Compare commits

..

20 Commits

Author SHA1 Message Date
aakash
360fdf575c feat: Add ColQwen multimodal PDF retrieval integration 2025-12-19 13:54:38 -08:00
aakash
0175bc9c20 docs: Add ColQwen guide to docs directory
Add COLQWEN_GUIDE.md to docs/ directory for proper documentation structure.
This file is referenced in the README and needs to be tracked in git.
2025-12-07 09:57:14 -08:00
aakash
af47dfdde7 fix: Update ColQwen guide link to docs/ directory 2025-12-06 03:33:02 -08:00
aakash
f13bd02fbd docs: Add ColQwen multimodal PDF retrieval to README
Add brief introduction and usage guide for ColQwen integration,
similar to other RAG application sections in the README.

- Quick start examples for building, searching, and interactive Q&A
- Setup instructions with prerequisites
- Model options (ColQwen2 vs ColPali)
- Link to detailed ColQwen guide
2025-12-06 03:28:08 -08:00
aakash
86287d8832 Revert unnecessary faiss submodule update
Reset faiss submodule to match main branch to avoid unnecessary changes
2025-12-03 18:32:04 -08:00
aakash
13beb98164 Add CLIP-based image RAG application
- Add apps/image_rag.py for indexing and searching images using CLIP embeddings
- Supports text-based image search queries
- Uses CLIP ViT-L/14 model via sentence-transformers
- Follows the same pattern as other RAG apps in the apps directory
- Addresses feature request for CLIP support in apps (issue #94)
2025-11-17 13:52:44 -08:00
aakash
9b7353f336 Fix linting errors in colqwen_rag.py and test_colqwen_reproduction.py
- Add noqa comments for E402 errors (imports after sys.path modifications)
- Remove unused variable assignment in colqwen_rag.py
- Use importlib.util.find_spec for dependency checks instead of unused imports
- Fix import ordering in test_colqwen_reproduction.py
2025-11-11 05:12:49 -08:00
aakash
9dd0e0b26f feat: Add ColQwen multimodal PDF retrieval integration
- Add ColQwenRAG class with easy-to-use CLI for multimodal PDF retrieval
- Support for both ColQwen2 and ColPali models with automatic device selection
- MPS optimization for Apple Silicon with memory-efficient loading
- Complete pipeline: PDF→images→embeddings→HNSW index→search
- Multi-vector indexing for fine-grained document matching
- Comprehensive user guide and reproduction test script
- Resolves #119: ColQwen Doc and Support Management

Features:
- python -m apps.colqwen_rag build --pdfs ./pdfs/ --index my_index
- python -m apps.colqwen_rag search my_index "query text"
- python -m apps.colqwen_rag ask my_index --interactive
- Automatic CPU fallback for memory constraints
- Robust error handling and progress tracking
2025-11-10 13:31:58 -08:00
yichuan-w
dc6c9f696e update some search in copali 2025-11-08 08:53:03 +00:00
CalebZ9909
2406c41eef Update faiss submodule to latest commit
🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-08 00:47:21 +00:00
Andy Lee
d4f5f2896f Faster Update (#148)
* stash

* stash

* add std err in add and trace progress

* fix.

* docs

* style: format

* docs

* better figs

* better figs

* update results

* fotmat

---------

Co-authored-by: yichuan-w <yichuan-w@users.noreply.github.com>
2025-11-05 13:37:47 -08:00
Aakash Suresh
366984e92e Merge pull request #154 from yichuan-w/fix/chunking-token-limit-behavior
Fix/chunking token limit behavior
2025-11-02 21:37:47 -08:00
aakash
64b92a04a7 fixing chunking token issues within limit for embedding models 2025-10-31 17:15:00 -07:00
ww26
a85d0ad4a7 Feature/optimize ollama batching (#152)
* feat: add metadata output to search results

- Add --show-metadata flag to display file paths in search results
- Preserve document metadata (file_path, file_name, timestamps) during chunking
- Update MCP tool schema to support show_metadata parameter
- Enhance CLI search output to display metadata when requested
- Fix pre-existing bug: args.backend -> args.backend_name

Resolves yichuan-w/LEANN#144

* fix: resolve ZMQ linking issues in Python extension

- Use pkg_check_modules IMPORTED_TARGET to create PkgConfig::ZMQ
- Set PKG_CONFIG_PATH to prioritize ARM64 Homebrew on Apple Silicon
- Override macOS -undefined dynamic_lookup to force proper symbol resolution
- Use PUBLIC linkage for ZMQ in faiss library for transitive linking
- Mark cppzmq includes as SYSTEM to suppress warnings

Fixes editable install ZMQ symbol errors while maintaining compatibility
across Linux, macOS Intel, and macOS ARM64 platforms.

* style: apply ruff formatting

* chore: update faiss submodule to use ww2283 fork

Use ww2283/faiss fork with fix/zmq-linking branch to resolve CI checkout
failures. The ZMQ linking fixes are not yet merged upstream.

* feat: implement true batch processing for Ollama embeddings

Migrate from deprecated /api/embeddings to modern /api/embed endpoint
which supports batch inputs. This reduces HTTP overhead by sending
32 texts per request instead of making individual API calls.

Changes:
- Update endpoint from /api/embeddings to /api/embed
- Change parameter from 'prompt' (single) to 'input' (array)
- Update response parsing for batch embeddings array
- Increase timeout to 60s for batch processing
- Improve error handling for batch requests

Performance:
- Reduces API calls by 32x (batch size)
- Eliminates HTTP connection overhead per text
- Note: Ollama still processes batch items sequentially internally

Related: #151

* fall back to original faiss as i merge the PR

---------

Co-authored-by: yichuan520030910320 <yichuan_wang@berkeley.edu>
2025-10-30 16:39:14 -07:00
yichuan-w
dbb5f4d352 Fix CI failure by removing paru-bin submodule
Remove paru-bin directory that was incorrectly added as a git submodule.
This directory is an AUR build artifact and should not be tracked.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-10-25 14:51:06 -07:00
yichuan-w
f180b83589 add deep wiki 2025-10-25 14:46:17 -07:00
CelineNi2
abf312d998 Display context chunks in ask and search results (#149)
* Printing querying time

* Adding source name to chunks

Adding source name as metadata to chunks, then printing the sources when searching

* Printing the context provided to LLM

To check the data transmitted to the LLMs : display the relevance, ID, content, and source of each sent chunk.

* Correcting source as metadata for chunks

* Applying ruff format

* Applying Ruff formatting

* Ruff formatting
2025-10-23 15:03:59 -07:00
Aakash Suresh
ab251ab751 Fix/twitter bookmarks anchor link (#143)
* fix: Fix Twitter bookmarks anchor link

- Convert Twitter Bookmarks from collapsible details to proper header
- Update internal link to match new anchor format
- Ensures external links to #twitter-bookmarks-your-personal-tweet-library work correctly

Fixes broken link: https://github.com/yichuan-w/LEANN?tab=readme-ov-file#twitter-bookmarks-your-personal-tweet-library

* fix: Fix Slack messages anchor link as well

- Convert Slack Messages from collapsible details to proper header
- Update internal link to match new anchor format
- Ensures external links to #slack-messages-search-your-team-conversations work correctly

Both Twitter and Slack MCP sections now have reliable anchor links.

* fix: Point Slack and Twitter links to main MCP section

- Both Slack and Twitter are subsections under MCP Integration
- Links should point to #mcp-integration-rag-on-live-data-from-any-platform
- Users will land on the MCP section and can find both Slack and Twitter subsections there

This matches the actual document structure where Slack and Twitter are under the MCP Integration section.

* Improve Slack MCP integration with retry logic and comprehensive setup guide

- Add retry mechanism with exponential backoff for cache sync issues
- Handle 'users cache is not ready yet' errors gracefully
- Add max-retries and retry-delay CLI arguments for better control
- Create comprehensive Slack setup guide with troubleshooting
- Update README with link to detailed setup guide
- Improve error messages and user experience

* Fix trailing whitespace in slack setup guide

Pre-commit hooks formatting fixes

* Add comprehensive Slack setup guide with success screenshot

- Create detailed setup guide with step-by-step instructions
- Add troubleshooting section for common issues like cache sync errors
- Include real terminal output example from successful integration
- Add screenshot showing VS Code interface with Slack channel data
- Remove excessive emojis for more professional documentation
- Document retry logic improvements and CLI arguments

* Fix formatting issues in Slack setup guide

- Remove trailing whitespace
- Fix end of file formatting
- Pre-commit hooks formatting fixes

* Add real RAG example showing intelligent Slack query functionality

- Add detailed example of asking 'What is LEANN about?'
- Show retrieved messages from Slack channels
- Demonstrate intelligent answer generation based on context
- Add command example for running real RAG queries
- Explain the 4-step process: retrieve, index, generate, cite

* Update Slack setup guide with bot invitation requirements

- Add important section about inviting bot to channels before RAG queries
- Explain the 'not_in_channel' errors and their meaning
- Provide clear steps for bot invitation process
- Document realistic scenario where bot needs explicit channel access
- Update documentation to be more professional and less cursor-style

* Docs: add real RAG example for Sky Lab #random

- Embed screenshot videos/rag-sky-random.png
- Add step-by-step commands and notes
- Include helper test script tests/test_channel_by_id_or_name.py
- Redact example tokens from docs

* Docs/CI: fix broken image paths and ruff lint\n\n- Move screenshot to docs/videos and update references\n- Remove obsolete rag-query-results image\n- Rename variable to satisfy ruff

* Docs: fix image path for lychee (use videos/ relative under docs/)

* Docs: finalize Slack setup guide with Sky random RAG example and image path fixes\n\n- Redact example tokens from docs

* Fix Slack MCP integration and update documentation

- Fix SlackMCPReader to use conversations_history instead of channels_list
- Add fallback imports for leann.interactive_utils and leann.settings
- Update slack-setup-guide.md with real screenshots and improved text
- Remove old screenshot files

* Add Slack integration screenshots to docs/videos

- Add slack_integration.png showing RAG query results
- Add slack_integration_2.png showing additional demo functionality
- Fixes lychee link checker errors for missing image files

* Update Slack integration screenshot with latest changes

* Remove test_channel_by_id_or_name.py

- Clean up temporary test file that was used for debugging
- Keep only the main slack_rag.py application for production use

* Update Slack RAG example to show LEANN announcement retrieval

- Change query from 'PUBPOL 290' to 'What is LEANN about?' for more challenging retrieval
- Update command to use python -m apps.slack_rag instead of test script
- Add expected response showing Yichuan Wang's LEANN announcement message
- Emphasize this demonstrates ability to find specific announcements in conversation history
- Update description to highlight challenging query capabilities

* Update Slack RAG integration with improved CSV parsing and new screenshots

- Fixed CSV message parsing in slack_mcp_reader.py to properly handle individual messages
- Updated slack_rag.py to filter empty channel strings
- Enhanced slack-setup-guide.md with two new query examples:
  - Advisor Models query: 'train black-box models to adopt to your personal data'
  - Barbarians at the Gate query: 'AI-driven research systems ADRS'
- Replaced old screenshots with four new ones showing both query examples
- Updated documentation to use User OAuth Token (xoxp-) instead of Bot Token (xoxb-)
- Added proper command examples with --no-concatenate-conversations and --force-rebuild flags

* Update Slack RAG documentation with Ollama integration and new screenshots

- Updated slack-setup-guide.md with comprehensive Ollama setup instructions
- Added 6 new screenshots showing complete RAG workflow:
  - Command setup, search results, and LLM responses for both queries
- Removed simulated LLM references, now uses real Ollama with llama3.2:1b
- Enhanced documentation with step-by-step Ollama installation
- Updated troubleshooting checklist to include Ollama-specific checks
- Fixed command syntax and added proper Ollama configuration
- Demonstrates working Slack RAG with real AI-generated responses

* Remove Key Features section from Slack RAG examples

- Simplified documentation by removing the bullet point list
- Keeps the focus on the actual examples and screenshots
2025-10-19 11:47:29 -07:00
CelineNi2
28085f6f04 Add messages regarding the use of token during query (#147)
* Add messages regarding the use of token during query

* fix: apply ruff format
2025-10-15 16:48:48 -07:00
CelineNi2
6495833887 Changing the option name "--backend" for "--backend-name" as written in the documentation (#146) 2025-10-14 13:35:10 -07:00
24 changed files with 3735 additions and 92 deletions

3
.gitignore vendored
View File

@@ -105,3 +105,6 @@ apps/multimodal/vision-based-pdf-multi-vector/multi-vector-colpali-native-weavia
# The following line used to force-add a large demo PDF; remove it to satisfy pre-commit:
# !apps/multimodal/vision-based-pdf-multi-vector/pdfs/2004.12832v2.pdf
!apps/multimodal/vision-based-pdf-multi-vector/fig/*
# AUR build directory (Arch Linux)
paru-bin/

View File

@@ -24,7 +24,7 @@ LEANN is an innovative vector database that democratizes personal AI. Transform
LEANN achieves this through *graph-based selective recomputation* with *high-degree preserving pruning*, computing embeddings on-demand instead of storing them all. [Illustration Fig →](#-architecture--how-it-works) | [Paper →](https://arxiv.org/abs/2506.08276)
**Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can semantic search your **[file system](#-personal-data-manager-process-any-documents-pdf-txt-md)**, **[emails](#-your-personal-email-secretary-rag-on-apple-mail)**, **[browser history](#-time-machine-for-the-web-rag-your-entire-browser-history)**, **[chat history](#-wechat-detective-unlock-your-golden-memories)** ([WeChat](#-wechat-detective-unlock-your-golden-memories), [iMessage](#-imessage-history-your-personal-conversation-archive)), **[agent memory](#-chatgpt-chat-history-your-personal-ai-conversation-archive)** ([ChatGPT](#-chatgpt-chat-history-your-personal-ai-conversation-archive), [Claude](#-claude-chat-history-your-personal-ai-conversation-archive)), **[live data](#mcp-integration-rag-on-live-data-from-any-platform)** ([Slack](#mcp-integration-rag-on-live-data-from-any-platform), [Twitter](#mcp-integration-rag-on-live-data-from-any-platform)), **[codebase](#-claude-code-integration-transform-your-development-workflow)**\* , or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy.
**Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can semantic search your **[file system](#-personal-data-manager-process-any-documents-pdf-txt-md)**, **[emails](#-your-personal-email-secretary-rag-on-apple-mail)**, **[browser history](#-time-machine-for-the-web-rag-your-entire-browser-history)**, **[chat history](#-wechat-detective-unlock-your-golden-memories)** ([WeChat](#-wechat-detective-unlock-your-golden-memories), [iMessage](#-imessage-history-your-personal-conversation-archive)), **[agent memory](#-chatgpt-chat-history-your-personal-ai-conversation-archive)** ([ChatGPT](#-chatgpt-chat-history-your-personal-ai-conversation-archive), [Claude](#-claude-chat-history-your-personal-ai-conversation-archive)), **[live data](#mcp-integration-rag-on-live-data-from-any-platform)** ([Slack](#slack-messages-search-your-team-conversations), [Twitter](#-twitter-bookmarks-your-personal-tweet-library)), **[codebase](#-claude-code-integration-transform-your-development-workflow)**\* , or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy.
\* Claude Code only supports basic `grep`-style keyword search. **LEANN** is a drop-in **semantic search MCP service fully compatible with Claude Code**, unlocking intelligent retrieval without changing your workflow. 🔥 Check out [the easy setup →](packages/leann-mcp/README.md)
@@ -379,6 +379,54 @@ python -m apps.code_rag --repo-dir "./my_codebase" --query "How does authenticat
</details>
### 🎨 ColQwen: Multimodal PDF Retrieval with Vision-Language Models
Search through PDFs using both text and visual understanding with ColQwen2/ColPali models. Perfect for research papers, technical documents, and any PDFs with complex layouts, figures, or diagrams.
> **🍎 Mac Users**: ColQwen is optimized for Apple Silicon with MPS acceleration for faster inference!
```bash
# Build index from PDFs
python -m apps.colqwen_rag build --pdfs ./my_papers/ --index research_papers
# Search with text queries
python -m apps.colqwen_rag search research_papers "How does attention mechanism work?"
# Interactive Q&A
python -m apps.colqwen_rag ask research_papers --interactive
```
<details>
<summary><strong>📋 Click to expand: ColQwen Setup & Usage</strong></summary>
#### Prerequisites
```bash
# Install dependencies
uv pip install colpali_engine pdf2image pillow matplotlib qwen_vl_utils einops seaborn
brew install poppler # macOS only, for PDF processing
```
#### Build Index
```bash
python -m apps.colqwen_rag build \
--pdfs ./pdf_directory/ \
--index my_index \
--model colqwen2 # or colpali
```
#### Search
```bash
python -m apps.colqwen_rag search my_index "your question here" --top-k 5
```
#### Models
- **ColQwen2** (`colqwen2`): Latest vision-language model with improved performance
- **ColPali** (`colpali`): Proven multimodal retriever
For detailed usage, see the [ColQwen Guide](docs/COLQWEN_GUIDE.md).
</details>
### 📧 Your Personal Email Secretary: RAG on Apple Mail!
> **Note:** The examples below currently support macOS only. Windows support coming soon.
@@ -1213,3 +1261,7 @@ This work is done at [**Berkeley Sky Computing Lab**](https://sky.cs.berkeley.ed
<p align="center">
Made with ❤️ by the Leann team
</p>
## 🤖 Explore LEANN with AI
LEANN is indexed on [DeepWiki](https://deepwiki.com/yichuan-w/LEANN), so you can ask questions to LLMs using Deep Research to explore the codebase and get help to add new features.

