Compare commits

..

43 Commits

Author SHA1 Message Date
GitHub Actions
08eac5c821 chore: release v0.1.16 2025-07-29 00:15:18 +00:00
Andy Lee
4671ed9b36 Fix macos ABI by using system default clang (#11)
* fix: auto-detect normalized embeddings and use cosine distance

- Add automatic detection for normalized embedding models (OpenAI, Voyage AI, Cohere)
- Automatically set distance_metric='cosine' for normalized embeddings
- Add warnings when using non-optimal distance metrics
- Implement manual L2 normalization in HNSW backend (custom Faiss build lacks normalize_L2)
- Fix DiskANN zmq_port compatibility with lazy loading strategy
- Add documentation for normalized embeddings feature

This fixes the low accuracy issue when using OpenAI text-embedding-3-small model with default MIPS metric.

* style: format

* feat: add OpenAI embeddings support to google_history_reader_leann.py

- Add --embedding-model and --embedding-mode arguments
- Support automatic detection of normalized embeddings
- Works correctly with cosine distance for OpenAI embeddings

* feat: add --use-existing-index option to google_history_reader_leann.py

- Allow using existing index without rebuilding
- Useful for testing pre-built indices

* fix: Improve OpenAI embeddings handling in HNSW backend

* fix: improve macOS C++ compatibility and add CI tests

* refactor: improve test structure and fix main_cli example

- Move pytest configuration from pytest.ini to pyproject.toml
- Remove unnecessary run_tests.py script (use test extras instead)
- Fix main_cli_example.py to properly use command line arguments for LLM config
- Add test_readme_examples.py to test code examples from README
- Refactor tests to use pytest fixtures and parametrization
- Update test documentation to reflect new structure
- Set proper environment variables in CI for test execution

* fix: add --distance-metric support to DiskANN embedding server and remove obsolete macOS ABI test markers

- Add --distance-metric parameter to diskann_embedding_server.py for consistency with other backends
- Remove pytest.skip and pytest.xfail markers for macOS C++ ABI issues as they have been fixed
- Fix test assertions to handle SearchResult objects correctly
- All tests now pass on macOS with the C++ ABI compatibility fixes

* chore: update lock file with test dependencies

* docs: remove obsolete C++ ABI compatibility warnings

- Remove outdated macOS C++ compatibility warnings from README
- Simplify CI workflow by removing macOS-specific failure handling
- All tests now pass consistently on macOS after ABI fixes

* fix: update macOS deployment target for DiskANN to 13.3

- DiskANN uses sgesdd_ LAPACK function which is only available on macOS 13.3+
- Update MACOSX_DEPLOYMENT_TARGET from 11.0 to 13.3 for DiskANN builds
- This fixes the compilation error on GitHub Actions macOS runners

* fix: align Python version requirements to 3.9

- Update root project to support Python 3.9, matching subpackages
- Restore macOS Python 3.9 support in CI
- This fixes the CI failure for Python 3.9 environments

* fix: handle MPS memory issues in CI tests

- Use smaller MiniLM-L6-v2 model (384 dimensions) for README tests in CI
- Skip other memory-intensive tests in CI environment
- Add minimal CI tests that don't require model loading
- Set CI environment variable and disable MPS fallback
- Ensure README examples always run correctly in CI

* fix: remove Python 3.10+ dependencies for compatibility

- Comment out llama-index-readers-docling and llama-index-node-parser-docling
- These packages require Python >= 3.10 and were causing CI failures on Python 3.9
- Regenerate uv.lock file to resolve dependency conflicts

* fix: use virtual environment in CI instead of system packages

- uv-managed Python environments don't allow --system installs
- Create and activate virtual environment before installing packages
- Update all CI steps to use the virtual environment

* add some env in ci

* fix: use --find-links to install platform-specific wheels

- Let uv automatically select the correct wheel for the current platform
- Fixes error when trying to install macOS wheels on Linux
- Simplifies the installation logic

* fix: disable OpenMP parallelism in CI to avoid libomp crashes

- Set OMP_NUM_THREADS=1 to avoid OpenMP thread synchronization issues
- Set MKL_NUM_THREADS=1 for single-threaded MKL operations
- This prevents segfaults in LayerNorm on macOS CI runners
- Addresses the libomp compatibility issues with PyTorch on Apple Silicon

* skip several macos test because strange issue on ci

---------

Co-authored-by: yichuan520030910320 <yichuan_wang@berkeley.edu>
2025-07-28 17:14:42 -07:00
yichuan520030910320
055c086398 add ablation of embedding model compare 2025-07-28 14:43:42 -07:00
Andy Lee
d505dcc5e3 Fix/OpenAI embeddings cosine distance (#10)
* fix: auto-detect normalized embeddings and use cosine distance

- Add automatic detection for normalized embedding models (OpenAI, Voyage AI, Cohere)
- Automatically set distance_metric='cosine' for normalized embeddings
- Add warnings when using non-optimal distance metrics
- Implement manual L2 normalization in HNSW backend (custom Faiss build lacks normalize_L2)
- Fix DiskANN zmq_port compatibility with lazy loading strategy
- Add documentation for normalized embeddings feature

This fixes the low accuracy issue when using OpenAI text-embedding-3-small model with default MIPS metric.

* style: format

* feat: add OpenAI embeddings support to google_history_reader_leann.py

- Add --embedding-model and --embedding-mode arguments
- Support automatic detection of normalized embeddings
- Works correctly with cosine distance for OpenAI embeddings

* feat: add --use-existing-index option to google_history_reader_leann.py

- Allow using existing index without rebuilding
- Useful for testing pre-built indices

* fix: Improve OpenAI embeddings handling in HNSW backend
2025-07-28 14:35:49 -07:00
Andy Lee
261006c36a docs: revert 2025-07-27 22:07:36 -07:00
GitHub Actions
b2eba23e21 chore: release v0.1.15 2025-07-28 05:05:30 +00:00
yichuan520030910320
e9ee687472 nit: fix readme 2025-07-27 21:56:05 -07:00
yichuan520030910320
6f5d5e4a77 fix some readme 2025-07-27 21:50:09 -07:00
Andy Lee
5c8921673a fix: auto-detect normalized embeddings and use cosine distance (#8)
* fix: auto-detect normalized embeddings and use cosine distance

- Add automatic detection for normalized embedding models (OpenAI, Voyage AI, Cohere)
- Automatically set distance_metric='cosine' for normalized embeddings
- Add warnings when using non-optimal distance metrics
- Implement manual L2 normalization in HNSW backend (custom Faiss build lacks normalize_L2)
- Fix DiskANN zmq_port compatibility with lazy loading strategy
- Add documentation for normalized embeddings feature

This fixes the low accuracy issue when using OpenAI text-embedding-3-small model with default MIPS metric.

* style: format
2025-07-27 21:19:29 -07:00
yichuan520030910320
e9d2d420bd fix some readme 2025-07-27 20:48:23 -07:00
yichuan520030910320
ebabfad066 Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-27 20:44:36 -07:00
yichuan520030910320
e6f612b5e8 fix install and readme 2025-07-27 20:44:28 -07:00
Andy Lee
51c41acd82 docs: add comprehensive CONTRIBUTING.md guide with pre-commit setup 2025-07-27 20:40:42 -07:00
yichuan520030910320
455f93fb7c fix emaple and add pypi example 2025-07-27 18:20:13 -07:00
yichuan520030910320
48207c3b69 add pypi example 2025-07-27 17:08:49 -07:00
yichuan520030910320
4de1caa40f fix redame install method 2025-07-27 17:00:28 -07:00
yichuan520030910320
60eaa8165c fix precommit and fix redame install method 2025-07-27 16:36:30 -07:00
yichuan520030910320
c1a5d0c624 fix readme 2025-07-27 02:24:28 -07:00
yichuan520030910320
af1790395a fix ruff errors and formatting 2025-07-27 02:22:54 -07:00
yichuan520030910320
383c6d8d7e add clear instructions 2025-07-27 02:19:27 -07:00
yichuan520030910320
bc0d839693 Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-27 02:07:41 -07:00
yichuan520030910320
8596562de5 add pip install option to README 2025-07-27 02:06:40 -07:00
GitHub Actions
5d09586853 chore: release v0.1.14 2025-07-27 08:50:56 +00:00
Andy Lee
a7cba078dd chore: consolidate essential fixes and add pre-commit hooks
- Add pre-commit configuration with ruff and black
- Fix lint CI job to use uv tool install instead of sync
- Add essential LlamaIndex dependencies to leann-core

Co-Authored-By: Yichuan Wang <73766326+yichuan-w@users.noreply.github.com>
2025-07-27 01:24:24 -07:00
Andy Lee
b3e9ee96fa fix: resolve all ruff linting errors and add lint CI check
- Fix ambiguous fullwidth characters (commas, parentheses) in strings and comments
- Replace Chinese comments with English equivalents
- Fix unused imports with proper noqa annotations for intentional imports
- Fix bare except clauses with specific exception types
- Fix redefined variables and undefined names
- Add ruff noqa annotations for generated protobuf files
- Add lint and format check to GitHub Actions CI pipeline
2025-07-26 22:38:13 -07:00
yichuan520030910320
8537a6b17e default args change 2025-07-26 21:51:14 -07:00
yichuan520030910320
7c8d7dc5c2 tones down 2025-07-26 21:47:55 -07:00
yichuan520030910320
8e23d663e6 Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-26 21:46:02 -07:00
yichuan520030910320
8a3994bf80 update colab now it works perfect 2025-07-26 21:45:56 -07:00
GitHub Actions
8375f601ba chore: release v0.1.13 2025-07-27 01:08:17 +00:00
yichuan520030910320
c87c0fe662 update colab install & fix colab path 2025-07-26 18:07:31 -07:00
yichuan520030910320
73927b68ef Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-26 17:09:55 -07:00
yichuan520030910320
cc1a62e5aa update pytoml version again 2025-07-26 17:09:45 -07:00
GitHub Actions
802020cb41 chore: release v0.1.12 2025-07-26 23:35:28 +00:00
yichuan520030910320
cdb92f7cf4 update pytoml version && fix colab env && fix pdf extract in pip 2025-07-26 16:33:13 -07:00
yichuan520030910320
dc69bdec00 Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-25 17:54:43 -07:00
yichuan520030910320
98073e9868 update missing pkg 2025-07-25 17:54:21 -07:00
GitHub Actions
cf2ef48967 chore: release v0.1.11 2025-07-26 00:12:37 +00:00
yichuan520030910320
0692bbf7a2 change workflow 2025-07-25 17:11:56 -07:00
GitHub Actions
52584a171f chore: release v0.1.10 2025-07-25 23:12:16 +00:00
Andy Lee
efd6b5324b fix: add protobuf as a dependency for DiskANN backend
- Fixes 'No module named google' error when starting DiskANN embedding server
- Prevents users from having to manually install protobuf
2025-07-25 16:10:25 -07:00
Andy Lee
2baaa4549b fix: handle relative paths in HNSW embedding server metadata
- Convert relative paths to absolute paths based on metadata file location
- Fixes FileNotFoundError when starting embedding server
- Resolves issue with passages file not found in different working directories
2025-07-25 16:09:53 -07:00
Andy Lee
35310ddd52 fix: pure Python packages not building due to ubuntu-latest check
The build workflow was checking for matrix.os == 'ubuntu-latest',
but we changed the matrix to use 'ubuntu-22.04', causing the
pure Python packages (leann-core and leann) to never be built.

Changed to use pattern matching [[ == ubuntu-* ]] to match any
Ubuntu version.

This explains why v0.1.9 only published the C++ backend packages
but not the pure Python packages.
2025-07-25 15:14:21 -07:00
84 changed files with 6201 additions and 4027 deletions

View File

@@ -8,4 +8,4 @@ on:
jobs:
build:
uses: ./.github/workflows/build-reusable.yml
uses: ./.github/workflows/build-reusable.yml

View File

@@ -10,7 +10,36 @@ on:
default: ''
jobs:
lint:
name: Lint and Format Check
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
ref: ${{ inputs.ref }}
- name: Setup Python
uses: actions/setup-python@v5
with:
python-version: '3.11'
- name: Install uv
uses: astral-sh/setup-uv@v4
- name: Install ruff
run: |
uv tool install ruff
- name: Run ruff check
run: |
ruff check .
- name: Run ruff format check
run: |
ruff format --check .
build:
needs: lint
name: Build ${{ matrix.os }} Python ${{ matrix.python }}
strategy:
matrix:
@@ -36,40 +65,41 @@ jobs:
- os: macos-latest
python: '3.13'
runs-on: ${{ matrix.os }}
steps:
- uses: actions/checkout@v4
with:
ref: ${{ inputs.ref }}
submodules: recursive
- name: Setup Python
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python }}
- name: Install uv
uses: astral-sh/setup-uv@v4
- name: Install system dependencies (Ubuntu)
if: runner.os == 'Linux'
run: |
sudo apt-get update
sudo apt-get install -y libomp-dev libboost-all-dev protobuf-compiler libzmq3-dev \
pkg-config libopenblas-dev patchelf libabsl-dev libaio-dev libprotobuf-dev
# Install Intel MKL for DiskANN
wget -q https://registrationcenter-download.intel.com/akdlm/IRC_NAS/79153e0f-74d7-45af-b8c2-258941adf58a/intel-onemkl-2025.0.0.940.sh
sudo sh intel-onemkl-2025.0.0.940.sh -a --components intel.oneapi.lin.mkl.devel --action install --eula accept -s
source /opt/intel/oneapi/setvars.sh
echo "MKLROOT=/opt/intel/oneapi/mkl/latest" >> $GITHUB_ENV
echo "LD_LIBRARY_PATH=/opt/intel/oneapi/mkl/latest/lib/intel64:$LD_LIBRARY_PATH" >> $GITHUB_ENV
- name: Install system dependencies (macOS)
if: runner.os == 'macOS'
run: |
brew install llvm libomp boost protobuf zeromq
# Don't install LLVM, use system clang for better compatibility
brew install libomp boost protobuf zeromq
- name: Install build dependencies
run: |
uv pip install --system scikit-build-core numpy swig Cython pybind11
@@ -78,41 +108,50 @@ jobs:
else
uv pip install --system delocate
fi
- name: Build packages
run: |
# Build core (platform independent)
if [ "${{ matrix.os }}" == "ubuntu-latest" ]; then
if [[ "${{ matrix.os }}" == ubuntu-* ]]; then
cd packages/leann-core
uv build
cd ../..
fi
# Build HNSW backend
cd packages/leann-backend-hnsw
if [ "${{ matrix.os }}" == "macos-latest" ]; then
CC=$(brew --prefix llvm)/bin/clang CXX=$(brew --prefix llvm)/bin/clang++ uv build --wheel --python python
# Use system clang instead of homebrew LLVM for better compatibility
export CC=clang
export CXX=clang++
export MACOSX_DEPLOYMENT_TARGET=11.0
uv build --wheel --python python
else
uv build --wheel --python python
fi
cd ../..
# Build DiskANN backend
cd packages/leann-backend-diskann
if [ "${{ matrix.os }}" == "macos-latest" ]; then
CC=$(brew --prefix llvm)/bin/clang CXX=$(brew --prefix llvm)/bin/clang++ uv build --wheel --python python
# Use system clang instead of homebrew LLVM for better compatibility
export CC=clang
export CXX=clang++
# DiskANN requires macOS 13.3+ for sgesdd_ LAPACK function
export MACOSX_DEPLOYMENT_TARGET=13.3
uv build --wheel --python python
else
uv build --wheel --python python
fi
cd ../..
# Build meta package (platform independent)
if [ "${{ matrix.os }}" == "ubuntu-latest" ]; then
if [[ "${{ matrix.os }}" == ubuntu-* ]]; then
cd packages/leann
uv build
cd ../..
fi
- name: Repair wheels (Linux)
if: runner.os == 'Linux'
run: |
@@ -124,7 +163,7 @@ jobs:
mv dist_repaired dist
fi
cd ../..
# Repair DiskANN wheel
cd packages/leann-backend-diskann
if [ -d dist ]; then
@@ -133,7 +172,7 @@ jobs:
mv dist_repaired dist
fi
cd ../..
- name: Repair wheels (macOS)
if: runner.os == 'macOS'
run: |
@@ -145,7 +184,7 @@ jobs:
mv dist_repaired dist
fi
cd ../..
# Repair DiskANN wheel
cd packages/leann-backend-diskann
if [ -d dist ]; then
@@ -154,14 +193,59 @@ jobs:
mv dist_repaired dist
fi
cd ../..
- name: List built packages
run: |
echo "📦 Built packages:"
find packages/*/dist -name "*.whl" -o -name "*.tar.gz" | sort
- name: Install built packages for testing
run: |
# Create a virtual environment
uv venv
source .venv/bin/activate || source .venv/Scripts/activate
# Install the built wheels
# Use --find-links to let uv choose the correct wheel for the platform
if [[ "${{ matrix.os }}" == ubuntu-* ]]; then
uv pip install leann-core --find-links packages/leann-core/dist
uv pip install leann --find-links packages/leann/dist
fi
uv pip install leann-backend-hnsw --find-links packages/leann-backend-hnsw/dist
uv pip install leann-backend-diskann --find-links packages/leann-backend-diskann/dist
# Install test dependencies using extras
uv pip install -e ".[test]"
- name: Run tests with pytest
env:
CI: true # Mark as CI environment to skip memory-intensive tests
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
HF_HUB_DISABLE_SYMLINKS: 1
TOKENIZERS_PARALLELISM: false
PYTORCH_ENABLE_MPS_FALLBACK: 0 # Disable MPS on macOS CI to avoid memory issues
OMP_NUM_THREADS: 1 # Disable OpenMP parallelism to avoid libomp crashes
MKL_NUM_THREADS: 1 # Single thread for MKL operations
run: |
# Activate virtual environment
source .venv/bin/activate || source .venv/Scripts/activate
# Run all tests
pytest tests/
- name: Run sanity checks (optional)
run: |
# Activate virtual environment
source .venv/bin/activate || source .venv/Scripts/activate
# Run distance function tests if available
if [ -f test/sanity_checks/test_distance_functions.py ]; then
echo "Running distance function sanity checks..."
python test/sanity_checks/test_distance_functions.py || echo "⚠️ Distance function test failed, continuing..."
fi
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
name: packages-${{ matrix.os }}-py${{ matrix.python }}
path: packages/*/dist/
path: packages/*/dist/

