Compare commits
1 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
b92ec04178 |
11
.github/workflows/build-and-publish.yml
vendored
11
.github/workflows/build-and-publish.yml
vendored
@@ -1,11 +0,0 @@
|
||||
name: CI
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ main ]
|
||||
pull_request:
|
||||
branches: [ main ]
|
||||
|
||||
jobs:
|
||||
build:
|
||||
uses: ./.github/workflows/build-reusable.yml
|
||||
167
.github/workflows/build-reusable.yml
vendored
167
.github/workflows/build-reusable.yml
vendored
@@ -1,167 +0,0 @@
|
||||
name: Reusable Build
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
ref:
|
||||
description: 'Git ref to build'
|
||||
required: false
|
||||
type: string
|
||||
default: ''
|
||||
|
||||
jobs:
|
||||
build:
|
||||
name: Build ${{ matrix.os }} Python ${{ matrix.python }}
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- os: ubuntu-22.04
|
||||
python: '3.9'
|
||||
- os: ubuntu-22.04
|
||||
python: '3.10'
|
||||
- os: ubuntu-22.04
|
||||
python: '3.11'
|
||||
- os: ubuntu-22.04
|
||||
python: '3.12'
|
||||
- os: ubuntu-22.04
|
||||
python: '3.13'
|
||||
- os: macos-latest
|
||||
python: '3.9'
|
||||
- os: macos-latest
|
||||
python: '3.10'
|
||||
- os: macos-latest
|
||||
python: '3.11'
|
||||
- os: macos-latest
|
||||
python: '3.12'
|
||||
- os: macos-latest
|
||||
python: '3.13'
|
||||
runs-on: ${{ matrix.os }}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ inputs.ref }}
|
||||
submodules: recursive
|
||||
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: ${{ matrix.python }}
|
||||
|
||||
- name: Install uv
|
||||
uses: astral-sh/setup-uv@v4
|
||||
|
||||
- name: Install system dependencies (Ubuntu)
|
||||
if: runner.os == 'Linux'
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y libomp-dev libboost-all-dev protobuf-compiler libzmq3-dev \
|
||||
pkg-config libopenblas-dev patchelf libabsl-dev libaio-dev libprotobuf-dev
|
||||
|
||||
# Install Intel MKL for DiskANN
|
||||
wget -q https://registrationcenter-download.intel.com/akdlm/IRC_NAS/79153e0f-74d7-45af-b8c2-258941adf58a/intel-onemkl-2025.0.0.940.sh
|
||||
sudo sh intel-onemkl-2025.0.0.940.sh -a --components intel.oneapi.lin.mkl.devel --action install --eula accept -s
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
echo "MKLROOT=/opt/intel/oneapi/mkl/latest" >> $GITHUB_ENV
|
||||
echo "LD_LIBRARY_PATH=/opt/intel/oneapi/mkl/latest/lib/intel64:$LD_LIBRARY_PATH" >> $GITHUB_ENV
|
||||
|
||||
- name: Install system dependencies (macOS)
|
||||
if: runner.os == 'macOS'
|
||||
run: |
|
||||
brew install llvm libomp boost protobuf zeromq
|
||||
|
||||
- name: Install build dependencies
|
||||
run: |
|
||||
uv pip install --system scikit-build-core numpy swig Cython pybind11
|
||||
if [[ "$RUNNER_OS" == "Linux" ]]; then
|
||||
uv pip install --system auditwheel
|
||||
else
|
||||
uv pip install --system delocate
|
||||
fi
|
||||
|
||||
- name: Build packages
|
||||
run: |
|
||||
# Build core (platform independent)
|
||||
if [ "${{ matrix.os }}" == "ubuntu-latest" ]; then
|
||||
cd packages/leann-core
|
||||
uv build
|
||||
cd ../..
|
||||
fi
|
||||
|
||||
# Build HNSW backend
|
||||
cd packages/leann-backend-hnsw
|
||||
if [ "${{ matrix.os }}" == "macos-latest" ]; then
|
||||
CC=$(brew --prefix llvm)/bin/clang CXX=$(brew --prefix llvm)/bin/clang++ uv build --wheel --python python
|
||||
else
|
||||
uv build --wheel --python python
|
||||
fi
|
||||
cd ../..
|
||||
|
||||
# Build DiskANN backend
|
||||
cd packages/leann-backend-diskann
|
||||
if [ "${{ matrix.os }}" == "macos-latest" ]; then
|
||||
CC=$(brew --prefix llvm)/bin/clang CXX=$(brew --prefix llvm)/bin/clang++ uv build --wheel --python python
|
||||
else
|
||||
uv build --wheel --python python
|
||||
fi
|
||||
cd ../..
|
||||
|
||||
# Build meta package (platform independent)
|
||||
if [ "${{ matrix.os }}" == "ubuntu-latest" ]; then
|
||||
cd packages/leann
|
||||
uv build
|
||||
cd ../..
|
||||
fi
|
||||
|
||||
- name: Repair wheels (Linux)
|
||||
if: runner.os == 'Linux'
|
||||
run: |
|
||||
# Repair HNSW wheel
|
||||
cd packages/leann-backend-hnsw
|
||||
if [ -d dist ]; then
|
||||
auditwheel repair dist/*.whl -w dist_repaired
|
||||
rm -rf dist
|
||||
mv dist_repaired dist
|
||||
fi
|
||||
cd ../..
|
||||
|
||||
# Repair DiskANN wheel
|
||||
cd packages/leann-backend-diskann
|
||||
if [ -d dist ]; then
|
||||
auditwheel repair dist/*.whl -w dist_repaired
|
||||
rm -rf dist
|
||||
mv dist_repaired dist
|
||||
fi
|
||||
cd ../..
|
||||
|
||||
- name: Repair wheels (macOS)
|
||||
if: runner.os == 'macOS'
|
||||
run: |
|
||||
# Repair HNSW wheel
|
||||
cd packages/leann-backend-hnsw
|
||||
if [ -d dist ]; then
|
||||
delocate-wheel -w dist_repaired -v dist/*.whl
|
||||
rm -rf dist
|
||||
mv dist_repaired dist
|
||||
fi
|
||||
cd ../..
|
||||
|
||||
# Repair DiskANN wheel
|
||||
cd packages/leann-backend-diskann
|
||||
if [ -d dist ]; then
|
||||
delocate-wheel -w dist_repaired -v dist/*.whl
|
||||
rm -rf dist
|
||||
mv dist_repaired dist
|
||||
fi
|
||||
cd ../..
|
||||
|
||||
- name: List built packages
|
||||
run: |
|
||||
echo "📦 Built packages:"
|
||||
find packages/*/dist -name "*.whl" -o -name "*.tar.gz" | sort
|
||||
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: packages-${{ matrix.os }}-py${{ matrix.python }}
|
||||
path: packages/*/dist/
|
||||
126
.github/workflows/release-manual.yml
vendored
126
.github/workflows/release-manual.yml
vendored
@@ -1,126 +0,0 @@
|
||||
name: Release
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
version:
|
||||
description: 'Version to release (e.g., 0.1.2)'
|
||||
required: true
|
||||
type: string
|
||||
|
||||
jobs:
|
||||
update-version:
|
||||
name: Update Version
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
contents: write
|
||||
outputs:
|
||||
commit-sha: ${{ steps.push.outputs.commit-sha }}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Validate version
|
||||
run: |
|
||||
if ! [[ "${{ inputs.version }}" =~ ^[0-9]+\.[0-9]+\.[0-9]+$ ]]; then
|
||||
echo "❌ Invalid version format"
|
||||
exit 1
|
||||
fi
|
||||
echo "✅ Version format valid"
|
||||
|
||||
- name: Update versions and push
|
||||
id: push
|
||||
run: |
|
||||
# Check current version
|
||||
CURRENT_VERSION=$(grep "^version" packages/leann-core/pyproject.toml | cut -d'"' -f2)
|
||||
echo "Current version: $CURRENT_VERSION"
|
||||
echo "Target version: ${{ inputs.version }}"
|
||||
|
||||
if [ "$CURRENT_VERSION" = "${{ inputs.version }}" ]; then
|
||||
echo "⚠️ Version is already ${{ inputs.version }}, skipping update"
|
||||
COMMIT_SHA=$(git rev-parse HEAD)
|
||||
else
|
||||
./scripts/bump_version.sh ${{ inputs.version }}
|
||||
git config user.name "GitHub Actions"
|
||||
git config user.email "actions@github.com"
|
||||
git add packages/*/pyproject.toml
|
||||
git commit -m "chore: release v${{ inputs.version }}"
|
||||
git push origin main
|
||||
COMMIT_SHA=$(git rev-parse HEAD)
|
||||
echo "✅ Pushed version update: $COMMIT_SHA"
|
||||
fi
|
||||
|
||||
echo "commit-sha=$COMMIT_SHA" >> $GITHUB_OUTPUT
|
||||
|
||||
build-packages:
|
||||
name: Build packages
|
||||
needs: update-version
|
||||
uses: ./.github/workflows/build-reusable.yml
|
||||
with:
|
||||
ref: ${{ needs.update-version.outputs.commit-sha }}
|
||||
|
||||
publish:
|
||||
name: Publish and Release
|
||||
needs: [update-version, build-packages]
|
||||
if: always() && needs.update-version.result == 'success' && needs.build-packages.result == 'success'
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
contents: write
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ needs.update-version.outputs.commit-sha }}
|
||||
|
||||
- name: Download all artifacts
|
||||
uses: actions/download-artifact@v4
|
||||
with:
|
||||
path: dist-artifacts
|
||||
|
||||
- name: Collect packages
|
||||
run: |
|
||||
mkdir -p dist
|
||||
find dist-artifacts -name "*.whl" -exec cp {} dist/ \;
|
||||
find dist-artifacts -name "*.tar.gz" -exec cp {} dist/ \;
|
||||
|
||||
echo "📦 Packages to publish:"
|
||||
ls -la dist/
|
||||
|
||||
- name: Publish to PyPI
|
||||
env:
|
||||
TWINE_USERNAME: __token__
|
||||
TWINE_PASSWORD: ${{ secrets.PYPI_API_TOKEN }}
|
||||
run: |
|
||||
if [ -z "$TWINE_PASSWORD" ]; then
|
||||
echo "❌ PYPI_API_TOKEN not configured!"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
pip install twine
|
||||
twine upload dist/* --skip-existing --verbose
|
||||
|
||||
echo "✅ Published to PyPI!"
|
||||
|
||||
- name: Create release
|
||||
run: |
|
||||
# Check if tag already exists
|
||||
if git rev-parse "v${{ inputs.version }}" >/dev/null 2>&1; then
|
||||
echo "⚠️ Tag v${{ inputs.version }} already exists, skipping tag creation"
|
||||
else
|
||||
git tag "v${{ inputs.version }}"
|
||||
git push origin "v${{ inputs.version }}"
|
||||
echo "✅ Created and pushed tag v${{ inputs.version }}"
|
||||
fi
|
||||
|
||||
# Check if release already exists
|
||||
if gh release view "v${{ inputs.version }}" >/dev/null 2>&1; then
|
||||
echo "⚠️ Release v${{ inputs.version }} already exists, skipping release creation"
|
||||
else
|
||||
gh release create "v${{ inputs.version }}" \
|
||||
--title "Release v${{ inputs.version }}" \
|
||||
--notes "🚀 Released to PyPI: https://pypi.org/project/leann/${{ inputs.version }}/" \
|
||||
--latest
|
||||
echo "✅ Created GitHub release v${{ inputs.version }}"
|
||||
fi
|
||||
env:
|
||||
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
1
.gitignore
vendored
1
.gitignore
vendored
@@ -12,6 +12,7 @@ outputs/
|
||||
*.idx
|
||||
*.map
|
||||
.history/
|
||||
scripts/
|
||||
lm_eval.egg-info/
|
||||
demo/experiment_results/**/*.json
|
||||
*.jsonl
|
||||
|
||||
282
README.md
282
README.md
@@ -12,11 +12,11 @@
|
||||
The smallest vector index in the world. RAG Everything with LEANN!
|
||||
</h2>
|
||||
|
||||
LEANN is a revolutionary vector database that democratizes personal AI. Transform your laptop into a powerful RAG system that can index and search through millions of documents while using **97% less storage** than traditional solutions **without accuracy loss**.
|
||||
LEANN is a revolutionary vector database that democratizes personal AI. Transform your laptop into a powerful RAG system that can index and search through millions of documents while using **[97% less storage]** than traditional solutions **without accuracy loss**.
|
||||
|
||||
LEANN achieves this through *graph-based selective recomputation* with *high-degree preserving pruning*, computing embeddings on-demand instead of storing them all. [Illustration Fig →](#️-architecture--how-it-works) | [Paper →](https://arxiv.org/abs/2506.08276)
|
||||
LEANN achieves this through *graph-based selective recomputation* with *high-degree preserving pruning*, computing embeddings on-demand instead of storing them all. [Illustration →](#️-architecture--how-it-works) | [Paper →](https://arxiv.org/abs/2506.08276)
|
||||
|
||||
**Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can search your **[file system](#-personal-data-manager-process-any-documents-pdf-txt-md)**, **[emails](#-your-personal-email-secretary-rag-on-apple-mail)**, **[browser history](#-time-machine-for-the-web-rag-your-entire-browser-history)**, **[chat history](#-wechat-detective-unlock-your-golden-memories)**, or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy.
|
||||
**Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can search your **[file system](#process-any-documents-pdf-txt-md)**, **[emails](#search-your-entire-life)**, **[browser history](#time-machine-for-the-web)**, **[chat history](#wechat-detective)**, or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy.
|
||||
|
||||
|
||||
|
||||
@@ -26,7 +26,7 @@ LEANN achieves this through *graph-based selective recomputation* with *high-deg
|
||||
<img src="assets/effects.png" alt="LEANN vs Traditional Vector DB Storage Comparison" width="70%">
|
||||
</p>
|
||||
|
||||
> **The numbers speak for themselves:** Index 60 million Wikipedia chunks in just 6GB instead of 201GB. From emails to browser history, everything fits on your laptop. [See detailed benchmarks for different applications below ↓](#storage-comparison)
|
||||
> **The numbers speak for themselves:** Index 60 million Wikipedia chunks in just 6GB instead of 201GB. From emails to browser history, everything fits on your laptop. [See detailed benchmarks for different applications below ↓](#storage-usage-comparison)
|
||||
|
||||
|
||||
🔒 **Privacy:** Your data never leaves your laptop. No OpenAI, no cloud, no "terms of service".
|
||||
@@ -37,8 +37,8 @@ LEANN achieves this through *graph-based selective recomputation* with *high-deg
|
||||
|
||||
✨ **No Accuracy Loss:** Maintain the same search quality as heavyweight solutions while using 97% less storage.
|
||||
|
||||
## Installation
|
||||
> `pip leann` coming soon!
|
||||
## Quick Start in 1 minute
|
||||
|
||||
```bash
|
||||
git clone git@github.com:yichuan-w/LEANN.git leann
|
||||
cd leann
|
||||
@@ -47,30 +47,36 @@ git submodule update --init --recursive
|
||||
|
||||
**macOS:**
|
||||
```bash
|
||||
brew install llvm libomp boost protobuf zeromq pkgconf
|
||||
brew install llvm libomp boost protobuf zeromq
|
||||
export CC=$(brew --prefix llvm)/bin/clang
|
||||
export CXX=$(brew --prefix llvm)/bin/clang++
|
||||
|
||||
# Install with HNSW backend (default, recommended for most users)
|
||||
# Install uv first if you don't have it:
|
||||
# curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
# See: https://docs.astral.sh/uv/getting-started/installation/#installation-methods
|
||||
CC=$(brew --prefix llvm)/bin/clang CXX=$(brew --prefix llvm)/bin/clang++ uv sync
|
||||
uv sync
|
||||
|
||||
# Or add DiskANN backend if you want to test more options
|
||||
uv sync --extra diskann
|
||||
```
|
||||
|
||||
**Linux:**
|
||||
**Linux (Ubuntu/Debian):**
|
||||
```bash
|
||||
sudo apt-get install libomp-dev libboost-all-dev protobuf-compiler libabsl-dev libmkl-full-dev libaio-dev libzmq3-dev
|
||||
|
||||
# Install with HNSW backend (default, recommended for most users)
|
||||
uv sync
|
||||
|
||||
# Or add DiskANN backend if you want to test more options
|
||||
uv sync --extra diskann
|
||||
```
|
||||
|
||||
|
||||
|
||||
**Ollama Setup (Recommended for full privacy):**
|
||||
|
||||
> *You can skip this installation if you only want to use OpenAI API for generation.*
|
||||
|
||||
|
||||
**macOS:**
|
||||
*macOS:*
|
||||
|
||||
First, [download Ollama for macOS](https://ollama.com/download/mac).
|
||||
|
||||
@@ -79,7 +85,7 @@ First, [download Ollama for macOS](https://ollama.com/download/mac).
|
||||
ollama pull llama3.2:1b
|
||||
```
|
||||
|
||||
**Linux:**
|
||||
*Linux:*
|
||||
```bash
|
||||
# Install Ollama
|
||||
curl -fsSL https://ollama.ai/install.sh | sh
|
||||
@@ -91,10 +97,9 @@ ollama serve &
|
||||
ollama pull llama3.2:1b
|
||||
```
|
||||
|
||||
## Quick Start in 30s
|
||||
## Dead Simple API
|
||||
|
||||
Our declarative API makes RAG as easy as writing a config file.
|
||||
[Try in this ipynb file →](demo.ipynb) [](https://colab.research.google.com/github/yichuan-w/LEANN/blob/main/demo.ipynb)
|
||||
Just 3 lines of code. Our declarative API makes RAG as easy as writing a config file:
|
||||
|
||||
```python
|
||||
from leann.api import LeannBuilder, LeannSearcher, LeannChat
|
||||
@@ -125,63 +130,57 @@ response = chat.ask(
|
||||
)
|
||||
```
|
||||
|
||||
## RAG on Everything!
|
||||
**That's it.** No cloud setup, no API keys, no "fine-tuning". Just your data, your questions, your laptop.
|
||||
|
||||
LEANN supports RAG on various data sources including documents (.pdf, .txt, .md), Apple Mail, Google Search History, WeChat, and more.
|
||||
[Try the interactive demo →](demo.ipynb)
|
||||
|
||||
### 📄 Personal Data Manager: Process Any Documents (.pdf, .txt, .md)!
|
||||
## Wild Things You Can Do
|
||||
|
||||
Ask questions directly about your personal PDFs, documents, and any directory containing your files!
|
||||
LEANN supports RAGing a lot of data sources, like .pdf, .txt, .md, and also supports RAGing your WeChat, Google Search History, and more.
|
||||
|
||||
<p align="center">
|
||||
<img src="videos/paper_clear.gif" alt="LEANN Document Search Demo" width="600">
|
||||
</p>
|
||||
### Process Any Documents (.pdf, .txt, .md)
|
||||
|
||||
The example below asks a question about summarizing two papers (uses default data in `examples/data`):
|
||||
Above we showed the Python API, while this CLI script demonstrates the same concepts while directly processing PDFs and documents, and even any directory that stores your personal files!
|
||||
|
||||
The following scripts use Ollama `qwen3:8b` by default, so you need `ollama pull qwen3:8b` first. For other models: `--llm openai --model gpt-4o` (requires `OPENAI_API_KEY` environment variable) or `--llm hf --model Qwen/Qwen3-4B`.
|
||||
|
||||
```bash
|
||||
# Drop your PDFs, .txt, .md files into examples/data/
|
||||
uv run ./examples/main_cli_example.py
|
||||
```
|
||||
# Drop your PDFs, .txt, .md files into apps/documents/data/
|
||||
python -m apps.documents
|
||||
|
||||
```
|
||||
# Or use python directly
|
||||
source .venv/bin/activate
|
||||
python ./examples/main_cli_example.py
|
||||
# Or with uv
|
||||
uv run python -m apps.documents
|
||||
```
|
||||
|
||||
|
||||
|
||||
### 📧 Your Personal Email Secretary: RAG on Apple Mail!
|
||||
**Works with any text format** - research papers, personal notes, presentations. Built with LlamaIndex for document parsing.
|
||||
|
||||
<p align="center">
|
||||
<img src="videos/mail_clear.gif" alt="LEANN Email Search Demo" width="600">
|
||||
</p>
|
||||
|
||||
**Note:** You need to grant full disk access to your terminal/VS Code in System Preferences → Privacy & Security → Full Disk Access.
|
||||
### Search Your Entire Life
|
||||
```bash
|
||||
python examples/mail_reader_leann.py --query "What's the food I ordered by doordash or Uber eat mostly?"
|
||||
python -m apps.email
|
||||
# "What's the number of class recommend to take per semester for incoming EECS students?"
|
||||
```
|
||||
**780K email chunks → 78MB storage** Finally, search your email like you search Google.
|
||||
**90K emails → 14MB.** Finally, search your email like you search Google.
|
||||
|
||||
<details>
|
||||
<summary><strong>📋 Click to expand: Command Examples</strong></summary>
|
||||
|
||||
```bash
|
||||
# Use default mail path (works for most macOS setups)
|
||||
python examples/mail_reader_leann.py
|
||||
python -m apps.email
|
||||
|
||||
# Run with custom index directory
|
||||
python examples/mail_reader_leann.py --index-dir "./my_mail_index"
|
||||
python -m apps.email --index-dir "./my_mail_index"
|
||||
|
||||
# Process all emails (may take time but indexes everything)
|
||||
python examples/mail_reader_leann.py --max-emails -1
|
||||
python -m apps.email --max-emails -1
|
||||
|
||||
# Limit number of emails processed (useful for testing)
|
||||
python examples/mail_reader_leann.py --max-emails 1000
|
||||
python -m apps.email --max-emails 1000
|
||||
|
||||
# Run a single query
|
||||
python examples/mail_reader_leann.py --query "What did my boss say about deadlines?"
|
||||
python -m apps.email --query "What did my boss say about deadlines?"
|
||||
```
|
||||
|
||||
</details>
|
||||
@@ -195,32 +194,28 @@ Once the index is built, you can ask questions like:
|
||||
- "Show me emails about travel expenses"
|
||||
</details>
|
||||
|
||||
### 🔍 Time Machine for the Web: RAG Your Entire Google Browser History!
|
||||
|
||||
<p align="center">
|
||||
<img src="videos/google_clear.gif" alt="LEANN Browser History Search Demo" width="600">
|
||||
</p>
|
||||
|
||||
### Time Machine for the Web
|
||||
```bash
|
||||
python examples/google_history_reader_leann.py --query "Tell me my browser history about machine learning?"
|
||||
python -m apps.browser
|
||||
# "Tell me my browser history about machine learning system stuff?"
|
||||
```
|
||||
**38K browser entries → 6MB storage.** Your browser history becomes your personal search engine.
|
||||
**38K browser entries → 6MB.** Your browser history becomes your personal search engine.
|
||||
|
||||
<details>
|
||||
<summary><strong>📋 Click to expand: Command Examples</strong></summary>
|
||||
|
||||
```bash
|
||||
# Use default Chrome profile (auto-finds all profiles)
|
||||
python examples/google_history_reader_leann.py
|
||||
python -m apps.browser
|
||||
|
||||
# Run with custom index directory
|
||||
python examples/google_history_reader_leann.py --index-dir "./my_chrome_index"
|
||||
python -m apps.browser --index-dir "./my_chrome_index"
|
||||
|
||||
# Limit number of history entries processed (useful for testing)
|
||||
python examples/google_history_reader_leann.py --max-entries 500
|
||||
python -m apps.browser --max-entries 500
|
||||
|
||||
# Run a single query
|
||||
python examples/google_history_reader_leann.py --query "What websites did I visit about machine learning?"
|
||||
python -m apps.browser --query "What websites did I visit about machine learning?"
|
||||
```
|
||||
|
||||
</details>
|
||||
@@ -253,17 +248,13 @@ Once the index is built, you can ask questions like:
|
||||
|
||||
</details>
|
||||
|
||||
### 💬 WeChat Detective: Unlock Your Golden Memories!
|
||||
|
||||
<p align="center">
|
||||
<img src="videos/wechat_clear.gif" alt="LEANN WeChat Search Demo" width="600">
|
||||
</p>
|
||||
### WeChat Detective
|
||||
|
||||
```bash
|
||||
python examples/wechat_history_reader_leann.py --query "Show me all group chats about weekend plans"
|
||||
python -m apps.wechat
|
||||
# "Show me all group chats about weekend plans"
|
||||
```
|
||||
**400K messages → 64MB storage** Search years of chat history in any language.
|
||||
|
||||
**400K messages → 64MB.** Search years of chat history in any language.
|
||||
|
||||
<details>
|
||||
<summary><strong>🔧 Click to expand: Installation Requirements</strong></summary>
|
||||
@@ -274,13 +265,7 @@ First, you need to install the WeChat exporter:
|
||||
sudo packages/wechat-exporter/wechattweak-cli install
|
||||
```
|
||||
|
||||
**Troubleshooting:**
|
||||
- **Installation issues**: Check the [WeChatTweak-CLI issues page](https://github.com/sunnyyoung/WeChatTweak-CLI/issues/41)
|
||||
- **Export errors**: If you encounter the error below, try restarting WeChat
|
||||
```
|
||||
Failed to export WeChat data. Please ensure WeChat is running and WeChatTweak is installed.
|
||||
Failed to find or export WeChat data. Exiting.
|
||||
```
|
||||
**Troubleshooting**: If you encounter installation issues, check the [WeChatTweak-CLI issues page](https://github.com/sunnyyoung/WeChatTweak-CLI/issues/41).
|
||||
</details>
|
||||
|
||||
<details>
|
||||
@@ -288,19 +273,19 @@ Failed to find or export WeChat data. Exiting.
|
||||
|
||||
```bash
|
||||
# Use default settings (recommended for first run)
|
||||
python examples/wechat_history_reader_leann.py
|
||||
python -m apps.wechat
|
||||
|
||||
# Run with custom export directory and wehn we run the first time, LEANN will export all chat history automatically for you
|
||||
python examples/wechat_history_reader_leann.py --export-dir "./my_wechat_exports"
|
||||
python -m apps.wechat --export-dir "./my_wechat_exports"
|
||||
|
||||
# Run with custom index directory
|
||||
python examples/wechat_history_reader_leann.py --index-dir "./my_wechat_index"
|
||||
python -m apps.wechat --index-dir "./my_wechat_index"
|
||||
|
||||
# Limit number of chat entries processed (useful for testing)
|
||||
python examples/wechat_history_reader_leann.py --max-entries 1000
|
||||
python -m apps.wechat --max-entries 1000
|
||||
|
||||
# Run a single query
|
||||
python examples/wechat_history_reader_leann.py --query "Show me conversations about travel plans"
|
||||
python -m apps.wechat --query "Show me conversations about travel plans"
|
||||
```
|
||||
|
||||
</details>
|
||||
@@ -400,24 +385,52 @@ Options:
|
||||
|
||||
## Benchmarks
|
||||
|
||||
Run the comparison yourself:
|
||||
```bash
|
||||
python -m apps.benchmarks
|
||||
```
|
||||
|
||||
📊 **[Simple Example: Compare LEANN vs FAISS →](examples/compare_faiss_vs_leann.py)**
|
||||
### Storage Comparison
|
||||
| System | Storage |
|
||||
|--------|---------|
|
||||
| FAISS HNSW | 5.5 MB |
|
||||
| LEANN | 0.5 MB |
|
||||
| **Savings** | **91%** |
|
||||
|
||||
| System | DPR (2.1M) | Wiki (60M) | Chat (400K) | Email (780K) | Browser (38K) |
|
||||
|--------|-------------|------------|-------------|--------------|---------------|
|
||||
| Traditional vector database (e.g., FAISS) | 3.8 GB | 201 GB | 1.8 GB | 2.4 GB | 130 MB |
|
||||
| LEANN | 324 MB | 6 GB | 64 MB | 79 MB | 6.4 MB |
|
||||
| Savings| 91% | 97% | 97% | 97% | 95% |
|
||||
Same dataset, same hardware, same embedding model. LEANN just works better.
|
||||
|
||||
|
||||
|
||||
### Storage Usage Comparison
|
||||
|
||||
| System | DPR (2.1M chunks) | RPJ-wiki (60M chunks) | Chat history (400K messages) | Apple emails (90K messages chunks) |Google Search History (38K entries)
|
||||
|-----------------------|------------------|------------------------|-----------------------------|------------------------------|------------------------------|
|
||||
| Traditional Vector DB(FAISS) | 3.8 GB | 201 GB | 1.8G | 305.8 MB |130.4 MB |
|
||||
| **LEANN** | **324 MB** | **6 GB** | **64 MB** | **14.8 MB** |**6.4MB** |
|
||||
| **Reduction** | **91% smaller** | **97% smaller** | **97% smaller** | **95% smaller** |**95% smaller** |
|
||||
|
||||
<!-- ### Memory Usage Comparison
|
||||
|
||||
| System j | DPR(2M docs) | RPJ-wiki(60M docs) | Chat history() |
|
||||
| --------------------- | ---------------- | ---------------- | ---------------- |
|
||||
| Traditional Vector DB(LLamaindex faiss) | x GB | x GB | x GB |
|
||||
| **Leann** | **xx MB** | **x GB** | **x GB** |
|
||||
| **Reduction** | **x%** | **x%** | **x%** |
|
||||
|
||||
### Query Performance of LEANN
|
||||
|
||||
| Backend | Index Size | Query Time | Recall@3 |
|
||||
| ------------------- | ---------- | ---------- | --------- |
|
||||
| DiskANN | 1M docs | xms | 0.95 |
|
||||
| HNSW | 1M docs | xms | 0.95 | -->
|
||||
|
||||
*Benchmarks run on Apple M3 Pro 36 GB*
|
||||
|
||||
## Reproduce Our Results
|
||||
|
||||
```bash
|
||||
uv pip install -e ".[dev]" # Install dev dependencies
|
||||
python examples/run_evaluation.py data/indices/dpr/dpr_diskann # DPR dataset
|
||||
python examples/run_evaluation.py data/indices/rpj_wiki/rpj_wiki.index # Wikipedia
|
||||
python -m apps.evaluation data/indices/dpr/dpr_diskann # DPR dataset
|
||||
python -m apps.evaluation data/indices/rpj_wiki/rpj_wiki.index # Wikipedia
|
||||
```
|
||||
|
||||
The evaluation script downloads data automatically on first run. The last three results were tested with partial personal data, and you can reproduce them with your own data!
|
||||
@@ -439,15 +452,98 @@ If you find Leann useful, please cite:
|
||||
}
|
||||
```
|
||||
|
||||
## ✨ [Detailed Features →](docs/features.md)
|
||||
## ✨ Features
|
||||
|
||||
## 🤝 [Contributing →](docs/contributing.md)
|
||||
### 🔥 Core Features
|
||||
|
||||
- **🔄 Real-time Embeddings** - Eliminate heavy embedding storage with dynamic computation using optimized ZMQ servers and highly optimized search paradigm (overlapping and batching) with highly optimized embedding engine
|
||||
- **📈 Scalable Architecture** - Handles millions of documents on consumer hardware; the larger your dataset, the more LEANN can save
|
||||
- **🎯 Graph Pruning** - Advanced techniques to minimize the storage overhead of vector search to a limited footprint
|
||||
- **🏗️ Pluggable Backends** - DiskANN, HNSW/FAISS with unified API
|
||||
|
||||
### 🛠️ Technical Highlights
|
||||
- **🔄 Recompute Mode** - Highest accuracy scenarios while eliminating vector storage overhead
|
||||
- **⚡ Zero-copy Operations** - Minimize IPC overhead by transferring distances instead of embeddings
|
||||
- **🚀 High-throughput Embedding Pipeline** - Optimized batched processing for maximum efficiency
|
||||
- **🎯 Two-level Search** - Novel coarse-to-fine search overlap for accelerated query processing (optional)
|
||||
- **💾 Memory-mapped Indices** - Fast startup with raw text mapping to reduce memory overhead
|
||||
- **🚀 MLX Support** - Ultra-fast recompute/build with quantized embedding models, accelerating building and search ([minimal example](test/build_mlx_index.py))
|
||||
|
||||
### 🎨 Developer Experience
|
||||
|
||||
- **Simple Python API** - Get started in minutes
|
||||
- **Extensible backend system** - Easy to add new algorithms
|
||||
- **Comprehensive examples** - From basic usage to production deployment
|
||||
|
||||
## 🤝 Contributing
|
||||
|
||||
We welcome contributions! Leann is built by the community, for the community.
|
||||
|
||||
### Ways to Contribute
|
||||
|
||||
- 🐛 **Bug Reports**: Found an issue? Let us know!
|
||||
- 💡 **Feature Requests**: Have an idea? We'd love to hear it!
|
||||
- 🔧 **Code Contributions**: PRs welcome for all skill levels
|
||||
- 📖 **Documentation**: Help make Leann more accessible
|
||||
- 🧪 **Benchmarks**: Share your performance results
|
||||
|
||||
|
||||
## [FAQ →](docs/faq.md)
|
||||
<!-- ## ❓ FAQ
|
||||
|
||||
### Common Issues
|
||||
|
||||
#### NCCL Topology Error
|
||||
|
||||
**Problem**: You encounter `ncclTopoComputePaths` error during document processing:
|
||||
|
||||
```
|
||||
ncclTopoComputePaths (system=<optimized out>, comm=comm@entry=0x5555a82fa3c0) at graph/paths.cc:688
|
||||
```
|
||||
|
||||
**Solution**: Set these environment variables before running your script:
|
||||
|
||||
```bash
|
||||
export NCCL_TOPO_DUMP_FILE=/tmp/nccl_topo.xml
|
||||
export NCCL_DEBUG=INFO
|
||||
export NCCL_DEBUG_SUBSYS=INIT,GRAPH
|
||||
export NCCL_IB_DISABLE=1
|
||||
export NCCL_NET_PLUGIN=none
|
||||
export NCCL_SOCKET_IFNAME=ens5
|
||||
``` -->
|
||||
## FAQ
|
||||
|
||||
### 1. My building time seems long
|
||||
|
||||
You can speed up the process by using a lightweight embedding model. Add this to your arguments:
|
||||
|
||||
```bash
|
||||
--embedding-model sentence-transformers/all-MiniLM-L6-v2
|
||||
```
|
||||
**Model sizes:** `all-MiniLM-L6-v2` (30M parameters), `facebook/contriever` (~100M parameters), `Qwen3-0.6B` (600M parameters)
|
||||
|
||||
|
||||
## 📈 [Roadmap →](docs/roadmap.md)
|
||||
## 📈 Roadmap
|
||||
|
||||
### 🎯 Q2 2025
|
||||
|
||||
- [X] DiskANN backend with MIPS/L2/Cosine support
|
||||
- [X] HNSW backend integration
|
||||
- [X] Real-time embedding pipeline
|
||||
- [X] Memory-efficient graph pruning
|
||||
|
||||
### 🚀 Q3 2025
|
||||
|
||||
|
||||
- [ ] Advanced caching strategies
|
||||
- [ ] Add contextual-retrieval https://www.anthropic.com/news/contextual-retrieval
|
||||
- [ ] Add sleep-time-compute and summarize agent! to summarilze the file on computer!
|
||||
- [ ] Add OpenAI recompute API
|
||||
|
||||
### 🌟 Q4 2025
|
||||
|
||||
- [ ] Integration with LangChain/LlamaIndex
|
||||
- [ ] Visual similarity search
|
||||
- [ ] Query rewrtiting, rerank and expansion
|
||||
|
||||
## 📄 License
|
||||
|
||||
@@ -455,7 +551,11 @@ MIT License - see [LICENSE](LICENSE) for details.
|
||||
|
||||
## 🙏 Acknowledgments
|
||||
|
||||
This work is done at [**Berkeley Sky Computing Lab**](https://sky.cs.berkeley.edu/)
|
||||
- **Microsoft Research** for the DiskANN algorithm
|
||||
- **Meta AI** for FAISS and optimization insights
|
||||
- **HuggingFace** for the transformer ecosystem
|
||||
- **Our amazing contributors** who make this possible
|
||||
|
||||
---
|
||||
|
||||
<p align="center">
|
||||
|
||||
0
apps/__init__.py
Normal file
0
apps/__init__.py
Normal file
0
apps/benchmarks/__init__.py
Normal file
0
apps/benchmarks/__init__.py
Normal file
338
apps/benchmarks/__main__.py
Normal file
338
apps/benchmarks/__main__.py
Normal file
@@ -0,0 +1,338 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Memory comparison between Faiss HNSW and LEANN HNSW backend
|
||||
"""
|
||||
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
import psutil
|
||||
import gc
|
||||
import subprocess
|
||||
from pathlib import Path
|
||||
from llama_index.core.node_parser import SentenceSplitter
|
||||
|
||||
# Setup logging
|
||||
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def get_memory_usage():
|
||||
"""Get current memory usage in MB"""
|
||||
process = psutil.Process()
|
||||
return process.memory_info().rss / 1024 / 1024
|
||||
|
||||
|
||||
def print_memory_stats(stage: str, start_mem: float):
|
||||
"""Print memory statistics"""
|
||||
current_mem = get_memory_usage()
|
||||
diff = current_mem - start_mem
|
||||
print(f"[{stage}] Memory: {current_mem:.1f} MB (+{diff:.1f} MB)")
|
||||
return current_mem
|
||||
|
||||
|
||||
class MemoryTracker:
|
||||
def __init__(self, name: str):
|
||||
self.name = name
|
||||
self.start_mem = get_memory_usage()
|
||||
self.stages = []
|
||||
|
||||
def checkpoint(self, stage: str):
|
||||
current_mem = print_memory_stats(f"{self.name} - {stage}", self.start_mem)
|
||||
self.stages.append((stage, current_mem))
|
||||
return current_mem
|
||||
|
||||
def summary(self):
|
||||
print(f"\n=== {self.name} Memory Summary ===")
|
||||
for stage, mem in self.stages:
|
||||
print(f"{stage}: {mem:.1f} MB")
|
||||
peak_mem = max(mem for _, mem in self.stages)
|
||||
print(f"Peak Memory: {peak_mem:.1f} MB")
|
||||
print(f"Total Memory Increase: {peak_mem - self.start_mem:.1f} MB")
|
||||
return peak_mem
|
||||
|
||||
|
||||
def test_faiss_hnsw():
|
||||
"""Test Faiss HNSW Vector Store in subprocess"""
|
||||
print("\n" + "=" * 50)
|
||||
print("TESTING FAISS HNSW VECTOR STORE")
|
||||
print("=" * 50)
|
||||
|
||||
try:
|
||||
# Get the directory of this script
|
||||
script_dir = Path(__file__).parent
|
||||
faiss_script = script_dir / "faiss_only.py"
|
||||
result = subprocess.run(
|
||||
[sys.executable, str(faiss_script)],
|
||||
capture_output=True,
|
||||
text=True,
|
||||
timeout=300,
|
||||
)
|
||||
|
||||
print(result.stdout)
|
||||
if result.stderr:
|
||||
print("Stderr:", result.stderr)
|
||||
|
||||
if result.returncode != 0:
|
||||
return {
|
||||
"peak_memory": float("inf"),
|
||||
"error": f"Process failed with code {result.returncode}",
|
||||
}
|
||||
|
||||
# Parse peak memory from output
|
||||
lines = result.stdout.split("\n")
|
||||
peak_memory = 0.0
|
||||
|
||||
for line in lines:
|
||||
if "Peak Memory:" in line:
|
||||
peak_memory = float(
|
||||
line.split("Peak Memory:")[1].split("MB")[0].strip()
|
||||
)
|
||||
|
||||
return {"peak_memory": peak_memory}
|
||||
|
||||
except Exception as e:
|
||||
return {
|
||||
"peak_memory": float("inf"),
|
||||
"error": str(e),
|
||||
}
|
||||
|
||||
|
||||
def test_leann_hnsw():
|
||||
"""Test LEANN HNSW Search Memory (load existing index)"""
|
||||
print("\n" + "=" * 50)
|
||||
print("TESTING LEANN HNSW SEARCH MEMORY")
|
||||
print("=" * 50)
|
||||
|
||||
tracker = MemoryTracker("LEANN HNSW Search")
|
||||
|
||||
# Import and setup
|
||||
tracker.checkpoint("Initial")
|
||||
|
||||
from leann.api import LeannSearcher
|
||||
|
||||
tracker.checkpoint("After imports")
|
||||
|
||||
from llama_index.core import SimpleDirectoryReader
|
||||
from leann.api import LeannBuilder, LeannSearcher
|
||||
|
||||
|
||||
# Load and parse documents
|
||||
documents = SimpleDirectoryReader(
|
||||
"../documents/data",
|
||||
recursive=True,
|
||||
encoding="utf-8",
|
||||
required_exts=[".pdf", ".txt", ".md"],
|
||||
).load_data()
|
||||
|
||||
tracker.checkpoint("After document loading")
|
||||
|
||||
# Parse into chunks
|
||||
node_parser = SentenceSplitter(
|
||||
chunk_size=256, chunk_overlap=20, separator=" ", paragraph_separator="\n\n"
|
||||
)
|
||||
|
||||
all_texts = []
|
||||
for doc in documents:
|
||||
nodes = node_parser.get_nodes_from_documents([doc])
|
||||
for node in nodes:
|
||||
all_texts.append(node.get_content())
|
||||
|
||||
tracker.checkpoint("After text chunking")
|
||||
|
||||
# Build LEANN index
|
||||
INDEX_DIR = Path("./test_leann_comparison")
|
||||
INDEX_PATH = str(INDEX_DIR / "comparison.leann")
|
||||
|
||||
# Check if index already exists
|
||||
if os.path.exists(INDEX_PATH + ".meta.json"):
|
||||
print("Loading existing LEANN HNSW index...")
|
||||
tracker.checkpoint("After loading existing index")
|
||||
else:
|
||||
print("Building new LEANN HNSW index...")
|
||||
# Clean up previous index
|
||||
import shutil
|
||||
|
||||
if INDEX_DIR.exists():
|
||||
shutil.rmtree(INDEX_DIR)
|
||||
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model="facebook/contriever",
|
||||
graph_degree=32,
|
||||
complexity=64,
|
||||
is_compact=True,
|
||||
is_recompute=True,
|
||||
num_threads=1,
|
||||
)
|
||||
|
||||
tracker.checkpoint("After builder setup")
|
||||
|
||||
print("Building LEANN HNSW index...")
|
||||
|
||||
for chunk_text in all_texts:
|
||||
builder.add_text(chunk_text)
|
||||
|
||||
builder.build_index(INDEX_PATH)
|
||||
del builder
|
||||
gc.collect()
|
||||
|
||||
tracker.checkpoint("After index building")
|
||||
|
||||
# Find existing LEANN index
|
||||
index_paths = [
|
||||
"./test_leann_comparison/comparison.leann",
|
||||
]
|
||||
index_path = None
|
||||
for path in index_paths:
|
||||
if os.path.exists(path + ".meta.json"):
|
||||
index_path = path
|
||||
break
|
||||
|
||||
if not index_path:
|
||||
print("❌ LEANN index not found. Please build it first")
|
||||
return {"peak_memory": float("inf"), "error": "Index not found"}
|
||||
|
||||
# Measure runtime memory overhead
|
||||
print("\nMeasuring runtime memory overhead...")
|
||||
runtime_start_mem = get_memory_usage()
|
||||
print(f"Before load memory: {runtime_start_mem:.1f} MB")
|
||||
tracker.checkpoint("Before load memory")
|
||||
|
||||
# Load searcher
|
||||
searcher = LeannSearcher(index_path)
|
||||
tracker.checkpoint("After searcher loading")
|
||||
|
||||
|
||||
|
||||
print("Running search queries...")
|
||||
queries = [
|
||||
"什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发",
|
||||
"What is LEANN and how does it work?",
|
||||
"华为诺亚方舟实验室的主要研究内容",
|
||||
]
|
||||
|
||||
for i, query in enumerate(queries):
|
||||
start_time = time.time()
|
||||
# Use same parameters as Faiss: top_k=20, ef=120 (complexity parameter)
|
||||
_ = searcher.search(query, top_k=20, ef=120)
|
||||
query_time = time.time() - start_time
|
||||
print(f"Query {i + 1} time: {query_time:.3f}s")
|
||||
tracker.checkpoint(f"After query {i + 1}")
|
||||
|
||||
runtime_end_mem = get_memory_usage()
|
||||
runtime_overhead = runtime_end_mem - runtime_start_mem
|
||||
|
||||
peak_memory = tracker.summary()
|
||||
print(f"Runtime Memory Overhead: {runtime_overhead:.1f} MB")
|
||||
|
||||
# Get storage size before cleanup
|
||||
storage_size = 0
|
||||
INDEX_DIR = Path(index_path).parent
|
||||
if INDEX_DIR.exists():
|
||||
total_size = 0
|
||||
for dirpath, _, filenames in os.walk(str(INDEX_DIR)):
|
||||
for filename in filenames:
|
||||
# Only count actual index files, skip text data and backups
|
||||
if filename.endswith((".old", ".tmp", ".bak", ".jsonl", ".json")):
|
||||
continue
|
||||
# Count .index, .idx, .map files (actual index structures)
|
||||
if filename.endswith((".index", ".idx", ".map")):
|
||||
filepath = os.path.join(dirpath, filename)
|
||||
total_size += os.path.getsize(filepath)
|
||||
storage_size = total_size / (1024 * 1024) # Convert to MB
|
||||
|
||||
# Clean up
|
||||
del searcher
|
||||
gc.collect()
|
||||
|
||||
return {
|
||||
"peak_memory": peak_memory,
|
||||
"storage_size": storage_size,
|
||||
}
|
||||
|
||||
|
||||
def main():
|
||||
"""Run comparison tests"""
|
||||
print("Storage + Search Memory Comparison: Faiss HNSW vs LEANN HNSW")
|
||||
print("=" * 60)
|
||||
|
||||
# Test Faiss HNSW
|
||||
faiss_results = test_faiss_hnsw()
|
||||
|
||||
# Force garbage collection
|
||||
gc.collect()
|
||||
time.sleep(2)
|
||||
|
||||
# Test LEANN HNSW
|
||||
leann_results = test_leann_hnsw()
|
||||
|
||||
# Final comparison
|
||||
print("\n" + "=" * 60)
|
||||
print("STORAGE + SEARCH MEMORY COMPARISON")
|
||||
print("=" * 60)
|
||||
|
||||
# Get storage sizes
|
||||
faiss_storage_size = 0
|
||||
leann_storage_size = leann_results.get("storage_size", 0)
|
||||
|
||||
# Get Faiss storage size using Python
|
||||
if os.path.exists("./storage_faiss"):
|
||||
total_size = 0
|
||||
for dirpath, _, filenames in os.walk("./storage_faiss"):
|
||||
for filename in filenames:
|
||||
filepath = os.path.join(dirpath, filename)
|
||||
total_size += os.path.getsize(filepath)
|
||||
faiss_storage_size = total_size / (1024 * 1024) # Convert to MB
|
||||
|
||||
print("Faiss HNSW:")
|
||||
if "error" in faiss_results:
|
||||
print(f" ❌ Failed: {faiss_results['error']}")
|
||||
else:
|
||||
print(f" Search Memory: {faiss_results['peak_memory']:.1f} MB")
|
||||
print(f" Storage Size: {faiss_storage_size:.1f} MB")
|
||||
|
||||
print("\nLEANN HNSW:")
|
||||
if "error" in leann_results:
|
||||
print(f" ❌ Failed: {leann_results['error']}")
|
||||
else:
|
||||
print(f" Search Memory: {leann_results['peak_memory']:.1f} MB")
|
||||
print(f" Storage Size: {leann_storage_size:.1f} MB")
|
||||
|
||||
# Calculate improvements only if both tests succeeded
|
||||
if "error" not in faiss_results and "error" not in leann_results:
|
||||
memory_ratio = faiss_results["peak_memory"] / leann_results["peak_memory"]
|
||||
|
||||
print("\nLEANN vs Faiss Performance:")
|
||||
memory_saving = faiss_results["peak_memory"] - leann_results["peak_memory"]
|
||||
print(
|
||||
f" Search Memory: {memory_ratio:.1f}x less ({memory_saving:.1f} MB saved)"
|
||||
)
|
||||
|
||||
# Storage comparison
|
||||
if leann_storage_size > faiss_storage_size:
|
||||
storage_ratio = leann_storage_size / faiss_storage_size
|
||||
print(
|
||||
f" Storage Size: {storage_ratio:.1f}x larger (LEANN uses more storage)"
|
||||
)
|
||||
elif faiss_storage_size > leann_storage_size:
|
||||
storage_ratio = faiss_storage_size / leann_storage_size
|
||||
print(
|
||||
f" Storage Size: {storage_ratio:.1f}x smaller (LEANN uses less storage)"
|
||||
)
|
||||
else:
|
||||
print(" Storage Size: similar")
|
||||
else:
|
||||
if "error" not in leann_results:
|
||||
print("\n✅ LEANN HNSW completed successfully!")
|
||||
print(f"📊 Search Memory: {leann_results['peak_memory']:.1f} MB")
|
||||
print(f"📊 Storage Size: {leann_storage_size:.1f} MB")
|
||||
if "error" not in faiss_results:
|
||||
print("\n✅ Faiss HNSW completed successfully!")
