_strategy: Literal["global", "local", "proportional"] = "global",
zmq_port: int | None = None, zmq_port: Optional[int] = None,
batch_recompute: bool = False, batch_recompute: bool = False,
dedup_node_dis: bool = False, dedup_node_dis: bool = False,
**kwargs, **kwargs,
@@ -334,3 +459,25 @@ class DiskannSearcher(BaseSearcher):
string_labels = [[str(int_label) for int_label in batch_labels] for batch_labels in labels] string_labels = [[str(int_label) for int_label in batch_labels] for batch_labels in labels]
return {"labels": string_labels, "distances": distances} return {"labels": string_labels, "distances": distances}
def cleanup(self):
"""Cleanup DiskANN-specific resources including C++ index."""
# Call parent cleanup first
super().cleanup()
# Delete the C++ index to trigger destructors
try:
if hasattr(self, "_index") and self._index is not None:
del self._index
self._index = None
self._current_zmq_port = None
except Exception:
pass
# Force garbage collection to ensure C++ objects are destroyed
try:
import gc
gc.collect()
except Exception:
pass

View File

@@ -10,6 +10,7 @@ import sys
import threading import threading
import time import time
from pathlib import Path from pathlib import Path
from typing import Optional
import numpy as np import numpy as np
import zmq import zmq
@@ -32,7 +33,7 @@ if not logger.handlers:
def create_diskann_embedding_server( def create_diskann_embedding_server(
passages_file: str | None = None, passages_file: Optional[str] = None,
zmq_port: int = 5555, zmq_port: int = 5555,
model_name: str = "sentence-transformers/all-mpnet-base-v2", model_name: str = "sentence-transformers/all-mpnet-base-v2",
embedding_mode: str = "sentence-transformers", embedding_mode: str = "sentence-transformers",
@@ -80,7 +81,8 @@ def create_diskann_embedding_server(
with open(passages_file) as f: with open(passages_file) as f:
meta = json.load(f) meta = json.load(f)
passages = PassageManager(meta["passage_sources"]) logger.info(f"Loading PassageManager with metadata_file_path: {passages_file}")
passages = PassageManager(meta["passage_sources"], metadata_file_path=passages_file)
logger.info( logger.info(
f"Loaded PassageManager with {len(passages.global_offset_map)} passages from metadata" f"Loaded PassageManager with {len(passages.global_offset_map)} passages from metadata"
) )

View File

@@ -0,0 +1,299 @@
#!/usr/bin/env python3
"""
Graph Partition Module for LEANN DiskANN Backend
This module provides Python bindings for the graph partition functionality
of DiskANN, allowing users to partition disk-based indices for better
performance.
"""
import os
import shutil
import subprocess
import tempfile
from pathlib import Path
from typing import Optional
class GraphPartitioner:
"""
A Python interface for DiskANN's graph partition functionality.
This class provides methods to partition disk-based indices for improved
search performance and memory efficiency.
"""
def __init__(self, build_type: str = "release"):
"""
Initialize the GraphPartitioner.
Args:
build_type: Build type for the executables ("debug" or "release")
"""
self.build_type = build_type
self._ensure_executables()
def _get_executable_path(self, name: str) -> str:
"""Get the path to a graph partition executable."""
# Get the directory where this Python module is located
module_dir = Path(__file__).parent
# Navigate to the graph_partition directory
graph_partition_dir = module_dir.parent / "third_party" / "DiskANN" / "graph_partition"
executable_path = graph_partition_dir / "build" / self.build_type / "graph_partition" / name
if not executable_path.exists():
raise FileNotFoundError(f"Executable {name} not found at {executable_path}")
return str(executable_path)
def _ensure_executables(self):
"""Ensure that the required executables are built."""
try:
self._get_executable_path("partitioner")
self._get_executable_path("index_relayout")
except FileNotFoundError:
# Try to build the executables automatically
print("Executables not found, attempting to build them...")
self._build_executables()
def _build_executables(self):
"""Build the required executables."""
graph_partition_dir = (
Path(__file__).parent.parent / "third_party" / "DiskANN" / "graph_partition"
)
original_dir = os.getcwd()
try:
os.chdir(graph_partition_dir)
# Clean any existing build
if (graph_partition_dir / "build").exists():
shutil.rmtree(graph_partition_dir / "build")
# Run the build script
cmd = ["./build.sh", self.build_type, "split_graph", "/tmp/dummy"]
subprocess.run(cmd, capture_output=True, text=True, cwd=graph_partition_dir)
# Check if executables were created
partitioner_path = self._get_executable_path("partitioner")
relayout_path = self._get_executable_path("index_relayout")
print(f"✅ Built partitioner: {partitioner_path}")
print(f"✅ Built index_relayout: {relayout_path}")
except Exception as e:
raise RuntimeError(f"Failed to build executables: {e}")
finally:
os.chdir(original_dir)
def partition_graph(
self,
index_prefix_path: str,
output_dir: Optional[str] = None,
partition_prefix: Optional[str] = None,
**kwargs,
) -> tuple[str, str]:
"""
Partition a disk-based index for improved performance.
Args:
index_prefix_path: Path to the index prefix (e.g., "/path/to/index")
output_dir: Output directory for results (defaults to parent of index_prefix_path)
partition_prefix: Prefix for output files (defaults to basename of index_prefix_path)
**kwargs: Additional parameters for graph partitioning:
- gp_times: Number of LDG partition iterations (default: 10)
- lock_nums: Number of lock nodes (default: 10)
- cut: Cut adjacency list degree (default: 100)
- scale_factor: Scale factor (default: 1)
- data_type: Data type (default: "float")
- thread_nums: Number of threads (default: 10)
Returns:
Tuple of (disk_graph_index_path, partition_bin_path)
Raises:
RuntimeError: If the partitioning process fails
"""
# Set default parameters
params = {
"gp_times": 10,
"lock_nums": 10,
"cut": 100,
"scale_factor": 1,
"data_type": "float",
"thread_nums": 10,
**kwargs,
}
# Determine output directory
if output_dir is None:
output_dir = str(Path(index_prefix_path).parent)
# Create output directory if it doesn't exist
Path(output_dir).mkdir(parents=True, exist_ok=True)
# Determine partition prefix
if partition_prefix is None:
partition_prefix = Path(index_prefix_path).name
# Get executable paths
partitioner_path = self._get_executable_path("partitioner")
relayout_path = self._get_executable_path("index_relayout")
# Create temporary directory for processing
with tempfile.TemporaryDirectory() as temp_dir:
# Change to the graph_partition directory for temporary files
graph_partition_dir = (
Path(__file__).parent.parent / "third_party" / "DiskANN" / "graph_partition"
)
original_dir = os.getcwd()
try:
os.chdir(graph_partition_dir)
# Create temporary data directory
temp_data_dir = Path(temp_dir) / "data"
temp_data_dir.mkdir(parents=True, exist_ok=True)
# Set up paths for temporary files
graph_path = temp_data_dir / "starling" / "_M_R_L_B" / "GRAPH"
graph_gp_path = (
graph_path
/ f"GP_TIMES_{params['gp_times']}_LOCK_{params['lock_nums']}_GP_USE_FREQ0_CUT{params['cut']}_SCALE{params['scale_factor']}"
)
graph_gp_path.mkdir(parents=True, exist_ok=True)
# Find input index file
old_index_file = f"{index_prefix_path}_disk_beam_search.index"
if not os.path.exists(old_index_file):
old_index_file = f"{index_prefix_path}_disk.index"
if not os.path.exists(old_index_file):
raise RuntimeError(f"Index file not found: {old_index_file}")
# Run partitioner
gp_file_path = graph_gp_path / "_part.bin"
partitioner_cmd = [
partitioner_path,
"--index_file",
old_index_file,
"--data_type",
params["data_type"],
"--gp_file",
str(gp_file_path),
"-T",
str(params["thread_nums"]),
"--ldg_times",
str(params["gp_times"]),
"--scale",
str(params["scale_factor"]),
"--mode",
"1",
]
print(f"Running partitioner: {' '.join(partitioner_cmd)}")
result = subprocess.run(
partitioner_cmd, capture_output=True, text=True, cwd=graph_partition_dir
)
if result.returncode != 0:
raise RuntimeError(
f"Partitioner failed with return code {result.returncode}.\n"
f"stdout: {result.stdout}\n"
f"stderr: {result.stderr}"
)
# Run relayout
part_tmp_index = graph_gp_path / "_part_tmp.index"
relayout_cmd = [
relayout_path,
old_index_file,
str(gp_file_path),
params["data_type"],
"1",
]
print(f"Running relayout: {' '.join(relayout_cmd)}")
result = subprocess.run(
relayout_cmd, capture_output=True, text=True, cwd=graph_partition_dir
)
if result.returncode != 0:
raise RuntimeError(
f"Relayout failed with return code {result.returncode}.\n"
f"stdout: {result.stdout}\n"
f"stderr: {result.stderr}"
)
# Copy results to output directory
disk_graph_path = Path(output_dir) / f"{partition_prefix}_disk_graph.index"
partition_bin_path = Path(output_dir) / f"{partition_prefix}_partition.bin"
shutil.copy2(part_tmp_index, disk_graph_path)
shutil.copy2(gp_file_path, partition_bin_path)
print(f"Results copied to: {output_dir}")
return str(disk_graph_path), str(partition_bin_path)
finally:
os.chdir(original_dir)
def get_partition_info(self, partition_bin_path: str) -> dict:
"""
Get information about a partition file.
Args:
partition_bin_path: Path to the partition binary file
Returns:
Dictionary containing partition information
"""
if not os.path.exists(partition_bin_path):
raise FileNotFoundError(f"Partition file not found: {partition_bin_path}")
# For now, return basic file information
# In the future, this could parse the binary file for detailed info
stat = os.stat(partition_bin_path)
return {
"file_size": stat.st_size,
"file_path": partition_bin_path,
"modified_time": stat.st_mtime,
}
def partition_graph(
index_prefix_path: str,
output_dir: Optional[str] = None,
partition_prefix: Optional[str] = None,
build_type: str = "release",
**kwargs,
) -> tuple[str, str]:
"""
Convenience function to partition a graph index.
Args:
index_prefix_path: Path to the index prefix
output_dir: Output directory (defaults to parent of index_prefix_path)
partition_prefix: Prefix for output files (defaults to basename of index_prefix_path)
build_type: Build type for executables ("debug" or "release")
**kwargs: Additional parameters for graph partitioning
Returns:
Tuple of (disk_graph_index_path, partition_bin_path)
"""
partitioner = GraphPartitioner(build_type=build_type)
return partitioner.partition_graph(index_prefix_path, output_dir, partition_prefix, **kwargs)
# Example usage:
if __name__ == "__main__":
# Example: partition an index
try:
disk_graph_path, partition_bin_path = partition_graph(
"/path/to/your/index_prefix", gp_times=10, lock_nums=10, cut=100
)
print("Partitioning completed successfully!")
print(f"Disk graph index: {disk_graph_path}")
print(f"Partition binary: {partition_bin_path}")
except Exception as e:
print(f"Partitioning failed: {e}")