View File

@@ -180,14 +180,14 @@ class BaseRAGExample(ABC):
ast_group.add_argument(
"--ast-chunk-size",
type=int,
default=512,
help="Maximum characters per AST chunk (default: 512)",
default=300,
help="Maximum CHARACTERS per AST chunk (default: 300). Final chunks may be larger due to overlap. For 512 token models: recommended 300 chars",
)
ast_group.add_argument(
"--ast-chunk-overlap",
type=int,
default=64,
help="Overlap between AST chunks (default: 64)",
help="Overlap between AST chunks in CHARACTERS (default: 64). Added to chunk size, not included in it",
)
ast_group.add_argument(
"--code-file-extensions",

364
apps/colqwen_rag.py Normal file
View File

@@ -0,0 +1,364 @@
#!/usr/bin/env python3
"""
ColQwen RAG - Easy-to-use multimodal PDF retrieval with ColQwen2/ColPali
Usage:
python -m apps.colqwen_rag build --pdfs ./my_pdfs/ --index my_index
python -m apps.colqwen_rag search my_index "How does attention work?"
python -m apps.colqwen_rag ask my_index --interactive
"""
import argparse
import os
import sys
from pathlib import Path
from typing import Optional, cast
# Add LEANN packages to path
_repo_root = Path(__file__).resolve().parents[1]
_leann_core_src = _repo_root / "packages" / "leann-core" / "src"
_leann_hnsw_pkg = _repo_root / "packages" / "leann-backend-hnsw"
if str(_leann_core_src) not in sys.path:
sys.path.append(str(_leann_core_src))
if str(_leann_hnsw_pkg) not in sys.path:
sys.path.append(str(_leann_hnsw_pkg))
import torch # noqa: E402
from colpali_engine import ColPali, ColPaliProcessor, ColQwen2, ColQwen2Processor # noqa: E402
from colpali_engine.utils.torch_utils import ListDataset # noqa: E402
from pdf2image import convert_from_path # noqa: E402
from PIL import Image # noqa: E402
from torch.utils.data import DataLoader # noqa: E402
from tqdm import tqdm # noqa: E402
# Import the existing multi-vector implementation
sys.path.append(str(_repo_root / "apps" / "multimodal" / "vision-based-pdf-multi-vector"))
from leann_multi_vector import LeannMultiVector # noqa: E402
class ColQwenRAG:
"""Easy-to-use ColQwen RAG system for multimodal PDF retrieval."""
def __init__(self, model_type: str = "colpali"):
"""
Initialize ColQwen RAG system.
Args:
model_type: "colqwen2" or "colpali"
"""
self.model_type = model_type
self.device = self._get_device()
# Use float32 on MPS to avoid memory issues, float16 on CUDA, bfloat16 on CPU
if self.device.type == "mps":
self.dtype = torch.float32
elif self.device.type == "cuda":
self.dtype = torch.float16
else:
self.dtype = torch.bfloat16
print(f"🚀 Initializing {model_type.upper()} on {self.device} with {self.dtype}")
# Load model and processor with MPS-optimized settings
try:
if model_type == "colqwen2":
self.model_name = "vidore/colqwen2-v1.0"
if self.device.type == "mps":
# For MPS, load on CPU first then move to avoid memory allocation issues
self.model = ColQwen2.from_pretrained(
self.model_name,
torch_dtype=self.dtype,
device_map="cpu",
low_cpu_mem_usage=True,
).eval()
self.model = self.model.to(self.device)
else:
self.model = ColQwen2.from_pretrained(
self.model_name,
torch_dtype=self.dtype,
device_map=self.device,
low_cpu_mem_usage=True,
).eval()
self.processor = ColQwen2Processor.from_pretrained(self.model_name)
else: # colpali
self.model_name = "vidore/colpali-v1.2"
if self.device.type == "mps":
# For MPS, load on CPU first then move to avoid memory allocation issues
self.model = ColPali.from_pretrained(
self.model_name,
torch_dtype=self.dtype,
device_map="cpu",
low_cpu_mem_usage=True,
).eval()
self.model = self.model.to(self.device)
else:
self.model = ColPali.from_pretrained(
self.model_name,
torch_dtype=self.dtype,
device_map=self.device,
low_cpu_mem_usage=True,
).eval()
self.processor = ColPaliProcessor.from_pretrained(self.model_name)
except Exception as e:
if "memory" in str(e).lower() or "offload" in str(e).lower():
print(f"⚠️ Memory constraint on {self.device}, using CPU with optimizations...")
self.device = torch.device("cpu")
self.dtype = torch.float32
if model_type == "colqwen2":
self.model = ColQwen2.from_pretrained(
self.model_name,
torch_dtype=self.dtype,
device_map="cpu",
low_cpu_mem_usage=True,
).eval()
else:
self.model = ColPali.from_pretrained(
self.model_name,
torch_dtype=self.dtype,
device_map="cpu",
low_cpu_mem_usage=True,
).eval()
else:
raise
def _get_device(self):
"""Auto-select best available device."""
if torch.cuda.is_available():
return torch.device("cuda")
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
return torch.device("mps")
else:
return torch.device("cpu")
def build_index(self, pdf_paths: list[str], index_name: str, pages_dir: Optional[str] = None):
"""
Build multimodal index from PDF files.
Args:
pdf_paths: List of PDF file paths
index_name: Name for the index
pages_dir: Directory to save page images (optional)
"""
print(f"Building index '{index_name}' from {len(pdf_paths)} PDFs...")
# Convert PDFs to images
all_images = []
all_metadata = []
if pages_dir:
os.makedirs(pages_dir, exist_ok=True)
for pdf_path in tqdm(pdf_paths, desc="Converting PDFs"):
try:
images = convert_from_path(pdf_path, dpi=150)
pdf_name = Path(pdf_path).stem
for i, image in enumerate(images):
# Save image if pages_dir specified
if pages_dir:
image_path = Path(pages_dir) / f"{pdf_name}_page_{i + 1}.png"
image.save(image_path)
all_images.append(image)
all_metadata.append(
{
"pdf_path": pdf_path,
"pdf_name": pdf_name,
"page_number": i + 1,
"image_path": str(image_path) if pages_dir else None,
}
)
except Exception as e:
print(f"❌ Error processing {pdf_path}: {e}")
continue
print(f"📄 Converted {len(all_images)} pages from {len(pdf_paths)} PDFs")
print(f"All metadata: {all_metadata}")
# Generate embeddings
print("🧠 Generating embeddings...")
embeddings = self._embed_images(all_images)
# Build LEANN index
print("🔍 Building LEANN index...")
leann_mv = LeannMultiVector(
index_path=index_name,
dim=embeddings.shape[-1],
embedding_model_name=self.model_type,
)
# Create collection and insert data
leann_mv.create_collection()
for i, (embedding, metadata) in enumerate(zip(embeddings, all_metadata)):
data = {
"doc_id": i,
"filepath": metadata.get("image_path", ""),
"colbert_vecs": embedding.numpy(), # Convert tensor to numpy
}
leann_mv.insert(data)
# Build the index
leann_mv.create_index()
print(f"✅ Index '{index_name}' built successfully!")
return leann_mv
def search(self, index_name: str, query: str, top_k: int = 5):
"""
Search the index with a text query.
Args:
index_name: Name of the index to search
query: Text query
top_k: Number of results to return
"""
print(f"🔍 Searching '{index_name}' for: '{query}'")
# Load index
leann_mv = LeannMultiVector(
index_path=index_name,
dim=128, # Will be updated when loading
embedding_model_name=self.model_type,
)
# Generate query embedding
query_embedding = self._embed_query(query)
# Search (returns list of (score, doc_id) tuples)
search_results = leann_mv.search(query_embedding.numpy(), topk=top_k)
# Display results
print(f"\n📋 Top {len(search_results)} results:")
for i, (score, doc_id) in enumerate(search_results, 1):
# Get metadata for this doc_id (we need to load the metadata)
print(f"{i}. Score: {score:.3f} | Doc ID: {doc_id}")
return search_results
def ask(self, index_name: str, interactive: bool = False):
"""
Interactive Q&A with the indexed documents.
Args:
index_name: Name of the index to query
interactive: Whether to run in interactive mode
"""
print(f"💬 ColQwen Chat with '{index_name}'")
if interactive:
print("Type 'quit' to exit, 'help' for commands")
while True:
try:
query = input("\n🤔 Your question: ").strip()
if query.lower() in ["quit", "exit", "q"]:
break
elif query.lower() == "help":
print("Commands: quit/exit/q (exit), help (this message)")
continue
elif not query:
continue
self.search(index_name, query, top_k=3)
# TODO: Add answer generation with Qwen-VL
print("\n💡 For detailed answers, we can integrate Qwen-VL here!")
except KeyboardInterrupt:
print("\n👋 Goodbye!")
break
else:
query = input("🤔 Your question: ").strip()
if query:
self.search(index_name, query)
def _embed_images(self, images: list[Image.Image]) -> torch.Tensor:
"""Generate embeddings for a list of images."""
dataset = ListDataset(images)
dataloader = DataLoader(dataset, batch_size=1, shuffle=False, collate_fn=lambda x: x)
embeddings = []
with torch.no_grad():
for batch in tqdm(dataloader, desc="Embedding images"):
batch_images = cast(list, batch)
batch_inputs = self.processor.process_images(batch_images).to(self.device)
batch_embeddings = self.model(**batch_inputs)
embeddings.append(batch_embeddings.cpu())
return torch.cat(embeddings, dim=0)
def _embed_query(self, query: str) -> torch.Tensor:
"""Generate embedding for a text query."""
with torch.no_grad():
query_inputs = self.processor.process_queries([query]).to(self.device)
query_embedding = self.model(**query_inputs)
return query_embedding.cpu()
def main():
parser = argparse.ArgumentParser(description="ColQwen RAG - Easy multimodal PDF retrieval")
subparsers = parser.add_subparsers(dest="command", help="Available commands")
# Build command
build_parser = subparsers.add_parser("build", help="Build index from PDFs")
build_parser.add_argument("--pdfs", required=True, help="Directory containing PDF files")
build_parser.add_argument("--index", required=True, help="Index name")
build_parser.add_argument(
"--model", choices=["colqwen2", "colpali"], default="colqwen2", help="Model to use"
)
build_parser.add_argument("--pages-dir", help="Directory to save page images")
# Search command
search_parser = subparsers.add_parser("search", help="Search the index")
search_parser.add_argument("index", help="Index name")
search_parser.add_argument("query", help="Search query")
search_parser.add_argument("--top-k", type=int, default=5, help="Number of results")
search_parser.add_argument(
"--model", choices=["colqwen2", "colpali"], default="colqwen2", help="Model to use"
)
# Ask command
ask_parser = subparsers.add_parser("ask", help="Interactive Q&A")
ask_parser.add_argument("index", help="Index name")
ask_parser.add_argument("--interactive", action="store_true", help="Interactive mode")
ask_parser.add_argument(
"--model", choices=["colqwen2", "colpali"], default="colqwen2", help="Model to use"
)
args = parser.parse_args()
if not args.command:
parser.print_help()
return
# Initialize ColQwen RAG
if args.command == "build":
colqwen = ColQwenRAG(args.model)
# Get PDF files
pdf_dir = Path(args.pdfs)
if pdf_dir.is_file() and pdf_dir.suffix.lower() == ".pdf":
pdf_paths = [str(pdf_dir)]
elif pdf_dir.is_dir():
pdf_paths = [str(p) for p in pdf_dir.glob("*.pdf")]
else:
print(f"❌ Invalid PDF path: {args.pdfs}")
return
if not pdf_paths:
print(f"❌ No PDF files found in {args.pdfs}")
return
colqwen.build_index(pdf_paths, args.index, args.pages_dir)
elif args.command == "search":
colqwen = ColQwenRAG(args.model)
colqwen.search(args.index, args.query, args.top_k)
elif args.command == "ask":
colqwen = ColQwenRAG(args.model)
colqwen.ask(args.index, args.interactive)
if __name__ == "__main__":
main()

218
apps/image_rag.py Normal file
View File

@@ -0,0 +1,218 @@
#!/usr/bin/env python3
"""
CLIP Image RAG Application
This application enables RAG (Retrieval-Augmented Generation) on images using CLIP embeddings.
You can index a directory of images and search them using text queries.
Usage:
python -m apps.image_rag --image-dir ./my_images/ --query "a sunset over mountains"
python -m apps.image_rag --image-dir ./my_images/ --interactive
"""
import argparse
import pickle
import tempfile
from pathlib import Path
import numpy as np
from PIL import Image
from sentence_transformers import SentenceTransformer
from tqdm import tqdm
from apps.base_rag_example import BaseRAGExample
class ImageRAG(BaseRAGExample):
"""
RAG application for images using CLIP embeddings.
This class provides a complete RAG pipeline for image data, including
CLIP embedding generation, indexing, and text-based image search.
"""
def __init__(self):
super().__init__(
name="Image RAG",
description="RAG application for images using CLIP embeddings",
default_index_name="image_index",
)
# Override default embedding model to use CLIP
self.embedding_model_default = "clip-ViT-L-14"
self.embedding_mode_default = "sentence-transformers"
self._image_data: list[dict] = []
def _add_specific_arguments(self, parser: argparse.ArgumentParser):
"""Add image-specific arguments."""
image_group = parser.add_argument_group("Image Parameters")
image_group.add_argument(
"--image-dir",
type=str,
required=True,
help="Directory containing images to index",
)
image_group.add_argument(
"--image-extensions",
type=str,
nargs="+",
default=[".jpg", ".jpeg", ".png", ".gif", ".bmp", ".webp"],
help="Image file extensions to process (default: .jpg .jpeg .png .gif .bmp .webp)",
)
image_group.add_argument(
"--batch-size",
type=int,
default=32,
help="Batch size for CLIP embedding generation (default: 32)",
)
async def load_data(self, args) -> list[str]:
"""Load images, generate CLIP embeddings, and return text descriptions."""
self._image_data = self._load_images_and_embeddings(args)
return [entry["text"] for entry in self._image_data]
def _load_images_and_embeddings(self, args) -> list[dict]:
"""Helper to process images and produce embeddings/metadata."""
image_dir = Path(args.image_dir)
if not image_dir.exists():
raise ValueError(f"Image directory does not exist: {image_dir}")
print(f"📸 Loading images from {image_dir}...")
# Find all image files
image_files = []
for ext in args.image_extensions:
image_files.extend(image_dir.rglob(f"*{ext}"))
image_files.extend(image_dir.rglob(f"*{ext.upper()}"))
if not image_files:
raise ValueError(
f"No images found in {image_dir} with extensions {args.image_extensions}"
)
print(f"✅ Found {len(image_files)} images")
# Limit if max_items is set
if args.max_items > 0:
image_files = image_files[: args.max_items]
print(f"📊 Processing {len(image_files)} images (limited by --max-items)")
# Load CLIP model
print("🔍 Loading CLIP model...")
model = SentenceTransformer(self.embedding_model_default)
# Process images and generate embeddings
print("🖼️ Processing images and generating embeddings...")
image_data = []
batch_images = []
batch_paths = []
for image_path in tqdm(image_files, desc="Processing images"):
try:
image = Image.open(image_path).convert("RGB")
batch_images.append(image)
batch_paths.append(image_path)
# Process in batches
if len(batch_images) >= args.batch_size:
embeddings = model.encode(
batch_images,
convert_to_numpy=True,
normalize_embeddings=True,
batch_size=args.batch_size,
show_progress_bar=False,
)
for img_path, embedding in zip(batch_paths, embeddings):
image_data.append(
{
"text": f"Image: {img_path.name}\nPath: {img_path}",
"metadata": {
"image_path": str(img_path),
"image_name": img_path.name,
"image_dir": str(image_dir),
},
"embedding": embedding.astype(np.float32),
}
)
batch_images = []
batch_paths = []
except Exception as e:
print(f"⚠️ Failed to process {image_path}: {e}")
continue
# Process remaining images
if batch_images:
embeddings = model.encode(
batch_images,
convert_to_numpy=True,
normalize_embeddings=True,
batch_size=len(batch_images),
show_progress_bar=False,
)
for img_path, embedding in zip(batch_paths, embeddings):
image_data.append(
{
"text": f"Image: {img_path.name}\nPath: {img_path}",
"metadata": {
"image_path": str(img_path),
"image_name": img_path.name,
"image_dir": str(image_dir),
},
"embedding": embedding.astype(np.float32),
}
)
print(f"✅ Processed {len(image_data)} images")
return image_data
async def build_index(self, args, texts: list[str]) -> str:
"""Build index using pre-computed CLIP embeddings."""
from leann.api import LeannBuilder
if not self._image_data or len(self._image_data) != len(texts):
raise RuntimeError("No image data found. Make sure load_data() ran successfully.")
print("🔨 Building LEANN index with CLIP embeddings...")
builder = LeannBuilder(
backend_name=args.backend_name,
embedding_model=self.embedding_model_default,
embedding_mode=self.embedding_mode_default,
is_recompute=False,
distance_metric="cosine",
graph_degree=args.graph_degree,
build_complexity=args.build_complexity,
is_compact=not args.no_compact,
)
for text, data in zip(texts, self._image_data):
builder.add_text(text=text, metadata=data["metadata"])
ids = [str(i) for i in range(len(self._image_data))]
embeddings = np.array([data["embedding"] for data in self._image_data], dtype=np.float32)
with tempfile.NamedTemporaryFile(mode="wb", suffix=".pkl", delete=False) as f:
pickle.dump((ids, embeddings), f)
pkl_path = f.name
try:
index_path = str(Path(args.index_dir) / f"{self.default_index_name}.leann")
builder.build_index_from_embeddings(index_path, pkl_path)
print(f"✅ Index built successfully at {index_path}")
return index_path
finally:
Path(pkl_path).unlink()
def main():
"""Main entry point for the image RAG application."""
import asyncio
app = ImageRAG()
asyncio.run(app.run())
if __name__ == "__main__":
main()