|
||||
print(f"📊 Search Memory: {faiss_results['peak_memory']:.1f} MB")
|
||||
print(f"📊 Storage Size: {faiss_storage_size:.1f} MB")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
151
apps/benchmarks/faiss_only.py
Normal file
151
apps/benchmarks/faiss_only.py
Normal file
@@ -0,0 +1,151 @@
|
||||
#!/usr/bin/env python3
|
||||
"""Test only Faiss HNSW"""
|
||||
|
||||
import sys
|
||||
import time
|
||||
import psutil
|
||||
import gc
|
||||
import os
|
||||
|
||||
|
||||
def get_memory_usage():
|
||||
process = psutil.Process()
|
||||
return process.memory_info().rss / 1024 / 1024
|
||||
|
||||
|
||||
class MemoryTracker:
|
||||
def __init__(self, name: str):
|
||||
self.name = name
|
||||
self.start_mem = get_memory_usage()
|
||||
self.stages = []
|
||||
|
||||
def checkpoint(self, stage: str):
|
||||
current_mem = get_memory_usage()
|
||||
diff = current_mem - self.start_mem
|
||||
print(f"[{self.name} - {stage}] Memory: {current_mem:.1f} MB (+{diff:.1f} MB)")
|
||||
self.stages.append((stage, current_mem))
|
||||
return current_mem
|
||||
|
||||
def summary(self):
|
||||
peak_mem = max(mem for _, mem in self.stages)
|
||||
print(f"Peak Memory: {peak_mem:.1f} MB")
|
||||
return peak_mem
|
||||
|
||||
|
||||
def main():
|
||||
try:
|
||||
import faiss
|
||||
except ImportError:
|
||||
print("Faiss is not installed.")
|
||||
print("Please install it with `uv pip install faiss-cpu`")
|
||||
sys.exit(1)
|
||||
|
||||
from llama_index.core import (
|
||||
SimpleDirectoryReader,
|
||||
VectorStoreIndex,
|
||||
StorageContext,
|
||||
Settings,
|
||||
node_parser,
|
||||
Document,
|
||||
)
|
||||
from llama_index.core.node_parser import SentenceSplitter
|
||||
from llama_index.vector_stores.faiss import FaissVectorStore
|
||||
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
||||
|
||||
tracker = MemoryTracker("Faiss HNSW")
|
||||
tracker.checkpoint("Initial")
|
||||
|
||||
embed_model = HuggingFaceEmbedding(model_name="facebook/contriever")
|
||||
Settings.embed_model = embed_model
|
||||
tracker.checkpoint("After embedding model setup")
|
||||
|
||||
d = 768
|
||||
faiss_index = faiss.IndexHNSWFlat(d, 32)
|
||||
faiss_index.hnsw.efConstruction = 64
|
||||
tracker.checkpoint("After Faiss index creation")
|
||||
|
||||
documents = SimpleDirectoryReader(
|
||||
"../documents/data",
|
||||
recursive=True,
|
||||
encoding="utf-8",
|
||||
required_exts=[".pdf", ".txt", ".md"],
|
||||
).load_data()
|
||||
tracker.checkpoint("After document loading")
|
||||
|
||||
# Parse into chunks using the same splitter as LEANN
|
||||
node_parser = SentenceSplitter(
|
||||
chunk_size=256, chunk_overlap=20, separator=" ", paragraph_separator="\n\n"
|
||||
)
|
||||
|
||||
tracker.checkpoint("After text splitter setup")
|
||||
|
||||
# Check if index already exists and try to load it
|
||||
index_loaded = False
|
||||
if os.path.exists("./storage_faiss"):
|
||||
print("Loading existing Faiss HNSW index...")
|
||||
try:
|
||||
# Use the correct Faiss loading pattern from the example
|
||||
vector_store = FaissVectorStore.from_persist_dir("./storage_faiss")
|
||||
storage_context = StorageContext.from_defaults(
|
||||
vector_store=vector_store, persist_dir="./storage_faiss"
|
||||
)
|
||||
from llama_index.core import load_index_from_storage
|
||||
index = load_index_from_storage(storage_context=storage_context)
|
||||
print(f"Index loaded from ./storage_faiss")
|
||||
tracker.checkpoint("After loading existing index")
|
||||
index_loaded = True
|
||||
except Exception as e:
|
||||
print(f"Failed to load existing index: {e}")
|
||||
print("Cleaning up corrupted index and building new one...")
|
||||
# Clean up corrupted index
|
||||
import shutil
|
||||
if os.path.exists("./storage_faiss"):
|
||||
shutil.rmtree("./storage_faiss")
|
||||
|
||||
if not index_loaded:
|
||||
print("Building new Faiss HNSW index...")
|
||||
|
||||
# Use the correct Faiss building pattern from the example
|
||||
vector_store = FaissVectorStore(faiss_index=faiss_index)
|
||||
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
||||
index = VectorStoreIndex.from_documents(
|
||||
documents,
|
||||
storage_context=storage_context,
|
||||
transformations=[node_parser]
|
||||
)
|
||||
tracker.checkpoint("After index building")
|
||||
|
||||
# Save index to disk using the correct pattern
|
||||
index.storage_context.persist(persist_dir="./storage_faiss")
|
||||
tracker.checkpoint("After index saving")
|
||||
|
||||
# Measure runtime memory overhead
|
||||
print("\nMeasuring runtime memory overhead...")
|
||||
runtime_start_mem = get_memory_usage()
|
||||
print(f"Before load memory: {runtime_start_mem:.1f} MB")
|
||||
tracker.checkpoint("Before load memory")
|
||||
|
||||
query_engine = index.as_query_engine(similarity_top_k=20)
|
||||
queries = [
|
||||
"什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发",
|
||||
"What is LEANN and how does it work?",
|
||||
"华为诺亚方舟实验室的主要研究内容",
|
||||
]
|
||||
|
||||
for i, query in enumerate(queries):
|
||||
start_time = time.time()
|
||||
_ = query_engine.query(query)
|
||||
query_time = time.time() - start_time
|
||||
print(f"Query {i + 1} time: {query_time:.3f}s")
|
||||
tracker.checkpoint(f"After query {i + 1}")
|
||||
|
||||
runtime_end_mem = get_memory_usage()
|
||||
runtime_overhead = runtime_end_mem - runtime_start_mem
|
||||
|
||||
peak_memory = tracker.summary()
|
||||
print(f"Peak Memory: {peak_memory:.1f} MB")
|
||||
print(f"Runtime Memory Overhead: {runtime_overhead:.1f} MB")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
0
apps/browser/__init__.py
Normal file
0
apps/browser/__init__.py
Normal file
201
apps/browser/__main__.py
Normal file
201
apps/browser/__main__.py
Normal file
@@ -0,0 +1,201 @@
|
||||
import os
|
||||
import asyncio
|
||||
import argparse
|
||||
try:
|
||||
import dotenv
|
||||
dotenv.load_dotenv()
|
||||
except ModuleNotFoundError:
|
||||
# python-dotenv is not installed; skip loading environment variables
|
||||
dotenv = None
|
||||
from pathlib import Path
|
||||
from typing import List, Any
|
||||
from leann.api import LeannBuilder, LeannSearcher, LeannChat
|
||||
from llama_index.core.node_parser import SentenceSplitter
|
||||
|
||||
# Default Chrome profile path
|
||||
DEFAULT_CHROME_PROFILE = os.path.expanduser("~/Library/Application Support/Google/Chrome/Default")
|
||||
|
||||
def create_leann_index_from_multiple_chrome_profiles(profile_dirs: List[Path], index_path: str = "chrome_history_index.leann", max_count: int = -1):
|
||||
"""
|
||||
Create LEANN index from multiple Chrome profile data sources.
|
||||
|
||||
Args:
|
||||
profile_dirs: List of Path objects pointing to Chrome profile directories
|
||||
index_path: Path to save the LEANN index
|
||||
max_count: Maximum number of history entries to process per profile
|
||||
"""
|
||||
print("Creating LEANN index from multiple Chrome profile data sources...")
|
||||
|
||||
# Load documents using ChromeHistoryReader from local readers module
|
||||
from .readers import ChromeHistoryReader
|
||||
reader = ChromeHistoryReader()
|
||||
|
||||
INDEX_DIR = Path(index_path).parent
|
||||
|
||||
if not INDEX_DIR.exists():
|
||||
print(f"--- Index directory not found, building new index ---")
|
||||
all_documents = []
|
||||
total_processed = 0
|
||||
|
||||
# Process each Chrome profile directory
|
||||
for i, profile_dir in enumerate(profile_dirs):
|
||||
print(f"\nProcessing Chrome profile {i+1}/{len(profile_dirs)}: {profile_dir}")
|
||||
|
||||
try:
|
||||
documents = reader.load_data(
|
||||
chrome_profile_path=str(profile_dir),
|
||||
max_count=max_count
|
||||
)
|
||||
if documents:
|
||||
print(f"Loaded {len(documents)} history documents from {profile_dir}")
|
||||
all_documents.extend(documents)
|
||||
total_processed += len(documents)
|
||||
|
||||
# Check if we've reached the max count
|
||||
if max_count > 0 and total_processed >= max_count:
|
||||
print(f"Reached max count of {max_count} documents")
|
||||
break
|
||||
else:
|
||||
print(f"No documents loaded from {profile_dir}")
|
||||
except Exception as e:
|
||||
print(f"Error processing {profile_dir}: {e}")
|
||||
continue
|
||||
|
||||
if not all_documents:
|
||||
print("No documents loaded from any source. Exiting.")
|
||||
return None
|
||||
|
||||
print(f"\nTotal loaded {len(all_documents)} history documents from {len(profile_dirs)} profiles")
|
||||
|
||||
# Create text splitter with 256 chunk size
|
||||
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25)
|
||||
|
||||
# Convert Documents to text strings and chunk them
|
||||
all_texts = []
|
||||
for doc in all_documents:
|
||||
# Split the document into chunks
|
||||
nodes = text_splitter.get_nodes_from_documents([doc])
|
||||
for node in nodes:
|
||||
all_texts.append(node.get_content())
|
||||
|
||||
print(f"Created {len(all_texts)} text chunks from {len(all_documents)} documents")
|
||||
|
||||
# Create LEANN index directory
|
||||
print(f"--- Index directory not found, building new index ---")
|
||||
INDEX_DIR.mkdir(exist_ok=True)
|
||||
|
||||
print(f"--- Building new LEANN index ---")
|
||||
|
||||
print(f"\n[PHASE 1] Building Leann index...")
|
||||
|
||||
# Use HNSW backend for better macOS compatibility
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model="facebook/contriever",
|
||||
graph_degree=32,
|
||||
complexity=64,
|
||||
is_compact=True,
|
||||
is_recompute=True,
|
||||
num_threads=1 # Force single-threaded mode
|
||||
)
|
||||
|
||||
print(f"Adding {len(all_texts)} history chunks to index...")
|
||||
for chunk_text in all_texts:
|
||||
builder.add_text(chunk_text)
|
||||
|
||||
builder.build_index(index_path)
|
||||
print(f"\nLEANN index built at {index_path}!")
|
||||
else:
|
||||
print(f"--- Using existing index at {INDEX_DIR} ---")
|
||||
|
||||
return index_path
|
||||
|
||||
async def query_leann_index(index_path: str, query: str):
|
||||
"""
|
||||
Query the LEANN index.
|
||||
|
||||
Args:
|
||||
index_path: Path to the LEANN index
|
||||
query: The query string
|
||||
"""
|
||||
print(f"\n[PHASE 2] Starting Leann chat session...")
|
||||
chat = LeannChat(index_path=index_path)
|
||||
|
||||
print(f"You: {query}")
|
||||
chat_response = chat.ask(
|
||||
query,
|
||||
top_k=10,
|
||||
recompute_beighbor_embeddings=True,
|
||||
complexity=32,
|
||||
beam_width=1,
|
||||
llm_config={
|
||||
"type": "openai",
|
||||
"model": "gpt-4o",
|
||||
"api_key": os.getenv("OPENAI_API_KEY"),
|
||||
},
|
||||
llm_kwargs={
|
||||
"temperature": 0.0,
|
||||
"max_tokens": 1000
|
||||
}
|
||||
)
|
||||
print(f"Leann: {chat_response}")
|
||||
|
||||
async def main():
|
||||
# Parse command line arguments
|
||||
parser = argparse.ArgumentParser(description='LEANN Chrome History Reader - Create and query browser history index')
|
||||
parser.add_argument('--chrome-profile', type=str, default=DEFAULT_CHROME_PROFILE,
|
||||
help=f'Path to Chrome profile directory (default: {DEFAULT_CHROME_PROFILE}), usually you dont need to change this')
|
||||
parser.add_argument('--index-dir', type=str, default="./chrome_history_index_leann_test",
|
||||
help='Directory to store the LEANN index (default: ./chrome_history_index_leann_test)')
|
||||
parser.add_argument('--max-entries', type=int, default=1000,
|
||||
help='Maximum number of history entries to process (default: 1000)')
|
||||
parser.add_argument('--query', type=str, default=None,
|
||||
help='Single query to run (default: runs example queries)')
|
||||
parser.add_argument('--auto-find-profiles', action='store_true', default=True,
|
||||
help='Automatically find all Chrome profiles (default: True)')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
INDEX_DIR = Path(args.index_dir)
|
||||
INDEX_PATH = str(INDEX_DIR / "chrome_history.leann")
|
||||
|
||||
print(f"Using Chrome profile: {args.chrome_profile}")
|
||||
print(f"Index directory: {INDEX_DIR}")
|
||||
print(f"Max entries: {args.max_entries}")
|
||||
|
||||
# Find Chrome profile directories
|
||||
from .readers import ChromeHistoryReader
|
||||
|
||||
if args.auto_find_profiles:
|
||||
profile_dirs = ChromeHistoryReader.find_chrome_profiles()
|
||||
if not profile_dirs:
|
||||
print("No Chrome profiles found automatically. Exiting.")
|
||||
return
|
||||
else:
|
||||
# Use single specified profile
|
||||
profile_path = Path(args.chrome_profile)
|
||||
if not profile_path.exists():
|
||||
print(f"Chrome profile not found: {profile_path}")
|
||||
return
|
||||
profile_dirs = [profile_path]
|
||||
|
||||
# Create or load the LEANN index from all sources
|
||||
index_path = create_leann_index_from_multiple_chrome_profiles(profile_dirs, INDEX_PATH, args.max_entries)
|
||||
|
||||
if index_path:
|
||||
if args.query:
|
||||
# Run single query
|
||||
await query_leann_index(index_path, args.query)
|
||||
else:
|
||||
# Example queries
|
||||
queries = [
|
||||
"What websites did I visit about machine learning?",
|
||||
"Find my search history about programming"
|
||||
]
|
||||
|
||||
for query in queries:
|
||||
print("\n" + "="*60)
|
||||
await query_leann_index(index_path, query)
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
176
apps/browser/readers.py
Normal file
176
apps/browser/readers.py
Normal file
@@ -0,0 +1,176 @@
|
||||
import sqlite3
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import List, Any
|
||||
from llama_index.core import Document
|
||||
from llama_index.core.readers.base import BaseReader
|
||||
|
||||
class ChromeHistoryReader(BaseReader):
|
||||
"""
|
||||
Chrome browser history reader that extracts browsing data from SQLite database.
|
||||
|
||||
Reads Chrome history from the default Chrome profile location and creates documents
|
||||
with embedded metadata similar to the email reader structure.
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
"""Initialize."""
|
||||
pass
|
||||
|
||||
def load_data(self, input_dir: str = None, **load_kwargs: Any) -> List[Document]:
|
||||
"""
|
||||
Load Chrome history data from the default Chrome profile location.
|
||||
|
||||
Args:
|
||||
input_dir: Not used for Chrome history (kept for compatibility)
|
||||
**load_kwargs:
|
||||
max_count (int): Maximum amount of history entries to read.
|
||||
chrome_profile_path (str): Custom path to Chrome profile directory.
|
||||
"""
|
||||
docs: List[Document] = []
|
||||
max_count = load_kwargs.get('max_count', 1000)
|
||||
chrome_profile_path = load_kwargs.get('chrome_profile_path', None)
|
||||
|
||||
# Default Chrome profile path on macOS
|
||||
if chrome_profile_path is None:
|
||||
chrome_profile_path = os.path.expanduser("~/Library/Application Support/Google/Chrome/Default")
|
||||
|
||||
history_db_path = os.path.join(chrome_profile_path, "History")
|
||||
|
||||
if not os.path.exists(history_db_path):
|
||||
print(f"Chrome history database not found at: {history_db_path}")
|
||||
return docs
|
||||
|
||||
try:
|
||||
# Connect to the Chrome history database
|
||||
print(f"Connecting to database: {history_db_path}")
|
||||
conn = sqlite3.connect(history_db_path)
|
||||
cursor = conn.cursor()
|
||||
|
||||
# Query to get browsing history with metadata (removed created_time column)
|
||||
query = """
|
||||
SELECT
|
||||
datetime(last_visit_time/1000000-11644473600,'unixepoch','localtime') as last_visit,
|
||||
url,
|
||||
title,
|
||||
visit_count,
|
||||
typed_count,
|
||||
hidden
|
||||
FROM urls
|
||||
ORDER BY last_visit_time DESC
|
||||
"""
|
||||
|
||||
print(f"Executing query on database: {history_db_path}")
|
||||
cursor.execute(query)
|
||||
rows = cursor.fetchall()
|
||||
print(f"Query returned {len(rows)} rows")
|
||||
|
||||
count = 0
|
||||
for row in rows:
|
||||
if count >= max_count and max_count > 0:
|
||||
break
|
||||
|
||||
last_visit, url, title, visit_count, typed_count, hidden = row
|
||||
|
||||
# Create document content with metadata embedded in text
|
||||
doc_content = f"""
|
||||
[BROWSING HISTORY METADATA]
|
||||
URL: {url}
|
||||
Title: {title}
|
||||
Last Visit: {last_visit}
|
||||
Visit Count: {visit_count}
|
||||
Typed Count: {typed_count}
|
||||
Hidden: {hidden}
|
||||
[END METADATA]
|
||||
|
||||
Title: {title}
|
||||
URL: {url}
|
||||
Last visited: {last_visit}
|
||||
"""
|
||||
|
||||
# Create document with embedded metadata
|
||||
doc = Document(text=doc_content, metadata={})
|
||||
docs.append(doc)
|
||||
count += 1
|
||||
|
||||
conn.close()
|
||||
print(f"Loaded {len(docs)} Chrome history documents")
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error reading Chrome history: {e}")
|
||||
return docs
|
||||
|
||||
return docs
|
||||
|
||||
@staticmethod
|
||||
def find_chrome_profiles() -> List[Path]:
|
||||
"""
|
||||
Find all Chrome profile directories.
|
||||
|
||||
Returns:
|
||||
List of Path objects pointing to Chrome profile directories
|
||||
"""
|
||||
chrome_base_path = Path(os.path.expanduser("~/Library/Application Support/Google/Chrome"))
|
||||
profile_dirs = []
|
||||
|
||||
if not chrome_base_path.exists():
|
||||
print(f"Chrome directory not found at: {chrome_base_path}")
|
||||
return profile_dirs
|
||||
|
||||
# Find all profile directories
|
||||
for profile_dir in chrome_base_path.iterdir():
|
||||
if profile_dir.is_dir() and profile_dir.name != "System Profile":
|
||||
history_path = profile_dir / "History"
|
||||
if history_path.exists():
|
||||
profile_dirs.append(profile_dir)
|
||||
print(f"Found Chrome profile: {profile_dir}")
|
||||
|
||||
print(f"Found {len(profile_dirs)} Chrome profiles")
|
||||
return profile_dirs
|
||||
|
||||
@staticmethod
|
||||
def export_history_to_file(output_file: str = "chrome_history_export.txt", max_count: int = 1000):
|
||||
"""
|
||||
Export Chrome history to a text file using the same SQL query format.
|
||||
|
||||
Args:
|
||||
output_file: Path to the output file
|
||||
max_count: Maximum number of entries to export
|
||||
"""
|
||||
chrome_profile_path = os.path.expanduser("~/Library/Application Support/Google/Chrome/Default")
|
||||
history_db_path = os.path.join(chrome_profile_path, "History")
|
||||
|
||||
if not os.path.exists(history_db_path):
|
||||
print(f"Chrome history database not found at: {history_db_path}")
|
||||
return
|
||||
|
||||
try:
|
||||
conn = sqlite3.connect(history_db_path)
|
||||
cursor = conn.cursor()
|
||||
|
||||
query = """
|
||||
SELECT
|
||||
datetime(last_visit_time/1000000-11644473600,'unixepoch','localtime') as last_visit,
|
||||
url,
|
||||
title,
|
||||
visit_count,
|
||||
typed_count,
|
||||
hidden
|
||||
FROM urls
|
||||
ORDER BY last_visit_time DESC
|
||||
LIMIT ?
|
||||
"""
|
||||
|
||||
cursor.execute(query, (max_count,))
|
||||
rows = cursor.fetchall()
|
||||
|
||||
with open(output_file, 'w', encoding='utf-8') as f:
|
||||
for row in rows:
|
||||
last_visit, url, title, visit_count, typed_count, hidden = row
|
||||
f.write(f"{last_visit}\t{url}\t{title}\t{visit_count}\t{typed_count}\t{hidden}\n")
|
||||
|
||||
conn.close()
|
||||
print(f"Exported {len(rows)} history entries to {output_file}")
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error exporting Chrome history: {e}")
|
||||
0
apps/documents/__init__.py
Normal file
0
apps/documents/__init__.py
Normal file
113
apps/documents/__main__.py
Normal file
113
apps/documents/__main__.py
Normal file
@@ -0,0 +1,113 @@
|
||||
import argparse
|
||||
from llama_index.core import SimpleDirectoryReader
|
||||
from llama_index.core.node_parser import SentenceSplitter
|
||||
import asyncio
|
||||
import dotenv
|
||||
from leann.api import LeannBuilder, LeannChat
|
||||
from pathlib import Path
|
||||
import os
|
||||
|
||||
dotenv.load_dotenv()
|
||||
|
||||
|
||||
async def main(args):
|
||||
INDEX_DIR = Path(args.index_dir)
|
||||
INDEX_PATH = str(INDEX_DIR / "pdf_documents.leann")
|
||||
|
||||
if not INDEX_DIR.exists():
|
||||
node_parser = SentenceSplitter(
|
||||
chunk_size=256, chunk_overlap=128, separator=" ", paragraph_separator="\n\n"
|
||||
)
|
||||
|
||||
print("Loading documents...")
|
||||
# Get the data directory relative to this module
|
||||
current_dir = Path(__file__).parent
|
||||
data_dir = current_dir / "data"
|
||||
|
||||
documents = SimpleDirectoryReader(
|
||||
str(data_dir),
|
||||
recursive=True,
|
||||
encoding="utf-8",
|
||||
required_exts=[".pdf", ".txt", ".md"],
|
||||
).load_data(show_progress=True)
|
||||
print("Documents loaded.")
|
||||
all_texts = []
|
||||
for doc in documents:
|
||||
nodes = node_parser.get_nodes_from_documents([doc])
|
||||
for node in nodes:
|
||||
all_texts.append(node.get_content())
|
||||
|
||||
print("--- Index directory not found, building new index ---")
|
||||
|
||||
print("\n[PHASE 1] Building Leann index...")
|
||||
|
||||
# Use HNSW backend for better macOS compatibility
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model="facebook/contriever",
|
||||
graph_degree=32,
|
||||
complexity=64,
|
||||
is_compact=True,
|
||||
is_recompute=True,
|
||||
num_threads=1, # Force single-threaded mode
|
||||
)
|
||||
|
||||
print(f"Loaded {len(all_texts)} text chunks from documents.")
|
||||
for chunk_text in all_texts:
|
||||
builder.add_text(chunk_text)
|
||||
|
||||
builder.build_index(INDEX_PATH)
|
||||
print(f"\nLeann index built at {INDEX_PATH}!")
|
||||
else:
|
||||
print(f"--- Using existing index at {INDEX_DIR} ---")
|
||||
|
||||
print(f"\n[PHASE 2] Starting Leann chat session...")
|
||||
|
||||
# llm_config = {"type": "hf", "model": "Qwen/Qwen3-4B"}
|
||||
llm_config = {"type": "ollama", "model": "qwen3:8b"}
|
||||
|
||||
chat = LeannChat(index_path=INDEX_PATH, llm_config=llm_config)
|
||||
|
||||
query = "Based on the paper, what are the main techniques LEANN explores to reduce the storage overhead and DLPM explore to achieve Fairness and Efiiciency trade-off?"
|
||||
|
||||
# query = (
|
||||
# "什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发"
|
||||
# )
|
||||
|
||||
print(f"You: {query}")
|
||||
chat_response = chat.ask(query, top_k=20, recompute_embeddings=True, complexity=32)
|
||||
print(f"Leann: {chat_response}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Run Leann Chat with various LLM backends."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--llm",
|
||||
type=str,
|
||||
default="hf",
|
||||
choices=["simulated", "ollama", "hf", "openai"],
|
||||
help="The LLM backend to use.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model",
|
||||
type=str,
|
||||
default="Qwen/Qwen3-0.6B",
|
||||
help="The model name to use (e.g., 'llama3:8b' for ollama, 'deepseek-ai/deepseek-llm-7b-chat' for hf, 'gpt-4o' for openai).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--host",
|
||||
type=str,
|
||||
default="http://localhost:11434",
|
||||
help="The host for the Ollama API.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--index-dir",
|
||||
type=str,
|
||||
default="./test_doc_files",
|
||||
help="Directory where the Leann index will be stored.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
asyncio.run(main(args))
|
||||
82
apps/documents/data/pangu.md
Normal file
82
apps/documents/data/pangu.md
Normal file
@@ -0,0 +1,82 @@
|
||||
# 盘古之殇:华为诺亚盘古大模型研发历程的心酸与黑暗
|
||||
|
||||
各位好,
|
||||
|
||||
我是一名盘古大模型团队,华为诺亚方舟实验室的员工。
|
||||
|
||||
首先为自证身份,列举一些细节:
|
||||
|
||||
1. 现诺亚主任,前算法应用部部长,后改名为小模型实验室的主任王云鹤。前诺亚主任:姚骏(大家称姚老师)。几个实验室主任:唐睿明(明哥,明队,已离职),尚利峰,张维(维哥),郝建业(郝老师),刘武龙(称呼为武龙所)等。其他骨干成员和专家陆续有很多人离职。
|
||||
2. 我们隶属于“四野”这个组织。四野下属有许多纵队,基础语言大模型是四纵。王云鹤的小模型是十六纵队。我们参加过苏州的集结,有各种月份的时间节点。在苏州攻关会颁发任务令,需要在节点前达成目标。苏州集结会把各地的人员都集中在苏州研究所,平常住宾馆,比如在甪直的酒店,与家人孩子天各一方。
|
||||
3. 在苏州集结的时候周六默认上班,非常辛苦,不过周六有下午茶,有一次还有小龙虾。在苏州研究所的工位搬迁过一次,从一栋楼换到了另一栋。苏州研究所楼栋都是欧式装修,门口有大坡,里面景色很不错。去苏州集结一般至少要去一周,甚至更久,多的人甚至一两个月都回不了家。
|
||||
4. 诺亚曾经传说是研究型的,但是来了之后因为在四野做大模型项目,项目成员完全变成了交付型的,且充满了例会,评审,汇报。很多时候做实验都要申请。团队需要对接终端小艺,华为云,ICT等诸多业务线,交付压力不小。
|
||||
5. 诺亚研发的盘古模型早期内部代号叫做“盘古智子”,一开始只有内部需要申请试用的网页版,到后续迫于压力在welink上接入和公测开放。
|
||||
|
||||
这些天发生关于质疑盘古大模型抄袭千问的事情闹的沸沸扬扬。作为一个盘古团队的成员,我最近夜夜辗转反侧,难以入眠。盘古的品牌受到如此大的影响,一方面,我自私的为我的职业发展担忧,也为自己过去的努力工作感到不值。另一方面,由于有人开始揭露这些事情我内心又感到大快人心。在多少个日日夜夜,我们对内部某些人一次次靠着造假而又获得了无数利益的行为咬牙切齿而又无能为力。这种压抑和羞辱也逐渐消磨了我对华为的感情,让我在这里的时日逐渐浑浑噩噩,迷茫无措,时常怀疑自己的人生和自我价值。
|
||||
|
||||
我承认我是一个懦弱的人,作为一个小小的打工人,我不仅不敢和王云鹤等内部手眼通天的人做对,更不敢和华为这样的庞然大物做对。我很怕失去我的工作,毕竟我也有家人和孩子,所以我打心眼里很佩服揭露者。但是,看到内部还在试图洗地掩盖事实,蒙蔽公众的时候,我实在不能容忍了。我也希望勇敢一次,顺从自己本心。就算自损八百,我也希望能伤敌一千。我决定把我在这里的所见所闻(部分来自于同事口述)公布出来,关于盘古大模型的“传奇故事”:
|
||||
|
||||
华为确实主要在昇腾卡上训练大模型(小模型实验室有不少英伟达的卡,他们之前也会用来训练,后面转移到昇腾)。曾经我被华为“打造世界第二选择”的决心而折服,我本身也曾经对华为有深厚的感情。我们陪着昇腾一步步摸爬滚打,从充满bug到现在能训出模型,付出了巨大的心血和代价。
|
||||
|
||||
最初我们的算力非常有限,在910A上训练模型。那会只支持fp16,训练的稳定性远不如bf16。盘古的moe开始很早,23年就主要是训练38Bmoe模型和后续的71B dense模型。71B的dense模型通过扩增变成了第一代的135Bdense模型,后面主力模型也逐渐在910B上训练。
|
||||
|
||||
71B和135B模型都有一个巨大的硬伤就是tokenizer。当时使用的tokenizer编码效率极低,每个单个的符号,数字,空格,乃至汉字都会占用一个token。可想而知这会非常浪费算力,且使得模型的效果很差。这时候小模型实验室正好有个自己训的词表。姚老师当时怀疑是不是模型的tokenizer不好(虽然事后来看,他的怀疑是无疑正确的),于是就决定,让71B和135B换tokenizer,因为小模型实验室曾经尝试过。团队缝合了两个tokenizer,开始了tokenizer的更换。71B模型的更换失败了,而135B因为采用了更精细的embedding初始化策略,续训了至少1T的数据后词表总算更换成功,但可想而知,效果并不会变好。
|
||||
|
||||
于此同期,阿里和智谱等国内其他公司在GPU上训练,且已经摸索出了正确的方法,盘古和竞品的差距越来越大。内部一个230B从头训练的dense模型又因为各种原因训练失败,导致项目的状况几乎陷入绝境。面临几个节点的压力以及内部对盘古的强烈质疑时,团队的士气低迷到了极点。团队在算力极其有限的时候,做出了很多努力和挣扎。比如,团队偶然发现当时的38B moe并没有预期moe的效果。于是去掉了moe参数,还原为了13B的dense模型。由于38B的moe源自很早的pangu alpha 13B,架构相对落后,团队进行了一系列的操作,比如切换绝对位置编码到rope,去掉bias,切换为rmsnorm。同时鉴于tokenizer的一些失败和换词表的经验,这个模型的词表也更换为了王云鹤的小模型实验室7B模型所使用的词表。后面这个13B模型进行了扩增续训,变成了第二代38B dense模型(在几个月内这个模型都是主要的盘古中档位模型),曾经具有一定的竞争力。但是,由于更大的135B模型架构落后,且更换词表模型损伤巨大(后续分析发现当时更换的缝合词表有更严重的bug),续训后也与千问等当时国内领先模型存在很大差距。这时由于内部的质疑声和领导的压力也越来越大。团队的状态几乎陷入了绝境。
|
||||
|
||||
在这种情况下,王云鹤和他的小模型实验室出手了。他们声称是从旧的135B参数继承改造而来,通过训练短短的几百B数据,各项指标平均提升了十个点左右。实际上,这就是他们套壳应用到大模型的第一次杰作。华为的外行领导内行,使得领导完全对于这种扯淡的事情没有概念,他们只会觉得肯定是有什么算法创新。经过内部的分析,他们实际上是使用Qwen 1.5 110B续训而来,通过加层,扩增ffn维度,添加盘古pi论文的一些机制得来,凑够了大概135B的参数。实际上,旧的135B有107层,而这个模型只有82层,各种配置也都不一样。新的来路不明的135B训练完很多参数的分布也和Qwen 110B几乎一模一样。连模型代码的类名当时都是Qwen,甚至懒得改名。后续这个模型就是所谓的135B V2。而这个模型当时也提供给了很多下游,甚至包括外部客户。
|
||||
|
||||
这件事对于我们这些认真诚实做事的同事们带来了巨大的冲击,内部很多人其实都知道这件事,甚至包括终端和华为云。我们都戏称以后别叫盘古模型了,叫千古吧。当时团队成员就想向bcg举报了,毕竟这已经是重大的业务造假了。但是后面据说被领导拦了下来,因为更高级别的领导(比如姚老师,以及可能熊总和查老)其实后面也知道了,但是并不管,因为通过套壳拿出好的结果,对他们也是有利的。这件事使得当时团队几位最强的同事开始心灰意冷,离职跑路也逐渐成为挂在嘴边的事。
|
||||
|
||||
此时,盘古似乎迎来了转机。由于前面所述的这些盘古模型基本都是续训和改造而来,当时诺亚完全没有掌握从头训练的技术,何况还是在昇腾的NPU上进行训练。在当时团队的核心成员的极力争取下,盘古开始了第三代模型的训练,付出了巨大的努力后,在数据架构和训练算法方面都与业界逐渐接轨,而这其中的艰辛和小模型实验室的人一点关系都没有。
|
||||
|
||||
一开始团队成员毫无信心,只从一个13B的模型开始训练,但是后面发现效果还不错,于是这个模型后续再次进行了一次参数扩增,变成了第三代的38B,代号38B V3。想必很多产品线的兄弟都对这个模型很熟悉。当时这个模型的tokenizer是基于llama的词表进行扩展的(也是业界常见的做法)。而当时王云鹤的实验室做出来了另一个词表(也就是后续pangu系列的词表)。当时两个词表还被迫进行了一次赛马,最终没有明显的好坏结论。于是,领导当即决定,应该统一词表,使用王云鹤他们的。于是,在后续从头训练的135B V3(也就是对外的Pangu Ultra),便是采用了这个tokenizer。这也解释了很多使用我们模型的兄弟的疑惑,为什么当时同为V3代的两个不同档位的模型,会使用不同的tokenizer。
|
||||
|
||||
|
||||
我们打心眼里觉得,135B V3是我们四纵团队当时的骄傲。这是第一个真正意义上的,华为全栈自研,正经从头训练的千亿级别的模型,且效果与24年同期竞品可比的。写到这里我已经热泪盈眶,太不容易了。当时为了稳定训练,团队做了大量实验对比,并且多次在模型梯度出现异常的时候进行及时回退重启。这个模型真正做到了后面技术报告所说的训练全程没有一个loss spike。我们克服了不知道多少困难,我们做到了,我们愿用生命和荣誉保证这个模型训练的真实性。多少个凌晨,我们为了它的训练而不眠。在被内部心声骂的一文不值的时候,我们有多么不甘,有多少的委屈,我们挺住了。
|
||||
|
||||
我们这帮人是真的在为打磨国产算力底座燃烧自己的青春啊……客居他乡,我们放弃了家庭,放弃了假期,放弃了健康,放弃了娱乐,抛头颅洒热血,其中的艰辛与困苦,寥寥数笔不足以概括其万一。在各种动员大会上,当时口号中喊出的盘古必胜,华为必胜,我们心里是真的深深被感动。
|
||||
|
||||
然而,我们的所有辛苦的成果,经常被小模型实验室轻飘飘的拿走了。数据,直接要走。代码,直接要走,还要求我们配合适配到能一键运行。我们当时戏称小模型实验室为点鼠标实验室。我们付出辛苦,他们取得荣耀。果然应了那句话,你在负重前行是因为有人替你岁月静好。在这种情况下,越来越多的战友再也坚持不下去了,选择了离开。看到身边那些优秀的同事一个个离职,我的内心又感叹又难过。在这种作战一样的环境下,我们比起同事来说更像是战友。他们在技术上也有无数值得我学习的地方,堪称良师。看到他们去了诸如字节Seed,Deepseek,月之暗面,腾讯和快手等等很多出色的团队,我打心眼里为他们高兴和祝福,脱离了这个辛苦却肮脏的地方。我至今还对一位离职同事的话记忆犹新,ta说:“来这里是我技术生涯中的耻辱,在这里再呆每一天都是浪费生命”。话虽难听却让我无言以对。我担心我自己技术方面的积累不足,以及没法适应互联网公司高淘汰的环境,让我多次想离职的心始终没有迈出这一步。
|
||||
|
||||
盘古除了dense模型,后续也启动了moe的探索。一开始训练的是一个224B的moe模型。而与之平行的,小模型实验室也开启了第二次主要的套壳行动(次要的插曲可能还包括一些别的模型,比如math模型),即这次流传甚广的pangu pro moe 72B。这个模型内部自称是从小模型实验室的7B扩增上来的(就算如此,这也与技术报告不符,何况是套壳qwen 2.5的14b续训)。还记得他们训了没几天,内部的评测就立刻追上了当时的38B V3。AI系统实验室很多兄弟因为需要适配模型,都知道他们的套壳行动,只是迫于各种原因,无法伸张正义。实际上,对于后续训了很久很久的这个模型,Honestagi能够分析出这个量级的相似性我已经很诧异了,因为这个模型为了续训洗参数,所付出的算力甚至早就足够从头训一个同档位的模型了。听同事说他们为了洗掉千问的水印,采取了不少办法,甚至包括故意训了脏数据。这也为学术界研究模型血缘提供了一个前所未有的特殊模范吧。以后新的血缘方法提出可以拿出来溜溜。
|
||||
|
||||
24年底和25年初,在Deepseek v3和r1发布之后,由于其惊艳的技术水平,团队受到了巨大的冲击,也受到了更大的质疑。于是为了紧跟潮流,盘古模仿Deepseek的模型尺寸,开启了718B moe的训练。这个时候,小模型实验室再次出手了。他们选择了套壳Deepseekv3续训。他们通过冻住Deepseek加载的参数,进行训练。连任务加载ckpt的目录都是deepseekv3,改都不改,何其嚣张?与之相反,一些有真正技术信仰的同事,在从头训练另一个718B的moe。但其中出现了各种各样的问题。但是很显然,这个模型怎么可能比直接套壳的好呢?如果不是团队leader坚持,早就被叫停了。
|
||||
|
||||
华为的流程管理之繁重,严重拖累了大模型的研发节奏,例如版本管理,模型血缘,各种流程化,各种可追溯。讽刺的是,小模型实验室的模型似乎从来不受这些流程的约束,想套壳就套壳,想续训就续训,算力源源不断的伸手拿走。这种强烈到近乎魔幻的对比,说明了当前流程管理的情况:只许州官放火,不许百姓点灯。何其可笑?何其可悲?何其可恶?何其可耻!
|
||||
|
||||
HonestAGI的事情出来后,内部让大家不停的研讨分析,如何公关和“回应”。诚然,这个原文的分析也许不够有力,给了王云鹤与小模型实验室他们狡辩和颠倒黑白的机会。为此,这两天我内心感到作呕,时时怀疑自己的人生意义以及苍天无眼。我不奉陪了,我要离职了,同时我也在申请从盘古部分技术报告的作者名单中移除。曾经在这些技术报告上署名是我一生都无法抹除的污点。当时我没想到,他们竟然猖狂到敢开源。我没想到,他们敢如此愚弄世人,大肆宣发。当时,我也许是存了侥幸心理,没有拒绝署名。我相信很多扎实做事的战友,也只是被迫上了贼船,或者不知情。但这件事已经无法挽回,我希望我的余生能够坚持扎实做真正有意义的事,为我当时的软弱和不坚定赎罪。
|
||||
|
||||
深夜写到这里,我已经泪流满面,泣不成声。还记得一些出色的同事离职时,我苦笑问他们要不要发个长长的心声惯例帖,揭露一下现状。对方说:不了,浪费时间,而且我也怕揭露出来你们过的更糟。我当时一下黯然神伤,因为曾经共同为了理想奋斗过的战友已经彻底对华为彻底灰心了。当时大家调侃,我们用着当年共产党的小米加步枪,组织却有着堪比当年国民党的作风。
|
||||
|
||||
曾几何时,我为我们用着小米加步枪打败洋枪洋炮而自豪。
|
||||
|
||||
现在,我累了,我想投降。
|
||||
|
||||
其实时至今日,我还是真心希望华为能认真吸取教训,能做好盘古,把盘古做到世界一流,把昇腾变成英伟达的水平。内部的劣币驱逐良币,使得诺亚乃至华为在短时间内急剧流失了大量出色的大模型人才。相信他们也正在如Deepseek等各个团队闪耀着,施展着他们的抱负才华,为中美在AI的激烈竞赛中奉献力量。我时常感叹,华为不是没有人才,而是根本不知道怎么留住人才。如果给这些人合适的环境,合适的资源,更少的枷锁,更少的政治斗争,盘古何愁不成?
|
||||
|
||||
最后:我以生命,人格和荣誉发誓,我写的以上所有内容均为真实(至少在我有限的认知范围内)。我没有那么高的技术水平以及机会去做详尽扎实的分析,也不敢直接用内部记录举证,怕因为信息安全抓到。但是我相信我很多曾经的战友,会为我作证。在华为内部的兄弟,包括我们曾经服务过的产品线兄弟们,相信本文的无数细节能和你们的印象对照,印证我的说法。你们可能也曾经被蒙骗,但这些残酷的真相不会被尘封。我们奋战过的痕迹,也不应该被扭曲和埋葬。
|
||||
|
||||
写了这么多,某些人肯定想把我找出来,抹杀掉。公司搞不好也想让我噤声乃至追责。如果真的这样,我,乃至我的家人的人身乃至生命安全可能都会受到威胁。为了自我保护,我近期每天会跟大家报平安。
|
||||
|
||||
如果我消失了,就当是我为了真理和理想,为了华为乃至中国能够更好地发展算力和AI而牺牲了吧,我愿埋葬于那片曾经奋斗过的地方。
|
||||
|
||||
诺亚,再见
|
||||
|
||||
2025年7月6日凌晨 写于深圳
|
||||
|
||||
---
|
||||
|
||||
各位好,
|
||||
|
||||
感谢大家的关心与祝福。我目前暂时安全,但公司应该在进行排查与某些名单收集,后续情况未知。
|
||||
|
||||
我补充一些细节,以免某些人继续颠倒黑白。
|
||||
|
||||
关于135B V2,小模型实验室在迅速地完成套壳并拿完所有套壳带来的好处后(比如任务令表彰和及时激励),因为不想继续支撑下游应用和模型迭代,又把这个烫手山芋甩给了四纵。确实技高一筹,直接把四纵的兄弟们拉下水。同事提供过去一个老旧的模型,最终拿回了一个当时一个魔改的先进的千问。做大模型的人,自己做的模型就像自己孩子一样熟悉,不要把别人都当傻子。就像自家儿子出门一趟,回来个别人家孩子。
|
||||
|
||||
盘古report的署名是不符合学术规范的。例如,135B V3有不少有技术贡献的人,因为作者名额数量限制,劳动成果没有得到应有的回报,团队内曾经有不小的意见。这个模型当时是大家智慧和汗水的结晶,甚至是团队当时的精神支柱,支撑着不少兄弟们继续留在诺亚。所谓的名额限制,以及挂名了一些毫无技术贡献的人(如一些小模型实验室的人),让兄弟们何其心寒。
|
||||
|
||||
---
|
||||
|
||||
暂时平安。另外,支持我勇于说出真相的战友们 https://github.com/HW-whistleblower/True-Story-of-Pangu/issues/317
|
||||
0
apps/email/__init__.py
Normal file
0
apps/email/__init__.py
Normal file
193
apps/email/__main__.py
Normal file
193
apps/email/__main__.py
Normal file
@@ -0,0 +1,193 @@
|
||||
import os
|
||||
import sys
|
||||
import asyncio
|
||||
import dotenv
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
from typing import List, Any
|
||||
|
||||
from leann.api import LeannBuilder, LeannSearcher, LeannChat
|
||||
from llama_index.core.node_parser import SentenceSplitter
|
||||
|
||||
dotenv.load_dotenv()
|
||||
|
||||
# Auto-detect user's mail path
|
||||
def get_mail_path():
|
||||
"""Get the mail path for the current user"""
|
||||
home_dir = os.path.expanduser("~")
|
||||
return os.path.join(home_dir, "Library", "Mail")
|
||||
|
||||
def create_leann_index_from_multiple_sources(messages_dirs: List[Path], index_path: str = "mail_index.leann", max_count: int = -1, include_html: bool = False, embedding_model: str = "facebook/contriever"):
|
||||
"""
|
||||
Create LEANN index from multiple mail data sources.
|
||||
|
||||
Args:
|
||||
messages_dirs: List of Path objects pointing to Messages directories
|
||||
index_path: Path to save the LEANN index
|
||||
max_count: Maximum number of emails to process per directory
|
||||
include_html: Whether to include HTML content in email processing
|
||||
"""
|
||||
print("Creating LEANN index from multiple mail data sources...")
|
||||
|
||||
# Load documents using EmlxReader from local readers module
|
||||
from .readers import EmlxReader, find_all_messages_directories
|
||||
reader = EmlxReader(include_html=include_html)
|
||||
INDEX_DIR = Path(index_path).parent
|
||||
|
||||
if not INDEX_DIR.exists():
|
||||
print(f"--- Index directory not found, building new index ---")
|
||||
all_documents = []
|
||||
total_processed = 0
|
||||
|
||||
# Process each Messages directory
|
||||
for i, messages_dir in enumerate(messages_dirs):
|
||||
print(f"\nProcessing Messages directory {i+1}/{len(messages_dirs)}: {messages_dir}")
|
||||
|
||||
try:
|
||||
documents = reader.load_data(messages_dir)
|
||||
if documents:
|
||||
print(f"Loaded {len(documents)} email documents from {messages_dir}")
|
||||
all_documents.extend(documents)
|
||||
total_processed += len(documents)
|
||||
|
||||
# Check if we've reached the max count
|
||||
if max_count > 0 and total_processed >= max_count:
|
||||
print(f"Reached max count of {max_count} documents")
|
||||
break
|
||||
else:
|
||||
print(f"No documents loaded from {messages_dir}")
|
||||
except Exception as e:
|
||||
print(f"Error processing {messages_dir}: {e}")
|
||||
continue
|
||||
|
||||
if not all_documents:
|
||||
print("No documents loaded from any source. Exiting.")
|
||||
return None
|
||||
|
||||
print(f"\nTotal loaded {len(all_documents)} email documents from {len(messages_dirs)} directories")
|
||||
|
||||
# Create text splitter with 256 chunk size
|
||||
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25)
|
||||
|
||||
# Convert Documents to text strings and chunk them
|
||||
all_texts = []
|
||||
for doc in all_documents:
|
||||
# Split the document into chunks
|
||||
nodes = text_splitter.get_nodes_from_documents([doc])
|
||||
for node in nodes:
|
||||
all_texts.append(node.get_content())
|
||||
|
||||
print(f"Created {len(all_texts)} text chunks from {len(all_documents)} documents")
|
||||
|
||||
# Create LEANN index directory
|
||||
print(f"--- Index directory not found, building new index ---")
|
||||
INDEX_DIR.mkdir(exist_ok=True)
|
||||
|
||||
print(f"--- Building new LEANN index ---")
|
||||
|
||||
print(f"\n[PHASE 1] Building Leann index...")
|
||||
|
||||
# Use HNSW backend for better macOS compatibility
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model=embedding_model,
|
||||
graph_degree=32,
|
||||
complexity=64,
|
||||
is_compact=True,
|
||||
is_recompute=True,
|
||||
num_threads=1 # Force single-threaded mode
|
||||
)
|
||||
|
||||
print(f"Adding {len(all_texts)} email chunks to index...")
|
||||
for chunk_text in all_texts:
|
||||
builder.add_text(chunk_text)
|
||||
|
||||
builder.build_index(index_path)
|
||||
print(f"\nLEANN index built at {index_path}!")
|
||||
else:
|
||||
print(f"--- Using existing index at {INDEX_DIR} ---")
|
||||
|
||||
return index_path
|
||||
|
||||
async def query_leann_index(index_path: str, query: str):
|
||||
"""
|
||||
Query the LEANN index.
|
||||
|
||||
Args:
|
||||
index_path: Path to the LEANN index
|
||||
query: The query string
|
||||
"""
|
||||
print(f"\n[PHASE 2] Starting Leann chat session...")
|
||||
chat = LeannChat(index_path=index_path,
|
||||
llm_config={"type": "openai", "model": "gpt-4o"})
|
||||
|
||||
print(f"You: {query}")
|
||||
import time
|
||||
start_time = time.time()
|
||||
chat_response = chat.ask(
|
||||
query,
|
||||
top_k=10,
|
||||
recompute_beighbor_embeddings=True,
|
||||
complexity=12,
|
||||
beam_width=1,
|
||||
|
||||
)
|
||||
end_time = time.time()
|
||||
print(f"Time taken: {end_time - start_time} seconds")
|
||||
print(f"Leann: {chat_response}")
|
||||
|
||||
async def main():
|
||||
# Parse command line arguments
|
||||
parser = argparse.ArgumentParser(description='LEANN Mail Reader - Create and query email index')
|
||||
parser.add_argument('--index-dir', type=str, default="./mail_index_leann_raw_text_all_dicts",
|
||||
help='Directory to store the LEANN index (default: ./mail_index_leann_raw_text_all_dicts)')
|
||||
parser.add_argument('--max-emails', type=int, default=1000,
|
||||
help='Maximum number of emails to process (-1 means all)')
|
||||
parser.add_argument('--query', type=str, default="Give me some funny advertisement about apple or other companies",
|
||||
help='Single query to run (default: runs example queries)')
|
||||
parser.add_argument('--include-html', action='store_true', default=False,
|
||||
help='Include HTML content in email processing (default: False)')
|
||||
parser.add_argument('--embedding-model', type=str, default="facebook/contriever",
|
||||
help='Embedding model to use (default: facebook/contriever)')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
print(f"args: {args}")
|
||||
|
||||
# Automatically find all Messages directories under the current user's Mail directory
|
||||
from .readers import find_all_messages_directories
|
||||
mail_path = get_mail_path()
|
||||
print(f"Searching for email data in: {mail_path}")
|
||||
messages_dirs = find_all_messages_directories(mail_path)
|
||||
|
||||
print('len(messages_dirs): ', len(messages_dirs))
|
||||
|
||||
if not messages_dirs:
|
||||
print("No Messages directories found. Exiting.")