View File

@@ -0,0 +1,137 @@
#!/usr/bin/env python3
"""
Simplified Graph Partition Module for LEANN DiskANN Backend
This module provides a simple Python interface for graph partitioning
that directly calls the existing executables.
"""
import os
import subprocess
import tempfile
from pathlib import Path
from typing import Optional
def partition_graph_simple(
index_prefix_path: str, output_dir: Optional[str] = None, **kwargs
) -> tuple[str, str]:
"""
Simple function to partition a graph index.
Args:
index_prefix_path: Path to the index prefix (e.g., "/path/to/index")
output_dir: Output directory (defaults to parent of index_prefix_path)
**kwargs: Additional parameters for graph partitioning
Returns:
Tuple of (disk_graph_index_path, partition_bin_path)
"""
# Set default parameters
params = {
"gp_times": 10,
"lock_nums": 10,
"cut": 100,
"scale_factor": 1,
"data_type": "float",
"thread_nums": 10,
**kwargs,
}
# Determine output directory
if output_dir is None:
output_dir = str(Path(index_prefix_path).parent)
# Find the graph_partition directory
current_file = Path(__file__)
graph_partition_dir = current_file.parent.parent / "third_party" / "DiskANN" / "graph_partition"
if not graph_partition_dir.exists():
raise RuntimeError(f"Graph partition directory not found: {graph_partition_dir}")
# Find input index file
old_index_file = f"{index_prefix_path}_disk_beam_search.index"
if not os.path.exists(old_index_file):
old_index_file = f"{index_prefix_path}_disk.index"
if not os.path.exists(old_index_file):
raise RuntimeError(f"Index file not found: {old_index_file}")
# Create temporary directory for processing
with tempfile.TemporaryDirectory() as temp_dir:
temp_data_dir = Path(temp_dir) / "data"
temp_data_dir.mkdir(parents=True, exist_ok=True)
# Set up paths for temporary files
graph_path = temp_data_dir / "starling" / "_M_R_L_B" / "GRAPH"
graph_gp_path = (
graph_path
/ f"GP_TIMES_{params['gp_times']}_LOCK_{params['lock_nums']}_GP_USE_FREQ0_CUT{params['cut']}_SCALE{params['scale_factor']}"
)
graph_gp_path.mkdir(parents=True, exist_ok=True)
# Run the build script with our parameters
cmd = [str(graph_partition_dir / "build.sh"), "release", "split_graph", index_prefix_path]
# Set environment variables for parameters
env = os.environ.copy()
env.update(
{
"GP_TIMES": str(params["gp_times"]),
"GP_LOCK_NUMS": str(params["lock_nums"]),
"GP_CUT": str(params["cut"]),
"GP_SCALE_F": str(params["scale_factor"]),
"DATA_TYPE": params["data_type"],
"GP_T": str(params["thread_nums"]),
}
)
print(f"Running graph partition with command: {' '.join(cmd)}")
print(f"Working directory: {graph_partition_dir}")
# Run the command
result = subprocess.run(
cmd, env=env, capture_output=True, text=True, cwd=graph_partition_dir
)
if result.returncode != 0:
print(f"Command failed with return code {result.returncode}")
print(f"stdout: {result.stdout}")
print(f"stderr: {result.stderr}")
raise RuntimeError(
f"Graph partitioning failed with return code {result.returncode}.\n"
f"stdout: {result.stdout}\n"
f"stderr: {result.stderr}"
)
# Check if output files were created
disk_graph_path = Path(output_dir) / "_disk_graph.index"
partition_bin_path = Path(output_dir) / "_partition.bin"
if not disk_graph_path.exists():
raise RuntimeError(f"Expected output file not found: {disk_graph_path}")
if not partition_bin_path.exists():
raise RuntimeError(f"Expected output file not found: {partition_bin_path}")
print("✅ Partitioning completed successfully!")
print(f" Disk graph index: {disk_graph_path}")
print(f" Partition binary: {partition_bin_path}")
return str(disk_graph_path), str(partition_bin_path)
# Example usage
if __name__ == "__main__":
try:
disk_graph_path, partition_bin_path = partition_graph_simple(
"/Users/yichuan/Desktop/release2/leann/diskannbuild/test_doc_files",
gp_times=5,
lock_nums=5,
cut=50,
)
print("Success! Output files:")
print(f" - {disk_graph_path}")
print(f" - {partition_bin_path}")
except Exception as e:
print(f"Error: {e}")

View File

@@ -4,8 +4,8 @@ build-backend = "scikit_build_core.build"
[project] [project]
name = "leann-backend-diskann" name = "leann-backend-diskann"
version = "0.2.6" version = "0.2.5"
dependencies = ["leann-core==0.2.6", "numpy", "protobuf>=3.19.0"] dependencies = ["leann-core==0.2.5", "numpy", "protobuf>=3.19.0"]
[tool.scikit-build] [tool.scikit-build]
# Key: simplified CMake path # Key: simplified CMake path

View File

@@ -2,7 +2,7 @@ import logging
import os import os
import shutil import shutil
from pathlib import Path from pathlib import Path
from typing import Any, Literal from typing import Any, Literal, Optional
import numpy as np import numpy as np
from leann.interface import ( from leann.interface import (
@@ -152,7 +152,7 @@ class HNSWSearcher(BaseSearcher):
self, self,
query: np.ndarray, query: np.ndarray,
top_k: int, top_k: int,
zmq_port: int | None = None, zmq_port: Optional[int] = None,
complexity: int = 64, complexity: int = 64,
beam_width: int = 1, beam_width: int = 1,
prune_ratio: float = 0.0, prune_ratio: float = 0.0,

View File

@@ -10,6 +10,7 @@ import sys
import threading import threading
import time import time
from pathlib import Path from pathlib import Path
from typing import Optional
import msgpack import msgpack
import numpy as np import numpy as np
@@ -33,7 +34,7 @@ if not logger.handlers:
def create_hnsw_embedding_server( def create_hnsw_embedding_server(
passages_file: str | None = None, passages_file: Optional[str] = None,
zmq_port: int = 5555, zmq_port: int = 5555,
model_name: str = "sentence-transformers/all-mpnet-base-v2", model_name: str = "sentence-transformers/all-mpnet-base-v2",
distance_metric: str = "mips", distance_metric: str = "mips",
@@ -81,19 +82,8 @@ def create_hnsw_embedding_server(
with open(passages_file) as f: with open(passages_file) as f:
meta = json.load(f) meta = json.load(f)
# Convert relative paths to absolute paths based on metadata file location # Let PassageManager handle path resolution uniformly
metadata_dir = Path(passages_file).parent.parent # Go up one level from the metadata file passages = PassageManager(meta["passage_sources"], metadata_file_path=passages_file)
passage_sources = []
for source in meta["passage_sources"]:
source_copy = source.copy()
# Convert relative paths to absolute paths
if not Path(source_copy["path"]).is_absolute():
source_copy["path"] = str(metadata_dir / source_copy["path"])
if not Path(source_copy["index_path"]).is_absolute():
source_copy["index_path"] = str(metadata_dir / source_copy["index_path"])
passage_sources.append(source_copy)
passages = PassageManager(passage_sources)
logger.info( logger.info(
f"Loaded PassageManager with {len(passages.global_offset_map)} passages from metadata" f"Loaded PassageManager with {len(passages.global_offset_map)} passages from metadata"
) )