View File

@@ -1,6 +1,7 @@
from __future__ import annotations
import sys
import concurrent.futures
from pathlib import Path
import numpy as np
@@ -45,6 +46,7 @@ class LeannMultiVector:
"is_recompute": is_recompute,
}
self._labels_meta: list[dict] = []
self._docid_to_indices: dict[int, list[int]] | None = None
def _meta_dict(self) -> dict:
return {
@@ -80,6 +82,10 @@ class LeannMultiVector:
index_path_obj = Path(self.index_path)
return index_path_obj.parent / f"{index_path_obj.name}.meta.json"
def _embeddings_path(self) -> Path:
index_path_obj = Path(self.index_path)
return index_path_obj.parent / f"{index_path_obj.name}.emb.npy"
def create_index(self) -> None:
if not self._pending_items:
return
@@ -121,6 +127,9 @@ class LeannMultiVector:
with open(self._labels_path(), "w", encoding="utf-8") as f:
_json.dump(labels_meta, f)
# Persist embeddings for exact reranking
np.save(self._embeddings_path(), embeddings_np)
self._labels_meta = labels_meta
def _load_labels_meta_if_needed(self) -> None:
@@ -133,6 +142,19 @@ class LeannMultiVector:
with open(labels_path, encoding="utf-8") as f:
self._labels_meta = _json.load(f)
def _build_docid_to_indices_if_needed(self) -> None:
if self._docid_to_indices is not None:
return
self._load_labels_meta_if_needed()
mapping: dict[int, list[int]] = {}
for idx, meta in enumerate(self._labels_meta):
try:
doc_id = int(meta["doc_id"]) # type: ignore[index]
except Exception:
continue
mapping.setdefault(doc_id, []).append(idx)
self._docid_to_indices = mapping
def search(
self, data: np.ndarray, topk: int, first_stage_k: int = 50
) -> list[tuple[float, int]]:
@@ -180,3 +202,139 @@ class LeannMultiVector:
scores = sorted(((v, k) for k, v in doc_scores.items()), key=lambda x: x[0], reverse=True)
return scores[:topk] if len(scores) >= topk else scores
def search_exact(
self,
data: np.ndarray,
topk: int,
*,
first_stage_k: int = 200,
max_workers: int = 32,
) -> list[tuple[float, int]]:
"""
High-precision MaxSim reranking over candidate documents.
Steps:
1) Run a first-stage ANN to collect candidate doc_ids (using seq-level neighbors).
2) For each candidate doc, load all its token embeddings and compute
MaxSim(query_tokens, doc_tokens) exactly: sum(max(dot(q_i, d_j))).
Returns top-k list of (score, doc_id).
"""
# Normalize inputs
if data.ndim == 1:
data = data.reshape(1, -1)
if data.dtype != np.float32:
data = data.astype(np.float32)
self._load_labels_meta_if_needed()
self._build_docid_to_indices_if_needed()
emb_path = self._embeddings_path()
if not emb_path.exists():
# Fallback to approximate if we don't have persisted embeddings
return self.search(data, topk, first_stage_k=first_stage_k)
# Memory-map embeddings to avoid loading all into RAM
all_embeddings = np.load(emb_path, mmap_mode="r")
if all_embeddings.dtype != np.float32:
all_embeddings = all_embeddings.astype(np.float32)
# First-stage ANN to collect candidate doc_ids
searcher = HNSWSearcher(self.index_path, meta=self._meta_dict())
raw = searcher.search(
data,
first_stage_k,
recompute_embeddings=False,
complexity=128,
beam_width=1,
prune_ratio=0.0,
batch_size=0,
)
labels = raw.get("labels")
if labels is None:
return []
candidate_doc_ids: set[int] = set()
for batch in labels:
for sid in batch:
try:
idx = int(sid)
except Exception:
continue
if 0 <= idx < len(self._labels_meta):
candidate_doc_ids.add(int(self._labels_meta[idx]["doc_id"])) # type: ignore[index]
# Exact scoring per doc (parallelized)
assert self._docid_to_indices is not None
def _score_one(doc_id: int) -> tuple[float, int]:
token_indices = self._docid_to_indices.get(doc_id, [])
if not token_indices:
return (0.0, doc_id)
doc_vecs = np.asarray(all_embeddings[token_indices], dtype=np.float32)
# (Q, D) x (P, D)^T -> (Q, P) then MaxSim over P, sum over Q
sim = np.dot(data, doc_vecs.T)
# nan-safe
sim = np.nan_to_num(sim, nan=-1e30, posinf=1e30, neginf=-1e30)
score = sim.max(axis=2).sum(axis=1) if sim.ndim == 3 else sim.max(axis=1).sum()
return (float(score), doc_id)
scores: list[tuple[float, int]] = []
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as ex:
futures = [ex.submit(_score_one, doc_id) for doc_id in candidate_doc_ids]
for fut in concurrent.futures.as_completed(futures):
scores.append(fut.result())
scores.sort(key=lambda x: x[0], reverse=True)
return scores[:topk] if len(scores) >= topk else scores
def search_exact_all(
self,
data: np.ndarray,
topk: int,
*,
max_workers: int = 32,
) -> list[tuple[float, int]]:
"""
Exact MaxSim over ALL documents (no ANN pre-filtering).
This computes, for each document, sum_i max_j dot(q_i, d_j).
It memory-maps the persisted token-embedding matrix for scalability.
"""
if data.ndim == 1:
data = data.reshape(1, -1)
if data.dtype != np.float32:
data = data.astype(np.float32)
self._load_labels_meta_if_needed()
self._build_docid_to_indices_if_needed()
emb_path = self._embeddings_path()
if not emb_path.exists():
return self.search(data, topk)
all_embeddings = np.load(emb_path, mmap_mode="r")
if all_embeddings.dtype != np.float32:
all_embeddings = all_embeddings.astype(np.float32)
assert self._docid_to_indices is not None
candidate_doc_ids = list(self._docid_to_indices.keys())
def _score_one(doc_id: int) -> tuple[float, int]:
token_indices = self._docid_to_indices.get(doc_id, [])
if not token_indices:
return (0.0, doc_id)
doc_vecs = np.asarray(all_embeddings[token_indices], dtype=np.float32)
sim = np.dot(data, doc_vecs.T)
sim = np.nan_to_num(sim, nan=-1e30, posinf=1e30, neginf=-1e30)
score = sim.max(axis=2).sum(axis=1) if sim.ndim == 3 else sim.max(axis=1).sum()
return (float(score), doc_id)
scores: list[tuple[float, int]] = []
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as ex:
futures = [ex.submit(_score_one, d) for d in candidate_doc_ids]
for fut in concurrent.futures.as_completed(futures):
scores.append(fut.result())
scores.sort(key=lambda x: x[0], reverse=True)
return scores[:topk] if len(scores) >= topk else scores

View File

@@ -2,6 +2,7 @@
# %%
# uv pip install matplotlib qwen_vl_utils
import os
import json
import re
import sys
from pathlib import Path
@@ -230,12 +231,18 @@ def _build_index(index_path: str, doc_vecs: list[Any], filepaths: list[str]) ->
return retriever
def _load_retriever_if_index_exists(index_path: str, dim: int) -> Optional[LeannMultiVector]:
def _load_retriever_if_index_exists(index_path: str) -> Optional[LeannMultiVector]:
index_base = Path(index_path)
# Rough heuristic: index dir exists AND meta+labels files exist
meta = index_base.parent / f"{index_base.name}.meta.json"
labels = index_base.parent / f"{index_base.name}.labels.json"
if index_base.exists() and meta.exists() and labels.exists():
try:
with open(meta, "r", encoding="utf-8") as f:
meta_json = json.load(f)
dim = int(meta_json.get("dimensions", 128))
except Exception:
dim = 128
return LeannMultiVector(index_path=index_path, dim=dim)
return None
@@ -390,11 +397,7 @@ print(f"Using model={model_name}, device={device_str}, dtype={dtype}")
# Step 3: Build or load index
retriever: Optional[LeannMultiVector] = None
if not REBUILD_INDEX:
try:
one_vec = _embed_images(model, processor, [images[0]])[0]
retriever = _load_retriever_if_index_exists(INDEX_PATH, dim=int(one_vec.shape[-1]))
except Exception:
retriever = None
retriever = _load_retriever_if_index_exists(INDEX_PATH)
if retriever is None:
doc_vecs = _embed_images(model, processor, images)

143
benchmarks/update/README.md Normal file
View File

@@ -0,0 +1,143 @@
# Update Benchmarks
This directory hosts two benchmark suites that exercise LEANNs HNSW “update +
search” pipeline under different assumptions:
1. **RNG recompute latency** measure how random-neighbour pruning and cache
settings influence incremental `add()` latency when embeddings are fetched
over the ZMQ embedding server.
2. **Update strategy comparison** compare a fully sequential update pipeline
against an offline approach that keeps the graph static and fuses results.
Both suites build a non-compact, `is_recompute=True` index so that new
embeddings are pulled from the embedding server. Benchmark outputs are written
under `.leann/bench/` by default and appended to CSV files for later plotting.
## Benchmarks
### 1. HNSW RNG Recompute Benchmark
`bench_hnsw_rng_recompute.py` evaluates incremental update latency under four
random-neighbour (RNG) configurations. Each scenario uses the same dataset but
changes the forward / reverse RNG pruning flags and whether the embedding cache
is enabled:
| Scenario name | Forward RNG | Reverse RNG | ZMQ embedding cache |
| ---------------------------------- | ----------- | ----------- | ------------------- |
| `baseline` | Enabled | Enabled | Enabled |
| `no_cache_baseline` | Enabled | Enabled | **Disabled** |
| `disable_forward_rng` | **Disabled**| Enabled | Enabled |
| `disable_forward_and_reverse_rng` | **Disabled**| **Disabled**| Enabled |
For each scenario the script:
1. (Re)builds a `is_recompute=True` index and writes it to `.leann/bench/`.
2. Starts `leann_backend_hnsw.hnsw_embedding_server` for remote embeddings.
3. Appends the requested updates using the scenarios RNG flags.
4. Records total time, latency per passage, ZMQ fetch counts, and stage-level
timings before appending a row to the CSV output.
**Run:**
```bash
LEANN_HNSW_LOG_PATH=.leann/bench/hnsw_server.log \
LEANN_LOG_LEVEL=INFO \
uv run -m benchmarks.update.bench_hnsw_rng_recompute \
--runs 1 \
--index-path .leann/bench/test.leann \
--initial-files data/PrideandPrejudice.txt \
--update-files data/huawei_pangu.md \
--max-initial 300 \
--max-updates 1 \
--add-timeout 120
```
**Output:**
- `benchmarks/update/bench_results.csv` per-scenario timing statistics
(including ms/passage) for each run.
- `.leann/bench/hnsw_server.log` detailed ZMQ/server logs (path controlled by
`LEANN_HNSW_LOG_PATH`).
_The reference CSVs checked into this branch were generated on a workstation with an NVIDIA RTX 4090 GPU; throughput numbers will differ on other hardware._
### 2. Sequential vs. Offline Update Benchmark
`bench_update_vs_offline_search.py` compares two end-to-end strategies on the
same dataset:
- **Scenario A Sequential Update**
- Start an embedding server.
- Sequentially call `index.add()`; each call fetches embeddings via ZMQ and
mutates the HNSW graph.
- After all inserts, run a search on the updated graph.
- Metrics recorded: update time (`add_total_s`), post-update search time
(`search_time_s`), combined total (`total_time_s`), and per-passage
latency.
- **Scenario B Offline Embedding + Concurrent Search**
- Stop Scenario As server and start a fresh embedding server.
- Spawn two threads: one generates embeddings for the new passages offline
(graph unchanged); the other computes the query embedding and searches the
existing graph.
- Merge offline similarities with the graph search results to emulate late
fusion, then report the merged topk preview.
- Metrics recorded: embedding time (`emb_time_s`), search time
(`search_time_s`), concurrent makespan (`makespan_s`), and scenario total.
**Run (both scenarios):**
```bash
uv run -m benchmarks.update.bench_update_vs_offline_search \
--index-path .leann/bench/offline_vs_update.leann \
--max-initial 300 \
--num-updates 1
```
You can pass `--only A` or `--only B` to run a single scenario. The script will
print timing summaries to stdout and append the results to CSV.
**Output:**
- `benchmarks/update/offline_vs_update.csv` per-scenario timing statistics for
Scenario A and B.
- Console output includes Scenario Bs merged topk preview for quick sanity
checks.
_The sample results committed here come from runs on an RTX 4090-equipped machine; expect variations if you benchmark on different GPUs._
### 3. Visualisation
`plot_bench_results.py` combines the RNG benchmark and the update strategy
benchmark into a single two-panel plot.
**Run:**
```bash
uv run -m benchmarks.update.plot_bench_results \
--csv benchmarks/update/bench_results.csv \
--csv-right benchmarks/update/offline_vs_update.csv \
--out benchmarks/update/bench_latency_from_csv.png
```
**Options:**
- `--broken-y` Enable a broken Y-axis (default: true when appropriate).
- `--csv` RNG benchmark results CSV (left panel).
- `--csv-right` Update strategy results CSV (right panel).
- `--out` Output image path (PNG/PDF supported).
**Output:**
- `benchmarks/update/bench_latency_from_csv.png` visual comparison of the two
suites.
- `benchmarks/update/bench_latency_from_csv.pdf` PDF version, suitable for
slides/papers.
## Parameters & Environment
### Common CLI Flags
- `--max-initial` Number of initial passages used to seed the index.
- `--max-updates` / `--num-updates` Number of passages to treat as updates.
- `--index-path` Base path (without extension) where the LEANN index is stored.
- `--runs` Number of repetitions (RNG benchmark only).
### Environment Variables
- `LEANN_HNSW_LOG_PATH` File to receive embedding-server logs (optional).
- `LEANN_LOG_LEVEL` Logging verbosity (DEBUG/INFO/WARNING/ERROR).
- `CUDA_VISIBLE_DEVICES` Set to empty string if you want to force CPU
execution of the embedding model.
With these scripts you can easily replicate LEANNs update benchmarks, compare
multiple RNG strategies, and evaluate whether sequential updates or offline
fusion better match your latency/accuracy trade-offs.

View File

@@ -0,0 +1,16 @@
"""Benchmarks for LEANN update workflows."""
# Expose helper to locate repository root for other modules that need it.
from pathlib import Path
def find_repo_root() -> Path:
"""Return the project root containing pyproject.toml."""
current = Path(__file__).resolve()
for parent in current.parents:
if (parent / "pyproject.toml").exists():
return parent
return current.parents[1]
__all__ = ["find_repo_root"]