|
||||
return
|
||||
|
||||
INDEX_DIR = Path(args.index_dir)
|
||||
INDEX_PATH = str(INDEX_DIR / "mail_documents.leann")
|
||||
print(f"Index directory: {INDEX_DIR}")
|
||||
print(f"Found {len(messages_dirs)} Messages directories.")
|
||||
|
||||
# Create or load the LEANN index from all sources
|
||||
index_path = create_leann_index_from_multiple_sources(messages_dirs, INDEX_PATH, args.max_emails, args.include_html, args.embedding_model)
|
||||
|
||||
if index_path:
|
||||
if args.query:
|
||||
# Run single query
|
||||
await query_leann_index(index_path, args.query)
|
||||
else:
|
||||
# Example queries
|
||||
queries = [
|
||||
"Hows Berkeley Graduate Student Instructor",
|
||||
"how's the icloud related advertisement saying",
|
||||
"Whats the number of class recommend to take per semester for incoming EECS students"
|
||||
]
|
||||
for query in queries:
|
||||
print("\n" + "="*60)
|
||||
await query_leann_index(index_path, query)
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
192
apps/email/email.py
Normal file
192
apps/email/email.py
Normal file
@@ -0,0 +1,192 @@
|
||||
"""
|
||||
Mbox parser.
|
||||
|
||||
Contains simple parser for mbox files.
|
||||
|
||||
"""
|
||||
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional
|
||||
from fsspec import AbstractFileSystem
|
||||
|
||||
from llama_index.core.readers.base import BaseReader
|
||||
from llama_index.core.schema import Document
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class MboxReader(BaseReader):
|
||||
"""
|
||||
Mbox parser.
|
||||
|
||||
Extract messages from mailbox files.
|
||||
Returns string including date, subject, sender, receiver and
|
||||
content for each message.
|
||||
|
||||
"""
|
||||
|
||||
DEFAULT_MESSAGE_FORMAT: str = (
|
||||
"Date: {_date}\n"
|
||||
"From: {_from}\n"
|
||||
"To: {_to}\n"
|
||||
"Subject: {_subject}\n"
|
||||
"Content: {_content}"
|
||||
)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*args: Any,
|
||||
max_count: int = 0,
|
||||
message_format: str = DEFAULT_MESSAGE_FORMAT,
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
"""Init params."""
|
||||
try:
|
||||
from bs4 import BeautifulSoup # noqa
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"`beautifulsoup4` package not found: `pip install beautifulsoup4`"
|
||||
)
|
||||
|
||||
super().__init__(*args, **kwargs)
|
||||
self.max_count = max_count
|
||||
self.message_format = message_format
|
||||
|
||||
def load_data(
|
||||
self,
|
||||
file: Path,
|
||||
extra_info: Optional[Dict] = None,
|
||||
fs: Optional[AbstractFileSystem] = None,
|
||||
) -> List[Document]:
|
||||
"""Parse file into string."""
|
||||
# Import required libraries
|
||||
import mailbox
|
||||
from email.parser import BytesParser
|
||||
from email.policy import default
|
||||
|
||||
from bs4 import BeautifulSoup
|
||||
|
||||
if fs:
|
||||
logger.warning(
|
||||
"fs was specified but MboxReader doesn't support loading "
|
||||
"from fsspec filesystems. Will load from local filesystem instead."
|
||||
)
|
||||
|
||||
i = 0
|
||||
results: List[str] = []
|
||||
# Load file using mailbox
|
||||
bytes_parser = BytesParser(policy=default).parse
|
||||
mbox = mailbox.mbox(file, factory=bytes_parser) # type: ignore
|
||||
|
||||
# Iterate through all messages
|
||||
for _, _msg in enumerate(mbox):
|
||||
try:
|
||||
msg: mailbox.mboxMessage = _msg
|
||||
# Parse multipart messages
|
||||
if msg.is_multipart():
|
||||
for part in msg.walk():
|
||||
ctype = part.get_content_type()
|
||||
cdispo = str(part.get("Content-Disposition"))
|
||||
if "attachment" in cdispo:
|
||||
print(f"Attachment found: {part.get_filename()}")
|
||||
if ctype == "text/plain" and "attachment" not in cdispo:
|
||||
content = part.get_payload(decode=True) # decode
|
||||
break
|
||||
# Get plain message payload for non-multipart messages
|
||||
else:
|
||||
content = msg.get_payload(decode=True)
|
||||
|
||||
# Parse message HTML content and remove unneeded whitespace
|
||||
soup = BeautifulSoup(content)
|
||||
stripped_content = " ".join(soup.get_text().split())
|
||||
# Format message to include date, sender, receiver and subject
|
||||
msg_string = self.message_format.format(
|
||||
_date=msg["date"],
|
||||
_from=msg["from"],
|
||||
_to=msg["to"],
|
||||
_subject=msg["subject"],
|
||||
_content=stripped_content,
|
||||
)
|
||||
# Add message string to results
|
||||
results.append(msg_string)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to parse message:\n{_msg}\n with exception {e}")
|
||||
|
||||
# Increment counter and return if max count is met
|
||||
i += 1
|
||||
if self.max_count > 0 and i >= self.max_count:
|
||||
break
|
||||
|
||||
return [Document(text=result, metadata=extra_info or {}) for result in results]
|
||||
|
||||
|
||||
class EmlxMboxReader(MboxReader):
|
||||
"""
|
||||
EmlxMboxReader - Modified MboxReader that handles directories of .emlx files.
|
||||
|
||||
Extends MboxReader to work with Apple Mail's .emlx format by:
|
||||
1. Reading .emlx files from a directory
|
||||
2. Converting them to mbox format in memory
|
||||
3. Using the parent MboxReader's parsing logic
|
||||
"""
|
||||
|
||||
def load_data(
|
||||
self,
|
||||
directory: Path,
|
||||
extra_info: Optional[Dict] = None,
|
||||
fs: Optional[AbstractFileSystem] = None,
|
||||
) -> List[Document]:
|
||||
"""Parse .emlx files from directory into strings using MboxReader logic."""
|
||||
import tempfile
|
||||
import os
|
||||
|
||||
if fs:
|
||||
logger.warning(
|
||||
"fs was specified but EmlxMboxReader doesn't support loading "
|
||||
"from fsspec filesystems. Will load from local filesystem instead."
|
||||
)
|
||||
|
||||
# Find all .emlx files in the directory
|
||||
emlx_files = list(directory.glob("*.emlx"))
|
||||
logger.info(f"Found {len(emlx_files)} .emlx files in {directory}")
|
||||
|
||||
if not emlx_files:
|
||||
logger.warning(f"No .emlx files found in {directory}")
|
||||
return []
|
||||
|
||||
# Create a temporary mbox file
|
||||
with tempfile.NamedTemporaryFile(mode='w', suffix='.mbox', delete=False) as temp_mbox:
|
||||
temp_mbox_path = temp_mbox.name
|
||||
|
||||
# Convert .emlx files to mbox format
|
||||
for emlx_file in emlx_files:
|
||||
try:
|
||||
# Read the .emlx file
|
||||
with open(emlx_file, 'r', encoding='utf-8', errors='ignore') as f:
|
||||
content = f.read()
|
||||
|
||||
# .emlx format: first line is length, rest is email content
|
||||
lines = content.split('\n', 1)
|
||||
if len(lines) >= 2:
|
||||
email_content = lines[1] # Skip the length line
|
||||
|
||||
# Write to mbox format (each message starts with "From " and ends with blank line)
|
||||
temp_mbox.write(f"From {emlx_file.name} {email_content}\n\n")
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to process {emlx_file}: {e}")
|
||||
continue
|
||||
|
||||
# Close the temporary file so MboxReader can read it
|
||||
temp_mbox.close()
|
||||
|
||||
try:
|
||||
# Use the parent MboxReader's logic to parse the mbox file
|
||||
return super().load_data(Path(temp_mbox_path), extra_info, fs)
|
||||
finally:
|
||||
# Clean up temporary file
|
||||
try:
|
||||
os.unlink(temp_mbox_path)
|
||||
except:
|
||||
pass
|
||||
124
apps/email/readers.py
Normal file
124
apps/email/readers.py
Normal file
@@ -0,0 +1,124 @@
|
||||
import os
|
||||
import email
|
||||
from pathlib import Path
|
||||
from typing import List, Any
|
||||
from llama_index.core import Document
|
||||
from llama_index.core.readers.base import BaseReader
|
||||
|
||||
def find_all_messages_directories(root: str = None) -> List[Path]:
|
||||
"""
|
||||
Recursively find all 'Messages' directories under the given root.
|
||||
Returns a list of Path objects.
|
||||
"""
|
||||
if root is None:
|
||||
# Auto-detect user's mail path
|
||||
home_dir = os.path.expanduser("~")
|
||||
root = os.path.join(home_dir, "Library", "Mail")
|
||||
|
||||
messages_dirs = []
|
||||
for dirpath, dirnames, filenames in os.walk(root):
|
||||
if os.path.basename(dirpath) == "Messages":
|
||||
messages_dirs.append(Path(dirpath))
|
||||
return messages_dirs
|
||||
|
||||
class EmlxReader(BaseReader):
|
||||
"""
|
||||
Apple Mail .emlx file reader with embedded metadata.
|
||||
|
||||
Reads individual .emlx files from Apple Mail's storage format.
|
||||
"""
|
||||
|
||||
def __init__(self, include_html: bool = False) -> None:
|
||||
"""
|
||||
Initialize.
|
||||
|
||||
Args:
|
||||
include_html: Whether to include HTML content in the email body (default: False)
|
||||
"""
|
||||
self.include_html = include_html
|
||||
|
||||
def load_data(self, input_dir: str, **load_kwargs: Any) -> List[Document]:
|
||||
"""
|
||||
Load data from the input directory containing .emlx files.
|
||||
|
||||
Args:
|
||||
input_dir: Directory containing .emlx files
|
||||
**load_kwargs:
|
||||
max_count (int): Maximum amount of messages to read.
|
||||
"""
|
||||
docs: List[Document] = []
|
||||
max_count = load_kwargs.get('max_count', 1000)
|
||||
count = 0
|
||||
|
||||
# Walk through the directory recursively
|
||||
for dirpath, dirnames, filenames in os.walk(input_dir):
|
||||
# Skip hidden directories
|
||||
dirnames[:] = [d for d in dirnames if not d.startswith(".")]
|
||||
|
||||
for filename in filenames:
|
||||
if count >= max_count:
|
||||
break
|
||||
|
||||
if filename.endswith(".emlx"):
|
||||
filepath = os.path.join(dirpath, filename)
|
||||
try:
|
||||
# Read the .emlx file
|
||||
with open(filepath, 'r', encoding='utf-8', errors='ignore') as f:
|
||||
content = f.read()
|
||||
|
||||
# .emlx files have a length prefix followed by the email content
|
||||
# The first line contains the length, followed by the email
|
||||
lines = content.split('\n', 1)
|
||||
if len(lines) >= 2:
|
||||
email_content = lines[1]
|
||||
|
||||
# Parse the email using Python's email module
|
||||
try:
|
||||
msg = email.message_from_string(email_content)
|
||||
|
||||
# Extract email metadata
|
||||
subject = msg.get('Subject', 'No Subject')
|
||||
from_addr = msg.get('From', 'Unknown')
|
||||
to_addr = msg.get('To', 'Unknown')
|
||||
date = msg.get('Date', 'Unknown')
|
||||
|
||||
# Extract email body
|
||||
body = ""
|
||||
if msg.is_multipart():
|
||||
for part in msg.walk():
|
||||
if part.get_content_type() == "text/plain" or part.get_content_type() == "text/html":
|
||||
if part.get_content_type() == "text/html" and not self.include_html:
|
||||
continue
|
||||
body += part.get_payload(decode=True).decode('utf-8', errors='ignore')
|
||||
# break
|
||||
else:
|
||||
body = msg.get_payload(decode=True).decode('utf-8', errors='ignore')
|
||||
|
||||
# Create document content with metadata embedded in text
|
||||
doc_content = f"""
|
||||
[EMAIL METADATA]
|
||||
File: {filename}
|
||||
From: {from_addr}
|
||||
To: {to_addr}
|
||||
Subject: {subject}
|
||||
Date: {date}
|
||||
[END METADATA]
|
||||
|
||||
{body}
|
||||
"""
|
||||
|
||||
# No separate metadata - everything is in the text
|
||||
doc = Document(text=doc_content, metadata={})
|
||||
docs.append(doc)
|
||||
count += 1
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error parsing email from {filepath}: {e}")
|
||||
continue
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error reading file {filepath}: {e}")
|
||||
continue
|
||||
|
||||
print(f"Loaded {len(docs)} email documents")
|
||||
return docs
|
||||
0
apps/evaluation/__init__.py
Normal file
0
apps/evaluation/__init__.py
Normal file
382
apps/evaluation/__main__.py
Normal file
382
apps/evaluation/__main__.py
Normal file
@@ -0,0 +1,382 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
This script runs a recall evaluation on a given LEANN index.
|
||||
It correctly compares results by fetching the text content for both the new search
|
||||
results and the golden standard results, making the comparison robust to ID changes.
|
||||
"""
|
||||
|
||||
import json
|
||||
import argparse
|
||||
import time
|
||||
from pathlib import Path
|
||||
import sys
|
||||
import numpy as np
|
||||
from typing import List
|
||||
|
||||
from leann.api import LeannSearcher, LeannBuilder
|
||||
|
||||
|
||||
def download_data_if_needed(data_root: Path, download_embeddings: bool = False):
|
||||
"""Checks if the data directory exists, and if not, downloads it from HF Hub."""
|
||||
if not data_root.exists():
|
||||
print(f"Data directory '{data_root}' not found.")
|
||||
print(
|
||||
"Downloading evaluation data from Hugging Face Hub... (this may take a moment)"
|
||||
)
|
||||
try:
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
if download_embeddings:
|
||||
# Download everything including embeddings (large files)
|
||||
snapshot_download(
|
||||
repo_id="LEANN-RAG/leann-rag-evaluation-data",
|
||||
repo_type="dataset",
|
||||
local_dir=data_root,
|
||||
local_dir_use_symlinks=False,
|
||||
)
|
||||
print("Data download complete (including embeddings)!")
|
||||
else:
|
||||
# Download only specific folders, excluding embeddings
|
||||
allow_patterns = [
|
||||
"ground_truth/**",
|
||||
"indices/**",
|
||||
"queries/**",
|
||||
"*.md",
|
||||
"*.txt",
|
||||
]
|
||||
snapshot_download(
|
||||
repo_id="LEANN-RAG/leann-rag-evaluation-data",
|
||||
repo_type="dataset",
|
||||
local_dir=data_root,
|
||||
local_dir_use_symlinks=False,
|
||||
allow_patterns=allow_patterns,
|
||||
)
|
||||
print("Data download complete (excluding embeddings)!")
|
||||
except ImportError:
|
||||
print(
|
||||
"Error: huggingface_hub is not installed. Please install it to download the data:"
|
||||
)
|
||||
print("uv pip install -e '.[dev]'")
|
||||
sys.exit(1)
|
||||
except Exception as e:
|
||||
print(f"An error occurred during data download: {e}")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
def download_embeddings_if_needed(data_root: Path, dataset_type: str = None):
|
||||
"""Download embeddings files specifically."""
|
||||
embeddings_dir = data_root / "embeddings"
|
||||
|
||||
if dataset_type:
|
||||
# Check if specific dataset embeddings exist
|
||||
target_file = embeddings_dir / dataset_type / "passages_00.pkl"
|
||||
if target_file.exists():
|
||||
print(f"Embeddings for {dataset_type} already exist")
|
||||
return str(target_file)
|
||||
|
||||
print("Downloading embeddings from HuggingFace Hub...")
|
||||
try:
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
# Download only embeddings folder
|
||||
snapshot_download(
|
||||
repo_id="LEANN-RAG/leann-rag-evaluation-data",
|
||||
repo_type="dataset",
|
||||
local_dir=data_root,
|
||||
local_dir_use_symlinks=False,
|
||||
allow_patterns=["embeddings/**/*.pkl"],
|
||||
)
|
||||
print("Embeddings download complete!")
|
||||
|
||||
if dataset_type:
|
||||
target_file = embeddings_dir / dataset_type / "passages_00.pkl"
|
||||
if target_file.exists():
|
||||
return str(target_file)
|
||||
|
||||
return str(embeddings_dir)
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error downloading embeddings: {e}")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
# --- Helper Function to get Golden Passages ---
|
||||
def get_golden_texts(searcher: LeannSearcher, golden_ids: List[int]) -> set:
|
||||
"""
|
||||
Retrieves the text for golden passage IDs directly from the LeannSearcher's
|
||||
passage manager.
|
||||
"""
|
||||
golden_texts = set()
|
||||
for gid in golden_ids:
|
||||
try:
|
||||
# PassageManager uses string IDs
|
||||
passage_data = searcher.passage_manager.get_passage(str(gid))
|
||||
golden_texts.add(passage_data["text"])
|
||||
except KeyError:
|
||||
print(
|
||||
f"Warning: Golden passage ID '{gid}' not found in the index's passage data."
|
||||
)
|
||||
return golden_texts
|
||||
|
||||
|
||||
def load_queries(file_path: Path) -> List[str]:
|
||||
queries = []
|
||||
with open(file_path, "r", encoding="utf-8") as f:
|
||||
for line in f:
|
||||
data = json.loads(line)
|
||||
queries.append(data["query"])
|
||||
return queries
|
||||
|
||||
|
||||
def build_index_from_embeddings(
|
||||
embeddings_file: str, output_path: str, backend: str = "hnsw"
|
||||
):
|
||||
"""
|
||||
Build a LEANN index from pre-computed embeddings.
|
||||
|
||||
Args:
|
||||
embeddings_file: Path to pickle file with (ids, embeddings) tuple
|
||||
output_path: Path where to save the index
|
||||
backend: Backend to use ("hnsw" or "diskann")
|
||||
"""
|
||||
print(f"Building {backend} index from embeddings: {embeddings_file}")
|
||||
|
||||
# Create builder with appropriate parameters
|
||||
if backend == "hnsw":
|
||||
builder_kwargs = {
|
||||
"M": 32, # Graph degree
|
||||
"efConstruction": 256, # Construction complexity
|
||||
"is_compact": True, # Use compact storage
|
||||
"is_recompute": True, # Enable pruning for better recall
|
||||
}
|
||||
elif backend == "diskann":
|
||||
builder_kwargs = {
|
||||
"complexity": 64,
|
||||
"graph_degree": 32,
|
||||
"search_memory_maximum": 8.0, # GB
|
||||
"build_memory_maximum": 16.0, # GB
|
||||
}
|
||||
else:
|
||||
builder_kwargs = {}
|
||||
|
||||
builder = LeannBuilder(
|
||||
backend_name=backend,
|
||||
embedding_model="facebook/contriever-msmarco", # Model used to create embeddings
|
||||
dimensions=768, # Will be auto-detected from embeddings
|
||||
**builder_kwargs,
|
||||
)
|
||||
|
||||
# Build index from precomputed embeddings
|
||||
builder.build_index_from_embeddings(output_path, embeddings_file)
|
||||
print(f"Index saved to: {output_path}")
|
||||
return output_path
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Run recall evaluation on a LEANN index."
|
||||
)
|
||||
parser.add_argument(
|
||||
"index_path",
|
||||
type=str,
|
||||
nargs="?",
|
||||
help="Path to the LEANN index to evaluate or build (optional).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--mode",
|
||||
choices=["evaluate", "build"],
|
||||
default="evaluate",
|
||||
help="Mode: 'evaluate' existing index or 'build' from embeddings",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--embeddings-file",
|
||||
type=str,
|
||||
help="Path to embeddings pickle file (optional for build mode)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--backend",
|
||||
choices=["hnsw", "diskann"],
|
||||
default="hnsw",
|
||||
help="Backend to use for building index (default: hnsw)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-queries", type=int, default=10, help="Number of queries to evaluate."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--top-k", type=int, default=3, help="The 'k' value for recall@k."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--ef-search", type=int, default=120, help="The 'efSearch' parameter for HNSW."
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
# --- Path Configuration ---
|
||||
# Assumes a project structure where the script is in 'examples/'
|
||||
# and data is in 'data/' at the project root.
|
||||
project_root = Path(__file__).resolve().parent.parent
|
||||
data_root = project_root / "data"
|
||||
|
||||
# Download data based on mode
|
||||
if args.mode == "build":
|
||||
# For building mode, we need embeddings
|
||||
download_data_if_needed(
|
||||
data_root, download_embeddings=False
|
||||
) # Basic data first
|
||||
|
||||
# Auto-detect dataset type and download embeddings
|
||||
if args.embeddings_file:
|
||||
embeddings_file = args.embeddings_file
|
||||
# Try to detect dataset type from embeddings file path
|
||||
if "rpj_wiki" in str(embeddings_file):
|
||||
dataset_type = "rpj_wiki"
|
||||
elif "dpr" in str(embeddings_file):
|
||||
dataset_type = "dpr"
|
||||
else:
|
||||
dataset_type = "dpr" # Default
|
||||
else:
|
||||
# Auto-detect from index path if provided, otherwise default to DPR
|
||||
if args.index_path:
|
||||
index_path_str = str(args.index_path)
|
||||
if "rpj_wiki" in index_path_str:
|
||||
dataset_type = "rpj_wiki"
|
||||
elif "dpr" in index_path_str:
|
||||
dataset_type = "dpr"
|
||||
else:
|
||||
dataset_type = "dpr" # Default to DPR
|
||||
else:
|
||||
dataset_type = "dpr" # Default to DPR
|
||||
|
||||
embeddings_file = download_embeddings_if_needed(data_root, dataset_type)
|
||||
|
||||
# Auto-generate index path if not provided
|
||||
if not args.index_path:
|
||||
indices_dir = data_root / "indices" / dataset_type
|
||||
indices_dir.mkdir(parents=True, exist_ok=True)
|
||||
args.index_path = str(indices_dir / f"{dataset_type}_from_embeddings")
|
||||
print(f"Auto-generated index path: {args.index_path}")
|
||||
|
||||
print(f"Building index from embeddings: {embeddings_file}")
|
||||
built_index_path = build_index_from_embeddings(
|
||||
embeddings_file, args.index_path, args.backend
|
||||
)
|
||||
print(f"Index built successfully: {built_index_path}")
|
||||
|
||||
# Ask if user wants to run evaluation
|
||||
eval_response = (
|
||||
input("Run evaluation on the built index? (y/n): ").strip().lower()
|
||||
)
|
||||
if eval_response != "y":
|
||||
print("Index building complete. Exiting.")
|
||||
return
|
||||
else:
|
||||
# For evaluation mode, don't need embeddings
|
||||
download_data_if_needed(data_root, download_embeddings=False)
|
||||
|
||||
# Auto-detect index path if not provided
|
||||
if not args.index_path:
|
||||
# Default to using downloaded indices
|
||||
indices_dir = data_root / "indices"
|
||||
|
||||
# Try common datasets in order of preference
|
||||
for dataset in ["dpr", "rpj_wiki"]:
|
||||
dataset_dir = indices_dir / dataset
|
||||
if dataset_dir.exists():
|
||||
# Look for index files
|
||||
index_files = list(dataset_dir.glob("*.index")) + list(
|
||||
dataset_dir.glob("*_disk.index")
|
||||
)
|
||||
if index_files:
|
||||
args.index_path = str(
|
||||
index_files[0].with_suffix("")
|
||||
) # Remove .index extension
|
||||
print(f"Using index: {args.index_path}")
|
||||
break
|
||||
|
||||
if not args.index_path:
|
||||
print(
|
||||
"No indices found. The data download should have included pre-built indices."
|
||||
)
|
||||
print(
|
||||
"Please check the data/indices/ directory or provide --index-path manually."
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
# Detect dataset type from index path to select the correct ground truth
|
||||
index_path_str = str(args.index_path)
|
||||
if "rpj_wiki" in index_path_str:
|
||||
dataset_type = "rpj_wiki"
|
||||
elif "dpr" in index_path_str:
|
||||
dataset_type = "dpr"
|
||||
else:
|
||||
# Fallback: try to infer from the index directory name
|
||||
dataset_type = Path(args.index_path).name
|
||||
print(
|
||||
f"WARNING: Could not detect dataset type from path, inferred '{dataset_type}'."
|
||||
)
|
||||
|
||||
queries_file = data_root / "queries" / "nq_open.jsonl"
|
||||
golden_results_file = (
|
||||
data_root / "ground_truth" / dataset_type / "flat_results_nq_k3.json"
|
||||
)
|
||||
|
||||
print(f"INFO: Detected dataset type: {dataset_type}")
|
||||
print(f"INFO: Using queries file: {queries_file}")
|
||||
print(f"INFO: Using ground truth file: {golden_results_file}")
|
||||
|
||||
try:
|
||||
searcher = LeannSearcher(args.index_path)
|
||||
queries = load_queries(queries_file)
|
||||
|
||||
with open(golden_results_file, "r") as f:
|
||||
golden_results_data = json.load(f)
|
||||
|
||||
num_eval_queries = min(args.num_queries, len(queries))
|
||||
queries = queries[:num_eval_queries]
|
||||
|
||||
print(f"\nRunning evaluation on {num_eval_queries} queries...")
|
||||
recall_scores = []
|
||||
search_times = []
|
||||
|
||||
for i in range(num_eval_queries):
|
||||
start_time = time.time()
|
||||
new_results = searcher.search(
|
||||
queries[i], top_k=args.top_k, ef=args.ef_search
|
||||
)
|
||||
search_times.append(time.time() - start_time)
|
||||
|
||||
# Correct Recall Calculation: Based on TEXT content
|
||||
new_texts = {result.text for result in new_results}
|
||||
|
||||
# Get golden texts directly from the searcher's passage manager
|
||||
golden_ids = golden_results_data["indices"][i][: args.top_k]
|
||||
golden_texts = get_golden_texts(searcher, golden_ids)
|
||||
|
||||
overlap = len(new_texts & golden_texts)
|
||||
recall = overlap / len(golden_texts) if golden_texts else 0
|
||||
recall_scores.append(recall)
|
||||
|
||||
print("\n--- EVALUATION RESULTS ---")
|
||||
print(f"Query: {queries[i]}")
|
||||
print(f"New Results: {new_texts}")
|
||||
print(f"Golden Results: {golden_texts}")
|
||||
print(f"Overlap: {overlap}")
|
||||
print(f"Recall: {recall}")
|
||||
print(f"Search Time: {search_times[-1]:.4f}s")
|
||||
print("--------------------------------")
|
||||
|
||||
avg_recall = np.mean(recall_scores) if recall_scores else 0
|
||||
avg_time = np.mean(search_times) if search_times else 0
|
||||
|
||||
print("\n🎉 --- Evaluation Complete ---")
|
||||
print(f"Avg. Recall@{args.top_k} (efSearch={args.ef_search}): {avg_recall:.4f}")
|
||||
print(f"Avg. Search Time: {avg_time:.4f}s")
|
||||
|
||||
except Exception as e:
|
||||
print(f"\n❌ An error occurred during evaluation: {e}")
|
||||
import traceback
|
||||
|
||||
traceback.print_exc()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
0
apps/wechat/__init__.py
Normal file
0
apps/wechat/__init__.py
Normal file
230
apps/wechat/__main__.py
Normal file
230
apps/wechat/__main__.py
Normal file
@@ -0,0 +1,230 @@
|
||||
import os
|
||||
import asyncio
|
||||
import dotenv
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
from typing import List, Any, Optional
|
||||
from leann.api import LeannBuilder, LeannSearcher, LeannChat
|
||||
from llama_index.core.node_parser import SentenceSplitter
|
||||
import requests
|
||||
import time
|
||||
|
||||
dotenv.load_dotenv()
|
||||
|
||||
# Default WeChat export directory
|
||||
DEFAULT_WECHAT_EXPORT_DIR = "./wechat_export_direct"
|
||||
|
||||
def create_leann_index_from_multiple_wechat_exports(
|
||||
export_dirs: List[Path],
|
||||
index_path: str = "wechat_history_index.leann",
|
||||
max_count: int = -1,
|
||||
):
|
||||
"""
|
||||
Create LEANN index from multiple WeChat export data sources.
|
||||
|
||||
Args:
|
||||
export_dirs: List of Path objects pointing to WeChat export directories
|
||||
index_path: Path to save the LEANN index
|
||||
max_count: Maximum number of chat entries to process per export
|
||||
"""
|
||||
print("Creating LEANN index from multiple WeChat export data sources...")
|
||||
|
||||
# Load documents using WeChatHistoryReader from local readers module
|
||||
from .readers import WeChatHistoryReader
|
||||
|
||||
reader = WeChatHistoryReader()
|
||||
|
||||
INDEX_DIR = Path(index_path).parent
|
||||
|
||||
if not INDEX_DIR.exists():
|
||||
print(f"--- Index directory not found, building new index ---")
|
||||
all_documents = []
|
||||
total_processed = 0
|
||||
|
||||
# Process each WeChat export directory
|
||||
for i, export_dir in enumerate(export_dirs):
|
||||
print(
|
||||
f"\nProcessing WeChat export {i + 1}/{len(export_dirs)}: {export_dir}"
|
||||
)
|
||||
|
||||
try:
|
||||
documents = reader.load_data(
|
||||
wechat_export_dir=str(export_dir),
|
||||
max_count=max_count,
|
||||
concatenate_messages=True, # Disable concatenation - one message per document
|
||||
)
|
||||
if documents:
|
||||
print(f"Loaded {len(documents)} chat documents from {export_dir}")
|
||||
all_documents.extend(documents)
|
||||
total_processed += len(documents)
|
||||
|
||||
# Check if we've reached the max count
|
||||
if max_count > 0 and total_processed >= max_count:
|
||||
print(f"Reached max count of {max_count} documents")
|
||||
break
|
||||
else:
|
||||
print(f"No documents loaded from {export_dir}")
|
||||
except Exception as e:
|
||||
print(f"Error processing {export_dir}: {e}")
|
||||
continue
|
||||
|
||||
if not all_documents:
|
||||
print("No documents loaded from any source. Exiting.")
|
||||
return None
|
||||
|
||||
print(
|
||||
f"\nTotal loaded {len(all_documents)} chat documents from {len(export_dirs)} exports"
|
||||
)
|
||||
|
||||
# Create text splitter with 256 chunk size
|
||||
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=128)
|
||||
|
||||
# Convert Documents to text strings and chunk them
|
||||
all_texts = []
|
||||
for doc in all_documents:
|
||||
# Split the document into chunks
|
||||
nodes = text_splitter.get_nodes_from_documents([doc])
|
||||
for node in nodes:
|
||||
text = '[Contact] means the message is from: ' + doc.metadata["contact_name"] + '\n' + node.get_content()
|
||||
all_texts.append(text)
|
||||
|
||||
print(
|
||||
f"Created {len(all_texts)} text chunks from {len(all_documents)} documents"
|
||||
)
|
||||
|
||||
# Create LEANN index directory
|
||||
print(f"--- Index directory not found, building new index ---")
|
||||
INDEX_DIR.mkdir(exist_ok=True)
|
||||
|
||||
print(f"--- Building new LEANN index ---")
|
||||
|
||||
print(f"\n[PHASE 1] Building Leann index...")
|
||||
|
||||
# Use HNSW backend for better macOS compatibility
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model="Qwen/Qwen3-Embedding-0.6B",
|
||||
graph_degree=32,
|
||||
complexity=64,
|
||||
is_compact=True,
|
||||
is_recompute=True,
|
||||
num_threads=1, # Force single-threaded mode
|
||||
)
|
||||
|
||||
print(f"Adding {len(all_texts)} chat chunks to index...")
|
||||
for chunk_text in all_texts:
|
||||
builder.add_text(chunk_text)
|
||||
|
||||
builder.build_index(index_path)
|
||||
print(f"\nLEANN index built at {index_path}!")
|
||||
else:
|
||||
print(f"--- Using existing index at {INDEX_DIR} ---")
|
||||
|
||||
return index_path
|
||||
|
||||
async def query_leann_index(index_path: str, query: str):
|
||||
"""
|
||||
Query the LEANN index.
|
||||
|
||||
Args:
|
||||
index_path: Path to the LEANN index
|
||||
query: The query string
|
||||
"""
|
||||
print(f"\n[PHASE 2] Starting Leann chat session...")
|
||||
chat = LeannChat(index_path=index_path)
|
||||
|
||||
print(f"You: {query}")
|
||||
chat_response = chat.ask(
|
||||
query,
|
||||
top_k=20,
|
||||
recompute_beighbor_embeddings=True,
|
||||
complexity=16,
|
||||
beam_width=1,
|
||||
llm_config={
|
||||
"type": "openai",
|
||||
"model": "gpt-4o",
|
||||
"api_key": os.getenv("OPENAI_API_KEY"),
|
||||
},
|
||||
llm_kwargs={"temperature": 0.0, "max_tokens": 1000},
|
||||
)
|
||||
print(f"Leann: {chat_response}")
|
||||
|
||||
async def main():
|
||||
"""Main function with integrated WeChat export functionality."""
|
||||
|
||||
# Parse command line arguments
|
||||
parser = argparse.ArgumentParser(
|
||||
description="LEANN WeChat History Reader - Create and query WeChat chat history index"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--export-dir",
|
||||
type=str,
|
||||
default=DEFAULT_WECHAT_EXPORT_DIR,
|
||||
help=f"Directory to store WeChat exports (default: {DEFAULT_WECHAT_EXPORT_DIR})",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--index-dir",
|
||||
type=str,
|
||||
default="./wechat_history_magic_test_11Debug_new",
|
||||
help="Directory to store the LEANN index (default: ./wechat_history_index_leann_test)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-entries",
|
||||
type=int,
|
||||
default=50,
|
||||
help="Maximum number of chat entries to process (default: 5000)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--query",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Single query to run (default: runs example queries)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--force-export",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Force re-export of WeChat data even if exports exist",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
INDEX_DIR = Path(args.index_dir)
|
||||
INDEX_PATH = str(INDEX_DIR / "wechat_history.leann")
|
||||
|
||||
print(f"Using WeChat export directory: {args.export_dir}")
|
||||
print(f"Index directory: {INDEX_DIR}")
|
||||
print(f"Max entries: {args.max_entries}")
|
||||
|
||||
# Initialize WeChat reader with export capabilities
|
||||
from .readers import WeChatHistoryReader
|
||||
|
||||
reader = WeChatHistoryReader()
|
||||
|
||||
# Find existing exports or create new ones using the centralized method
|
||||
export_dirs = reader.find_or_export_wechat_data(args.export_dir)
|
||||
if not export_dirs:
|
||||
print("Failed to find or export WeChat data. Exiting.")
|
||||
return
|
||||
|
||||
# Create or load the LEANN index from all sources
|
||||
index_path = create_leann_index_from_multiple_wechat_exports(
|
||||
export_dirs, INDEX_PATH, max_count=args.max_entries
|
||||
)
|
||||
|
||||
if index_path:
|
||||
if args.query:
|
||||
# Run single query
|
||||
await query_leann_index(index_path, args.query)
|
||||
else:
|
||||
# Example queries
|
||||
queries = [
|
||||
"我想买魔术师约翰逊的球衣,给我一些对应聊天记录?",
|
||||
]
|
||||
|
||||
for query in queries:
|
||||
print("\n" + "=" * 60)
|
||||
await query_leann_index(index_path, query)
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
719
apps/wechat/readers.py
Normal file
719
apps/wechat/readers.py
Normal file
@@ -0,0 +1,719 @@
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import subprocess
|
||||
import sys
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import List, Any, Dict, Optional
|
||||
from llama_index.core import Document
|
||||
from llama_index.core.readers.base import BaseReader
|
||||
from datetime import datetime
|
||||
|
||||
class WeChatHistoryReader(BaseReader):
|
||||
"""
|
||||
WeChat chat history reader that extracts chat data from exported JSON files.
|
||||
|
||||
Reads WeChat chat history from exported JSON files (from wechat-exporter tool)
|
||||
and creates documents with embedded metadata similar to the Chrome history reader structure.
|
||||
|
||||
Also includes utilities for automatic WeChat chat history export.
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
"""Initialize."""
|
||||
self.packages_dir = Path(__file__).parent.parent.parent / "packages"
|
||||
self.wechat_exporter_dir = self.packages_dir / "wechat-exporter"
|
||||
self.wechat_decipher_dir = self.packages_dir / "wechat-decipher-macos"
|
||||
|
||||
def check_wechat_running(self) -> bool:
|
||||
"""Check if WeChat is currently running."""
|
||||
try:
|
||||
result = subprocess.run(["pgrep", "-f", "WeChat"], capture_output=True, text=True)
|
||||
return result.returncode == 0
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
def install_wechattweak(self) -> bool:
|
||||
"""Install WeChatTweak CLI tool."""
|
||||
try:
|
||||
# Create wechat-exporter directory if it doesn't exist
|
||||
self.wechat_exporter_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
wechattweak_path = self.wechat_exporter_dir / "wechattweak-cli"
|
||||
if not wechattweak_path.exists():
|
||||
print("Downloading WeChatTweak CLI...")
|
||||
subprocess.run([
|
||||
"curl", "-L", "-o", str(wechattweak_path),
|
||||
"https://github.com/JettChenT/WeChatTweak-CLI/releases/latest/download/wechattweak-cli"
|
||||
], check=True)
|
||||
|
||||
# Make executable
|
||||
wechattweak_path.chmod(0o755)
|
||||
|
||||
# Install WeChatTweak
|
||||
print("Installing WeChatTweak...")
|
||||
subprocess.run(["sudo", str(wechattweak_path), "install"], check=True)
|
||||
return True
|
||||
except Exception as e:
|
||||
print(f"Error installing WeChatTweak: {e}")
|
||||
return False
|
||||
|
||||
def restart_wechat(self):
|
||||
"""Restart WeChat to apply WeChatTweak."""
|
||||
try:
|
||||
print("Restarting WeChat...")
|
||||
subprocess.run(["pkill", "-f", "WeChat"], check=False)
|
||||
time.sleep(2)
|
||||
subprocess.run(["open", "-a", "WeChat"], check=True)
|
||||
time.sleep(5) # Wait for WeChat to start
|
||||
except Exception as e:
|
||||
print(f"Error restarting WeChat: {e}")
|
||||
|
||||
def check_api_available(self) -> bool:
|
||||
"""Check if WeChatTweak API is available."""
|
||||
try:
|
||||
result = subprocess.run([
|
||||
"curl", "-s", "http://localhost:48065/wechat/allcontacts"
|
||||
], capture_output=True, text=True, timeout=5)
|
||||
return result.returncode == 0 and result.stdout.strip()
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
|
||||
|
||||
|
||||
def _extract_readable_text(self, content: str) -> str:
|
||||
"""
|
||||
Extract readable text from message content, removing XML and system messages.
|
||||
|
||||
Args:
|
||||
content: The raw message content (can be string or dict)
|
||||
|
||||
Returns:
|
||||
Cleaned, readable text
|
||||
"""
|
||||
if not content:
|
||||
return ""
|
||||
|
||||
# Handle dictionary content (like quoted messages)
|
||||
if isinstance(content, dict):
|
||||
# Extract text from dictionary structure
|
||||
text_parts = []
|
||||
if 'title' in content:
|
||||
text_parts.append(str(content['title']))
|
||||
if 'quoted' in content:
|
||||
text_parts.append(str(content['quoted']))
|
||||
if 'content' in content:
|
||||
text_parts.append(str(content['content']))
|
||||
if 'text' in content:
|
||||
text_parts.append(str(content['text']))
|
||||
|
||||
if text_parts:
|
||||
return " | ".join(text_parts)
|
||||
else:
|
||||
# If we can't extract meaningful text from dict, return empty
|
||||
return ""
|
||||
|
||||
# Handle string content
|
||||
if not isinstance(content, str):
|
||||
return ""
|
||||
|
||||
# Remove common prefixes like "wxid_xxx:\n"
|
||||
clean_content = re.sub(r'^wxid_[^:]+:\s*', '', content)
|
||||
clean_content = re.sub(r'^[^:]+:\s*', '', clean_content)
|
||||
|
||||
# If it's just XML or system message, return empty
|
||||
if clean_content.strip().startswith('<') or 'recalled a message' in clean_content:
|
||||
return ""
|
||||
|
||||
return clean_content.strip()
|
||||
|
||||
def _is_text_message(self, content: str) -> bool:
|
||||
"""
|
||||
Check if a message contains readable text content.
|
||||
|
||||
Args:
|
||||
content: The message content (can be string or dict)
|
||||
|
||||
Returns:
|
||||
True if the message contains readable text, False otherwise
|
||||
"""
|
||||
if not content:
|
||||
return False
|
||||
|
||||
# Handle dictionary content
|
||||
if isinstance(content, dict):
|
||||
# Check if dict has any readable text fields
|
||||
text_fields = ['title', 'quoted', 'content', 'text']
|
||||
for field in text_fields:
|
||||
if field in content and content[field]:
|
||||
return True
|
||||
return False
|
||||
|
||||
# Handle string content
|
||||
if not isinstance(content, str):
|
||||
return False
|
||||
|
||||
# Skip image messages (contain XML with img tags)
|
||||
if '<img' in content and 'cdnurl' in content:
|
||||
return False
|
||||
|
||||
# Skip emoji messages (contain emoji XML tags)
|
||||
if '<emoji' in content and 'productid' in content:
|
||||
return False
|
||||
|
||||
# Skip voice messages
|
||||
if '<voice' in content:
|
||||
return False
|
||||
|
||||
# Skip video messages
|
||||
if '<video' in content:
|
||||
return False
|
||||
|
||||
# Skip file messages
|
||||
if '<appmsg' in content and 'appid' in content:
|
||||
return False
|
||||
|
||||
# Skip system messages (like "recalled a message")
|
||||
if 'recalled a message' in content:
|
||||
return False
|
||||
|
||||
# Check if there's actual readable text (not just XML or system messages)
|
||||
# Remove common prefixes like "wxid_xxx:\n" and check for actual content
|
||||
clean_content = re.sub(r'^wxid_[^:]+:\s*', '', content)
|
||||
clean_content = re.sub(r'^[^:]+:\s*', '', clean_content)
|
||||
|
||||
# If after cleaning we have meaningful text, consider it readable
|
||||
if len(clean_content.strip()) > 0 and not clean_content.strip().startswith('<'):
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def _concatenate_messages(self, messages: List[Dict], max_length: int = 128,
|
||||
time_window_minutes: int = 30, overlap_messages: int = 0) -> List[Dict]:
|
||||
"""
|
||||
Concatenate messages based on length and time rules.
|
||||
|
||||
Args:
|
||||
messages: List of message dictionaries
|
||||
max_length: Maximum length for concatenated message groups. Use -1 to disable length constraint.
|
||||
time_window_minutes: Time window in minutes to group messages together. Use -1 to disable time constraint.
|
||||
overlap_messages: Number of messages to overlap between consecutive groups
|
||||
|
||||
Returns:
|
||||
List of concatenated message groups
|
||||
"""
|
||||
if not messages:
|
||||
return []
|
||||
|
||||
concatenated_groups = []
|
||||
current_group = []
|
||||
current_length = 0
|
||||
last_timestamp = None
|
||||
|
||||
for message in messages:
|
||||
# Extract message info
|
||||
content = message.get('content', '')
|
||||
message_text = message.get('message', '')
|
||||
create_time = message.get('createTime', 0)
|
||||
from_user = message.get('fromUser', '')
|
||||
to_user = message.get('toUser', '')
|
||||
is_sent_from_self = message.get('isSentFromSelf', False)
|
||||
|
||||
# Extract readable text
|
||||
readable_text = self._extract_readable_text(content)
|
||||
if not readable_text:
|
||||
readable_text = message_text
|
||||
|
||||
# Skip empty messages
|
||||
if not readable_text.strip():
|
||||
continue
|
||||
|
||||
# Check time window constraint (only if time_window_minutes != -1)
|
||||
if time_window_minutes != -1 and last_timestamp is not None and create_time > 0:
|
||||
time_diff_minutes = (create_time - last_timestamp) / 60
|
||||
if time_diff_minutes > time_window_minutes:
|
||||
# Time gap too large, start new group
|
||||
if current_group:
|
||||
concatenated_groups.append({
|
||||
'messages': current_group,
|
||||
'total_length': current_length,
|
||||
'start_time': current_group[0].get('createTime', 0),
|
||||
'end_time': current_group[-1].get('createTime', 0)
|
||||
})
|
||||
# Keep last few messages for overlap
|
||||
if overlap_messages > 0 and len(current_group) > overlap_messages:
|
||||
current_group = current_group[-overlap_messages:]
|
||||
current_length = sum(len(self._extract_readable_text(msg.get('content', '')) or msg.get('message', '')) for msg in current_group)
|
||||
else:
|
||||
current_group = []
|
||||
current_length = 0
|
||||
|
||||
# Check length constraint (only if max_length != -1)
|
||||
message_length = len(readable_text)
|
||||
if max_length != -1 and current_length + message_length > max_length and current_group:
|
||||
# Current group would exceed max length, save it and start new
|
||||
concatenated_groups.append({
|
||||
'messages': current_group,
|
||||
'total_length': current_length,
|
||||
'start_time': current_group[0].get('createTime', 0),
|
||||
'end_time': current_group[-1].get('createTime', 0)
|
||||
})
|
||||
# Keep last few messages for overlap
|
||||
if overlap_messages > 0 and len(current_group) > overlap_messages:
|
||||
current_group = current_group[-overlap_messages:]
|
||||
current_length = sum(len(self._extract_readable_text(msg.get('content', '')) or msg.get('message', '')) for msg in current_group)
|
||||
else:
|
||||
current_group = []
|
||||
current_length = 0
|
||||
|
||||
# Add message to current group
|
||||
current_group.append(message)
|
||||
current_length += message_length
|
||||
last_timestamp = create_time
|
||||
|
||||
# Add the last group if it exists
|
||||
if current_group:
|
||||
concatenated_groups.append({
|
||||
'messages': current_group,
|
||||
'total_length': current_length,
|
||||
'start_time': current_group[0].get('createTime', 0),
|
||||
'end_time': current_group[-1].get('createTime', 0)
|
||||
})
|
||||
|
||||
return concatenated_groups
|
||||
|
||||
def _create_concatenated_content(self, message_group: Dict, contact_name: str) -> str:
|
||||
"""
|
||||
Create concatenated content from a group of messages.
|
||||
|
||||
Args:
|
||||
message_group: Dictionary containing messages and metadata
|
||||
contact_name: Name of the contact
|
||||
|
||||
Returns:
|
||||
Formatted concatenated content
|
||||
"""
|
||||
messages = message_group['messages']
|
||||
start_time = message_group['start_time']
|
||||
end_time = message_group['end_time']
|
||||
|
||||
# Format timestamps
|
||||
if start_time:
|
||||
try:
|
||||
start_timestamp = datetime.fromtimestamp(start_time)
|
||||
start_time_str = start_timestamp.strftime('%Y-%m-%d %H:%M:%S')
|
||||
except:
|
||||
start_time_str = str(start_time)
|
||||
else:
|
||||
start_time_str = "Unknown"
|
||||
|
||||
if end_time:
|
||||
try:
|
||||
end_timestamp = datetime.fromtimestamp(end_time)
|
||||
end_time_str = end_timestamp.strftime('%Y-%m-%d %H:%M:%S')
|
||||
except:
|
||||
end_time_str = str(end_time)
|
||||
else:
|
||||
end_time_str = "Unknown"
|
||||
|
||||
# Build concatenated message content
|
||||
message_parts = []
|
||||
for message in messages:
|
||||
content = message.get('content', '')
|
||||
message_text = message.get('message', '')
|
||||
create_time = message.get('createTime', 0)
|
||||
is_sent_from_self = message.get('isSentFromSelf', False)
|
||||
|
||||
# Extract readable text
|
||||
readable_text = self._extract_readable_text(content)
|
||||
if not readable_text:
|
||||
readable_text = message_text
|
||||
|
||||
# Format individual message
|
||||
if create_time:
|
||||
try:
|
||||
timestamp = datetime.fromtimestamp(create_time)
|
||||
# change to YYYY-MM-DD HH:MM:SS
|
||||
time_str = timestamp.strftime('%Y-%m-%d %H:%M:%S')
|
||||
except:
|
||||
time_str = str(create_time)
|
||||
else:
|
||||
time_str = "Unknown"
|
||||
|
||||
sender = "[Me]" if is_sent_from_self else "[Contact]"
|
||||
message_parts.append(f"({time_str}) {sender}: {readable_text}")
|
||||
|
||||
concatenated_text = "\n".join(message_parts)
|
||||
|
||||
# Create final document content
|
||||
doc_content = f"""
|
||||
Contact: {contact_name}
|
||||
Time Range: {start_time_str} - {end_time_str}
|
||||
Messages ({len(messages)} messages, {message_group['total_length']} chars):
|
||||
|
||||
{concatenated_text}
|
||||
"""
|
||||
# TODO @yichuan give better format and rich info here!
|
||||
doc_content = f"""
|
||||
{concatenated_text}
|
||||
"""
|
||||
return doc_content, contact_name
|
||||
|
||||
def load_data(self, input_dir: str = None, **load_kwargs: Any) -> List[Document]:
|
||||
"""
|
||||
Load WeChat chat history data from exported JSON files.
|
||||
|
||||
Args:
|
||||
input_dir: Directory containing exported WeChat JSON files
|
||||
**load_kwargs:
|
||||
max_count (int): Maximum amount of chat entries to read.
|
||||
wechat_export_dir (str): Custom path to WeChat export directory.
|
||||
include_non_text (bool): Whether to include non-text messages (images, emojis, etc.)
|
||||
concatenate_messages (bool): Whether to concatenate messages based on length rules.
|
||||
max_length (int): Maximum length for concatenated message groups (default: 1000).
|
||||
time_window_minutes (int): Time window in minutes to group messages together (default: 30).