View File

@@ -6,10 +6,10 @@ build-backend = "scikit_build_core.build"
[project] [project]
name = "leann-backend-hnsw" name = "leann-backend-hnsw"
version = "0.2.6" version = "0.2.5"
description = "Custom-built HNSW (Faiss) backend for the Leann toolkit." description = "Custom-built HNSW (Faiss) backend for the Leann toolkit."
dependencies = [ dependencies = [
"leann-core==0.2.6", "leann-core==0.2.5",
"numpy", "numpy",
"pyzmq>=23.0.0", "pyzmq>=23.0.0",
"msgpack>=1.0.0", "msgpack>=1.0.0",

View File

@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
[project] [project]
name = "leann-core" name = "leann-core"
version = "0.2.6" version = "0.2.5"
description = "Core API and plugin system for LEANN" description = "Core API and plugin system for LEANN"
readme = "README.md" readme = "README.md"
requires-python = ">=3.9" requires-python = ">=3.9"
@@ -31,8 +31,6 @@ dependencies = [
"PyPDF2>=3.0.0", "PyPDF2>=3.0.0",
"pymupdf>=1.23.0", "pymupdf>=1.23.0",
"pdfplumber>=0.10.0", "pdfplumber>=0.10.0",
"nbconvert>=7.0.0", # For .ipynb file support
"gitignore-parser>=0.1.12", # For proper .gitignore handling
"mlx>=0.26.3; sys_platform == 'darwin'", "mlx>=0.26.3; sys_platform == 'darwin'",
"mlx-lm>=0.26.0; sys_platform == 'darwin'", "mlx-lm>=0.26.0; sys_platform == 'darwin'",
] ]

View File

@@ -10,7 +10,7 @@ import time
import warnings import warnings
from dataclasses import dataclass, field from dataclasses import dataclass, field
from pathlib import Path from pathlib import Path
from typing import Any, Literal from typing import Any, Literal, Optional
import numpy as np import numpy as np
@@ -33,7 +33,7 @@ def compute_embeddings(
model_name: str, model_name: str,
mode: str = "sentence-transformers", mode: str = "sentence-transformers",
use_server: bool = True, use_server: bool = True,
port: int | None = None, port: Optional[int] = None,
is_build=False, is_build=False,
) -> np.ndarray: ) -> np.ndarray:
""" """
@@ -87,21 +87,26 @@ def compute_embeddings_via_server(chunks: list[str], model_name: str, port: int)
# Connect to embedding server # Connect to embedding server
context = zmq.Context() context = zmq.Context()
socket = context.socket(zmq.REQ) socket = context.socket(zmq.REQ)
socket.setsockopt(zmq.LINGER, 0) # Don't block on close
socket.setsockopt(zmq.RCVTIMEO, 300000)
socket.setsockopt(zmq.SNDTIMEO, 300000)
socket.setsockopt(zmq.IMMEDIATE, 1)
socket.connect(f"tcp://localhost:{port}") socket.connect(f"tcp://localhost:{port}")
# Send chunks to server for embedding computation try:
request = chunks # Send chunks to server for embedding computation
socket.send(msgpack.packb(request)) request = chunks
socket.send(msgpack.packb(request))
# Receive embeddings from server # Receive embeddings from server
response = socket.recv() response = socket.recv()
embeddings_list = msgpack.unpackb(response) embeddings_list = msgpack.unpackb(response)
# Convert back to numpy array # Convert back to numpy array
embeddings = np.array(embeddings_list, dtype=np.float32) embeddings = np.array(embeddings_list, dtype=np.float32)
finally:
socket.close() socket.close()
context.term() # Don't call context.term() - this was causing hangs
return embeddings return embeddings
@@ -115,7 +120,9 @@ class SearchResult:
class PassageManager: class PassageManager:
def __init__(self, passage_sources: list[dict[str, Any]]): def __init__(
self, passage_sources: list[dict[str, Any]], metadata_file_path: Optional[str] = None
):
self.offset_maps = {} self.offset_maps = {}
self.passage_files = {} self.passage_files = {}
self.global_offset_map = {} # Combined map for fast lookup self.global_offset_map = {} # Combined map for fast lookup
@@ -125,10 +132,26 @@ class PassageManager:
passage_file = source["path"] passage_file = source["path"]
index_file = source["index_path"] # .idx file index_file = source["index_path"] # .idx file
# Fix path resolution for Colab and other environments # Fix path resolution - relative paths should be relative to metadata file directory
if not Path(index_file).is_absolute(): if not Path(index_file).is_absolute():
# If relative path, try to resolve it properly if metadata_file_path:
index_file = str(Path(index_file).resolve()) # Resolve relative to metadata file directory
metadata_dir = Path(metadata_file_path).parent
logger.debug(
f"PassageManager: Resolving relative paths from metadata_dir: {metadata_dir}"
)
index_file = str((metadata_dir / index_file).resolve())
passage_file = str((metadata_dir / passage_file).resolve())
logger.debug(f"PassageManager: Resolved index_file: {index_file}")
else:
# Fallback to current directory resolution (legacy behavior)
logger.warning(
"PassageManager: No metadata_file_path provided, using fallback resolution from cwd"
)
logger.debug(f"PassageManager: Current working directory: {Path.cwd()}")
index_file = str(Path(index_file).resolve())
passage_file = str(Path(passage_file).resolve())
logger.debug(f"PassageManager: Fallback resolved index_file: {index_file}")
if not Path(index_file).exists(): if not Path(index_file).exists():
raise FileNotFoundError(f"Passage index file not found: {index_file}") raise FileNotFoundError(f"Passage index file not found: {index_file}")
@@ -157,12 +180,12 @@ class LeannBuilder:
self, self,
backend_name: str, backend_name: str,
embedding_model: str = "facebook/contriever", embedding_model: str = "facebook/contriever",
dimensions: int | None = None, dimensions: Optional[int] = None,
embedding_mode: str = "sentence-transformers", embedding_mode: str = "sentence-transformers",
**backend_kwargs, **backend_kwargs,
): ):
self.backend_name = backend_name self.backend_name = backend_name
backend_factory: LeannBackendFactoryInterface | None = BACKEND_REGISTRY.get(backend_name) backend_factory: Optional[LeannBackendFactoryInterface] = BACKEND_REGISTRY.get(backend_name)
if backend_factory is None: if backend_factory is None:
raise ValueError(f"Backend '{backend_name}' not found or not registered.") raise ValueError(f"Backend '{backend_name}' not found or not registered.")
self.backend_factory = backend_factory self.backend_factory = backend_factory
@@ -242,7 +265,7 @@ class LeannBuilder:
self.backend_kwargs = backend_kwargs self.backend_kwargs = backend_kwargs
self.chunks: list[dict[str, Any]] = [] self.chunks: list[dict[str, Any]] = []
def add_text(self, text: str, metadata: dict[str, Any] | None = None): def add_text(self, text: str, metadata: Optional[dict[str, Any]] = None):
if metadata is None: if metadata is None:
metadata = {} metadata = {}
passage_id = metadata.get("id", str(len(self.chunks))) passage_id = metadata.get("id", str(len(self.chunks)))
@@ -314,8 +337,8 @@ class LeannBuilder:
"passage_sources": [ "passage_sources": [
{ {
"type": "jsonl", "type": "jsonl",
"path": str(passages_file), "path": passages_file.name, # Use relative path (just filename)
"index_path": str(offset_file), "index_path": offset_file.name, # Use relative path (just filename)
} }
], ],
} }
@@ -430,8 +453,8 @@ class LeannBuilder:
"passage_sources": [ "passage_sources": [
{ {
"type": "jsonl", "type": "jsonl",
"path": str(passages_file), "path": passages_file.name, # Use relative path (just filename)
"index_path": str(offset_file), "index_path": offset_file.name, # Use relative path (just filename)
} }
], ],
"built_from_precomputed_embeddings": True, "built_from_precomputed_embeddings": True,
@@ -473,7 +496,9 @@ class LeannSearcher:
self.embedding_model = self.meta_data["embedding_model"] self.embedding_model = self.meta_data["embedding_model"]
# Support both old and new format # Support both old and new format
self.embedding_mode = self.meta_data.get("embedding_mode", "sentence-transformers") self.embedding_mode = self.meta_data.get("embedding_mode", "sentence-transformers")
self.passage_manager = PassageManager(self.meta_data.get("passage_sources", [])) self.passage_manager = PassageManager(
self.meta_data.get("passage_sources", []), metadata_file_path=self.meta_path_str
)
backend_factory = BACKEND_REGISTRY.get(backend_name) backend_factory = BACKEND_REGISTRY.get(backend_name)
if backend_factory is None: if backend_factory is None:
raise ValueError(f"Backend '{backend_name}' not found.") raise ValueError(f"Backend '{backend_name}' not found.")
@@ -546,7 +571,6 @@ class LeannSearcher:
zmq_port=zmq_port, zmq_port=zmq_port,
**kwargs, **kwargs,
) )
time.time() - start_time
# logger.info(f" Search time: {search_time} seconds") # logger.info(f" Search time: {search_time} seconds")
logger.info(f" Backend returned: labels={len(results.get('labels', [[]])[0])} results") logger.info(f" Backend returned: labels={len(results.get('labels', [[]])[0])} results")
@@ -554,7 +578,7 @@ class LeannSearcher:
if "labels" in results and "distances" in results: if "labels" in results and "distances" in results:
logger.info(f" Processing {len(results['labels'][0])} passage IDs:") logger.info(f" Processing {len(results['labels'][0])} passage IDs:")
for i, (string_id, dist) in enumerate( for i, (string_id, dist) in enumerate(
zip(results["labels"][0], results["distances"][0], strict=False) zip(results["labels"][0], results["distances"][0])
): ):
try: try:
passage_data = self.passage_manager.get_passage(string_id) passage_data = self.passage_manager.get_passage(string_id)
@@ -587,12 +611,17 @@ class LeannSearcher:
logger.info(f" {GREEN}✓ Final enriched results: {len(enriched_results)} passages{RESET}") logger.info(f" {GREEN}✓ Final enriched results: {len(enriched_results)} passages{RESET}")
return enriched_results return enriched_results
def cleanup(self):
"""Cleanup embedding server and other resources."""
if hasattr(self.backend_impl, "cleanup"):
self.backend_impl.cleanup()
class LeannChat: class LeannChat:
def __init__( def __init__(
self, self,
index_path: str, index_path: str,
llm_config: dict[str, Any] | None = None, llm_config: Optional[dict[str, Any]] = None,
enable_warmup: bool = False, enable_warmup: bool = False,
**kwargs, **kwargs,
): ):
@@ -608,7 +637,7 @@ class LeannChat:
prune_ratio: float = 0.0, prune_ratio: float = 0.0,
recompute_embeddings: bool = True, recompute_embeddings: bool = True,
pruning_strategy: Literal["global", "local", "proportional"] = "global", pruning_strategy: Literal["global", "local", "proportional"] = "global",
llm_kwargs: dict[str, Any] | None = None, llm_kwargs: Optional[dict[str, Any]] = None,
expected_zmq_port: int = 5557, expected_zmq_port: int = 5557,
**search_kwargs, **search_kwargs,
): ):