View File

@@ -16,18 +16,21 @@ jobs:
contents: write
outputs:
commit-sha: ${{ steps.push.outputs.commit-sha }}
steps:
- uses: actions/checkout@v4
- name: Validate version
run: |
if ! [[ "${{ inputs.version }}" =~ ^[0-9]+\.[0-9]+\.[0-9]+$ ]]; then
echo "❌ Invalid version format"
# Remove 'v' prefix if present for validation
VERSION_CLEAN="${{ inputs.version }}"
VERSION_CLEAN="${VERSION_CLEAN#v}"
if ! [[ "$VERSION_CLEAN" =~ ^[0-9]+\.[0-9]+\.[0-9]+$ ]]; then
echo "❌ Invalid version format. Expected format: X.Y.Z or vX.Y.Z"
exit 1
fi
echo "✅ Version format valid"
echo "✅ Version format valid: ${{ inputs.version }}"
- name: Update versions and push
id: push
run: |
@@ -35,7 +38,7 @@ jobs:
CURRENT_VERSION=$(grep "^version" packages/leann-core/pyproject.toml | cut -d'"' -f2)
echo "Current version: $CURRENT_VERSION"
echo "Target version: ${{ inputs.version }}"
if [ "$CURRENT_VERSION" = "${{ inputs.version }}" ]; then
echo "⚠️ Version is already ${{ inputs.version }}, skipping update"
COMMIT_SHA=$(git rev-parse HEAD)
@@ -49,7 +52,7 @@ jobs:
COMMIT_SHA=$(git rev-parse HEAD)
echo "✅ Pushed version update: $COMMIT_SHA"
fi
echo "commit-sha=$COMMIT_SHA" >> $GITHUB_OUTPUT
build-packages:
@@ -57,7 +60,7 @@ jobs:
needs: update-version
uses: ./.github/workflows/build-reusable.yml
with:
ref: ${{ needs.update-version.outputs.commit-sha }}
ref: 'main'
publish:
name: Publish and Release
@@ -66,26 +69,26 @@ jobs:
runs-on: ubuntu-latest
permissions:
contents: write
steps:
- uses: actions/checkout@v4
with:
ref: ${{ needs.update-version.outputs.commit-sha }}
ref: 'main'
- name: Download all artifacts
uses: actions/download-artifact@v4
with:
path: dist-artifacts
- name: Collect packages
run: |
mkdir -p dist
find dist-artifacts -name "*.whl" -exec cp {} dist/ \;
find dist-artifacts -name "*.tar.gz" -exec cp {} dist/ \;
echo "📦 Packages to publish:"
ls -la dist/
- name: Publish to PyPI
env:
TWINE_USERNAME: __token__
@@ -95,12 +98,12 @@ jobs:
echo "❌ PYPI_API_TOKEN not configured!"
exit 1
fi
pip install twine
twine upload dist/* --skip-existing --verbose
echo "✅ Published to PyPI!"
- name: Create release
run: |
# Check if tag already exists
@@ -111,7 +114,7 @@ jobs:
git push origin "v${{ inputs.version }}"
echo "✅ Created and pushed tag v${{ inputs.version }}"
fi
# Check if release already exists
if gh release view "v${{ inputs.version }}" >/dev/null 2>&1; then
echo "⚠️ Release v${{ inputs.version }} already exists, skipping release creation"
@@ -123,4 +126,4 @@ jobs:
echo "✅ Created GitHub release v${{ inputs.version }}"
fi
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}

6
.gitignore vendored
View File

@@ -9,7 +9,7 @@ demo/indices/
outputs/
*.pkl
*.pdf
*.idx
*.idx
*.map
.history/
lm_eval.egg-info/
@@ -85,4 +85,6 @@ packages/leann-backend-diskann/third_party/DiskANN/_deps/
*.meta.json
*.passages.json
batchtest.py
batchtest.py
tests/__pytest_cache__/
tests/__pycache__/

16
.pre-commit-config.yaml Normal file
View File

@@ -0,0 +1,16 @@
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.5.0
hooks:
- id: trailing-whitespace
- id: end-of-file-fixer
- id: check-yaml
- id: check-added-large-files
- id: check-merge-conflict
- id: debug-statements
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.2.1
hooks:
- id: ruff
- id: ruff-format