View File

@@ -0,0 +1,804 @@
"""Benchmark incremental HNSW add() under different RNG pruning modes with real
embedding recomputation.
This script clones the structure of ``examples/dynamic_update_no_recompute.py``
so that we build a non-compact ``is_recompute=True`` index, spin up the
standard HNSW embedding server, and measure how long incremental ``add`` takes
when RNG pruning is fully enabled vs. partially/fully disabled.
Example usage (run from the repo root; downloads the model on first run)::
uv run -m benchmarks.update.bench_hnsw_rng_recompute \
--index-path .leann/bench/leann-demo.leann \
--runs 1
You can tweak the input documents with ``--initial-files`` / ``--update-files``
if you want a larger or different workload, and change the embedding model via
``--model-name``.
"""
import argparse
import json
import logging
import os
import pickle
import re
import sys
import time
from pathlib import Path
from typing import Any
import msgpack
import numpy as np
import zmq
from leann.api import LeannBuilder
if os.environ.get("LEANN_FORCE_CPU", "").lower() in ("1", "true", "yes"):
os.environ.setdefault("CUDA_VISIBLE_DEVICES", "")
from leann.embedding_compute import compute_embeddings
from leann.embedding_server_manager import EmbeddingServerManager
from leann.registry import register_project_directory
from leann_backend_hnsw import faiss # type: ignore
from leann_backend_hnsw.convert_to_csr import prune_hnsw_embeddings_inplace
logger = logging.getLogger(__name__)
if not logging.getLogger().handlers:
logging.basicConfig(level=logging.INFO)
def _find_repo_root() -> Path:
"""Locate project root by walking up until pyproject.toml is found."""
current = Path(__file__).resolve()
for parent in current.parents:
if (parent / "pyproject.toml").exists():
return parent
# Fallback: assume repo is two levels up (../..)
return current.parents[2]
REPO_ROOT = _find_repo_root()
if str(REPO_ROOT) not in sys.path:
sys.path.insert(0, str(REPO_ROOT))
from apps.chunking import create_text_chunks # noqa: E402
DEFAULT_INITIAL_FILES = [
REPO_ROOT / "data" / "2501.14312v1 (1).pdf",
REPO_ROOT / "data" / "huawei_pangu.md",
]
DEFAULT_UPDATE_FILES = [REPO_ROOT / "data" / "2506.08276v1.pdf"]
DEFAULT_HNSW_LOG = Path(".leann/bench/hnsw_server.log")
def load_chunks_from_files(paths: list[Path], limit: int | None = None) -> list[str]:
from llama_index.core import SimpleDirectoryReader
documents = []
for path in paths:
p = path.expanduser().resolve()
if not p.exists():
raise FileNotFoundError(f"Input path not found: {p}")
if p.is_dir():
reader = SimpleDirectoryReader(str(p), recursive=False)
documents.extend(reader.load_data(show_progress=True))
else:
reader = SimpleDirectoryReader(input_files=[str(p)])
documents.extend(reader.load_data(show_progress=True))
if not documents:
return []
chunks = create_text_chunks(
documents,
chunk_size=512,
chunk_overlap=128,
use_ast_chunking=False,
)
cleaned = [c for c in chunks if isinstance(c, str) and c.strip()]
if limit is not None:
cleaned = cleaned[:limit]
return cleaned
def ensure_index_dir(index_path: Path) -> None:
index_path.parent.mkdir(parents=True, exist_ok=True)
def cleanup_index_files(index_path: Path) -> None:
parent = index_path.parent
if not parent.exists():
return
stem = index_path.stem
for file in parent.glob(f"{stem}*"):
if file.is_file():
file.unlink()
def build_initial_index(
index_path: Path,
paragraphs: list[str],
model_name: str,
embedding_mode: str,
distance_metric: str,
ef_construction: int,
) -> None:
builder = LeannBuilder(
backend_name="hnsw",
embedding_model=model_name,
embedding_mode=embedding_mode,
is_compact=False,
is_recompute=True,
distance_metric=distance_metric,
backend_kwargs={
"distance_metric": distance_metric,
"is_compact": False,
"is_recompute": True,
"efConstruction": ef_construction,
},
)
for idx, passage in enumerate(paragraphs):
builder.add_text(passage, metadata={"id": str(idx)})
builder.build_index(str(index_path))
def prepare_new_chunks(paragraphs: list[str]) -> list[dict[str, Any]]:
return [{"text": text, "metadata": {}} for text in paragraphs]
def benchmark_update_with_mode(
index_path: Path,
new_chunks: list[dict[str, Any]],
model_name: str,
embedding_mode: str,
distance_metric: str,
disable_forward_rng: bool,
disable_reverse_rng: bool,
server_port: int,
add_timeout: int,
ef_construction: int,
) -> tuple[float, float]:
meta_path = index_path.parent / f"{index_path.name}.meta.json"
passages_file = index_path.parent / f"{index_path.name}.passages.jsonl"
offset_file = index_path.parent / f"{index_path.name}.passages.idx"
index_file = index_path.parent / f"{index_path.stem}.index"
with open(meta_path, encoding="utf-8") as f:
meta = json.load(f)
with open(offset_file, "rb") as f:
offset_map: dict[str, int] = pickle.load(f)
existing_ids = set(offset_map.keys())
valid_chunks: list[dict[str, Any]] = []
for chunk in new_chunks:
text = chunk.get("text", "")
if not isinstance(text, str) or not text.strip():
continue
metadata = chunk.setdefault("metadata", {})
passage_id = chunk.get("id") or metadata.get("id")
if passage_id and passage_id in existing_ids:
raise ValueError(f"Passage ID '{passage_id}' already exists in the index.")
valid_chunks.append(chunk)
if not valid_chunks:
raise ValueError("No valid chunks to append.")
texts_to_embed = [chunk["text"] for chunk in valid_chunks]
embeddings = compute_embeddings(
texts_to_embed,
model_name,
mode=embedding_mode,
is_build=False,
batch_size=16,
)
embeddings = np.ascontiguousarray(embeddings, dtype=np.float32)
if distance_metric == "cosine":
norms = np.linalg.norm(embeddings, axis=1, keepdims=True)
norms[norms == 0] = 1
embeddings = embeddings / norms
index = faiss.read_index(str(index_file))
index.is_recompute = True
if getattr(index, "storage", None) is None:
if index.metric_type == faiss.METRIC_INNER_PRODUCT:
storage_index = faiss.IndexFlatIP(index.d)
else:
storage_index = faiss.IndexFlatL2(index.d)
index.storage = storage_index
index.own_fields = True
try:
storage_index.ntotal = index.ntotal
except AttributeError:
pass
try:
index.hnsw.set_disable_rng_during_add(disable_forward_rng)
index.hnsw.set_disable_reverse_prune(disable_reverse_rng)
if ef_construction is not None:
index.hnsw.efConstruction = ef_construction
except AttributeError:
pass
applied_forward = getattr(index.hnsw, "disable_rng_during_add", None)
applied_reverse = getattr(index.hnsw, "disable_reverse_prune", None)
logger.info(
"HNSW RNG config -> requested forward=%s, reverse=%s | applied forward=%s, reverse=%s",
disable_forward_rng,
disable_reverse_rng,
applied_forward,
applied_reverse,
)
base_id = index.ntotal
for offset, chunk in enumerate(valid_chunks):
new_id = str(base_id + offset)
chunk.setdefault("metadata", {})["id"] = new_id
chunk["id"] = new_id
rollback_size = passages_file.stat().st_size if passages_file.exists() else 0
offset_map_backup = offset_map.copy()
try:
with open(passages_file, "a", encoding="utf-8") as f:
for chunk in valid_chunks:
offset = f.tell()
json.dump(
{
"id": chunk["id"],
"text": chunk["text"],
"metadata": chunk.get("metadata", {}),
},
f,
ensure_ascii=False,
)
f.write("\n")
offset_map[chunk["id"]] = offset
with open(offset_file, "wb") as f:
pickle.dump(offset_map, f)
server_manager = EmbeddingServerManager(
backend_module_name="leann_backend_hnsw.hnsw_embedding_server"
)
server_started, actual_port = server_manager.start_server(
port=server_port,
model_name=model_name,
embedding_mode=embedding_mode,
passages_file=str(meta_path),
distance_metric=distance_metric,
)
if not server_started:
raise RuntimeError("Failed to start embedding server.")
if hasattr(index.hnsw, "set_zmq_port"):
index.hnsw.set_zmq_port(actual_port)
elif hasattr(index, "set_zmq_port"):
index.set_zmq_port(actual_port)
_warmup_embedding_server(actual_port)
total_start = time.time()
add_elapsed = 0.0
try:
import signal
def _timeout_handler(signum, frame):
raise TimeoutError("incremental add timed out")
if add_timeout > 0:
signal.signal(signal.SIGALRM, _timeout_handler)
signal.alarm(add_timeout)
add_start = time.time()
for i in range(embeddings.shape[0]):
index.add(1, faiss.swig_ptr(embeddings[i : i + 1]))
add_elapsed = time.time() - add_start
if add_timeout > 0:
signal.alarm(0)
faiss.write_index(index, str(index_file))
finally:
server_manager.stop_server()
except TimeoutError:
raise
except Exception:
if passages_file.exists():
with open(passages_file, "rb+") as f:
f.truncate(rollback_size)
with open(offset_file, "wb") as f:
pickle.dump(offset_map_backup, f)
raise
prune_hnsw_embeddings_inplace(str(index_file))
meta["total_passages"] = len(offset_map)
with open(meta_path, "w", encoding="utf-8") as f:
json.dump(meta, f, indent=2)
# Reset toggles so the index on disk returns to baseline behaviour.
try:
index.hnsw.set_disable_rng_during_add(False)
index.hnsw.set_disable_reverse_prune(False)
except AttributeError:
pass
faiss.write_index(index, str(index_file))
total_elapsed = time.time() - total_start
return total_elapsed, add_elapsed
def _total_zmq_nodes(log_path: Path) -> int:
if not log_path.exists():
return 0
with log_path.open("r", encoding="utf-8") as log_file:
text = log_file.read()
return sum(int(match) for match in re.findall(r"ZMQ received (\d+) node IDs", text))
def _warmup_embedding_server(port: int) -> None:
"""Send a dummy REQ so the embedding server loads its model."""
ctx = zmq.Context()
try:
sock = ctx.socket(zmq.REQ)
sock.setsockopt(zmq.LINGER, 0)
sock.setsockopt(zmq.RCVTIMEO, 5000)
sock.setsockopt(zmq.SNDTIMEO, 5000)
sock.connect(f"tcp://127.0.0.1:{port}")
payload = msgpack.packb(["__WARMUP__"], use_bin_type=True)
sock.send(payload)
try:
sock.recv()
except zmq.error.Again:
pass
finally:
sock.close()
ctx.term()
def main() -> None:
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--index-path",
type=Path,
default=Path(".leann/bench/leann-demo.leann"),
help="Output index base path (without extension).",
)
parser.add_argument(
"--initial-files",
nargs="*",
type=Path,
default=DEFAULT_INITIAL_FILES,
help="Files used to build the initial index.",
)
parser.add_argument(
"--update-files",
nargs="*",
type=Path,
default=DEFAULT_UPDATE_FILES,
help="Files appended during the benchmark.",
)
parser.add_argument(
"--runs", type=int, default=1, help="How many times to repeat each scenario."
)
parser.add_argument(
"--model-name",
default="sentence-transformers/all-MiniLM-L6-v2",
help="Embedding model used for build/update.",
)
parser.add_argument(
"--embedding-mode",
default="sentence-transformers",
help="Embedding mode passed to LeannBuilder/embedding server.",
)
parser.add_argument(
"--distance-metric",
default="mips",
choices=["mips", "l2", "cosine"],
help="Distance metric for HNSW backend.",
)
parser.add_argument(
"--ef-construction",
type=int,
default=200,
help="efConstruction setting for initial build.",
)
parser.add_argument(
"--server-port",
type=int,
default=5557,
help="Port for the real embedding server.",
)
parser.add_argument(
"--max-initial",
type=int,
default=300,
help="Optional cap on initial passages (after chunking).",
)
parser.add_argument(
"--max-updates",
type=int,
default=1,
help="Optional cap on update passages (after chunking).",
)
parser.add_argument(
"--add-timeout",
type=int,
default=900,
help="Timeout in seconds for the incremental add loop (0 = no timeout).",
)
parser.add_argument(
"--plot-path",
type=Path,
default=Path("bench_latency.png"),
help="Where to save the latency bar plot.",
)
parser.add_argument(
"--cap-y",
type=float,
default=None,
help="Cap Y-axis (ms). Bars above are hatched and annotated.",
)
parser.add_argument(
"--broken-y",
action="store_true",
help="Use broken Y-axis (two stacked axes with gap). Overrides --cap-y unless both provided.",
)
parser.add_argument(
"--lower-cap-y",
type=float,
default=None,
help="Lower axes upper bound for broken Y (ms). Default=1.1x second-highest.",
)
parser.add_argument(
"--upper-start-y",
type=float,
default=None,
help="Upper axes lower bound for broken Y (ms). Default=1.2x second-highest.",
)
parser.add_argument(
"--csv-path",
type=Path,
default=Path("benchmarks/update/bench_results.csv"),
help="Where to append per-scenario results as CSV.",
)
args = parser.parse_args()
register_project_directory(REPO_ROOT)
initial_paragraphs = load_chunks_from_files(args.initial_files, args.max_initial)
update_paragraphs = load_chunks_from_files(args.update_files, args.max_updates)
if not update_paragraphs:
raise ValueError("No update passages found; please provide --update-files with content.")
update_chunks = prepare_new_chunks(update_paragraphs)
ensure_index_dir(args.index_path)
scenarios = [
("baseline", False, False, True),
("no_cache_baseline", False, False, False),
("disable_forward_rng", True, False, True),
("disable_forward_and_reverse_rng", True, True, True),
]
log_path = Path(os.environ.get("LEANN_HNSW_LOG_PATH", DEFAULT_HNSW_LOG))
log_path.parent.mkdir(parents=True, exist_ok=True)
os.environ["LEANN_HNSW_LOG_PATH"] = str(log_path.resolve())
os.environ.setdefault("LEANN_LOG_LEVEL", "INFO")
results_total: dict[str, list[float]] = {name: [] for name, *_ in scenarios}
results_add: dict[str, list[float]] = {name: [] for name, *_ in scenarios}
results_zmq: dict[str, list[int]] = {name: [] for name, *_ in scenarios}
results_stageA: dict[str, list[float]] = {name: [] for name, *_ in scenarios}
results_stageBC: dict[str, list[float]] = {name: [] for name, *_ in scenarios}
results_ms_per_passage: dict[str, list[float]] = {name: [] for name, *_ in scenarios}
# CSV setup
import csv
run_id = time.strftime("%Y%m%d-%H%M%S")
csv_fields = [
"run_id",
"scenario",
"cache_enabled",
"ef_construction",
"max_initial",
"max_updates",
"total_time_s",
"add_only_s",
"latency_ms_per_passage",
"zmq_nodes",
"stageA_time_s",
"stageBC_time_s",
"model_name",
"embedding_mode",
"distance_metric",
]
# Create CSV with header if missing
if args.csv_path:
args.csv_path.parent.mkdir(parents=True, exist_ok=True)
if not args.csv_path.exists() or args.csv_path.stat().st_size == 0:
with args.csv_path.open("w", newline="", encoding="utf-8") as f:
writer = csv.DictWriter(f, fieldnames=csv_fields)
writer.writeheader()
for run in range(args.runs):
print(f"\n=== Benchmark run {run + 1}/{args.runs} ===")
for name, disable_forward, disable_reverse, cache_enabled in scenarios:
print(f"\nScenario: {name}")
cleanup_index_files(args.index_path)
if log_path.exists():
try:
log_path.unlink()
except OSError:
pass
os.environ["LEANN_ZMQ_EMBED_CACHE"] = "1" if cache_enabled else "0"
build_initial_index(
args.index_path,
initial_paragraphs,
args.model_name,
args.embedding_mode,
args.distance_metric,
args.ef_construction,
)
prev_size = log_path.stat().st_size if log_path.exists() else 0
try:
total_elapsed, add_elapsed = benchmark_update_with_mode(
args.index_path,
update_chunks,
args.model_name,
args.embedding_mode,
args.distance_metric,
disable_forward,
disable_reverse,
args.server_port,
args.add_timeout,
args.ef_construction,
)
except TimeoutError as exc:
print(f"Scenario {name} timed out: {exc}")
continue
curr_size = log_path.stat().st_size if log_path.exists() else 0
if curr_size < prev_size:
prev_size = 0
zmq_count = 0
if log_path.exists():
with log_path.open("r", encoding="utf-8") as log_file:
log_file.seek(prev_size)
new_entries = log_file.read()
zmq_count = sum(
int(match) for match in re.findall(r"ZMQ received (\d+) node IDs", new_entries)
)
stageA = sum(
float(x)
for x in re.findall(r"Distance calculation E2E time: ([0-9.]+)s", new_entries)
)
stageBC = sum(
float(x) for x in re.findall(r"ZMQ E2E time: ([0-9.]+)s", new_entries)
)
else:
stageA = 0.0
stageBC = 0.0
per_chunk = add_elapsed / len(update_chunks)
print(
f"Total time: {total_elapsed:.3f} s | add-only: {add_elapsed:.3f} s "
f"for {len(update_chunks)} passages => {per_chunk * 1e3:.3f} ms/passage"
)
print(f"ZMQ node fetch total: {zmq_count}")
results_total[name].append(total_elapsed)
results_add[name].append(add_elapsed)
results_zmq[name].append(zmq_count)
results_ms_per_passage[name].append(per_chunk * 1e3)
results_stageA[name].append(stageA)
results_stageBC[name].append(stageBC)
# Append row to CSV
if args.csv_path:
row = {
"run_id": run_id,
"scenario": name,
"cache_enabled": 1 if cache_enabled else 0,
"ef_construction": args.ef_construction,
"max_initial": args.max_initial,
"max_updates": args.max_updates,
"total_time_s": round(total_elapsed, 6),
"add_only_s": round(add_elapsed, 6),
"latency_ms_per_passage": round(per_chunk * 1e3, 6),
"zmq_nodes": int(zmq_count),
"stageA_time_s": round(stageA, 6),
"stageBC_time_s": round(stageBC, 6),
"model_name": args.model_name,
"embedding_mode": args.embedding_mode,
"distance_metric": args.distance_metric,
}
with args.csv_path.open("a", newline="", encoding="utf-8") as f:
writer = csv.DictWriter(f, fieldnames=csv_fields)
writer.writerow(row)
print("\n=== Summary ===")
for name in results_add:
add_values = results_add[name]
total_values = results_total[name]
zmq_values = results_zmq[name]
latency_values = results_ms_per_passage[name]
if not add_values:
print(f"{name}: no successful runs")
continue
avg_add = sum(add_values) / len(add_values)
avg_total = sum(total_values) / len(total_values)
avg_zmq = sum(zmq_values) / len(zmq_values) if zmq_values else 0.0
avg_latency = sum(latency_values) / len(latency_values) if latency_values else 0.0
runs = len(add_values)
print(
f"{name}: add-only avg {avg_add:.3f} s | total avg {avg_total:.3f} s "
f"| ZMQ avg {avg_zmq:.1f} node fetches | latency {avg_latency:.2f} ms/passage over {runs} run(s)"
)
if args.plot_path:
try:
import matplotlib.pyplot as plt
labels = [name for name, *_ in scenarios]
values = [
sum(results_ms_per_passage[name]) / len(results_ms_per_passage[name])
if results_ms_per_passage[name]
else 0.0
for name in labels
]
def _auto_cap(vals: list[float]) -> float | None:
s = sorted(vals, reverse=True)
if len(s) < 2:
return None
if s[1] > 0 and s[0] >= 2.5 * s[1]:
return s[1] * 1.1
return None
def _fmt_ms(v: float) -> str:
return f"{v / 1000:.1f}k" if v >= 1000 else f"{v:.1f}"
colors = ["#4e79a7", "#f28e2c", "#e15759", "#76b7b2"]
if args.broken_y:
s = sorted(values, reverse=True)
second = s[1] if len(s) >= 2 else (s[0] if s else 0.0)
lower_cap = args.lower_cap_y if args.lower_cap_y is not None else second * 1.1
upper_start = (
args.upper_start_y
if args.upper_start_y is not None
else max(second * 1.2, lower_cap * 1.02)
)
ymax = max(values) * 1.10 if values else 1.0
fig, (ax_top, ax_bottom) = plt.subplots(
2,
1,
sharex=True,
figsize=(7.4, 5.0),
gridspec_kw={"height_ratios": [1, 3], "hspace": 0.05},
)
x = list(range(len(labels)))
ax_bottom.bar(x, values, color=colors[: len(labels)], width=0.8)
ax_top.bar(x, values, color=colors[: len(labels)], width=0.8)
ax_bottom.set_ylim(0, lower_cap)
ax_top.set_ylim(upper_start, ymax)
for i, v in enumerate(values):
if v <= lower_cap:
ax_bottom.text(
i,
v + lower_cap * 0.02,
_fmt_ms(v),
ha="center",
va="bottom",
fontsize=9,
)
else:
ax_top.text(i, v, _fmt_ms(v), ha="center", va="bottom", fontsize=9)
ax_top.spines["bottom"].set_visible(False)
ax_bottom.spines["top"].set_visible(False)
ax_top.tick_params(labeltop=False)
ax_bottom.xaxis.tick_bottom()
d = 0.015
kwargs = {"transform": ax_top.transAxes, "color": "k", "clip_on": False}
ax_top.plot((-d, +d), (-d, +d), **kwargs)
ax_top.plot((1 - d, 1 + d), (-d, +d), **kwargs)
kwargs.update({"transform": ax_bottom.transAxes})
ax_bottom.plot((-d, +d), (1 - d, 1 + d), **kwargs)
ax_bottom.plot((1 - d, 1 + d), (1 - d, 1 + d), **kwargs)
ax_bottom.set_xticks(range(len(labels)))
ax_bottom.set_xticklabels(labels)
ax = ax_bottom
else:
cap = args.cap_y or _auto_cap(values)
plt.figure(figsize=(7.2, 4.2))
ax = plt.gca()
if cap is not None:
show_vals = [min(v, cap) for v in values]
bars = []
for i, (v, show) in enumerate(zip(values, show_vals)):
b = ax.bar(i, show, color=colors[i], width=0.8)
bars.append(b[0])
if v > cap:
bars[-1].set_hatch("//")
ax.text(i, cap * 1.02, _fmt_ms(v), ha="center", va="bottom", fontsize=9)
else:
ax.text(
i,
show + max(1.0, 0.01 * (cap or show)),
_fmt_ms(v),
ha="center",
va="bottom",
fontsize=9,
)
ax.set_ylim(0, cap * 1.10)
ax.plot(
[0.02 - 0.02, 0.02 + 0.02],
[0.98 + 0.02, 0.98 - 0.02],
transform=ax.transAxes,
color="k",
lw=1,
)
ax.plot(
[0.98 - 0.02, 0.98 + 0.02],
[0.98 + 0.02, 0.98 - 0.02],
transform=ax.transAxes,
color="k",
lw=1,
)
if any(v > cap for v in values):
ax.legend(
[bars[0]], ["capped"], fontsize=8, frameon=False, loc="upper right"
)
ax.set_xticks(range(len(labels)))
ax.set_xticklabels(labels)
else:
ax.bar(labels, values, color=colors[: len(labels)])
for idx, val in enumerate(values):
ax.text(idx, val + 1.0, f"{val:.1f}", ha="center", va="bottom")
plt.ylabel("Average add latency (ms per passage)")
plt.title(f"Initial passages {args.max_initial}, updates {args.max_updates}")
plt.tight_layout()
plt.savefig(args.plot_path)
print(f"Saved latency bar plot to {args.plot_path}")
# ZMQ time split (Stage A vs B/C)
try:
plt.figure(figsize=(6, 4))
a_vals = [sum(results_stageA[n]) / max(1, len(results_stageA[n])) for n in labels]
bc_vals = [
sum(results_stageBC[n]) / max(1, len(results_stageBC[n])) for n in labels
]
ind = range(len(labels))
plt.bar(ind, a_vals, color="#4e79a7", label="Stage A distance (s)")
plt.bar(
ind, bc_vals, bottom=a_vals, color="#e15759", label="Stage B/C embed-by-id (s)"
)
plt.xticks(list(ind), labels, rotation=10)
plt.ylabel("Server ZMQ time (s)")
plt.title(
f"ZMQ time split (initial {args.max_initial}, updates {args.max_updates})"
)
plt.legend()
out2 = args.plot_path.with_name(
args.plot_path.stem + "_zmq_split" + args.plot_path.suffix
)
plt.tight_layout()
plt.savefig(out2)
print(f"Saved ZMQ time split plot to {out2}")
except Exception as e:
print("Failed to plot ZMQ split:", e)
except ImportError:
print("matplotlib not available; skipping plot generation")
# leave the last build on disk for inspection
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,5 @@
run_id,scenario,cache_enabled,ef_construction,max_initial,max_updates,total_time_s,add_only_s,latency_ms_per_passage,zmq_nodes,stageA_time_s,stageBC_time_s,model_name,embedding_mode,distance_metric
20251024-133101,baseline,1,200,300,1,3.391856,1.120359,1120.359421,126,0.507821,0.601608,sentence-transformers/all-MiniLM-L6-v2,sentence-transformers,mips
20251024-133101,no_cache_baseline,0,200,300,1,34.941514,32.91376,32913.760185,4033,0.506933,32.159928,sentence-transformers/all-MiniLM-L6-v2,sentence-transformers,mips
20251024-133101,disable_forward_rng,1,200,300,1,2.746756,0.8202,820.200443,66,0.474354,0.338454,sentence-transformers/all-MiniLM-L6-v2,sentence-transformers,mips
20251024-133101,disable_forward_and_reverse_rng,1,200,300,1,2.396566,0.521478,521.478415,1,0.508973,0.006938,sentence-transformers/all-MiniLM-L6-v2,sentence-transformers,mips
1 run_id scenario cache_enabled ef_construction max_initial max_updates total_time_s add_only_s latency_ms_per_passage zmq_nodes stageA_time_s stageBC_time_s model_name embedding_mode distance_metric
2 20251024-133101 baseline 1 200 300 1 3.391856 1.120359 1120.359421 126 0.507821 0.601608 sentence-transformers/all-MiniLM-L6-v2 sentence-transformers mips
3 20251024-133101 no_cache_baseline 0 200 300 1 34.941514 32.91376 32913.760185 4033 0.506933 32.159928 sentence-transformers/all-MiniLM-L6-v2 sentence-transformers mips
4 20251024-133101 disable_forward_rng 1 200 300 1 2.746756 0.8202 820.200443 66 0.474354 0.338454 sentence-transformers/all-MiniLM-L6-v2 sentence-transformers mips
5 20251024-133101 disable_forward_and_reverse_rng 1 200 300 1 2.396566 0.521478 521.478415 1 0.508973 0.006938 sentence-transformers/all-MiniLM-L6-v2 sentence-transformers mips