|
||||
overlap_messages (int): Number of messages to overlap between consecutive groups (default: 2).
|
||||
"""
|
||||
docs: List[Document] = []
|
||||
max_count = load_kwargs.get('max_count', 1000)
|
||||
wechat_export_dir = load_kwargs.get('wechat_export_dir', None)
|
||||
include_non_text = load_kwargs.get('include_non_text', False)
|
||||
concatenate_messages = load_kwargs.get('concatenate_messages', False)
|
||||
max_length = load_kwargs.get('max_length', 1000)
|
||||
time_window_minutes = load_kwargs.get('time_window_minutes', 30)
|
||||
|
||||
# Default WeChat export path
|
||||
if wechat_export_dir is None:
|
||||
wechat_export_dir = "./wechat_export_test"
|
||||
|
||||
if not os.path.exists(wechat_export_dir):
|
||||
print(f"WeChat export directory not found at: {wechat_export_dir}")
|
||||
return docs
|
||||
|
||||
try:
|
||||
# Find all JSON files in the export directory
|
||||
json_files = list(Path(wechat_export_dir).glob("*.json"))
|
||||
print(f"Found {len(json_files)} WeChat chat history files")
|
||||
|
||||
count = 0
|
||||
for json_file in json_files:
|
||||
if count >= max_count and max_count > 0:
|
||||
break
|
||||
|
||||
try:
|
||||
with open(json_file, 'r', encoding='utf-8') as f:
|
||||
chat_data = json.load(f)
|
||||
|
||||
# Extract contact name from filename
|
||||
contact_name = json_file.stem
|
||||
|
||||
if concatenate_messages:
|
||||
# Filter messages to only include readable text messages
|
||||
readable_messages = []
|
||||
for message in chat_data:
|
||||
try:
|
||||
content = message.get('content', '')
|
||||
if not include_non_text and not self._is_text_message(content):
|
||||
continue
|
||||
|
||||
readable_text = self._extract_readable_text(content)
|
||||
if not readable_text and not include_non_text:
|
||||
continue
|
||||
|
||||
readable_messages.append(message)
|
||||
except Exception as e:
|
||||
print(f"Error processing message in {json_file}: {e}")
|
||||
continue
|
||||
|
||||
# Concatenate messages based on rules
|
||||
message_groups = self._concatenate_messages(
|
||||
readable_messages,
|
||||
max_length=-1,
|
||||
time_window_minutes=-1,
|
||||
overlap_messages=0 # Keep 2 messages overlap between groups
|
||||
)
|
||||
|
||||
# Create documents from concatenated groups
|
||||
for message_group in message_groups:
|
||||
if count >= max_count and max_count > 0:
|
||||
break
|
||||
|
||||
doc_content, contact_name = self._create_concatenated_content(message_group, contact_name)
|
||||
doc = Document(text=doc_content, metadata={"contact_name": contact_name})
|
||||
docs.append(doc)
|
||||
count += 1
|
||||
|
||||
print(f"Created {len(message_groups)} concatenated message groups for {contact_name}")
|
||||
|
||||
else:
|
||||
# Original single-message processing
|
||||
for message in chat_data:
|
||||
if count >= max_count and max_count > 0:
|
||||
break
|
||||
|
||||
# Extract message information
|
||||
from_user = message.get('fromUser', '')
|
||||
to_user = message.get('toUser', '')
|
||||
content = message.get('content', '')
|
||||
message_text = message.get('message', '')
|
||||
create_time = message.get('createTime', 0)
|
||||
is_sent_from_self = message.get('isSentFromSelf', False)
|
||||
|
||||
# Handle content that might be dict or string
|
||||
try:
|
||||
# Check if this is a readable text message
|
||||
if not include_non_text and not self._is_text_message(content):
|
||||
continue
|
||||
|
||||
# Extract readable text
|
||||
readable_text = self._extract_readable_text(content)
|
||||
if not readable_text and not include_non_text:
|
||||
continue
|
||||
except Exception as e:
|
||||
# Skip messages that cause processing errors
|
||||
print(f"Error processing message in {json_file}: {e}")
|
||||
continue
|
||||
|
||||
# Convert timestamp to readable format
|
||||
if create_time:
|
||||
try:
|
||||
timestamp = datetime.fromtimestamp(create_time)
|
||||
time_str = timestamp.strftime('%Y-%m-%d %H:%M:%S')
|
||||
except:
|
||||
time_str = str(create_time)
|
||||
else:
|
||||
time_str = "Unknown"
|
||||
|
||||
# Create document content with metadata header and contact info
|
||||
doc_content = f"""
|
||||
Contact: {contact_name}
|
||||
Is sent from self: {is_sent_from_self}
|
||||
Time: {time_str}
|
||||
Message: {readable_text if readable_text else message_text}
|
||||
"""
|
||||
|
||||
# Create document with embedded metadata
|
||||
doc = Document(text=doc_content, metadata={})
|
||||
docs.append(doc)
|
||||
count += 1
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error reading {json_file}: {e}")
|
||||
continue
|
||||
|
||||
print(f"Loaded {len(docs)} WeChat chat documents")
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error reading WeChat history: {e}")
|
||||
return docs
|
||||
|
||||
return docs
|
||||
|
||||
@staticmethod
|
||||
def find_wechat_export_dirs() -> List[Path]:
|
||||
"""
|
||||
Find all WeChat export directories.
|
||||
|
||||
Returns:
|
||||
List of Path objects pointing to WeChat export directories
|
||||
"""
|
||||
export_dirs = []
|
||||
|
||||
# Look for common export directory names
|
||||
possible_dirs = [
|
||||
Path("./wechat_export_test"),
|
||||
Path("./wechat_export"),
|
||||
Path("./wechat_chat_history"),
|
||||
Path("./chat_export")
|
||||
]
|
||||
|
||||
for export_dir in possible_dirs:
|
||||
if export_dir.exists() and export_dir.is_dir():
|
||||
json_files = list(export_dir.glob("*.json"))
|
||||
if json_files:
|
||||
export_dirs.append(export_dir)
|
||||
print(f"Found WeChat export directory: {export_dir} with {len(json_files)} files")
|
||||
|
||||
print(f"Found {len(export_dirs)} WeChat export directories")
|
||||
return export_dirs
|
||||
|
||||
@staticmethod
|
||||
def export_chat_to_file(output_file: str = "wechat_chat_export.txt", max_count: int = 1000, export_dir: str = None, include_non_text: bool = False):
|
||||
"""
|
||||
Export WeChat chat history to a text file.
|
||||
|
||||
Args:
|
||||
output_file: Path to the output file
|
||||
max_count: Maximum number of entries to export
|
||||
export_dir: Directory containing WeChat JSON files
|
||||
include_non_text: Whether to include non-text messages
|
||||
"""
|
||||
if export_dir is None:
|
||||
export_dir = "./wechat_export_test"
|
||||
|
||||
if not os.path.exists(export_dir):
|
||||
print(f"WeChat export directory not found at: {export_dir}")
|
||||
return
|
||||
|
||||
try:
|
||||
json_files = list(Path(export_dir).glob("*.json"))
|
||||
|
||||
with open(output_file, 'w', encoding='utf-8') as f:
|
||||
count = 0
|
||||
for json_file in json_files:
|
||||
if count >= max_count and max_count > 0:
|
||||
break
|
||||
|
||||
try:
|
||||
with open(json_file, 'r', encoding='utf-8') as json_f:
|
||||
chat_data = json.load(json_f)
|
||||
|
||||
contact_name = json_file.stem
|
||||
f.write(f"\n=== Chat with {contact_name} ===\n")
|
||||
|
||||
for message in chat_data:
|
||||
if count >= max_count and max_count > 0:
|
||||
break
|
||||
|
||||
from_user = message.get('fromUser', '')
|
||||
content = message.get('content', '')
|
||||
message_text = message.get('message', '')
|
||||
create_time = message.get('createTime', 0)
|
||||
|
||||
# Skip non-text messages unless requested
|
||||
if not include_non_text:
|
||||
reader = WeChatHistoryReader()
|
||||
if not reader._is_text_message(content):
|
||||
continue
|
||||
readable_text = reader._extract_readable_text(content)
|
||||
if not readable_text:
|
||||
continue
|
||||
message_text = readable_text
|
||||
|
||||
if create_time:
|
||||
try:
|
||||
timestamp = datetime.fromtimestamp(create_time)
|
||||
time_str = timestamp.strftime('%Y-%m-%d %H:%M:%S')
|
||||
except:
|
||||
time_str = str(create_time)
|
||||
else:
|
||||
time_str = "Unknown"
|
||||
|
||||
f.write(f"[{time_str}] {from_user}: {message_text}\n")
|
||||
count += 1
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error processing {json_file}: {e}")
|
||||
continue
|
||||
|
||||
print(f"Exported {count} chat entries to {output_file}")
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error exporting WeChat chat history: {e}")
|
||||
|
||||
def export_wechat_chat_history(self, export_dir: str = "./wechat_export_direct") -> Optional[Path]:
|
||||
"""
|
||||
Export WeChat chat history using wechat-exporter tool.
|
||||
|
||||
Args:
|
||||
export_dir: Directory to save exported chat history
|
||||
|
||||
Returns:
|
||||
Path to export directory if successful, None otherwise
|
||||
"""
|
||||
try:
|
||||
import subprocess
|
||||
import sys
|
||||
|
||||
# Create export directory
|
||||
export_path = Path(export_dir)
|
||||
export_path.mkdir(exist_ok=True)
|
||||
|
||||
print(f"Exporting WeChat chat history to {export_path}...")
|
||||
|
||||
# Check if wechat-exporter directory exists
|
||||
if not self.wechat_exporter_dir.exists():
|
||||
print(f"wechat-exporter directory not found at: {self.wechat_exporter_dir}")
|
||||
return None
|
||||
|
||||
# Install requirements if needed
|
||||
requirements_file = self.wechat_exporter_dir / "requirements.txt"
|
||||
if requirements_file.exists():
|
||||
print("Installing wechat-exporter requirements...")
|
||||
subprocess.run([
|
||||
"uv", "pip", "install", "-r", str(requirements_file)
|
||||
], check=True)
|
||||
|
||||
# Run the export command
|
||||
print("Running wechat-exporter...")
|
||||
result = subprocess.run([
|
||||
sys.executable, str(self.wechat_exporter_dir / "main.py"),
|
||||
"export-all", str(export_path)
|
||||
], capture_output=True, text=True, check=True)
|
||||
|
||||
print("Export command output:")
|
||||
print(result.stdout)
|
||||
if result.stderr:
|
||||
print("Export errors:")
|
||||
print(result.stderr)
|
||||
|
||||
# Check if export was successful
|
||||
if export_path.exists() and any(export_path.glob("*.json")):
|
||||
json_files = list(export_path.glob("*.json"))
|
||||
print(f"Successfully exported {len(json_files)} chat history files to {export_path}")
|
||||
return export_path
|
||||
else:
|
||||
print("Export completed but no JSON files found")
|
||||
return None
|
||||
|
||||
except subprocess.CalledProcessError as e:
|
||||
print(f"Export command failed: {e}")
|
||||
print(f"Command output: {e.stdout}")
|
||||
print(f"Command errors: {e.stderr}")
|
||||
return None
|
||||
except Exception as e:
|
||||
print(f"Export failed: {e}")
|
||||
print("Please ensure WeChat is running and WeChatTweak is installed.")
|
||||
return None
|
||||
|
||||
def find_or_export_wechat_data(self, export_dir: str = "./wechat_export_direct") -> List[Path]:
|
||||
"""
|
||||
Find existing WeChat exports or create new ones.
|
||||
|
||||
Args:
|
||||
export_dir: Directory to save exported chat history if needed
|
||||
|
||||
Returns:
|
||||
List of Path objects pointing to WeChat export directories
|
||||
"""
|
||||
export_dirs = []
|
||||
|
||||
# Look for existing exports in common locations
|
||||
possible_export_dirs = [
|
||||
Path("./wechat_database_export"),
|
||||
Path("./wechat_export_test"),
|
||||
Path("./wechat_export"),
|
||||
Path("./wechat_export_direct"),
|
||||
Path("./wechat_chat_history"),
|
||||
Path("./chat_export")
|
||||
]
|
||||
|
||||
for export_dir_path in possible_export_dirs:
|
||||
if export_dir_path.exists() and any(export_dir_path.glob("*.json")):
|
||||
export_dirs.append(export_dir_path)
|
||||
print(f"Found existing export: {export_dir_path}")
|
||||
|
||||
# If no existing exports, try to export automatically
|
||||
if not export_dirs:
|
||||
print("No existing WeChat exports found. Starting direct export...")
|
||||
|
||||
# Try to export using wechat-exporter
|
||||
exported_path = self.export_wechat_chat_history(export_dir)
|
||||
if exported_path:
|
||||
export_dirs = [exported_path]
|
||||
else:
|
||||
print("Failed to export WeChat data. Please ensure WeChat is running and WeChatTweak is installed.")
|
||||
|
||||
return export_dirs
|
||||
306
demo.ipynb
306
demo.ipynb
@@ -1,321 +1,37 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Quick Start in 30s"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# install this if you areusing colab\n",
|
||||
"! pip install leann"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Build the index"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"INFO: Registering backend 'hnsw'\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"/Users/yichuan/Desktop/code/LEANN/leann/.venv/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
||||
" from .autonotebook import tqdm as notebook_tqdm\n",
|
||||
"INFO:sentence_transformers.SentenceTransformer:Load pretrained SentenceTransformer: facebook/contriever\n",
|
||||
"WARNING:sentence_transformers.SentenceTransformer:No sentence-transformers model found with name facebook/contriever. Creating a new one with mean pooling.\n",
|
||||
"Writing passages: 100%|██████████| 5/5 [00:00<00:00, 27887.66chunk/s]\n",
|
||||
"Batches: 100%|██████████| 1/1 [00:00<00:00, 13.51it/s]\n",
|
||||
"WARNING:leann_backend_hnsw.hnsw_backend:Converting data to float32, shape: (5, 768)\n",
|
||||
"INFO:leann_backend_hnsw.hnsw_backend:INFO: Converting HNSW index to CSR-pruned format...\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"M: 64 for level: 0\n",
|
||||
"Starting conversion: knowledge.index -> knowledge.csr.tmp\n",
|
||||
"[0.00s] Reading Index HNSW header...\n",
|
||||
"[0.00s] Header read: d=768, ntotal=5\n",
|
||||
"[0.00s] Reading HNSW struct vectors...\n",
|
||||
" Reading vector (dtype=<class 'numpy.float64'>, fmt='d')... Count=6, Bytes=48\n",
|
||||
"[0.00s] Read assign_probas (6)\n",
|
||||
" Reading vector (dtype=<class 'numpy.int32'>, fmt='i')... Count=7, Bytes=28\n",
|
||||
"[0.11s] Read cum_nneighbor_per_level (7)\n",
|
||||
" Reading vector (dtype=<class 'numpy.int32'>, fmt='i')... Count=5, Bytes=20\n",
|
||||
"[0.21s] Read levels (5)\n",
|
||||
"[0.30s] Probing for compact storage flag...\n",
|
||||
"[0.30s] Found compact flag: False\n",
|
||||
"[0.30s] Compact flag is False, reading original format...\n",
|
||||
"[0.30s] Probing for potential extra byte before non-compact offsets...\n",
|
||||
"[0.30s] Found and consumed an unexpected 0x00 byte.\n",
|
||||
" Reading vector (dtype=<class 'numpy.uint64'>, fmt='Q')... Count=6, Bytes=48\n",
|
||||
"[0.30s] Read offsets (6)\n",
|
||||
"[0.40s] Attempting to read neighbors vector...\n",
|
||||
" Reading vector (dtype=<class 'numpy.int32'>, fmt='i')... Count=320, Bytes=1280\n",
|
||||
"[0.40s] Read neighbors (320)\n",
|
||||
"[0.50s] Read scalar params (ep=4, max_lvl=0)\n",
|
||||
"[0.50s] Checking for storage data...\n",
|
||||
"[0.50s] Found storage fourcc: 49467849.\n",
|
||||
"[0.50s] Converting to CSR format...\n",
|
||||
"[0.50s] Conversion loop finished. \n",
|
||||
"[0.50s] Running validation checks...\n",
|
||||
" Checking total valid neighbor count...\n",
|
||||
" OK: Total valid neighbors = 20\n",
|
||||
" Checking final pointer indices...\n",
|
||||
" OK: Final pointers match data size.\n",
|
||||
"[0.50s] Deleting original neighbors and offsets arrays...\n",
|
||||
" CSR Stats: |data|=20, |level_ptr|=10\n",
|
||||
"[0.59s] Writing CSR HNSW graph data in FAISS-compatible order...\n",
|
||||
" Pruning embeddings: Writing NULL storage marker.\n",
|
||||
"[0.69s] Conversion complete.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"INFO:leann_backend_hnsw.hnsw_backend:✅ CSR conversion successful.\n",
|
||||
"INFO:leann_backend_hnsw.hnsw_backend:INFO: Replaced original index with CSR-pruned version at 'knowledge.index'\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from leann.api import LeannBuilder\n",
|
||||
"from leann.api import LeannBuilder, LeannSearcher, LeannChat\n",
|
||||
"\n",
|
||||
"# 1. Build the index (no embeddings stored!)\n",
|
||||
"builder = LeannBuilder(backend_name=\"hnsw\")\n",
|
||||
"builder.add_text(\"C# is a powerful programming language and it is good at game development\")\n",
|
||||
"builder.add_text(\"Python is a powerful programming language and it is good at machine learning tasks\")\n",
|
||||
"builder.add_text(\"C# is a powerful programming language\")\n",
|
||||
"builder.add_text(\"Python is a powerful programming language and it is very popular\")\n",
|
||||
"builder.add_text(\"Machine learning transforms industries\")\n",
|
||||
"builder.add_text(\"Neural networks process complex data\")\n",
|
||||
"builder.add_text(\"Leann is a great storage saving engine for RAG on your MacBook\")\n",
|
||||
"builder.build_index(\"knowledge.leann\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Search with real-time embeddings"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"INFO:leann.api:🔍 LeannSearcher.search() called:\n",
|
||||
"INFO:leann.api: Query: 'programming languages'\n",
|
||||
"INFO:leann.api: Top_k: 2\n",
|
||||
"INFO:leann.api: Additional kwargs: {}\n",
|
||||
"INFO:leann.embedding_server_manager:Port 5557 has incompatible server, trying next port...\n",
|
||||
"INFO:leann.embedding_server_manager:Port 5558 has incompatible server, trying next port...\n",
|
||||
"INFO:leann.embedding_server_manager:Port 5559 has incompatible server, trying next port...\n",
|
||||
"INFO:leann.embedding_server_manager:Using port 5560 instead of 5557\n",
|
||||
"INFO:leann.embedding_server_manager:Starting embedding server on port 5560...\n",
|
||||
"INFO:leann.embedding_server_manager:Command: /Users/yichuan/Desktop/code/LEANN/leann/.venv/bin/python -m leann_backend_hnsw.hnsw_embedding_server --zmq-port 5560 --model-name facebook/contriever --passages-file knowledge.leann.meta.json\n",
|
||||
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
|
||||
"To disable this warning, you can either:\n",
|
||||
"\t- Avoid using `tokenizers` before the fork if possible\n",
|
||||
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n",
|
||||
"INFO:leann.embedding_server_manager:Server process started with PID: 4574\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[read_HNSW - CSR NL v4] Reading metadata & CSR indices (manual offset)...\n",
|
||||
"[read_HNSW NL v4] Read levels vector, size: 5\n",
|
||||
"[read_HNSW NL v4] Reading Compact Storage format indices...\n",
|
||||
"[read_HNSW NL v4] Read compact_level_ptr, size: 10\n",
|
||||
"[read_HNSW NL v4] Read compact_node_offsets, size: 6\n",
|
||||
"[read_HNSW NL v4] Read entry_point: 4, max_level: 0\n",
|
||||
"[read_HNSW NL v4] Read storage fourcc: 0x6c6c756e\n",
|
||||
"[read_HNSW NL v4 FIX] Detected FileIOReader. Neighbors size field offset: 326\n",
|
||||
"[read_HNSW NL v4] Reading neighbors data into memory.\n",
|
||||
"[read_HNSW NL v4] Read neighbors data, size: 20\n",
|
||||
"[read_HNSW NL v4] Finished reading metadata and CSR indices.\n",
|
||||
"INFO: Skipping external storage loading, since is_recompute is true.\n",
|
||||
"INFO: Registering backend 'hnsw'\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"INFO:leann.embedding_server_manager:Embedding server is ready!\n",
|
||||
"INFO:leann.api: Launching server time: 1.078078269958496 seconds\n",
|
||||
"INFO:leann.embedding_server_manager:Existing server process (PID 4574) is compatible\n",
|
||||
"INFO:sentence_transformers.SentenceTransformer:Load pretrained SentenceTransformer: facebook/contriever\n",
|
||||
"WARNING:sentence_transformers.SentenceTransformer:No sentence-transformers model found with name facebook/contriever. Creating a new one with mean pooling.\n",
|
||||
"INFO:leann.api: Generated embedding shape: (1, 768)\n",
|
||||
"INFO:leann.api: Embedding time: 2.9307072162628174 seconds\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"ZmqDistanceComputer initialized: d=768, metric=0\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"INFO:leann.api: Search time: 0.27327895164489746 seconds\n",
|
||||
"INFO:leann.api: Backend returned: labels=2 results\n",
|
||||
"INFO:leann.api: Processing 2 passage IDs:\n",
|
||||
"INFO:leann.api: 1. passage_id='0' -> SUCCESS: C# is a powerful programming language and it is good at game development...\n",
|
||||
"INFO:leann.api: 2. passage_id='1' -> SUCCESS: Python is a powerful programming language and it is good at machine learning tasks...\n",
|
||||
"INFO:leann.api: Final enriched results: 2 passages\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[SearchResult(id='0', score=np.float32(0.9874103), text='C# is a powerful programming language and it is good at game development', metadata={}),\n",
|
||||
" SearchResult(id='1', score=np.float32(0.8922168), text='Python is a powerful programming language and it is good at machine learning tasks', metadata={})]"
|
||||
]
|
||||
},
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from leann.api import LeannSearcher\n",
|
||||
"builder.build_index(\"knowledge.leann\")\n",
|
||||
"\n",
|
||||
"# 2. Search with real-time embeddings\n",
|
||||
"searcher = LeannSearcher(\"knowledge.leann\")\n",
|
||||
"results = searcher.search(\"programming languages\", top_k=2)\n",
|
||||
"results"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Chat with LEANN using retrieved results"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"INFO:leann.chat:Attempting to create LLM of type='hf' with model='Qwen/Qwen3-0.6B'\n",
|
||||
"INFO:leann.chat:Initializing HFChat with model='Qwen/Qwen3-0.6B'\n",
|
||||
"INFO:leann.chat:MPS is available. Using Apple Silicon GPU.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[read_HNSW - CSR NL v4] Reading metadata & CSR indices (manual offset)...\n",
|
||||
"[read_HNSW NL v4] Read levels vector, size: 5\n",
|
||||
"[read_HNSW NL v4] Reading Compact Storage format indices...\n",
|
||||
"[read_HNSW NL v4] Read compact_level_ptr, size: 10\n",
|
||||
"[read_HNSW NL v4] Read compact_node_offsets, size: 6\n",
|
||||
"[read_HNSW NL v4] Read entry_point: 4, max_level: 0\n",
|
||||
"[read_HNSW NL v4] Read storage fourcc: 0x6c6c756e\n",
|
||||
"[read_HNSW NL v4 FIX] Detected FileIOReader. Neighbors size field offset: 326\n",
|
||||
"[read_HNSW NL v4] Reading neighbors data into memory.\n",
|
||||
"[read_HNSW NL v4] Read neighbors data, size: 20\n",
|
||||
"[read_HNSW NL v4] Finished reading metadata and CSR indices.\n",
|
||||
"INFO: Skipping external storage loading, since is_recompute is true.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"INFO:leann.api:🔍 LeannSearcher.search() called:\n",
|
||||
"INFO:leann.api: Query: 'Compare the two retrieved programming languages and tell me their advantages.'\n",
|
||||
"INFO:leann.api: Top_k: 2\n",
|
||||
"INFO:leann.api: Additional kwargs: {}\n",
|
||||
"INFO:leann.embedding_server_manager:Port 5557 has incompatible server, trying next port...\n",
|
||||
"INFO:leann.embedding_server_manager:Port 5558 has incompatible server, trying next port...\n",
|
||||
"INFO:leann.embedding_server_manager:Port 5559 has incompatible server, trying next port...\n",
|
||||
"INFO:leann.embedding_server_manager:Found compatible server on port 5560\n",
|
||||
"INFO:leann.embedding_server_manager:Using existing compatible server on port 5560\n",
|
||||
"INFO:leann.api: Launching server time: 0.04932403564453125 seconds\n",
|
||||
"INFO:leann.embedding_server_manager:Found compatible server on port 5560\n",
|
||||
"INFO:leann.embedding_server_manager:Using existing compatible server on port 5560\n",
|
||||
"INFO:leann.api: Generated embedding shape: (1, 768)\n",
|
||||
"INFO:leann.api: Embedding time: 0.06902289390563965 seconds\n",
|
||||
"INFO:leann.api: Search time: 0.026793241500854492 seconds\n",
|
||||
"INFO:leann.api: Backend returned: labels=2 results\n",
|
||||
"INFO:leann.api: Processing 2 passage IDs:\n",
|
||||
"INFO:leann.api: 1. passage_id='0' -> SUCCESS: C# is a powerful programming language and it is good at game development...\n",
|
||||
"INFO:leann.api: 2. passage_id='1' -> SUCCESS: Python is a powerful programming language and it is good at machine learning tasks...\n",
|
||||
"INFO:leann.api: Final enriched results: 2 passages\n",
|
||||
"INFO:leann.chat:Generating with HuggingFace model, config: {'max_new_tokens': 128, 'temperature': 0.7, 'top_p': 0.9, 'do_sample': True, 'pad_token_id': 151645, 'eos_token_id': 151645}\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"ZmqDistanceComputer initialized: d=768, metric=0\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"\"<think>\\n\\n</think>\\n\\nBased on the context provided, here's a comparison of the two retrieved programming languages:\\n\\n**C#** is known for being a powerful programming language and is well-suited for game development. It is often used in game development and is popular among developers working on Windows applications.\\n\\n**Python**, on the other hand, is also a powerful language and is well-suited for machine learning tasks. It is widely used for data analysis, scientific computing, and other applications that require handling large datasets or performing complex calculations.\\n\\n**Advantages**:\\n- C#: Strong for game development and cross-platform compatibility.\\n- Python: Strong for\""
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from leann.api import LeannChat\n",
|
||||
"\n",
|
||||
"# 3. Chat with LEANN using retrieved results\n",
|
||||
"llm_config = {\n",
|
||||
" \"type\": \"hf\",\n",
|
||||
" \"model\": \"Qwen/Qwen3-0.6B\",\n",
|
||||
" \"type\": \"ollama\",\n",
|
||||
" \"model\": \"llama3.2:1b\"\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"chat = LeannChat(index_path=\"knowledge.leann\", llm_config=llm_config)\n",
|
||||
"response = chat.ask(\n",
|
||||
" \"Compare the two retrieved programming languages and tell me their advantages.\",\n",
|
||||
" \"Compare the two retrieved programming languages and say which one is more popular today.\",\n",
|
||||
" top_k=2,\n",
|
||||
" llm_kwargs={\"max_tokens\": 128}\n",
|
||||
")\n",
|
||||
"response"
|
||||
")"
|
||||
]
|
||||
}
|
||||
],
|
||||
|
||||
@@ -1,22 +0,0 @@
|
||||
# Release Guide
|
||||
|
||||
## Setup (One-time)
|
||||
|
||||
Add `PYPI_API_TOKEN` to GitHub Secrets:
|
||||
1. Get token: https://pypi.org/manage/account/token/
|
||||
2. Add to secrets: Settings → Secrets → Actions → `PYPI_API_TOKEN`
|
||||
|
||||
## Release (One-click)
|
||||
|
||||
1. Go to: https://github.com/yichuan-w/LEANN/actions/workflows/release-manual.yml
|
||||
2. Click "Run workflow"
|
||||
3. Enter version: `0.1.2`
|
||||
4. Click green "Run workflow" button
|
||||
|
||||
That's it! The workflow will automatically:
|
||||
- ✅ Update version in all packages
|
||||
- ✅ Build all packages
|
||||
- ✅ Publish to PyPI
|
||||
- ✅ Create GitHub tag and release
|
||||
|
||||
Check progress: https://github.com/yichuan-w/LEANN/actions
|
||||
@@ -1,11 +0,0 @@
|
||||
# 🤝 Contributing
|
||||
|
||||
We welcome contributions! Leann is built by the community, for the community.
|
||||
|
||||
## Ways to Contribute
|
||||
|
||||
- 🐛 **Bug Reports**: Found an issue? Let us know!
|
||||
- 💡 **Feature Requests**: Have an idea? We'd love to hear it!
|
||||
- 🔧 **Code Contributions**: PRs welcome for all skill levels
|
||||
- 📖 **Documentation**: Help make Leann more accessible
|
||||
- 🧪 **Benchmarks**: Share your performance results
|
||||
10
docs/faq.md
10
docs/faq.md
@@ -1,10 +0,0 @@
|
||||
# FAQ
|
||||
|
||||
## 1. My building time seems long
|
||||
|
||||
You can speed up the process by using a lightweight embedding model. Add this to your arguments:
|
||||
|
||||
```bash
|
||||
--embedding-model sentence-transformers/all-MiniLM-L6-v2
|
||||
```
|
||||
**Model sizes:** `all-MiniLM-L6-v2` (30M parameters), `facebook/contriever` (~100M parameters), `Qwen3-0.6B` (600M parameters)
|
||||
@@ -1,22 +0,0 @@
|
||||
# ✨ Detailed Features
|
||||
|
||||
## 🔥 Core Features
|
||||
|
||||
- **🔄 Real-time Embeddings** - Eliminate heavy embedding storage with dynamic computation using optimized ZMQ servers and highly optimized search paradigm (overlapping and batching) with highly optimized embedding engine
|
||||
- **📈 Scalable Architecture** - Handles millions of documents on consumer hardware; the larger your dataset, the more LEANN can save
|
||||
- **🎯 Graph Pruning** - Advanced techniques to minimize the storage overhead of vector search to a limited footprint
|
||||
- **🏗️ Pluggable Backends** - DiskANN, HNSW/FAISS with unified API
|
||||
|
||||
## 🛠️ Technical Highlights
|
||||
- **🔄 Recompute Mode** - Highest accuracy scenarios while eliminating vector storage overhead
|
||||
- **⚡ Zero-copy Operations** - Minimize IPC overhead by transferring distances instead of embeddings
|
||||
- **🚀 High-throughput Embedding Pipeline** - Optimized batched processing for maximum efficiency
|
||||
- **🎯 Two-level Search** - Novel coarse-to-fine search overlap for accelerated query processing (optional)
|
||||
- **💾 Memory-mapped Indices** - Fast startup with raw text mapping to reduce memory overhead
|
||||
- **🚀 MLX Support** - Ultra-fast recompute/build with quantized embedding models, accelerating building and search ([minimal example](test/build_mlx_index.py))
|
||||
|
||||
## 🎨 Developer Experience
|
||||
|
||||
- **Simple Python API** - Get started in minutes
|
||||
- **Extensible backend system** - Easy to add new algorithms
|
||||
- **Comprehensive examples** - From basic usage to production deployment
|
||||
@@ -1,21 +0,0 @@
|
||||
# 📈 Roadmap
|
||||
|
||||
## 🎯 Q2 2025
|
||||
|
||||
- [X] DiskANN backend with MIPS/L2/Cosine support
|
||||
- [X] HNSW backend integration
|
||||
- [X] Real-time embedding pipeline
|
||||
- [X] Memory-efficient graph pruning
|
||||
|
||||
## 🚀 Q3 2025
|
||||
|
||||
- [ ] Advanced caching strategies
|
||||
- [ ] Add contextual-retrieval https://www.anthropic.com/news/contextual-retrieval
|
||||
- [ ] Add sleep-time-compute and summarize agent! to summarilze the file on computer!
|
||||
- [ ] Add OpenAI recompute API
|
||||
|
||||
## 🌟 Q4 2025
|
||||
|
||||
- [ ] Integration with LangChain/LlamaIndex
|
||||
- [ ] Visual similarity search
|
||||
- [ ] Query rewrtiting, rerank and expansion
|
||||
@@ -135,7 +135,6 @@ def test_leann_hnsw():
|
||||
nodes = node_parser.get_nodes_from_documents([doc])
|
||||
for node in nodes:
|
||||
all_texts.append(node.get_content())
|
||||
print(f"Total number of chunks: {len(all_texts)}")
|
||||
|
||||
tracker.checkpoint("After text chunking")
|
||||
|
||||
|
||||
Binary file not shown.
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@@ -1,146 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Document search demo with recompute mode
|
||||
"""
|
||||
|
||||
import os
|
||||
from pathlib import Path
|
||||
import shutil
|
||||
import time
|
||||
|
||||
# Import backend packages to trigger plugin registration
|
||||
try:
|
||||
import leann_backend_diskann
|
||||
import leann_backend_hnsw
|
||||
print("INFO: Backend packages imported successfully.")
|
||||
except ImportError as e:
|
||||
print(f"WARNING: Could not import backend packages. Error: {e}")
|
||||
|
||||
# Import upper-level API from leann-core
|
||||
from leann.api import LeannBuilder, LeannSearcher, LeannChat
|
||||
|
||||
|
||||
def load_sample_documents():
|
||||
"""Create sample documents for demonstration"""
|
||||
docs = [
|
||||
{"title": "Intro to Python", "content": "Python is a high-level, interpreted language known for simplicity."},
|
||||
{"title": "ML Basics", "content": "Machine learning builds systems that learn from data."},
|
||||
{"title": "Data Structures", "content": "Data structures like arrays, lists, and graphs organize data."},
|
||||
]
|
||||
return docs
|
||||
|
||||
def main():
|
||||
print("==========================================================")
|
||||
print("=== Leann Document Search Demo (DiskANN + Recompute) ===")
|
||||
print("==========================================================")
|
||||
|
||||
INDEX_DIR = Path("./test_indices")
|
||||
INDEX_PATH = str(INDEX_DIR / "documents.diskann")
|
||||
BACKEND_TO_TEST = "diskann"
|
||||
|
||||
if INDEX_DIR.exists():
|
||||
print(f"--- Cleaning up old index directory: {INDEX_DIR} ---")
|
||||
shutil.rmtree(INDEX_DIR)
|
||||
|
||||
# --- 1. Build index ---
|
||||
print(f"\n[PHASE 1] Building index using '{BACKEND_TO_TEST}' backend...")
|
||||
|
||||
builder = LeannBuilder(
|
||||
backend_name=BACKEND_TO_TEST,
|
||||
graph_degree=32,
|
||||
complexity=64
|
||||
)
|
||||
|
||||
documents = load_sample_documents()
|
||||
print(f"Loaded {len(documents)} sample documents.")
|
||||
for doc in documents:
|
||||
builder.add_text(doc["content"], metadata={"title": doc["title"]})
|
||||
|
||||
builder.build_index(INDEX_PATH)
|
||||
print(f"\nIndex built!")
|
||||
|
||||
# --- 2. Basic search demo ---
|
||||
print(f"\n[PHASE 2] Basic search using '{BACKEND_TO_TEST}' backend...")
|
||||
searcher = LeannSearcher(index_path=INDEX_PATH)
|
||||
|
||||
query = "What is machine learning?"
|
||||
print(f"\nQuery: '{query}'")
|
||||
|
||||
print("\n--- Basic search mode (PQ computation) ---")
|
||||
start_time = time.time()
|
||||
results = searcher.search(query, top_k=2)
|
||||
basic_time = time.time() - start_time
|
||||
|
||||
print(f"⏱️ Basic search time: {basic_time:.3f} seconds")
|
||||
print(">>> Basic search results <<<")
|
||||
for i, res in enumerate(results, 1):
|
||||
print(f" {i}. ID: {res.id}, Score: {res.score:.4f}, Text: '{res.text}', Metadata: {res.metadata}")
|
||||
|
||||
# --- 3. Recompute search demo ---
|
||||
print(f"\n[PHASE 3] Recompute search using embedding server...")
|
||||
|
||||
print("\n--- Recompute search mode (get real embeddings via network) ---")
|
||||
|
||||
# Configure recompute parameters
|
||||
recompute_params = {
|
||||
"recompute_beighbor_embeddings": True, # Enable network recomputation
|
||||
"USE_DEFERRED_FETCH": False, # Don't use deferred fetch
|
||||
"skip_search_reorder": True, # Skip search reordering
|
||||
"dedup_node_dis": True, # Enable node distance deduplication
|
||||
"prune_ratio": 0.1, # Pruning ratio 10%
|
||||
"batch_recompute": False, # Don't use batch recomputation
|
||||
"global_pruning": False, # Don't use global pruning
|
||||
"zmq_port": 5555, # ZMQ port
|
||||
"embedding_model": "sentence-transformers/all-mpnet-base-v2"
|
||||
}
|
||||
|
||||
print("Recompute parameter configuration:")
|
||||
for key, value in recompute_params.items():
|
||||
print(f" {key}: {value}")
|
||||
|
||||
print(f"\n🔄 Executing Recompute search...")
|
||||
try:
|
||||
start_time = time.time()
|
||||
recompute_results = searcher.search(query, top_k=2, **recompute_params)
|
||||
recompute_time = time.time() - start_time
|
||||
|
||||
print(f"⏱️ Recompute search time: {recompute_time:.3f} seconds")
|
||||
print(">>> Recompute search results <<<")
|
||||
for i, res in enumerate(recompute_results, 1):
|
||||
print(f" {i}. ID: {res.id}, Score: {res.score:.4f}, Text: '{res.text}', Metadata: {res.metadata}")
|
||||
|
||||
# Compare results
|
||||
print(f"\n--- Result comparison ---")
|
||||
print(f"Basic search time: {basic_time:.3f} seconds")
|
||||
print(f"Recompute time: {recompute_time:.3f} seconds")
|
||||
|
||||
print("\nBasic search vs Recompute results:")
|
||||
for i in range(min(len(results), len(recompute_results))):
|
||||
basic_score = results[i].score
|
||||
recompute_score = recompute_results[i].score
|
||||
score_diff = abs(basic_score - recompute_score)
|
||||
print(f" Position {i+1}: PQ={basic_score:.4f}, Recompute={recompute_score:.4f}, Difference={score_diff:.4f}")
|
||||
|
||||
if recompute_time > basic_time:
|
||||
print(f"✅ Recompute mode working correctly (more accurate but slower)")
|
||||
else:
|
||||
print(f"ℹ️ Recompute time is unusually fast, network recomputation may not be enabled")
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Recompute search failed: {e}")
|
||||
print("This usually indicates an embedding server connection issue")
|
||||
|
||||
# --- 4. Chat demo ---
|
||||
print(f"\n[PHASE 4] Starting chat session...")
|
||||
chat = LeannChat(index_path=INDEX_PATH)
|
||||
chat_response = chat.ask(query)
|
||||
print(f"You: {query}")
|
||||
print(f"Leann: {chat_response}")
|
||||
|
||||
print("\n==========================================================")
|
||||
print("✅ Demo finished successfully!")
|
||||
print("==========================================================")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -37,7 +37,7 @@ def main():
|
||||
import faiss
|
||||
except ImportError:
|
||||
print("Faiss is not installed.")
|
||||
print("Please install it with `uv pip install faiss-cpu` and you can then run this script again")
|
||||
print("Please install it with `uv pip install faiss-cpu`")
|
||||
sys.exit(1)
|
||||
|
||||
from llama_index.core import (
|
||||
|
||||
@@ -222,15 +222,14 @@ async def query_leann_index(index_path: str, query: str):
|
||||
"max_tokens": 1000
|
||||
}
|
||||
)
|
||||
|
||||
print(f"Leann chat response: \033[36m{chat_response}\033[0m")
|
||||
print(f"Leann: {chat_response}")
|
||||
|
||||
async def main():
|
||||
# Parse command line arguments
|
||||
parser = argparse.ArgumentParser(description='LEANN Chrome History Reader - Create and query browser history index')
|
||||
parser.add_argument('--chrome-profile', type=str, default=DEFAULT_CHROME_PROFILE,
|
||||
help=f'Path to Chrome profile directory (default: {DEFAULT_CHROME_PROFILE}), usually you dont need to change this')
|
||||
parser.add_argument('--index-dir', type=str, default="./google_history_index",
|
||||
parser.add_argument('--index-dir', type=str, default="./all_google_new",
|
||||
help='Directory to store the LEANN index (default: ./chrome_history_index_leann_test)')
|
||||
parser.add_argument('--max-entries', type=int, default=1000,
|
||||
help='Maximum number of history entries to process (default: 1000)')
|
||||
|
||||
@@ -22,7 +22,7 @@ def get_mail_path():
|
||||
return os.path.join(home_dir, "Library", "Mail")
|
||||
|
||||
# Default mail path for macOS
|
||||
DEFAULT_MAIL_PATH = "/Users/yichuan/Library/Mail/V10/0FCA0879-FD8C-4B7E-83BF-FDDA930791C5/[Gmail].mbox/All Mail.mbox/78BA5BE1-8819-4F9A-9613-EB63772F1DD0/Data"
|
||||
# DEFAULT_MAIL_PATH = "/Users/yichuan/Library/Mail/V10/0FCA0879-FD8C-4B7E-83BF-FDDA930791C5/[Gmail].mbox/All Mail.mbox/78BA5BE1-8819-4F9A-9613-EB63772F1DD0/Data"
|
||||
|
||||
def create_leann_index_from_multiple_sources(messages_dirs: List[Path], index_path: str = "mail_index.leann", max_count: int = -1, include_html: bool = False, embedding_model: str = "facebook/contriever"):
|
||||
"""
|
||||
@@ -77,7 +77,7 @@ def create_leann_index_from_multiple_sources(messages_dirs: List[Path], index_pa
|
||||
print(f"\nTotal loaded {len(all_documents)} email documents from {len(messages_dirs)} directories and starting to split them into chunks")
|
||||
|
||||
# Create text splitter with 256 chunk size
|
||||
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25)
|
||||
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=128)
|
||||
|
||||
# Convert Documents to text strings and chunk them
|
||||
all_texts = []
|
||||
@@ -158,7 +158,7 @@ def create_leann_index(mail_path: str, index_path: str = "mail_index.leann", max
|
||||
print(f"Loaded {len(documents)} email documents")
|
||||
|
||||
# Create text splitter with 256 chunk size
|
||||
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=128)
|
||||
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25)
|
||||
|
||||
# Convert Documents to text strings and chunk them
|
||||
all_texts = []
|
||||
@@ -218,22 +218,22 @@ async def query_leann_index(index_path: str, query: str):
|
||||
start_time = time.time()
|
||||
chat_response = chat.ask(
|
||||
query,
|
||||
top_k=20,
|
||||
top_k=10,
|
||||
recompute_beighbor_embeddings=True,
|
||||
complexity=32,
|
||||
complexity=12,
|
||||
beam_width=1,
|
||||
|
||||
)
|
||||
end_time = time.time()
|
||||
# print(f"Time taken: {end_time - start_time} seconds")
|
||||
# highlight the answer
|
||||
print(f"Leann chat response: \033[36m{chat_response}\033[0m")
|
||||
print(f"Time taken: {end_time - start_time} seconds")
|
||||
print(f"Leann: {chat_response}")
|
||||
|
||||
async def main():
|
||||
# Parse command line arguments
|
||||
parser = argparse.ArgumentParser(description='LEANN Mail Reader - Create and query email index')
|
||||
# Remove --mail-path argument and auto-detect all Messages directories
|
||||
# Remove DEFAULT_MAIL_PATH
|
||||
parser.add_argument('--index-dir', type=str, default="./mail_index",
|
||||
parser.add_argument('--index-dir', type=str, default="./mail_index_leann_debug",
|
||||
help='Directory to store the LEANN index (default: ./mail_index_leann_raw_text_all_dicts)')
|
||||
parser.add_argument('--max-emails', type=int, default=1000,
|
||||
help='Maximum number of emails to process (-1 means all)')
|
||||
@@ -253,9 +253,6 @@ async def main():
|
||||
mail_path = get_mail_path()
|
||||
print(f"Searching for email data in: {mail_path}")
|
||||
messages_dirs = find_all_messages_directories(mail_path)
|
||||
# messages_dirs = find_all_messages_directories(DEFAULT_MAIL_PATH)
|
||||
# messages_dirs = [DEFAULT_MAIL_PATH]
|
||||
# messages_dirs = messages_dirs[:1]
|
||||
|
||||
print('len(messages_dirs): ', len(messages_dirs))
|
||||
|
||||
|
||||
@@ -1,108 +0,0 @@
|
||||
import os
|
||||
import sys
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
from typing import List, Any
|
||||
|
||||
# Add the project root to Python path so we can import from examples
|
||||
project_root = Path(__file__).parent.parent
|
||||
sys.path.insert(0, str(project_root))
|
||||
|
||||
from llama_index.core import VectorStoreIndex, StorageContext
|
||||
from llama_index.core.node_parser import SentenceSplitter
|
||||
|
||||
# --- EMBEDDING MODEL ---
|
||||
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
||||
import torch
|
||||
|
||||
# --- END EMBEDDING MODEL ---
|
||||
|
||||
# Import EmlxReader from the new module
|
||||
from examples.email_data.LEANN_email_reader import EmlxReader
|
||||
|
||||
def create_and_save_index(mail_path: str, save_dir: str = "mail_index_embedded", max_count: int = 1000, include_html: bool = False):
|
||||
print("Creating index from mail data with embedded metadata...")
|
||||
documents = EmlxReader(include_html=include_html).load_data(mail_path, max_count=max_count)
|
||||
if not documents:
|
||||
print("No documents loaded. Exiting.")
|
||||
return None
|
||||
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25)
|
||||
# Use facebook/contriever as the embedder
|
||||
embed_model = HuggingFaceEmbedding(model_name="facebook/contriever")
|
||||
# set on device
|
||||
import torch
|
||||
if torch.cuda.is_available():
|
||||
embed_model._model.to("cuda")
|
||||
# set mps
|
||||
elif torch.backends.mps.is_available():
|
||||
embed_model._model.to("mps")
|
||||
else:
|
||||
embed_model._model.to("cpu")
|
||||
index = VectorStoreIndex.from_documents(
|
||||
documents,
|
||||
transformations=[text_splitter],
|
||||
embed_model=embed_model
|
||||
)
|
||||
os.makedirs(save_dir, exist_ok=True)
|
||||
index.storage_context.persist(persist_dir=save_dir)
|
||||
print(f"Index saved to {save_dir}")
|
||||
return index
|
||||
|
||||
def load_index(save_dir: str = "mail_index_embedded"):
|
||||
try:
|
||||
storage_context = StorageContext.from_defaults(persist_dir=save_dir)
|
||||
index = VectorStoreIndex.from_vector_store(
|
||||
storage_context.vector_store,
|
||||
storage_context=storage_context
|
||||
)
|
||||
print(f"Index loaded from {save_dir}")
|
||||
return index
|
||||
except Exception as e:
|
||||
print(f"Error loading index: {e}")
|
||||
return None
|
||||
|
||||
def query_index(index, query: str):
|
||||
if index is None:
|
||||
print("No index available for querying.")
|
||||
return
|
||||
query_engine = index.as_query_engine()
|
||||
response = query_engine.query(query)
|
||||
print(f"Query: {query}")
|
||||
print(f"Response: {response}")
|
||||
|
||||
def main():
|
||||
# Parse command line arguments
|
||||
parser = argparse.ArgumentParser(description='LlamaIndex Mail Reader - Create and query email index')
|
||||
parser.add_argument('--mail-path', type=str,
|
||||
default="/Users/yichuan/Library/Mail/V10/0FCA0879-FD8C-4B7E-83BF-FDDA930791C5/[Gmail].mbox/All Mail.mbox/78BA5BE1-8819-4F9A-9613-EB63772F1DD0/Data/9/Messages",
|
||||
help='Path to mail data directory')
|
||||
parser.add_argument('--save-dir', type=str, default="mail_index_embedded",
|
||||
help='Directory to store the index (default: mail_index_embedded)')
|
||||
parser.add_argument('--max-emails', type=int, default=10000,
|
||||
help='Maximum number of emails to process')
|
||||
parser.add_argument('--include-html', action='store_true', default=False,
|
||||
help='Include HTML content in email processing (default: False)')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
mail_path = args.mail_path
|
||||
save_dir = args.save_dir
|
||||
|
||||
if os.path.exists(save_dir) and os.path.exists(os.path.join(save_dir, "vector_store.json")):
|
||||
print("Loading existing index...")
|
||||
index = load_index(save_dir)
|
||||
else:
|
||||
print("Creating new index...")
|
||||
index = create_and_save_index(mail_path, save_dir, max_count=args.max_emails, include_html=args.include_html)
|
||||
if index:
|
||||
queries = [
|
||||
"Hows Berkeley Graduate Student Instructor",
|
||||
"how's the icloud related advertisement saying",
|
||||
"Whats the number of class recommend to take per semester for incoming EECS students"
|
||||
]
|
||||
for query in queries:
|
||||
print("\n" + "="*50)
|
||||
query_index(index, query)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -63,14 +63,16 @@ async def main(args):
|
||||
llm_config = {"type": "openai", "model": "gpt-4o"}
|
||||
|
||||
chat = LeannChat(index_path=INDEX_PATH, llm_config=llm_config)
|
||||
|
||||
query = "Based on the paper, what are the main techniques LEANN explores to reduce the storage overhead and DLPM explore to achieve Fairness and Efiiciency trade-off?"