156
README.md
View File

@@ -12,7 +12,7 @@
The smallest vector index in the world. RAG Everything with LEANN!
</h2>
LEANN is a revolutionary vector database that democratizes personal AI. Transform your laptop into a powerful RAG system that can index and search through millions of documents while using **97% less storage** than traditional solutions **without accuracy loss**.
LEANN is an innovative vector database that democratizes personal AI. Transform your laptop into a powerful RAG system that can index and search through millions of documents while using **97% less storage** than traditional solutions **without accuracy loss**.
LEANN achieves this through *graph-based selective recomputation* with *high-degree preserving pruning*, computing embeddings on-demand instead of storing them all. [Illustration Fig →](#-architecture--how-it-works) | [Paper →](https://arxiv.org/abs/2506.08276)
@@ -33,12 +33,46 @@ LEANN achieves this through *graph-based selective recomputation* with *high-deg
🪶 **Lightweight:** Graph-based recomputation eliminates heavy embedding storage, while smart graph pruning and CSR format minimize graph storage overhead. Always less storage, less memory usage!
📦 **Portable:** Transfer your entire knowledge base between devices (even with others) with minimal cost - your personal AI memory travels with you.
📈 **Scalability:** Handle messy personal data that would crash traditional vector DBs, easily managing your growing personalized data and agent generated memory!
**No Accuracy Loss:** Maintain the same search quality as heavyweight solutions while using 97% less storage.
## Installation
> `pip leann` coming soon!
<details>
<summary><strong>📦 Prerequisites: Install uv (if you don't have it)</strong></summary>
Install uv first if you don't have it:
```bash
curl -LsSf https://astral.sh/uv/install.sh | sh
```
📖 [Detailed uv installation methods →](https://docs.astral.sh/uv/getting-started/installation/#installation-methods)
</details>
LEANN provides two installation methods: **pip install** (quick and easy) and **build from source** (recommended for development).
### 🚀 Quick Install (Recommended for most users)
Clone the repository to access all examples and install LEANN from [PyPI](https://pypi.org/project/leann/) to run them immediately:
```bash
git clone git@github.com:yichuan-w/LEANN.git leann
cd leann
uv venv
source .venv/bin/activate
uv pip install leann
```
### 🔧 Build from Source (Recommended for development)
```bash
git clone git@github.com:yichuan-w/LEANN.git leann
cd leann
@@ -48,27 +82,65 @@ git submodule update --init --recursive
**macOS:**
```bash
brew install llvm libomp boost protobuf zeromq pkgconf
# Install with HNSW backend (default, recommended for most users)
# Install uv first if you don't have it:
# curl -LsSf https://astral.sh/uv/install.sh | sh
# See: https://docs.astral.sh/uv/getting-started/installation/#installation-methods
CC=$(brew --prefix llvm)/bin/clang CXX=$(brew --prefix llvm)/bin/clang++ uv sync
```
**Linux:**
```bash
sudo apt-get install libomp-dev libboost-all-dev protobuf-compiler libabsl-dev libmkl-full-dev libaio-dev libzmq3-dev
# Install with HNSW backend (default, recommended for most users)
uv sync
```
**Ollama Setup (Recommended for full privacy):**
> *You can skip this installation if you only want to use OpenAI API for generation.*
## Quick Start
Our declarative API makes RAG as easy as writing a config file.
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/yichuan-w/LEANN/blob/main/demo.ipynb) [Try in this ipynb file →](demo.ipynb)
```python
from leann import LeannBuilder, LeannSearcher, LeannChat
from pathlib import Path
INDEX_PATH = str(Path("./").resolve() / "demo.leann")
# Build an index
builder = LeannBuilder(backend_name="hnsw")
builder.add_text("LEANN saves 97% storage compared to traditional vector databases.")
builder.add_text("Tung Tung Tung Sahur called—they need their bananacrocodile hybrid back")
builder.build_index(INDEX_PATH)
# Search
searcher = LeannSearcher(INDEX_PATH)
results = searcher.search("fantastical AI-generated creatures", top_k=1)
# Chat with your data
chat = LeannChat(INDEX_PATH, llm_config={"type": "hf", "model": "Qwen/Qwen3-0.6B"})
response = chat.ask("How much storage does LEANN save?", top_k=1)
```
## RAG on Everything!
LEANN supports RAG on various data sources including documents (.pdf, .txt, .md), Apple Mail, Google Search History, WeChat, and more.
> **Generation Model Setup**
> LEANN supports multiple LLM providers for text generation (OpenAI API, HuggingFace, Ollama).
<details>
<summary><strong>🔑 OpenAI API Setup (Default)</strong></summary>
Set your OpenAI API key as an environment variable:
```bash
export OPENAI_API_KEY="your-api-key-here"
```
</details>
<details>
<summary><strong>🔧 Ollama Setup (Recommended for full privacy)</strong></summary>
**macOS:**
@@ -80,6 +152,7 @@ ollama pull llama3.2:1b
```
**Linux:**
```bash
# Install Ollama
curl -fsSL https://ollama.ai/install.sh | sh
@@ -91,43 +164,7 @@ ollama serve &
ollama pull llama3.2:1b
```
## Quick Start in 30s
Our declarative API makes RAG as easy as writing a config file.
[Try in this ipynb file →](demo.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/yichuan-w/LEANN/blob/main/demo.ipynb)
```python
from leann.api import LeannBuilder, LeannSearcher, LeannChat
# 1. Build the index (no embeddings stored!)
builder = LeannBuilder(backend_name="hnsw")
builder.add_text("C# is a powerful programming language")
builder.add_text("Python is a powerful programming language and it is very popular")
builder.add_text("Machine learning transforms industries")
builder.add_text("Neural networks process complex data")
builder.add_text("Leann is a great storage saving engine for RAG on your MacBook")
builder.build_index("knowledge.leann")
# 2. Search with real-time embeddings
searcher = LeannSearcher("knowledge.leann")
results = searcher.search("programming languages", top_k=2)
# 3. Chat with LEANN using retrieved results
llm_config = {
"type": "ollama",
"model": "llama3.2:1b"
}
chat = LeannChat(index_path="knowledge.leann", llm_config=llm_config)
response = chat.ask(
"Compare the two retrieved programming languages and say which one is more popular today.",
top_k=2,
)
```
## RAG on Everything!
LEANN supports RAG on various data sources including documents (.pdf, .txt, .md), Apple Mail, Google Search History, WeChat, and more.
</details>
### 📄 Personal Data Manager: Process Any Documents (.pdf, .txt, .md)!
@@ -139,11 +176,6 @@ Ask questions directly about your personal PDFs, documents, and any directory co
The example below asks a question about summarizing two papers (uses default data in `examples/data`):
```bash
# Drop your PDFs, .txt, .md files into examples/data/
uv run ./examples/main_cli_example.py
```
```
# Or use python directly
source .venv/bin/activate
@@ -154,6 +186,9 @@ python ./examples/main_cli_example.py
### 📧 Your Personal Email Secretary: RAG on Apple Mail!
> **Note:** The examples below currently support macOS only. Windows support coming soon.
<p align="center">
<img src="videos/mail_clear.gif" alt="LEANN Email Search Demo" width="600">
</p>
@@ -195,7 +230,7 @@ Once the index is built, you can ask questions like:
- "Show me emails about travel expenses"
</details>
### 🔍 Time Machine for the Web: RAG Your Entire Google Browser History!
### 🔍 Time Machine for the Web: RAG Your Entire Chrome Browser History!
<p align="center">
<img src="videos/google_clear.gif" alt="LEANN Browser History Search Demo" width="600">
@@ -324,7 +359,7 @@ LEANN includes a powerful CLI for document processing and search. Perfect for qu
# Build an index from documents
leann build my-docs --docs ./documents
# Search your documents
# Search your documents
leann search my-docs "machine learning concepts"
# Interactive chat with your documents
@@ -392,7 +427,7 @@ Options:
**Core techniques:**
- **Graph-based selective recomputation:** Only compute embeddings for nodes in the search path
- **High-degree preserving pruning:** Keep important "hub" nodes while removing redundant connections
- **High-degree preserving pruning:** Keep important "hub" nodes while removing redundant connections
- **Dynamic batching:** Efficiently batch embedding computations for GPU utilization
- **Two-level search:** Smart graph traversal that prioritizes promising nodes
@@ -429,22 +464,22 @@ If you find Leann useful, please cite:
```bibtex
@misc{wang2025leannlowstoragevectorindex,
title={LEANN: A Low-Storage Vector Index},
title={LEANN: A Low-Storage Vector Index},
author={Yichuan Wang and Shu Liu and Zhifei Li and Yongji Wu and Ziming Mao and Yilong Zhao and Xiao Yan and Zhiying Xu and Yang Zhou and Ion Stoica and Sewon Min and Matei Zaharia and Joseph E. Gonzalez},
year={2025},
eprint={2506.08276},
archivePrefix={arXiv},
primaryClass={cs.DB},
url={https://arxiv.org/abs/2506.08276},
url={https://arxiv.org/abs/2506.08276},
}
```
## ✨ [Detailed Features →](docs/features.md)
## 🤝 [Contributing →](docs/contributing.md)
## 🤝 [CONTRIBUTING →](docs/CONTRIBUTING.md)
## [FAQ →](docs/faq.md)
## [FAQ →](docs/faq.md)
## 📈 [Roadmap →](docs/roadmap.md)
@@ -465,4 +500,3 @@ This work is done at [**Berkeley Sky Computing Lab**](https://sky.cs.berkeley.e
<p align="center">
Made with ❤️ by the Leann team
</p>

View File

@@ -4,7 +4,11 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Quick Start in 30s"
"# Quick Start \n",
"\n",
"**Home GitHub Repository:** [LEANN on GitHub](https://github.com/yichuan-w/LEANN)\n",
"\n",
"**Important for Colab users:** Set your runtime type to T4 GPU for optimal performance. Go to Runtime → Change runtime type → Hardware accelerator → T4 GPU."
]
},
{
@@ -13,8 +17,25 @@
"metadata": {},
"outputs": [],
"source": [
"# install this if you areusing colab\n",
"! pip install leann"
"# install this if you are using colab\n",
"! uv pip install leann-core leann-backend-hnsw --no-deps\n",
"! uv pip install leann --no-deps\n",
"# For Colab environment, we need to set some environment variables\n",
"import os\n",
"\n",
"os.environ[\"LEANN_LOG_LEVEL\"] = \"INFO\" # Enable more detailed logging"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from pathlib import Path\n",
"\n",
"INDEX_DIR = Path(\"./\").resolve()\n",
"INDEX_PATH = str(INDEX_DIR / \"demo.leann\")"
]
},
{
@@ -26,91 +47,21 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO: Registering backend 'hnsw'\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/yichuan/Desktop/code/LEANN/leann/.venv/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n",
"INFO:sentence_transformers.SentenceTransformer:Load pretrained SentenceTransformer: facebook/contriever\n",
"WARNING:sentence_transformers.SentenceTransformer:No sentence-transformers model found with name facebook/contriever. Creating a new one with mean pooling.\n",
"Writing passages: 100%|██████████| 5/5 [00:00<00:00, 27887.66chunk/s]\n",
"Batches: 100%|██████████| 1/1 [00:00<00:00, 13.51it/s]\n",
"WARNING:leann_backend_hnsw.hnsw_backend:Converting data to float32, shape: (5, 768)\n",
"INFO:leann_backend_hnsw.hnsw_backend:INFO: Converting HNSW index to CSR-pruned format...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"M: 64 for level: 0\n",
"Starting conversion: knowledge.index -> knowledge.csr.tmp\n",
"[0.00s] Reading Index HNSW header...\n",
"[0.00s] Header read: d=768, ntotal=5\n",
"[0.00s] Reading HNSW struct vectors...\n",
" Reading vector (dtype=<class 'numpy.float64'>, fmt='d')... Count=6, Bytes=48\n",
"[0.00s] Read assign_probas (6)\n",
" Reading vector (dtype=<class 'numpy.int32'>, fmt='i')... Count=7, Bytes=28\n",
"[0.11s] Read cum_nneighbor_per_level (7)\n",
" Reading vector (dtype=<class 'numpy.int32'>, fmt='i')... Count=5, Bytes=20\n",
"[0.21s] Read levels (5)\n",
"[0.30s] Probing for compact storage flag...\n",
"[0.30s] Found compact flag: False\n",
"[0.30s] Compact flag is False, reading original format...\n",
"[0.30s] Probing for potential extra byte before non-compact offsets...\n",
"[0.30s] Found and consumed an unexpected 0x00 byte.\n",
" Reading vector (dtype=<class 'numpy.uint64'>, fmt='Q')... Count=6, Bytes=48\n",
"[0.30s] Read offsets (6)\n",
"[0.40s] Attempting to read neighbors vector...\n",
" Reading vector (dtype=<class 'numpy.int32'>, fmt='i')... Count=320, Bytes=1280\n",
"[0.40s] Read neighbors (320)\n",
"[0.50s] Read scalar params (ep=4, max_lvl=0)\n",
"[0.50s] Checking for storage data...\n",
"[0.50s] Found storage fourcc: 49467849.\n",
"[0.50s] Converting to CSR format...\n",
"[0.50s] Conversion loop finished. \n",
"[0.50s] Running validation checks...\n",
" Checking total valid neighbor count...\n",
" OK: Total valid neighbors = 20\n",
" Checking final pointer indices...\n",
" OK: Final pointers match data size.\n",
"[0.50s] Deleting original neighbors and offsets arrays...\n",
" CSR Stats: |data|=20, |level_ptr|=10\n",
"[0.59s] Writing CSR HNSW graph data in FAISS-compatible order...\n",
" Pruning embeddings: Writing NULL storage marker.\n",
"[0.69s] Conversion complete.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:leann_backend_hnsw.hnsw_backend:✅ CSR conversion successful.\n",
"INFO:leann_backend_hnsw.hnsw_backend:INFO: Replaced original index with CSR-pruned version at 'knowledge.index'\n"
]
}
],
"outputs": [],
"source": [
"from leann.api import LeannBuilder\n",
"\n",
"builder = LeannBuilder(backend_name=\"hnsw\")\n",
"builder.add_text(\"C# is a powerful programming language and it is good at game development\")\n",
"builder.add_text(\"Python is a powerful programming language and it is good at machine learning tasks\")\n",
"builder.add_text(\n",
" \"Python is a powerful programming language and it is good at machine learning tasks\"\n",
")\n",
"builder.add_text(\"Machine learning transforms industries\")\n",
"builder.add_text(\"Neural networks process complex data\")\n",
"builder.add_text(\"Leann is a great storage saving engine for RAG on your MacBook\")\n",
"builder.build_index(\"knowledge.leann\")"
"builder.build_index(INDEX_PATH)"
]
},
{
@@ -122,97 +73,13 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:leann.api:🔍 LeannSearcher.search() called:\n",
"INFO:leann.api: Query: 'programming languages'\n",
"INFO:leann.api: Top_k: 2\n",
"INFO:leann.api: Additional kwargs: {}\n",
"INFO:leann.embedding_server_manager:Port 5557 has incompatible server, trying next port...\n",
"INFO:leann.embedding_server_manager:Port 5558 has incompatible server, trying next port...\n",
"INFO:leann.embedding_server_manager:Port 5559 has incompatible server, trying next port...\n",
"INFO:leann.embedding_server_manager:Using port 5560 instead of 5557\n",
"INFO:leann.embedding_server_manager:Starting embedding server on port 5560...\n",
"INFO:leann.embedding_server_manager:Command: /Users/yichuan/Desktop/code/LEANN/leann/.venv/bin/python -m leann_backend_hnsw.hnsw_embedding_server --zmq-port 5560 --model-name facebook/contriever --passages-file knowledge.leann.meta.json\n",
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n",
"INFO:leann.embedding_server_manager:Server process started with PID: 4574\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[read_HNSW - CSR NL v4] Reading metadata & CSR indices (manual offset)...\n",
"[read_HNSW NL v4] Read levels vector, size: 5\n",
"[read_HNSW NL v4] Reading Compact Storage format indices...\n",
"[read_HNSW NL v4] Read compact_level_ptr, size: 10\n",
"[read_HNSW NL v4] Read compact_node_offsets, size: 6\n",
"[read_HNSW NL v4] Read entry_point: 4, max_level: 0\n",
"[read_HNSW NL v4] Read storage fourcc: 0x6c6c756e\n",
"[read_HNSW NL v4 FIX] Detected FileIOReader. Neighbors size field offset: 326\n",
"[read_HNSW NL v4] Reading neighbors data into memory.\n",
"[read_HNSW NL v4] Read neighbors data, size: 20\n",
"[read_HNSW NL v4] Finished reading metadata and CSR indices.\n",
"INFO: Skipping external storage loading, since is_recompute is true.\n",
"INFO: Registering backend 'hnsw'\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:leann.embedding_server_manager:Embedding server is ready!\n",
"INFO:leann.api: Launching server time: 1.078078269958496 seconds\n",
"INFO:leann.embedding_server_manager:Existing server process (PID 4574) is compatible\n",