View File

@@ -0,0 +1,704 @@
"""
Compare two latency models for small incremental updates vs. search:
Scenario A (sequential update then search):
- Build initial HNSW (is_recompute=True)
- Start embedding server (ZMQ) for recompute
- Add N passages one-by-one (each triggers recompute over ZMQ)
- Then run a search query on the updated index
- Report total time = sum(add_i) + search_time, with breakdowns
Scenario B (offline embeds + concurrent search; no graph updates):
- Do NOT insert the N passages into the graph
- In parallel: (1) compute embeddings for the N passages; (2) compute query
embedding and run a search on the existing index
- After both finish, compute similarity between the query embedding and the N
new passage embeddings, merge with the index search results by score, and
report time = max(embed_time, search_time) (i.e., no blocking on updates)
This script reuses the model/data loading conventions of
examples/bench_hnsw_rng_recompute.py but focuses on end-to-end latency
comparison for the two execution strategies above.
Example (from the repository root):
uv run -m benchmarks.update.bench_update_vs_offline_search \
--index-path .leann/bench/offline_vs_update.leann \
--max-initial 300 --num-updates 5 --k 10
"""
import argparse
import csv
import json
import logging
import os
import pickle
import sys
import threading
import time
from dataclasses import dataclass
from pathlib import Path
from typing import Any
import numpy as np
import psutil # type: ignore
from leann.api import LeannBuilder
if os.environ.get("LEANN_FORCE_CPU", "").lower() in ("1", "true", "yes"):
os.environ.setdefault("CUDA_VISIBLE_DEVICES", "")
from leann.embedding_compute import compute_embeddings
from leann.embedding_server_manager import EmbeddingServerManager
from leann.registry import register_project_directory
from leann_backend_hnsw import faiss # type: ignore
logger = logging.getLogger(__name__)
if not logging.getLogger().handlers:
logging.basicConfig(level=logging.INFO)
def _find_repo_root() -> Path:
"""Locate project root by walking up until pyproject.toml is found."""
current = Path(__file__).resolve()
for parent in current.parents:
if (parent / "pyproject.toml").exists():
return parent
# Fallback: assume repo is two levels up (../..)
return current.parents[2]
REPO_ROOT = _find_repo_root()
if str(REPO_ROOT) not in sys.path:
sys.path.insert(0, str(REPO_ROOT))
from apps.chunking import create_text_chunks # noqa: E402
DEFAULT_INITIAL_FILES = [
REPO_ROOT / "data" / "2501.14312v1 (1).pdf",
REPO_ROOT / "data" / "huawei_pangu.md",
]
DEFAULT_UPDATE_FILES = [REPO_ROOT / "data" / "2506.08276v1.pdf"]
def load_chunks_from_files(paths: list[Path], limit: int | None = None) -> list[str]:
from llama_index.core import SimpleDirectoryReader
documents = []
for path in paths:
p = path.expanduser().resolve()
if not p.exists():
raise FileNotFoundError(f"Input path not found: {p}")
if p.is_dir():
reader = SimpleDirectoryReader(str(p), recursive=False)
documents.extend(reader.load_data(show_progress=True))
else:
reader = SimpleDirectoryReader(input_files=[str(p)])
documents.extend(reader.load_data(show_progress=True))
if not documents:
return []
chunks = create_text_chunks(
documents,
chunk_size=512,
chunk_overlap=128,
use_ast_chunking=False,
)
cleaned = [c for c in chunks if isinstance(c, str) and c.strip()]
if limit is not None:
cleaned = cleaned[:limit]
return cleaned
def ensure_index_dir(index_path: Path) -> None:
index_path.parent.mkdir(parents=True, exist_ok=True)
def cleanup_index_files(index_path: Path) -> None:
parent = index_path.parent
if not parent.exists():
return
stem = index_path.stem
for file in parent.glob(f"{stem}*"):
if file.is_file():
file.unlink()
def build_initial_index(
index_path: Path,
paragraphs: list[str],
model_name: str,
embedding_mode: str,
distance_metric: str,
ef_construction: int,
) -> None:
builder = LeannBuilder(
backend_name="hnsw",
embedding_model=model_name,
embedding_mode=embedding_mode,
is_compact=False,
is_recompute=True,
distance_metric=distance_metric,
backend_kwargs={
"distance_metric": distance_metric,
"is_compact": False,
"is_recompute": True,
"efConstruction": ef_construction,
},
)
for idx, passage in enumerate(paragraphs):
builder.add_text(passage, metadata={"id": str(idx)})
builder.build_index(str(index_path))
def _maybe_norm_cosine(vecs: np.ndarray, metric: str) -> np.ndarray:
if metric == "cosine":
vecs = np.ascontiguousarray(vecs, dtype=np.float32)
norms = np.linalg.norm(vecs, axis=1, keepdims=True)
norms[norms == 0] = 1
vecs = vecs / norms
return vecs
def _read_index_for_search(index_path: Path) -> Any:
index_file = index_path.parent / f"{index_path.stem}.index"
# Force-disable experimental disk cache when loading the index so that
# incremental benchmarks don't pick up stale top-degree bitmaps.
cfg = faiss.HNSWIndexConfig()
cfg.is_recompute = True
if hasattr(cfg, "disk_cache_ratio"):
cfg.disk_cache_ratio = 0.0
if hasattr(cfg, "external_storage_path"):
cfg.external_storage_path = None
io_flags = getattr(faiss, "IO_FLAG_MMAP", 0)
index = faiss.read_index(str(index_file), io_flags, cfg)
# ensure recompute mode persists after reload
try:
index.is_recompute = True
except AttributeError:
pass
try:
actual_ntotal = index.hnsw.levels.size()
except AttributeError:
actual_ntotal = index.ntotal
if actual_ntotal != index.ntotal:
print(
f"[bench_update_vs_offline_search] Correcting ntotal from {index.ntotal} to {actual_ntotal}",
flush=True,
)
index.ntotal = actual_ntotal
if getattr(index, "storage", None) is None:
if index.metric_type == faiss.METRIC_INNER_PRODUCT:
storage_index = faiss.IndexFlatIP(index.d)
else:
storage_index = faiss.IndexFlatL2(index.d)
index.storage = storage_index
index.own_fields = True
return index
def _append_passages_for_updates(
meta_path: Path,
start_id: int,
texts: list[str],
) -> list[str]:
"""Append update passages so the embedding server can serve recompute fetches."""
if not texts:
return []
index_dir = meta_path.parent
meta_name = meta_path.name
if not meta_name.endswith(".meta.json"):
raise ValueError(f"Unexpected meta filename: {meta_path}")
index_base = meta_name[: -len(".meta.json")]
passages_file = index_dir / f"{index_base}.passages.jsonl"
offsets_file = index_dir / f"{index_base}.passages.idx"
if not passages_file.exists() or not offsets_file.exists():
raise FileNotFoundError(
"Passage store missing; cannot register update passages for recompute mode."
)
with open(offsets_file, "rb") as f:
offset_map: dict[str, int] = pickle.load(f)
assigned_ids: list[str] = []
with open(passages_file, "a", encoding="utf-8") as f:
for i, text in enumerate(texts):
passage_id = str(start_id + i)
offset = f.tell()
json.dump({"id": passage_id, "text": text, "metadata": {}}, f, ensure_ascii=False)
f.write("\n")
offset_map[passage_id] = offset
assigned_ids.append(passage_id)
with open(offsets_file, "wb") as f:
pickle.dump(offset_map, f)
try:
with open(meta_path, encoding="utf-8") as f:
meta = json.load(f)
except json.JSONDecodeError:
meta = {}
meta["total_passages"] = len(offset_map)
with open(meta_path, "w", encoding="utf-8") as f:
json.dump(meta, f, indent=2)
return assigned_ids
def _search(index: Any, q: np.ndarray, k: int) -> tuple[np.ndarray, np.ndarray]:
q = np.ascontiguousarray(q, dtype=np.float32)
distances = np.zeros((1, k), dtype=np.float32)
indices = np.zeros((1, k), dtype=np.int64)
index.search(
1,
faiss.swig_ptr(q),
k,
faiss.swig_ptr(distances),
faiss.swig_ptr(indices),
)
return distances[0], indices[0]
def _score_for_metric(dist: float, metric: str) -> float:
# Convert FAISS distance to a "higher is better" score
if metric in ("mips", "cosine"):
return float(dist)
# l2 distance (smaller better) -> negative distance as score
return -float(dist)
def _merge_results(
index_results: tuple[np.ndarray, np.ndarray],
offline_scores: list[tuple[int, float]],
k: int,
metric: str,
) -> list[tuple[str, float]]:
distances, indices = index_results
merged: list[tuple[str, float]] = []
for distance, idx in zip(distances.tolist(), indices.tolist()):
merged.append((f"idx:{idx}", _score_for_metric(distance, metric)))
for j, s in offline_scores:
merged.append((f"offline:{j}", s))
merged.sort(key=lambda x: x[1], reverse=True)
return merged[:k]
@dataclass
class ScenarioResult:
name: str
update_total_s: float
search_s: float
overall_s: float
def main() -> None:
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--index-path",
type=Path,
default=Path(".leann/bench/offline-vs-update.leann"),
)
parser.add_argument(
"--initial-files",
nargs="*",
type=Path,
default=DEFAULT_INITIAL_FILES,
)
parser.add_argument(
"--update-files",
nargs="*",
type=Path,
default=DEFAULT_UPDATE_FILES,
)
parser.add_argument("--max-initial", type=int, default=300)
parser.add_argument("--num-updates", type=int, default=5)
parser.add_argument("--k", type=int, default=10, help="Top-k for search/merge")
parser.add_argument(
"--query",
type=str,
default="neural network",
help="Query text used for the search benchmark.",
)
parser.add_argument("--server-port", type=int, default=5557)
parser.add_argument("--add-timeout", type=int, default=600)
parser.add_argument("--model-name", default="sentence-transformers/all-MiniLM-L6-v2")
parser.add_argument("--embedding-mode", default="sentence-transformers")
parser.add_argument(
"--distance-metric",
default="mips",
choices=["mips", "l2", "cosine"],
)
parser.add_argument("--ef-construction", type=int, default=200)
parser.add_argument(
"--only",
choices=["A", "B", "both"],
default="both",
help="Run only Scenario A, Scenario B, or both",
)
parser.add_argument(
"--csv-path",
type=Path,
default=Path("benchmarks/update/offline_vs_update.csv"),
help="Where to append results (CSV).",
)
args = parser.parse_args()
register_project_directory(REPO_ROOT)
# Load data
initial_paragraphs = load_chunks_from_files(args.initial_files, args.max_initial)
update_paragraphs = load_chunks_from_files(args.update_files, None)
if not update_paragraphs:
raise ValueError("No update passages loaded from --update-files")
update_paragraphs = update_paragraphs[: args.num_updates]
if len(update_paragraphs) < args.num_updates:
raise ValueError(
f"Not enough update passages ({len(update_paragraphs)}) for --num-updates={args.num_updates}"
)
ensure_index_dir(args.index_path)
cleanup_index_files(args.index_path)
# Build initial index
build_initial_index(
args.index_path,
initial_paragraphs,
args.model_name,
args.embedding_mode,
args.distance_metric,
args.ef_construction,
)
# Prepare index object and meta
meta_path = args.index_path.parent / f"{args.index_path.name}.meta.json"
index = _read_index_for_search(args.index_path)
# CSV setup
run_id = time.strftime("%Y%m%d-%H%M%S")
if args.csv_path:
args.csv_path.parent.mkdir(parents=True, exist_ok=True)
csv_fields = [
"run_id",
"scenario",
"max_initial",
"num_updates",
"k",
"total_time_s",
"add_total_s",
"search_time_s",
"emb_time_s",
"makespan_s",
"model_name",
"embedding_mode",
"distance_metric",
]
if not args.csv_path.exists() or args.csv_path.stat().st_size == 0:
with args.csv_path.open("w", newline="", encoding="utf-8") as f:
writer = csv.DictWriter(f, fieldnames=csv_fields)
writer.writeheader()
# Debug: list existing HNSW server PIDs before starting
try:
existing = [
p
for p in psutil.process_iter(attrs=["pid", "cmdline"])
if any(
isinstance(arg, str) and "leann_backend_hnsw.hnsw_embedding_server" in arg
for arg in (p.info.get("cmdline") or [])
)
]
if existing:
print("[debug] Found existing hnsw_embedding_server processes before run:")
for p in existing:
print(f"[debug] PID={p.info['pid']} cmd={' '.join(p.info.get('cmdline') or [])}")
except Exception as _e:
pass
add_total = 0.0
search_after_add = 0.0
total_seq = 0.0
port_a = None
if args.only in ("A", "both"):
# Scenario A: sequential update then search
start_id = index.ntotal
assigned_ids = _append_passages_for_updates(meta_path, start_id, update_paragraphs)
if assigned_ids:
logger.debug(
"Registered %d update passages starting at id %s",
len(assigned_ids),
assigned_ids[0],
)
server_manager = EmbeddingServerManager(
backend_module_name="leann_backend_hnsw.hnsw_embedding_server"
)
ok, port = server_manager.start_server(
port=args.server_port,
model_name=args.model_name,
embedding_mode=args.embedding_mode,
passages_file=str(meta_path),
distance_metric=args.distance_metric,
)
if not ok:
raise RuntimeError("Failed to start embedding server")
try:
# Set ZMQ port for recompute mode
if hasattr(index.hnsw, "set_zmq_port"):
index.hnsw.set_zmq_port(port)
elif hasattr(index, "set_zmq_port"):
index.set_zmq_port(port)
# Start A overall timer BEFORE computing update embeddings
t0 = time.time()
# Compute embeddings for updates (counted into A's overall)
t_emb0 = time.time()
upd_embs = compute_embeddings(
update_paragraphs,
args.model_name,
mode=args.embedding_mode,
is_build=False,
batch_size=16,
)
emb_time_updates = time.time() - t_emb0
upd_embs = np.asarray(upd_embs, dtype=np.float32)
upd_embs = _maybe_norm_cosine(upd_embs, args.distance_metric)
# Perform sequential adds
for i in range(upd_embs.shape[0]):
t_add0 = time.time()
index.add(1, faiss.swig_ptr(upd_embs[i : i + 1]))
add_total += time.time() - t_add0
# Don't persist index after adds to avoid contaminating Scenario B
# index_file = args.index_path.parent / f"{args.index_path.stem}.index"
# faiss.write_index(index, str(index_file))
# Search after updates
q_emb = compute_embeddings(
[args.query], args.model_name, mode=args.embedding_mode, is_build=False
)
q_emb = np.asarray(q_emb, dtype=np.float32)
q_emb = _maybe_norm_cosine(q_emb, args.distance_metric)
# Warm up search with a dummy query first
print("[DEBUG] Warming up search...")
_ = _search(index, q_emb, 1)
t_s0 = time.time()
D_upd, I_upd = _search(index, q_emb, args.k)
search_after_add = time.time() - t_s0
total_seq = time.time() - t0
finally:
server_manager.stop_server()
port_a = port
print("\n=== Scenario A: update->search (sequential) ===")
# emb_time_updates is defined only when A runs
try:
_emb_a = emb_time_updates
except NameError:
_emb_a = 0.0
print(
f"Adds: {args.num_updates} passages; embeds={_emb_a:.3f}s; add_total={add_total:.3f}s; "
f"search={search_after_add:.3f}s; overall={total_seq:.3f}s"
)
# CSV row for A
if args.csv_path:
row_a = {
"run_id": run_id,
"scenario": "A",
"max_initial": args.max_initial,
"num_updates": args.num_updates,
"k": args.k,
"total_time_s": round(total_seq, 6),
"add_total_s": round(add_total, 6),
"search_time_s": round(search_after_add, 6),
"emb_time_s": round(_emb_a, 6),
"makespan_s": 0.0,
"model_name": args.model_name,
"embedding_mode": args.embedding_mode,
"distance_metric": args.distance_metric,
}
with args.csv_path.open("a", newline="", encoding="utf-8") as f:
writer = csv.DictWriter(f, fieldnames=csv_fields)
writer.writerow(row_a)
# Verify server cleanup
try:
# short sleep to allow signal handling to finish
time.sleep(0.5)
leftovers = [
p
for p in psutil.process_iter(attrs=["pid", "cmdline"])
if any(
isinstance(arg, str) and "leann_backend_hnsw.hnsw_embedding_server" in arg
for arg in (p.info.get("cmdline") or [])
)
]
if leftovers:
print("[warn] hnsw_embedding_server process(es) still alive after A-stop:")
for p in leftovers:
print(
f"[warn] PID={p.info['pid']} cmd={' '.join(p.info.get('cmdline') or [])}"
)
else:
print("[debug] server cleanup confirmed: no hnsw_embedding_server found")
except Exception:
pass
# Scenario B: offline embeds + concurrent search (no graph updates)
if args.only in ("B", "both"):
# ensure a server is available for recompute search
server_manager_b = EmbeddingServerManager(
backend_module_name="leann_backend_hnsw.hnsw_embedding_server"
)
requested_port = args.server_port if port_a is None else port_a
ok_b, port_b = server_manager_b.start_server(
port=requested_port,
model_name=args.model_name,
embedding_mode=args.embedding_mode,
passages_file=str(meta_path),
distance_metric=args.distance_metric,
)
if not ok_b:
raise RuntimeError("Failed to start embedding server for Scenario B")
# Wait for server to fully initialize
print("[DEBUG] Waiting 2s for embedding server to fully initialize...")
time.sleep(2)
try:
# Read the index first
index_no_update = _read_index_for_search(args.index_path) # unchanged index
# Then configure ZMQ port on the correct index object
if hasattr(index_no_update.hnsw, "set_zmq_port"):
index_no_update.hnsw.set_zmq_port(port_b)
elif hasattr(index_no_update, "set_zmq_port"):
index_no_update.set_zmq_port(port_b)
# Warmup the embedding model before benchmarking (do this for both --only B and --only both)
# This ensures fair comparison as Scenario A has warmed up the model during update embeddings
logger.info("Warming up embedding model for Scenario B...")
_ = compute_embeddings(
["warmup text"], args.model_name, mode=args.embedding_mode, is_build=False
)
# Prepare worker A: compute embeddings for the same N passages
emb_time = 0.0
updates_embs_offline: np.ndarray | None = None
def _worker_emb():
nonlocal emb_time, updates_embs_offline
t = time.time()
updates_embs_offline = compute_embeddings(
update_paragraphs,
args.model_name,
mode=args.embedding_mode,
is_build=False,
batch_size=16,
)
emb_time = time.time() - t
# Pre-compute query embedding and warm up search outside of timed section.
q_vec = compute_embeddings(
[args.query], args.model_name, mode=args.embedding_mode, is_build=False
)
q_vec = np.asarray(q_vec, dtype=np.float32)
q_vec = _maybe_norm_cosine(q_vec, args.distance_metric)
print("[DEBUG B] Warming up search...")
_ = _search(index_no_update, q_vec, 1)
# Worker B: timed search on the warmed index
search_time = 0.0
offline_elapsed = 0.0
index_results: tuple[np.ndarray, np.ndarray] | None = None
def _worker_search():
nonlocal search_time, index_results
t = time.time()
distances, indices = _search(index_no_update, q_vec, args.k)
search_time = time.time() - t
index_results = (distances, indices)
# Run two workers concurrently
t0 = time.time()
th1 = threading.Thread(target=_worker_emb)
th2 = threading.Thread(target=_worker_search)
th1.start()
th2.start()
th1.join()
th2.join()
offline_elapsed = time.time() - t0
# For mixing: compute query vs. offline update similarities (pure client-side)
offline_scores: list[tuple[int, float]] = []
if updates_embs_offline is not None:
upd2 = np.asarray(updates_embs_offline, dtype=np.float32)
upd2 = _maybe_norm_cosine(upd2, args.distance_metric)
# For mips/cosine, score = dot; for l2, score = -||x-y||^2
for j in range(upd2.shape[0]):
if args.distance_metric in ("mips", "cosine"):
s = float(np.dot(q_vec[0], upd2[j]))
else:
diff = q_vec[0] - upd2[j]
s = -float(np.dot(diff, diff))
offline_scores.append((j, s))
merged_topk = (
_merge_results(index_results, offline_scores, args.k, args.distance_metric)
if index_results
else []
)
print("\n=== Scenario B: offline embeds + concurrent search (no add) ===")
print(
f"embeddings({args.num_updates})={emb_time:.3f}s; search={search_time:.3f}s; makespan≈{offline_elapsed:.3f}s (≈max)"
)
if merged_topk:
preview = ", ".join([f"{lab}:{score:.3f}" for lab, score in merged_topk[:5]])
print(f"Merged top-5 preview: {preview}")
# CSV row for B
if args.csv_path:
row_b = {
"run_id": run_id,
"scenario": "B",
"max_initial": args.max_initial,
"num_updates": args.num_updates,
"k": args.k,
"total_time_s": 0.0,
"add_total_s": 0.0,
"search_time_s": round(search_time, 6),
"emb_time_s": round(emb_time, 6),
"makespan_s": round(offline_elapsed, 6),
"model_name": args.model_name,
"embedding_mode": args.embedding_mode,
"distance_metric": args.distance_metric,
}
with args.csv_path.open("a", newline="", encoding="utf-8") as f:
writer = csv.DictWriter(f, fieldnames=csv_fields)
writer.writerow(row_b)
finally:
server_manager_b.stop_server()
# Summary
print("\n=== Summary ===")
msg_a = (
f"A: seq-add+search overall={total_seq:.3f}s (adds={add_total:.3f}s, search={search_after_add:.3f}s)"
if args.only in ("A", "both")
else "A: skipped"
)
msg_b = (
f"B: offline+concurrent overall≈{offline_elapsed:.3f}s (emb={emb_time:.3f}s, search={search_time:.3f}s)"
if args.only in ("B", "both")
else "B: skipped"
)
print(msg_a + "\n" + msg_b)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,5 @@
run_id,scenario,max_initial,num_updates,k,total_time_s,add_total_s,search_time_s,emb_time_s,makespan_s,model_name,embedding_mode,distance_metric
20251024-141607,A,300,1,10,3.273957,3.050168,0.097825,0.017339,0.0,sentence-transformers/all-MiniLM-L6-v2,sentence-transformers,mips
20251024-141607,B,300,1,10,0.0,0.0,0.111892,0.007869,0.112635,sentence-transformers/all-MiniLM-L6-v2,sentence-transformers,mips
20251025-160652,A,300,5,10,5.061945,4.805962,0.123271,0.015008,0.0,sentence-transformers/all-MiniLM-L6-v2,sentence-transformers,mips
20251025-160652,B,300,5,10,0.0,0.0,0.101809,0.008817,0.102447,sentence-transformers/all-MiniLM-L6-v2,sentence-transformers,mips
1 run_id scenario max_initial num_updates k total_time_s add_total_s search_time_s emb_time_s makespan_s model_name embedding_mode distance_metric
2 20251024-141607 A 300 1 10 3.273957 3.050168 0.097825 0.017339 0.0 sentence-transformers/all-MiniLM-L6-v2 sentence-transformers mips
3 20251024-141607 B 300 1 10 0.0 0.0 0.111892 0.007869 0.112635 sentence-transformers/all-MiniLM-L6-v2 sentence-transformers mips
4 20251025-160652 A 300 5 10 5.061945 4.805962 0.123271 0.015008 0.0 sentence-transformers/all-MiniLM-L6-v2 sentence-transformers mips
5 20251025-160652 B 300 5 10 0.0 0.0 0.101809 0.008817 0.102447 sentence-transformers/all-MiniLM-L6-v2 sentence-transformers mips