View File

@@ -8,7 +8,7 @@ import difflib
import logging import logging
import os import os
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from typing import Any from typing import Any, Optional
import torch import torch
@@ -311,7 +311,7 @@ def search_hf_models(query: str, limit: int = 10) -> list[str]:
def validate_model_and_suggest( def validate_model_and_suggest(
model_name: str, llm_type: str, host: str = "http://localhost:11434" model_name: str, llm_type: str, host: str = "http://localhost:11434"
) -> str | None: ) -> Optional[str]:
"""Validate model name and provide suggestions if invalid""" """Validate model name and provide suggestions if invalid"""
if llm_type == "ollama": if llm_type == "ollama":
available_models = check_ollama_models(host) available_models = check_ollama_models(host)
@@ -685,7 +685,7 @@ class HFChat(LLMInterface):
class OpenAIChat(LLMInterface): class OpenAIChat(LLMInterface):
"""LLM interface for OpenAI models.""" """LLM interface for OpenAI models."""
def __init__(self, model: str = "gpt-4o", api_key: str | None = None): def __init__(self, model: str = "gpt-4o", api_key: Optional[str] = None):
self.model = model self.model = model
self.api_key = api_key or os.getenv("OPENAI_API_KEY") self.api_key = api_key or os.getenv("OPENAI_API_KEY")
@@ -761,7 +761,7 @@ class SimulatedChat(LLMInterface):
return "This is a simulated answer from the LLM based on the retrieved context." return "This is a simulated answer from the LLM based on the retrieved context."
def get_llm(llm_config: dict[str, Any] | None = None) -> LLMInterface: def get_llm(llm_config: Optional[dict[str, Any]] = None) -> LLMInterface:
""" """
Factory function to get an LLM interface based on configuration. Factory function to get an LLM interface based on configuration.

View File

@@ -1,6 +1,7 @@
import argparse import argparse
import asyncio import asyncio
from pathlib import Path from pathlib import Path
from typing import Optional
from llama_index.core import SimpleDirectoryReader from llama_index.core import SimpleDirectoryReader
from llama_index.core.node_parser import SentenceSplitter from llama_index.core.node_parser import SentenceSplitter
@@ -86,9 +87,7 @@ Examples:
# Build command # Build command
build_parser = subparsers.add_parser("build", help="Build document index") build_parser = subparsers.add_parser("build", help="Build document index")
build_parser.add_argument( build_parser.add_argument("index_name", help="Index name")
"index_name", nargs="?", help="Index name (default: current directory name)"
)
build_parser.add_argument( build_parser.add_argument(
"--docs", type=str, default=".", help="Documents directory (default: current directory)" "--docs", type=str, default=".", help="Documents directory (default: current directory)"
) )
@@ -203,37 +202,6 @@ Examples:
with open(global_registry, "w") as f: with open(global_registry, "w") as f:
json.dump(projects, f, indent=2) json.dump(projects, f, indent=2)
def _build_gitignore_parser(self, docs_dir: str):
"""Build gitignore parser using gitignore-parser library."""
from gitignore_parser import parse_gitignore
# Try to parse the root .gitignore
gitignore_path = Path(docs_dir) / ".gitignore"
if gitignore_path.exists():
try:
# gitignore-parser automatically handles all subdirectory .gitignore files!
matches = parse_gitignore(str(gitignore_path))
print(f"📋 Loaded .gitignore from {docs_dir} (includes all subdirectories)")
return matches
except Exception as e:
print(f"Warning: Could not parse .gitignore: {e}")
else:
print("📋 No .gitignore found")
# Fallback: basic pattern matching for essential files
essential_patterns = {".git", ".DS_Store", "__pycache__", "node_modules", ".venv", "venv"}
def basic_matches(file_path):
path_parts = Path(file_path).parts
return any(part in essential_patterns for part in path_parts)
return basic_matches
def _should_exclude_file(self, relative_path: Path, gitignore_matches) -> bool:
"""Check if a file should be excluded using gitignore parser."""
return gitignore_matches(str(relative_path))
def list_indexes(self): def list_indexes(self):
print("Stored LEANN indexes:") print("Stored LEANN indexes:")
@@ -310,54 +278,39 @@ Examples:
print(f' leann search {example_name} "your query"') print(f' leann search {example_name} "your query"')
print(f" leann ask {example_name} --interactive") print(f" leann ask {example_name} --interactive")
def load_documents(self, docs_dir: str, custom_file_types: str | None = None): def load_documents(self, docs_dir: str, custom_file_types: Optional[str] = None):
print(f"Loading documents from {docs_dir}...") print(f"Loading documents from {docs_dir}...")
if custom_file_types: if custom_file_types:
print(f"Using custom file types: {custom_file_types}") print(f"Using custom file types: {custom_file_types}")
# Build gitignore parser # Try to use better PDF parsers first
gitignore_matches = self._build_gitignore_parser(docs_dir)
# Try to use better PDF parsers first, but only if PDFs are requested
documents = [] documents = []
docs_path = Path(docs_dir) docs_path = Path(docs_dir)
# Check if we should process PDFs for file_path in docs_path.rglob("*.pdf"):
should_process_pdfs = custom_file_types is None or ".pdf" in custom_file_types print(f"Processing PDF: {file_path}")
if should_process_pdfs: # Try PyMuPDF first (best quality)
for file_path in docs_path.rglob("*.pdf"): text = extract_pdf_text_with_pymupdf(str(file_path))
# Check if file matches any exclude pattern if text is None:
relative_path = file_path.relative_to(docs_path) # Try pdfplumber
if self._should_exclude_file(relative_path, gitignore_matches): text = extract_pdf_text_with_pdfplumber(str(file_path))
continue
print(f"Processing PDF: {file_path}") if text:
# Create a simple document structure
from llama_index.core import Document
# Try PyMuPDF first (best quality) doc = Document(text=text, metadata={"source": str(file_path)})
text = extract_pdf_text_with_pymupdf(str(file_path)) documents.append(doc)
if text is None: else:
# Try pdfplumber # Fallback to default reader
text = extract_pdf_text_with_pdfplumber(str(file_path)) print(f"Using default reader for {file_path}")
default_docs = SimpleDirectoryReader(
if text: str(file_path.parent),
# Create a simple document structure filename_as_id=True,
from llama_index.core import Document required_exts=[file_path.suffix],
).load_data()
doc = Document(text=text, metadata={"source": str(file_path)}) documents.extend(default_docs)
documents.append(doc)
else:
# Fallback to default reader
print(f"Using default reader for {file_path}")
try:
default_docs = SimpleDirectoryReader(
str(file_path.parent),
filename_as_id=True,
required_exts=[file_path.suffix],
).load_data()
documents.extend(default_docs)
except Exception as e:
print(f"Warning: Could not process {file_path}: {e}")
# Load other file types with default reader # Load other file types with default reader
if custom_file_types: if custom_file_types:
@@ -423,34 +376,13 @@ Examples:
] ]
# Try to load other file types, but don't fail if none are found # Try to load other file types, but don't fail if none are found
try: try:
# Create a custom file filter function using our PathSpec
def file_filter(file_path: str) -> bool:
"""Return True if file should be included (not excluded)"""
try:
docs_path_obj = Path(docs_dir)
file_path_obj = Path(file_path)
relative_path = file_path_obj.relative_to(docs_path_obj)
return not self._should_exclude_file(relative_path, gitignore_matches)
except (ValueError, OSError):
return True # Include files that can't be processed
other_docs = SimpleDirectoryReader( other_docs = SimpleDirectoryReader(
docs_dir, docs_dir,
recursive=True, recursive=True,
encoding="utf-8", encoding="utf-8",
required_exts=code_extensions, required_exts=code_extensions,
file_extractor={}, # Use default extractors
filename_as_id=True,
).load_data(show_progress=True) ).load_data(show_progress=True)
documents.extend(other_docs)
# Filter documents after loading based on gitignore rules
filtered_docs = []
for doc in other_docs:
file_path = doc.metadata.get("file_path", "")
if file_filter(file_path):
filtered_docs.append(doc)
documents.extend(filtered_docs)
except ValueError as e: except ValueError as e:
if "No files found" in str(e): if "No files found" in str(e):
print("No additional files found for other supported types.") print("No additional files found for other supported types.")
@@ -523,13 +455,7 @@ Examples:
async def build_index(self, args): async def build_index(self, args):
docs_dir = args.docs docs_dir = args.docs
# Use current directory name if index_name not provided index_name = args.index_name
if args.index_name:
index_name = args.index_name
else:
index_name = Path.cwd().name
print(f"Using current directory name as index: '{index_name}'")
index_dir = self.indexes_dir / index_name index_dir = self.indexes_dir / index_name
index_path = self.get_index_path(index_name) index_path = self.get_index_path(index_name)