"INFO:sentence_transformers.SentenceTransformer:Load pretrained SentenceTransformer: facebook/contriever\n",
"WARNING:sentence_transformers.SentenceTransformer:No sentence-transformers model found with name facebook/contriever. Creating a new one with mean pooling.\n",
"INFO:leann.api: Generated embedding shape: (1, 768)\n",
"INFO:leann.api: Embedding time: 2.9307072162628174 seconds\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"ZmqDistanceComputer initialized: d=768, metric=0\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:leann.api: Search time: 0.27327895164489746 seconds\n",
"INFO:leann.api: Backend returned: labels=2 results\n",
"INFO:leann.api: Processing 2 passage IDs:\n",
"INFO:leann.api: 1. passage_id='0' -> SUCCESS: C# is a powerful programming language and it is good at game development...\n",
"INFO:leann.api: 2. passage_id='1' -> SUCCESS: Python is a powerful programming language and it is good at machine learning tasks...\n",
"INFO:leann.api: Final enriched results: 2 passages\n"
]
},
{
"data": {
"text/plain": [
"[SearchResult(id='0', score=np.float32(0.9874103), text='C# is a powerful programming language and it is good at game development', metadata={}),\n",
" SearchResult(id='1', score=np.float32(0.8922168), text='Python is a powerful programming language and it is good at machine learning tasks', metadata={})]"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"outputs": [],
"source": [
"from leann.api import LeannSearcher\n",
"\n",
"searcher = LeannSearcher(\"knowledge.leann\")\n",
"searcher = LeannSearcher(INDEX_PATH)\n",
"results = searcher.search(\"programming languages\", top_k=2)\n",
"results"
]
@@ -228,79 +95,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:leann.chat:Attempting to create LLM of type='hf' with model='Qwen/Qwen3-0.6B'\n",
"INFO:leann.chat:Initializing HFChat with model='Qwen/Qwen3-0.6B'\n",
"INFO:leann.chat:MPS is available. Using Apple Silicon GPU.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[read_HNSW - CSR NL v4] Reading metadata & CSR indices (manual offset)...\n",
"[read_HNSW NL v4] Read levels vector, size: 5\n",
"[read_HNSW NL v4] Reading Compact Storage format indices...\n",
"[read_HNSW NL v4] Read compact_level_ptr, size: 10\n",
"[read_HNSW NL v4] Read compact_node_offsets, size: 6\n",
"[read_HNSW NL v4] Read entry_point: 4, max_level: 0\n",
"[read_HNSW NL v4] Read storage fourcc: 0x6c6c756e\n",
"[read_HNSW NL v4 FIX] Detected FileIOReader. Neighbors size field offset: 326\n",
"[read_HNSW NL v4] Reading neighbors data into memory.\n",
"[read_HNSW NL v4] Read neighbors data, size: 20\n",
"[read_HNSW NL v4] Finished reading metadata and CSR indices.\n",
"INFO: Skipping external storage loading, since is_recompute is true.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:leann.api:🔍 LeannSearcher.search() called:\n",
"INFO:leann.api: Query: 'Compare the two retrieved programming languages and tell me their advantages.'\n",
"INFO:leann.api: Top_k: 2\n",
"INFO:leann.api: Additional kwargs: {}\n",
"INFO:leann.embedding_server_manager:Port 5557 has incompatible server, trying next port...\n",
"INFO:leann.embedding_server_manager:Port 5558 has incompatible server, trying next port...\n",
"INFO:leann.embedding_server_manager:Port 5559 has incompatible server, trying next port...\n",
"INFO:leann.embedding_server_manager:Found compatible server on port 5560\n",
"INFO:leann.embedding_server_manager:Using existing compatible server on port 5560\n",
"INFO:leann.api: Launching server time: 0.04932403564453125 seconds\n",
"INFO:leann.embedding_server_manager:Found compatible server on port 5560\n",
"INFO:leann.embedding_server_manager:Using existing compatible server on port 5560\n",
"INFO:leann.api: Generated embedding shape: (1, 768)\n",
"INFO:leann.api: Embedding time: 0.06902289390563965 seconds\n",
"INFO:leann.api: Search time: 0.026793241500854492 seconds\n",
"INFO:leann.api: Backend returned: labels=2 results\n",
"INFO:leann.api: Processing 2 passage IDs:\n",
"INFO:leann.api: 1. passage_id='0' -> SUCCESS: C# is a powerful programming language and it is good at game development...\n",
"INFO:leann.api: 2. passage_id='1' -> SUCCESS: Python is a powerful programming language and it is good at machine learning tasks...\n",
"INFO:leann.api: Final enriched results: 2 passages\n",
"INFO:leann.chat:Generating with HuggingFace model, config: {'max_new_tokens': 128, 'temperature': 0.7, 'top_p': 0.9, 'do_sample': True, 'pad_token_id': 151645, 'eos_token_id': 151645}\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"ZmqDistanceComputer initialized: d=768, metric=0\n"
]
},
{
"data": {
"text/plain": [
"\"<think>\\n\\n</think>\\n\\nBased on the context provided, here's a comparison of the two retrieved programming languages:\\n\\n**C#** is known for being a powerful programming language and is well-suited for game development. It is often used in game development and is popular among developers working on Windows applications.\\n\\n**Python**, on the other hand, is also a powerful language and is well-suited for machine learning tasks. It is widely used for data analysis, scientific computing, and other applications that require handling large datasets or performing complex calculations.\\n\\n**Advantages**:\\n- C#: Strong for game development and cross-platform compatibility.\\n- Python: Strong for\""
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"outputs": [],
"source": [
"from leann.api import LeannChat\n",
"\n",
@@ -309,11 +104,11 @@
" \"model\": \"Qwen/Qwen3-0.6B\",\n",
"}\n",
"\n",
"chat = LeannChat(index_path=\"knowledge.leann\", llm_config=llm_config)\n",
"chat = LeannChat(index_path=INDEX_PATH, llm_config=llm_config)\n",
"response = chat.ask(\n",
" \"Compare the two retrieved programming languages and tell me their advantages.\",\n",
" top_k=2,\n",
" llm_kwargs={\"max_tokens\": 128}\n",
" llm_kwargs={\"max_tokens\": 128},\n",
")\n",
"response"
]

220
docs/CONTRIBUTING.md Normal file
View File

@@ -0,0 +1,220 @@
# 🤝 Contributing
We welcome contributions! Leann is built by the community, for the community.
## Ways to Contribute
- 🐛 **Bug Reports**: Found an issue? Let us know!
- 💡 **Feature Requests**: Have an idea? We'd love to hear it!
- 🔧 **Code Contributions**: PRs welcome for all skill levels
- 📖 **Documentation**: Help make Leann more accessible
- 🧪 **Benchmarks**: Share your performance results
## 🚀 Development Setup
### Prerequisites
1. **Install uv** (fast Python package installer):
```bash
curl -LsSf https://astral.sh/uv/install.sh | sh
```
2. **Clone the repository**:
```bash
git clone https://github.com/LEANN-RAG/LEANN-RAG.git
cd LEANN-RAG
```
3. **Install system dependencies**:
**macOS:**
```bash
brew install llvm libomp boost protobuf zeromq pkgconf
```
**Ubuntu/Debian:**
```bash
sudo apt-get install libomp-dev libboost-all-dev protobuf-compiler \
libabsl-dev libmkl-full-dev libaio-dev libzmq3-dev
```
4. **Build from source**:
```bash
# macOS
CC=$(brew --prefix llvm)/bin/clang CXX=$(brew --prefix llvm)/bin/clang++ uv sync
# Ubuntu/Debian
uv sync
```
## 🔨 Pre-commit Hooks
We use pre-commit hooks to ensure code quality and consistency. This runs automatically before each commit.
### Setup Pre-commit
1. **Install pre-commit** (already included when you run `uv sync`):
```bash
uv pip install pre-commit
```
2. **Install the git hooks**:
```bash
pre-commit install
```
3. **Run pre-commit manually** (optional):
```bash
pre-commit run --all-files
```
### Pre-commit Checks
Our pre-commit configuration includes:
- **Trailing whitespace removal**
- **End-of-file fixing**
- **YAML validation**
- **Large file prevention**
- **Merge conflict detection**
- **Debug statement detection**
- **Code formatting with ruff**
- **Code linting with ruff**
## 🧪 Testing
### Running Tests
```bash
# Run all tests
uv run pytest
# Run specific test file
uv run pytest test/test_filename.py
# Run with coverage
uv run pytest --cov=leann
```
### Writing Tests
- Place tests in the `test/` directory
- Follow the naming convention `test_*.py`
- Use descriptive test names that explain what's being tested
- Include both positive and negative test cases
## 📝 Code Style
We use `ruff` for both linting and formatting to ensure consistent code style.
### Format Your Code
```bash
# Format all files
ruff format
# Check formatting without changing files
ruff format --check
```
### Lint Your Code
```bash
# Run linter with auto-fix
ruff check --fix
# Just check without fixing
ruff check
```
### Style Guidelines
- Follow PEP 8 conventions
- Use descriptive variable names
- Add type hints where appropriate
- Write docstrings for all public functions and classes
- Keep functions focused and single-purpose
## 🚦 CI/CD
Our CI pipeline runs automatically on all pull requests. It includes:
1. **Linting and Formatting**: Ensures code follows our style guidelines
2. **Multi-platform builds**: Tests on Ubuntu and macOS
3. **Python version matrix**: Tests on Python 3.9-3.13
4. **Wheel building**: Ensures packages can be built and distributed
### CI Commands
The CI uses the same commands as pre-commit to ensure consistency:
```bash
# Linting
ruff check .
# Format checking
ruff format --check .
```
Make sure your code passes these checks locally before pushing!
## 🔄 Pull Request Process
1. **Fork the repository** and create your branch from `main`:
```bash
git checkout -b feature/your-feature-name
```
2. **Make your changes**:
- Write clean, documented code
- Add tests for new functionality
- Update documentation as needed
3. **Run pre-commit checks**:
```bash
pre-commit run --all-files
```
4. **Test your changes**:
```bash
uv run pytest
```
5. **Commit with descriptive messages**:
```bash
git commit -m "feat: add new search algorithm"
```
Follow [Conventional Commits](https://www.conventionalcommits.org/):
- `feat:` for new features
- `fix:` for bug fixes
- `docs:` for documentation changes
- `test:` for test additions/changes
- `refactor:` for code refactoring
- `perf:` for performance improvements
6. **Push and create a pull request**:
- Provide a clear description of your changes
- Reference any related issues
- Include examples or screenshots if applicable
## 📚 Documentation
When adding new features or making significant changes:
1. Update relevant documentation in `/docs`
2. Add docstrings to new functions/classes
3. Update README.md if needed
4. Include usage examples
## 🤔 Getting Help
- **Discord**: Join our community for discussions
- **Issues**: Check existing issues or create a new one
- **Discussions**: For general questions and ideas
## 📄 License
By contributing, you agree that your contributions will be licensed under the same license as the project (MIT).
---
Thank you for contributing to LEANN! Every contribution, no matter how small, helps make the project better for everyone. 🌟

View File

@@ -19,4 +19,4 @@ That's it! The workflow will automatically:
- ✅ Publish to PyPI
- ✅ Create GitHub tag and release
Check progress: https://github.com/yichuan-w/LEANN/actions
Check progress: https://github.com/yichuan-w/LEANN/actions

View File

@@ -0,0 +1,98 @@
"""
Comparison between Sentence Transformers and OpenAI embeddings
This example shows how different embedding models handle complex queries
and demonstrates the differences between local and API-based embeddings.
"""
import numpy as np
from leann.embedding_compute import compute_embeddings
# OpenAI API key should be set as environment variable
# export OPENAI_API_KEY="your-api-key-here"
# Test data
conference_text = "[Title]: COLING 2025 Conference\n[URL]: https://coling2025.org/"
browser_text = "[Title]: Browser Use Tool\n[URL]: https://github.com/browser-use"
# Two queries with same intent but different wording
query1 = "Tell me my browser history about some conference i often visit"
query2 = "browser history about conference I often visit"
texts = [query1, query2, conference_text, browser_text]
def cosine_similarity(a, b):
return np.dot(a, b) # Already normalized
def analyze_embeddings(embeddings, model_name):
print(f"\n=== {model_name} Results ===")
# Results for Query 1
sim1_conf = cosine_similarity(embeddings[0], embeddings[2])
sim1_browser = cosine_similarity(embeddings[0], embeddings[3])
print(f"Query 1: '{query1}'")
print(f" → Conference similarity: {sim1_conf:.4f} {'' if sim1_conf > sim1_browser else ''}")
print(
f" → Browser similarity: {sim1_browser:.4f} {'' if sim1_browser > sim1_conf else ''}"
)
print(f" Winner: {'Conference' if sim1_conf > sim1_browser else 'Browser'}")
# Results for Query 2
sim2_conf = cosine_similarity(embeddings[1], embeddings[2])
sim2_browser = cosine_similarity(embeddings[1], embeddings[3])
print(f"\nQuery 2: '{query2}'")
print(f" → Conference similarity: {sim2_conf:.4f} {'' if sim2_conf > sim2_browser else ''}")
print(
f" → Browser similarity: {sim2_browser:.4f} {'' if sim2_browser > sim2_conf else ''}"
)
print(f" Winner: {'Conference' if sim2_conf > sim2_browser else 'Browser'}")
# Show the impact
print("\n=== Impact Analysis ===")
print(f"Conference similarity change: {sim2_conf - sim1_conf:+.4f}")
print(f"Browser similarity change: {sim2_browser - sim1_browser:+.4f}")
if sim1_conf > sim1_browser and sim2_browser > sim2_conf:
print("❌ FLIP: Adding 'browser history' flips winner from Conference to Browser!")
elif sim1_conf > sim1_browser and sim2_conf > sim2_browser:
print("✅ STABLE: Conference remains winner in both queries")
elif sim1_browser > sim1_conf and sim2_browser > sim2_conf:
print("✅ STABLE: Browser remains winner in both queries")
else:
print("🔄 MIXED: Results vary between queries")
return {
"query1_conf": sim1_conf,
"query1_browser": sim1_browser,
"query2_conf": sim2_conf,
"query2_browser": sim2_browser,
}
# Test Sentence Transformers
print("Testing Sentence Transformers (facebook/contriever)...")
try:
st_embeddings = compute_embeddings(texts, "facebook/contriever", mode="sentence-transformers")
st_results = analyze_embeddings(st_embeddings, "Sentence Transformers (facebook/contriever)")
except Exception as e:
print(f"❌ Sentence Transformers failed: {e}")
st_results = None
# Test OpenAI
print("\n" + "=" * 60)
print("Testing OpenAI (text-embedding-3-small)...")
try:
openai_embeddings = compute_embeddings(texts, "text-embedding-3-small", mode="openai")
openai_results = analyze_embeddings(openai_embeddings, "OpenAI (text-embedding-3-small)")
except Exception as e:
print(f"❌ OpenAI failed: {e}")
openai_results = None
# Compare results
if st_results and openai_results:
print("\n" + "=" * 60)
print("=== COMPARISON SUMMARY ===")

View File

@@ -1,11 +0,0 @@
# 🤝 Contributing
We welcome contributions! Leann is built by the community, for the community.
## Ways to Contribute
- 🐛 **Bug Reports**: Found an issue? Let us know!
- 💡 **Feature Requests**: Have an idea? We'd love to hear it!
- 🔧 **Code Contributions**: PRs welcome for all skill levels
- 📖 **Documentation**: Help make Leann more accessible
- 🧪 **Benchmarks**: Share your performance results

View File

@@ -7,4 +7,4 @@ You can speed up the process by using a lightweight embedding model. Add this to
```bash
--embedding-model sentence-transformers/all-MiniLM-L6-v2
```
**Model sizes:** `all-MiniLM-L6-v2` (30M parameters), `facebook/contriever` (~100M parameters), `Qwen3-0.6B` (600M parameters)
**Model sizes:** `all-MiniLM-L6-v2` (30M parameters), `facebook/contriever` (~100M parameters), `Qwen3-0.6B` (600M parameters)

View File

@@ -19,4 +19,4 @@
- **Simple Python API** - Get started in minutes
- **Extensible backend system** - Easy to add new algorithms
- **Comprehensive examples** - From basic usage to production deployment
- **Comprehensive examples** - From basic usage to production deployment

View File

@@ -0,0 +1,75 @@
# Normalized Embeddings Support in LEANN
LEANN now automatically detects normalized embedding models and sets the appropriate distance metric for optimal performance.
## What are Normalized Embeddings?
Normalized embeddings are vectors with L2 norm = 1 (unit vectors). These embeddings are optimized for cosine similarity rather than Maximum Inner Product Search (MIPS).
## Automatic Detection
When you create a `LeannBuilder` instance with a normalized embedding model, LEANN will:
1. **Automatically set `distance_metric="cosine"`** if not specified