|
||||
|
||||
# query = (
|
||||
# "什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发"
|
||||
# )
|
||||
query = args.query
|
||||
|
||||
print(f"You: {query}")
|
||||
chat_response = chat.ask(query, top_k=20, recompute_embeddings=True, complexity=32)
|
||||
print(f"Leann chat response: \033[36m{chat_response}\033[0m")
|
||||
print(f"Leann: {chat_response}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
@@ -108,12 +110,6 @@ if __name__ == "__main__":
|
||||
default="examples/data",
|
||||
help="Directory containing documents to index (PDF, TXT, MD files).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--query",
|
||||
type=str,
|
||||
default="Based on the paper, what are the main techniques LEANN explores to reduce the storage overhead and DLPM explore to achieve Fairness and Efiiciency trade-off?",
|
||||
help="The query to ask the Leann chat system.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
asyncio.run(main(args))
|
||||
|
||||
@@ -1,319 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Multi-Vector Aggregator for Fat Embeddings
|
||||
==========================================
|
||||
|
||||
This module implements aggregation strategies for multi-vector embeddings,
|
||||
similar to ColPali's approach where multiple patch vectors represent a single document.
|
||||
|
||||
Key features:
|
||||
- MaxSim aggregation (take maximum similarity across patches)
|
||||
- Voting-based aggregation (count patch matches)
|
||||
- Weighted aggregation (attention-score weighted)
|
||||
- Spatial clustering of matching patches
|
||||
- Document-level result consolidation
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
from typing import List, Dict, Any, Tuple, Optional
|
||||
from dataclasses import dataclass
|
||||
from collections import defaultdict
|
||||
import json
|
||||
|
||||
@dataclass
|
||||
class PatchResult:
|
||||
"""Represents a single patch search result."""
|
||||
patch_id: int
|
||||
image_name: str
|
||||
image_path: str
|
||||
coordinates: Tuple[int, int, int, int] # (x1, y1, x2, y2)
|
||||
score: float
|
||||
attention_score: float
|
||||
scale: float
|
||||
metadata: Dict[str, Any]
|
||||
|
||||
@dataclass
|
||||
class AggregatedResult:
|
||||
"""Represents an aggregated document-level result."""
|
||||
image_name: str
|
||||
image_path: str
|
||||
doc_score: float
|
||||
patch_count: int
|
||||
best_patch: PatchResult
|
||||
all_patches: List[PatchResult]
|
||||
aggregation_method: str
|
||||
spatial_clusters: Optional[List[List[PatchResult]]] = None
|
||||
|
||||
class MultiVectorAggregator:
|
||||
"""
|
||||
Aggregates multiple patch-level results into document-level results.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
aggregation_method: str = "maxsim",
|
||||
spatial_clustering: bool = True,
|
||||
cluster_distance_threshold: float = 100.0):
|
||||
"""
|
||||
Initialize the aggregator.
|
||||
|
||||
Args:
|
||||
aggregation_method: "maxsim", "voting", "weighted", or "mean"
|
||||
spatial_clustering: Whether to cluster spatially close patches
|
||||
cluster_distance_threshold: Distance threshold for spatial clustering
|
||||
"""
|
||||
self.aggregation_method = aggregation_method
|
||||
self.spatial_clustering = spatial_clustering
|
||||
self.cluster_distance_threshold = cluster_distance_threshold
|
||||
|
||||
def aggregate_results(self,
|
||||
search_results: List[Dict[str, Any]],
|
||||
top_k: int = 10) -> List[AggregatedResult]:
|
||||
"""
|
||||
Aggregate patch-level search results into document-level results.
|
||||
|
||||
Args:
|
||||
search_results: List of search results from LeannSearcher
|
||||
top_k: Number of top documents to return
|
||||
|
||||
Returns:
|
||||
List of aggregated document results
|
||||
"""
|
||||
# Group results by image
|
||||
image_groups = defaultdict(list)
|
||||
|
||||
for result in search_results:
|
||||
metadata = result.metadata
|
||||
if "image_name" in metadata and "patch_id" in metadata:
|
||||
patch_result = PatchResult(
|
||||
patch_id=metadata["patch_id"],
|
||||
image_name=metadata["image_name"],
|
||||
image_path=metadata["image_path"],
|
||||
coordinates=tuple(metadata["coordinates"]),
|
||||
score=result.score,
|
||||
attention_score=metadata.get("attention_score", 0.0),
|
||||
scale=metadata.get("scale", 1.0),
|
||||
metadata=metadata
|
||||
)
|
||||
image_groups[metadata["image_name"]].append(patch_result)
|
||||
|
||||
# Aggregate each image group
|
||||
aggregated_results = []
|
||||
for image_name, patches in image_groups.items():
|
||||
if len(patches) == 0:
|
||||
continue
|
||||
|
||||
agg_result = self._aggregate_image_patches(image_name, patches)
|
||||
aggregated_results.append(agg_result)
|
||||
|
||||
# Sort by aggregated score and return top-k
|
||||
aggregated_results.sort(key=lambda x: x.doc_score, reverse=True)
|
||||
return aggregated_results[:top_k]
|
||||
|
||||
def _aggregate_image_patches(self, image_name: str, patches: List[PatchResult]) -> AggregatedResult:
|
||||
"""Aggregate patches for a single image."""
|
||||
|
||||
if self.aggregation_method == "maxsim":
|
||||
doc_score = max(patch.score for patch in patches)
|
||||
best_patch = max(patches, key=lambda p: p.score)
|
||||
|
||||
elif self.aggregation_method == "voting":
|
||||
# Count patches above threshold
|
||||
threshold = np.percentile([p.score for p in patches], 75)
|
||||
doc_score = sum(1 for patch in patches if patch.score >= threshold)
|
||||
best_patch = max(patches, key=lambda p: p.score)
|
||||
|
||||
elif self.aggregation_method == "weighted":
|
||||
# Weight by attention scores
|
||||
total_weighted_score = sum(p.score * p.attention_score for p in patches)
|
||||
total_weights = sum(p.attention_score for p in patches)
|
||||
doc_score = total_weighted_score / max(total_weights, 1e-8)
|
||||
best_patch = max(patches, key=lambda p: p.score * p.attention_score)
|
||||
|
||||
elif self.aggregation_method == "mean":
|
||||
doc_score = np.mean([patch.score for patch in patches])
|
||||
best_patch = max(patches, key=lambda p: p.score)
|
||||
|
||||
else:
|
||||
raise ValueError(f"Unknown aggregation method: {self.aggregation_method}")
|
||||
|
||||
# Spatial clustering if enabled
|
||||
spatial_clusters = None
|
||||
if self.spatial_clustering:
|
||||
spatial_clusters = self._cluster_patches_spatially(patches)
|
||||
|
||||
return AggregatedResult(
|
||||
image_name=image_name,
|
||||
image_path=patches[0].image_path,
|
||||
doc_score=float(doc_score),
|
||||
patch_count=len(patches),
|
||||
best_patch=best_patch,
|
||||
all_patches=sorted(patches, key=lambda p: p.score, reverse=True),
|
||||
aggregation_method=self.aggregation_method,
|
||||
spatial_clusters=spatial_clusters
|
||||
)
|
||||
|
||||
def _cluster_patches_spatially(self, patches: List[PatchResult]) -> List[List[PatchResult]]:
|
||||
"""Cluster patches that are spatially close to each other."""
|
||||
if len(patches) <= 1:
|
||||
return [patches]
|
||||
|
||||
clusters = []
|
||||
remaining_patches = patches.copy()
|
||||
|
||||
while remaining_patches:
|
||||
# Start new cluster with highest scoring remaining patch
|
||||
seed_patch = max(remaining_patches, key=lambda p: p.score)
|
||||
current_cluster = [seed_patch]
|
||||
remaining_patches.remove(seed_patch)
|
||||
|
||||
# Add nearby patches to cluster
|
||||
added_to_cluster = True
|
||||
while added_to_cluster:
|
||||
added_to_cluster = False
|
||||
for patch in remaining_patches.copy():
|
||||
if self._is_patch_nearby(patch, current_cluster):
|
||||
current_cluster.append(patch)
|
||||
remaining_patches.remove(patch)
|
||||
added_to_cluster = True
|
||||
|
||||
clusters.append(current_cluster)
|
||||
|
||||
return sorted(clusters, key=lambda cluster: max(p.score for p in cluster), reverse=True)
|
||||
|
||||
def _is_patch_nearby(self, patch: PatchResult, cluster: List[PatchResult]) -> bool:
|
||||
"""Check if a patch is spatially close to any patch in the cluster."""
|
||||
patch_center = self._get_patch_center(patch.coordinates)
|
||||
|
||||
for cluster_patch in cluster:
|
||||
cluster_center = self._get_patch_center(cluster_patch.coordinates)
|
||||
distance = np.sqrt((patch_center[0] - cluster_center[0])**2 +
|
||||
(patch_center[1] - cluster_center[1])**2)
|
||||
|
||||
if distance <= self.cluster_distance_threshold:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def _get_patch_center(self, coordinates: Tuple[int, int, int, int]) -> Tuple[float, float]:
|
||||
"""Get center point of a patch."""
|
||||
x1, y1, x2, y2 = coordinates
|
||||
return ((x1 + x2) / 2, (y1 + y2) / 2)
|
||||
|
||||
def print_aggregated_results(self, results: List[AggregatedResult], max_patches_per_doc: int = 3):
|
||||
"""Pretty print aggregated results."""
|
||||
print(f"\n🔍 Aggregated Results (method: {self.aggregation_method})")
|
||||
print("=" * 80)
|
||||
|
||||
for i, result in enumerate(results):
|
||||
print(f"\n{i+1}. {result.image_name}")
|
||||
print(f" Doc Score: {result.doc_score:.4f} | Patches: {result.patch_count}")
|
||||
print(f" Path: {result.image_path}")
|
||||
|
||||
# Show best patch
|
||||
best = result.best_patch
|
||||
print(f" 🌟 Best Patch: #{best.patch_id} at {best.coordinates} (score: {best.score:.4f})")
|
||||
|
||||
# Show top patches
|
||||
print(f" 📍 Top Patches:")
|
||||
for j, patch in enumerate(result.all_patches[:max_patches_per_doc]):
|
||||
print(f" {j+1}. Patch #{patch.patch_id}: {patch.score:.4f} at {patch.coordinates}")
|
||||
|
||||
# Show spatial clusters if available
|
||||
if result.spatial_clusters and len(result.spatial_clusters) > 1:
|
||||
print(f" 🗂️ Spatial Clusters: {len(result.spatial_clusters)}")
|
||||
for j, cluster in enumerate(result.spatial_clusters[:2]): # Show top 2 clusters
|
||||
cluster_score = max(p.score for p in cluster)
|
||||
print(f" Cluster {j+1}: {len(cluster)} patches (best: {cluster_score:.4f})")
|
||||
|
||||
def demo_aggregation():
|
||||
"""Demonstrate the multi-vector aggregation functionality."""
|
||||
print("=== Multi-Vector Aggregation Demo ===")
|
||||
|
||||
# Simulate some patch-level search results
|
||||
# In real usage, these would come from LeannSearcher.search()
|
||||
|
||||
class MockResult:
|
||||
def __init__(self, score, metadata):
|
||||
self.score = score
|
||||
self.metadata = metadata
|
||||
|
||||
# Simulate results for 2 images with multiple patches each
|
||||
mock_results = [
|
||||
# Image 1: cats_and_kitchen.jpg - 4 patches
|
||||
MockResult(0.85, {
|
||||
"image_name": "cats_and_kitchen.jpg",
|
||||
"image_path": "/path/to/cats_and_kitchen.jpg",
|
||||
"patch_id": 3,
|
||||
"coordinates": [100, 50, 224, 174], # Kitchen area
|
||||
"attention_score": 0.92,
|
||||
"scale": 1.0
|
||||
}),
|
||||
MockResult(0.78, {
|
||||
"image_name": "cats_and_kitchen.jpg",
|
||||
"image_path": "/path/to/cats_and_kitchen.jpg",
|
||||
"patch_id": 7,
|
||||
"coordinates": [200, 300, 324, 424], # Cat area
|
||||
"attention_score": 0.88,
|
||||
"scale": 1.0
|
||||
}),
|
||||
MockResult(0.72, {
|
||||
"image_name": "cats_and_kitchen.jpg",
|
||||
"image_path": "/path/to/cats_and_kitchen.jpg",
|
||||
"patch_id": 12,
|
||||
"coordinates": [150, 100, 274, 224], # Appliances
|
||||
"attention_score": 0.75,
|
||||
"scale": 1.0
|
||||
}),
|
||||
MockResult(0.65, {
|
||||
"image_name": "cats_and_kitchen.jpg",
|
||||
"image_path": "/path/to/cats_and_kitchen.jpg",
|
||||
"patch_id": 15,
|
||||
"coordinates": [50, 250, 174, 374], # Furniture
|
||||
"attention_score": 0.70,
|
||||
"scale": 1.0
|
||||
}),
|
||||
|
||||
# Image 2: city_street.jpg - 3 patches
|
||||
MockResult(0.68, {
|
||||
"image_name": "city_street.jpg",
|
||||
"image_path": "/path/to/city_street.jpg",
|
||||
"patch_id": 2,
|
||||
"coordinates": [300, 100, 424, 224], # Buildings
|
||||
"attention_score": 0.80,
|
||||
"scale": 1.0
|
||||
}),
|
||||
MockResult(0.62, {
|
||||
"image_name": "city_street.jpg",
|
||||
"image_path": "/path/to/city_street.jpg",
|
||||
"patch_id": 8,
|
||||
"coordinates": [100, 350, 224, 474], # Street level
|
||||
"attention_score": 0.75,
|
||||
"scale": 1.0
|
||||
}),
|
||||
MockResult(0.55, {
|
||||
"image_name": "city_street.jpg",
|
||||
"image_path": "/path/to/city_street.jpg",
|
||||
"patch_id": 11,
|
||||
"coordinates": [400, 200, 524, 324], # Sky area
|
||||
"attention_score": 0.60,
|
||||
"scale": 1.0
|
||||
}),
|
||||
]
|
||||
|
||||
# Test different aggregation methods
|
||||
methods = ["maxsim", "voting", "weighted", "mean"]
|
||||
|
||||
for method in methods:
|
||||
print(f"\n{'='*20} {method.upper()} AGGREGATION {'='*20}")
|
||||
|
||||
aggregator = MultiVectorAggregator(
|
||||
aggregation_method=method,
|
||||
spatial_clustering=True,
|
||||
cluster_distance_threshold=100.0
|
||||
)
|
||||
|
||||
aggregated = aggregator.aggregate_results(mock_results, top_k=5)
|
||||
aggregator.print_aggregated_results(aggregated)
|
||||
|
||||
if __name__ == "__main__":
|
||||
demo_aggregation()
|
||||
@@ -1,108 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
OpenAI Embedding Example
|
||||
|
||||
Complete example showing how to build and search with OpenAI embeddings using HNSW backend.
|
||||
"""
|
||||
|
||||
import os
|
||||
import dotenv
|
||||
from pathlib import Path
|
||||
from leann.api import LeannBuilder, LeannSearcher
|
||||
|
||||
# Load environment variables
|
||||
dotenv.load_dotenv()
|
||||
|
||||
def main():
|
||||
# Check if OpenAI API key is available
|
||||
api_key = os.getenv("OPENAI_API_KEY")
|
||||
if not api_key:
|
||||
print("ERROR: OPENAI_API_KEY environment variable not set")
|
||||
return False
|
||||
|
||||
print(f"✅ OpenAI API key found: {api_key[:10]}...")
|
||||
|
||||
# Sample texts
|
||||
sample_texts = [
|
||||
"Machine learning is a powerful technology that enables computers to learn from data.",
|
||||
"Natural language processing helps computers understand and generate human language.",
|
||||
"Deep learning uses neural networks with multiple layers to solve complex problems.",
|
||||
"Computer vision allows machines to interpret and understand visual information.",
|
||||
"Reinforcement learning trains agents to make decisions through trial and error.",
|
||||
"Data science combines statistics, math, and programming to extract insights from data.",
|
||||
"Artificial intelligence aims to create machines that can perform human-like tasks.",
|
||||
"Python is a popular programming language used extensively in data science and AI.",
|
||||
"Neural networks are inspired by the structure and function of the human brain.",
|
||||
"Big data refers to extremely large datasets that require special tools to process."
|
||||
]
|
||||
|
||||
INDEX_DIR = Path("./simple_openai_test_index")
|
||||
INDEX_PATH = str(INDEX_DIR / "simple_test.leann")
|
||||
|
||||
print(f"\n=== Building Index with OpenAI Embeddings ===")
|
||||
print(f"Index path: {INDEX_PATH}")
|
||||
|
||||
try:
|
||||
# Use proper configuration for OpenAI embeddings
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model="text-embedding-3-small",
|
||||
embedding_mode="openai",
|
||||
# HNSW settings for OpenAI embeddings
|
||||
M=16, # Smaller graph degree
|
||||
efConstruction=64, # Smaller construction complexity
|
||||
is_compact=True, # Enable compact storage for recompute
|
||||
is_recompute=True, # MUST enable for OpenAI embeddings
|
||||
num_threads=1,
|
||||
)
|
||||
|
||||
print(f"Adding {len(sample_texts)} texts to the index...")
|
||||
for i, text in enumerate(sample_texts):
|
||||
metadata = {"id": f"doc_{i}", "topic": "AI"}
|
||||
builder.add_text(text, metadata)
|
||||
|
||||
print("Building index...")
|
||||
builder.build_index(INDEX_PATH)
|
||||
print(f"✅ Index built successfully!")
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Error building index: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
return False
|
||||
|
||||
print(f"\n=== Testing Search ===")
|
||||
|
||||
try:
|
||||
searcher = LeannSearcher(INDEX_PATH)
|
||||
|
||||
test_queries = [
|
||||
"What is machine learning?",
|
||||
"How do neural networks work?",
|
||||
"Programming languages for data science"
|
||||
]
|
||||
|
||||
for query in test_queries:
|
||||
print(f"\n🔍 Query: '{query}'")
|
||||
results = searcher.search(query, top_k=3)
|
||||
|
||||
print(f" Found {len(results)} results:")
|
||||
for i, result in enumerate(results):
|
||||
print(f" {i+1}. Score: {result.score:.4f}")
|
||||
print(f" Text: {result.text[:80]}...")
|
||||
|
||||
print(f"\n✅ Search test completed successfully!")
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Error during search: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
return False
|
||||
|
||||
if __name__ == "__main__":
|
||||
success = main()
|
||||
if success:
|
||||
print(f"\n🎉 Simple OpenAI index test completed successfully!")
|
||||
else:
|
||||
print(f"\n💥 Simple OpenAI index test failed!")
|
||||
@@ -1,18 +0,0 @@
|
||||
import asyncio
|
||||
from leann.api import LeannChat
|
||||
from pathlib import Path
|
||||
|
||||
INDEX_DIR = Path("./test_pdf_index_huawei")
|
||||
INDEX_PATH = str(INDEX_DIR / "pdf_documents.leann")
|
||||
|
||||
async def main():
|
||||
print(f"\n[PHASE 2] Starting Leann chat session...")
|
||||
chat = LeannChat(index_path=INDEX_PATH)
|
||||
query = "What is the main idea of RL and give me 5 exapmle of classic RL algorithms?"
|
||||
query = "Based on the paper, what are the main techniques LEANN explores to reduce the storage overhead and DLPM explore to achieve Fairness and Efiiciency trade-off?"
|
||||
# query = "什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发"
|
||||
response = chat.ask(query,top_k=20,recompute_beighbor_embeddings=True,complexity=32,beam_width=1)
|
||||
print(f"\n[PHASE 2] Response: {response}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
@@ -1,81 +0,0 @@
|
||||
"""
|
||||
Simple demo showing basic leann usage
|
||||
Run: uv run python examples/simple_demo.py
|
||||
"""
|
||||
|
||||
import argparse
|
||||
from leann import LeannBuilder, LeannSearcher, LeannChat
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Simple demo of Leann with selectable embedding models.")
|
||||
parser.add_argument("--embedding_model", type=str, default="sentence-transformers/all-mpnet-base-v2",
|
||||
help="The embedding model to use, e.g., 'sentence-transformers/all-mpnet-base-v2' or 'text-embedding-ada-002'.")
|
||||
args = parser.parse_args()
|
||||
|
||||
print(f"=== Leann Simple Demo with {args.embedding_model} ===")
|
||||
print()
|
||||
|
||||
# Sample knowledge base
|
||||
chunks = [
|
||||
"Machine learning is a subset of artificial intelligence that enables computers to learn without being explicitly programmed.",
|
||||
"Deep learning uses neural networks with multiple layers to process data and make decisions.",
|
||||
"Natural language processing helps computers understand and generate human language.",
|
||||
"Computer vision enables machines to interpret and understand visual information from images and videos.",
|
||||
"Reinforcement learning teaches agents to make decisions by receiving rewards or penalties for their actions.",
|
||||
"Data science combines statistics, programming, and domain expertise to extract insights from data.",
|
||||
"Big data refers to extremely large datasets that require special tools and techniques to process.",
|
||||
"Cloud computing provides on-demand access to computing resources over the internet.",
|
||||
]
|
||||
|
||||
print("1. Building index (no embeddings stored)...")
|
||||
builder = LeannBuilder(
|
||||
embedding_model=args.embedding_model,
|
||||
backend_name="hnsw",
|
||||
)
|
||||
for chunk in chunks:
|
||||
builder.add_text(chunk)
|
||||
builder.build_index("demo_knowledge.leann")
|
||||
print()
|
||||
|
||||
print("2. Searching with real-time embeddings...")
|
||||
searcher = LeannSearcher("demo_knowledge.leann")
|
||||
|
||||
queries = [
|
||||
"What is machine learning?",
|
||||
"How does neural network work?",
|
||||
"Tell me about data processing",
|
||||
]
|
||||
|
||||
for query in queries:
|
||||
print(f"Query: {query}")
|
||||
results = searcher.search(query, top_k=2)
|
||||
|
||||
for i, result in enumerate(results, 1):
|
||||
print(f" {i}. Score: {result.score:.3f}")
|
||||
print(f" Text: {result.text[:100]}...")
|
||||
print()
|
||||
|
||||
print("3. Interactive chat demo:")
|
||||
print(" (Note: Requires OpenAI API key for real responses)")
|
||||
|
||||
chat = LeannChat("demo_knowledge.leann")
|
||||
|
||||
# Demo questions
|
||||
demo_questions: list[str] = [
|
||||
"What is the difference between machine learning and deep learning?",
|
||||
"How is data science related to big data?",
|
||||
]
|
||||
|
||||
for question in demo_questions:
|
||||
print(f" Q: {question}")
|
||||
response = chat.ask(question)
|
||||
print(f" A: {response}")
|
||||
print()
|
||||
|
||||
print("Demo completed! Try running:")
|
||||
print(" uv run python examples/document_search.py")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -78,7 +78,7 @@ def create_leann_index_from_multiple_wechat_exports(
|
||||
)
|
||||
|
||||
# Create text splitter with 256 chunk size
|
||||
text_splitter = SentenceSplitter(chunk_size=192, chunk_overlap=64)
|
||||
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=128)
|
||||
|
||||
# Convert Documents to text strings and chunk them
|
||||
all_texts = []
|
||||
@@ -234,7 +234,7 @@ async def query_leann_index(index_path: str, query: str):
|
||||
},
|
||||
llm_kwargs={"temperature": 0.0, "max_tokens": 1000},
|
||||
)
|
||||
print(f"Leann chat response: \033[36m{chat_response}\033[0m")
|
||||
print(f"Leann: {chat_response}")
|
||||
|
||||
|
||||
async def main():
|
||||
|
||||
@@ -4,8 +4,8 @@ build-backend = "scikit_build_core.build"
|
||||
|
||||
[project]
|
||||
name = "leann-backend-diskann"
|
||||
version = "0.1.9"
|
||||
dependencies = ["leann-core==0.1.9", "numpy"]
|
||||
version = "0.1.0"
|
||||
dependencies = ["leann-core==0.1.0", "numpy"]
|
||||
|
||||
[tool.scikit-build]
|
||||
# Key: simplified CMake path
|
||||
|
||||
Submodule packages/leann-backend-diskann/third_party/DiskANN updated: af2a26481e...25339b0341
@@ -92,8 +92,8 @@ class HNSWBuilder(LeannBackendBuilderInterface):
|
||||
|
||||
if success:
|
||||
logger.info("✅ CSR conversion successful.")
|
||||
# index_file_old = index_file.with_suffix(".old")
|
||||
# shutil.move(str(index_file), str(index_file_old))
|
||||
index_file_old = index_file.with_suffix(".old")
|
||||
shutil.move(str(index_file), str(index_file_old))
|
||||
shutil.move(str(csr_temp_file), str(index_file))
|
||||
logger.info(
|
||||
f"INFO: Replaced original index with {mode_str} version at '{index_file}'"
|
||||
|
||||
@@ -6,14 +6,9 @@ build-backend = "scikit_build_core.build"
|
||||
|
||||
[project]
|
||||
name = "leann-backend-hnsw"
|
||||
version = "0.1.9"
|
||||
version = "0.1.0"
|
||||
description = "Custom-built HNSW (Faiss) backend for the Leann toolkit."
|
||||
dependencies = [
|
||||
"leann-core==0.1.9",
|
||||
"numpy",
|
||||
"pyzmq>=23.0.0",
|
||||
"msgpack>=1.0.0",
|
||||
]
|
||||
dependencies = ["leann-core==0.1.0", "numpy"]
|
||||
|
||||
[tool.scikit-build]
|
||||
wheel.packages = ["leann_backend_hnsw"]
|
||||
|
||||
@@ -4,23 +4,15 @@ build-backend = "setuptools.build_meta"
|
||||
|
||||
[project]
|
||||
name = "leann-core"
|
||||
version = "0.1.9"
|
||||
description = "Core API and plugin system for LEANN"
|
||||
version = "0.1.0"
|
||||
description = "Core API and plugin system for Leann."
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.9"
|
||||
license = { text = "MIT" }
|
||||
|
||||
# All required dependencies included
|
||||
dependencies = [
|
||||
"numpy>=1.20.0",
|
||||
"tqdm>=4.60.0",
|
||||
"psutil>=5.8.0",
|
||||
"pyzmq>=23.0.0",
|
||||
"msgpack>=1.0.0",
|
||||
"torch>=2.0.0",
|
||||
"sentence-transformers>=2.2.0",
|
||||
"llama-index-core>=0.12.0",
|
||||
"python-dotenv>=1.0.0",
|
||||
"tqdm>=4.60.0"
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
|
||||
@@ -142,7 +142,7 @@ class LeannBuilder:
|
||||
def __init__(
|
||||
self,
|
||||
backend_name: str,
|
||||
embedding_model: str = "facebook/contriever",
|
||||
embedding_model: str = "facebook/contriever-msmarco",
|
||||
dimensions: Optional[int] = None,
|
||||
embedding_mode: str = "sentence-transformers",
|
||||
**backend_kwargs,
|
||||
@@ -441,9 +441,9 @@ class LeannSearcher:
|
||||
use_server_if_available=recompute_embeddings,
|
||||
zmq_port=zmq_port,
|
||||
)
|
||||
# logger.info(f" Generated embedding shape: {query_embedding.shape}")
|
||||
logger.info(f" Generated embedding shape: {query_embedding.shape}")
|
||||
embedding_time = time.time() - start_time
|
||||
# logger.info(f" Embedding time: {embedding_time} seconds")
|
||||
logger.info(f" Embedding time: {embedding_time} seconds")
|
||||
|
||||
start_time = time.time()
|
||||
results = self.backend_impl.search(
|
||||
@@ -458,7 +458,7 @@ class LeannSearcher:
|
||||
**kwargs,
|
||||
)
|
||||
search_time = time.time() - start_time
|
||||
# logger.info(f" Search time: {search_time} seconds")
|
||||
logger.info(f" Search time: {search_time} seconds")
|
||||
logger.info(
|
||||
f" Backend returned: labels={len(results.get('labels', [[]])[0])} results"
|
||||
)
|
||||
@@ -479,25 +479,15 @@ class LeannSearcher:
|
||||
metadata=passage_data.get("metadata", {}),
|
||||
)
|
||||
)
|
||||
|
||||
# Color codes for better logging
|
||||
GREEN = "\033[92m"
|
||||
BLUE = "\033[94m"
|
||||
YELLOW = "\033[93m"
|
||||
RESET = "\033[0m"
|
||||
|
||||
# Truncate text for display (first 100 chars)
|
||||
display_text = passage_data['text']
|
||||
logger.info(
|
||||
f" {GREEN}✓{RESET} {BLUE}[{i + 1:2d}]{RESET} {YELLOW}ID:{RESET} '{string_id}' {YELLOW}Score:{RESET} {dist:.4f} {YELLOW}Text:{RESET} {display_text}"
|
||||
f" {i + 1}. passage_id='{string_id}' -> SUCCESS: {passage_data['text']}..."
|
||||
)
|
||||
except KeyError:
|
||||
RED = "\033[91m"
|
||||
logger.error(
|
||||
f" {RED}✗{RESET} [{i + 1:2d}] ID: '{string_id}' -> {RED}ERROR: Passage not found!{RESET}"
|
||||
f" {i + 1}. passage_id='{string_id}' -> ERROR: Passage not found in PassageManager!"
|
||||
)
|
||||
|
||||
logger.info(f" {GREEN}✓ Final enriched results: {len(enriched_results)} passages{RESET}")
|
||||
logger.info(f" Final enriched results: {len(enriched_results)} passages")
|
||||
return enriched_results
|
||||
|
||||
|
||||
@@ -527,7 +517,7 @@ class LeannChat:
|
||||
):
|
||||
if llm_kwargs is None:
|
||||
llm_kwargs = {}
|
||||
search_time = time.time()
|
||||
|
||||
results = self.searcher.search(
|
||||
question,
|
||||
top_k=top_k,
|
||||
@@ -539,8 +529,6 @@ class LeannChat:
|
||||
expected_zmq_port=expected_zmq_port,
|
||||
**search_kwargs,
|
||||
)
|
||||
search_time = time.time() - search_time
|
||||
# logger.info(f" Search time: {search_time} seconds")
|
||||
context = "\n\n".join([r.text for r in results])
|
||||
prompt = (
|
||||
"Here is some retrieved context that might help answer your question:\n\n"
|
||||
|
||||
@@ -9,7 +9,6 @@ from typing import Dict, Any, Optional, List
|
||||
import logging
|
||||
import os
|
||||
import difflib
|
||||
import torch
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
@@ -29,68 +28,6 @@ def check_ollama_models() -> List[str]:
|
||||
return []
|
||||
|
||||
|
||||
def check_ollama_model_exists_remotely(model_name: str) -> tuple[bool, list[str]]:
|
||||
"""Check if a model exists in Ollama's remote library and return available tags
|
||||
|
||||
Returns:
|
||||
(model_exists, available_tags): bool and list of matching tags
|
||||
"""
|
||||
try:
|
||||
import requests
|
||||
import re
|
||||
|
||||
# Split model name and tag
|
||||
if ':' in model_name:
|
||||
base_model, requested_tag = model_name.split(':', 1)
|
||||
else:
|
||||
base_model, requested_tag = model_name, None
|
||||
|
||||
# First check if base model exists in library
|
||||
library_response = requests.get("https://ollama.com/library", timeout=8)
|
||||
if library_response.status_code != 200:
|
||||
return True, [] # Assume exists if can't check
|
||||
|
||||
# Extract model names from library page
|
||||
models_in_library = re.findall(r'href="/library/([^"]+)"', library_response.text)
|
||||
|
||||
if base_model not in models_in_library:
|
||||
return False, [] # Base model doesn't exist
|
||||
|
||||
# If base model exists, get available tags
|
||||
tags_response = requests.get(f"https://ollama.com/library/{base_model}/tags", timeout=8)
|
||||
if tags_response.status_code != 200:
|
||||
return True, [] # Base model exists but can't get tags
|
||||
|
||||
# Extract tags for this model - be more specific to avoid HTML artifacts
|
||||
tag_pattern = rf'{re.escape(base_model)}:[a-zA-Z0-9\.\-_]+'
|
||||
raw_tags = re.findall(tag_pattern, tags_response.text)
|
||||
|
||||
# Clean up tags - remove HTML artifacts and duplicates
|
||||
available_tags = []
|
||||
seen = set()
|
||||
for tag in raw_tags:
|
||||
# Skip if it looks like HTML (contains < or >)
|
||||
if '<' in tag or '>' in tag:
|
||||
continue
|
||||
if tag not in seen:
|
||||
seen.add(tag)
|
||||
available_tags.append(tag)
|
||||
|
||||
# Check if exact model exists
|
||||
if requested_tag is None:
|
||||
# User just requested base model, suggest tags
|
||||
return True, available_tags[:10] # Return up to 10 tags
|
||||
else:
|
||||
exact_match = model_name in available_tags
|
||||
return exact_match, available_tags[:10]
|
||||
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
# If scraping fails, assume model might exist (don't block user)
|
||||
return True, []
|
||||
|
||||
|
||||
def search_ollama_models_fuzzy(query: str, available_models: List[str]) -> List[str]:
|
||||
"""Use intelligent fuzzy search for Ollama models"""
|
||||
if not available_models:
|
||||
@@ -306,66 +243,24 @@ def validate_model_and_suggest(model_name: str, llm_type: str) -> Optional[str]:
|
||||
if llm_type == "ollama":
|
||||
available_models = check_ollama_models()
|
||||
if available_models and model_name not in available_models:
|
||||
# Use intelligent fuzzy search based on locally installed models
|
||||
suggestions = search_ollama_models_fuzzy(model_name, available_models)
|
||||
|
||||
error_msg = f"Model '{model_name}' not found in your local Ollama installation."
|
||||
|
||||
# Check if the model exists remotely and get available tags
|
||||
model_exists_remotely, available_tags = check_ollama_model_exists_remotely(model_name)
|
||||
|
||||
if model_exists_remotely and model_name in available_tags:
|
||||
# Exact model exists remotely - suggest pulling it
|
||||
error_msg += f"\n\nTo install the requested model:\n"
|
||||
error_msg += f" ollama pull {model_name}\n"
|
||||
|
||||
# Show local alternatives
|
||||
suggestions = search_ollama_models_fuzzy(model_name, available_models)
|
||||
if suggestions:
|
||||
error_msg += "\nOr use one of these similar installed models:\n"
|
||||
for i, suggestion in enumerate(suggestions, 1):
|
||||
error_msg += f" {i}. {suggestion}\n"
|
||||
|
||||
elif model_exists_remotely and available_tags:
|
||||
# Base model exists but requested tag doesn't - suggest correct tags
|
||||
base_model = model_name.split(':')[0]
|
||||
requested_tag = model_name.split(':', 1)[1] if ':' in model_name else None
|
||||
|
||||
error_msg += f"\n\nModel '{base_model}' exists, but tag '{requested_tag}' is not available."
|
||||
error_msg += f"\n\nAvailable {base_model} models you can install:\n"
|
||||
for i, tag in enumerate(available_tags[:8], 1):
|
||||
error_msg += f" {i}. ollama pull {tag}\n"
|
||||
if len(available_tags) > 8:
|
||||
error_msg += f" ... and {len(available_tags) - 8} more variants\n"
|
||||
|
||||
# Also show local alternatives
|
||||
suggestions = search_ollama_models_fuzzy(model_name, available_models)
|
||||
if suggestions:
|
||||
error_msg += "\nOr use one of these similar installed models:\n"
|
||||
for i, suggestion in enumerate(suggestions, 1):
|
||||
error_msg += f" {i}. {suggestion}\n"
|
||||
|
||||
if suggestions:
|
||||
error_msg += "\n\nDid you mean one of these installed models?\n"
|
||||
for i, suggestion in enumerate(suggestions, 1):
|
||||
error_msg += f" {i}. {suggestion}\n"
|
||||
else:
|
||||
# Model doesn't exist remotely - show fuzzy suggestions
|
||||
suggestions = search_ollama_models_fuzzy(model_name, available_models)
|
||||
error_msg += f"\n\nModel '{model_name}' was not found in Ollama's library."
|
||||
|
||||
if suggestions:
|
||||
error_msg += "\n\nDid you mean one of these installed models?\n"
|
||||
for i, suggestion in enumerate(suggestions, 1):
|
||||
error_msg += f" {i}. {suggestion}\n"
|
||||
else:
|
||||
error_msg += "\n\nYour installed models:\n"
|
||||
for i, model in enumerate(available_models[:8], 1):
|
||||
error_msg += f" {i}. {model}\n"
|
||||
if len(available_models) > 8:
|
||||
error_msg += f" ... and {len(available_models) - 8} more\n"
|
||||
error_msg += "\n\nYour installed models:\n"
|
||||
for i, model in enumerate(available_models[:8], 1):
|
||||
error_msg += f" {i}. {model}\n"
|
||||
if len(available_models) > 8:
|
||||
error_msg += f" ... and {len(available_models) - 8} more\n"
|
||||
|
||||
error_msg += "\n\nCommands:"
|
||||
error_msg += "\n ollama list # List installed models"
|
||||
if model_exists_remotely and available_tags:
|
||||
if model_name in available_tags:
|
||||
error_msg += f"\n ollama pull {model_name} # Install requested model"
|
||||
else:
|
||||
error_msg += f"\n ollama pull {available_tags[0]} # Install recommended variant"
|
||||
error_msg += "\n https://ollama.com/library # Browse available models"
|
||||
error_msg += "\nTo list all models: ollama list"
|
||||
error_msg += "\nTo download a new model: ollama pull <model_name>"
|
||||
error_msg += "\nBrowse models: https://ollama.com/library"
|
||||
return error_msg
|
||||
|
||||
elif llm_type == "hf":
|
||||
@@ -502,7 +397,7 @@ class OllamaChat(LLMInterface):
|
||||
|
||||
|
||||
class HFChat(LLMInterface):
|
||||
"""LLM interface for local Hugging Face Transformers models with proper chat templates."""
|
||||
"""LLM interface for local Hugging Face Transformers models."""
|
||||
|
||||
def __init__(self, model_name: str = "deepseek-ai/deepseek-llm-7b-chat"):
|
||||
logger.info(f"Initializing HFChat with model='{model_name}'")
|
||||
@@ -513,7 +408,7 @@ class HFChat(LLMInterface):
|
||||
raise ValueError(model_error)
|
||||
|
||||
try:
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
from transformers.pipelines import pipeline
|
||||
import torch
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
@@ -522,101 +417,54 @@ class HFChat(LLMInterface):
|
||||
|
||||
# Auto-detect device
|
||||
if torch.cuda.is_available():
|
||||
self.device = "cuda"
|
||||
device = "cuda"
|
||||
logger.info("CUDA is available. Using GPU.")
|
||||
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
||||
self.device = "mps"
|
||||
device = "mps"
|
||||
logger.info("MPS is available. Using Apple Silicon GPU.")
|
||||
else:
|
||||
self.device = "cpu"
|
||||
device = "cpu"
|
||||
logger.info("No GPU detected. Using CPU.")
|
||||
|
||||
# Load tokenizer and model
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
torch_dtype=torch.float16 if self.device != "cpu" else torch.float32,
|
||||
device_map="auto" if self.device != "cpu" else None,
|
||||
trust_remote_code=True
|
||||
)
|
||||
|
||||
# Move model to device if not using device_map
|
||||
if self.device != "cpu" and "device_map" not in str(self.model):
|
||||
self.model = self.model.to(self.device)
|
||||
|
||||
# Set pad token if not present
|
||||
if self.tokenizer.pad_token is None:
|
||||
self.tokenizer.pad_token = self.tokenizer.eos_token
|
||||
self.pipeline = pipeline("text-generation", model=model_name, device=device)
|
||||
|
||||
def ask(self, prompt: str, **kwargs) -> str:
|
||||
print('kwargs in HF: ', kwargs)
|
||||
# Check if this is a Qwen model and add /no_think by default
|
||||
is_qwen_model = "qwen" in self.model.config._name_or_path.lower()
|
||||
|
||||
# For Qwen models, automatically add /no_think to the prompt
|
||||
if is_qwen_model and "/no_think" not in prompt and "/think" not in prompt:
|
||||
prompt = prompt + " /no_think"
|
||||
|
||||
# Prepare chat template
|
||||
messages = [{"role": "user", "content": prompt}]
|
||||
|
||||
# Apply chat template if available
|
||||
if hasattr(self.tokenizer, "apply_chat_template"):
|
||||
try:
|
||||
formatted_prompt = self.tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(f"Chat template failed, using raw prompt: {e}")
|
||||
formatted_prompt = prompt
|
||||
else:
|
||||
# Fallback for models without chat template
|
||||
formatted_prompt = prompt
|
||||
# Map OpenAI-style arguments to Hugging Face equivalents
|
||||
if "max_tokens" in kwargs:
|
||||
# Prefer user-provided max_new_tokens if both are present
|
||||
kwargs.setdefault("max_new_tokens", kwargs["max_tokens"])
|
||||
# Remove the unsupported key to avoid errors in Transformers
|
||||
kwargs.pop("max_tokens")
|
||||
|
||||
# Tokenize input
|
||||
inputs = self.tokenizer(
|
||||
formatted_prompt,
|
||||
return_tensors="pt",
|
||||
padding=True,
|
||||
truncation=True,
|
||||
max_length=2048
|
||||
)
|
||||
|
||||
# Move inputs to device
|
||||
if self.device != "cpu":
|
||||
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
||||
# Handle temperature=0 edge-case for greedy decoding
|
||||
if "temperature" in kwargs and kwargs["temperature"] == 0.0:
|
||||
# Remove unsupported zero temperature and use deterministic generation
|
||||
kwargs.pop("temperature")
|
||||
kwargs.setdefault("do_sample", False)
|
||||
|
||||
# Set generation parameters
|
||||
generation_config = {
|
||||
"max_new_tokens": kwargs.get("max_tokens", kwargs.get("max_new_tokens", 512)),
|
||||
"temperature": kwargs.get("temperature", 0.7),
|
||||
"top_p": kwargs.get("top_p", 0.9),
|
||||
"do_sample": kwargs.get("temperature", 0.7) > 0,
|
||||
"pad_token_id": self.tokenizer.eos_token_id,
|
||||
"eos_token_id": self.tokenizer.eos_token_id,
|
||||
}
|
||||
|
||||
# Handle temperature=0 for greedy decoding
|
||||
if generation_config["temperature"] == 0.0:
|
||||
generation_config["do_sample"] = False
|
||||
generation_config.pop("temperature")
|
||||
# Sensible defaults for text generation
|
||||
params = {"max_length": 500, "num_return_sequences": 1, **kwargs}
|
||||
logger.info(f"Generating text with Hugging Face model with params: {params}")
|
||||
results = self.pipeline(prompt, **params)
|
||||
|
||||
logger.info(f"Generating with HuggingFace model, config: {generation_config}")
|
||||
|
||||
# Generate
|
||||
with torch.no_grad():
|
||||
outputs = self.model.generate(
|
||||
**inputs,
|
||||
**generation_config
|
||||
# Handle different response formats from transformers
|
||||
if isinstance(results, list) and len(results) > 0:
|
||||
generated_text = (
|
||||
results[0].get("generated_text", "")
|
||||
if isinstance(results[0], dict)
|
||||
else str(results[0])
|
||||
)
|
||||
else:
|
||||
generated_text = str(results)
|
||||
|
||||
# Decode response
|
||||
generated_tokens = outputs[0][inputs["input_ids"].shape[1]:]
|
||||
response = self.tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
||||
|
||||
return response.strip()
|
||||
# Extract only the newly generated portion by removing the original prompt
|
||||
if isinstance(generated_text, str) and generated_text.startswith(prompt):
|
||||
response = generated_text[len(prompt) :].strip()
|
||||
else:
|
||||
# Fallback: return the full response if prompt removal fails
|
||||
response = str(generated_text)
|
||||
|
||||
return response
|
||||
|
||||
|
||||
class OpenAIChat(LLMInterface):
|
||||
|
||||
@@ -101,7 +101,7 @@ def compute_embeddings_sentence_transformers(
|
||||
if device == "mps":
|
||||
batch_size = 128 # MPS optimal batch size from benchmark
|
||||
if model_name == "Qwen/Qwen3-Embedding-0.6B":
|
||||
batch_size = 32
|
||||
batch_size = 64
|
||||
elif device == "cuda":
|
||||
batch_size = 256 # CUDA optimal batch size
|
||||
# Keep original batch_size for CPU
|
||||
|
||||
@@ -269,9 +269,7 @@ class EmbeddingServerManager:
|
||||
]
|
||||
|
||||
if kwargs.get("passages_file"):
|
||||
# Convert to absolute path to ensure subprocess can find the file
|
||||
passages_file = Path(kwargs["passages_file"]).resolve()
|
||||
command.extend(["--passages-file", str(passages_file)])
|
||||
command.extend(["--passages-file", str(kwargs["passages_file"])])
|
||||
if embedding_mode != "sentence-transformers":
|
||||
command.extend(["--embedding-mode", embedding_mode])
|
||||
|
||||
|
||||
@@ -112,9 +112,8 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
|
||||
passages_source_file = (
|
||||
self.index_dir / f"{self.index_path.name}.meta.json"
|
||||
)
|
||||
# Convert to absolute path to ensure server can find it
|
||||
zmq_port = self._ensure_server_running(
|
||||
str(passages_source_file.resolve()), zmq_port
|
||||
str(passages_source_file), zmq_port
|
||||
)
|
||||
|
||||
return self._compute_embedding_via_server([query], zmq_port)[
|
||||
|
||||
@@ -1,40 +0,0 @@
|
||||
# LEANN - The smallest vector index in the world
|
||||
|
||||
LEANN is a revolutionary vector database that democratizes personal AI. Transform your laptop into a powerful RAG system that can index and search through millions of documents while using **97% less storage** than traditional solutions **without accuracy loss**.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
# Default installation (HNSW backend, recommended)
|
||||
uv pip install leann
|
||||
|
||||
# With DiskANN backend (for large-scale deployments)
|
||||
uv pip install leann[diskann]
|
||||
```
|
||||
|
||||
## Quick Start
|
||||
|
||||
```python
|
||||
from leann import LeannBuilder, LeannSearcher, LeannChat
|
||||
|
||||
# Build an index
|
||||
builder = LeannBuilder(backend_name="hnsw")
|
||||
builder.add_text("LEANN saves 97% storage compared to traditional vector databases.")
|
||||
builder.build_index("my_index.leann")
|
||||
|
||||
# Search
|
||||
searcher = LeannSearcher("my_index.leann")
|
||||
results = searcher.search("storage savings", top_k=3)
|
||||
|
||||
# Chat with your data
|
||||
chat = LeannChat("my_index.leann", llm_config={"type": "ollama", "model": "llama3.2:1b"})
|
||||
response = chat.ask("How much storage does LEANN save?")
|
||||
```
|
||||
|
||||
## Documentation
|
||||
|
||||
For full documentation, visit [https://leann.readthedocs.io](https://leann.readthedocs.io)
|
||||
|
||||
## License
|
||||
|
||||
MIT License
|
||||
@@ -1,12 +0,0 @@
|
||||
"""
|
||||
LEANN - Low-storage Embedding Approximation for Neural Networks
|
||||
|
||||
A revolutionary vector database that democratizes personal AI.
|
||||
"""
|
||||
|
||||
__version__ = "0.1.0"
|
||||
|
||||
# Re-export main API from leann-core
|
||||
from leann_core import LeannBuilder, LeannSearcher, LeannChat
|
||||
|
||||
__all__ = ["LeannBuilder", "LeannSearcher", "LeannChat"]
|
||||
@@ -1,42 +0,0 @@
|
||||
[build-system]
|
||||
requires = ["setuptools>=61.0"]
|
||||
build-backend = "setuptools.build_meta"
|
||||
|
||||
[project]
|
||||
name = "leann"
|
||||
version = "0.1.9"
|
||||
description = "LEANN - The smallest vector index in the world. RAG Everything with LEANN!"