View File

@@ -1,11 +1,13 @@
import atexit import atexit
import logging import logging
import os import os
import signal
import socket import socket
import subprocess import subprocess
import sys import sys
import time import time
from pathlib import Path from pathlib import Path
from typing import Optional
import psutil import psutil
@@ -182,8 +184,8 @@ class EmbeddingServerManager:
e.g., "leann_backend_diskann.embedding_server" e.g., "leann_backend_diskann.embedding_server"
""" """
self.backend_module_name = backend_module_name self.backend_module_name = backend_module_name
self.server_process: subprocess.Popen | None = None self.server_process: Optional[subprocess.Popen] = None
self.server_port: int | None = None self.server_port: Optional[int] = None
self._atexit_registered = False self._atexit_registered = False
def start_server( def start_server(
@@ -310,6 +312,7 @@ class EmbeddingServerManager:
cwd=project_root, cwd=project_root,
stdout=None, # Direct to console stdout=None, # Direct to console
stderr=None, # Direct to console stderr=None, # Direct to console
start_new_session=True, # Create new process group for better cleanup
) )
self.server_port = port self.server_port = port
logger.info(f"Server process started with PID: {self.server_process.pid}") logger.info(f"Server process started with PID: {self.server_process.pid}")
@@ -351,7 +354,14 @@ class EmbeddingServerManager:
logger.info( logger.info(
f"Terminating server process (PID: {self.server_process.pid}) for backend {self.backend_module_name}..." f"Terminating server process (PID: {self.server_process.pid}) for backend {self.backend_module_name}..."
) )
self.server_process.terminate()
# Try terminating the whole process group first
try:
pgid = os.getpgid(self.server_process.pid)
os.killpg(pgid, signal.SIGTERM)
except Exception:
# Fallback to terminating just the process
self.server_process.terminate()
try: try:
self.server_process.wait(timeout=3) self.server_process.wait(timeout=3)
@@ -360,7 +370,13 @@ class EmbeddingServerManager:
logger.warning( logger.warning(
f"Server process {self.server_process.pid} did not terminate gracefully within 3 seconds, killing it." f"Server process {self.server_process.pid} did not terminate gracefully within 3 seconds, killing it."
) )
self.server_process.kill() # Try killing the whole process group
try:
pgid = os.getpgid(self.server_process.pid)
os.killpg(pgid, signal.SIGKILL)
except Exception:
# Fallback to killing just the process
self.server_process.kill()
try: try:
self.server_process.wait(timeout=2) self.server_process.wait(timeout=2)
logger.info(f"Server process {self.server_process.pid} killed successfully.") logger.info(f"Server process {self.server_process.pid} killed successfully.")
@@ -372,7 +388,12 @@ class EmbeddingServerManager:
# Clean up process resources to prevent resource tracker warnings # Clean up process resources to prevent resource tracker warnings
try: try:
self.server_process.wait() # Ensure process is fully cleaned up self.server_process.wait(timeout=1) # Give it one final chance with timeout
except subprocess.TimeoutExpired:
logger.warning(
f"Process {self.server_process.pid} still hanging after all kill attempts"
)
# Don't wait indefinitely - just abandon it
except Exception: except Exception:
pass pass

View File

@@ -1,5 +1,5 @@
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from typing import Any, Literal from typing import Any, Literal, Optional
import numpy as np import numpy as np
@@ -34,7 +34,9 @@ class LeannBackendSearcherInterface(ABC):
pass pass
@abstractmethod @abstractmethod
def _ensure_server_running(self, passages_source_file: str, port: int | None, **kwargs) -> int: def _ensure_server_running(
self, passages_source_file: str, port: Optional[int], **kwargs
) -> int:
"""Ensure server is running""" """Ensure server is running"""
pass pass
@@ -48,7 +50,7 @@ class LeannBackendSearcherInterface(ABC):
prune_ratio: float = 0.0, prune_ratio: float = 0.0,
recompute_embeddings: bool = False, recompute_embeddings: bool = False,
pruning_strategy: Literal["global", "local", "proportional"] = "global", pruning_strategy: Literal["global", "local", "proportional"] = "global",
zmq_port: int | None = None, zmq_port: Optional[int] = None,
**kwargs, **kwargs,
) -> dict[str, Any]: ) -> dict[str, Any]:
"""Search for nearest neighbors """Search for nearest neighbors
@@ -74,7 +76,7 @@ class LeannBackendSearcherInterface(ABC):
self, self,
query: str, query: str,
use_server_if_available: bool = True, use_server_if_available: bool = True,
zmq_port: int | None = None, zmq_port: Optional[int] = None,
) -> np.ndarray: ) -> np.ndarray:
"""Compute embedding for a query string """Compute embedding for a query string

View File

@@ -25,61 +25,32 @@ def handle_request(request):
"tools": [ "tools": [
{ {
"name": "leann_search", "name": "leann_search",
"description": """🔍 Search code using natural language - like having a coding assistant who knows your entire codebase! "description": "Search LEANN index",
🎯 **Perfect for**:
- "How does authentication work?" → finds auth-related code
- "Error handling patterns" → locates try-catch blocks and error logic
- "Database connection setup" → finds DB initialization code
- "API endpoint definitions" → locates route handlers
- "Configuration management" → finds config files and usage
💡 **Pro tip**: Use this before making any changes to understand existing patterns and conventions.""",
"inputSchema": { "inputSchema": {
"type": "object", "type": "object",
"properties": { "properties": {
"index_name": { "index_name": {"type": "string"},
"type": "string", "query": {"type": "string"},
"description": "Name of the LEANN index to search. Use 'leann_list' first to see available indexes.", "top_k": {"type": "integer", "default": 5},
},
"query": {
"type": "string",
"description": "Search query - can be natural language (e.g., 'how to handle errors') or technical terms (e.g., 'async function definition')",
},
"top_k": {
"type": "integer",
"default": 5,
"minimum": 1,
"maximum": 20,
"description": "Number of search results to return. Use 5-10 for focused results, 15-20 for comprehensive exploration.",
},
"complexity": {
"type": "integer",
"default": 32,
"minimum": 16,
"maximum": 128,
"description": "Search complexity level. Use 16-32 for fast searches (recommended), 64+ for higher precision when needed.",
},
}, },
"required": ["index_name", "query"], "required": ["index_name", "query"],
}, },
}, },
{ {
"name": "leann_status", "name": "leann_ask",
"description": "📊 Check the health and stats of your code indexes - like a medical checkup for your codebase knowledge!", "description": "Ask question using LEANN RAG",
"inputSchema": { "inputSchema": {
"type": "object", "type": "object",
"properties": { "properties": {
"index_name": { "index_name": {"type": "string"},
"type": "string", "question": {"type": "string"},
"description": "Optional: Name of specific index to check. If not provided, shows status of all indexes.",
}
}, },
"required": ["index_name", "question"],
}, },
}, },
{ {
"name": "leann_list", "name": "leann_list",
"description": "📋 Show all your indexed codebases - your personal code library! Use this to see what's available for search.", "description": "List all LEANN indexes",
"inputSchema": {"type": "object", "properties": {}}, "inputSchema": {"type": "object", "properties": {}},
}, },
] ]
@@ -92,41 +63,19 @@ def handle_request(request):
try: try:
if tool_name == "leann_search": if tool_name == "leann_search":
# Validate required parameters
if not args.get("index_name") or not args.get("query"):
return {
"jsonrpc": "2.0",
"id": request.get("id"),
"result": {
"content": [
{
"type": "text",
"text": "Error: Both index_name and query are required",
}
]
},
}
# Build simplified command
cmd = [ cmd = [
"leann", "leann",
"search", "search",
args["index_name"], args["index_name"],
args["query"], args["query"],
"--recompute-embeddings",
f"--top-k={args.get('top_k', 5)}", f"--top-k={args.get('top_k', 5)}",
f"--complexity={args.get('complexity', 32)}",
] ]
result = subprocess.run(cmd, capture_output=True, text=True) result = subprocess.run(cmd, capture_output=True, text=True)
elif tool_name == "leann_status": elif tool_name == "leann_ask":
if args.get("index_name"): cmd = f'echo "{args["question"]}" | leann ask {args["index_name"]} --recompute-embeddings --llm ollama --model qwen3:8b'
# Check specific index status - for now, we'll use leann list and filter result = subprocess.run(cmd, shell=True, capture_output=True, text=True)
result = subprocess.run(["leann", "list"], capture_output=True, text=True)
# We could enhance this to show more detailed status per index
else:
# Show all indexes status
result = subprocess.run(["leann", "list"], capture_output=True, text=True)
elif tool_name == "leann_list": elif tool_name == "leann_list":
result = subprocess.run(["leann", "list"], capture_output=True, text=True) result = subprocess.run(["leann", "list"], capture_output=True, text=True)