2. **Show a warning** if you manually specify a different distance metric
3. **Provide optimal search performance** with the correct metric
## Supported Normalized Embedding Models
### OpenAI
All OpenAI text embedding models are normalized:
- `text-embedding-ada-002`
- `text-embedding-3-small`
- `text-embedding-3-large`
### Voyage AI
All Voyage AI embedding models are normalized:
- `voyage-2`
- `voyage-3`
- `voyage-large-2`
- `voyage-multilingual-2`
- `voyage-code-2`
### Cohere
All Cohere embedding models are normalized:
- `embed-english-v3.0`
- `embed-multilingual-v3.0`
- `embed-english-light-v3.0`
- `embed-multilingual-light-v3.0`
## Example Usage
```python
from leann.api import LeannBuilder
# Automatic detection - will use cosine distance
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="text-embedding-3-small",
embedding_mode="openai"
)
# Warning: Detected normalized embeddings model 'text-embedding-3-small'...
# Automatically setting distance_metric='cosine'
# Manual override (not recommended)
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="text-embedding-3-small",
embedding_mode="openai",
distance_metric="mips" # Will show warning
)
# Warning: Using 'mips' distance metric with normalized embeddings...
```
## Non-Normalized Embeddings
Models like `facebook/contriever` and other sentence-transformers models that are not normalized will continue to use MIPS by default, which is optimal for them.
## Why This Matters
Using the wrong distance metric with normalized embeddings can lead to:
- **Poor search quality** due to HNSW's early termination with narrow score ranges
- **Incorrect ranking** of search results
- **Suboptimal performance** compared to using the correct metric
For more details on why this happens, see our analysis of [OpenAI embeddings with MIPS](../examples/main_cli_example.py).

View File

@@ -18,4 +18,4 @@
- [ ] Integration with LangChain/LlamaIndex
- [ ] Visual similarity search
- [ ] Query rewrtiting, rerank and expansion
- [ ] Query rewrtiting, rerank and expansion

View File

@@ -3,14 +3,15 @@
Memory comparison between Faiss HNSW and LEANN HNSW backend
"""
import gc
import logging
import os
import subprocess
import sys
import time
import psutil
import gc
import subprocess
from pathlib import Path
import psutil
from llama_index.core.node_parser import SentenceSplitter
# Setup logging
@@ -83,9 +84,7 @@ def test_faiss_hnsw():
for line in lines:
if "Peak Memory:" in line:
peak_memory = float(
line.split("Peak Memory:")[1].split("MB")[0].strip()
)
peak_memory = float(line.split("Peak Memory:")[1].split("MB")[0].strip())
return {"peak_memory": peak_memory}
@@ -111,9 +110,8 @@ def test_leann_hnsw():
tracker.checkpoint("After imports")
from leann.api import LeannBuilder
from llama_index.core import SimpleDirectoryReader
from leann.api import LeannBuilder, LeannSearcher
# Load and parse documents
documents = SimpleDirectoryReader(
@@ -197,16 +195,14 @@ def test_leann_hnsw():
runtime_start_mem = get_memory_usage()
print(f"Before load memory: {runtime_start_mem:.1f} MB")
tracker.checkpoint("Before load memory")
# Load searcher
searcher = LeannSearcher(index_path)
tracker.checkpoint("After searcher loading")
print("Running search queries...")
queries = [
"什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面任务令一般在什么城市颁发",
"什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发",
"What is LEANN and how does it work?",
"华为诺亚方舟实验室的主要研究内容",
]
@@ -304,21 +300,15 @@ def main():
print("\nLEANN vs Faiss Performance:")
memory_saving = faiss_results["peak_memory"] - leann_results["peak_memory"]
print(
f" Search Memory: {memory_ratio:.1f}x less ({memory_saving:.1f} MB saved)"
)
print(f" Search Memory: {memory_ratio:.1f}x less ({memory_saving:.1f} MB saved)")
# Storage comparison
if leann_storage_size > faiss_storage_size:
storage_ratio = leann_storage_size / faiss_storage_size
print(
f" Storage Size: {storage_ratio:.1f}x larger (LEANN uses more storage)"
)
print(f" Storage Size: {storage_ratio:.1f}x larger (LEANN uses more storage)")
elif faiss_storage_size > leann_storage_size:
storage_ratio = faiss_storage_size / leann_storage_size
print(
f" Storage Size: {storage_ratio:.1f}x smaller (LEANN uses less storage)"
)
print(f" Storage Size: {storage_ratio:.1f}x smaller (LEANN uses less storage)")
else:
print(" Storage Size: similar")
else:

View File

@@ -1,5 +1,5 @@
The Project Gutenberg eBook of Pride and Prejudice
This ebook is for the use of anyone anywhere in the United States and
most other parts of the world at no cost and with almost no restrictions
whatsoever. You may copy it, give it away or re-use it under the terms
@@ -14557,7 +14557,7 @@ her into Derbyshire, had been the means of uniting them.
*** END OF THE PROJECT GUTENBERG EBOOK PRIDE AND PREJUDICE ***
Updated editions will replace the previous one—the old editions will
be renamed.
@@ -14662,7 +14662,7 @@ performed, viewed, copied or distributed:
at www.gutenberg.org. If you
are not located in the United States, you will have to check the laws
of the country where you are located before using this eBook.
1.E.2. If an individual Project Gutenberg™ electronic work is
derived from texts not protected by U.S. copyright law (does not
contain a notice indicating that it is posted with permission of the
@@ -14724,7 +14724,7 @@ provided that:
Gutenberg Literary Archive Foundation at the address specified in
Section 4, “Information about donations to the Project Gutenberg
Literary Archive Foundation.”
• You provide a full refund of any money paid by a user who notifies
you in writing (or by e-mail) within 30 days of receipt that s/he
does not agree to the terms of the full Project Gutenberg™
@@ -14732,15 +14732,15 @@ provided that:
copies of the works possessed in a physical medium and discontinue
all use of and all access to other copies of Project Gutenberg™
works.
• You provide, in accordance with paragraph 1.F.3, a full refund of
any money paid for a work or a replacement copy, if a defect in the
electronic work is discovered and reported to you within 90 days of
receipt of the work.
• You comply with all other terms of this agreement for free
distribution of Project Gutenberg™ works.
1.E.9. If you wish to charge a fee or distribute a Project
Gutenberg™ electronic work or group of works on different terms than
@@ -14903,5 +14903,3 @@ This website includes information about Project Gutenberg™,
including how to make donations to the Project Gutenberg Literary
Archive Foundation, how to help produce our new eBooks, and how to
subscribe to our email newsletter to hear about new eBooks.

View File

@@ -3,37 +3,47 @@
Document search demo with recompute mode
"""
import os
from pathlib import Path
import shutil
import time
from pathlib import Path
# Import backend packages to trigger plugin registration
try:
import leann_backend_diskann
import leann_backend_hnsw
import leann_backend_diskann # noqa: F401
import leann_backend_hnsw # noqa: F401
print("INFO: Backend packages imported successfully.")
except ImportError as e:
print(f"WARNING: Could not import backend packages. Error: {e}")
# Import upper-level API from leann-core
from leann.api import LeannBuilder, LeannSearcher, LeannChat
from leann.api import LeannBuilder, LeannChat, LeannSearcher
def load_sample_documents():
"""Create sample documents for demonstration"""
docs = [
{"title": "Intro to Python", "content": "Python is a high-level, interpreted language known for simplicity."},
{"title": "ML Basics", "content": "Machine learning builds systems that learn from data."},
{"title": "Data Structures", "content": "Data structures like arrays, lists, and graphs organize data."},
{
"title": "Intro to Python",
"content": "Python is a high-level, interpreted language known for simplicity.",
},
{
"title": "ML Basics",
"content": "Machine learning builds systems that learn from data.",
},
{
"title": "Data Structures",
"content": "Data structures like arrays, lists, and graphs organize data.",
},
]
return docs
def main():
print("==========================================================")
print("=== Leann Document Search Demo (DiskANN + Recompute) ===")
print("==========================================================")
INDEX_DIR = Path("./test_indices")
INDEX_PATH = str(INDEX_DIR / "documents.diskann")
BACKEND_TO_TEST = "diskann"
@@ -44,94 +54,96 @@ def main():
# --- 1. Build index ---
print(f"\n[PHASE 1] Building index using '{BACKEND_TO_TEST}' backend...")
builder = LeannBuilder(
backend_name=BACKEND_TO_TEST,
graph_degree=32,
complexity=64
)
builder = LeannBuilder(backend_name=BACKEND_TO_TEST, graph_degree=32, complexity=64)
documents = load_sample_documents()
print(f"Loaded {len(documents)} sample documents.")
for doc in documents:
builder.add_text(doc["content"], metadata={"title": doc["title"]})
builder.build_index(INDEX_PATH)
print(f"\nIndex built!")
print("\nIndex built!")
# --- 2. Basic search demo ---
print(f"\n[PHASE 2] Basic search using '{BACKEND_TO_TEST}' backend...")
searcher = LeannSearcher(index_path=INDEX_PATH)
query = "What is machine learning?"
print(f"\nQuery: '{query}'")
print("\n--- Basic search mode (PQ computation) ---")
start_time = time.time()
results = searcher.search(query, top_k=2)
basic_time = time.time() - start_time
print(f"⏱️ Basic search time: {basic_time:.3f} seconds")
print(">>> Basic search results <<<")
for i, res in enumerate(results, 1):
print(f" {i}. ID: {res.id}, Score: {res.score:.4f}, Text: '{res.text}', Metadata: {res.metadata}")
print(
f" {i}. ID: {res.id}, Score: {res.score:.4f}, Text: '{res.text}', Metadata: {res.metadata}"
)
# --- 3. Recompute search demo ---
print(f"\n[PHASE 3] Recompute search using embedding server...")
print("\n[PHASE 3] Recompute search using embedding server...")
print("\n--- Recompute search mode (get real embeddings via network) ---")
# Configure recompute parameters
recompute_params = {
"recompute_beighbor_embeddings": True, # Enable network recomputation
"USE_DEFERRED_FETCH": False, # Don't use deferred fetch
"skip_search_reorder": True, # Skip search reordering
"dedup_node_dis": True, # Enable node distance deduplication
"prune_ratio": 0.1, # Pruning ratio 10%
"batch_recompute": False, # Don't use batch recomputation
"global_pruning": False, # Don't use global pruning
"zmq_port": 5555, # ZMQ port
"embedding_model": "sentence-transformers/all-mpnet-base-v2"
"USE_DEFERRED_FETCH": False, # Don't use deferred fetch
"skip_search_reorder": True, # Skip search reordering
"dedup_node_dis": True, # Enable node distance deduplication
"prune_ratio": 0.1, # Pruning ratio 10%
"batch_recompute": False, # Don't use batch recomputation
"global_pruning": False, # Don't use global pruning
"zmq_port": 5555, # ZMQ port
"embedding_model": "sentence-transformers/all-mpnet-base-v2",
}
print("Recompute parameter configuration:")
for key, value in recompute_params.items():
print(f" {key}: {value}")
print(f"\n🔄 Executing Recompute search...")
print("\n🔄 Executing Recompute search...")
try:
start_time = time.time()
recompute_results = searcher.search(query, top_k=2, **recompute_params)
recompute_time = time.time() - start_time
print(f"⏱️ Recompute search time: {recompute_time:.3f} seconds")
print(">>> Recompute search results <<<")
for i, res in enumerate(recompute_results, 1):
print(f" {i}. ID: {res.id}, Score: {res.score:.4f}, Text: '{res.text}', Metadata: {res.metadata}")
print(
f" {i}. ID: {res.id}, Score: {res.score:.4f}, Text: '{res.text}', Metadata: {res.metadata}"
)
# Compare results
print(f"\n--- Result comparison ---")
print("\n--- Result comparison ---")
print(f"Basic search time: {basic_time:.3f} seconds")
print(f"Recompute time: {recompute_time:.3f} seconds")
print("\nBasic search vs Recompute results:")
for i in range(min(len(results), len(recompute_results))):
basic_score = results[i].score
recompute_score = recompute_results[i].score
score_diff = abs(basic_score - recompute_score)
print(f" Position {i+1}: PQ={basic_score:.4f}, Recompute={recompute_score:.4f}, Difference={score_diff:.4f}")
print(
f" Position {i + 1}: PQ={basic_score:.4f}, Recompute={recompute_score:.4f}, Difference={score_diff:.4f}"
)
if recompute_time > basic_time:
print(f"✅ Recompute mode working correctly (more accurate but slower)")
print("✅ Recompute mode working correctly (more accurate but slower)")
else:
print(f" Recompute time is unusually fast, network recomputation may not be enabled")
print("i Recompute time is unusually fast, network recomputation may not be enabled")
except Exception as e:
print(f"❌ Recompute search failed: {e}")
print("This usually indicates an embedding server connection issue")
# --- 4. Chat demo ---
print(f"\n[PHASE 4] Starting chat session...")
print("\n[PHASE 4] Starting chat session...")
chat = LeannChat(index_path=INDEX_PATH)
chat_response = chat.ask(query)
print(f"You: {query}")
@@ -143,4 +155,4 @@ def main():
if __name__ == "__main__":
main()
main()

View File

@@ -1,11 +1,13 @@
import os
import email
import os
from pathlib import Path
from typing import List, Any
from typing import Any
from llama_index.core import Document
from llama_index.core.readers.base import BaseReader
def find_all_messages_directories(root: str = None) -> List[Path]:
def find_all_messages_directories(root: str | None = None) -> list[Path]:
"""
Recursively find all 'Messages' directories under the given root.
Returns a list of Path objects.
@@ -14,86 +16,97 @@ def find_all_messages_directories(root: str = None) -> List[Path]:
# Auto-detect user's mail path
home_dir = os.path.expanduser("~")
root = os.path.join(home_dir, "Library", "Mail")
messages_dirs = []
for dirpath, dirnames, filenames in os.walk(root):
for dirpath, _dirnames, _filenames in os.walk(root):
if os.path.basename(dirpath) == "Messages":
messages_dirs.append(Path(dirpath))
return messages_dirs
class EmlxReader(BaseReader):
"""
Apple Mail .emlx file reader with embedded metadata.
Reads individual .emlx files from Apple Mail's storage format.
"""
def __init__(self, include_html: bool = False) -> None:
"""
Initialize.
Args:
include_html: Whether to include HTML content in the email body (default: False)
"""
self.include_html = include_html
def load_data(self, input_dir: str, **load_kwargs: Any) -> List[Document]:
def load_data(self, input_dir: str, **load_kwargs: Any) -> list[Document]:
"""
Load data from the input directory containing .emlx files.
Args:
input_dir: Directory containing .emlx files
**load_kwargs:
max_count (int): Maximum amount of messages to read.
"""
docs: List[Document] = []
max_count = load_kwargs.get('max_count', 1000)
docs: list[Document] = []
max_count = load_kwargs.get("max_count", 1000)
count = 0
# Walk through the directory recursively
for dirpath, dirnames, filenames in os.walk(input_dir):
# Skip hidden directories
dirnames[:] = [d for d in dirnames if not d.startswith(".")]
for filename in filenames:
if count >= max_count:
break
if filename.endswith(".emlx"):
filepath = os.path.join(dirpath, filename)
try:
# Read the .emlx file
with open(filepath, 'r', encoding='utf-8', errors='ignore') as f:
with open(filepath, encoding="utf-8", errors="ignore") as f:
content = f.read()
# .emlx files have a length prefix followed by the email content
# The first line contains the length, followed by the email
lines = content.split('\n', 1)
lines = content.split("\n", 1)
if len(lines) >= 2:
email_content = lines[1]
# Parse the email using Python's email module
try:
msg = email.message_from_string(email_content)
# Extract email metadata
subject = msg.get('Subject', 'No Subject')
from_addr = msg.get('From', 'Unknown')
to_addr = msg.get('To', 'Unknown')
date = msg.get('Date', 'Unknown')
subject = msg.get("Subject", "No Subject")
from_addr = msg.get("From", "Unknown")
to_addr = msg.get("To", "Unknown")
date = msg.get("Date", "Unknown")
# Extract email body
body = ""
if msg.is_multipart():
for part in msg.walk():
if part.get_content_type() == "text/plain" or part.get_content_type() == "text/html":
if part.get_content_type() == "text/html" and not self.include_html:
if (
part.get_content_type() == "text/plain"
or part.get_content_type() == "text/html"
):
if (
part.get_content_type() == "text/html"
and not self.include_html
):
continue
body += part.get_payload(decode=True).decode('utf-8', errors='ignore')