View File

@@ -0,0 +1,645 @@
#!/usr/bin/env python3
"""
Plot latency bars from the benchmark CSV produced by
benchmarks/update/bench_hnsw_rng_recompute.py.
If you also provide an offline_vs_update.csv via --csv-right
(from benchmarks/update/bench_update_vs_offline_search.py), this script will
output a side-by-side figure:
- Left: ms/passage bars (four RNG scenarios).
- Right: seconds bars (Scenario A seq add+search vs Scenario B offline+search).
Usage:
uv run python benchmarks/update/plot_bench_results.py \
--csv benchmarks/update/bench_results.csv \
--out benchmarks/update/bench_latency_from_csv.png
The script selects the latest run_id in the CSV and plots four bars for
the default scenarios:
- baseline
- no_cache_baseline
- disable_forward_rng
- disable_forward_and_reverse_rng
If multiple rows exist per scenario for that run_id, the script averages
their latency_ms_per_passage values.
"""
import argparse
import csv
from collections import defaultdict
from pathlib import Path
DEFAULT_SCENARIOS = [
"no_cache_baseline",
"baseline",
"disable_forward_rng",
"disable_forward_and_reverse_rng",
]
SCENARIO_LABELS = {
"baseline": "+ Cache",
"no_cache_baseline": "Naive \n Recompute",
"disable_forward_rng": "+ w/o \n Fwd RNG",
"disable_forward_and_reverse_rng": "+ w/o \n Bwd RNG",
}
# Paper-style colors and hatches for scenarios
SCENARIO_STYLES = {
"no_cache_baseline": {"edgecolor": "dimgrey", "hatch": "/////"},
"baseline": {"edgecolor": "#63B8B6", "hatch": "xxxxx"},
"disable_forward_rng": {"edgecolor": "green", "hatch": "....."},
"disable_forward_and_reverse_rng": {"edgecolor": "tomato", "hatch": "\\\\\\\\\\"},
}
def load_latest_run(csv_path: Path):
rows = []
with csv_path.open("r", encoding="utf-8") as f:
reader = csv.DictReader(f)
for row in reader:
rows.append(row)
if not rows:
raise SystemExit("CSV is empty: no rows to plot")
# Choose latest run_id lexicographically (YYYYMMDD-HHMMSS)
run_ids = [r.get("run_id", "") for r in rows]
latest = max(run_ids)
latest_rows = [r for r in rows if r.get("run_id", "") == latest]
if not latest_rows:
# Fallback: take last 4 rows
latest_rows = rows[-4:]
latest = latest_rows[-1].get("run_id", "unknown")
return latest, latest_rows
def aggregate_latency(rows):
acc = defaultdict(list)
for r in rows:
sc = r.get("scenario", "")
try:
val = float(r.get("latency_ms_per_passage", "nan"))
except ValueError:
continue
acc[sc].append(val)
avg = {k: (sum(v) / len(v) if v else 0.0) for k, v in acc.items()}
return avg
def _auto_cap(values: list[float]) -> float | None:
if not values:
return None
sorted_vals = sorted(values, reverse=True)
if len(sorted_vals) < 2:
return None
max_v, second = sorted_vals[0], sorted_vals[1]
if second <= 0:
return None
# If the tallest bar dwarfs the second by 2.5x+, cap near the second
if max_v >= 2.5 * second:
return second * 1.1
return None
def _add_break_marker(ax, y, rel_x0=0.02, rel_x1=0.98, size=0.02):
# Draw small diagonal ticks near left/right to signal cap
x0, x1 = rel_x0, rel_x1
ax.plot([x0 - size, x0 + size], [y + size, y - size], transform=ax.transAxes, color="k", lw=1)
ax.plot([x1 - size, x1 + size], [y + size, y - size], transform=ax.transAxes, color="k", lw=1)
def _fmt_ms(v: float) -> str:
if v >= 1000:
return f"{v / 1000:.1f}k"
return f"{v:.1f}"
def main():
# Set LaTeX style for paper figures (matching paper_fig.py)
import matplotlib.pyplot as plt
plt.rcParams["font.family"] = "Helvetica"
plt.rcParams["ytick.direction"] = "in"
plt.rcParams["hatch.linewidth"] = 1.5
plt.rcParams["font.weight"] = "bold"
plt.rcParams["axes.labelweight"] = "bold"
plt.rcParams["text.usetex"] = True
ap = argparse.ArgumentParser(description=__doc__)
ap.add_argument(
"--csv",
type=Path,
default=Path("benchmarks/update/bench_results.csv"),
help="Path to results CSV (defaults to bench_results.csv)",
)
ap.add_argument(
"--out",
type=Path,
default=Path("add_ablation.pdf"),
help="Output image path",
)
ap.add_argument(
"--csv-right",
type=Path,
default=Path("benchmarks/update/offline_vs_update.csv"),
help="Optional: offline_vs_update.csv to render right subplot (A vs B)",
)
ap.add_argument(
"--cap-y",
type=float,
default=None,
help="Cap Y-axis at this ms value; bars above are hatched and annotated.",
)
ap.add_argument(
"--no-auto-cap",
action="store_true",
help="Disable auto-cap heuristic when --cap-y is not provided.",
)
ap.add_argument(
"--broken-y",
action="store_true",
default=True,
help="Use a broken Y-axis (two stacked axes with a gap). Overrides --cap-y unless both provided.",
)
ap.add_argument(
"--lower-cap-y",
type=float,
default=None,
help="Lower axes upper bound for broken Y (ms). Default = 1.1x second-highest.",
)
ap.add_argument(
"--upper-start-y",
type=float,
default=None,
help="Upper axes lower bound for broken Y (ms). Default = 1.2x second-highest.",
)
args = ap.parse_args()
latest_run, latest_rows = load_latest_run(args.csv)
avg = aggregate_latency(latest_rows)
try:
import matplotlib.pyplot as plt
except Exception as e:
raise SystemExit(f"matplotlib not available: {e}")
scenarios = DEFAULT_SCENARIOS
values = [avg.get(name, 0.0) for name in scenarios]
labels = [SCENARIO_LABELS.get(name, name) for name in scenarios]
colors = ["#4e79a7", "#f28e2c", "#e15759", "#76b7b2"]
# If right CSV is provided, build side-by-side figure
if args.csv_right is not None:
try:
right_rows_all = []
with args.csv_right.open("r", encoding="utf-8") as f:
rreader = csv.DictReader(f)
right_rows_all = list(rreader)
if right_rows_all:
r_latest = max(r.get("run_id", "") for r in right_rows_all)
right_rows = [r for r in right_rows_all if r.get("run_id", "") == r_latest]
else:
r_latest = None
right_rows = []
except Exception:
r_latest = None
right_rows = []
a_total = 0.0
b_makespan = 0.0
for r in right_rows:
sc = (r.get("scenario", "") or "").strip().upper()
if sc == "A":
try:
a_total = float(r.get("total_time_s", 0.0))
except Exception:
pass
elif sc == "B":
try:
b_makespan = float(r.get("makespan_s", 0.0))
except Exception:
pass
import matplotlib.pyplot as plt
from matplotlib import gridspec
# Left subplot (reuse current style, with optional cap)
cap = args.cap_y
if cap is None and not args.no_auto_cap:
cap = _auto_cap(values)
x = list(range(len(labels)))
if args.broken_y:
# Use broken axis for left subplot
# Auto-adjust width ratios: left has 4 bars, right has 2 bars
fig = plt.figure(figsize=(4.8, 1.8)) # Scaled down to 80%
gs = gridspec.GridSpec(
2, 2, height_ratios=[1, 3], width_ratios=[1.5, 1], hspace=0.08, wspace=0.35
)
ax_left_top = fig.add_subplot(gs[0, 0])
ax_left_bottom = fig.add_subplot(gs[1, 0], sharex=ax_left_top)
ax_right = fig.add_subplot(gs[:, 1])
# Determine break points
s = sorted(values, reverse=True)
second = s[1] if len(s) >= 2 else (s[0] if s else 0.0)
lower_cap = (
args.lower_cap_y if args.lower_cap_y is not None else second * 1.4
) # Increased to show more range
upper_start = (
args.upper_start_y
if args.upper_start_y is not None
else max(second * 1.5, lower_cap * 1.02)
)
ymax = (
max(values) * 1.90 if values else 1.0
) # Increase headroom to 1.90 for text label and tick range
# Draw bars on both axes
ax_left_bottom.bar(x, values, color=colors[: len(labels)], width=0.8)
ax_left_top.bar(x, values, color=colors[: len(labels)], width=0.8)
# Set limits
ax_left_bottom.set_ylim(0, lower_cap)
ax_left_top.set_ylim(upper_start, ymax)
# Annotate values (convert ms to s)
values_s = [v / 1000.0 for v in values]
lower_cap_s = lower_cap / 1000.0
upper_start_s = upper_start / 1000.0
ymax_s = ymax / 1000.0
ax_left_bottom.set_ylim(0, lower_cap_s)
ax_left_top.set_ylim(upper_start_s, ymax_s)
# Redraw bars with s values (paper style: white fill + colored edge + hatch)
ax_left_bottom.clear()
ax_left_top.clear()
bar_width = 0.50 # Reduced for wider spacing between bars
for i, (scenario_name, v) in enumerate(zip(scenarios, values_s)):
style = SCENARIO_STYLES.get(scenario_name, {"edgecolor": "black", "hatch": ""})
# Draw in bottom axis for all bars
ax_left_bottom.bar(
i,
v,
width=bar_width,
color="white",
edgecolor=style["edgecolor"],
hatch=style["hatch"],
linewidth=1.2,
)
# Only draw in top axis if the bar is tall enough to reach the upper range
if v > upper_start_s:
ax_left_top.bar(
i,
v,
width=bar_width,
color="white",
edgecolor=style["edgecolor"],
hatch=style["hatch"],
linewidth=1.2,
)
ax_left_bottom.set_ylim(0, lower_cap_s)
ax_left_top.set_ylim(upper_start_s, ymax_s)
for i, v in enumerate(values_s):
if v <= lower_cap_s:
ax_left_bottom.text(
i,
v + lower_cap_s * 0.02,
f"{v:.2f}",
ha="center",
va="bottom",
fontsize=8,
fontweight="bold",
)
else:
ax_left_top.text(
i,
v + (ymax_s - upper_start_s) * 0.02,
f"{v:.2f}",
ha="center",
va="bottom",
fontsize=8,
fontweight="bold",
)
# Hide spines between axes
ax_left_top.spines["bottom"].set_visible(False)
ax_left_bottom.spines["top"].set_visible(False)
ax_left_top.tick_params(
labeltop=False, labelbottom=False, bottom=False
) # Hide tick marks
ax_left_bottom.xaxis.tick_bottom()
ax_left_bottom.tick_params(top=False) # Hide top tick marks
# Draw break marks (matching paper_fig.py style)
d = 0.015
kwargs = {
"transform": ax_left_top.transAxes,
"color": "k",
"clip_on": False,
"linewidth": 0.8,
"zorder": 10,
}
ax_left_top.plot((-d, +d), (-d, +d), **kwargs)
ax_left_top.plot((1 - d, 1 + d), (-d, +d), **kwargs)
kwargs.update({"transform": ax_left_bottom.transAxes})
ax_left_bottom.plot((-d, +d), (1 - d, 1 + d), **kwargs)
ax_left_bottom.plot((1 - d, 1 + d), (1 - d, 1 + d), **kwargs)
ax_left_bottom.set_xticks(x)
ax_left_bottom.set_xticklabels(labels, rotation=0, fontsize=7)
# Don't set ylabel here - will use fig.text for alignment
ax_left_bottom.tick_params(axis="y", labelsize=10)
ax_left_top.tick_params(axis="y", labelsize=10)
# Add subtle grid for better readability
ax_left_bottom.grid(axis="y", alpha=0.3, linestyle="--", linewidth=0.5)
ax_left_top.grid(axis="y", alpha=0.3, linestyle="--", linewidth=0.5)
ax_left_top.set_title("Single Add Operation", fontsize=11, pad=10, fontweight="bold")
# Set x-axis limits to match bar width with right subplot
ax_left_bottom.set_xlim(-0.6, 3.6)
ax_left_top.set_xlim(-0.6, 3.6)
ax_left = ax_left_bottom # for compatibility
else:
# Regular side-by-side layout
fig, (ax_left, ax_right) = plt.subplots(1, 2, figsize=(8.4, 3.15))
if cap is not None:
show_vals = [min(v, cap) for v in values]
bars = ax_left.bar(x, show_vals, color=colors[: len(labels)], width=0.8)
for i, (val, show) in enumerate(zip(values, show_vals)):
if val > cap:
bars[i].set_hatch("//")
ax_left.text(
i, cap * 1.02, _fmt_ms(val), ha="center", va="bottom", fontsize=9
)
else:
ax_left.text(
i,
show + max(1.0, 0.01 * (cap or show)),
_fmt_ms(val),
ha="center",
va="bottom",
fontsize=9,
)
ax_left.set_ylim(0, cap * 1.10)
_add_break_marker(ax_left, y=0.98)
ax_left.set_xticks(x)
ax_left.set_xticklabels(labels, rotation=0, fontsize=10)
else:
ax_left.bar(x, values, color=colors[: len(labels)], width=0.8)
for i, v in enumerate(values):
ax_left.text(i, v + 1.0, _fmt_ms(v), ha="center", va="bottom", fontsize=9)
ax_left.set_xticks(x)
ax_left.set_xticklabels(labels, rotation=0, fontsize=10)
ax_left.set_ylabel("Latency (ms per passage)")
max_initial = latest_rows[0].get("max_initial", "?")
max_updates = latest_rows[0].get("max_updates", "?")
ax_left.set_title(
f"HNSW RNG (run {latest_run}) | init={max_initial}, upd={max_updates}"
)
# Right subplot (A vs B, seconds) - paper style
r_labels = ["Sequential", "Delayed \n Add+Search"]
r_values = [a_total or 0.0, b_makespan or 0.0]
r_styles = [
{"edgecolor": "#59a14f", "hatch": "xxxxx"},
{"edgecolor": "#edc948", "hatch": "/////"},
]
# 2 bars, centered with proper spacing
xr = [0, 1]
bar_width = 0.50 # Reduced for wider spacing between bars
for i, (v, style) in enumerate(zip(r_values, r_styles)):
ax_right.bar(
xr[i],
v,
width=bar_width,
color="white",
edgecolor=style["edgecolor"],
hatch=style["hatch"],
linewidth=1.2,
)
for i, v in enumerate(r_values):
max_v = max(r_values) if r_values else 1.0
offset = max(0.0002, 0.02 * max_v)
ax_right.text(
xr[i],
v + offset,
f"{v:.2f}",
ha="center",
va="bottom",
fontsize=8,
fontweight="bold",
)
ax_right.set_xticks(xr)
ax_right.set_xticklabels(r_labels, rotation=0, fontsize=7)
# Don't set ylabel here - will use fig.text for alignment
ax_right.tick_params(axis="y", labelsize=10)
# Add subtle grid for better readability
ax_right.grid(axis="y", alpha=0.3, linestyle="--", linewidth=0.5)
ax_right.set_title("Batched Add Operation", fontsize=11, pad=10, fontweight="bold")
# Set x-axis limits to match left subplot's bar width visually
# Accounting for width_ratios=[1.5, 1]:
# Left: 4 bars, xlim(-0.6, 3.6), range=4.2, physical_width=1.5*unit
# bar_width_visual = 0.72 * (1.5*unit / 4.2)
# Right: 2 bars, need same visual width
# 0.72 * (1.0*unit / range_right) = 0.72 * (1.5*unit / 4.2)
# range_right = 4.2 / 1.5 = 2.8
# For bars at 0, 1: padding = (2.8 - 1) / 2 = 0.9
ax_right.set_xlim(-0.9, 1.9)
# Set y-axis limit with headroom for text labels
if r_values:
max_v = max(r_values)
ax_right.set_ylim(0, max_v * 1.15)
# Format y-axis to avoid scientific notation
ax_right.ticklabel_format(style="plain", axis="y")
plt.tight_layout()
# Add aligned ylabels using fig.text (after tight_layout)
# Get the vertical center of the entire figure
fig_center_y = 0.5
# Left ylabel - closer to left plot
left_x = 0.05
fig.text(
left_x,
fig_center_y,
"Latency (s)",
va="center",
rotation="vertical",
fontsize=11,
fontweight="bold",
)
# Right ylabel - closer to right plot
right_bbox = ax_right.get_position()
right_x = right_bbox.x0 - 0.07
fig.text(
right_x,
fig_center_y,
"Latency (s)",
va="center",
rotation="vertical",
fontsize=11,
fontweight="bold",
)
plt.savefig(args.out, bbox_inches="tight", pad_inches=0.05)
# Also save PDF for paper
pdf_out = args.out.with_suffix(".pdf")
plt.savefig(pdf_out, bbox_inches="tight", pad_inches=0.05)
print(f"Saved: {args.out}")
print(f"Saved: {pdf_out}")
return
# Broken-Y mode
if args.broken_y:
import matplotlib.pyplot as plt
fig, (ax_top, ax_bottom) = plt.subplots(
2,
1,
sharex=True,
figsize=(7.5, 6.75),
gridspec_kw={"height_ratios": [1, 3], "hspace": 0.08},
)
# Determine default breaks from second-highest
s = sorted(values, reverse=True)
second = s[1] if len(s) >= 2 else (s[0] if s else 0.0)
lower_cap = args.lower_cap_y if args.lower_cap_y is not None else second * 1.1
upper_start = (
args.upper_start_y
if args.upper_start_y is not None
else max(second * 1.2, lower_cap * 1.02)
)
ymax = max(values) * 1.10 if values else 1.0
x = list(range(len(labels)))
ax_bottom.bar(x, values, color=colors[: len(labels)], width=0.8)
ax_top.bar(x, values, color=colors[: len(labels)], width=0.8)
# Limits
ax_bottom.set_ylim(0, lower_cap)
ax_top.set_ylim(upper_start, ymax)
# Annotate values
for i, v in enumerate(values):
if v <= lower_cap:
ax_bottom.text(
i, v + lower_cap * 0.02, _fmt_ms(v), ha="center", va="bottom", fontsize=9
)
else:
ax_top.text(i, v, _fmt_ms(v), ha="center", va="bottom", fontsize=9)
# Hide spines between axes and draw diagonal break marks
ax_top.spines["bottom"].set_visible(False)
ax_bottom.spines["top"].set_visible(False)
ax_top.tick_params(labeltop=False) # don't put tick labels at the top
ax_bottom.xaxis.tick_bottom()
# Diagonal lines at the break (matching paper_fig.py style)
d = 0.015
kwargs = {
"transform": ax_top.transAxes,
"color": "k",
"clip_on": False,
"linewidth": 0.8,
"zorder": 10,
}
ax_top.plot((-d, +d), (-d, +d), **kwargs) # top-left diagonal
ax_top.plot((1 - d, 1 + d), (-d, +d), **kwargs) # top-right diagonal
kwargs.update({"transform": ax_bottom.transAxes})
ax_bottom.plot((-d, +d), (1 - d, 1 + d), **kwargs) # bottom-left diagonal
ax_bottom.plot((1 - d, 1 + d), (1 - d, 1 + d), **kwargs) # bottom-right diagonal
ax_bottom.set_xticks(x)
ax_bottom.set_xticklabels(labels, rotation=0, fontsize=10)
ax = ax_bottom # for labeling below
else:
cap = args.cap_y
if cap is None and not args.no_auto_cap:
cap = _auto_cap(values)
plt.figure(figsize=(5.4, 3.15))
ax = plt.gca()
if cap is not None:
show_vals = [min(v, cap) for v in values]
bars = []
for i, (_label, val, show) in enumerate(zip(labels, values, show_vals)):
bar = ax.bar(i, show, color=colors[i], width=0.8)
bars.append(bar[0])
# Hatch and annotate when capped
if val > cap:
bars[-1].set_hatch("//")
ax.text(i, cap * 1.02, f"{_fmt_ms(val)}", ha="center", va="bottom", fontsize=9)
else:
ax.text(
i,
show + max(1.0, 0.01 * (cap or show)),
f"{_fmt_ms(val)}",
ha="center",
va="bottom",
fontsize=9,
)
ax.set_ylim(0, cap * 1.10)
_add_break_marker(ax, y=0.98)
ax.legend([bars[1]], ["capped"], fontsize=8, frameon=False, loc="upper right") if any(
v > cap for v in values
) else None
ax.set_xticks(range(len(labels)))
ax.set_xticklabels(labels, fontsize=11, fontweight="bold")
else:
ax.bar(labels, values, color=colors[: len(labels)])
for idx, val in enumerate(values):
ax.text(
idx,
val + 1.0,
f"{_fmt_ms(val)}",
ha="center",
va="bottom",
fontsize=10,
fontweight="bold",
)
ax.set_xticklabels(labels, fontsize=11, fontweight="bold")
# Try to extract some context for title
max_initial = latest_rows[0].get("max_initial", "?")
max_updates = latest_rows[0].get("max_updates", "?")
if args.broken_y:
fig.text(
0.02,
0.5,
"Latency (s)",
va="center",
rotation="vertical",
fontsize=11,
fontweight="bold",
)
fig.suptitle(
"Add Operation Latency",
fontsize=11,
y=0.98,
fontweight="bold",
)
plt.tight_layout(rect=(0.03, 0.04, 1, 0.96))
else:
plt.ylabel("Latency (s)", fontsize=11, fontweight="bold")
plt.title("Add Operation Latency", fontsize=11, fontweight="bold")
plt.tight_layout()
plt.savefig(args.out, bbox_inches="tight", pad_inches=0.05)
# Also save PDF for paper
pdf_out = args.out.with_suffix(".pdf")
plt.savefig(pdf_out, bbox_inches="tight", pad_inches=0.05)
print(f"Saved: {args.out}")
print(f"Saved: {pdf_out}")
if __name__ == "__main__":
main()