View File

@@ -1,7 +1,7 @@
import json import json
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from pathlib import Path from pathlib import Path
from typing import Any, Literal from typing import Any, Literal, Optional
import numpy as np import numpy as np
@@ -132,10 +132,15 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
import msgpack import msgpack
import zmq import zmq
context = None
socket = None
try: try:
context = zmq.Context() context = zmq.Context()
socket = context.socket(zmq.REQ) socket = context.socket(zmq.REQ)
socket.setsockopt(zmq.RCVTIMEO, 30000) # 30 second timeout socket.setsockopt(zmq.LINGER, 0) # Don't block on close
socket.setsockopt(zmq.RCVTIMEO, 300000)
socket.setsockopt(zmq.SNDTIMEO, 300000)
socket.setsockopt(zmq.IMMEDIATE, 1)
socket.connect(f"tcp://localhost:{zmq_port}") socket.connect(f"tcp://localhost:{zmq_port}")
# Send embedding request # Send embedding request
@@ -147,9 +152,6 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
response_bytes = socket.recv() response_bytes = socket.recv()
response = msgpack.unpackb(response_bytes) response = msgpack.unpackb(response_bytes)
socket.close()
context.term()
# Convert response to numpy array # Convert response to numpy array
if isinstance(response, list) and len(response) > 0: if isinstance(response, list) and len(response) > 0:
return np.array(response, dtype=np.float32) return np.array(response, dtype=np.float32)
@@ -158,6 +160,10 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
except Exception as e: except Exception as e:
raise RuntimeError(f"Failed to compute embeddings via server: {e}") raise RuntimeError(f"Failed to compute embeddings via server: {e}")
finally:
if socket:
socket.close()
# Don't call context.term() - this was causing hangs
@abstractmethod @abstractmethod
def search( def search(
@@ -169,7 +175,7 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
prune_ratio: float = 0.0, prune_ratio: float = 0.0,
recompute_embeddings: bool = False, recompute_embeddings: bool = False,
pruning_strategy: Literal["global", "local", "proportional"] = "global", pruning_strategy: Literal["global", "local", "proportional"] = "global",
zmq_port: int | None = None, zmq_port: Optional[int] = None,
**kwargs, **kwargs,
) -> dict[str, Any]: ) -> dict[str, Any]:
""" """
@@ -191,7 +197,15 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
""" """
pass pass
def __del__(self): def cleanup(self):
"""Ensures the embedding server is stopped when the searcher is destroyed.""" """Cleanup resources including embedding server."""
if hasattr(self, "embedding_server_manager"): if hasattr(self, "embedding_server_manager"):
self.embedding_server_manager.stop_server() self.embedding_server_manager.stop_server()
def __del__(self):
"""Ensures resources are cleaned up when the searcher is destroyed."""
try:
self.cleanup()
except Exception:
# Ignore errors during destruction
pass

View File

@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
[project] [project]
name = "leann" name = "leann"
version = "0.2.6" version = "0.2.5"
description = "LEANN - The smallest vector index in the world. RAG Everything with LEANN!" description = "LEANN - The smallest vector index in the world. RAG Everything with LEANN!"
readme = "README.md" readme = "README.md"
requires-python = ">=3.9" requires-python = ">=3.9"

View File

@@ -43,9 +43,7 @@ dependencies = [
"mlx>=0.26.3; sys_platform == 'darwin'", "mlx>=0.26.3; sys_platform == 'darwin'",
"mlx-lm>=0.26.0; sys_platform == 'darwin'", "mlx-lm>=0.26.0; sys_platform == 'darwin'",
"psutil>=5.8.0", "psutil>=5.8.0",
"pathspec>=0.12.1", "pybind11>=3.0.0",
"nbconvert>=7.16.6",
"gitignore-parser>=0.1.12",
] ]
[project.optional-dependencies] [project.optional-dependencies]
@@ -54,7 +52,7 @@ dev = [
"pytest-cov>=4.0", "pytest-cov>=4.0",
"pytest-xdist>=3.0", # For parallel test execution "pytest-xdist>=3.0", # For parallel test execution
"black>=23.0", "black>=23.0",
"ruff>=0.1.0", "ruff==0.12.7", # Fixed version to ensure consistent formatting across all environments
"matplotlib", "matplotlib",
"huggingface-hub>=0.20.0", "huggingface-hub>=0.20.0",
"pre-commit>=3.5.0", "pre-commit>=3.5.0",
@@ -62,7 +60,7 @@ dev = [
test = [ test = [
"pytest>=7.0", "pytest>=7.0",
"pytest-timeout>=2.0", "pytest-timeout>=2.0", # Simple timeout protection for CI
"llama-index-core>=0.12.0", "llama-index-core>=0.12.0",
"llama-index-readers-file>=0.4.0", "llama-index-readers-file>=0.4.0",
"python-dotenv>=1.0.0", "python-dotenv>=1.0.0",
@@ -91,7 +89,7 @@ leann-backend-diskann = { path = "packages/leann-backend-diskann", editable = tr
leann-backend-hnsw = { path = "packages/leann-backend-hnsw", editable = true } leann-backend-hnsw = { path = "packages/leann-backend-hnsw", editable = true }
[tool.ruff] [tool.ruff]
target-version = "py310" target-version = "py39"
line-length = 100 line-length = 100
extend-exclude = [ extend-exclude = [
"third_party", "third_party",
@@ -154,7 +152,7 @@ markers = [
"slow: marks tests as slow (deselect with '-m \"not slow\"')", "slow: marks tests as slow (deselect with '-m \"not slow\"')",
"openai: marks tests that require OpenAI API key", "openai: marks tests that require OpenAI API key",
] ]
timeout = 600 timeout = 300 # Simple timeout for CI safety (5 minutes)
addopts = [ addopts = [
"-v", "-v",
"--tb=short", "--tb=short",