body += part.get_payload(decode=True).decode(
"utf-8", errors="ignore"
)
# break
else:
body = msg.get_payload(decode=True).decode('utf-8', errors='ignore')
body = msg.get_payload(decode=True).decode(
"utf-8", errors="ignore"
)
# Create document content with metadata embedded in text
doc_content = f"""
[File]: {filename}
@@ -104,19 +117,19 @@ class EmlxReader(BaseReader):
[EMAIL BODY Start]:
{body}
"""
# No separate metadata - everything is in the text
doc = Document(text=doc_content, metadata={})
docs.append(doc)
count += 1
except Exception as e:
print(f"Error parsing email from {filepath}: {e}")
continue
except Exception as e:
print(f"Error reading file {filepath}: {e}")
continue
print(f"Loaded {len(docs)} email documents")
return docs
return docs

View File

@@ -7,9 +7,9 @@ Contains simple parser for mbox files.
import logging
from pathlib import Path
from typing import Any, Dict, List, Optional
from fsspec import AbstractFileSystem
from typing import Any
from fsspec import AbstractFileSystem
from llama_index.core.readers.base import BaseReader
from llama_index.core.schema import Document
@@ -27,11 +27,7 @@ class MboxReader(BaseReader):
"""
DEFAULT_MESSAGE_FORMAT: str = (
"Date: {_date}\n"
"From: {_from}\n"
"To: {_to}\n"
"Subject: {_subject}\n"
"Content: {_content}"
"Date: {_date}\nFrom: {_from}\nTo: {_to}\nSubject: {_subject}\nContent: {_content}"
)
def __init__(
@@ -45,9 +41,7 @@ class MboxReader(BaseReader):
try:
from bs4 import BeautifulSoup # noqa
except ImportError:
raise ImportError(
"`beautifulsoup4` package not found: `pip install beautifulsoup4`"
)
raise ImportError("`beautifulsoup4` package not found: `pip install beautifulsoup4`")
super().__init__(*args, **kwargs)
self.max_count = max_count
@@ -56,9 +50,9 @@ class MboxReader(BaseReader):
def load_data(
self,
file: Path,
extra_info: Optional[Dict] = None,
fs: Optional[AbstractFileSystem] = None,
) -> List[Document]:
extra_info: dict | None = None,
fs: AbstractFileSystem | None = None,
) -> list[Document]:
"""Parse file into string."""
# Import required libraries
import mailbox
@@ -74,7 +68,7 @@ class MboxReader(BaseReader):
)
i = 0
results: List[str] = []
results: list[str] = []
# Load file using mailbox
bytes_parser = BytesParser(policy=default).parse
mbox = mailbox.mbox(file, factory=bytes_parser) # type: ignore
@@ -124,7 +118,7 @@ class MboxReader(BaseReader):
class EmlxMboxReader(MboxReader):
"""
EmlxMboxReader - Modified MboxReader that handles directories of .emlx files.
Extends MboxReader to work with Apple Mail's .emlx format by:
1. Reading .emlx files from a directory
2. Converting them to mbox format in memory
@@ -134,13 +128,13 @@ class EmlxMboxReader(MboxReader):
def load_data(
self,
directory: Path,
extra_info: Optional[Dict] = None,
fs: Optional[AbstractFileSystem] = None,
) -> List[Document]:
extra_info: dict | None = None,
fs: AbstractFileSystem | None = None,
) -> list[Document]:
"""Parse .emlx files from directory into strings using MboxReader logic."""
import tempfile
import os
import tempfile
if fs:
logger.warning(
"fs was specified but EmlxMboxReader doesn't support loading "
@@ -150,37 +144,37 @@ class EmlxMboxReader(MboxReader):
# Find all .emlx files in the directory
emlx_files = list(directory.glob("*.emlx"))
logger.info(f"Found {len(emlx_files)} .emlx files in {directory}")
if not emlx_files:
logger.warning(f"No .emlx files found in {directory}")
return []
# Create a temporary mbox file
with tempfile.NamedTemporaryFile(mode='w', suffix='.mbox', delete=False) as temp_mbox:
with tempfile.NamedTemporaryFile(mode="w", suffix=".mbox", delete=False) as temp_mbox:
temp_mbox_path = temp_mbox.name
# Convert .emlx files to mbox format
for emlx_file in emlx_files:
try:
# Read the .emlx file
with open(emlx_file, 'r', encoding='utf-8', errors='ignore') as f:
with open(emlx_file, encoding="utf-8", errors="ignore") as f:
content = f.read()
# .emlx format: first line is length, rest is email content
lines = content.split('\n', 1)
lines = content.split("\n", 1)
if len(lines) >= 2:
email_content = lines[1] # Skip the length line
# Write to mbox format (each message starts with "From " and ends with blank line)
temp_mbox.write(f"From {emlx_file.name} {email_content}\n\n")
except Exception as e:
logger.warning(f"Failed to process {emlx_file}: {e}")
continue
# Close the temporary file so MboxReader can read it
temp_mbox.close()
try:
# Use the parent MboxReader's logic to parse the mbox file
return super().load_data(Path(temp_mbox_path), extra_info, fs)
@@ -188,5 +182,5 @@ class EmlxMboxReader(MboxReader):
# Clean up temporary file
try:
os.unlink(temp_mbox_path)
except:
pass
except OSError:
pass

View File

@@ -1,11 +1,11 @@
#!/usr/bin/env python3
"""Test only Faiss HNSW"""
import os
import sys
import time
import psutil
import gc
import os
def get_memory_usage():
@@ -37,20 +37,20 @@ def main():
import faiss
except ImportError:
print("Faiss is not installed.")
print("Please install it with `uv pip install faiss-cpu` and you can then run this script again")
print(
"Please install it with `uv pip install faiss-cpu` and you can then run this script again"
)
sys.exit(1)
from llama_index.core import (
SimpleDirectoryReader,
VectorStoreIndex,
StorageContext,
Settings,
node_parser,
Document,
SimpleDirectoryReader,
StorageContext,
VectorStoreIndex,
)
from llama_index.core.node_parser import SentenceSplitter
from llama_index.vector_stores.faiss import FaissVectorStore
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.vector_stores.faiss import FaissVectorStore
tracker = MemoryTracker("Faiss HNSW")
tracker.checkpoint("Initial")
@@ -90,8 +90,9 @@ def main():
vector_store=vector_store, persist_dir="./storage_faiss"
)
from llama_index.core import load_index_from_storage
index = load_index_from_storage(storage_context=storage_context)
print(f"Index loaded from ./storage_faiss")
print("Index loaded from ./storage_faiss")
tracker.checkpoint("After loading existing index")
index_loaded = True
except Exception as e:
@@ -99,19 +100,18 @@ def main():
print("Cleaning up corrupted index and building new one...")
# Clean up corrupted index
import shutil
if os.path.exists("./storage_faiss"):
shutil.rmtree("./storage_faiss")
if not index_loaded:
print("Building new Faiss HNSW index...")
# Use the correct Faiss building pattern from the example
vector_store = FaissVectorStore(faiss_index=faiss_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents,
storage_context=storage_context,
transformations=[node_parser]
documents, storage_context=storage_context, transformations=[node_parser]
)
tracker.checkpoint("After index building")
@@ -124,10 +124,10 @@ def main():
runtime_start_mem = get_memory_usage()
print(f"Before load memory: {runtime_start_mem:.1f} MB")
tracker.checkpoint("Before load memory")
query_engine = index.as_query_engine(similarity_top_k=20)
queries = [
"什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面任务令一般在什么城市颁发",
"什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发",
"What is LEANN and how does it work?",
"华为诺亚方舟实验室的主要研究内容",
]
@@ -141,7 +141,7 @@ def main():
runtime_end_mem = get_memory_usage()
runtime_overhead = runtime_end_mem - runtime_start_mem
peak_memory = tracker.summary()
print(f"Peak Memory: {peak_memory:.1f} MB")
print(f"Runtime Memory Overhead: {runtime_overhead:.1f} MB")

View File

@@ -1,15 +1,17 @@
import os
import asyncio
import argparse
import asyncio
import os
try:
import dotenv
dotenv.load_dotenv()
except ModuleNotFoundError:
# python-dotenv is not installed; skip loading environment variables
dotenv = None
from pathlib import Path
from typing import List, Any
from leann.api import LeannBuilder, LeannSearcher, LeannChat
from leann.api import LeannBuilder, LeannChat
from llama_index.core.node_parser import SentenceSplitter
# dotenv.load_dotenv() # handled above if python-dotenv is available
@@ -17,42 +19,51 @@ from llama_index.core.node_parser import SentenceSplitter
# Default Chrome profile path
DEFAULT_CHROME_PROFILE = os.path.expanduser("~/Library/Application Support/Google/Chrome/Default")
def create_leann_index_from_multiple_chrome_profiles(profile_dirs: List[Path], index_path: str = "chrome_history_index.leann", max_count: int = -1):
def create_leann_index_from_multiple_chrome_profiles(
profile_dirs: list[Path],
index_path: str = "chrome_history_index.leann",
max_count: int = -1,
embedding_model: str = "facebook/contriever",
embedding_mode: str = "sentence-transformers",
):
"""
Create LEANN index from multiple Chrome profile data sources.
Args:
profile_dirs: List of Path objects pointing to Chrome profile directories
index_path: Path to save the LEANN index
max_count: Maximum number of history entries to process per profile
embedding_model: The embedding model to use
embedding_mode: The embedding backend mode
"""
print("Creating LEANN index from multiple Chrome profile data sources...")
# Load documents using ChromeHistoryReader from history_data
from history_data.history import ChromeHistoryReader
reader = ChromeHistoryReader()
INDEX_DIR = Path(index_path).parent
if not INDEX_DIR.exists():
print(f"--- Index directory not found, building new index ---")
print("--- Index directory not found, building new index ---")
all_documents = []
total_processed = 0
# Process each Chrome profile directory
for i, profile_dir in enumerate(profile_dirs):
print(f"\nProcessing Chrome profile {i+1}/{len(profile_dirs)}: {profile_dir}")
print(f"\nProcessing Chrome profile {i + 1}/{len(profile_dirs)}: {profile_dir}")
try:
documents = reader.load_data(
chrome_profile_path=str(profile_dir),
max_count=max_count
chrome_profile_path=str(profile_dir), max_count=max_count
)
if documents:
print(f"Loaded {len(documents)} history documents from {profile_dir}")
all_documents.extend(documents)
total_processed += len(documents)
# Check if we've reached the max count
if max_count > 0 and total_processed >= max_count:
print(f"Reached max count of {max_count} documents")
@@ -62,18 +73,22 @@ def create_leann_index_from_multiple_chrome_profiles(profile_dirs: List[Path], i
except Exception as e:
print(f"Error processing {profile_dir}: {e}")
continue
if not all_documents:
print("No documents loaded from any source. Exiting.")
# highlight info that you need to close all chrome browser before running this script and high light the instruction!!
print("\033[91mYou need to close or quit all chrome browser before running this script\033[0m")
print(
"\033[91mYou need to close or quit all chrome browser before running this script\033[0m"
)
return None
print(f"\nTotal loaded {len(all_documents)} history documents from {len(profile_dirs)} profiles")
print(
f"\nTotal loaded {len(all_documents)} history documents from {len(profile_dirs)} profiles"
)
# Create text splitter with 256 chunk size
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=128)
# Convert Documents to text strings and chunk them
all_texts = []
for doc in all_documents:
@@ -83,77 +98,86 @@ def create_leann_index_from_multiple_chrome_profiles(profile_dirs: List[Path], i
text = node.get_content()
# text = '[Title] ' + doc.metadata["title"] + '\n' + text
all_texts.append(text)
print(f"Created {len(all_texts)} text chunks from {len(all_documents)} documents")
# Create LEANN index directory
print(f"--- Index directory not found, building new index ---")
print("--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print(f"--- Building new LEANN index ---")
print(f"\n[PHASE 1] Building Leann index...")
print("--- Building new LEANN index ---")
print("\n[PHASE 1] Building Leann index...")
# Use HNSW backend for better macOS compatibility
# LeannBuilder will automatically detect normalized embeddings and set appropriate distance metric
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="facebook/contriever",
graph_degree=32,
embedding_model=embedding_model,
embedding_mode=embedding_mode,
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1 # Force single-threaded mode
num_threads=1, # Force single-threaded mode
)
print(f"Adding {len(all_texts)} history chunks to index...")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(index_path)
print(f"\nLEANN index built at {index_path}!")
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
return index_path
def create_leann_index(profile_path: str = None, index_path: str = "chrome_history_index.leann", max_count: int = 1000):
def create_leann_index(
profile_path: str | None = None,
index_path: str = "chrome_history_index.leann",
max_count: int = 1000,
embedding_model: str = "facebook/contriever",
embedding_mode: str = "sentence-transformers",
):
"""
Create LEANN index from Chrome history data.
Args:
profile_path: Path to the Chrome profile directory (optional, uses default if None)
index_path: Path to save the LEANN index
max_count: Maximum number of history entries to process
embedding_model: The embedding model to use
embedding_mode: The embedding backend mode
"""
print("Creating LEANN index from Chrome history data...")
INDEX_DIR = Path(index_path).parent
if not INDEX_DIR.exists():
print(f"--- Index directory not found, building new index ---")
print("--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print(f"--- Building new LEANN index ---")
print(f"\n[PHASE 1] Building Leann index...")
print("--- Building new LEANN index ---")
print("\n[PHASE 1] Building Leann index...")
# Load documents using ChromeHistoryReader from history_data
from history_data.history import ChromeHistoryReader
reader = ChromeHistoryReader()
documents = reader.load_data(
chrome_profile_path=profile_path,
max_count=max_count
)
documents = reader.load_data(chrome_profile_path=profile_path, max_count=max_count)
if not documents:
print("No documents loaded. Exiting.")
return None
print(f"Loaded {len(documents)} history documents")
# Create text splitter with 256 chunk size
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25)
# Convert Documents to text strings and chunk them
all_texts = []
for doc in documents:
@@ -161,54 +185,57 @@ def create_leann_index(profile_path: str = None, index_path: str = "chrome_histo
nodes = text_splitter.get_nodes_from_documents([doc])
for node in nodes:
all_texts.append(node.get_content())
print(f"Created {len(all_texts)} text chunks from {len(documents)} documents")
# Create LEANN index directory
print(f"--- Index directory not found, building new index ---")
print("--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print(f"--- Building new LEANN index ---")
print(f"\n[PHASE 1] Building Leann index...")
print("--- Building new LEANN index ---")
print("\n[PHASE 1] Building Leann index...")
# Use HNSW backend for better macOS compatibility
# LeannBuilder will automatically detect normalized embeddings and set appropriate distance metric
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="facebook/contriever",
graph_degree=32,
embedding_model=embedding_model,
embedding_mode=embedding_mode,
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1 # Force single-threaded mode
num_threads=1, # Force single-threaded mode
)
print(f"Adding {len(all_texts)} history chunks to index...")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(index_path)
print(f"\nLEANN index built at {index_path}!")
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
return index_path
async def query_leann_index(index_path: str, query: str):
"""
Query the LEANN index.
Args:
index_path: Path to the LEANN index
query: The query string
"""
print(f"\n[PHASE 2] Starting Leann chat session...")
print("\n[PHASE 2] Starting Leann chat session...")
chat = LeannChat(index_path=index_path)
print(f"You: {query}")
chat_response = chat.ask(
query,
top_k=10,
query,
top_k=10,
recompute_beighbor_embeddings=True,
complexity=32,
beam_width=1,
@@ -217,56 +244,104 @@ async def query_leann_index(index_path: str, query: str):
"model": "gpt-4o",
"api_key": os.getenv("OPENAI_API_KEY"),
},
llm_kwargs={
"temperature": 0.0,
"max_tokens": 1000
}
llm_kwargs={"temperature": 0.0, "max_tokens": 1000},
)
print(f"Leann chat response: \033[36m{chat_response}\033[0m")
async def main():
# Parse command line arguments
parser = argparse.ArgumentParser(description='LEANN Chrome History Reader - Create and query browser history index')
parser.add_argument('--chrome-profile', type=str, default=DEFAULT_CHROME_PROFILE,