186
docs/COLQWEN_GUIDE.md Normal file
View File

@@ -0,0 +1,186 @@
# ColQwen Integration Guide
Easy-to-use multimodal PDF retrieval with ColQwen2/ColPali models.
## Quick Start
> **🍎 Mac Users**: ColQwen is optimized for Apple Silicon with MPS acceleration for faster inference!
### 1. Install Dependencies
```bash
uv pip install colpali_engine pdf2image pillow matplotlib qwen_vl_utils einops seaborn
brew install poppler # macOS only, for PDF processing
```
### 2. Basic Usage
```bash
# Build index from PDFs
python -m apps.colqwen_rag build --pdfs ./my_papers/ --index research_papers
# Search with text queries
python -m apps.colqwen_rag search research_papers "How does attention mechanism work?"
# Interactive Q&A
python -m apps.colqwen_rag ask research_papers --interactive
```
## Commands
### Build Index
```bash
python -m apps.colqwen_rag build \
--pdfs ./pdf_directory/ \
--index my_index \
--model colqwen2 \
--pages-dir ./page_images/ # Optional: save page images
```
**Options:**
- `--pdfs`: Directory containing PDF files (or single PDF path)
- `--index`: Name for the index (required)
- `--model`: `colqwen2` (default) or `colpali`
- `--pages-dir`: Directory to save page images (optional)
### Search Index
```bash
python -m apps.colqwen_rag search my_index "your question here" --top-k 5
```
**Options:**
- `--top-k`: Number of results to return (default: 5)
- `--model`: Model used for search (should match build model)
### Interactive Q&A
```bash
python -m apps.colqwen_rag ask my_index --interactive
```
**Commands in interactive mode:**
- Type your questions naturally
- `help`: Show available commands
- `quit`/`exit`/`q`: Exit interactive mode
## 🎨 Advanced: Similarity Maps
For visual similarity analysis, use the existing advanced script:
```bash
cd apps/multimodal/vision-based-pdf-multi-vector/
python multi-vector-leann-similarity-map.py
```
Edit the script to customize:
- `QUERY`: Your question
- `MODEL`: "colqwen2" or "colpali"
- `USE_HF_DATASET`: Use HuggingFace dataset or local PDFs
- `SIMILARITY_MAP`: Generate heatmaps
- `ANSWER`: Enable Qwen-VL answer generation
## 🔧 How It Works
### ColQwen2 vs ColPali
- **ColQwen2** (`vidore/colqwen2-v1.0`): Latest vision-language model
- **ColPali** (`vidore/colpali-v1.2`): Proven multimodal retriever
### Architecture
1. **PDF → Images**: Convert PDF pages to images (150 DPI)
2. **Vision Encoding**: Process images with ColQwen2/ColPali
3. **Multi-Vector Index**: Build LEANN HNSW index with multiple embeddings per page
4. **Query Processing**: Encode text queries with same model
5. **Similarity Search**: Find most relevant pages/regions
6. **Visual Maps**: Generate attention heatmaps (optional)
### Device Support
- **CUDA**: Best performance with GPU acceleration
- **MPS**: Apple Silicon Mac support
- **CPU**: Fallback for any system (slower)
Auto-detection: CUDA > MPS > CPU
## 📊 Performance Tips
### For Best Performance:
```bash
# Use ColQwen2 for latest features
--model colqwen2
# Save page images for reuse
--pages-dir ./cached_pages/
# Adjust batch size based on GPU memory
# (automatically handled)
```
### For Large Document Sets:
- Process PDFs in batches
- Use SSD storage for index files
- Consider using CUDA if available
## 🔗 Related Resources
- **Fast-PLAID**: https://github.com/lightonai/fast-plaid
- **Pylate**: https://github.com/lightonai/pylate
- **ColBERT**: https://github.com/stanford-futuredata/ColBERT
- **ColPali Paper**: Vision-Language Models for Document Retrieval
- **Issue #119**: https://github.com/yichuan-w/LEANN/issues/119
## 🐛 Troubleshooting
### PDF Conversion Issues (macOS)
```bash
# Install poppler
brew install poppler
which pdfinfo && pdfinfo -v
```
### Memory Issues
- Reduce batch size (automatically handled)
- Use CPU instead of GPU: `export CUDA_VISIBLE_DEVICES=""`
- Process fewer PDFs at once
### Model Download Issues
- Ensure internet connection for first run
- Models are cached after first download
- Use HuggingFace mirrors if needed
### Import Errors
```bash
# Ensure all dependencies installed
uv pip install colpali_engine pdf2image pillow matplotlib qwen_vl_utils einops seaborn
# Check PyTorch installation
python -c "import torch; print(torch.__version__)"
```
## 💡 Examples
### Research Paper Analysis
```bash
# Index your research papers
python -m apps.colqwen_rag build --pdfs ~/Papers/AI/ --index ai_papers
# Ask research questions
python -m apps.colqwen_rag search ai_papers "What are the limitations of transformer models?"
python -m apps.colqwen_rag search ai_papers "How does BERT compare to GPT?"
```
### Document Q&A
```bash
# Index business documents
python -m apps.colqwen_rag build --pdfs ~/Documents/Reports/ --index reports
# Interactive analysis
python -m apps.colqwen_rag ask reports --interactive
```
### Visual Analysis
```bash
# Generate similarity maps for specific queries
cd apps/multimodal/vision-based-pdf-multi-vector/
# Edit multi-vector-leann-similarity-map.py with your query
python multi-vector-leann-similarity-map.py
# Check ./figures/ for generated heatmaps
```
---
**🎯 This integration makes ColQwen as easy to use as other LEANN features while maintaining the full power of multimodal document understanding!**

View File

@@ -29,12 +29,25 @@ if(APPLE)
set(CMAKE_OSX_DEPLOYMENT_TARGET "11.0" CACHE STRING "Minimum macOS version")
endif()
# Use system ZeroMQ instead of building from source
# Find ZMQ using pkg-config with IMPORTED_TARGET for automatic target creation
find_package(PkgConfig REQUIRED)
pkg_check_modules(ZMQ REQUIRED libzmq)
# On ARM64 macOS, ensure pkg-config finds ARM64 Homebrew packages first
if(APPLE AND CMAKE_SYSTEM_PROCESSOR MATCHES "aarch64|arm64")
set(ENV{PKG_CONFIG_PATH} "/opt/homebrew/lib/pkgconfig:/opt/homebrew/share/pkgconfig:$ENV{PKG_CONFIG_PATH}")
endif()
pkg_check_modules(ZMQ REQUIRED IMPORTED_TARGET libzmq)
# This creates PkgConfig::ZMQ target automatically with correct properties
if(TARGET PkgConfig::ZMQ)
message(STATUS "Found and configured ZMQ target: PkgConfig::ZMQ")
else()
message(FATAL_ERROR "pkg_check_modules did not create IMPORTED target for ZMQ.")
endif()
# Add cppzmq headers
include_directories(third_party/cppzmq)
include_directories(SYSTEM third_party/cppzmq)
# Configure msgpack-c - disable boost dependency
set(MSGPACK_USE_BOOST OFF CACHE BOOL "" FORCE)

View File

@@ -215,6 +215,8 @@ class HNSWSearcher(BaseSearcher):
if recompute_embeddings:
if zmq_port is None:
raise ValueError("zmq_port must be provided if recompute_embeddings is True")
if hasattr(self._index, "set_zmq_port"):
self._index.set_zmq_port(zmq_port)
if query.dtype != np.float32:
query = query.astype(np.float32)

View File

@@ -820,10 +820,10 @@ class LeannBuilder:
actual_port,
requested_zmq_port,
)
try:
index.hnsw.zmq_port = actual_port
except AttributeError:
pass
if hasattr(index.hnsw, "set_zmq_port"):
index.hnsw.set_zmq_port(actual_port)
elif hasattr(index, "set_zmq_port"):
index.set_zmq_port(actual_port)
if needs_recompute:
for i in range(embeddings.shape[0]):
@@ -1236,6 +1236,17 @@ class LeannChat:
"Please provide the best answer you can based on this context and your knowledge."
)
print("The context provided to the LLM is:")
print(f"{'Relevance':<10} | {'Chunk id':<10} | {'Content':<60} | {'Source':<80}")
print("-" * 150)
for r in results:
chunk_relevance = f"{r.score:.3f}"
chunk_id = r.id
chunk_content = r.text[:60]
chunk_source = r.metadata.get("source", "")[:80]
print(
f"{chunk_relevance:<10} | {chunk_id:<10} | {chunk_content:<60} | {chunk_source:<80}"
)
ask_time = time.time()
ans = self.llm.ask(prompt, **llm_kwargs)
ask_time = time.time() - ask_time

View File

@@ -834,6 +834,11 @@ class OpenAIChat(LLMInterface):
try:
response = self.client.chat.completions.create(**params)
print(
f"Total tokens = {response.usage.total_tokens}, prompt tokens = {response.usage.prompt_tokens}, completion tokens = {response.usage.completion_tokens}"
)
if response.choices[0].finish_reason == "length":
print("The query is exceeding the maximum allowed number of tokens")
return response.choices[0].message.content.strip()
except Exception as e:
logger.error(f"Error communicating with OpenAI: {e}")

View File

@@ -11,6 +11,119 @@ from llama_index.core.node_parser import SentenceSplitter
logger = logging.getLogger(__name__)
def estimate_token_count(text: str) -> int:
"""
Estimate token count for a text string.
Uses conservative estimation: ~4 characters per token for natural text,
~1.2 tokens per character for code (worse tokenization).
Args:
text: Input text to estimate tokens for
Returns:
Estimated token count
"""
try:
import tiktoken
encoder = tiktoken.get_encoding("cl100k_base")
return len(encoder.encode(text))
except ImportError:
# Fallback: Conservative character-based estimation
# Assume worst case for code: 1.2 tokens per character
return int(len(text) * 1.2)
def calculate_safe_chunk_size(
model_token_limit: int,
overlap_tokens: int,
chunking_mode: str = "traditional",
safety_factor: float = 0.9,
) -> int:
"""
Calculate safe chunk size accounting for overlap and safety margin.
Args:
model_token_limit: Maximum tokens supported by embedding model
overlap_tokens: Overlap size (tokens for traditional, chars for AST)
chunking_mode: "traditional" (tokens) or "ast" (characters)
safety_factor: Safety margin (0.9 = 10% safety margin)
Returns:
Safe chunk size: tokens for traditional, characters for AST
"""
safe_limit = int(model_token_limit * safety_factor)
if chunking_mode == "traditional":
# Traditional chunking uses tokens
# Max chunk = chunk_size + overlap, so chunk_size = limit - overlap
return max(1, safe_limit - overlap_tokens)
else: # AST chunking
# AST uses characters, need to convert
# Conservative estimate: 1.2 tokens per char for code
overlap_chars = int(overlap_tokens * 3) # ~3 chars per token for code
safe_chars = int(safe_limit / 1.2)
return max(1, safe_chars - overlap_chars)
def validate_chunk_token_limits(chunks: list[str], max_tokens: int = 512) -> tuple[list[str], int]:
"""
Validate that chunks don't exceed token limits and truncate if necessary.
Args:
chunks: List of text chunks to validate
max_tokens: Maximum tokens allowed per chunk
Returns:
Tuple of (validated_chunks, num_truncated)
"""
validated_chunks = []
num_truncated = 0
for i, chunk in enumerate(chunks):
estimated_tokens = estimate_token_count(chunk)
if estimated_tokens > max_tokens:
# Truncate chunk to fit token limit
try:
import tiktoken
encoder = tiktoken.get_encoding("cl100k_base")
tokens = encoder.encode(chunk)
if len(tokens) > max_tokens:
truncated_tokens = tokens[:max_tokens]
truncated_chunk = encoder.decode(truncated_tokens)
validated_chunks.append(truncated_chunk)
num_truncated += 1
logger.warning(
f"Truncated chunk {i} from {len(tokens)} to {max_tokens} tokens "
f"(from {len(chunk)} to {len(truncated_chunk)} characters)"
)
else:
validated_chunks.append(chunk)
except ImportError:
# Fallback: Conservative character truncation
char_limit = int(max_tokens / 1.2) # Conservative for code
if len(chunk) > char_limit:
truncated_chunk = chunk[:char_limit]
validated_chunks.append(truncated_chunk)
num_truncated += 1
logger.warning(
f"Truncated chunk {i} from {len(chunk)} to {char_limit} characters "
f"(conservative estimate for {max_tokens} tokens)"
)
else:
validated_chunks.append(chunk)
else:
validated_chunks.append(chunk)
if num_truncated > 0:
logger.warning(f"Truncated {num_truncated}/{len(chunks)} chunks to fit token limits")
return validated_chunks, num_truncated
# Code file extensions supported by astchunk
CODE_EXTENSIONS = {
".py": "python",
@@ -82,6 +195,17 @@ def create_ast_chunks(
continue
try:
# Warn if AST chunk size + overlap might exceed common token limits
estimated_max_tokens = int(
(max_chunk_size + chunk_overlap) * 1.2
) # Conservative estimate
if estimated_max_tokens > 512:
logger.warning(
f"AST chunk size ({max_chunk_size}) + overlap ({chunk_overlap}) = {max_chunk_size + chunk_overlap} chars "
f"may exceed 512 token limit (~{estimated_max_tokens} tokens estimated). "
f"Consider reducing --ast-chunk-size to {int(400 / 1.2)} or --ast-chunk-overlap to {int(50 / 1.2)}"
)
configs = {
"max_chunk_size": max_chunk_size,
"language": language,
@@ -217,4 +341,14 @@ def create_text_chunks(
all_chunks = create_traditional_chunks(documents, chunk_size, chunk_overlap)
logger.info(f"Total chunks created: {len(all_chunks)}")
return all_chunks
# Validate chunk token limits (default to 512 for safety)
# This provides a safety net for embedding models with token limits
validated_chunks, num_truncated = validate_chunk_token_limits(all_chunks, max_tokens=512)
if num_truncated > 0:
logger.info(
f"Post-chunking validation: {num_truncated} chunks were truncated to fit 512 token limit"
)
return validated_chunks