View File

@@ -6,10 +6,11 @@ This directory contains automated tests for the LEANN project using pytest.
### `test_readme_examples.py` ### `test_readme_examples.py`
Tests the examples shown in README.md: Tests the examples shown in README.md:
- The basic example code that users see first - The basic example code that users see first (parametrized for both HNSW and DiskANN backends)
- Import statements work correctly - Import statements work correctly
- Different backend options (HNSW, DiskANN) - Different backend options (HNSW, DiskANN)
- Different LLM configuration options - Different LLM configuration options (parametrized for both backends)
- **All main README examples are tested with both HNSW and DiskANN backends using pytest parametrization**
### `test_basic.py` ### `test_basic.py`
Basic functionality tests that verify: Basic functionality tests that verify:
@@ -25,6 +26,16 @@ Tests the document RAG example functionality:
- Tests error handling with invalid parameters - Tests error handling with invalid parameters
- Verifies that normalized embeddings are detected and cosine distance is used - Verifies that normalized embeddings are detected and cosine distance is used
### `test_diskann_partition.py`
Tests DiskANN graph partitioning functionality:
- Tests DiskANN index building without partitioning (baseline)
- Tests automatic graph partitioning with `is_recompute=True`
- Verifies that partition files are created and large files are cleaned up for storage saving
- Tests search functionality with partitioned indices
- Validates medoid and max_base_norm file generation and usage
- Includes performance comparison between DiskANN (with partition) and HNSW
- **Note**: These tests are skipped in CI due to hardware requirements and computation time
## Running Tests ## Running Tests
### Install test dependencies: ### Install test dependencies:
@@ -54,15 +65,23 @@ pytest tests/ -m "not openai"
# Skip slow tests # Skip slow tests
pytest tests/ -m "not slow" pytest tests/ -m "not slow"
# Run DiskANN partition tests (requires local machine, not CI)
pytest tests/test_diskann_partition.py
``` ```
### Run with specific backend: ### Run with specific backend:
```bash ```bash
# Test only HNSW backend # Test only HNSW backend
pytest tests/test_basic.py::test_backend_basic[hnsw] pytest tests/test_basic.py::test_backend_basic[hnsw]
pytest tests/test_readme_examples.py::test_readme_basic_example[hnsw]
# Test only DiskANN backend # Test only DiskANN backend
pytest tests/test_basic.py::test_backend_basic[diskann] pytest tests/test_basic.py::test_backend_basic[diskann]
pytest tests/test_readme_examples.py::test_readme_basic_example[diskann]
# All DiskANN tests (parametrized + specialized partition tests)
pytest tests/ -k diskann
``` ```
## CI/CD Integration ## CI/CD Integration

41
tests/conftest.py Normal file
View File

@@ -0,0 +1,41 @@
"""Pytest configuration and fixtures for LEANN tests."""
import os
import pytest
@pytest.fixture(autouse=True)
def test_environment():
"""Set up test environment variables."""
# Mark as test environment to skip memory-intensive operations
os.environ["CI"] = "true"
yield
@pytest.fixture(scope="session", autouse=True)
def cleanup_session():
"""Session-level cleanup to ensure no hanging processes."""
yield
# Basic cleanup after all tests
try:
import os
import psutil
current_process = psutil.Process(os.getpid())
children = current_process.children(recursive=True)
for child in children:
try:
child.terminate()
except psutil.NoSuchProcess:
pass
# Give them time to terminate gracefully
psutil.wait_procs(children, timeout=3)
except Exception:
# Don't fail tests due to cleanup errors
pass

View File

@@ -0,0 +1,369 @@
"""
Test DiskANN graph partitioning functionality.
Tests the automatic graph partitioning feature that was implemented to save
storage space by partitioning large DiskANN indices and safely deleting
redundant files while maintaining search functionality.
"""
import os
import tempfile
from pathlib import Path
import pytest
@pytest.mark.skipif(
os.environ.get("CI") == "true",
reason="Skip DiskANN partition tests in CI - requires specific hardware and large memory",
)
def test_diskann_without_partition():
"""Test DiskANN index building without partition (baseline)."""
from leann.api import LeannBuilder, LeannSearcher
with tempfile.TemporaryDirectory() as temp_dir:
index_path = str(Path(temp_dir) / "test_no_partition.leann")
# Test data - enough to trigger index building
texts = [
f"Document {i} discusses topic {i % 10} with detailed analysis of subject {i // 10}."
for i in range(500)
]
# Build without partition (is_recompute=False)
builder = LeannBuilder(
backend_name="diskann",
embedding_model="facebook/contriever",
embedding_mode="sentence-transformers",
num_neighbors=32,
search_list_size=50,
is_recompute=False, # No partition
)
for text in texts:
builder.add_text(text)
builder.build_index(index_path)
# Verify index was created
index_dir = Path(index_path).parent
assert index_dir.exists()
# Check that traditional DiskANN files exist
index_prefix = Path(index_path).stem
# Core DiskANN files (beam search index may not be created for small datasets)
required_files = [
f"{index_prefix}_disk.index",
f"{index_prefix}_pq_compressed.bin",
f"{index_prefix}_pq_pivots.bin",
]
# Check all generated files first for debugging
generated_files = [f.name for f in index_dir.glob(f"{index_prefix}*")]
print(f"Generated files: {generated_files}")
for required_file in required_files:
file_path = index_dir / required_file
assert file_path.exists(), f"Required file {required_file} not found"
# Ensure no partition files exist in non-partition mode
partition_files = [f"{index_prefix}_disk_graph.index", f"{index_prefix}_partition.bin"]
for partition_file in partition_files:
file_path = index_dir / partition_file
assert not file_path.exists(), (
f"Partition file {partition_file} should not exist in non-partition mode"
)
# Test search functionality
searcher = LeannSearcher(index_path)
results = searcher.search("topic 3 analysis", top_k=3)
assert len(results) > 0
assert all(result.score is not None and result.score != float("-inf") for result in results)
@pytest.mark.skipif(
os.environ.get("CI") == "true",
reason="Skip DiskANN partition tests in CI - requires specific hardware and large memory",
)
def test_diskann_with_partition():
"""Test DiskANN index building with automatic graph partitioning."""
from leann.api import LeannBuilder
with tempfile.TemporaryDirectory() as temp_dir:
index_path = str(Path(temp_dir) / "test_with_partition.leann")
# Test data - enough to trigger partitioning
texts = [
f"Document {i} explores subject {i % 15} with comprehensive coverage of area {i // 15}."
for i in range(500)
]
# Build with partition (is_recompute=True)
builder = LeannBuilder(
backend_name="diskann",
embedding_model="facebook/contriever",
embedding_mode="sentence-transformers",
num_neighbors=32,
search_list_size=50,
is_recompute=True, # Enable automatic partitioning
)
for text in texts:
builder.add_text(text)
builder.build_index(index_path)
# Verify index was created
index_dir = Path(index_path).parent
assert index_dir.exists()
# Check that partition files exist
index_prefix = Path(index_path).stem
partition_files = [
f"{index_prefix}_disk_graph.index", # Partitioned graph
f"{index_prefix}_partition.bin", # Partition metadata
f"{index_prefix}_pq_compressed.bin",
f"{index_prefix}_pq_pivots.bin",
]
for partition_file in partition_files:
file_path = index_dir / partition_file
assert file_path.exists(), f"Expected partition file {partition_file} not found"
# Check that large files were cleaned up (storage saving goal)
large_files = [f"{index_prefix}_disk.index", f"{index_prefix}_disk_beam_search.index"]
for large_file in large_files:
file_path = index_dir / large_file
assert not file_path.exists(), (
f"Large file {large_file} should have been deleted for storage saving"
)
# Verify required auxiliary files for partition mode exist
required_files = [
f"{index_prefix}_disk.index_medoids.bin",
f"{index_prefix}_disk.index_max_base_norm.bin",
]
for req_file in required_files:
file_path = index_dir / req_file
assert file_path.exists(), (
f"Required auxiliary file {req_file} missing for partition mode"
)
@pytest.mark.skipif(
os.environ.get("CI") == "true",
reason="Skip DiskANN partition tests in CI - requires specific hardware and large memory",
)
def test_diskann_partition_search_functionality():
"""Test that search works correctly with partitioned indices."""
from leann.api import LeannBuilder, LeannSearcher
with tempfile.TemporaryDirectory() as temp_dir:
index_path = str(Path(temp_dir) / "test_partition_search.leann")
# Create diverse test data
texts = [
"LEANN is a storage-efficient approximate nearest neighbor search system.",
"Graph partitioning helps reduce memory usage in large scale vector search.",
"DiskANN provides high-performance disk-based approximate nearest neighbor search.",
"Vector embeddings enable semantic search over unstructured text data.",
"Approximate nearest neighbor algorithms trade accuracy for speed and storage.",
] * 100 # Repeat to get enough data
# Build with partitioning
builder = LeannBuilder(
backend_name="diskann",
embedding_model="facebook/contriever",
embedding_mode="sentence-transformers",
is_recompute=True, # Enable partitioning
)
for text in texts:
builder.add_text(text)
builder.build_index(index_path)
# Test search with partitioned index
searcher = LeannSearcher(index_path)
# Test various queries
test_queries = [
("vector search algorithms", 5),
("LEANN storage efficiency", 3),
("graph partitioning memory", 4),
("approximate nearest neighbor", 7),
]
for query, top_k in test_queries:
results = searcher.search(query, top_k=top_k)
# Verify search results
assert len(results) == top_k, f"Expected {top_k} results for query '{query}'"
assert all(result.score is not None for result in results), (
"All results should have scores"