help=f'Path to Chrome profile directory (default: {DEFAULT_CHROME_PROFILE}), usually you dont need to change this')
parser.add_argument('--index-dir', type=str, default="./google_history_index",
help='Directory to store the LEANN index (default: ./chrome_history_index_leann_test)')
parser.add_argument('--max-entries', type=int, default=1000,
help='Maximum number of history entries to process (default: 1000)')
parser.add_argument('--query', type=str, default=None,
help='Single query to run (default: runs example queries)')
parser.add_argument('--auto-find-profiles', action='store_true', default=True,
help='Automatically find all Chrome profiles (default: True)')
parser = argparse.ArgumentParser(
description="LEANN Chrome History Reader - Create and query browser history index"
)
parser.add_argument(
"--chrome-profile",
type=str,
default=DEFAULT_CHROME_PROFILE,
help=f"Path to Chrome profile directory (default: {DEFAULT_CHROME_PROFILE}), usually you dont need to change this",
)
parser.add_argument(
"--index-dir",
type=str,
default="./google_history_index",
help="Directory to store the LEANN index (default: ./chrome_history_index_leann_test)",
)
parser.add_argument(
"--max-entries",
type=int,
default=1000,
help="Maximum number of history entries to process (default: 1000)",
)
parser.add_argument(
"--query",
type=str,
default=None,
help="Single query to run (default: runs example queries)",
)
parser.add_argument(
"--auto-find-profiles",
action="store_true",
default=True,
help="Automatically find all Chrome profiles (default: True)",
)
parser.add_argument(
"--embedding-model",
type=str,
default="facebook/contriever",
help="The embedding model to use (e.g., 'facebook/contriever', 'text-embedding-3-small')",
)
parser.add_argument(
"--embedding-mode",
type=str,
default="sentence-transformers",
choices=["sentence-transformers", "openai", "mlx"],
help="The embedding backend mode",
)
parser.add_argument(
"--use-existing-index",
action="store_true",
help="Use existing index without rebuilding",
)
args = parser.parse_args()
INDEX_DIR = Path(args.index_dir)
INDEX_PATH = str(INDEX_DIR / "chrome_history.leann")
print(f"Using Chrome profile: {args.chrome_profile}")
print(f"Index directory: {INDEX_DIR}")
print(f"Max entries: {args.max_entries}")
# Find Chrome profile directories
from history_data.history import ChromeHistoryReader
if args.auto_find_profiles:
profile_dirs = ChromeHistoryReader.find_chrome_profiles()
if not profile_dirs:
print("No Chrome profiles found automatically. Exiting.")
if args.use_existing_index:
# Use existing index without rebuilding
if not Path(INDEX_PATH).exists():
print(f"Error: Index file not found at {INDEX_PATH}")
return
print(f"Using existing index at {INDEX_PATH}")
index_path = INDEX_PATH
else:
# Use single specified profile
profile_path = Path(args.chrome_profile)
if not profile_path.exists():
print(f"Chrome profile not found: {profile_path}")
return
profile_dirs = [profile_path]
# Create or load the LEANN index from all sources
index_path = create_leann_index_from_multiple_chrome_profiles(profile_dirs, INDEX_PATH, args.max_entries)
# Find Chrome profile directories
from history_data.history import ChromeHistoryReader
if args.auto_find_profiles:
profile_dirs = ChromeHistoryReader.find_chrome_profiles()
if not profile_dirs:
print("No Chrome profiles found automatically. Exiting.")
return
else:
# Use single specified profile
profile_path = Path(args.chrome_profile)
if not profile_path.exists():
print(f"Chrome profile not found: {profile_path}")
return
profile_dirs = [profile_path]
# Create or load the LEANN index from all sources
index_path = create_leann_index_from_multiple_chrome_profiles(
profile_dirs, INDEX_PATH, args.max_entries, args.embedding_model, args.embedding_mode
)
if index_path:
if args.query:
# Run single query
@@ -275,12 +350,13 @@ async def main():
# Example queries
queries = [
"What websites did I visit about machine learning?",
"Find my search history about programming"
"Find my search history about programming",
]
for query in queries:
print("\n" + "="*60)
print("\n" + "=" * 60)
await query_leann_index(index_path, query)
if __name__ == "__main__":
asyncio.run(main())
asyncio.run(main())

View File

@@ -1,3 +1,3 @@
from .history import ChromeHistoryReader
__all__ = ['ChromeHistoryReader']
__all__ = ["ChromeHistoryReader"]

View File

@@ -1,77 +1,81 @@
import sqlite3
import os
import sqlite3
from pathlib import Path
from typing import List, Any
from typing import Any
from llama_index.core import Document
from llama_index.core.readers.base import BaseReader
class ChromeHistoryReader(BaseReader):
"""
Chrome browser history reader that extracts browsing data from SQLite database.
Reads Chrome history from the default Chrome profile location and creates documents
with embedded metadata similar to the email reader structure.
"""
def __init__(self) -> None:
"""Initialize."""
pass
def load_data(self, input_dir: str = None, **load_kwargs: Any) -> List[Document]:
def load_data(self, input_dir: str | None = None, **load_kwargs: Any) -> list[Document]:
"""
Load Chrome history data from the default Chrome profile location.
Args:
input_dir: Not used for Chrome history (kept for compatibility)
**load_kwargs:
max_count (int): Maximum amount of history entries to read.
chrome_profile_path (str): Custom path to Chrome profile directory.
"""
docs: List[Document] = []
max_count = load_kwargs.get('max_count', 1000)
chrome_profile_path = load_kwargs.get('chrome_profile_path', None)
docs: list[Document] = []
max_count = load_kwargs.get("max_count", 1000)
chrome_profile_path = load_kwargs.get("chrome_profile_path", None)
# Default Chrome profile path on macOS
if chrome_profile_path is None:
chrome_profile_path = os.path.expanduser("~/Library/Application Support/Google/Chrome/Default")
chrome_profile_path = os.path.expanduser(
"~/Library/Application Support/Google/Chrome/Default"
)
history_db_path = os.path.join(chrome_profile_path, "History")
if not os.path.exists(history_db_path):
print(f"Chrome history database not found at: {history_db_path}")
return docs
try:
# Connect to the Chrome history database
print(f"Connecting to database: {history_db_path}")
conn = sqlite3.connect(history_db_path)
cursor = conn.cursor()
# Query to get browsing history with metadata (removed created_time column)
query = """
SELECT
SELECT
datetime(last_visit_time/1000000-11644473600,'unixepoch','localtime') as last_visit,
url,
title,
visit_count,
typed_count,
url,
title,
visit_count,
typed_count,
hidden
FROM urls
FROM urls
ORDER BY last_visit_time DESC
"""
print(f"Executing query on database: {history_db_path}")
cursor.execute(query)
rows = cursor.fetchall()
print(f"Query returned {len(rows)} rows")
count = 0
for row in rows:
if count >= max_count and max_count > 0:
break
last_visit, url, title, visit_count, typed_count, hidden = row
# Create document content with metadata embedded in text
doc_content = f"""
[Title]: {title}
@@ -80,38 +84,38 @@ class ChromeHistoryReader(BaseReader):
[Visit times]: {visit_count}
[Typed times]: {typed_count}
"""
# Create document with embedded metadata
doc = Document(text=doc_content, metadata={ "title": title[0:150]})
doc = Document(text=doc_content, metadata={"title": title[0:150]})
# if len(title) > 150:
# print(f"Title is too long: {title}")
docs.append(doc)
count += 1
conn.close()
print(f"Loaded {len(docs)} Chrome history documents")
except Exception as e:
print(f"Error reading Chrome history: {e}")
return docs
return docs
@staticmethod
def find_chrome_profiles() -> List[Path]:
def find_chrome_profiles() -> list[Path]:
"""
Find all Chrome profile directories.
Returns:
List of Path objects pointing to Chrome profile directories
"""
chrome_base_path = Path(os.path.expanduser("~/Library/Application Support/Google/Chrome"))
profile_dirs = []
if not chrome_base_path.exists():
print(f"Chrome directory not found at: {chrome_base_path}")
return profile_dirs
# Find all profile directories
for profile_dir in chrome_base_path.iterdir():
if profile_dir.is_dir() and profile_dir.name != "System Profile":
@@ -119,53 +123,59 @@ class ChromeHistoryReader(BaseReader):
if history_path.exists():
profile_dirs.append(profile_dir)
print(f"Found Chrome profile: {profile_dir}")
print(f"Found {len(profile_dirs)} Chrome profiles")
return profile_dirs
@staticmethod
def export_history_to_file(output_file: str = "chrome_history_export.txt", max_count: int = 1000):
def export_history_to_file(
output_file: str = "chrome_history_export.txt", max_count: int = 1000
):
"""
Export Chrome history to a text file using the same SQL query format.
Args:
output_file: Path to the output file
max_count: Maximum number of entries to export
"""
chrome_profile_path = os.path.expanduser("~/Library/Application Support/Google/Chrome/Default")
chrome_profile_path = os.path.expanduser(
"~/Library/Application Support/Google/Chrome/Default"
)
history_db_path = os.path.join(chrome_profile_path, "History")
if not os.path.exists(history_db_path):
print(f"Chrome history database not found at: {history_db_path}")
return
try:
conn = sqlite3.connect(history_db_path)
cursor = conn.cursor()
query = """
SELECT
SELECT
datetime(last_visit_time/1000000-11644473600,'unixepoch','localtime') as last_visit,
url,
title,
visit_count,
typed_count,
url,
title,
visit_count,
typed_count,
hidden
FROM urls
FROM urls
ORDER BY last_visit_time DESC
LIMIT ?
"""
cursor.execute(query, (max_count,))
rows = cursor.fetchall()
with open(output_file, 'w', encoding='utf-8') as f:
with open(output_file, "w", encoding="utf-8") as f:
for row in rows:
last_visit, url, title, visit_count, typed_count, hidden = row
f.write(f"{last_visit}\t{url}\t{title}\t{visit_count}\t{typed_count}\t{hidden}\n")
f.write(
f"{last_visit}\t{url}\t{title}\t{visit_count}\t{typed_count}\t{hidden}\n"
)
conn.close()
print(f"Exported {len(rows)} history entries to {output_file}")
except Exception as e:
print(f"Error exporting Chrome history: {e}")
print(f"Error exporting Chrome history: {e}")

View File

@@ -2,30 +2,31 @@ import json
import os
import re
import subprocess
import sys
import time
from datetime import datetime
from pathlib import Path
from typing import List, Any, Dict, Optional
from typing import Any
from llama_index.core import Document
from llama_index.core.readers.base import BaseReader
from datetime import datetime
class WeChatHistoryReader(BaseReader):
"""
WeChat chat history reader that extracts chat data from exported JSON files.
Reads WeChat chat history from exported JSON files (from wechat-exporter tool)
and creates documents with embedded metadata similar to the Chrome history reader structure.
Also includes utilities for automatic WeChat chat history export.
"""
def __init__(self) -> None:
"""Initialize."""
self.packages_dir = Path(__file__).parent.parent.parent / "packages"
self.wechat_exporter_dir = self.packages_dir / "wechat-exporter"
self.wechat_decipher_dir = self.packages_dir / "wechat-decipher-macos"
def check_wechat_running(self) -> bool:
"""Check if WeChat is currently running."""
try:
@@ -33,24 +34,30 @@ class WeChatHistoryReader(BaseReader):
return result.returncode == 0
except Exception:
return False
def install_wechattweak(self) -> bool:
"""Install WeChatTweak CLI tool."""
try:
# Create wechat-exporter directory if it doesn't exist
self.wechat_exporter_dir.mkdir(parents=True, exist_ok=True)
wechattweak_path = self.wechat_exporter_dir / "wechattweak-cli"
if not wechattweak_path.exists():
print("Downloading WeChatTweak CLI...")
subprocess.run([
"curl", "-L", "-o", str(wechattweak_path),
"https://github.com/JettChenT/WeChatTweak-CLI/releases/latest/download/wechattweak-cli"
], check=True)
subprocess.run(
[
"curl",
"-L",
"-o",
str(wechattweak_path),
"https://github.com/JettChenT/WeChatTweak-CLI/releases/latest/download/wechattweak-cli",
],
check=True,
)
# Make executable
wechattweak_path.chmod(0o755)
# Install WeChatTweak
print("Installing WeChatTweak...")
subprocess.run(["sudo", str(wechattweak_path), "install"], check=True)
@@ -58,7 +65,7 @@ class WeChatHistoryReader(BaseReader):
except Exception as e:
print(f"Error installing WeChatTweak: {e}")
return False
def restart_wechat(self):
"""Restart WeChat to apply WeChatTweak."""
try:
@@ -69,302 +76,325 @@ class WeChatHistoryReader(BaseReader):
time.sleep(5) # Wait for WeChat to start
except Exception as e:
print(f"Error restarting WeChat: {e}")
def check_api_available(self) -> bool:
"""Check if WeChatTweak API is available."""
try:
result = subprocess.run([
"curl", "-s", "http://localhost:48065/wechat/allcontacts"
], capture_output=True, text=True, timeout=5)
result = subprocess.run(
["curl", "-s", "http://localhost:48065/wechat/allcontacts"],
capture_output=True,
text=True,
timeout=5,
)
return result.returncode == 0 and result.stdout.strip()
except Exception:
return False
def _extract_readable_text(self, content: str) -> str:
"""
Extract readable text from message content, removing XML and system messages.
Args:
content: The raw message content (can be string or dict)
Returns:
Cleaned, readable text
"""
if not content:
return ""
# Handle dictionary content (like quoted messages)
if isinstance(content, dict):
# Extract text from dictionary structure
text_parts = []
if 'title' in content:
text_parts.append(str(content['title']))
if 'quoted' in content:
text_parts.append(str(content['quoted']))
if 'content' in content:
text_parts.append(str(content['content']))
if 'text' in content:
text_parts.append(str(content['text']))
if "title" in content:
text_parts.append(str(content["title"]))
if "quoted" in content:
text_parts.append(str(content["quoted"]))
if "content" in content:
text_parts.append(str(content["content"]))
if "text" in content:
text_parts.append(str(content["text"]))
if text_parts:
return " | ".join(text_parts)
else:
# If we can't extract meaningful text from dict, return empty
return ""
# Handle string content
if not isinstance(content, str):
return ""
# Remove common prefixes like "wxid_xxx:\n"
clean_content = re.sub(r'^wxid_[^:]+:\s*', '', content)
clean_content = re.sub(r'^[^:]+:\s*', '', clean_content)
clean_content = re.sub(r"^wxid_[^:]+:\s*", "", content)
clean_content = re.sub(r"^[^:]+:\s*", "", clean_content)
# If it's just XML or system message, return empty
if clean_content.strip().startswith('<') or 'recalled a message' in clean_content:
if clean_content.strip().startswith("<") or "recalled a message" in clean_content:
return ""
return clean_content.strip()
def _is_text_message(self, content: str) -> bool:
"""
Check if a message contains readable text content.
Args:
content: The message content (can be string or dict)
Returns:
True if the message contains readable text, False otherwise
"""
if not content:
return False
# Handle dictionary content
if isinstance(content, dict):
# Check if dict has any readable text fields
text_fields = ['title', 'quoted', 'content', 'text']
text_fields = ["title", "quoted", "content", "text"]
for field in text_fields:
if field in content and content[field]:
if content.get(field):
return True
return False
# Handle string content
if not isinstance(content, str):
return False
# Skip image messages (contain XML with img tags)
if '<img' in content and 'cdnurl' in content:
if "<img" in content and "cdnurl" in content:
return False
# Skip emoji messages (contain emoji XML tags)
if '<emoji' in content and 'productid' in content:
if "<emoji" in content and "productid" in content:
return False
# Skip voice messages
if '<voice' in content:
if "<voice" in content:
return False
# Skip video messages
if '<video' in content:
if "<video" in content:
return False
# Skip file messages
if '<appmsg' in content and 'appid' in content:
if "<appmsg" in content and "appid" in content:
return False
# Skip system messages (like "recalled a message")
if 'recalled a message' in content:
if "recalled a message" in content:
return False
# Check if there's actual readable text (not just XML or system messages)
# Remove common prefixes like "wxid_xxx:\n" and check for actual content
clean_content = re.sub(r'^wxid_[^:]+:\s*', '', content)
clean_content = re.sub(r'^[^:]+:\s*', '', clean_content)
clean_content = re.sub(r"^wxid_[^:]+:\s*", "", content)
clean_content = re.sub(r"^[^:]+:\s*", "", clean_content)