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.9"
|
||||
license = { text = "MIT" }
|
||||
authors = [
|
||||
{ name = "LEANN Team" }
|
||||
]
|
||||
keywords = ["vector-database", "rag", "embeddings", "search", "ai"]
|
||||
classifiers = [
|
||||
"Development Status :: 4 - Beta",
|
||||
"Intended Audience :: Developers",
|
||||
"License :: OSI Approved :: MIT License",
|
||||
"Programming Language :: Python :: 3",
|
||||
"Programming Language :: Python :: 3.9",
|
||||
"Programming Language :: Python :: 3.10",
|
||||
"Programming Language :: Python :: 3.11",
|
||||
"Programming Language :: Python :: 3.12",
|
||||
]
|
||||
|
||||
# Default installation: core + hnsw
|
||||
dependencies = [
|
||||
"leann-core>=0.1.0",
|
||||
"leann-backend-hnsw>=0.1.0",
|
||||
]
|
||||
|
||||
[project.optional-dependencies]
|
||||
diskann = [
|
||||
"leann-backend-diskann>=0.1.0",
|
||||
]
|
||||
|
||||
[project.urls]
|
||||
Homepage = "https://github.com/yourusername/leann"
|
||||
Documentation = "https://leann.readthedocs.io"
|
||||
Repository = "https://github.com/yourusername/leann"
|
||||
Issues = "https://github.com/yourusername/leann/issues"
|
||||
@@ -33,8 +33,8 @@ dependencies = [
|
||||
"msgpack>=1.1.1",
|
||||
"llama-index-vector-stores-faiss>=0.4.0",
|
||||
"llama-index-embeddings-huggingface>=0.5.5",
|
||||
"mlx>=0.26.3; sys_platform == 'darwin'",
|
||||
"mlx-lm>=0.26.0; sys_platform == 'darwin'",
|
||||
"mlx>=0.26.3",
|
||||
"mlx-lm>=0.26.0",
|
||||
"psutil>=5.8.0",
|
||||
]
|
||||
|
||||
|
||||
12
research/micro/analyze_HNSW.py
Normal file
12
research/micro/analyze_HNSW.py
Normal file
@@ -0,0 +1,12 @@
|
||||
import faiss
|
||||
hnsw_index = faiss.read_index("/opt/dlami/nvme/scaling_out/indices/rpj_wiki/facebook/contriever-msmarco/hnsw/hnsw_IP_M30_efC128.index", faiss.IO_FLAG_ONDISK_SAME_DIR)
|
||||
|
||||
# print total number of nodes
|
||||
print(hnsw_index.ntotal)
|
||||
|
||||
# print stats of the graph
|
||||
print(hnsw_index.hnsw.print_neighbor_stats(0))
|
||||
|
||||
|
||||
# save_degree_distribution
|
||||
hnsw_index.hnsw.save_degree_distribution(0, "degree_distribution_HNSW_M30.txt")
|
||||
11
research/micro/analyze_NSG.py
Normal file
11
research/micro/analyze_NSG.py
Normal file
@@ -0,0 +1,11 @@
|
||||
import faiss
|
||||
nsg_index = faiss.read_index("/opt/dlami/nvme/scaling_out/indices/rpj_wiki/facebook/contriever-msmarco/nsg_R16.index", faiss.IO_FLAG_ONDISK_SAME_DIR)
|
||||
|
||||
# print total number of nodes
|
||||
print(nsg_index.ntotal)
|
||||
|
||||
# print stats of the graph
|
||||
print(nsg_index.nsg.print_neighbor_stats(0))
|
||||
|
||||
# save degree distribution
|
||||
nsg_index.nsg.save_degree_distribution("degree_distribution_NSG_R60.txt")
|
||||
63
research/micro/bnbtest.py
Normal file
63
research/micro/bnbtest.py
Normal file
@@ -0,0 +1,63 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import time
|
||||
|
||||
# import bitsandbytes as bnb
|
||||
from bitsandbytes.nn import Linear8bitLt
|
||||
|
||||
# set default to half
|
||||
import torch
|
||||
torch.set_default_dtype(torch.float16)
|
||||
|
||||
M = 2048
|
||||
N = 2048
|
||||
|
||||
bsz = 2048
|
||||
import torch_int
|
||||
from torch_int.nn.linear import W8A8BFP32OFP32Linear, W8A8B8O8Linear, W8A8B8O8LinearReLU
|
||||
|
||||
fp16_model = nn.Sequential(
|
||||
nn.Linear(M, N),
|
||||
# nn.Linear(2048, 2048)
|
||||
)
|
||||
|
||||
int8_model = nn.Sequential(
|
||||
Linear8bitLt(M, N, has_fp16_weights=False),
|
||||
# Linear8bitLt(2048, 2048, has_fp16_weights=False)
|
||||
)
|
||||
|
||||
int8_model.load_state_dict(fp16_model.state_dict())
|
||||
int8_model = int8_model.to(0) # Quantization happens here
|
||||
fp16_model = fp16_model.to(0) # Move fp16 model to GPU as well
|
||||
|
||||
# Create random input tensor
|
||||
input_tensor = torch.randn(bsz, M, device=0) # Batch of 1000 vectors
|
||||
|
||||
# Speed test function
|
||||
def speed_test(model, input_tensor, name, num_iterations=100):
|
||||
# Warmup
|
||||
for _ in range(10):
|
||||
_ = model(input_tensor)
|
||||
|
||||
# Actual timing
|
||||
torch.cuda.synchronize()
|
||||
start_time = time.time()
|
||||
|
||||
for _ in range(num_iterations):
|
||||
_ = model(input_tensor)
|
||||
|
||||
torch.cuda.synchronize()
|
||||
end_time = time.time()
|
||||
|
||||
avg_time = (end_time - start_time) / num_iterations
|
||||
print(f"{name} model: {avg_time:.6f} seconds per iteration")
|
||||
return avg_time
|
||||
|
||||
# Run speed tests
|
||||
with torch.no_grad(): # Disable gradient calculation for inference
|
||||
fp16_time = speed_test(fp16_model, input_tensor, "FP16")
|
||||
int8_time = speed_test(int8_model, input_tensor, "INT8")
|
||||
|
||||
# Calculate speedup
|
||||
speedup = fp16_time / int8_time
|
||||
print(f"INT8 is {speedup:.2f}x faster than FP16")
|
||||
89
research/micro/data/transformer-batching-microbenchmarks.csv
Normal file
89
research/micro/data/transformer-batching-microbenchmarks.csv
Normal file
@@ -0,0 +1,89 @@
|
||||
n,d,seqlen,bs,latency,h,flop,io,intensity,throughput,series
|
||||
3,256,256,2048,0.009623501679245285,768,618475290624,167.48502132816208,3692720015.912285,64267177503366.266,dense
|
||||
3,256,256,1024,0.004853848615384615,768,309237645312,166.15392854317415,1861151572.059558,63709783682138.234,dense
|
||||
3,256,256,512,0.0024687246971962615,768,154618822656,163.57953256539062,945221081.3366361,62631051097597.516,dense
|
||||
3,256,256,256,0.0012845360838052097,768,77309411328,157.64931990085577,490388486.1451936,60184694149645.54,dense
|
||||
3,256,256,128,0.0006901147179878049,768,38654705664,147.57393422494675,261934506.70684624,56012000116019.945,dense
|
||||
3,256,256,64,0.0003363830693015702,768,19327352832,153.1328437752606,126212981.84970059,57456378146882.51,dense
|
||||
3,256,256,32,0.00018671159748991485,768,9663676416,141.10249365427362,68486928.65540518,51757237075334.75,dense
|
||||
3,256,256,16,0.00012353640857142858,768,4831838208,111.40488993609125,43371868.24359184,39112665358133.98,dense
|
||||
3,256,256,8,9.774760007849294e-05,768,2415919104,76.43260800265766,31608487.09906635,24715891766754.14,dense
|
||||
3,256,256,4,6.672271167474822e-05,768,1207959552,64.82614227498455,18633833.660438772,18104173551704.773,dense
|
||||
3,256,256,2,4.9758770289855074e-05,768,603979776,55.317122669351576,10918495.880745342,12138157202874.861,dense
|
||||
3,256,1,2048,9.785507940251571e-05,768,2415919104,76.34865809334705,31643242.518371396,24688745017132.86,dense
|
||||
3,256,1,1024,6.692813470149253e-05,768,1207959552,64.62717090938949,18691202.70936228,18048606275785.867,dense
|
||||
3,256,1,512,4.9680950036205655e-05,768,603979776,55.40377142534654,10901419.893658841,12157170415618.898,dense
|
||||
3,256,1,256,4.2781118741058655e-05,768,301989888,45.95672244805227,6571179.83862661,7058952568020.829,dense
|
||||
3,256,1,128,5.0662328255350016e-05,768,150994944,31.046026784880404,4863583.512513602,2980418571348.519,dense
|
||||
3,256,1,64,4.475009253945481e-05,768,75497472,30.75426042497223,2454862.219307235,1687090857598.4766,dense
|
||||
3,256,1,32,4.51682671454219e-05,768,37748736,28.29313765537115,1334201.1218340008,835735758435.5786,dense
|
||||
3,256,1,16,5.03585186661834e-05,768,18874368,24.401035466223117,773506.846712577,374799904761.1871,dense
|
||||
3,256,1,8,5.023459565217391e-05,768,9437184,23.972005435021096,393675.19858030166,187862246674.45105,dense
|
||||
3,256,1,4,5.053219391083726e-05,768,4718592,23.58765586356967,200044.97383259286,93377936614.54384,dense
|
||||
3,256,1,2,4.4607398995335484e-05,768,2359296,26.58285456464288,88752.54515134107,52890239133.797226,dense
|
||||
12,256,256,2048,0.14480779847058822,3072,9895604649984,44.620009282941716,221775046868.20184,68336130750540.26,dense
|
||||
12,256,256,1024,0.07254347629166667,3072,4947802324992,44.664248332585096,110777691547.58836,68204648824643.82,dense
|
||||
12,256,256,512,0.036310761444444443,3072,2473901162496,44.876147984203506,55127306456.13385,68131349056975.164,dense
|
||||
12,256,256,256,0.01821551906896552,3072,1236950581248,45.24607467289738,27338295977.947884,67906414116709.98,dense
|
||||
12,256,256,128,0.009229417903030302,3072,618475290624,45.67217092440895,13541622351.335684,67011299859001.46,dense
|
||||
12,256,256,64,0.004754550595394737,3072,309237645312,46.31372736116993,6677019167.566916,65040352207320.695,dense
|
||||
12,256,256,32,0.002405752659340659,3072,154618822656,49.68826015254682,3111777755.5766335,64270456921525.82,dense
|
||||
12,256,256,16,0.0012287219045005488,3072,77309411328,56.323579604557374,1372594069.3184311,62918558743709.18,dense
|
||||
12,256,256,8,0.0006206816149425287,3072,38654705664,70.95456179103653,544781120.315271,62277832520589.78,dense
|
||||
12,256,256,4,0.0003875502697142857,3072,19327352832,81.16954743236613,238110885.71245712,49870569942445.75,dense
|
||||
12,256,256,2,0.00027502018627941914,3072,9663676416,91.50537035282076,105607751.53129694,35138062215483.168,dense
|
||||
12,256,1,2048,0.0006202853873290136,3072,38654705664,70.99988634205897,544433345.6784943,62317614526515.766,dense
|
||||
12,256,1,1024,0.00038721467732724153,3072,19327352832,81.2398957010995,237904697.74985722,49913791918755.53,dense
|
||||
12,256,1,512,0.000274364799,3072,9663676416,91.72395326121995,105356082.81599998,35221998052308.45,dense
|
||||
12,256,1,256,0.00012488918589482266,3072,4831838208,176.31707535146046,27404255.647778228,38689003962834.75,dense
|
||||
12,256,1,128,8.976711102514506e-05,3072,2415919104,227.78088507574267,10606329.425740216,26913187652026.21,dense
|
||||
12,256,1,64,8.715176287471176e-05,3072,1207959552,225.59268282689945,5354604.31102229,13860414432884.701,dense
|
||||
12,256,1,32,8.523013435114503e-05,3072,603979776,226.06539514085782,2671703.8033338524,7086458100741.991,dense
|
||||
12,256,1,16,7.901561645904116e-05,3072,301989888,241.35704882952732,1251216.3595988373,3821901309300.556,dense
|
||||
12,256,1,8,7.827949114210329e-05,3072,150994944,242.37091635608994,622991.1833900034,1928920867994.581,dense
|
||||
12,256,1,4,7.779445951035782e-05,3072,75497472,243.25022783249054,310369.58391664835,970473636235.5986,dense
|
||||
12,256,1,2,7.758845406626506e-05,3072,37748736,243.57933441822672,154975.11761480253,486525172518.07056,dense
|
||||
3,256,256,2048,0.00507974918466899,768,206158430208,475.59810852303485,433471930.42508715,40584371927298.98,qk_init
|
||||
3,256,256,1024,0.0025616677649325623,768,103079215104,471.5519977009198,218595649.27424532,40239103803811.82,qk_init
|
||||
3,256,256,512,0.0013029336670480549,768,51539607552,463.55374128015677,111183672.92143403,39556585922573.38,qk_init
|
||||
3,256,256,256,0.0006738189029345373,768,25769803776,448.1766342333362,57499213.050413854,38244406121244.69,qk_init
|
||||
3,256,256,128,0.000358254672959467,768,12884901888,421.47375986100144,30571065.425874516,35965760841472.125,qk_init
|
||||
3,256,256,64,0.0002007051105022831,768,6442450944,376.1611839930762,17126836.096194826,32099087700742.5,qk_init
|
||||
3,256,256,32,0.00012189697230142565,768,3221225472,309.6773881032524,10401874.969721656,26425803784810.87,qk_init
|
||||
3,256,256,16,8.453561698040722e-05,768,1610612736,223.2711923587723,7213705.982328083,19052475081281.902,qk_init
|
||||
3,256,256,8,6.407660705009276e-05,768,805306368,147.2797083750448,5467870.468274581,12567868448003.822,qk_init
|
||||
3,256,256,4,5.036328747284576e-05,768,402653184,93.69110391262903,4297667.197682838,7994974200544.344,qk_init
|
||||
3,256,256,2,4.5488761135057476e-05,768,201326592,51.865470527877875,3881707.616858238,4425853485045.578,qk_init
|
||||
12,256,256,2048,0.020202365999999996,3072,824633720832,478.3437947812648,1723935231.9999998,40818670488001.266,qk_init
|
||||
12,256,256,1024,0.010124155888157895,3072,412316860416,477.2583770318811,863927969.1228071,40726048173387.19,qk_init
|
||||
12,256,256,512,0.005085633937062937,3072,206158430208,475.04777848703077,433974095.9627039,40537410430893.29,qk_init
|
||||
12,256,256,256,0.0025654916853281853,3072,103079215104,470.84913933193053,218921957.14800516,40179126556324.74,qk_init
|
||||
12,256,256,128,0.0013045765704467354,3072,51539607552,462.9699702434292,111323867.34478809,39506770794105.96,qk_init
|
||||
12,256,256,64,0.0006742801519939804,3072,25769803776,447.87005387442576,57538572.970153,38218244597284.33,qk_init
|
||||
12,256,256,32,0.00035831976790671853,3072,12884901888,421.3971919051604,30576620.194706645,35959227042573.69,qk_init
|
||||
12,256,256,16,0.0002005369068918302,3072,6442450944,376.4766953382971,17112482.721436176,32126011335534.68,qk_init
|
||||
12,256,256,8,0.00012179187250509165,3072,3221225472,309.94462293386505,10392906.453767821,26448607823689.82,qk_init
|
||||
12,256,256,4,8.452507263643351e-05,3072,1610612736,223.2990450204527,7212806.198308992,19054851841745.297,qk_init
|
||||
12,256,256,2,6.412381767545489e-05,3072,805306368,147.17127491946468,5471899.108305484,12558615459794.32,qk_init
|
||||
3,256,256,2048,0.0016183739398395718,768,805306368,811597824.0,0.9922480620155039,1265467.7325087283,qk_ar
|
||||
3,256,256,1024,0.0008322699728813558,768,402653184,405798912.0,0.9922480620155039,1230369.9921491416,qk_ar
|
||||
3,256,256,512,0.00043886859397590365,768,201326592,202899456.0,0.9922480620155039,1166636.2255762408,qk_ar
|
||||
3,256,256,256,0.00024185948322147648,768,100663296,101449728.0,0.9922480620155039,1058465.8355760013,qk_ar
|
||||
3,256,256,128,0.00014308985100166944,768,50331648,50724864.0,0.9922480620155039,894542.82818777,qk_ar
|
||||
3,256,256,64,9.382939365815932e-05,768,25165824,25362432.0,0.9922480620155039,682089.028872613,qk_ar
|
||||
3,256,256,32,6.856070612244899e-05,768,12582912,12681216.0,0.9922480620155039,466739.6503012703,qk_ar
|
||||
3,256,256,16,5.452260553129549e-05,768,6291456,6340608.0,0.9922480620155039,293456.26174846216,qk_ar
|
||||
3,256,256,8,4.608557533261417e-05,768,3145728,3170304.0,0.9922480620155039,173590.1080166944,qk_ar
|
||||
3,256,256,4,4.386146957766642e-05,768,1572864,1585152.0,0.9922480620155039,91196.21477609445,qk_ar
|
||||
3,256,256,2,4.330941094420601e-05,768,786432,792576.0,0.9922480620155039,46179.33969539622,qk_ar
|
||||
12,256,256,2048,0.006347041645299144,3072,3221225472,3246391296.0,0.9922480620155039,322670.011392918,qk_ar
|
||||
12,256,256,1024,0.0031943104467592586,3072,1610612736,1623195648.0,0.9922480620155039,320569.96872013,qk_ar
|
||||
12,256,256,512,0.0016183416350267381,3072,805306368,811597824.0,0.9922480620155039,316373.2483416833,qk_ar
|
||||
12,256,256,256,0.0008325934893977947,3072,402653184,405798912.0,0.9922480620155039,307472.9784221131,qk_ar
|
||||
12,256,256,128,0.0004389725746987952,3072,201326592,202899456.0,0.9922480620155039,291589.9702568624,qk_ar
|
||||
12,256,256,64,0.00024191767449664432,3072,100663296,101449728.0,0.9922480620155039,264552.8076159138,qk_ar
|
||||
12,256,256,32,0.0001431546143572621,3072,50331648,50724864.0,0.9922480620155039,223534.53392804778,qk_ar
|
||||
12,256,256,16,9.404283597678917e-05,3072,25165824,25362432.0,0.9922480620155039,170135.23501087292,qk_ar
|
||||
12,256,256,8,6.855550037091989e-05,3072,12582912,12681216.0,0.9922480620155039,116693.773026467,qk_ar
|
||||
12,256,256,4,5.4802094978165945e-05,3072,6291456,6340608.0,0.9922480620155039,72989.91036006316,qk_ar
|
||||
12,256,256,2,4.608510707869206e-05,3072,3145728,3170304.0,0.9922480620155039,43397.96795057727,qk_ar
|
||||
|
Binary file not shown.
|
After Width: | Height: | Size: 45 KiB |
594
research/micro/embedd_micro.py
Executable file
594
research/micro/embedd_micro.py
Executable file
@@ -0,0 +1,594 @@
|
||||
# python embedd_micro.py --use_int8 Fastest
|
||||
|
||||
import argparse
|
||||
import time
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
from torchao import quantize_
|
||||
from transformers import AutoModel, BitsAndBytesConfig
|
||||
from tqdm import tqdm
|
||||
from contextlib import contextmanager
|
||||
|
||||
@dataclass
|
||||
class BenchmarkConfig:
|
||||
model_path: str
|
||||
batch_sizes: List[int]
|
||||
seq_length: int
|
||||
num_runs: int
|
||||
use_fp16: bool = True
|
||||
use_int4: bool = False
|
||||
use_int8: bool = False # Add this parameter
|
||||
use_cuda_graphs: bool = False
|
||||
use_flash_attention: bool = False
|
||||
use_linear8bitlt: bool = False
|
||||
|
||||
|
||||
class CUDAGraphContainer:
|
||||
"""Container for managing CUDA graphs for different batch sizes."""
|
||||
|
||||
def __init__(self, model: nn.Module, seq_length: int):
|
||||
self.model = model
|
||||
self.seq_length = seq_length
|
||||
self.graphs: Dict[int, CUDAGraphWrapper] = {}
|
||||
|
||||
def get_or_create(self, batch_size: int) -> 'CUDAGraphWrapper':
|
||||
if batch_size not in self.graphs:
|
||||
self.graphs[batch_size] = CUDAGraphWrapper(
|
||||
self.model, batch_size, self.seq_length
|
||||
)
|
||||
return self.graphs[batch_size]
|
||||
|
||||
|
||||
class CUDAGraphWrapper:
|
||||
"""Wrapper for CUDA graph capture and replay."""
|
||||
|
||||
def __init__(self, model: nn.Module, batch_size: int, seq_length: int):
|
||||
self.model = model
|
||||
self.static_input = self._create_random_batch(batch_size, seq_length)
|
||||
self.static_attention_mask = torch.ones_like(self.static_input)
|
||||
|
||||
# Warm up
|
||||
self._warmup()
|
||||
|
||||
# Capture graph
|
||||
self.graph = torch.cuda.CUDAGraph()
|
||||
with torch.cuda.graph(self.graph):
|
||||
self.static_output = self.model(
|
||||
input_ids=self.static_input,
|
||||
attention_mask=self.static_attention_mask
|
||||
)
|
||||
|
||||
def _create_random_batch(self, batch_size: int, seq_length: int) -> torch.Tensor:
|
||||
return torch.randint(
|
||||
0, 1000, (batch_size, seq_length),
|
||||
device="cuda",
|
||||
dtype=torch.long
|
||||
)
|
||||
|
||||
def _warmup(self, num_warmup: int = 3):
|
||||
with torch.no_grad():
|
||||
for _ in range(num_warmup):
|
||||
self.model(
|
||||
input_ids=self.static_input,
|
||||
attention_mask=self.static_attention_mask
|
||||
)
|
||||
|
||||
def __call__(self, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
|
||||
self.static_input.copy_(input_ids)
|
||||
self.static_attention_mask.copy_(attention_mask)
|
||||
self.graph.replay()
|
||||
return self.static_output
|
||||
|
||||
|
||||
class ModelOptimizer:
|
||||
"""Applies various optimizations to the model."""
|
||||
|
||||
@staticmethod
|
||||
def optimize(model: nn.Module, config: BenchmarkConfig) -> nn.Module:
|
||||
print("\nApplying model optimizations:")
|
||||
|
||||
if model is None:
|
||||
raise ValueError("Cannot optimize None model")
|
||||
|
||||
# Move to GPU
|
||||
model = model.cuda()
|
||||
print("- Model moved to GPU")
|
||||
|
||||
# FP16
|
||||
if config.use_fp16 and not config.use_int4:
|
||||
model = model.half()
|
||||
# use torch compile
|
||||
model = torch.compile(model)
|
||||
print("- Using FP16 precision")
|
||||
|
||||
# Check if using SDPA
|
||||
if torch.version.cuda and float(torch.version.cuda[:3]) >= 11.6:
|
||||
if hasattr(torch.nn.functional, 'scaled_dot_product_attention'):
|
||||
print("- Using PyTorch SDPA (scaled_dot_product_attention)")
|
||||
else:
|
||||
print("- PyTorch SDPA not available")
|
||||
|
||||
# Flash Attention
|
||||
if config.use_flash_attention:
|
||||
try:
|
||||
from flash_attn.flash_attention import FlashAttention
|
||||
print("- Flash Attention 2 available")
|
||||
if hasattr(model.config, "attention_mode"):
|
||||
model.config.attention_mode = "flash_attention_2"
|
||||
print(" - Enabled Flash Attention 2 mode")
|
||||
except ImportError:
|
||||
print("- Flash Attention not available")
|
||||
|
||||
# Memory efficient attention
|
||||
try:
|
||||
from xformers.ops import memory_efficient_attention
|
||||
if hasattr(model, 'enable_xformers_memory_efficient_attention'):
|
||||
model.enable_xformers_memory_efficient_attention()
|
||||
print("- Enabled xformers memory efficient attention")
|
||||
else:
|
||||
print("- Model doesn't support xformers")
|
||||
except (ImportError, AttributeError):
|
||||
print("- Xformers not available")
|
||||
|
||||
model.eval()
|
||||
print("- Model set to eval mode")
|
||||
|
||||
return model
|
||||
|
||||
|
||||
class Timer:
|
||||
"""Handles accurate GPU timing using CUDA events."""
|
||||
|
||||
def __init__(self):
|
||||
self.start_event = torch.cuda.Event(enable_timing=True)
|
||||
self.end_event = torch.cuda.Event(enable_timing=True)
|
||||
|
||||
@contextmanager
|
||||
def timing(self):
|
||||
self.start_event.record()
|
||||
yield
|
||||
self.end_event.record()
|
||||
self.end_event.synchronize()
|
||||
|
||||
def elapsed_time(self) -> float:
|
||||
return self.start_event.elapsed_time(self.end_event) / 1000 # ms to seconds
|
||||
|
||||
|
||||
class Benchmark:
|
||||
"""Main benchmark runner."""
|
||||
|
||||
def __init__(self, config: BenchmarkConfig):
|
||||
self.config = config
|
||||
try:
|
||||
self.model = self._load_model()
|
||||
if self.model is None:
|
||||
raise ValueError("Model initialization failed - model is None")
|
||||
|
||||
self.cuda_graphs = (
|
||||
CUDAGraphContainer(self.model, config.seq_length)
|
||||
if config.use_cuda_graphs
|
||||
else None
|
||||
)
|
||||
self.timer = Timer()
|
||||
except Exception as e:
|
||||
print(f"ERROR in benchmark initialization: {str(e)}")
|
||||
raise
|
||||
|
||||
def _load_model(self) -> nn.Module:
|
||||
print(f"Loading model from {self.config.model_path}...")
|
||||
|
||||
try:
|
||||
# Int4 quantization using HuggingFace integration
|
||||
if self.config.use_int4:
|
||||
import bitsandbytes as bnb
|
||||
print(f"- bitsandbytes version: {bnb.__version__}")
|
||||
|
||||
# 检查是否使用自定义的8bit量化
|
||||
if hasattr(self.config, 'use_linear8bitlt') and self.config.use_linear8bitlt:
|
||||
print("- Using custom Linear8bitLt replacement for all linear layers")
|
||||
|
||||
# 加载原始模型(不使用量化配置)
|
||||
import bitsandbytes as bnb
|
||||
import torch
|
||||
# set default to half
|
||||
torch.set_default_dtype(torch.float16)
|
||||
compute_dtype = torch.float16 if self.config.use_fp16 else torch.float32
|
||||
model = AutoModel.from_pretrained(
|
||||
self.config.model_path,
|
||||
torch_dtype=compute_dtype,
|
||||
)
|
||||
|
||||
# 定义替换函数
|
||||
def replace_linear_with_linear8bitlt(model):
|
||||
"""递归地将模型中的所有nn.Linear层替换为Linear8bitLt"""
|
||||
for name, module in list(model.named_children()):
|
||||
if isinstance(module, nn.Linear):
|
||||
# 获取原始线性层的参数
|
||||
in_features = module.in_features
|
||||
out_features = module.out_features
|
||||
bias = module.bias is not None
|
||||
|
||||
# 创建8bit线性层
|
||||
# print size
|
||||
print(f"in_features: {in_features}, out_features: {out_features}")
|
||||
new_module = bnb.nn.Linear8bitLt(
|
||||
in_features,
|
||||
out_features,
|
||||
bias=bias,
|
||||
has_fp16_weights=False
|
||||
)
|
||||
|
||||
# 复制权重和偏置
|
||||
new_module.weight.data = module.weight.data
|
||||
if bias:
|
||||
new_module.bias.data = module.bias.data
|
||||
|
||||
# 替换模块
|
||||
setattr(model, name, new_module)
|
||||
else:
|
||||
# 递归处理子模块
|
||||
replace_linear_with_linear8bitlt(module)
|
||||
|
||||
return model
|
||||
|
||||
# 替换所有线性层
|
||||
model = replace_linear_with_linear8bitlt(model)
|
||||
# add torch compile
|
||||
model = torch.compile(model)
|
||||
|
||||
# 将模型移到GPU(量化发生在这里)
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
model = model.to(device)
|
||||
|
||||
print("- All linear layers replaced with Linear8bitLt")
|
||||
|
||||
else:
|
||||
# 使用原来的Int4量化方法
|
||||
print("- Using bitsandbytes for Int4 quantization")
|
||||
|
||||
# Create quantization config
|
||||
|
||||
compute_dtype = torch.float16 if self.config.use_fp16 else torch.float32
|
||||
quantization_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_compute_dtype=compute_dtype,
|
||||
bnb_4bit_use_double_quant=True,
|
||||
bnb_4bit_quant_type="nf4"
|
||||
)
|
||||
|
||||
print("- Quantization config:", quantization_config)
|
||||
|
||||
# Load model directly with quantization config
|
||||
model = AutoModel.from_pretrained(
|
||||
self.config.model_path,
|
||||
quantization_config=quantization_config,
|
||||
torch_dtype=compute_dtype,
|
||||
device_map="auto" # Let HF decide on device mapping
|
||||
)
|
||||
|
||||
# Check if model loaded successfully
|
||||
if model is None:
|
||||
raise ValueError("Model loading returned None")
|
||||
|
||||
print(f"- Model type: {type(model)}")
|
||||
|
||||
# Apply optimizations directly here
|
||||
print("\nApplying model optimizations:")
|
||||
|
||||
if hasattr(self.config, 'use_linear8bitlt') and self.config.use_linear8bitlt:
|
||||
print("- Model moved to GPU with Linear8bitLt quantization")
|
||||
else:
|
||||
# Skip moving to GPU since device_map="auto" already did that
|
||||
print("- Model already on GPU due to device_map='auto'")
|
||||
|
||||
# Skip FP16 conversion since we specified compute_dtype
|
||||
print(f"- Using {compute_dtype} for compute dtype")
|
||||
|
||||
# Check CUDA and SDPA
|
||||
if torch.version.cuda and float(torch.version.cuda[:3]) >= 11.6:
|
||||
if hasattr(torch.nn.functional, 'scaled_dot_product_attention'):
|
||||
print("- Using PyTorch SDPA (scaled_dot_product_attention)")
|
||||
else:
|
||||
print("- PyTorch SDPA not available")
|
||||
|
||||
# Try xformers if available
|
||||
try:
|
||||
from xformers.ops import memory_efficient_attention
|
||||
if hasattr(model, 'enable_xformers_memory_efficient_attention'):
|
||||
model.enable_xformers_memory_efficient_attention()
|
||||
print("- Enabled xformers memory efficient attention")
|
||||
else:
|
||||
print("- Model doesn't support xformers")
|
||||
except (ImportError, AttributeError):
|
||||
print("- Xformers not available")
|
||||
|
||||
# Set to eval mode
|
||||
model.eval()
|
||||
print("- Model set to eval mode")
|
||||
# Int8 quantization using HuggingFace integration
|
||||
# Int8 quantization using TorchAO
|
||||
elif self.config.use_int8:
|
||||
print("- Using TorchAO for Int8 dynamic activation and Int8 weight quantization")
|
||||
|
||||
# Import the quantize_ function and the quantization config
|
||||
from torchao.quantization import quantize_, int8_dynamic_activation_int8_weight
|
||||
print("- Successfully imported TorchAO")
|
||||
|
||||
# Load model normally first
|
||||
# set default to half
|
||||
import torch
|
||||
torch.set_default_dtype(torch.bfloat16)
|
||||
model = AutoModel.from_pretrained(
|
||||
self.config.model_path,
|
||||
device_map="auto"
|
||||
)
|
||||
|
||||
print("- Model loaded in full precision")
|
||||
print(f"- Model type: {type(model)}")
|
||||
|
||||
# Apply quantization - call the function to get the config, then apply it
|
||||
# quantize_(model, int8_dynamic_activation_int8_weight())
|
||||
# from torchao.quantization import quantize_, Int8DynamicActivationInt8WeightConfig,int8_dynamic_activation_int8_semi_sparse_weight,int4_weight_only,Int8DynActInt4WeightGPTQQuantizer,int8_dynamic_activation_int4_weight,Int8DynamicActivationInt4WeightConfig,Int4DynamicActivationInt4WeightConfig
|
||||
from torchao.quantization import quantize_, Int8DynamicActivationInt8WeightConfig
|
||||
quantize_(model, Int8DynamicActivationInt8WeightConfig())
|
||||
print("- Model successfully quantized with int8 weights and int8 activations")
|
||||
# add torch compile
|
||||
model = torch.compile(model)
|
||||
# For older PyTorch versions that have issues with tensor subclasses
|
||||
from torchao.utils import unwrap_tensor_subclass
|
||||
import torch
|
||||
if hasattr(torch, '_version') and not torch.version >= "2.5.0":
|
||||
print("- Unwrapping tensor subclasses for compatibility with older PyTorch")
|
||||
unwrap_tensor_subclass(model)
|
||||
|
||||
# Apply optimizations
|
||||
if torch.version.cuda and float(torch.version.cuda[:3]) >= 11.6:
|
||||
if hasattr(torch.nn.functional, 'scaled_dot_product_attention'):
|
||||
print("- Using PyTorch SDPA (scaled_dot_product_attention)")
|
||||
else:
|
||||
print("- PyTorch SDPA not available")
|
||||
|
||||
# Set to eval mode
|
||||
model.eval()
|
||||
print("- Model set to eval mode")
|
||||
|
||||
# For better performance with int8 dynamic quantization
|
||||
torch._inductor.config.force_fuse_int_mm_with_mul = True
|
||||
print("- Enabled fusion of int matmul with mul operations")
|
||||
|
||||
|
||||
|
||||
else:
|
||||
# Standard loading for FP16/FP32
|
||||
model = AutoModel.from_pretrained(self.config.model_path)
|
||||
print("- Model loaded in standard precision")
|
||||
print(f"- Model type: {type(model)}")
|
||||
|
||||
# Apply standard optimizations
|
||||
# set default to half
|
||||
import torch
|
||||
torch.set_default_dtype(torch.bfloat16)
|
||||
model = ModelOptimizer.optimize(model, self.config)
|
||||
model = model.half()
|
||||
# add torch compile
|
||||
model = torch.compile(model)
|
||||
|
||||
# Final check to ensure model is not None
|
||||
if model is None:
|
||||
raise ValueError("Model is None after optimization")
|
||||
|
||||
print(f"- Final model type: {type(model)}")
|
||||
return model
|
||||
|
||||
except Exception as e:
|
||||
print(f"ERROR loading model: {str(e)}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
raise
|
||||
|
||||
def _create_random_batch(self, batch_size: int) -> torch.Tensor:
|
||||
return torch.randint(
|
||||
0, 1000,
|
||||
(batch_size, self.config.seq_length),
|
||||
device="cuda",
|
||||
dtype=torch.long
|
||||
)
|
||||
|
||||
def _run_inference(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
cuda_graph_wrapper: Optional[CUDAGraphWrapper] = None
|
||||
) -> Tuple[float, torch.Tensor]:
|
||||
attention_mask = torch.ones_like(input_ids)
|
||||
|
||||
with torch.no_grad(), self.timer.timing():
|
||||
if cuda_graph_wrapper is not None:
|
||||
output = cuda_graph_wrapper(input_ids, attention_mask)
|
||||
else:
|
||||
output = self.model(input_ids=input_ids, attention_mask=attention_mask)
|
||||
|
||||
return self.timer.elapsed_time(), output
|
||||
|
||||
def run(self) -> Dict[int, Dict[str, float]]:
|
||||
results = {}
|
||||
|
||||
# Reset peak memory stats
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
|
||||
for batch_size in self.config.batch_sizes:
|
||||
print(f"\nTesting batch size: {batch_size}")
|
||||
times = []
|
||||
|
||||
# Get or create CUDA graph for this batch size
|
||||
cuda_graph_wrapper = (
|
||||
self.cuda_graphs.get_or_create(batch_size)
|
||||
if self.cuda_graphs is not None
|
||||
else None
|
||||
)
|
||||
|
||||
# Pre-allocate input tensor
|
||||
input_ids = self._create_random_batch(batch_size)
|
||||
print(f"Input shape: {input_ids.shape}")
|
||||
|
||||
# Run benchmark
|
||||
for i in tqdm(range(self.config.num_runs), desc=f"Batch size {batch_size}"):
|
||||
try:
|
||||
elapsed_time, output = self._run_inference(input_ids, cuda_graph_wrapper)
|
||||
if i == 0: # Only print on first run
|
||||
print(f"Output shape: {output.last_hidden_state.shape}")
|
||||
times.append(elapsed_time)
|
||||
except Exception as e:
|
||||
print(f"Error during inference: {e}")
|
||||
break
|
||||
|
||||
if not times:
|
||||
print(f"No successful runs for batch size {batch_size}, skipping")
|
||||
continue
|
||||
|
||||
# Calculate statistics
|
||||
avg_time = np.mean(times)
|
||||
std_time = np.std(times)
|
||||
throughput = batch_size / avg_time
|
||||
|
||||
results[batch_size] = {
|
||||
"avg_time": avg_time,
|
||||
"std_time": std_time,
|
||||
"throughput": throughput,
|
||||
}
|
||||
|
||||
print(f"Avg Time: {avg_time:.4f}s ± {std_time:.4f}s")
|
||||
print(f"Throughput: {throughput:.2f} sequences/second")
|
||||
|
||||
# Log memory usage
|
||||
peak_memory_gb = torch.cuda.max_memory_allocated() / (1024 ** 3)
|
||||
print(f"\nPeak GPU memory usage: {peak_memory_gb:.2f} GB")
|
||||
|
||||
# Add memory info to results
|
||||
for batch_size in results:
|
||||
results[batch_size]["peak_memory_gb"] = peak_memory_gb
|
||||
|
||||
return results
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Model Inference Benchmark")
|
||||
parser.add_argument(
|
||||
"--model_path",
|
||||
type=str,
|
||||
default="facebook/contriever",
|
||||
help="Path to the model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch_sizes",
|
||||
type=str,
|
||||
default="1,2,4,8,10,16,20,32,40,64,128,256,512,1024,2048,4096,8192",
|
||||
help="Comma-separated list of batch sizes",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--seq_length",
|
||||
type=int,
|
||||
default=256,
|
||||
help="Sequence length for input",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num_runs",
|
||||
type=int,
|
||||
default=5,
|
||||
help="Number of runs for each batch size",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--use_fp16",
|
||||
action="store_true",
|
||||
help="Enable FP16 inference",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--use_int4",
|
||||
action="store_true",
|
||||
help="Enable INT4 quantization using bitsandbytes",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--use_int8",
|
||||
action="store_true",
|
||||
help="Enable INT8 quantization for both activations and weights using bitsandbytes",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--use_cuda_graphs",
|
||||
action="store_true",
|
||||
help="Enable CUDA Graphs optimization",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--use_flash_attention",
|
||||
action="store_true",
|
||||
help="Enable Flash Attention 2 if available",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--use_linear8bitlt",
|
||||
action="store_true",
|
||||
help="Enable Linear8bitLt quantization for all linear layers",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Print arguments for debugging
|
||||
print("\nCommand line arguments:")
|
||||
for arg, value in vars(args).items():
|
||||
print(f"- {arg}: {value}")
|
||||
|
||||
config = BenchmarkConfig(
|
||||
model_path=args.model_path,
|
||||
batch_sizes=[int(bs) for bs in args.batch_sizes.split(",")],
|
||||
seq_length=args.seq_length,
|
||||
num_runs=args.num_runs,
|
||||
use_fp16=args.use_fp16,
|
||||
use_int4=args.use_int4,
|
||||
use_int8=args.use_int8, # Add this line
|
||||
use_cuda_graphs=args.use_cuda_graphs,
|
||||
use_flash_attention=args.use_flash_attention,
|
||||
use_linear8bitlt=args.use_linear8bitlt,
|
||||
)
|
||||
|
||||
# Print configuration for debugging
|
||||
print("\nBenchmark configuration:")
|
||||
for field, value in vars(config).items():
|
||||
print(f"- {field}: {value}")
|
||||
|
||||
try:
|
||||
benchmark = Benchmark(config)
|
||||
results = benchmark.run()
|
||||
|
||||
# Save results to file
|
||||
import json
|
||||
import os
|
||||
|
||||
# Create results directory if it doesn't exist
|
||||
os.makedirs("results", exist_ok=True)
|
||||
|
||||
# Generate filename based on configuration
|
||||
precision_type = "int4" if config.use_int4 else "fp16" if config.use_fp16 else "fp32"
|
||||
model_name = os.path.basename(config.model_path)
|
||||
output_file = f"results/benchmark_{model_name}_{precision_type}.json"
|
||||
|
||||
# Save results
|
||||
with open(output_file, "w") as f:
|
||||
json.dump(
|
||||
{
|
||||
"config": {k: str(v) if isinstance(v, list) else v for k, v in vars(config).items()},
|
||||
"results": {str(k): v for k, v in results.items()}
|
||||
},
|
||||
f,
|
||||
indent=2
|
||||
)
|
||||
print(f"Results saved to {output_file}")
|
||||
|
||||
except Exception as e:
|
||||
print(f"Benchmark failed: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
376
research/micro/embedd_micro_seq.py
Normal file
376
research/micro/embedd_micro_seq.py
Normal file
@@ -0,0 +1,376 @@
|
||||
import argparse
|
||||
import time
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
from transformers import AutoModel
|
||||
from tqdm import tqdm
|
||||
from contextlib import contextmanager
|
||||
import math
|
||||
|
||||
@dataclass
|
||||
class BenchmarkConfig:
|
||||
model_path: str
|
||||
batch_sizes: List[int]
|
||||
seq_length: int
|
||||
num_runs: int
|
||||
use_fp16: bool = True
|
||||
use_cuda_graphs: bool = False
|
||||
use_flash_attention: bool = False
|
||||
max_batch_size: int = 256 # Maximum batch size before splitting
|
||||
|
||||
|
||||
class CUDAGraphContainer:
|
||||
"""Container for managing CUDA graphs for different batch sizes."""
|
||||
|
||||
def __init__(self, model: nn.Module, seq_length: int, max_batch_size: int):
|
||||
self.model = model
|
||||
self.seq_length = seq_length
|
||||
self.max_batch_size = max_batch_size
|
||||
self.graphs: Dict[int, CUDAGraphWrapper] = {}
|
||||
|
||||
def get_or_create(self, batch_size: int) -> 'CUDAGraphWrapper':
|
||||
# For CUDA graphs, we always use the actual batch size or max_batch_size
|
||||
effective_batch_size = min(batch_size, self.max_batch_size)
|
||||
|
||||
if effective_batch_size not in self.graphs:
|
||||
self.graphs[effective_batch_size] = CUDAGraphWrapper(
|
||||
self.model, effective_batch_size, self.seq_length
|
||||
)
|
||||
return self.graphs[effective_batch_size]
|
||||
|
||||
|
||||
class CUDAGraphWrapper:
|
||||
"""Wrapper for CUDA graph capture and replay."""
|
||||
|
||||
def __init__(self, model: nn.Module, batch_size: int, seq_length: int):
|
||||
self.model = model
|
||||
self.static_input = self._create_random_batch(batch_size, seq_length)
|
||||
self.static_attention_mask = torch.ones_like(self.static_input)
|
||||
|
||||
# Warm up
|
||||
self._warmup()
|
||||
|
||||
# Capture graph
|
||||
self.graph = torch.cuda.CUDAGraph()
|
||||
with torch.cuda.graph(self.graph):
|
||||
self.static_output = self.model(
|
||||
input_ids=self.static_input,
|
||||
attention_mask=self.static_attention_mask
|
||||
)
|
||||
|
||||
def _create_random_batch(self, batch_size: int, seq_length: int) -> torch.Tensor:
|
||||
return torch.randint(
|
||||
0, 1000, (batch_size, seq_length),
|
||||
device="cuda",
|
||||
dtype=torch.long
|
||||
)
|
||||
|
||||
def _warmup(self, num_warmup: int = 3):
|
||||
with torch.no_grad():
|
||||
for _ in range(num_warmup):
|
||||
self.model(
|
||||
input_ids=self.static_input,
|
||||
attention_mask=self.static_attention_mask
|
||||
)
|
||||
|
||||
def __call__(self, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
|
||||
self.static_input.copy_(input_ids)
|
||||
self.static_attention_mask.copy_(attention_mask)
|
||||
self.graph.replay()
|
||||
return self.static_output
|
||||
|
||||
|
||||
class ModelOptimizer:
|
||||
"""Applies various optimizations to the model."""
|
||||
|
||||
@staticmethod
|
||||
def optimize(model: nn.Module, config: BenchmarkConfig) -> nn.Module:
|
||||
print("\nApplying model optimizations:")
|
||||
|
||||
# Move to GPU
|
||||
model = model.cuda()
|
||||
print("- Model moved to GPU")
|
||||
|
||||
# FP16
|
||||
if config.use_fp16:
|
||||
model = model.half()
|
||||
print("- Using FP16 precision")
|
||||
|
||||
# Check if using SDPA
|
||||
if torch.version.cuda and float(torch.version.cuda[:3]) >= 11.6:
|
||||
if hasattr(torch.nn.functional, 'scaled_dot_product_attention'):
|
||||
print("- Using PyTorch SDPA (scaled_dot_product_attention)")
|
||||
# No need to do anything as it's automatically enabled
|
||||
else:
|
||||
print("- PyTorch SDPA not available")
|
||||
|
||||
# Flash Attention
|
||||
if config.use_flash_attention:
|
||||
try:
|
||||
from flash_attn.flash_attention import FlashAttention
|
||||
print("- Flash Attention 2 available")
|
||||
if hasattr(model.config, "attention_mode"):
|
||||
model.config.attention_mode = "flash_attention_2"
|
||||
print(" - Enabled Flash Attention 2 mode")
|
||||
except ImportError:
|
||||
print("- Flash Attention not available")
|
||||
|
||||
# Optimize LayerNorm
|
||||
try:
|
||||
num_layernorms = 0
|
||||
for module in model.modules():
|
||||
if isinstance(module, torch.nn.LayerNorm):
|
||||
module.forward = torch.jit.script(module.forward)
|
||||
num_layernorms += 1
|
||||
if num_layernorms > 0:
|
||||
print(f"- Optimized {num_layernorms} LayerNorm modules with TorchScript")
|
||||
except Exception as e:
|
||||
print(f"- LayerNorm optimization failed: {e}")
|
||||
|
||||
# Memory efficient attention
|
||||
try:
|
||||
from xformers.ops import memory_efficient_attention
|
||||
model.enable_xformers_memory_efficient_attention()
|
||||
print("- Enabled xformers memory efficient attention")
|
||||
except (ImportError, AttributeError):
|
||||
print("- Xformers not available")
|
||||
|
||||
model.eval()
|
||||
print("- Model set to eval mode")
|
||||
|
||||
return model
|
||||
|
||||
|
||||
class Timer:
|
||||
"""Handles accurate GPU timing using CUDA events."""
|
||||
|
||||
def __init__(self):
|
||||
self.start_event = torch.cuda.Event(enable_timing=True)
|
||||
self.end_event = torch.cuda.Event(enable_timing=True)
|
||||
|
||||
@contextmanager
|
||||
def timing(self):
|
||||
self.start_event.record()
|
||||
yield
|
||||
self.end_event.record()
|
||||
self.end_event.synchronize()
|
||||
|
||||
def elapsed_time(self) -> float:
|
||||
return self.start_event.elapsed_time(self.end_event) / 1000 # ms to seconds
|
||||
|
||||
|
||||
class Benchmark:
|
||||
"""Main benchmark runner."""
|
||||
|
||||
def __init__(self, config: BenchmarkConfig):
|
||||
self.config = config
|
||||
self.model = self._load_model()
|
||||
self.cuda_graphs = (
|
||||
CUDAGraphContainer(self.model, config.seq_length, config.max_batch_size)
|
||||
if config.use_cuda_graphs
|
||||
else None
|
||||
)
|
||||
self.timer = Timer()
|
||||
|
||||
def _load_model(self) -> nn.Module:
|
||||
print(f"Loading model from {self.config.model_path}...")