)
assert all(result.score != float("-inf") for result in results), (
"No result should have -inf score"
)
assert all(result.text is not None for result in results), (
"All results should have text"
)
# Scores should be in descending order (higher similarity first)
scores = [result.score for result in results]
assert scores == sorted(scores, reverse=True), (
"Results should be sorted by score descending"
)
@pytest.mark.skipif(
os.environ.get("CI") == "true",
reason="Skip DiskANN partition tests in CI - requires specific hardware and large memory",
)
def test_diskann_medoid_and_norm_files():
"""Test that medoid and max_base_norm files are correctly generated and used."""
import struct
from leann.api import LeannBuilder, LeannSearcher
with tempfile.TemporaryDirectory() as temp_dir:
index_path = str(Path(temp_dir) / "test_medoid_norm.leann")
# Small but sufficient dataset
texts = [f"Test document {i} with content about subject {i % 10}." for i in range(200)]
builder = LeannBuilder(
backend_name="diskann",
embedding_model="facebook/contriever",
embedding_mode="sentence-transformers",
is_recompute=True,
)
for text in texts:
builder.add_text(text)
builder.build_index(index_path)
index_dir = Path(index_path).parent
index_prefix = Path(index_path).stem
# Test medoids file
medoids_file = index_dir / f"{index_prefix}_disk.index_medoids.bin"
assert medoids_file.exists(), "Medoids file should be generated"
# Read and validate medoids file format
with open(medoids_file, "rb") as f:
nshards = struct.unpack("<I", f.read(4))[0]
one_val = struct.unpack("<I", f.read(4))[0]
medoid_id = struct.unpack("<I", f.read(4))[0]
assert nshards == 1, "Single-shot build should have 1 shard"
assert one_val == 1, "Expected value should be 1"
assert medoid_id >= 0, "Medoid ID should be valid (not hardcoded 0)"
# Test max_base_norm file
norm_file = index_dir / f"{index_prefix}_disk.index_max_base_norm.bin"
assert norm_file.exists(), "Max base norm file should be generated"
# Read and validate norm file
with open(norm_file, "rb") as f:
npts = struct.unpack("<I", f.read(4))[0]
ndims = struct.unpack("<I", f.read(4))[0]
norm_val = struct.unpack("<f", f.read(4))[0]
assert npts == 1, "Should have 1 norm point"
assert ndims == 1, "Should have 1 dimension"
assert norm_val > 0, "Norm value should be positive"
assert norm_val != float("inf"), "Norm value should be finite"
# Test that search works with these files
searcher = LeannSearcher(index_path)
results = searcher.search("test subject", top_k=3)
# Verify that scores are not -inf (which indicates norm file was loaded correctly)
assert len(results) > 0
assert all(result.score != float("-inf") for result in results), (
"Scores should not be -inf when norm file is correct"
)
@pytest.mark.skipif(
os.environ.get("CI") == "true",
reason="Skip performance comparison in CI - requires significant compute time",
)
def test_diskann_vs_hnsw_performance():
"""Compare DiskANN (with partition) vs HNSW performance."""
import time
from leann.api import LeannBuilder, LeannSearcher
with tempfile.TemporaryDirectory() as temp_dir:
# Test data
texts = [
f"Performance test document {i} covering topic {i % 20} in detail." for i in range(1000)
]
query = "performance topic test"
# Test DiskANN with partitioning
diskann_path = str(Path(temp_dir) / "perf_diskann.leann")
diskann_builder = LeannBuilder(
backend_name="diskann",
embedding_model="facebook/contriever",
embedding_mode="sentence-transformers",
is_recompute=True,
)
for text in texts:
diskann_builder.add_text(text)
start_time = time.time()
diskann_builder.build_index(diskann_path)
# Test HNSW
hnsw_path = str(Path(temp_dir) / "perf_hnsw.leann")
hnsw_builder = LeannBuilder(
backend_name="hnsw",
embedding_model="facebook/contriever",
embedding_mode="sentence-transformers",
is_recompute=True,
)
for text in texts:
hnsw_builder.add_text(text)
start_time = time.time()
hnsw_builder.build_index(hnsw_path)
# Compare search performance
diskann_searcher = LeannSearcher(diskann_path)
hnsw_searcher = LeannSearcher(hnsw_path)
# Warm up searches
diskann_searcher.search(query, top_k=5)
hnsw_searcher.search(query, top_k=5)
# Timed searches
start_time = time.time()
diskann_results = diskann_searcher.search(query, top_k=10)
diskann_search_time = time.time() - start_time
start_time = time.time()
hnsw_results = hnsw_searcher.search(query, top_k=10)
hnsw_search_time = time.time() - start_time
# Basic assertions
assert len(diskann_results) == 10
assert len(hnsw_results) == 10
assert all(r.score != float("-inf") for r in diskann_results)
assert all(r.score != float("-inf") for r in hnsw_results)
# Performance ratio (informational)
if hnsw_search_time > 0:
speed_ratio = hnsw_search_time / diskann_search_time
print(f"DiskANN search time: {diskann_search_time:.4f}s")
print(f"HNSW search time: {hnsw_search_time:.4f}s")
print(f"DiskANN is {speed_ratio:.2f}x faster than HNSW")

View File

@@ -10,8 +10,9 @@ from pathlib import Path
import pytest import pytest
def test_readme_basic_example(): @pytest.mark.parametrize("backend_name", ["hnsw", "diskann"])
"""Test the basic example from README.md.""" def test_readme_basic_example(backend_name):
"""Test the basic example from README.md with both backends."""
# Skip on macOS CI due to MPS environment issues with all-MiniLM-L6-v2 # Skip on macOS CI due to MPS environment issues with all-MiniLM-L6-v2
if os.environ.get("CI") == "true" and platform.system() == "Darwin": if os.environ.get("CI") == "true" and platform.system() == "Darwin":
pytest.skip("Skipping on macOS CI due to MPS environment issues with all-MiniLM-L6-v2") pytest.skip("Skipping on macOS CI due to MPS environment issues with all-MiniLM-L6-v2")
@@ -21,18 +22,18 @@ def test_readme_basic_example():
from leann.api import SearchResult from leann.api import SearchResult
with tempfile.TemporaryDirectory() as temp_dir: with tempfile.TemporaryDirectory() as temp_dir:
INDEX_PATH = str(Path(temp_dir) / "demo.leann") INDEX_PATH = str(Path(temp_dir) / f"demo_{backend_name}.leann")
# Build an index # Build an index
# In CI, use a smaller model to avoid memory issues # In CI, use a smaller model to avoid memory issues
if os.environ.get("CI") == "true": if os.environ.get("CI") == "true":
builder = LeannBuilder( builder = LeannBuilder(
backend_name="hnsw", backend_name=backend_name,
embedding_model="sentence-transformers/all-MiniLM-L6-v2", # Smaller model embedding_model="sentence-transformers/all-MiniLM-L6-v2", # Smaller model
dimensions=384, # Smaller dimensions dimensions=384, # Smaller dimensions
) )
else: else:
builder = LeannBuilder(backend_name="hnsw") builder = LeannBuilder(backend_name=backend_name)
builder.add_text("LEANN saves 97% storage compared to traditional vector databases.") builder.add_text("LEANN saves 97% storage compared to traditional vector databases.")
builder.add_text("Tung Tung Tung Sahur called—they need their banana-crocodile hybrid back") builder.add_text("Tung Tung Tung Sahur called—they need their banana-crocodile hybrid back")
builder.build_index(INDEX_PATH) builder.build_index(INDEX_PATH)
@@ -52,6 +53,9 @@ def test_readme_basic_example():
# Verify search results # Verify search results
assert len(results) > 0 assert len(results) > 0
assert isinstance(results[0], SearchResult) assert isinstance(results[0], SearchResult)
assert results[0].score != float("-inf"), (
f"should return valid scores, got {results[0].score}"
)
# The second text about banana-crocodile should be more relevant # The second text about banana-crocodile should be more relevant
assert "banana" in results[0].text or "crocodile" in results[0].text assert "banana" in results[0].text or "crocodile" in results[0].text
@@ -110,26 +114,31 @@ def test_backend_options():
assert len(list(Path(diskann_path).parent.glob(f"{Path(diskann_path).stem}.*"))) > 0 assert len(list(Path(diskann_path).parent.glob(f"{Path(diskann_path).stem}.*"))) > 0
def test_llm_config_simulated(): @pytest.mark.parametrize("backend_name", ["hnsw", "diskann"])
"""Test simulated LLM configuration option.""" def test_llm_config_simulated(backend_name):
"""Test simulated LLM configuration option with both backends."""
# Skip on macOS CI due to MPS environment issues with all-MiniLM-L6-v2 # Skip on macOS CI due to MPS environment issues with all-MiniLM-L6-v2
if os.environ.get("CI") == "true" and platform.system() == "Darwin": if os.environ.get("CI") == "true" and platform.system() == "Darwin":
pytest.skip("Skipping on macOS CI due to MPS environment issues with all-MiniLM-L6-v2") pytest.skip("Skipping on macOS CI due to MPS environment issues with all-MiniLM-L6-v2")
# Skip DiskANN tests in CI due to hardware requirements
if os.environ.get("CI") == "true" and backend_name == "diskann":
pytest.skip("Skip DiskANN tests in CI - requires specific hardware and large memory")
from leann import LeannBuilder, LeannChat from leann import LeannBuilder, LeannChat
with tempfile.TemporaryDirectory() as temp_dir: with tempfile.TemporaryDirectory() as temp_dir:
# Build a simple index # Build a simple index
index_path = str(Path(temp_dir) / "test.leann") index_path = str(Path(temp_dir) / f"test_{backend_name}.leann")
# Use smaller model in CI to avoid memory issues # Use smaller model in CI to avoid memory issues
if os.environ.get("CI") == "true": if os.environ.get("CI") == "true":
builder = LeannBuilder( builder = LeannBuilder(
backend_name="hnsw", backend_name=backend_name,
embedding_model="sentence-transformers/all-MiniLM-L6-v2", embedding_model="sentence-transformers/all-MiniLM-L6-v2",
dimensions=384, dimensions=384,
) )
else: else:
builder = LeannBuilder(backend_name="hnsw") builder = LeannBuilder(backend_name=backend_name)
builder.add_text("Test document for LLM testing") builder.add_text("Test document for LLM testing")
builder.build_index(index_path) builder.build_index(index_path)

7333
uv.lock generated
View File

File diff suppressed because it is too large Load Diff