View File

@@ -1,5 +1,6 @@
import argparse
import asyncio
import time
from pathlib import Path
from typing import Any, Optional, Union
@@ -106,7 +107,7 @@ Examples:
help="Documents directories and/or files (default: current directory)",
)
build_parser.add_argument(
"--backend",
"--backend-name",
type=str,
default="hnsw",
choices=["hnsw", "diskann"],
@@ -180,25 +181,25 @@ Examples:
"--doc-chunk-size",
type=int,
default=256,
help="Document chunk size in tokens/characters (default: 256)",
help="Document chunk size in TOKENS (default: 256). Final chunks may be larger due to overlap. For 512 token models: recommended 350 tokens (350 + 128 overlap = 478 max)",
)
build_parser.add_argument(
"--doc-chunk-overlap",
type=int,
default=128,
help="Document chunk overlap (default: 128)",
help="Document chunk overlap in TOKENS (default: 128). Added to chunk size, not included in it",
)
build_parser.add_argument(
"--code-chunk-size",
type=int,
default=512,
help="Code chunk size in tokens/lines (default: 512)",
help="Code chunk size in TOKENS (default: 512). Final chunks may be larger due to overlap. For 512 token models: recommended 400 tokens (400 + 50 overlap = 450 max)",
)
build_parser.add_argument(
"--code-chunk-overlap",
type=int,
default=50,
help="Code chunk overlap (default: 50)",
help="Code chunk overlap in TOKENS (default: 50). Added to chunk size, not included in it",
)
build_parser.add_argument(
"--use-ast-chunking",
@@ -208,14 +209,14 @@ Examples:
build_parser.add_argument(
"--ast-chunk-size",
type=int,
default=768,
help="AST chunk size in characters (default: 768)",
default=300,
help="AST chunk size in CHARACTERS (non-whitespace) (default: 300). Final chunks may be larger due to overlap and expansion. For 512 token models: recommended 300 chars (300 + 64 overlap ~= 480 tokens)",
)
build_parser.add_argument(
"--ast-chunk-overlap",
type=int,
default=96,
help="AST chunk overlap in characters (default: 96)",
default=64,
help="AST chunk overlap in CHARACTERS (default: 64). Added to chunk size, not included in it. ~1.2 tokens per character for code",
)
build_parser.add_argument(
"--ast-fallback-traditional",
@@ -254,6 +255,11 @@ Examples:
action="store_true",
help="Non-interactive mode: automatically select index without prompting",
)
search_parser.add_argument(
"--show-metadata",
action="store_true",
help="Display file paths and metadata in search results",
)
# Ask command
ask_parser = subparsers.add_parser("ask", help="Ask questions")
@@ -1186,6 +1192,7 @@ Examples:
for doc in other_docs:
file_path = doc.metadata.get("file_path", "")
if file_filter(file_path):
doc.metadata["source"] = file_path
filtered_docs.append(doc)
documents.extend(filtered_docs)
@@ -1261,7 +1268,7 @@ Examples:
from .chunking_utils import create_text_chunks
# Use enhanced chunking with AST support
all_texts = create_text_chunks(
chunk_texts = create_text_chunks(
documents,
chunk_size=self.node_parser.chunk_size,
chunk_overlap=self.node_parser.chunk_overlap,
@@ -1272,6 +1279,14 @@ Examples:
ast_fallback_traditional=getattr(args, "ast_fallback_traditional", True),
)
# Note: AST chunking currently returns plain text chunks without metadata
# We preserve basic file info by associating chunks with their source documents
# For better metadata preservation, documents list order should be maintained
for chunk_text in chunk_texts:
# TODO: Enhance create_text_chunks to return metadata alongside text
# For now, we store chunks with empty metadata
all_texts.append({"text": chunk_text, "metadata": {}})
except ImportError as e:
print(
f"⚠️ AST chunking utilities not available in package ({e}), falling back to traditional chunking"
@@ -1283,14 +1298,27 @@ Examples:
for doc in tqdm(documents, desc="Chunking documents", unit="doc"):
# Check if this is a code file based on source path
source_path = doc.metadata.get("source", "")
file_path = doc.metadata.get("file_path", "")
is_code_file = any(source_path.endswith(ext) for ext in code_file_exts)
# Extract metadata to preserve with chunks
chunk_metadata = {
"file_path": file_path or source_path,
"file_name": doc.metadata.get("file_name", ""),
}
# Add optional metadata if available
if "creation_date" in doc.metadata:
chunk_metadata["creation_date"] = doc.metadata["creation_date"]
if "last_modified_date" in doc.metadata:
chunk_metadata["last_modified_date"] = doc.metadata["last_modified_date"]
# Use appropriate parser based on file type
parser = self.code_parser if is_code_file else self.node_parser
nodes = parser.get_nodes_from_documents([doc])
for node in nodes:
all_texts.append(node.get_content())
all_texts.append({"text": node.get_content(), "metadata": chunk_metadata})
print(f"Loaded {len(documents)} documents, {len(all_texts)} chunks")
return all_texts
@@ -1365,7 +1393,7 @@ Examples:
index_dir.mkdir(parents=True, exist_ok=True)
print(f"Building index '{index_name}' with {args.backend} backend...")
print(f"Building index '{index_name}' with {args.backend_name} backend...")
embedding_options: dict[str, Any] = {}
if args.embedding_mode == "ollama":
@@ -1377,7 +1405,7 @@ Examples:
embedding_options["api_key"] = resolved_embedding_key
builder = LeannBuilder(
backend_name=args.backend,
backend_name=args.backend_name,
embedding_model=args.embedding_model,
embedding_mode=args.embedding_mode,
embedding_options=embedding_options or None,
@@ -1388,8 +1416,8 @@ Examples:
num_threads=args.num_threads,
)
for chunk_text in all_texts:
builder.add_text(chunk_text)
for chunk in all_texts:
builder.add_text(chunk["text"], metadata=chunk["metadata"])
builder.build_index(index_path)
print(f"Index built at {index_path}")
@@ -1510,7 +1538,25 @@ Examples:
print(f"Search results for '{query}' (top {len(results)}):")
for i, result in enumerate(results, 1):
print(f"{i}. Score: {result.score:.3f}")
# Display metadata if flag is set
if args.show_metadata and result.metadata:
file_path = result.metadata.get("file_path", "")
if file_path:
print(f" 📄 File: {file_path}")
file_name = result.metadata.get("file_name", "")
if file_name and file_name != file_path:
print(f" 📝 Name: {file_name}")
# Show timestamps if available
if "creation_date" in result.metadata:
print(f" 🕐 Created: {result.metadata['creation_date']}")
if "last_modified_date" in result.metadata:
print(f" 🕑 Modified: {result.metadata['last_modified_date']}")
print(f" {result.text[:200]}...")
print(f" Source: {result.metadata.get('source', '')}")
print()
async def ask_questions(self, args):
@@ -1542,6 +1588,7 @@ Examples:
llm_kwargs["thinking_budget"] = args.thinking_budget
def _ask_once(prompt: str) -> None:
query_start_time = time.time()
response = chat.ask(
prompt,
top_k=args.top_k,
@@ -1552,7 +1599,9 @@ Examples:
pruning_strategy=args.pruning_strategy,
llm_kwargs=llm_kwargs,
)
query_completion_time = time.time() - query_start_time
print(f"LEANN: {response}")
print(f"The query took {query_completion_time:.3f} seconds to finish")
initial_query = (args.query or "").strip()

View File

@@ -14,6 +14,89 @@ import torch
from .settings import resolve_ollama_host, resolve_openai_api_key, resolve_openai_base_url
def truncate_to_token_limit(texts: list[str], max_tokens: int = 512) -> list[str]:
"""
Truncate texts to token limit using tiktoken or conservative character truncation.
Args:
texts: List of texts to truncate
max_tokens: Maximum tokens allowed per text
Returns:
List of truncated texts that should fit within token limit
"""
try:
import tiktoken
encoder = tiktoken.get_encoding("cl100k_base")
truncated = []
for text in texts:
tokens = encoder.encode(text)
if len(tokens) > max_tokens:
# Truncate to max_tokens and decode back to text
truncated_tokens = tokens[:max_tokens]
truncated_text = encoder.decode(truncated_tokens)
truncated.append(truncated_text)
logger.warning(
f"Truncated text from {len(tokens)} to {max_tokens} tokens "
f"(from {len(text)} to {len(truncated_text)} characters)"
)
else:
truncated.append(text)
return truncated
except ImportError:
# Fallback: Conservative character truncation
# Assume worst case: 1.5 tokens per character for code content
char_limit = int(max_tokens / 1.5)
truncated = []
for text in texts:
if len(text) > char_limit:
truncated_text = text[:char_limit]
truncated.append(truncated_text)
logger.warning(
f"Truncated text from {len(text)} to {char_limit} characters "
f"(conservative estimate for {max_tokens} tokens)"
)
else:
truncated.append(text)
return truncated
def get_model_token_limit(model_name: str) -> int:
"""
Get token limit for a given embedding model.
Args:
model_name: Name of the embedding model
Returns:
Token limit for the model, defaults to 512 if unknown
"""
# Handle versioned model names (e.g., "nomic-embed-text:latest" -> "nomic-embed-text")
base_model_name = model_name.split(":")[0]
# Check exact match first
if model_name in EMBEDDING_MODEL_LIMITS:
return EMBEDDING_MODEL_LIMITS[model_name]
# Check base name match
if base_model_name in EMBEDDING_MODEL_LIMITS:
return EMBEDDING_MODEL_LIMITS[base_model_name]
# Check partial matches for common patterns
for known_model, limit in EMBEDDING_MODEL_LIMITS.items():
if known_model in base_model_name or base_model_name in known_model:
return limit
# Default to conservative 512 token limit
logger.warning(f"Unknown model '{model_name}', using default 512 token limit")
return 512
# Set up logger with proper level
logger = logging.getLogger(__name__)
LOG_LEVEL = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
@@ -23,6 +106,17 @@ logger.setLevel(log_level)
# Global model cache to avoid repeated loading
_model_cache: dict[str, Any] = {}
# Known embedding model token limits
EMBEDDING_MODEL_LIMITS = {
"nomic-embed-text": 512,
"nomic-embed-text-v2": 512,
"mxbai-embed-large": 512,
"all-minilm": 512,
"bge-m3": 8192,
"snowflake-arctic-embed": 512,
# Add more models as needed
}
def compute_embeddings(
texts: list[str],
@@ -574,9 +668,10 @@ def compute_embeddings_ollama(
host: Optional[str] = None,
) -> np.ndarray:
"""
Compute embeddings using Ollama API with simplified batch processing.
Compute embeddings using Ollama API with true batch processing.
Uses batch size of 32 for MPS/CPU and 128 for CUDA to optimize performance.
Uses the /api/embed endpoint which supports batch inputs.
Batch size: 32 for MPS/CPU, 128 for CUDA to optimize performance.
Args:
texts: List of texts to compute embeddings for
@@ -681,11 +776,11 @@ def compute_embeddings_ollama(
logger.info(f"Resolved model name '{model_name}' to '{resolved_model_name}'")
model_name = resolved_model_name
# Verify the model supports embeddings by testing it
# Verify the model supports embeddings by testing it with /api/embed
try:
test_response = requests.post(
f"{resolved_host}/api/embeddings",
json={"model": model_name, "prompt": "test"},
f"{resolved_host}/api/embed",
json={"model": model_name, "input": "test"},
timeout=10,
)
if test_response.status_code != 200:
@@ -717,63 +812,80 @@ def compute_embeddings_ollama(
# If torch is not available, use conservative batch size
batch_size = 32
logger.info(f"Using batch size: {batch_size}")
logger.info(f"Using batch size: {batch_size} for true batch processing")
# Get model token limit and apply truncation
token_limit = get_model_token_limit(model_name)
logger.info(f"Model '{model_name}' token limit: {token_limit}")
# Apply token-aware truncation to all texts
truncated_texts = truncate_to_token_limit(texts, token_limit)
if len(truncated_texts) != len(texts):
logger.error("Truncation failed - text count mismatch")
truncated_texts = texts # Fallback to original texts
def get_batch_embeddings(batch_texts):
"""Get embeddings for a batch of texts."""
all_embeddings = []
failed_indices = []
"""Get embeddings for a batch of texts using /api/embed endpoint."""
max_retries = 3
retry_count = 0
for i, text in enumerate(batch_texts):
max_retries = 3
retry_count = 0
# Texts are already truncated to token limit by the outer function
while retry_count < max_retries:
try:
# Use /api/embed endpoint with "input" parameter for batch processing
response = requests.post(
f"{resolved_host}/api/embed",
json={"model": model_name, "input": batch_texts},
timeout=60, # Increased timeout for batch processing
)
response.raise_for_status()
# Truncate very long texts to avoid API issues
truncated_text = text[:8000] if len(text) > 8000 else text
while retry_count < max_retries:
try:
response = requests.post(
f"{resolved_host}/api/embeddings",
json={"model": model_name, "prompt": truncated_text},
timeout=30,
result = response.json()
batch_embeddings = result.get("embeddings")
if batch_embeddings is None:
raise ValueError("No embeddings returned from API")
if not isinstance(batch_embeddings, list):
raise ValueError(f"Invalid embeddings format: {type(batch_embeddings)}")
if len(batch_embeddings) != len(batch_texts):
raise ValueError(
f"Mismatch: requested {len(batch_texts)} embeddings, got {len(batch_embeddings)}"
)
response.raise_for_status()
result = response.json()
embedding = result.get("embedding")
return batch_embeddings, []
if embedding is None:
raise ValueError(f"No embedding returned for text {i}")
except requests.exceptions.Timeout:
retry_count += 1
if retry_count >= max_retries:
logger.warning(f"Timeout for batch after {max_retries} retries")
return None, list(range(len(batch_texts)))
if not isinstance(embedding, list) or len(embedding) == 0:
raise ValueError(f"Invalid embedding format for text {i}")
except Exception as e:
retry_count += 1
if retry_count >= max_retries:
# Enhanced error detection for token limit violations
error_msg = str(e).lower()
if "token" in error_msg and (
"limit" in error_msg or "exceed" in error_msg or "length" in error_msg
):
logger.error(
f"Token limit exceeded for batch. Error: {e}. "
f"Consider reducing chunk sizes or check token truncation."
)
else:
logger.error(f"Failed to get embeddings for batch: {e}")
return None, list(range(len(batch_texts)))
all_embeddings.append(embedding)
break
return None, list(range(len(batch_texts)))
except requests.exceptions.Timeout:
retry_count += 1
if retry_count >= max_retries:
logger.warning(f"Timeout for text {i} after {max_retries} retries")
failed_indices.append(i)
all_embeddings.append(None)
break
except Exception as e:
retry_count += 1
if retry_count >= max_retries:
logger.error(f"Failed to get embedding for text {i}: {e}")
failed_indices.append(i)
all_embeddings.append(None)
break
return all_embeddings, failed_indices
# Process texts in batches
# Process truncated texts in batches
all_embeddings = []
all_failed_indices = []
# Setup progress bar if needed
show_progress = is_build or len(texts) > 10
show_progress = is_build or len(truncated_texts) > 10
try:
if show_progress:
from tqdm import tqdm
@@ -781,32 +893,36 @@ def compute_embeddings_ollama(
show_progress = False
# Process batches
num_batches = (len(texts) + batch_size - 1) // batch_size
num_batches = (len(truncated_texts) + batch_size - 1) // batch_size
if show_progress:
batch_iterator = tqdm(range(num_batches), desc="Computing Ollama embeddings")
batch_iterator = tqdm(range(num_batches), desc="Computing Ollama embeddings (batched)")
else:
batch_iterator = range(num_batches)
for batch_idx in batch_iterator:
start_idx = batch_idx * batch_size
end_idx = min(start_idx + batch_size, len(texts))
batch_texts = texts[start_idx:end_idx]
end_idx = min(start_idx + batch_size, len(truncated_texts))
batch_texts = truncated_texts[start_idx:end_idx]
batch_embeddings, batch_failed = get_batch_embeddings(batch_texts)
# Adjust failed indices to global indices
global_failed = [start_idx + idx for idx in batch_failed]
all_failed_indices.extend(global_failed)
all_embeddings.extend(batch_embeddings)
if batch_embeddings is not None:
all_embeddings.extend(batch_embeddings)
else:
# Entire batch failed, add None placeholders
all_embeddings.extend([None] * len(batch_texts))
# Adjust failed indices to global indices
global_failed = [start_idx + idx for idx in batch_failed]
all_failed_indices.extend(global_failed)
# Handle failed embeddings
if all_failed_indices:
if len(all_failed_indices) == len(texts):
if len(all_failed_indices) == len(truncated_texts):
raise RuntimeError("Failed to compute any embeddings")
logger.warning(
f"Failed to compute embeddings for {len(all_failed_indices)}/{len(texts)} texts"
f"Failed to compute embeddings for {len(all_failed_indices)}/{len(truncated_texts)} texts"
)
# Use zero embeddings as fallback for failed ones

View File

@@ -60,6 +60,11 @@ def handle_request(request):
"maximum": 128,
"description": "Search complexity level. Use 16-32 for fast searches (recommended), 64+ for higher precision when needed.",
},
"show_metadata": {
"type": "boolean",
"default": False,
"description": "Include file paths and metadata in search results. Useful for understanding which files contain the results.",
},
},
"required": ["index_name", "query"],
},
@@ -104,6 +109,8 @@ def handle_request(request):
f"--complexity={args.get('complexity', 32)}",
"--non-interactive",
]
if args.get("show_metadata", False):
cmd.append("--show-metadata")
result = subprocess.run(cmd, capture_output=True, text=True)
elif tool_name == "leann_list":