|
||||
model = AutoModel.from_pretrained(self.config.model_path)
|
||||
return ModelOptimizer.optimize(model, self.config)
|
||||
|
||||
def _create_random_batch(self, batch_size: int) -> torch.Tensor:
|
||||
return torch.randint(
|
||||
0, 1000,
|
||||
(batch_size, self.config.seq_length),
|
||||
device="cuda",
|
||||
dtype=torch.long
|
||||
)
|
||||
|
||||
def _run_inference(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
cuda_graph_wrapper: Optional[CUDAGraphWrapper] = None
|
||||
) -> Tuple[float, torch.Tensor]:
|
||||
attention_mask = torch.ones_like(input_ids)
|
||||
original_batch_size = input_ids.shape[0]
|
||||
print(f"Original input_ids shape: {input_ids.shape}")
|
||||
|
||||
# Split large batches to avoid OOM
|
||||
max_batch_size = self.config.max_batch_size
|
||||
if original_batch_size > max_batch_size:
|
||||
print(f"Splitting batch of size {original_batch_size} into chunks of {max_batch_size}")
|
||||
total_time = 0
|
||||
outputs = []
|
||||
|
||||
with torch.no_grad():
|
||||
for i in range(0, original_batch_size, max_batch_size):
|
||||
end_idx = min(i + max_batch_size, original_batch_size)
|
||||
batch_slice = input_ids[i:end_idx]
|
||||
mask_slice = attention_mask[i:end_idx]
|
||||
|
||||
print(f"Processing chunk {i//max_batch_size + 1}: shape {batch_slice.shape}")
|
||||
|
||||
# Use CUDA graph if available (with the smaller batch size)
|
||||
chunk_cuda_graph = None
|
||||
if cuda_graph_wrapper is not None:
|
||||
chunk_cuda_graph = self.cuda_graphs.get_or_create(batch_slice.shape[0])
|
||||
|
||||
with self.timer.timing():
|
||||
if chunk_cuda_graph is not None:
|
||||
chunk_output = chunk_cuda_graph(batch_slice, mask_slice)
|
||||
else:
|
||||
chunk_output = self.model(input_ids=batch_slice, attention_mask=mask_slice)
|
||||
|
||||
total_time += self.timer.elapsed_time()
|
||||
outputs.append(chunk_output.last_hidden_state)
|
||||
|
||||
# Combine outputs
|
||||
combined_output = torch.cat(outputs, dim=0)
|
||||
print(f"Combined output shape: {combined_output.shape}")
|
||||
|
||||
# Create a wrapper object similar to model output to maintain consistency
|
||||
class DummyOutput:
|
||||
def __init__(self, hidden_states):
|
||||
self.last_hidden_state = hidden_states
|
||||
|
||||
output = DummyOutput(combined_output)
|
||||
return total_time, output
|
||||
else:
|
||||
# Process normally for small batches
|
||||
with torch.no_grad(), self.timer.timing():
|
||||
if cuda_graph_wrapper is not None:
|
||||
output = cuda_graph_wrapper(input_ids, attention_mask)
|
||||
else:
|
||||
output = self.model(input_ids=input_ids, attention_mask=attention_mask)
|
||||
|
||||
print(f"Output shape: {output.last_hidden_state.shape}")
|
||||
return self.timer.elapsed_time(), output
|
||||
|
||||
def run(self) -> Dict[int, Dict[str, float]]:
|
||||
results = {}
|
||||
|
||||
for batch_size in self.config.batch_sizes:
|
||||
print(f"\nTesting batch size: {batch_size}")
|
||||
times = []
|
||||
|
||||
# Get or create CUDA graph for this batch size
|
||||
cuda_graph_wrapper = None
|
||||
if self.cuda_graphs is not None:
|
||||
if batch_size <= self.config.max_batch_size:
|
||||
cuda_graph_wrapper = self.cuda_graphs.get_or_create(batch_size)
|
||||
else:
|
||||
# For large batches, we'll use the max_batch_size graph in chunks
|
||||
cuda_graph_wrapper = True # Just a flag to indicate we want to use CUDA graphs
|
||||
|
||||
# Pre-allocate input tensor
|
||||
input_ids = self._create_random_batch(batch_size)
|
||||
|
||||
# Run benchmark
|
||||
for run_idx in tqdm(range(self.config.num_runs), desc=f"Batch size {batch_size}"):
|
||||
elapsed_time, _ = self._run_inference(input_ids, cuda_graph_wrapper)
|
||||
times.append(elapsed_time)
|
||||
print(f"Run {run_idx+1}: {elapsed_time:.4f}s")
|
||||
|
||||
# Calculate statistics
|
||||
avg_time = np.mean(times)
|
||||
std_time = np.std(times)
|
||||
throughput = batch_size / avg_time
|
||||
|
||||
results[batch_size] = {
|
||||
"avg_time": avg_time,
|
||||
"std_time": std_time,
|
||||
"throughput": throughput,
|
||||
}
|
||||
|
||||
print(f"Avg Time: {avg_time:.4f}s ± {std_time:.4f}s")
|
||||
print(f"Throughput: {throughput:.2f} sequences/second")
|
||||
|
||||
return results
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Model Inference Benchmark")
|
||||
parser.add_argument(
|
||||
"--model_path",
|
||||
type=str,
|
||||
default="facebook/contriever",
|
||||
help="Path to the model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch_sizes",
|
||||
type=str,
|
||||
default="1,2,4,8,16,32,64,128,256,512,1024,2048,4096",
|
||||
help="Comma-separated list of batch sizes",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--seq_length",
|
||||
type=int,
|
||||
default=256,
|
||||
help="Sequence length for input",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num_runs",
|
||||
type=int,
|
||||
default=5,
|
||||
help="Number of runs for each batch size",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--no_fp16",
|
||||
action="store_true",
|
||||
help="Disable FP16 inference",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--use_cuda_graphs",
|
||||
action="store_true",
|
||||
help="Enable CUDA Graphs optimization",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--use_flash_attention",
|
||||
action="store_true",
|
||||
help="Enable Flash Attention 2 if available",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max_batch_size",
|
||||
type=int,
|
||||
default=256,
|
||||
help="Maximum batch size before splitting to prevent OOM",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
config = BenchmarkConfig(
|
||||
model_path=args.model_path,
|
||||
batch_sizes=[int(bs) for bs in args.batch_sizes.split(",")],
|
||||
seq_length=args.seq_length,
|
||||
num_runs=args.num_runs,
|
||||
use_fp16=not args.no_fp16,
|
||||
use_cuda_graphs=args.use_cuda_graphs,
|
||||
use_flash_attention=args.use_flash_attention,
|
||||
max_batch_size=args.max_batch_size,
|
||||
)
|
||||
|
||||
benchmark = Benchmark(config)
|
||||
results = benchmark.run()
|
||||
|
||||
# Print overall summary
|
||||
print("\n===== BENCHMARK SUMMARY =====")
|
||||
print(f"Model: {config.model_path}")
|
||||
print(f"Sequence Length: {config.seq_length}")
|
||||
print(f"FP16: {config.use_fp16}")
|
||||
print(f"CUDA Graphs: {config.use_cuda_graphs}")
|
||||
print(f"Flash Attention: {config.use_flash_attention}")
|
||||
print(f"Max Batch Size: {config.max_batch_size}")
|
||||
print("\nResults:")
|
||||
|
||||
print("\nBatch Size | Avg Time (s) | Throughput (seq/s)")
|
||||
print("-" * 50)
|
||||
for bs in sorted(results.keys()):
|
||||
r = results[bs]
|
||||
print(f"{bs:^10} | {r['avg_time']:^12.4f} | {r['throughput']:^17.2f}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
218
research/micro/int4benchmark.py
Normal file
218
research/micro/int4benchmark.py
Normal file
@@ -0,0 +1,218 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import time
|
||||
import torch.nn.functional as F
|
||||
|
||||
# Import necessary functions from the quantize.py file
|
||||
def get_group_qparams(w, n_bit=4, groupsize=128):
|
||||
# needed for GPTQ with padding
|
||||
if groupsize > w.shape[-1]:
|
||||
groupsize = w.shape[-1]
|
||||
assert groupsize > 1
|
||||
assert w.shape[-1] % groupsize == 0
|
||||
assert w.dim() == 2
|
||||
|
||||
to_quant = w.reshape(-1, groupsize)
|
||||
assert torch.isnan(to_quant).sum() == 0
|
||||
|
||||
max_val = to_quant.amax(dim=1, keepdim=True)
|
||||
min_val = to_quant.amin(dim=1, keepdim=True)
|
||||
max_int = 2**n_bit - 1
|
||||
scales = (max_val - min_val).clamp(min=1e-6) / max_int
|
||||
zeros = min_val + scales * (2 ** (n_bit - 1))
|
||||
return scales.to(torch.bfloat16).reshape(w.shape[0], -1), zeros.to(
|
||||
torch.bfloat16
|
||||
).reshape(w.shape[0], -1)
|
||||
|
||||
def pack_scales_and_zeros(scales, zeros):
|
||||
assert scales.shape == zeros.shape
|
||||
assert scales.dtype == torch.bfloat16
|
||||
assert zeros.dtype == torch.bfloat16
|
||||
return (
|
||||
torch.cat(
|
||||
[
|
||||
scales.reshape(scales.size(0), scales.size(1), 1),
|
||||
zeros.reshape(zeros.size(0), zeros.size(1), 1),
|
||||
],
|
||||
2,
|
||||
)
|
||||
.transpose(0, 1)
|
||||
.contiguous()
|
||||
)
|
||||
|
||||
def group_quantize_tensor(w, n_bit=4, groupsize=128):
|
||||
scales, zeros = get_group_qparams(w, n_bit, groupsize)
|
||||
w_int32 = group_quantize_tensor_from_qparams(w, scales, zeros, n_bit, groupsize)
|
||||
scales_and_zeros = pack_scales_and_zeros(scales, zeros)
|
||||
return w_int32, scales_and_zeros
|
||||
|
||||
def group_quantize_tensor_from_qparams(w, scales, zeros, n_bit=4, groupsize=128):
|
||||
assert groupsize > 1
|
||||
# needed for GPTQ single column quantize
|
||||
if groupsize > w.shape[-1] and scales.shape[-1] == 1:
|
||||
groupsize = w.shape[-1]
|
||||
|
||||
assert w.shape[-1] % groupsize == 0
|
||||
assert w.dim() == 2
|
||||
|
||||
to_quant = w.reshape(-1, groupsize)
|
||||
assert torch.isnan(to_quant).sum() == 0
|
||||
|
||||
scales = scales.reshape(-1, 1)
|
||||
zeros = zeros.reshape(-1, 1)
|
||||
min_val = zeros - scales * (2 ** (n_bit - 1))
|
||||
max_int = 2**n_bit - 1
|
||||
min_int = 0
|
||||
w_int32 = (
|
||||
to_quant.sub(min_val)
|
||||
.div(scales)
|
||||
.round()
|
||||
.clamp_(min_int, max_int)
|
||||
.to(torch.int32)
|
||||
.reshape_as(w)
|
||||
)
|
||||
|
||||
return w_int32
|
||||
|
||||
def prepare_int4_weight_and_scales_and_zeros(weight_bf16, groupsize, inner_k_tiles):
|
||||
weight_int32, scales_and_zeros = group_quantize_tensor(
|
||||
weight_bf16, n_bit=4, groupsize=groupsize
|
||||
)
|
||||
weight_int4pack = torch.ops.aten._convert_weight_to_int4pack(weight_int32, inner_k_tiles)
|
||||
return weight_int4pack, scales_and_zeros
|
||||
|
||||
def linear_forward_int4(x, weight_int4pack, scales_and_zeros, out_features, groupsize):
|
||||
origin_x_size = x.size()
|
||||
x = x.reshape(-1, origin_x_size[-1])
|
||||
c = torch.ops.aten._weight_int4pack_mm(x, weight_int4pack, groupsize, scales_and_zeros)
|
||||
new_shape = origin_x_size[:-1] + (out_features,)
|
||||
c = c.reshape(new_shape)
|
||||
return c
|
||||
|
||||
class WeightOnlyInt4Linear(torch.nn.Module):
|
||||
__constants__ = ['in_features', 'out_features']
|
||||
in_features: int
|
||||
out_features: int
|
||||
weight: torch.Tensor
|
||||
|
||||
def __init__(
|
||||
self, in_features: int, out_features: int,
|
||||
bias=False, device=None, dtype=None, groupsize: int = 128, inner_k_tiles: int = 8
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.in_features = in_features
|
||||
self.out_features = out_features
|
||||
self.groupsize = groupsize
|
||||
self.inner_k_tiles = inner_k_tiles
|
||||
|
||||
assert out_features % 8 == 0, "require out_features % 8 == 0"
|
||||
assert in_features % (inner_k_tiles * 16) == 0, "require in_features % (innerKTiles * 16) == 0"
|
||||
self.register_buffer(
|
||||
"weight",
|
||||
torch.empty((out_features // 8, in_features // (inner_k_tiles * 16), 32, inner_k_tiles // 2), dtype=torch.int32)
|
||||
)
|
||||
self.register_buffer(
|
||||
"scales_and_zeros",
|
||||
torch.empty((in_features // groupsize, out_features, 2), dtype=torch.bfloat16)
|
||||
)
|
||||
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
input = input.to(torch.bfloat16)
|
||||
return linear_forward_int4(
|
||||
input,
|
||||
self.weight, self.scales_and_zeros, self.out_features, self.groupsize
|
||||
)
|
||||
|
||||
# Define dimensions that satisfy the requirements for INT4 quantization
|
||||
# in_features must be divisible by inner_k_tiles * 16
|
||||
# out_features must be divisible by 8
|
||||
in_features = 1024 # Must be divisible by inner_k_tiles * 16
|
||||
out_features = 2048 # Must be divisible by 8
|
||||
groupsize = 128
|
||||
inner_k_tiles = 8
|
||||
|
||||
# Create models
|
||||
fp16_model = nn.Sequential(
|
||||
nn.Linear(in_features, out_features, bias=False)
|
||||
)
|
||||
|
||||
# Create INT4 model
|
||||
int4_model = nn.Sequential(
|
||||
WeightOnlyInt4Linear(in_features, out_features, bias=False,
|
||||
groupsize=groupsize, inner_k_tiles=inner_k_tiles)
|
||||
)
|
||||
|
||||
# Quantize the weights and set up the INT4 model
|
||||
with torch.no_grad():
|
||||
# Convert FP16 weights to INT4
|
||||
fp16_weight = fp16_model[0].weight.data.to(torch.bfloat16)
|
||||
weight_int4pack, scales_and_zeros = prepare_int4_weight_and_scales_and_zeros(
|
||||
fp16_weight, groupsize, inner_k_tiles
|
||||
)
|
||||
|
||||
# Set the quantized weights in the INT4 model
|
||||
int4_model[0].weight.copy_(weight_int4pack)
|
||||
int4_model[0].scales_and_zeros.copy_(scales_and_zeros)
|
||||
|
||||
# Move models to GPU
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
fp16_model = fp16_model.to(device)
|
||||
int4_model = int4_model.to(device)
|
||||
|
||||
# Create random input tensor
|
||||
batch_size = 1024
|
||||
input_tensor = torch.randn(batch_size, in_features, device=device)
|
||||
input_tensor_bf16 = input_tensor.to(torch.bfloat16)
|
||||
|
||||
# Speed test function
|
||||
def speed_test(model, input_tensor, name, num_iterations=100):
|
||||
# Warmup
|
||||
for _ in range(10):
|
||||
_ = model(input_tensor)
|
||||
|
||||
# Actual timing
|
||||
torch.cuda.synchronize()
|
||||
start_time = time.time()
|
||||
|
||||
for _ in range(num_iterations):
|
||||
_ = model(input_tensor)
|
||||
|
||||
torch.cuda.synchronize()
|
||||
end_time = time.time()
|
||||
|
||||
avg_time = (end_time - start_time) / num_iterations
|
||||
print(f"{name} model: {avg_time:.6f} seconds per iteration")
|
||||
return avg_time
|
||||
|
||||
# Run speed tests
|
||||
with torch.no_grad(): # Disable gradient calculation for inference
|
||||
print(f"Running benchmark with batch_size={batch_size}, in_features={in_features}, out_features={out_features}")
|
||||
print(f"INT4 parameters: groupsize={groupsize}, inner_k_tiles={inner_k_tiles}")
|
||||
|
||||
fp16_time = speed_test(fp16_model, input_tensor_bf16, "FP16")
|
||||
int4_time = speed_test(int4_model, input_tensor, "INT4")
|
||||
|
||||
# Calculate speedup
|
||||
speedup = fp16_time / int4_time
|
||||
print(f"INT4 is {speedup:.2f}x faster than FP16")
|
||||
|
||||
# Calculate memory savings
|
||||
fp16_memory = fp16_model[0].weight.nelement() * fp16_model[0].weight.element_size()
|
||||
int4_memory = (int4_model[0].weight.nelement() * int4_model[0].weight.element_size() +
|
||||
int4_model[0].scales_and_zeros.nelement() * int4_model[0].scales_and_zeros.element_size())
|
||||
|
||||
memory_reduction = fp16_memory / int4_memory
|
||||
print(f"Memory reduction: {memory_reduction:.2f}x ({fp16_memory/1024/1024:.2f} MB vs {int4_memory/1024/1024:.2f} MB)")
|
||||
|
||||
# Check accuracy
|
||||
with torch.no_grad():
|
||||
fp16_output = fp16_model(input_tensor_bf16)
|
||||
int4_output = int4_model(input_tensor)
|
||||
|
||||
# Calculate error metrics
|
||||
abs_error = torch.abs(fp16_output - int4_output)
|
||||
rel_error = abs_error / (torch.abs(fp16_output) + 1e-7)
|
||||
|
||||
print(f"Mean absolute error: {abs_error.mean().item():.6f}")
|
||||
print(f"Max absolute error: {abs_error.max().item():.6f}")
|
||||
print(f"Mean relative error: {rel_error.mean().item():.6f}")
|
||||
83
research/micro/int8.py
Normal file
83
research/micro/int8.py
Normal file
@@ -0,0 +1,83 @@
|
||||
import torch
|
||||
import nvmath.bindings.cublas
|
||||
import ctypes
|
||||
|
||||
# 创建 CUBLAS 句柄
|
||||
handle = nvmath.bindings.cublas.create()
|
||||
|
||||
# 准备数据 - 使用 uint8 类型,并确保内存连续
|
||||
m, n, k = 64, 32, 48
|
||||
a = (torch.rand(m, k, device="cuda") * 255).to(torch.uint8).contiguous()
|
||||
b = (torch.rand(k, n, device="cuda") * 255).to(torch.uint8).contiguous()
|
||||
c = torch.zeros(m, n, device="cuda", dtype=torch.uint8).contiguous()
|
||||
|
||||
# 确保张量在 CUDA 上
|
||||
assert a.is_cuda and b.is_cuda and c.is_cuda
|
||||
# 确保张量是连续的
|
||||
assert a.is_contiguous() and b.is_contiguous() and c.is_contiguous()
|
||||
|
||||
# 获取指针
|
||||
a_ptr = a.data_ptr()
|
||||
b_ptr = b.data_ptr()
|
||||
c_ptr = c.data_ptr()
|
||||
|
||||
# 设置参数
|
||||
transa = 0 # CUBLAS_OP_N (不转置)
|
||||
transb = 0 # CUBLAS_OP_N (不转置)
|
||||
transc = 0 # CUBLAS_OP_N (不转置)
|
||||
|
||||
# 设置偏置值
|
||||
a_bias = 0
|
||||
b_bias = 0
|
||||
c_bias = 0
|
||||
|
||||
# 设置正确的 leading dimensions
|
||||
lda = k # A 的 leading dimension
|
||||
ldb = n # B 的 leading dimension
|
||||
ldc = n # C 的 leading dimension
|
||||
|
||||
c_mult = 1
|
||||
c_shift = 0
|
||||
|
||||
# 打印调试信息
|
||||
print(f"a shape: {a.shape}, a_ptr: {a_ptr}")
|
||||
print(f"b shape: {b.shape}, b_ptr: {b_ptr}")
|
||||
print(f"c shape: {c.shape}, c_ptr: {c_ptr}")
|
||||
|
||||
try:
|
||||
# 调用 uint8gemm_bias
|
||||
nvmath.bindings.cublas.uint8gemm_bias(
|
||||
handle,
|
||||
transa, transb, transc,
|
||||
m, n, k,
|
||||
a_ptr, a_bias, lda,
|
||||
b_ptr, b_bias, ldb,
|
||||
c_ptr, c_bias, ldc,
|
||||
c_mult, c_shift
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"Error: {e}")
|
||||
# 尝试使用 ctypes 转换指针
|
||||
a_ptr_c = ctypes.c_void_p(a_ptr).value
|
||||
b_ptr_c = ctypes.c_void_p(b_ptr).value
|
||||
c_ptr_c = ctypes.c_void_p(c_ptr).value
|
||||
|
||||
print(f"Using ctypes: a_ptr: {a_ptr_c}, b_ptr: {b_ptr_c}, c_ptr: {c_ptr_c}")
|
||||
|
||||
# 再次尝试调用
|
||||
nvmath.bindings.cublas.uint8gemm_bias(
|
||||
handle,
|
||||
transa, transb, transc,
|
||||
m, n, k,
|
||||
a_ptr_c, a_bias, lda,
|
||||
b_ptr_c, b_bias, ldb,
|
||||
c_ptr_c, c_bias, ldc,
|
||||
c_mult, c_shift
|
||||
)
|
||||
|
||||
# 销毁 CUBLAS 句柄
|
||||
nvmath.bindings.cublas.destroy(handle)
|
||||
|
||||
# 打印结果
|
||||
print("Result:")
|
||||
print(c)
|
||||
23
research/micro/llm_compress.py
Normal file
23
research/micro/llm_compress.py
Normal file
@@ -0,0 +1,23 @@
|
||||
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
|
||||
from llmcompressor.modifiers.quantization import GPTQModifier
|
||||
from llmcompressor import oneshot
|
||||
|
||||
# Select quantization algorithm. In this case, we:
|
||||
# * apply SmoothQuant to make the activations easier to quantize
|
||||
# * quantize the weights to int8 with GPTQ (static per channel)
|
||||
# * quantize the activations to int8 (dynamic per token)
|
||||
recipe = [
|
||||
SmoothQuantModifier(smoothing_strength=0.8),
|
||||
GPTQModifier(scheme="W8A8", targets="Linear", ignore=["lm_head"]),
|
||||
]
|
||||
|
||||
# Apply quantization using the built in open_platypus dataset.
|
||||
# * See examples for demos showing how to pass a custom calibration set
|
||||
oneshot(
|
||||
model="facebook/contriever",
|
||||
dataset="open_platypus",
|
||||
recipe=recipe,
|
||||
output_dir="contriever-INT4",
|
||||
max_seq_length=2048,
|
||||
num_calibration_samples=512,
|
||||
)
|
||||
41
research/micro/nvmath_test.py
Normal file
41
research/micro/nvmath_test.py
Normal file
@@ -0,0 +1,41 @@
|
||||
# Copyright (c) 2025, NVIDIA CORPORATION & AFFILIATES. ALL RIGHTS RESERVED.
|
||||
#
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
"""
|
||||
This example demonstrates basic matrix multiplication of FP8 tensors.
|
||||
|
||||
In narrow-precision operations, quantization scales must be provided for each tensor. These
|
||||
scales are used to dequantize input operands and quantize the result. Without proper
|
||||
scaling, the results of FP8 operations will likely exceed the type's range.
|
||||
|
||||
FP8 is only supported with cuBLAS 12.8 or newer and on devices with compute
|
||||
capability 8.9 or higher.
|
||||
"""
|
||||
|
||||
import torch
|
||||
|
||||
import nvmath
|
||||
|
||||
# Prepare sample input data. Note that N, M and K must be divisible by 16 for FP8.
|
||||
# cuBLAS requires B to be column-major, so we first create a row-major tensor and then
|
||||
# transpose it.
|
||||
m, n, k = 64, 32, 48
|
||||
a = (torch.rand(m, k, device="cuda") * 10).type(torch.float8_e4m3fn)
|
||||
b = (torch.rand(n, k, device="cuda") * 10).type(torch.float8_e4m3fn).T
|
||||
|
||||
# Prepare quantization scales. The scales must allow the result to fit within the dynamic
|
||||
# range of the data type used. Scales can be provided either as a dictionary or as a
|
||||
# MatmulQuantizationScales object. Note that scales are only allowed for FP8 operands.
|
||||
scales = {"a": 1, "b": 1, "d": 0.1}
|
||||
|
||||
# Perform the multiplication. The result of the multiplication will be:
|
||||
# (scales.a * A) @ (scales.b * B) * scales.d
|
||||
result = nvmath.linalg.advanced.matmul(a, b, quantization_scales=scales)
|
||||
|
||||
# Check how scaling helped to fit into the dynamic range of float8_e4m3fn type.
|
||||
result_without_scaling = nvmath.linalg.advanced.matmul(a, b, quantization_scales={"a": 1, "b": 1, "d": 1})
|
||||
print("Without scaling, most of the elements were clamped to the maximum value of float8_e4m3fn type (448):")
|
||||
print(result_without_scaling)
|
||||
print(f"\nWith D scale set to {scales['d']}, they were scaled down to fit into the dynamic range of float8_e4m3fn:")
|
||||
print(result)
|
||||
0
research/micro/result.md
Normal file
0
research/micro/result.md
Normal file
58
research/micro/save_small_model.py
Normal file
58
research/micro/save_small_model.py
Normal file
@@ -0,0 +1,58 @@
|
||||
import os
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from pathlib import Path
|
||||
|
||||
def save_model_in_pth_format(model_name, output_dir):
|
||||
"""
|
||||
Download a model from Hugging Face and save it in PTH format
|
||||
for use with quantization benchmarks.
|
||||
|
||||
Args:
|
||||
model_name: Name of the model on Hugging Face
|
||||
output_dir: Directory to save the model
|
||||
"""
|
||||
print(f"Loading model {model_name}...")
|
||||
|
||||
# Create output directory if it doesn't exist
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
|
||||
# Load tokenizer and model
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
torch_dtype=torch.bfloat16,
|
||||
low_cpu_mem_usage=True
|
||||
)
|
||||
|
||||
# Save tokenizer
|
||||
tokenizer.save_pretrained(output_dir)
|
||||
|
||||
# Extract and save the model weights in PTH format
|
||||
model_state_dict = model.state_dict()
|
||||
|
||||
# Save the model weights
|
||||
model_path = Path(output_dir) / "model.pth"
|
||||
torch.save(model_state_dict, model_path)
|
||||
|
||||
print(f"Model saved to {model_path}")
|
||||
|
||||
# Print model size information
|
||||
param_count = sum(p.numel() for p in model.parameters())
|
||||
model_size_mb = sum(p.numel() * p.element_size() for p in model.parameters()) / (1024 * 1024)
|
||||
|
||||
print(f"Model parameters: {param_count:,}")
|
||||
print(f"Model size: {model_size_mb:.2f} MB")
|
||||
|
||||
return model_path
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Use a small model for testing
|
||||
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
||||
output_dir = "./tinyllama-1.1b-chat"
|
||||
|
||||
model_path = save_model_in_pth_format(model_name, output_dir)
|
||||
|
||||
print("\nYou can now use this model with the INT4 benchmark script.")
|
||||
print("Example command:")
|
||||
print(f"python int4benchmark.py --model_path {model_path}")
|
||||
677
research/micro/transformer-batching-benchmark.ipynb
Normal file
677
research/micro/transformer-batching-benchmark.ipynb
Normal file
@@ -0,0 +1,677 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "cab91cfc",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"/home/ubuntu/Power-RAG/.venv/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
||||
" from .autonotebook import tqdm as notebook_tqdm\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import copy\n",
|
||||
"import dataclasses\n",
|
||||
"import os\n",
|
||||
"import time\n",
|
||||
"import pathlib\n",
|
||||
"import itertools\n",
|
||||
"import multiprocessing\n",
|
||||
"import scipy\n",
|
||||
"import numpy as np\n",
|
||||
"import pandas as pd\n",
|
||||
"import pickle\n",
|
||||
"import gzip\n",
|
||||
"import threading\n",
|
||||
"import queue\n",
|
||||
"import pytz\n",
|
||||
"import traceback\n",
|
||||
"from datetime import datetime\n",
|
||||
"from tqdm.auto import tqdm, trange\n",
|
||||
"from typing import Any\n",
|
||||
"\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"import matplotlib.ticker as mtick\n",
|
||||
"%matplotlib inline\n",
|
||||
"%config InlineBackend.figure_format='retina'"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "8d24fbd7",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Sat Apr 12 00:10:05 2025 \n",
|
||||
"+-----------------------------------------------------------------------------------------+\n",
|
||||
"| NVIDIA-SMI 550.120 Driver Version: 550.120 CUDA Version: 12.4 |\n",
|
||||
"|-----------------------------------------+------------------------+----------------------+\n",
|
||||
"| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |\n",
|
||||
"| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |\n",
|
||||
"| | | MIG M. |\n",
|
||||
"|=========================================+========================+======================|\n",
|
||||
"| 0 NVIDIA A10G Off | 00000000:00:1E.0 Off | 0 |\n",
|
||||
"| 0% 27C P8 15W / 300W | 4MiB / 23028MiB | 0% Default |\n",
|
||||
"| | | N/A |\n",
|
||||
"+-----------------------------------------+------------------------+----------------------+\n",
|
||||
" \n",
|
||||
"+-----------------------------------------------------------------------------------------+\n",
|
||||
"| Processes: |\n",
|
||||
"| GPU GI CI PID Type Process name GPU Memory |\n",
|
||||
"| ID ID Usage |\n",
|
||||
"|=========================================================================================|\n",
|
||||
"| No running processes found |\n",
|
||||
"+-----------------------------------------------------------------------------------------+\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"!nvidia-smi"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "538b2c11",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def benchmark(f, *, f_setup=None, min_repeat: int, min_secs: float, tqdm_kwargs: dict | None=None) -> np.ndarray:\n",
|
||||
" latency = []\n",
|
||||
" \n",
|
||||
" # First run, ignore min_secs\n",
|
||||
" if f_setup is not None:\n",
|
||||
" f_setup()\n",
|
||||
" st = time.perf_counter_ns()\n",
|
||||
" f()\n",
|
||||
" ed = time.perf_counter_ns()\n",
|
||||
" latency.append((ed-st)/1e9)\n",
|
||||
" \n",
|
||||
" # Subsequent runs, until reaching both min_repeat and min_secs\n",
|
||||
" min_nanos = int(min_secs * 1e9)\n",
|
||||
" start_nanos = time.perf_counter_ns()\n",
|
||||
" while True:\n",
|
||||
" now_nanos = time.perf_counter_ns()\n",
|
||||
" if len(latency) > min_repeat and now_nanos - start_nanos > min_nanos:\n",
|
||||
" break\n",
|
||||
" if f_setup is not None:\n",
|
||||
" f_setup()\n",
|
||||
" st = time.perf_counter_ns()\n",
|
||||
" f()\n",
|
||||
" ed = time.perf_counter_ns()\n",
|
||||
" latency.append((ed-st)/1e9)\n",
|
||||
" return np.array(latency)\n",
|
||||
"\n",
|
||||
"def tail_mean(xs, skip=0.2):\n",
|
||||
" return xs[int(len(xs) * skip):].mean()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "02c9c9b1",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"<torch.autograd.grad_mode.set_grad_enabled at 0x7c5afc12b850>"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import torch\n",
|
||||
"torch.set_grad_enabled(False)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "3405fdc7",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"nd_list = list(itertools.chain(itertools.product([12, 3], [256])))\n",
|
||||
"seqlen_list = [256]\n",
|
||||
"bs_list = [2,4,8,16,32,64,128,256,512,1024,2048]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "10dc981a",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[(12, 256), (3, 256)]\n",
|
||||
"[256]\n",
|
||||
"[2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(nd_list)\n",
|
||||
"print(seqlen_list)\n",
|
||||
"print(bs_list)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "7e0ee385",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def benchmark_dense(out, nd_list, seqlen_list, bs_list):\n",
|
||||
" seqlen_list = [1] + seqlen_list\n",
|
||||
" total = len(list(itertools.product(nd_list, seqlen_list, bs_list)))\n",
|
||||
" pbar = tqdm(total=total)\n",
|
||||
" for (n, d), seqlen in reversed(list(itertools.product(nd_list, seqlen_list))):\n",
|
||||
" h = n * d\n",
|
||||
" maxbs = max(bs_list)\n",
|
||||
" print(maxbs, n, d, seqlen)\n",
|
||||
" cache = torch.empty(int(256e6 // 4), dtype=torch.int, device=\"cuda:0\")\n",
|
||||
" X = torch.rand((maxbs, seqlen, h), dtype=torch.bfloat16, device=\"cuda:0\")\n",
|
||||
" W = torch.rand((h, h), dtype=torch.bfloat16, device=\"cuda:0\")\n",
|
||||
" torch.cuda.synchronize()\n",
|
||||
" for bs in reversed(bs_list):\n",
|
||||
" pbar.set_postfix(n=n, h=h, d=d, seqlen=seqlen, bs=bs)\n",
|
||||
" def run():\n",
|
||||
" torch.matmul(X[:bs], W)\n",
|
||||
" torch.cuda.synchronize()\n",
|
||||
" def clear_cache():\n",
|
||||
" cache.zero_()\n",
|
||||
" torch.cuda.synchronize()\n",
|
||||
" latency = benchmark(run, f_setup=clear_cache, min_repeat=20, min_secs=2)\n",
|
||||
" l = tail_mean(latency)\n",
|
||||
" out.append({\n",
|
||||
" \"n\": n,\n",
|
||||
" \"d\": d,\n",
|
||||
" \"seqlen\": seqlen,\n",
|
||||
" \"bs\": bs,\n",
|
||||
" \"latency\": l\n",
|
||||
" })\n",
|
||||
" pbar.update()\n",
|
||||
" del cache, X, W\n",
|
||||
" torch.cuda.empty_cache()\n",
|
||||
" pbar.close()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "c206a502",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def benchmark_qk_init(out, nd_list, seqlen_list, bs_list):\n",
|
||||
" total = len(list(itertools.product(nd_list, seqlen_list, bs_list)))\n",
|
||||
" pbar = tqdm(total=total)\n",
|
||||
" for (n, d), seqlen in reversed(list(itertools.product(nd_list, seqlen_list))):\n",
|
||||
" h = n * d\n",
|
||||
" try:\n",
|
||||
" maxbs = max(b for b in bs_list if b*n*seqlen*d*2*2+b*n*seqlen**2*2 < 80e9)\n",
|
||||
" except ValueError:\n",
|
||||
" pbar.update(len(bs_list))\n",
|
||||
" continue\n",
|
||||
" cache = torch.empty(int(256e6 // 4), dtype=torch.int, device=\"cuda:0\")\n",
|
||||
" Qmax = torch.rand((maxbs, n, seqlen, d), dtype=torch.bfloat16, device=\"cuda:0\")\n",
|
||||
" Kmax = torch.rand((maxbs, n, seqlen, d), dtype=torch.bfloat16, device=\"cuda:0\")\n",
|
||||
" torch.cuda.synchronize()\n",
|
||||
" for bs in reversed(bs_list):\n",
|
||||
" pbar.set_postfix(n=n, h=h, d=d, seqlen=seqlen, bs=bs)\n",
|
||||
" if bs > maxbs:\n",
|
||||
" pbar.update()\n",
|
||||
" continue\n",
|
||||
" Q = Qmax[:bs]\n",
|
||||
" K = Kmax[:bs]\n",
|
||||
" def run():\n",
|
||||
" torch.bmm(Q.view(bs * n, seqlen, d), K.view(bs * n, seqlen, d).transpose(1, 2))\n",
|
||||
" torch.cuda.synchronize()\n",
|
||||
" def clear_cache():\n",
|
||||
" cache.zero_()\n",
|
||||
" torch.cuda.synchronize()\n",
|
||||
" latency = benchmark(run, f_setup=clear_cache, min_repeat=20, min_secs=2)\n",
|
||||
" l = tail_mean(latency)\n",
|
||||
" out.append({\n",
|
||||
" \"n\": n,\n",
|
||||
" \"d\": d,\n",
|
||||
" \"seqlen\": seqlen,\n",
|
||||
" \"bs\": bs,\n",
|
||||
" \"latency\": l\n",
|
||||
" })\n",
|
||||
" pbar.update()\n",
|
||||
" del cache, Q, K, Qmax, Kmax\n",
|
||||
" torch.cuda.empty_cache()\n",
|
||||
" pbar.close()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "a3a2103c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def benchmark_qk_ar(out, nd_list, seqlen_list, bs_list):\n",
|
||||
" total = len(list(itertools.product(nd_list, seqlen_list, bs_list)))\n",
|
||||
" pbar = tqdm(total=total)\n",
|
||||
" for (n, d), seqlen in reversed(list(itertools.product(nd_list, seqlen_list))):\n",
|
||||
" h = n * d\n",
|
||||
" try:\n",
|
||||
" maxbs = max(b for b in bs_list if b*n*(1+seqlen)*d*2+b*n*seqlen*2 < 80e9)\n",
|
||||
" except ValueError:\n",
|
||||
" pbar.update(len(bs_list))\n",
|
||||
" continue\n",
|
||||
" cache = torch.empty(int(256e6 // 4), dtype=torch.int, device=\"cuda:0\")\n",
|
||||
" Qmax = torch.rand((maxbs, n, 1, d), dtype=torch.bfloat16, device=\"cuda:0\")\n",
|
||||
" Kmax = torch.rand((maxbs, n, seqlen, d), dtype=torch.bfloat16, device=\"cuda:0\")\n",
|
||||
" torch.cuda.synchronize()\n",
|
||||
" for bs in reversed(bs_list):\n",
|
||||
" pbar.set_postfix(n=n, h=h, d=d, seqlen=seqlen, bs=bs)\n",
|
||||
" if bs > maxbs:\n",
|
||||
" pbar.update()\n",
|
||||
" continue\n",
|
||||
" Q = Qmax[:bs]\n",
|
||||
" K = Kmax[:bs]\n",
|
||||
" def run():\n",
|
||||
" torch.bmm(Q.view(bs * n, 1, d), K.view(bs * n, seqlen, d).transpose(1, 2))\n",
|
||||
" torch.cuda.synchronize()\n",
|
||||
" def clear_cache():\n",
|
||||
" cache.zero_()\n",
|
||||
" torch.cuda.synchronize()\n",
|
||||
" latency = benchmark(run, f_setup=clear_cache, min_repeat=20, min_secs=2)\n",
|
||||
" l = tail_mean(latency)\n",
|
||||
" out.append({\n",
|
||||
" \"n\": n,\n",
|
||||
" \"d\": d,\n",
|
||||
" \"seqlen\": seqlen,\n",
|
||||
" \"bs\": bs,\n",
|
||||
" \"latency\": l\n",
|
||||
" })\n",
|
||||
" pbar.update()\n",
|
||||
" del cache, Q, K, Qmax, Kmax\n",
|
||||
" torch.cuda.empty_cache()\n",
|
||||
" pbar.close()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "3aaad98a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"data = {}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "18137de3",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" 0%| | 0/22 [00:00<?, ?it/s]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"100%|██████████| 22/22 [00:44<00:00, 2.04s/it, bs=2, d=256, h=3072, n=12, seqlen=256] \n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"db = []\n",
|
||||
"benchmark_qk_init(db, nd_list, seqlen_list, bs_list)\n",
|
||||
"data[\"qk_init\"] = db"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "26c76e15",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"100%|██████████| 22/22 [00:44<00:00, 2.01s/it, bs=2, d=256, h=3072, n=12, seqlen=256] \n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"db = []\n",
|
||||
"benchmark_qk_ar(db, nd_list, seqlen_list, bs_list)\n",
|
||||
"data[\"qk_ar\"] = db"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"id": "313e36eb",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" 0%| | 0/44 [00:00<?, ?it/s, bs=2048, d=256, h=768, n=3, seqlen=256]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"2048 3 256 256\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" 25%|██▌ | 11/44 [00:22<01:06, 2.00s/it, bs=2048, d=256, h=768, n=3, seqlen=1] "
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"2048 3 256 1\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" 50%|█████ | 22/44 [00:44<00:44, 2.00s/it, bs=2048, d=256, h=3072, n=12, seqlen=256]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"2048 12 256 256\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" 75%|███████▌ | 33/44 [01:07<00:22, 2.02s/it, bs=2048, d=256, h=3072, n=12, seqlen=1] "
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"2048 12 256 1\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"100%|██████████| 44/44 [01:29<00:00, 2.03s/it, bs=2, d=256, h=3072, n=12, seqlen=1] \n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"db = []\n",
|
||||
"benchmark_dense(db, nd_list, seqlen_list, bs_list)\n",
|
||||
"data[\"dense\"] = db"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "50c37959",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with gzip.open(\"data/20230516-transformer-batching1.pkl.gz\", \"wb\") as f:\n",
|
||||
" pickle.dump(data, f)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"id": "828ddb54",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df_dense = (\n",
|
||||
" pd.DataFrame.from_dict(data[\"dense\"])\n",
|
||||
" .assign(h=lambda x: x[\"n\"] * x[\"d\"])\n",
|
||||
" .assign(flop=lambda x: (x[\"bs\"] * x[\"seqlen\"] * x[\"h\"]**2) * 2)\n",
|
||||
" .assign(io=lambda x: (x[\"bs\"]*x[\"seqlen\"]*x[\"h\"]*2 + x[\"h\"]**2) * 2/x['latency']/1e9)\n",
|
||||
" .assign(intensity=lambda x: x[\"flop\"] / x[\"io\"])\n",
|
||||
" .assign(throughput=lambda x: x[\"flop\"] / x[\"latency\"])\n",
|
||||
" .assign(series=\"dense\")\n",
|
||||
")\n",
|
||||
"df_qk_init = (\n",
|
||||
" pd.DataFrame.from_dict(data[\"qk_init\"])\n",
|
||||
" .assign(h=lambda x: x[\"n\"] * x[\"d\"])\n",
|
||||
" .assign(flop=lambda x: (x[\"bs\"]*x[\"n\"]*x[\"d\"]*x[\"seqlen\"]**2) * 2)\n",
|
||||
" .assign(io=lambda x: (x[\"bs\"]*x[\"n\"]*(x[\"seqlen\"]*x[\"d\"]*2 + x[\"seqlen\"]**2)) * 2/x['latency']/1e9)\n",
|
||||
" .assign(intensity=lambda x: x[\"flop\"] / x[\"io\"])\n",
|
||||
" .assign(throughput=lambda x: x[\"flop\"] / x[\"latency\"])\n",
|
||||
" .assign(series=\"qk_init\")\n",
|
||||
")\n",
|
||||
"df_qk_ar = (\n",
|
||||
" pd.DataFrame.from_dict(data[\"qk_ar\"])\n",
|
||||
" .assign(h=lambda x: x[\"n\"] * x[\"d\"])\n",
|
||||
" .assign(flop=lambda x: (x[\"bs\"]*x[\"n\"]*x[\"d\"]*x[\"seqlen\"]) * 2)\n",
|
||||
" .assign(io=lambda x: (x[\"bs\"]*x[\"n\"]*(x[\"d\"] + x[\"seqlen\"]*x[\"d\"] + x[\"seqlen\"])) * 2)\n",
|
||||
" .assign(intensity=lambda x: x[\"flop\"] / x[\"io\"])\n",
|
||||
" .assign(throughput=lambda x: x[\"bs\"] / x[\"latency\"])\n",
|
||||
" .assign(series=\"qk_ar\")\n",
|
||||
")\n",
|
||||
"pd.concat([df_dense, df_qk_init, df_qk_ar]).to_csv(\"data/transformer-batching-microbenchmarks.csv\", index=False)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 39,
|
||||
"id": "c296a395",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"<module 'pandas' from '/home/ubuntu/Power-RAG/.venv/lib/python3.10/site-packages/pandas/__init__.py'>"
|
||||
]
|
||||
},
|
||||
"execution_count": 39,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"pd\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "a25cdd5a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "63b8a531",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import transformers"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "af90eff1",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def _gen_opt_cfg(n_layers: int, d_model: int, n_heads: int, **kwargs) -> transformers.OPTConfig:\n",
|
||||
" return transformers.OPTConfig(\n",
|
||||
" num_hidden_layers=n_layers,\n",
|
||||
" hidden_size=d_model,\n",
|
||||
" ffn_dim=d_model*4,\n",
|
||||
" num_attention_heads=n_heads,\n",
|
||||
" **kwargs\n",
|
||||
" )\n",
|
||||
"optcfg = {\n",
|
||||
" # https://arxiv.org/pdf/2205.01068.pdf Table 2.1\n",
|
||||
" \"125m\": _gen_opt_cfg(12, 768, 12),\n",
|
||||
" \"350m\": _gen_opt_cfg(24, 1024, 16),\n",
|
||||
" \"760m\": _gen_opt_cfg(24, 1536, 16),\n",
|
||||
" \"1.3b\": _gen_opt_cfg(24, 2048, 32),\n",
|
||||
" \"2.7b\": _gen_opt_cfg(32, 2560, 32),\n",
|
||||
" \"6.7b\": _gen_opt_cfg(32, 4096, 32),\n",
|
||||
" \"13b\": _gen_opt_cfg(40, 5120, 40),\n",
|
||||
" \"13b_1layer\": _gen_opt_cfg(1, 5120, 40),\n",
|
||||
" \"30b\": _gen_opt_cfg(48, 7168, 56),\n",
|
||||
" \"66b\": _gen_opt_cfg(64, 9216, 72),\n",
|
||||
" \"175b\": _gen_opt_cfg(96, 12288, 96),\n",
|
||||
" \"175b_1layer\": _gen_opt_cfg(1, 12288, 96),\n",
|
||||
"}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "5b9ebbec",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def greedy_sample_one(model, input_ids, attention_mask=None, past_key_values=None):\n",
|
||||
" bs, tgt_len = input_ids.shape\n",
|
||||
" if past_key_values is not None:\n",
|
||||
" _bs, _num_heads, src_len, _head_dims = past_key_values[0][0].shape\n",
|
||||
" assert bs == _bs\n",
|
||||
" else:\n",
|
||||
" src_len = 0\n",
|
||||
" if attention_mask is None:\n",
|
||||
" attention_mask = torch.ones((bs, src_len + tgt_len), device=model.device)\n",
|
||||
" ret = model(\n",
|
||||
" input_ids=input_ids,\n",
|
||||
" attention_mask=attention_mask,\n",
|
||||
" past_key_values=past_key_values,\n",
|
||||
" use_cache=True, output_hidden_states=False, return_dict=True,\n",
|
||||
" )\n",
|
||||
" return ret\n",
|
||||
"\n",
|
||||
"def time_greedy_generate(model, input_ids, new_tokens):\n",
|
||||
" ts = []\n",
|
||||
" output = input_ids\n",
|
||||
" past_key_values = None\n",
|
||||
" cache = torch.empty(int(256e6 // 4), dtype=torch.int, device=model.device)\n",
|
||||
" attention_mask = torch.ones(input_ids.shape, device=model.device) \n",
|
||||
" for _ in range(new_tokens):\n",
|
||||
" cache.zero_()\n",
|
||||
" torch.cuda.synchronize()\n",
|
||||
" st = time.perf_counter_ns()\n",
|
||||
" \n",
|
||||
" ret = greedy_sample_one(model, input_ids, attention_mask, past_key_values)\n",
|
||||
" input_ids = torch.argmax(ret.logits[:, -1, :], axis=-1)[:, None]\n",
|
||||
" output = torch.cat([output, input_ids], axis=1)\n",
|
||||
" past_key_values = ret.past_key_values\n",
|
||||
" attention_mask = torch.cat([attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1)\n",
|
||||
" \n",
|
||||
" torch.cuda.synchronize()\n",
|
||||
" ed = time.perf_counter_ns()\n",
|
||||
" ts.append((ed-st)/1e9)\n",
|
||||
" return np.array(ts)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "fc92f940",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"opt_config = optcfg[\"6.7b\"]\n",
|
||||
"\n",
|
||||
"torch.set_default_dtype(torch.bfloat16)\n",
|
||||
"with transformers.modeling_utils.no_init_weights():\n",
|
||||
" model = transformers.models.opt.OPTForCausalLM(opt_config).to(\"cuda\")\n",
|
||||
"torch.set_default_dtype(torch.float32)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "c19fa396",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"db = {}\n",
|
||||
"input_tokens = 200\n",
|
||||
"new_tokens = 500\n",
|
||||
"for bs in tqdm(list(itertools.chain(range(1, 8), range(8, 16, 2), [16]))):\n",
|
||||
" x = torch.randint(1000, 10000, (bs, input_tokens), device=model.device)\n",
|
||||
" stack = []\n",
|
||||
" for _ in range(10):\n",
|
||||
" l = time_greedy_generate(model, x, new_tokens=new_tokens)\n",
|
||||
" stack.append(l)\n",
|
||||
" db[bs] = np.median(np.stack(stack), axis=0)\n",
|
||||
" del x\n",
|
||||
" torch.cuda.empty_cache()\n",
|
||||
"del model\n",
|
||||
"torch.cuda.empty_cache()\n",
|
||||
"\n",
|
||||
"with gzip.open(\"data/20230516-e2e-text-generation-batch.pkl.gz\", \"wb\") as f:\n",
|
||||
" pickle.dump(db, f)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": ".venv",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.12"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
165
research/paper_plot/acc_fig.py
Normal file
165
research/paper_plot/acc_fig.py
Normal file
@@ -0,0 +1,165 @@
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
# Set plot parameters
|
||||
plt.rcParams["font.family"] = "Helvetica"
|
||||
plt.rcParams["ytick.direction"] = "in"
|
||||
plt.rcParams["hatch.linewidth"] = 1.5
|
||||
plt.rcParams["font.weight"] = "bold"
|
||||
plt.rcParams["axes.labelweight"] = "bold"
|
||||
plt.rcParams["text.usetex"] = True
|
||||
|
||||
# Path settings
|
||||
FIGURE_PATH = "./paper_plot/figures"
|
||||
|
||||
# Load accuracy data
|
||||
acc_data = pd.read_csv("./paper_plot/data/acc.csv")
|
||||
|
||||
# Create figure with 4 subplots (one for each dataset)
|
||||
fig, axs = plt.subplots(1, 4)
|
||||
fig.set_size_inches(9, 2.5)
|
||||
|
||||
# Reduce the spacing between subplots
|
||||
# plt.subplots_adjust(wspace=0.2) # Reduced from 0.3 to 0.1
|
||||
|
||||
# Define datasets and their columns
|
||||
datasets = ["NQ", "TriviaQA", "GPQA", "HotpotQA"]
|
||||
metrics = ["Exact Match", "F1"]
|
||||
|
||||
# Define bar settings - make bars thicker
|
||||
# total_width, n = 0.9, 3 # increased total width and n for three models
|
||||
# width = total_width / n
|
||||
# The 'width' variable below now defines the distance between the centers of adjacent bars within a group.
|
||||
# It's also used as the base for calculating the actual plotted bar width.
|
||||
# Original 2 bars had centers 1.0 apart. For 3 bars, we need a smaller distance.
|
||||
# A value of 0.64 for distance between centers, with a scaling factor of 0.8 for bar width,
|
||||
# results in an actual bar width of ~0.51, and a group span of ~1.79, similar to original's ~1.76.
|
||||
n = 3 # Number of models
|
||||
width = 0.64 # Distance between centers of adjacent bars in a group
|
||||
bar_width_plotting_factor = 0.8 # Bar takes 80% of the space defined by 'width'
|
||||
|
||||
# Colors and hatches
|
||||
edgecolors = ["dimgrey", "#63B8B6", "tomato"] # Added color for PQ 5
|
||||
hatches = ["/////", "xxxxx", "\\\\\\\\\\"] # Added hatch for PQ 5
|
||||
labels = ["BM25", "PQ Compressed", "Ours"] # Added PQ 5
|
||||
|
||||
# Create plots for each dataset
|
||||
for i, dataset in enumerate(datasets):
|
||||
ax = axs[i]
|
||||
|
||||
# Get data for this dataset and convert to percentages
|
||||
em_values = [
|
||||
acc_data.loc[0, f"{dataset} Exact Match"] * 100,
|
||||
acc_data.loc[1, f"{dataset} Exact Match"] * 100,
|
||||
acc_data.loc[2, f"{dataset} Exact Match"] * 100 # Added PQ 5 EM data
|
||||
]
|
||||
f1_values = [
|
||||
acc_data.loc[0, f"{dataset} F1"] * 100,
|
||||
acc_data.loc[1, f"{dataset} F1"] * 100,
|
||||
acc_data.loc[2, f"{dataset} F1"] * 100 # Added PQ 5 F1 data
|
||||
]
|
||||
|
||||
# Define x positions for bars
|
||||
# For EM: center - width, center, center + width
|
||||
# For F1: center - width, center, center + width
|
||||
group_centers = [1.0, 3.0] # Centers for EM and F1 groups
|
||||
bar_offsets = [-width, 0, width]
|
||||
|
||||
# Plot all bars on the same axis
|
||||
for metric_idx, metric_group_center in enumerate(group_centers):
|
||||
values_to_plot = em_values if metric_idx == 0 else f1_values
|
||||
for j, model_label in enumerate(labels):
|
||||
x_pos = metric_group_center + bar_offsets[j]
|
||||
bar_value = values_to_plot[j]
|
||||
|
||||
ax.bar(
|
||||
x_pos,
|
||||
bar_value,
|
||||
width=width * bar_width_plotting_factor, # Use the new factor for bar width
|
||||
color="white",
|
||||
edgecolor=edgecolors[j],
|
||||
hatch=hatches[j],
|
||||
linewidth=1.5,
|
||||
label=model_label if i == 0 and metric_idx == 0 else None # Label only once
|
||||
)
|
||||
|
||||
# Add value on top of bar
|
||||
ax.text(x_pos, bar_value + (0.1 if dataset == "GPQA" else 0.1),
|
||||
f"{bar_value:.1f}", ha='center', va='bottom',
|
||||
fontsize=9, fontweight='bold') # Reduced fontsize for text on bars
|
||||
|
||||
# Set x-ticks and labels
|
||||
ax.set_xticks(group_centers) # Position ticks at the center of each group
|
||||
xticklabels = ax.set_xticklabels(metrics, fontsize=12)
|
||||
|
||||
# Now, shift these labels slightly to the right
|
||||
# Adjust this value to control the amount of shift (in data coordinates)
|
||||
# Given your group_centers are 1.0 and 3.0, a small value like 0.05 to 0.15 might be appropriate.
|
||||
# horizontal_shift = 0.7 # Try adjusting this value
|
||||
|
||||
# for label in xticklabels:
|
||||
# # Get the current x position (which is the tick location)
|
||||
# current_x_pos = label.get_position()[0]
|
||||
# # Set the new x position by adding the shift
|
||||
# label.set_position((current_x_pos + horizontal_shift, label.get_position()[1]))
|
||||
# # Ensure the label remains horizontally centered on this new x position
|
||||
# # (set_xticklabels defaults to 'center', so this re-affirms it if needed)
|
||||
# label.set_horizontalalignment('center')
|
||||
|
||||
# Set title
|
||||
ax.set_title(dataset, fontsize=14)
|
||||
|
||||
# Set y-label for all subplots
|
||||
if i == 0:
|
||||
ax.set_ylabel("Accuracy (\%)", fontsize=12, fontweight="bold")
|
||||
else:
|
||||
# Hide y-tick labels for non-first subplots to save space
|
||||
ax.tick_params(axis='y', labelsize=10)
|
||||
|
||||
# Set y-limits based on data range
|
||||
all_values = em_values + f1_values
|
||||
max_val = max(all_values)
|
||||
min_val = min(all_values)
|
||||
|
||||
# Special handling for GPQA which has very low values
|
||||
if dataset == "GPQA":
|
||||
ax.set_ylim(0, 10.0) # Set a fixed range for GPQA
|
||||
else:
|
||||
# Reduce the extra space above the bars
|
||||
ax.set_ylim(min_val * 0.9, max_val * 1.1) # Adjusted upper limit for text
|
||||
|
||||
# Format y-ticks as percentages
|
||||
ax.yaxis.set_major_formatter(plt.FuncFormatter(lambda y, _: ' {:.0f}'.format(y)))
|
||||
|
||||
# Set x-limits to properly space the bars with less blank space
|
||||
# ax.set_xlim(group_centers[0] - total_width, group_centers[1] + total_width)
|
||||
# Set xlim to be similar to original (0,4) for group_centers (1,3) => margin of 1.0
|
||||
ax.set_xlim(group_centers[0] - 1.0, group_centers[1] + 1.0)
|
||||
|
||||
# Add a box around the subplot
|
||||
# for spine in ax.spines.values():
|
||||
# spine.set_visible(True)
|
||||
# spine.set_linewidth(1.0)
|
||||
|
||||
# Add legend to first subplot
|
||||
if i == 0:
|
||||
ax.legend(
|
||||
bbox_to_anchor=(2.21, 1.35), # Adjusted anchor if needed
|
||||
ncol=3, # Changed to 3 columns for three labels
|
||||
loc="upper center",
|
||||
labelspacing=0.1,
|
||||
edgecolor="black",
|
||||
facecolor="white",
|
||||
framealpha=1,
|
||||
shadow=False,
|
||||
fancybox=False,
|
||||
handlelength=1.0,
|
||||
handletextpad=0.6,
|
||||
columnspacing=0.8,
|
||||
prop={"weight": "bold", "size": 12},
|
||||
)
|
||||
|
||||
# Save figure with tight layout but no additional padding
|
||||
plt.savefig(FIGURE_PATH + "/accuracy_comparison.pdf", bbox_inches='tight', pad_inches=0.05)
|
||||
plt.show()
|
||||
309
research/paper_plot/analyze_visits.py
Normal file
309
research/paper_plot/analyze_visits.py
Normal file
@@ -0,0 +1,309 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding:utf-8 -*-
|
||||
# Motto: Were It to Benefit My Country, I Would Lay Down My Life!
|
||||
# \file: /hnsw_degree_visit_plot_binned_academic.py
|
||||
# \brief: Generates a binned bar plot of HNSW node average per-query visit probability
|
||||
# per degree bin, styled for academic publications, with caching.
|
||||
# Author: raphael hao (Original script by user, styling and caching adapted by Gemini)
|
||||
|
||||
# %%
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
import re
|
||||
from collections import Counter
|
||||
import os # For robust filepath manipulation
|
||||
import math # For calculating scaling factor
|
||||
import pickle # For caching data
|
||||
|
||||
# %%
|
||||
# --- Matplotlib parameters for academic paper style (from reference) ---
|
||||
plt.rcParams["font.family"] = "Helvetica"
|
||||
plt.rcParams["ytick.direction"] = "in"
|
||||
plt.rcParams["hatch.linewidth"] = 1.5
|
||||
plt.rcParams["font.weight"] = "bold"
|
||||
plt.rcParams["axes.labelweight"] = "bold"
|
||||
plt.rcParams["text.usetex"] = True # Use LaTeX for text rendering (if available)
|
||||
|
||||
# --- Define styles from reference ---
|
||||
edgecolors_ref = ["dimgrey", "#63B8B6", "tomato", "silver", "slategray"]
|
||||
|
||||
# %%
|
||||
# --- File Paths ---
|
||||
degree_file = '/opt/dlami/nvme/scaling_out/indices/rpj_wiki/facebook/contriever-msmarco/hnsw/degree_distribution.txt'
|
||||
visit_log_file = './re.log'
|
||||
output_image_file = './paper_plot/figures/hnsw_visit_count_per_degree_corrected.pdf'
|
||||
# --- CACHE FILE PATH: Keep this consistent ---
|
||||
CACHE_FILE_PATH = './binned_plot_data_cache.pkl'
|
||||
|
||||
# --- Configuration ---
|
||||
# Set to True to bypass cache and force recomputation.
|
||||
# Otherwise, delete CACHE_FILE_PATH manually to force recomputation.
|
||||
FORCE_RECOMPUTE = False
|
||||
NUMBER_OF_QUERIES = 1000.0 # Number of queries the visit_counts are based on
|
||||
|
||||
# Create directory for figures if it doesn't exist
|
||||
output_dir = os.path.dirname(output_image_file)
|
||||
if output_dir and not os.path.exists(output_dir):
|
||||
os.makedirs(output_dir)
|
||||
print(f"Created directory: {output_dir}")
|
||||
|
||||
# %%
|
||||
# --- Attempt to load data from cache or compute ---
|
||||
df_plot_data = None
|
||||
bin_size_for_plot = None # Will hold the bin_size associated with df_plot_data
|
||||
|
||||
if not FORCE_RECOMPUTE and os.path.exists(CACHE_FILE_PATH):
|
||||
try:
|
||||
with open(CACHE_FILE_PATH, 'rb') as f:
|
||||
cache_content = pickle.load(f)
|
||||
df_plot_data = cache_content['data']
|
||||
bin_size_for_plot = cache_content['bin_size']
|
||||
# Basic validation of cached data
|
||||
# Expecting 'average_visit_count_per_node_in_bin' (raw average over NUMBER_OF_QUERIES)
|
||||
if not isinstance(df_plot_data, pd.DataFrame) or \
|
||||
'degree_bin_label' not in df_plot_data.columns or \
|
||||
'average_visit_count_per_node_in_bin' not in df_plot_data.columns or \
|
||||
not isinstance(bin_size_for_plot, int):
|
||||
print("Cached data is not in the expected format or missing 'average_visit_count_per_node_in_bin'. Recomputing.")
|
||||
df_plot_data = None # Invalidate to trigger recomputation
|
||||
else:
|
||||
print(f"Successfully loaded binned data from cache: {CACHE_FILE_PATH}")
|
||||
|
||||
# --- Modify the label loaded from cache for display purpose ---
|
||||
# This modification only happens when data is loaded from cache and meets specific conditions.
|
||||
# Assumption: If the bin_size_for_plot in cache is 5,
|
||||
# then the original label "0-4" actually represents nodes with degree 1-4 (because you guarantee no 0-degree nodes).
|
||||
if df_plot_data is not None and 'degree_bin_label' in df_plot_data.columns and bin_size_for_plot == 5:
|
||||
# Check if "0-4" label exists
|
||||
if '0-4' in df_plot_data['degree_bin_label'].values:
|
||||
# Use .loc to ensure the modification is on the original DataFrame
|
||||
df_plot_data.loc[df_plot_data['degree_bin_label'] == '0-4', 'degree_bin_label'] = '1-4'
|
||||
print("Modified degree_bin_label from '0-4' to '1-4' for display purpose.")
|
||||
except Exception as e:
|
||||
print(f"Error loading from cache: {e}. Recomputing.")
|
||||
df_plot_data = None # Invalidate to trigger recomputation
|
||||
|
||||
if df_plot_data is None:
|
||||
print("Cache not found, invalid, or recompute forced. Computing data from scratch...")
|
||||
# --- 1. Read Degree Distribution File ---
|
||||
degrees_data = []
|
||||
try:
|
||||
with open(degree_file, 'r') as f:
|
||||
for i, line in enumerate(f):
|
||||
line_stripped = line.strip()
|
||||
if line_stripped:
|
||||
degrees_data.append({'node_id': i, 'degree': int(line_stripped)})
|
||||
except FileNotFoundError:
|
||||
print(f"Error: Degree file '{degree_file}' not found. Using dummy data for degrees.")
|
||||
degrees_data = [{'node_id': i, 'degree': (i % 20) + 1 } for i in range(200)]
|
||||
degrees_data.extend([{'node_id': 200+i, 'degree': i} for i in range(58, 67)]) # For 60-64 bin
|
||||
degrees_data.extend([{'node_id': 300+i, 'degree': (i % 5)+1} for i in range(10)]) # Low degrees
|
||||
degrees_data.extend([{'node_id': 400+i, 'degree': 80 + (i%5)} for i in range(10)]) # High degrees
|
||||
|
||||
|
||||
if not degrees_data:
|
||||
print(f"Critical Error: No data loaded or generated for degrees. Exiting.")
|
||||
exit()
|
||||
df_degrees = pd.DataFrame(degrees_data)
|
||||
print(f"Successfully loaded/generated {len(df_degrees)} degree entries.")
|
||||
|
||||
# --- 2. Read Visit Log File and Count Frequencies ---
|
||||
visit_counts = Counter()
|
||||
node_id_pattern = re.compile(r"Vis(i)?ted node: (\d+)")
|
||||
try:
|
||||
with open(visit_log_file, 'r') as f_log:
|
||||
for line_num, line in enumerate(f_log, 1):
|
||||
match = node_id_pattern.search(line)
|
||||
if match:
|
||||
try:
|
||||
node_id = int(match.group(2))
|
||||
visit_counts[node_id] += 1 # Increment visit count for the node
|
||||
except ValueError:
|
||||
print(f"Warning: Non-integer node_id in log '{visit_log_file}' line {line_num}: {line.strip()}")
|
||||
except FileNotFoundError:
|
||||
print(f"Warning: Visit log file '{visit_log_file}' not found. Using dummy visit counts.")
|
||||
if not df_degrees.empty:
|
||||
for node_id_val in df_degrees['node_id'].sample(frac=0.9, random_state=1234): # Seed for reproducibility
|
||||
degree_val = df_degrees[df_degrees['node_id'] == node_id_val]['degree'].iloc[0]
|
||||
# Generate visit counts to test different probability magnitudes
|
||||
if node_id_val % 23 == 0: # Very low probability
|
||||
lambda_val = 0.0005 * (100 / (max(1,degree_val) + 1)) # avg visits over 1k queries
|
||||
elif node_id_val % 11 == 0: # Low probability
|
||||
lambda_val = 0.05 * (100 / (max(1,degree_val) + 1))
|
||||
elif node_id_val % 5 == 0: # Moderate probability
|
||||
lambda_val = 2.5 * (100 / (max(1,degree_val) + 1))
|
||||
else: # Higher probability (but still < 1000 visits for a single node usually)
|
||||
lambda_val = 50 * (100 / (max(1,degree_val) + 1))
|
||||
visit_counts[node_id_val] = np.random.poisson(lambda_val)
|
||||
if visit_counts[node_id_val] < 0: visit_counts[node_id_val] = 0
|
||||
|
||||
if not visit_counts:
|
||||
print(f"Warning: No visit data parsed/generated. Plot may show zero visits.")
|
||||
df_visits = pd.DataFrame(columns=['node_id', 'visit_count'])
|
||||
else:
|
||||
df_visits_list = [{'node_id': nid, 'visit_count': count} for nid, count in visit_counts.items()]
|
||||
df_visits = pd.DataFrame(df_visits_list)
|
||||
print(f"Parsed/generated {len(df_visits)} unique visited nodes, totaling {sum(visit_counts.values())} visits (simulated over {NUMBER_OF_QUERIES} queries).")
|
||||
|
||||
# --- 3. Merge Degree Data with Visit Data ---
|
||||
df_merged = pd.merge(df_degrees, df_visits, on='node_id', how='left')
|
||||
df_merged['visit_count'] = df_merged['visit_count'].fillna(0).astype(float) # visit_count is total over NUMBER_OF_QUERIES
|
||||
print(f"Merged data contains {len(df_merged)} entries.")
|
||||
|
||||
# --- 5. Binning Degrees and Calculating Average Visit Count per Node in Bin (over NUMBER_OF_QUERIES) ---
|
||||
current_bin_size = 5
|
||||
bin_size_for_plot = current_bin_size
|
||||
|
||||
if not df_degrees.empty:
|
||||
print(f"\nBinning degrees into groups of {current_bin_size} for average visit count calculation...")
|
||||
|
||||
df_merged_with_bins = df_merged.copy()
|
||||
df_merged_with_bins['degree_bin_start'] = (df_merged_with_bins['degree'] // current_bin_size) * current_bin_size
|
||||
|
||||
df_binned_analysis = df_merged_with_bins.groupby('degree_bin_start').agg(
|
||||
total_visit_count_in_bin=('visit_count', 'sum'),
|
||||
node_count_in_bin=('node_id', 'nunique')
|
||||
).reset_index()
|
||||
|
||||
# This is the average number of times a node in this bin was visited over NUMBER_OF_QUERIES queries.
|
||||
# This value is what gets cached.
|
||||
df_binned_analysis['average_visit_count_per_node_in_bin'] = 0.0
|
||||
df_binned_analysis.loc[df_binned_analysis['node_count_in_bin'] > 0, 'average_visit_count_per_node_in_bin'] = \
|
||||
df_binned_analysis['total_visit_count_in_bin'] / df_binned_analysis['node_count_in_bin']
|
||||
|
||||
df_binned_analysis['degree_bin_label'] = df_binned_analysis['degree_bin_start'].astype(str) + '-' + \
|
||||
(df_binned_analysis['degree_bin_start'] + current_bin_size - 1).astype(str)
|
||||
|
||||
bin_to_drop_label = '60-64'
|
||||
original_length = len(df_binned_analysis)
|
||||
df_plot_data_intermediate = df_binned_analysis[df_binned_analysis['degree_bin_label'] != bin_to_drop_label].copy()
|
||||
if len(df_plot_data_intermediate) < original_length:
|
||||
print(f"\nManually dropped the bin: '{bin_to_drop_label}'")
|
||||
else:
|
||||
print(f"\nNote: Bin '{bin_to_drop_label}' not found for dropping or already removed.")
|
||||
|
||||
df_plot_data = df_plot_data_intermediate
|
||||
|
||||
print(f"\nBinned data (average visit count per node in bin over {NUMBER_OF_QUERIES} queries) for plotting prepared:")
|
||||
print(df_plot_data[['degree_bin_label', 'average_visit_count_per_node_in_bin']].head())
|
||||
|
||||
if df_plot_data is not None and not df_plot_data.empty:
|
||||
try:
|
||||
with open(CACHE_FILE_PATH, 'wb') as f:
|
||||
pickle.dump({'data': df_plot_data, 'bin_size': bin_size_for_plot}, f)
|
||||
print(f"Saved computed binned data to cache: {CACHE_FILE_PATH}")
|
||||
except Exception as e:
|
||||
print(f"Error saving data to cache: {e}")
|
||||
elif df_plot_data is None or df_plot_data.empty:
|
||||
print("Computed data for binned plot is empty, not saving to cache.")
|
||||
else:
|
||||
print("Degree data (df_degrees) is empty. Cannot perform binning.")
|
||||
df_plot_data = pd.DataFrame()
|
||||
bin_size_for_plot = current_bin_size
|
||||
|
||||
# %%
|
||||
# --- 6. Plotting (Binned Bar Chart - Academic Style) ---
|
||||
|
||||
if df_plot_data is not None and not df_plot_data.empty and 'average_visit_count_per_node_in_bin' in df_plot_data.columns:
|
||||
base_name, ext = os.path.splitext(output_image_file)
|
||||
# --- OUTPUT PDF FILE NAME: Keep this consistent ---
|
||||
binned_output_image_file = base_name + ext
|
||||
|
||||
fig, ax = plt.subplots(figsize=(6, 2.5)) # Adjusted figure size
|
||||
|
||||
df_plot_data_plotting = df_plot_data.copy()
|
||||
# Calculate per-query probability: (avg visits over N queries) / N
|
||||
df_plot_data_plotting['per_query_visit_probability'] = \
|
||||
df_plot_data_plotting['average_visit_count_per_node_in_bin'] / NUMBER_OF_QUERIES
|
||||
|
||||
max_probability = df_plot_data_plotting['per_query_visit_probability'].max()
|
||||
|
||||
y_axis_values_to_plot = df_plot_data_plotting['per_query_visit_probability']
|
||||
y_axis_label = r"Per-Query Node Visit Probability in Bin" # Base label
|
||||
|
||||
apply_scaling_to_label_and_values = False # Initialize flag
|
||||
exponent_for_label_display = 0 # Initialize exponent
|
||||
|
||||
if pd.notna(max_probability) and max_probability > 0:
|
||||
potential_exponent = math.floor(math.log10(max_probability))
|
||||
|
||||
if potential_exponent <= -4 or potential_exponent >= 0:
|
||||
apply_scaling_to_label_and_values = True
|
||||
exponent_for_label_display = potential_exponent
|
||||
# No specific adjustment for potential_exponent >=0 here, it's handled by the general logic.
|
||||
|
||||
if apply_scaling_to_label_and_values:
|
||||
y_axis_label = rf"Visit Probability ($\times 10^{{{exponent_for_label_display}}}$)"
|
||||
y_axis_values_to_plot = df_plot_data_plotting['per_query_visit_probability'] / (10**exponent_for_label_display)
|
||||
print(f"Plotting with Max per-query probability: {max_probability:.2e}, Exponent for label: {exponent_for_label_display}. Y-axis values scaled for plot.")
|
||||
else:
|
||||
print(f"Plotting with Max per-query probability: {max_probability:.2e}. Plotting direct probabilities without label scaling (exponent {potential_exponent} is within no-scale range [-3, -1]).")
|
||||
|
||||
elif pd.notna(max_probability) and max_probability == 0:
|
||||
print("Max per-query probability is 0. Plotting direct probabilities (all zeros).")
|
||||
else:
|
||||
print(f"Max per-query probability is NaN or invalid ({max_probability}). Plotting direct probabilities without scaling if possible.")
|
||||
|
||||
ax.bar(
|
||||
df_plot_data_plotting['degree_bin_label'],
|
||||
y_axis_values_to_plot,
|
||||
color='white',
|
||||
edgecolor=edgecolors_ref[0],
|
||||
linewidth=1.5,
|
||||
width=0.8
|
||||
)
|
||||
|
||||
ax.set_xlabel('Node Degree', fontsize=10.5, labelpad=6)
|
||||
# MODIFIED LINE: Added labelpad to move the y-axis label to the left
|
||||
ax.set_ylabel(y_axis_label, fontsize=10.5, labelpad=10)
|
||||
|
||||
ax.yaxis.set_major_formatter(plt.FuncFormatter(lambda x, pos: f"{x:.0f}%"))
|
||||
|
||||
num_bins = len(df_plot_data_plotting)
|
||||
if num_bins > 12:
|
||||
ax.set_xticks(ax.get_xticks())
|
||||
ax.set_xticklabels(ax.get_xticklabels(), rotation=45, ha="right", fontsize=9)
|
||||
elif num_bins > 8:
|
||||
ax.tick_params(axis='x', labelsize=9)
|
||||
else:
|
||||
ax.tick_params(axis='x', labelsize=10)
|
||||
|
||||
ax.tick_params(axis='y', labelsize=10)
|
||||
|
||||
padding_factor = 0.05
|
||||
current_max_y_on_axis = y_axis_values_to_plot.max()
|
||||
|
||||
upper_y_limit = 0.1 # Default small upper limit
|
||||
if pd.notna(current_max_y_on_axis):
|
||||
if current_max_y_on_axis > 0:
|
||||
# Adjust minimum visible range based on whether scaling was applied and the exponent
|
||||
min_meaningful_limit = 0.01
|
||||
if apply_scaling_to_label_and_values and exponent_for_label_display >= 0 : # Numbers on axis are smaller due to positive exponent scaling
|
||||
min_meaningful_limit = 0.1 # If original numbers were e.g. 2500 (2.5 x 10^3), scaled axis is 2.5, 0.1 is fine
|
||||
elif not apply_scaling_to_label_and_values and pd.notna(max_probability) and max_probability >=1: # Direct large probabilities
|
||||
min_meaningful_limit = 1 # If max prob is 2.5 (250%), axis value 2.5, needs larger base limit
|
||||
|
||||
upper_y_limit = max(min_meaningful_limit, current_max_y_on_axis * (1 + padding_factor))
|
||||
|
||||
else: # current_max_y_on_axis is 0
|
||||
upper_y_limit = 0.1
|
||||
ax.set_ylim(0, upper_y_limit)
|
||||
else:
|
||||
ax.set_ylim(0, 1.0) # Default for empty or NaN data
|
||||
|
||||
plt.tight_layout()
|
||||
plt.savefig(binned_output_image_file, bbox_inches="tight", dpi=300)
|
||||
print(f"Binned bar chart saved to {binned_output_image_file}")
|
||||
plt.show()
|
||||
plt.close(fig)
|
||||
else:
|
||||
if df_plot_data is None:
|
||||
print("Data for plotting (df_plot_data) is None. Skipping plot generation.")
|
||||
elif df_plot_data.empty:
|
||||
print("Data for plotting (df_plot_data) is empty. Skipping plot generation.")
|
||||
elif 'average_visit_count_per_node_in_bin' not in df_plot_data.columns:
|
||||
print("Essential column 'average_visit_count_per_node_in_bin' is missing in df_plot_data. Skipping plot generation.")
|
||||
|
||||
# %%
|
||||
print("Script finished.")
|
||||
7
research/paper_plot/b.md
Normal file
7
research/paper_plot/b.md
Normal file
@@ -0,0 +1,7 @@
|
||||
In this paper, we present LiteANN, a storage-efficient approximate nearest neighbor (ANN) search index optimized for resource-constrained personal devices. LiteANN combines a compact graph-based structure with an efficient on-the-fly recomputation strategy to enable fast and accurate retrieval wih minimal storage overhead. Our evaluation shows that LiteANN reduces index size to under 5% of the original raw data – up to 50× smaller than standard indexes – while achieving 90% top-3 recall in under 2 seconds on real-world question-answering benchmarks.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
81
research/paper_plot/cache_degree_data.py
Normal file
81
research/paper_plot/cache_degree_data.py
Normal file
@@ -0,0 +1,81 @@
|
||||
import numpy as np
|
||||
import os
|
||||
|
||||
# --- Configuration for Data Paths and Labels (Mirrors plotting script for consistency) ---
|
||||
BIG_GRAPH_PATHS = [
|
||||
"/opt/dlami/nvme/scaling_out/indices/rpj_wiki/facebook/contriever-msmarco/hnsw/",
|
||||
"/opt/dlami/nvme/scaling_out/embeddings/facebook/contriever-msmarco/rpj_wiki/1-shards/indices/99_4_degree_based_hnsw_IP_M32_efC256/",
|
||||
"/opt/dlami/nvme/scaling_out/embeddings/facebook/contriever-msmarco/rpj_wiki/1-shards/indices/d9_hnsw_IP_M8_efC128/",
|
||||
"/opt/dlami/nvme/scaling_out/embeddings/facebook/contriever-msmarco/rpj_wiki/1-shards/indices/half_edges_IP_M32_efC128/"
|
||||
]
|
||||
STATS_FILE_NAME = "degree_distribution.txt"
|
||||
BIG_GRAPH_LABELS = [ # These will be used as keys in the cached file
|
||||
"HNSW-Base",
|
||||
"DegreeGuide",
|
||||
"HNSW-D9",
|
||||
"RandCut",
|
||||
]
|
||||
# Average degrees are static and can be directly used in the plotting script or also cached.
|
||||
# For simplicity here, we'll focus on caching the dynamic degree arrays.
|
||||
# BIG_GRAPH_AVG_DEG = [18, 9, 9, 9]
|
||||
|
||||
# --- Cache File Configuration ---
|
||||
DATA_CACHE_DIR = "./paper_plot/data/"
|
||||
CACHE_FILE_NAME = "big_graph_degree_data.npz" # Using .npz for multiple arrays
|
||||
|
||||
def create_degree_data_cache():
|
||||
"""
|
||||
Reads degree distribution data from specified text files and saves it
|
||||
into a compressed NumPy (.npz) cache file.
|
||||
"""
|
||||
os.makedirs(DATA_CACHE_DIR, exist_ok=True)
|
||||
cache_file_path = os.path.join(DATA_CACHE_DIR, CACHE_FILE_NAME)
|
||||
|
||||
cached_data = {}
|
||||
print(f"Starting data caching process for {len(BIG_GRAPH_PATHS)} graph types...")
|
||||
|
||||
for i, base_path in enumerate(BIG_GRAPH_PATHS):
|
||||
method_label = BIG_GRAPH_LABELS[i]
|
||||
degree_file_path = os.path.join(base_path, STATS_FILE_NAME)
|
||||
|
||||
print(f"Processing: {method_label} from {degree_file_path}")
|
||||
|
||||
try:
|
||||
# Load degrees as integers
|
||||
degrees = np.loadtxt(degree_file_path, dtype=int)
|
||||
|
||||
if degrees.size == 0:
|
||||
print(f" [WARN] Degree file is empty: {degree_file_path}. Storing as empty array for {method_label}.")
|
||||
# Store an empty array or handle as needed. For npz, an empty array is fine.
|
||||
cached_data[method_label] = np.array([], dtype=int)
|
||||
else:
|
||||
# Store the loaded degrees array with the method label as the key
|
||||
cached_data[method_label] = degrees
|
||||
print(f" [INFO] Loaded {len(degrees)} degrees for {method_label}. Max degree: {np.max(degrees) if degrees.size > 0 else 'N/A'}")
|
||||
|
||||
except FileNotFoundError:
|
||||
print(f" [ERROR] Degree file not found: {degree_file_path}. Skipping {method_label}.")
|
||||
# Optionally store a placeholder or skip. For robustness, store None or an empty array.
|
||||
# Storing None might require special handling when loading. Empty array is safer for np.load.
|
||||
cached_data[method_label] = np.array([], dtype=int) # Store empty array if file not found
|
||||
except Exception as e:
|
||||
print(f" [ERROR] An error occurred loading {degree_file_path} for {method_label}: {e}")
|
||||
cached_data[method_label] = np.array([], dtype=int) # Store empty array on other errors
|
||||
|
||||
if not cached_data:
|
||||
print("[ERROR] No data was successfully processed or loaded. Cache file will not be created.")
|
||||
return
|
||||
|
||||
try:
|
||||
# Save all collected degree arrays into a single .npz file.
|
||||
# Using savez_compressed for potentially smaller file size.
|
||||
np.savez_compressed(cache_file_path, **cached_data)
|
||||
print(f"\n[SUCCESS] Degree distribution data successfully cached to: {os.path.abspath(cache_file_path)}")
|
||||
print("Cached arrays (keys):", list(cached_data.keys()))
|
||||
except Exception as e:
|
||||
print(f"\n[ERROR] Failed to save data to cache file {cache_file_path}: {e}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
print("--- Degree Distribution Data Caching Script ---")
|
||||
create_degree_data_cache()
|
||||
print("--- Caching script finished. ---")
|
||||
4
research/paper_plot/data/acc.csv
Normal file
4
research/paper_plot/data/acc.csv
Normal file
@@ -0,0 +1,4 @@
|
||||
Model,NQ Exact Match,NQ F1,TriviaQA Exact Match,TriviaQA F1,GPQA Exact Match,GPQA F1,HotpotQA Exact Match,HotpotQA F1
|
||||
BM25,0.192,0.277,0.406,0.474,0.020089,0.04524,0.162,0.239
|
||||
PQ 5,0.2075,0.291,0.422,0.495,0.0201,0.0445,0.148,0.219
|
||||
Ours,0.265,0.361,0.533,0.604,0.02008,0.0452,0.182,0.2729
|
||||
|
3
research/paper_plot/data/big_graph_degree_data.npz
Normal file
3
research/paper_plot/data/big_graph_degree_data.npz
Normal file
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:1296720e79196bbdf38f051043c1b054667803726a24036c0b6a87cedb204ea5
|
||||
size 227482438
|
||||
21
research/paper_plot/data/branches.csv
Normal file
21
research/paper_plot/data/branches.csv
Normal file
@@ -0,0 +1,21 @@
|
||||
2,1,512,1024,0.541,0.326,1.659509202
|
||||
2,2,512,1024,0.979,0.621,1.576489533
|
||||
2,4,512,1024,1.846,0.977,1.889457523
|
||||
2,8,512,1024,3.575,1.943,1.83993824
|
||||
2,16,512,1024,7.035,3.733,1.884543263
|
||||
2,32,512,1024,15.655,8.517,1.838088529
|
||||
2,64,512,1024,32.772,17.43,1.88020654
|
||||
4,1,512,1024,2.675,1.38,1.938405797
|
||||
4,2,512,1024,5.397,2.339,2.307396323
|
||||
4,4,512,1024,10.672,4.944,2.158576052
|
||||
4,8,512,1024,21.061,9.266,2.272933305
|
||||
4,16,512,1024,46.332,18.334,2.527108105
|
||||
4,32,512,1024,99.607,36.156,2.754923111
|
||||
4,64,512,1024,186.348,72.356,2.575432583
|
||||
8,1,512,1024,7.325,4.087,1.792268167
|
||||
8,2,512,1024,14.109,7.491,1.883460152
|
||||
8,4,512,1024,28.499,14.013,2.033754371
|
||||
8,8,512,1024,65.222,27.453,2.375769497
|
||||
8,16,512,1024,146.294,52.55,2.783901047
|
||||
8,32,512,1024,277.099,103.61,2.674442621
|
||||
8,64,512,1024,512.979,208.36,2.461984066
|
||||
|
9
research/paper_plot/data/latency_ablation.csv
Normal file
9
research/paper_plot/data/latency_ablation.csv
Normal file
@@ -0,0 +1,9 @@
|
||||
Dataset,Metric,Original,original + batch,original + two_level,original + two_level + batch
|
||||
NQ,Latency,6.9,5.8,4.2,3.7
|
||||
NQ,SpeedUp,1,1.18965517,1.64285714,1.86486486
|
||||
TriviaQA,Latency,17.054,14.542,12.046,10.83
|
||||
TriviaQA,SpeedUp,1,1.17274103,1.41573967,1.57469990
|
||||
GPQA,Latency,9.164,7.639,6.798,5.77
|
||||
GPQA,SpeedUp,1,1.19963346,1.34804354,1.58821490
|
||||
HotpotQA,Latency,60.279,39.827,50.664,29.868
|
||||
HotpotQA,SpeedUp,1,1.51352098,1.18977972,2.01817999
|
||||
|
25
research/paper_plot/data/main_latency.csv
Normal file
25
research/paper_plot/data/main_latency.csv
Normal file
@@ -0,0 +1,25 @@
|
||||
Dataset,Hardware,Recall_target,HNSW,IVF,DiskANN,IVF-Disk,IVF-Recompute,Our,BM25,LLM_Gen_Time_1B,LLM_Gen_Time_3B,LLM_Gen_Time_7B
|
||||
NQ,A10,85%,0.046,1.656,0.017,2.996,482.53,3.323,0.021,0.085,0.217,0.472
|
||||
NQ,A10,90%,0.051,2.552,0.028,3.437,769.04,4.616,0,0.085,0.217,0.472
|
||||
NQ,A10,95%,0.055,5.163,0.070,5.602,1436.26,19.494,0,0.085,0.217,0.472
|
||||
NQ,MAC,85%,0,0,0.152,2.199,1535.10,7.971,0.033,0.316,0.717,1.468
|
||||
NQ,MAC,90%,0,0,0.37,2.936,2446.60,13.843,0,0.316,0.717,1.468
|
||||
NQ,MAC,95%,0,0,1.207,4.191,4569.29,44.363,0,0.316,0.717,1.468
|
||||
TriviaQA,A10,85%,0.042,1.772,0.032,2.464,560.5,3.752,0.033,0.139,0.156,0.315
|
||||
TriviaQA,A10,90%,0.043,3.541,0.057,3.651,997.81,5.777,0,0.139,0.156,0.315
|
||||
TriviaQA,A10,95%,0.053,7.168,0.090,5.458,2005.33,20.944,0,0.139,0.156,0.315
|
||||
TriviaQA,MAC,85%,0,0,0.481,1.875,1783.14787,8.889,0.036,0.325,0.692,1.415
|
||||
TriviaQA,MAC,90%,0,0,0.984,2.639,3174.410301,17.145,0,0.325,0.692,1.415
|
||||
TriviaQA,MAC,95%,0,0,1.578,3.884,6379.712245,47.909,0,0.325,0.692,1.415
|
||||
GPQA,A10,85%,0.041,0.134,0.024,0.048,40.16,1.897,0.137,0.443,0.396,0.651
|
||||
GPQA,A10,90%,0.042,0.174,0.034,0.06,54.71,1.733,0,0.443,0.396,0.651
|
||||
GPQA,A10,95%,0.045,0.292,0.051,0.11,97.67,4.033,0,0.443,0.396,0.651
|
||||
GPQA,MAC,85%,0,0,0.144,0.087,127.7707505,4.762,0.100,0.37,0.813,1.676
|
||||
GPQA,MAC,90%,0,0,0.288,0.108,174.0647409,5.223,0,0.37,0.813,1.676
|
||||
GPQA,MAC,95%,0,0,0.497,0.132,310.7380142,9.715,0,0.37,0.813,1.676
|
||||
HotpotQA,A10,85%,0.044,2.519,0.054,4.048,724.26,10.358,0.70,0.144,0.196,0.420
|
||||
HotpotQA,A10,90%,0.049,3.867,0.109,5.045,1173.67,15.515,0,0.144,0.196,0.420
|
||||
HotpotQA,A10,95%,0.07,10.928,0.412,8.659,3079.57,61.757,0,0.144,0.196,0.420
|
||||
HotpotQA,MAC,85%,0,0,0.974,2.844,2304.125187,23.636,0.052,0.144,0.196,0.420
|
||||
HotpotQA,MAC,90%,0,0,1.913,3.542,3415.736201,44.803,0,0.144,0.196,0.420
|
||||
HotpotQA,MAC,95%,0,0,5.783,6.764,9797.244043,140.62,0,0.144,0.196,0.420
|
||||
|
25
research/paper_plot/data/main_latency_small.csv
Normal file
25
research/paper_plot/data/main_latency_small.csv
Normal file
@@ -0,0 +1,25 @@
|
||||
Dataset,Hardware,Recall_target,HNSW,IVF,DiskANN,IVF-Disk,IVF-Recompute,Our,
|
||||
NQ,A10,85%,0.046,1.656,0.017,2.996,482.53,4.243,
|
||||
NQ,A10,90%,0.051,2.552,0.028,3.437,769.04,8.136,
|
||||
NQ,A10,95%,0.055,5.163,0.070,5.602,1436.26,27.275,
|
||||
NQ,MAC,85%,0,0,0.152,2.199,1535.10,10.672,
|
||||
NQ,MAC,90%,0,0,0.37,2.936,2446.60,19.941,
|
||||
NQ,MAC,95%,0,0,1.207,4.191,4569.29,61.383,
|
||||
TriviaQA,A10,85%,0.042,1.772,0.032,2.464,560.5,5.612,
|
||||
TriviaQA,A10,90%,0.043,3.541,0.057,3.651,997.81,10.737,
|
||||
TriviaQA,A10,95%,0.053,7.168,0.090,5.458,2005.33,36.387,
|
||||
TriviaQA,MAC,85%,0,0,0.481,1.875,1783.14787,12.825,
|
||||
TriviaQA,MAC,90%,0,0,0.984,2.639,3174.410301,24.977,
|
||||
TriviaQA,MAC,95%,0,0,1.578,3.884,6379.712245,85.734,
|
||||
GPQA,A10,85%,0.041,0.134,0.024,0.048,40.16,2.269,
|
||||
GPQA,A10,90%,0.042,0.174,0.034,0.06,54.71,3.200,
|
||||
GPQA,A10,95%,0.045,0.292,0.051,0.11,97.67,7.445,
|
||||
GPQA,MAC,85%,0,0,0.144,0.087,127.7707505,6.123,
|
||||
GPQA,MAC,90%,0,0,0.288,0.108,174.0647409,8.507,
|
||||
GPQA,MAC,95%,0,0,0.497,0.132,310.7380142,19.577,
|
||||
HotpotQA,A10,85%,0.044,2.519,0.054,4.048,724.26,14.713,
|
||||
HotpotQA,A10,90%,0.049,3.867,0.109,5.045,1173.67,33.561,
|
||||
HotpotQA,A10,95%,0.07,10.928,0.412,8.659,3079.57,68.626,
|
||||
HotpotQA,MAC,85%,0,0,0.974,2.844,2304.125187,34.783,
|
||||
HotpotQA,MAC,90%,0,0,1.913,3.542,3415.736201,53.004,
|
||||
HotpotQA,MAC,95%,0,0,5.783,6.764,9797.244043,95.413,
|
||||
|
3
research/paper_plot/data/ram_storage.csv
Normal file
3
research/paper_plot/data/ram_storage.csv
Normal file
@@ -0,0 +1,3 @@
|
||||
Hardware,HNSW,IVF,DiskANN,IVF-Disk,IVF-Recompute,Our,BM25
|
||||
RAM,190,171,10,0,0,0,0
|
||||
Storage,185.4,171,240,171,0.5,5,59
|
||||
|
12
research/paper_plot/data/swithc_e2e.csv
Normal file
12
research/paper_plot/data/swithc_e2e.csv
Normal file
@@ -0,0 +1,12 @@
|
||||
Torch,8,55.592
|
||||
Torch,16,75.439
|
||||
Torch,32,110.025
|
||||
Torch,64,186.496
|
||||
Tutel,8,56.718
|
||||
Tutel,16,82.121
|
||||
Tutel,32,125.070
|
||||
Tutel,64,216.191
|
||||
BRT,8,56.725
|
||||
BRT,16,79.291
|
||||
BRT,32,93.180
|
||||
BRT,64,118.923
|
||||
|
6
research/paper_plot/data/vary_cache.csv
Normal file
6
research/paper_plot/data/vary_cache.csv
Normal file
@@ -0,0 +1,6 @@
|
||||
Disk cache size,0,2.5%(180G*2.5%),5%,8%,10%
|
||||
Latency,,,,,
|
||||
NQ,4.616,4.133,3.826,3.511,3.323
|
||||
TriviaQA,5.777,4.979,4.553,4.141,3.916
|
||||
GPQA,1.733,1.593,1.468,1.336,1.259
|
||||
Hotpot,15.515,13.479,12.383,11.216,10.606
|
||||
|
151
research/paper_plot/disk_cache.py
Normal file
151
research/paper_plot/disk_cache.py
Normal file
@@ -0,0 +1,151 @@
|
||||
import matplotlib
|
||||
from matplotlib.axes import Axes
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.patches as mpatches
|
||||
from matplotlib.lines import Line2D
|
||||
|
||||
# plt.rcParams["font.family"] = "Helvetica"
|
||||
plt.rcParams["ytick.direction"] = "in"
|
||||
plt.rcParams["hatch.linewidth"] = 1
|
||||
plt.rcParams["font.weight"] = "bold"
|
||||
plt.rcParams["axes.labelweight"] = "bold"
|
||||
plt.rcParams["text.usetex"] = True
|
||||
plt.rcParams["font.family"] = "sans-serif" # Use generic sans-serif family
|
||||
plt.rcParams['text.latex.preamble'] = r"""
|
||||
\usepackage{helvet} % Use Helvetica font for text
|
||||
\usepackage{sfmath} % Use sans-serif font for math
|
||||
\renewcommand{\familydefault}{\sfdefault} % Set sans-serif as default text font
|
||||
\usepackage[T1]{fontenc} % Recommended for font encoding
|
||||
"""
|
||||
# plt.rcParams['mathtext.fontset'] = 'dejavusans'
|
||||
SAVE_PTH = "./paper_plot/figures"
|
||||
font_size = 16
|
||||
|
||||
# New data in dictionary format
|
||||
datasets = ["NQ", "TriviaQA", "GPQA", "Hotpot"]
|
||||
|
||||
cache_ratios = ["4.2G\n (0\%)", "8.7G\n (2.5\%)", "13.2G\n (5\%)", "18.6G\n (8\%)", "22.2G\n (10\%)"]
|
||||
latency_data = {
|
||||
"NQ": [4.616, 4.133, 3.826, 3.511, 3.323],
|
||||
"TriviaQA": [5.777, 4.979, 4.553, 4.141, 3.916],
|
||||
"GPQA": [1.733, 1.593, 1.468, 1.336, 1.259],
|
||||
"Hotpot": [15.515, 13.479, 12.383, 11.216, 10.606],
|
||||
}
|
||||
cache_hit_counts = {
|
||||
"NQ": [0, 14.81, 23.36, 31.99, 36.73],
|
||||
"TriviaQA": [0, 18.55, 27.99, 37.06, 41.86],
|
||||
"GPQA": [0, 10.99, 20.31, 29.71, 35.01],
|
||||
"Hotpot": [0, 17.47, 26.91, 36.2, 41.06]
|
||||
}
|
||||
|
||||
# Create the figure with 4 subplots in a 2x2 grid
|
||||
fig, axes_grid = plt.subplots(2, 2, figsize=(7,6))
|
||||
axes = axes_grid.flatten() # Flatten the 2x2 grid to a 1D array
|
||||
|
||||
# Bar style settings
|
||||
width = 0.7
|
||||
x = np.arange(len(cache_ratios))
|
||||
|
||||
# Define hatch patterns for different cache ratios
|
||||
hatch_patterns = ['//', '//', '//', '//', '//']
|
||||
|
||||
# Find max cache hit value across all datasets for unified y-axis
|
||||
all_hit_counts = []
|
||||
for dataset in datasets:
|
||||
all_hit_counts.extend(cache_hit_counts[dataset])
|
||||
max_unified_hit = max(all_hit_counts) * 1.13
|
||||
|
||||
for i, dataset in enumerate(datasets):
|
||||
latencies = latency_data[dataset]
|
||||
hit_counts = cache_hit_counts[dataset]
|
||||
|
||||
for j, val in enumerate(latencies):
|
||||
container = axes[i].bar(
|
||||
x[j],
|
||||
val,
|
||||
width=width,
|
||||
color="white",
|
||||
edgecolor="black",
|
||||
linewidth=1.0,
|
||||
zorder=10,
|
||||
)
|
||||
axes[i].bar_label(
|
||||
container,
|
||||
[f"{val:.2f}"],
|
||||
fontsize=10,
|
||||
zorder=200,
|
||||
fontweight="bold",
|
||||
)
|
||||
|
||||
axes[i].set_title(dataset, fontsize=font_size)
|
||||
axes[i].set_xticks(x)
|
||||
axes[i].set_xticklabels(cache_ratios, fontsize=12, rotation=0, ha='center', fontweight="bold")
|
||||
|
||||
max_val_ratios = [1.35, 1.65, 1.45, 1.75]
|
||||
max_val = max(latencies) * max_val_ratios[i]
|
||||
axes[i].set_ylim(0, max_val)
|
||||
axes[i].tick_params(axis='y', labelsize=12)
|
||||
|
||||
if i % 2 == 0:
|
||||
axes[i].set_ylabel("Latency (s)", fontsize=font_size)
|
||||
axes[i].yaxis.set_major_formatter(matplotlib.ticker.FormatStrFormatter('%.1f'))
|
||||
|
||||
ax2: Axes = axes[i].twinx()
|
||||
ax2.plot(x, hit_counts,
|
||||
linestyle='--',
|
||||
marker='o',
|
||||
markersize=6,
|
||||
linewidth=1.5,
|
||||
color='k',
|
||||
markerfacecolor='none',
|
||||
zorder=20)
|
||||
|
||||
ax2.set_ylim(0, max_unified_hit)
|
||||
ax2.tick_params(axis='y', labelsize=12)
|
||||
if i % 2 == 1:
|
||||
ax2.set_ylabel(r"Cache Hit (\%)", fontsize=font_size)
|
||||
|
||||
for j, val in enumerate(hit_counts):
|
||||
if val > 0:
|
||||
ax2.annotate(f"{val:.1f}%",
|
||||
(x[j], val),
|
||||
textcoords="offset points",
|
||||
xytext=(0, 5),
|
||||
ha='center',
|
||||
va='bottom',
|
||||
fontsize=10,
|
||||
fontweight='bold')
|
||||
|
||||
# Create legend for both plots
|
||||
bar_patch = mpatches.Patch(facecolor='white', edgecolor='black', label='Latency')
|
||||
line_patch = Line2D([0], [0], color='black', linestyle='--', label='Cache Hit Rate')
|
||||
|
||||
# --- MODIFICATION FOR LEGEND AT THE TOP ---
|
||||
fig.legend(handles=[bar_patch, line_patch],
|
||||
loc='upper center', # Position the legend at the upper center
|
||||
bbox_to_anchor=(0.5, 0.995), # Anchor point (0.5 means horizontal center of figure,
|
||||
# 0.97 means 97% from the bottom, so near the top)
|
||||
ncol=3,
|
||||
fontsize=font_size-2)
|
||||
# --- END OF MODIFICATION ---
|
||||
|
||||
# Set common x-axis label - you might want to add this back if needed
|
||||
# fig.text(0.5, 0.02, "Disk Cache Size", ha='center', fontsize=font_size, fontweight='bold') # Adjusted y for potential bottom label
|
||||
|
||||
# --- MODIFICATION FOR TIGHT LAYOUT ---
|
||||
# Adjust rect to make space for the legend at the top.
|
||||
# (left, bottom, right, top_for_subplots)
|
||||
# We want subplots to occupy space from y=0 up to y=0.93 (or similar)
|
||||
# leaving the top portion (0.93 to 1.0) for the legend.
|
||||
plt.tight_layout(rect=(0, 0, 1, 0.93)) # Ensure subplots are below the legend
|
||||
# --- END OF MODIFICATION ---
|
||||
|
||||
# Create directory if it doesn't exist (optional, good practice)
|
||||
import os
|
||||
if not os.path.exists(SAVE_PTH):
|
||||
os.makedirs(SAVE_PTH)
|
||||
|
||||
plt.savefig(f"{SAVE_PTH}/disk_cache_latency.pdf", dpi=300) # Changed filename slightly for testing
|
||||
print(f"Save to {SAVE_PTH}/disk_cache_latency.pdf")
|
||||
# plt.show() # Optional: to display the plot
|
||||
BIN
research/paper_plot/figures/H_hnsw_performance_comparison.pdf
Normal file
BIN
research/paper_plot/figures/H_hnsw_performance_comparison.pdf
Normal file
Binary file not shown.
BIN
research/paper_plot/figures/H_hnsw_performance_comparison.png
Normal file
BIN
research/paper_plot/figures/H_hnsw_performance_comparison.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 130 KiB |
BIN
research/paper_plot/figures/H_hnsw_recall_comparison.pdf
Normal file
BIN
research/paper_plot/figures/H_hnsw_recall_comparison.pdf
Normal file
Binary file not shown.
BIN
research/paper_plot/figures/H_hnsw_recall_comparison.png
Normal file
BIN
research/paper_plot/figures/H_hnsw_recall_comparison.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 100 KiB |
BIN
research/paper_plot/figures/accuracy_comparison.pdf
Normal file
BIN
research/paper_plot/figures/accuracy_comparison.pdf
Normal file
Binary file not shown.
BIN
research/paper_plot/figures/degree_distribution.pdf
Normal file
BIN
research/paper_plot/figures/degree_distribution.pdf
Normal file
Binary file not shown.
BIN
research/paper_plot/figures/degree_distribution_small.pdf
Normal file
BIN
research/paper_plot/figures/degree_distribution_small.pdf
Normal file
Binary file not shown.
BIN
research/paper_plot/figures/disk_cache_latency.pdf
Normal file
BIN
research/paper_plot/figures/disk_cache_latency.pdf
Normal file
Binary file not shown.
BIN
research/paper_plot/figures/figure15.pdf
Normal file
BIN
research/paper_plot/figures/figure15.pdf
Normal file
Binary file not shown.
BIN
research/paper_plot/figures/gpu_throughput_vs_batch_size.pdf
Normal file
BIN
research/paper_plot/figures/gpu_throughput_vs_batch_size.pdf
Normal file
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
After Width: | Height: | Size: 41 KiB |
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user