# If after cleaning we have meaningful text, consider it readable
if len(clean_content.strip()) > 0 and not clean_content.strip().startswith('<'):
if len(clean_content.strip()) > 0 and not clean_content.strip().startswith("<"):
return True
return False
def _concatenate_messages(self, messages: List[Dict], max_length: int = 128,
time_window_minutes: int = 30, overlap_messages: int = 0) -> List[Dict]:
def _concatenate_messages(
self,
messages: list[dict],
max_length: int = 128,
time_window_minutes: int = 30,
overlap_messages: int = 0,
) -> list[dict]:
"""
Concatenate messages based on length and time rules.
Args:
messages: List of message dictionaries
max_length: Maximum length for concatenated message groups. Use -1 to disable length constraint.
time_window_minutes: Time window in minutes to group messages together. Use -1 to disable time constraint.
overlap_messages: Number of messages to overlap between consecutive groups
Returns:
List of concatenated message groups
"""
if not messages:
return []
concatenated_groups = []
current_group = []
current_length = 0
last_timestamp = None
for message in messages:
# Extract message info
content = message.get('content', '')
message_text = message.get('message', '')
create_time = message.get('createTime', 0)
from_user = message.get('fromUser', '')
to_user = message.get('toUser', '')
is_sent_from_self = message.get('isSentFromSelf', False)
content = message.get("content", "")
message_text = message.get("message", "")
create_time = message.get("createTime", 0)
message.get("fromUser", "")
message.get("toUser", "")
message.get("isSentFromSelf", False)
# Extract readable text
readable_text = self._extract_readable_text(content)
if not readable_text:
readable_text = message_text
# Skip empty messages
if not readable_text.strip():
continue
# Check time window constraint (only if time_window_minutes != -1)
if time_window_minutes != -1 and last_timestamp is not None and create_time > 0:
time_diff_minutes = (create_time - last_timestamp) / 60
if time_diff_minutes > time_window_minutes:
# Time gap too large, start new group
if current_group:
concatenated_groups.append({
'messages': current_group,
'total_length': current_length,
'start_time': current_group[0].get('createTime', 0),
'end_time': current_group[-1].get('createTime', 0)
})
concatenated_groups.append(
{
"messages": current_group,
"total_length": current_length,
"start_time": current_group[0].get("createTime", 0),
"end_time": current_group[-1].get("createTime", 0),
}
)
# Keep last few messages for overlap
if overlap_messages > 0 and len(current_group) > overlap_messages:
current_group = current_group[-overlap_messages:]
current_length = sum(len(self._extract_readable_text(msg.get('content', '')) or msg.get('message', '')) for msg in current_group)
current_length = sum(
len(
self._extract_readable_text(msg.get("content", ""))
or msg.get("message", "")
)
for msg in current_group
)
else:
current_group = []
current_length = 0
# Check length constraint (only if max_length != -1)
message_length = len(readable_text)
if max_length != -1 and current_length + message_length > max_length and current_group:
# Current group would exceed max length, save it and start new
concatenated_groups.append({
'messages': current_group,
'total_length': current_length,
'start_time': current_group[0].get('createTime', 0),
'end_time': current_group[-1].get('createTime', 0)
})
concatenated_groups.append(
{
"messages": current_group,
"total_length": current_length,
"start_time": current_group[0].get("createTime", 0),
"end_time": current_group[-1].get("createTime", 0),
}
)
# Keep last few messages for overlap
if overlap_messages > 0 and len(current_group) > overlap_messages:
current_group = current_group[-overlap_messages:]
current_length = sum(len(self._extract_readable_text(msg.get('content', '')) or msg.get('message', '')) for msg in current_group)
current_length = sum(
len(
self._extract_readable_text(msg.get("content", ""))
or msg.get("message", "")
)
for msg in current_group
)
else:
current_group = []
current_length = 0
# Add message to current group
current_group.append(message)
current_length += message_length
last_timestamp = create_time
# Add the last group if it exists
if current_group:
concatenated_groups.append({
'messages': current_group,
'total_length': current_length,
'start_time': current_group[0].get('createTime', 0),
'end_time': current_group[-1].get('createTime', 0)
})
concatenated_groups.append(
{
"messages": current_group,
"total_length": current_length,
"start_time": current_group[0].get("createTime", 0),
"end_time": current_group[-1].get("createTime", 0),
}
)
return concatenated_groups
def _create_concatenated_content(self, message_group: Dict, contact_name: str) -> str:
def _create_concatenated_content(self, message_group: dict, contact_name: str) -> str:
"""
Create concatenated content from a group of messages.
Args:
message_group: Dictionary containing messages and metadata
contact_name: Name of the contact
Returns:
Formatted concatenated content
"""
messages = message_group['messages']
start_time = message_group['start_time']
end_time = message_group['end_time']
messages = message_group["messages"]
start_time = message_group["start_time"]
end_time = message_group["end_time"]
# Format timestamps
if start_time:
try:
start_timestamp = datetime.fromtimestamp(start_time)
start_time_str = start_timestamp.strftime('%Y-%m-%d %H:%M:%S')
except:
start_time_str = start_timestamp.strftime("%Y-%m-%d %H:%M:%S")
except (ValueError, OSError):
start_time_str = str(start_time)
else:
start_time_str = "Unknown"
if end_time:
try:
end_timestamp = datetime.fromtimestamp(end_time)
end_time_str = end_timestamp.strftime('%Y-%m-%d %H:%M:%S')
except:
end_time_str = end_timestamp.strftime("%Y-%m-%d %H:%M:%S")
except (ValueError, OSError):
end_time_str = str(end_time)
else:
end_time_str = "Unknown"
# Build concatenated message content
message_parts = []
for message in messages:
content = message.get('content', '')
message_text = message.get('message', '')
create_time = message.get('createTime', 0)
is_sent_from_self = message.get('isSentFromSelf', False)
content = message.get("content", "")
message_text = message.get("message", "")
create_time = message.get("createTime", 0)
is_sent_from_self = message.get("isSentFromSelf", False)
# Extract readable text
readable_text = self._extract_readable_text(content)
if not readable_text:
readable_text = message_text
# Format individual message
if create_time:
try:
timestamp = datetime.fromtimestamp(create_time)
# change to YYYY-MM-DD HH:MM:SS
time_str = timestamp.strftime('%Y-%m-%d %H:%M:%S')
except:
time_str = timestamp.strftime("%Y-%m-%d %H:%M:%S")
except (ValueError, OSError):
time_str = str(create_time)
else:
time_str = "Unknown"
sender = "[Me]" if is_sent_from_self else "[Contact]"
message_parts.append(f"({time_str}) {sender}: {readable_text}")
concatenated_text = "\n".join(message_parts)
# Create final document content
doc_content = f"""
Contact: {contact_name}
Time Range: {start_time_str} - {end_time_str}
Messages ({len(messages)} messages, {message_group['total_length']} chars):
Messages ({len(messages)} messages, {message_group["total_length"]} chars):
{concatenated_text}
"""
# TODO @yichuan give better format and rich info here!
# TODO @yichuan give better format and rich info here!
doc_content = f"""
{concatenated_text}
"""
return doc_content, contact_name
def load_data(self, input_dir: str = None, **load_kwargs: Any) -> List[Document]:
def load_data(self, input_dir: str | None = None, **load_kwargs: Any) -> list[Document]:
"""
Load WeChat chat history data from exported JSON files.
Args:
input_dir: Directory containing exported WeChat JSON files
**load_kwargs:
@@ -376,97 +406,104 @@ Messages ({len(messages)} messages, {message_group['total_length']} chars):
time_window_minutes (int): Time window in minutes to group messages together (default: 30).
overlap_messages (int): Number of messages to overlap between consecutive groups (default: 2).
"""
docs: List[Document] = []
max_count = load_kwargs.get('max_count', 1000)
wechat_export_dir = load_kwargs.get('wechat_export_dir', None)
include_non_text = load_kwargs.get('include_non_text', False)
concatenate_messages = load_kwargs.get('concatenate_messages', False)
max_length = load_kwargs.get('max_length', 1000)
time_window_minutes = load_kwargs.get('time_window_minutes', 30)
docs: list[Document] = []
max_count = load_kwargs.get("max_count", 1000)
wechat_export_dir = load_kwargs.get("wechat_export_dir", None)
include_non_text = load_kwargs.get("include_non_text", False)
concatenate_messages = load_kwargs.get("concatenate_messages", False)
load_kwargs.get("max_length", 1000)
load_kwargs.get("time_window_minutes", 30)
# Default WeChat export path
if wechat_export_dir is None:
wechat_export_dir = "./wechat_export_test"
if not os.path.exists(wechat_export_dir):
print(f"WeChat export directory not found at: {wechat_export_dir}")
return docs
try:
# Find all JSON files in the export directory
json_files = list(Path(wechat_export_dir).glob("*.json"))
print(f"Found {len(json_files)} WeChat chat history files")
count = 0
for json_file in json_files:
if count >= max_count and max_count > 0:
break
try:
with open(json_file, 'r', encoding='utf-8') as f:
with open(json_file, encoding="utf-8") as f:
chat_data = json.load(f)
# Extract contact name from filename
contact_name = json_file.stem
if concatenate_messages:
# Filter messages to only include readable text messages
readable_messages = []
for message in chat_data:
try:
content = message.get('content', '')
content = message.get("content", "")
if not include_non_text and not self._is_text_message(content):
continue
readable_text = self._extract_readable_text(content)
if not readable_text and not include_non_text:
continue
readable_messages.append(message)
except Exception as e:
print(f"Error processing message in {json_file}: {e}")
continue
# Concatenate messages based on rules
message_groups = self._concatenate_messages(
readable_messages,
max_length=-1,
readable_messages,
max_length=-1,
time_window_minutes=-1,
overlap_messages=0 # Keep 2 messages overlap between groups
overlap_messages=0, # Keep 2 messages overlap between groups
)
# Create documents from concatenated groups
for message_group in message_groups:
if count >= max_count and max_count > 0:
break
doc_content, contact_name = self._create_concatenated_content(message_group, contact_name)
doc = Document(text=doc_content, metadata={"contact_name": contact_name})
doc_content, contact_name = self._create_concatenated_content(
message_group, contact_name
)
doc = Document(
text=doc_content,
metadata={"contact_name": contact_name},
)
docs.append(doc)
count += 1
print(f"Created {len(message_groups)} concatenated message groups for {contact_name}")
print(
f"Created {len(message_groups)} concatenated message groups for {contact_name}"
)
else:
# Original single-message processing
for message in chat_data:
if count >= max_count and max_count > 0:
break
# Extract message information
from_user = message.get('fromUser', '')
to_user = message.get('toUser', '')
content = message.get('content', '')
message_text = message.get('message', '')
create_time = message.get('createTime', 0)
is_sent_from_self = message.get('isSentFromSelf', False)
message.get("fromUser", "")
message.get("toUser", "")
content = message.get("content", "")
message_text = message.get("message", "")
create_time = message.get("createTime", 0)
is_sent_from_self = message.get("isSentFromSelf", False)
# Handle content that might be dict or string
try:
# Check if this is a readable text message
if not include_non_text and not self._is_text_message(content):
continue
# Extract readable text
readable_text = self._extract_readable_text(content)
if not readable_text and not include_non_text:
@@ -475,17 +512,17 @@ Messages ({len(messages)} messages, {message_group['total_length']} chars):
# Skip messages that cause processing errors
print(f"Error processing message in {json_file}: {e}")
continue
# Convert timestamp to readable format
if create_time:
try:
timestamp = datetime.fromtimestamp(create_time)
time_str = timestamp.strftime('%Y-%m-%d %H:%M:%S')
except:
time_str = timestamp.strftime("%Y-%m-%d %H:%M:%S")
except (ValueError, OSError):
time_str = str(create_time)
else:
time_str = "Unknown"
# Create document content with metadata header and contact info
doc_content = f"""
Contact: {contact_name}
@@ -493,57 +530,64 @@ Is sent from self: {is_sent_from_self}
Time: {time_str}
Message: {readable_text if readable_text else message_text}
"""
# Create document with embedded metadata
doc = Document(text=doc_content, metadata={})
docs.append(doc)
count += 1
except Exception as e:
print(f"Error reading {json_file}: {e}")
continue
print(f"Loaded {len(docs)} WeChat chat documents")
except Exception as e:
print(f"Error reading WeChat history: {e}")
return docs
return docs
@staticmethod
def find_wechat_export_dirs() -> List[Path]:
def find_wechat_export_dirs() -> list[Path]:
"""
Find all WeChat export directories.
Returns:
List of Path objects pointing to WeChat export directories
"""
export_dirs = []
# Look for common export directory names
possible_dirs = [
Path("./wechat_export_test"),
Path("./wechat_export"),
Path("./wechat_chat_history"),
Path("./chat_export")
Path("./chat_export"),
]
for export_dir in possible_dirs:
if export_dir.exists() and export_dir.is_dir():
json_files = list(export_dir.glob("*.json"))
if json_files:
export_dirs.append(export_dir)
print(f"Found WeChat export directory: {export_dir} with {len(json_files)} files")
print(
f"Found WeChat export directory: {export_dir} with {len(json_files)} files"
)
print(f"Found {len(export_dirs)} WeChat export directories")
return export_dirs
@staticmethod
def export_chat_to_file(output_file: str = "wechat_chat_export.txt", max_count: int = 1000, export_dir: str = None, include_non_text: bool = False):
def export_chat_to_file(
output_file: str = "wechat_chat_export.txt",
max_count: int = 1000,
export_dir: str | None = None,
include_non_text: bool = False,
):
"""
Export WeChat chat history to a text file.
Args:
output_file: Path to the output file
max_count: Maximum number of entries to export
@@ -552,36 +596,36 @@ Message: {readable_text if readable_text else message_text}
"""
if export_dir is None:
export_dir = "./wechat_export_test"
if not os.path.exists(export_dir):
print(f"WeChat export directory not found at: {export_dir}")
return
try:
json_files = list(Path(export_dir).glob("*.json"))
with open(output_file, 'w', encoding='utf-8') as f:
with open(output_file, "w", encoding="utf-8") as f:
count = 0
for json_file in json_files:
if count >= max_count and max_count > 0:
break
try:
with open(json_file, 'r', encoding='utf-8') as json_f:
with open(json_file, encoding="utf-8") as json_f:
chat_data = json.load(json_f)
contact_name = json_file.stem
f.write(f"\n=== Chat with {contact_name} ===\n")
for message in chat_data:
if count >= max_count and max_count > 0:
break
from_user = message.get('fromUser', '')
content = message.get('content', '')
message_text = message.get('message', '')
create_time = message.get('createTime', 0)
from_user = message.get("fromUser", "")
content = message.get("content", "")
message_text = message.get("message", "")
create_time = message.get("createTime", 0)
# Skip non-text messages unless requested
if not include_non_text:
reader = WeChatHistoryReader()
@@ -591,83 +635,90 @@ Message: {readable_text if readable_text else message_text}
if not readable_text:
continue
message_text = readable_text
if create_time:
try:
timestamp = datetime.fromtimestamp(create_time)
time_str = timestamp.strftime('%Y-%m-%d %H:%M:%S')
except:
time_str = timestamp.strftime("%Y-%m-%d %H:%M:%S")
except (ValueError, OSError):
time_str = str(create_time)
else:
time_str = "Unknown"
f.write(f"[{time_str}] {from_user}: {message_text}\n")
count += 1
except Exception as e:
print(f"Error processing {json_file}: {e}")
continue
print(f"Exported {count} chat entries to {output_file}")
except Exception as e:
print(f"Error exporting WeChat chat history: {e}")
def export_wechat_chat_history(self, export_dir: str = "./wechat_export_direct") -> Optional[Path]:
def export_wechat_chat_history(self, export_dir: str = "./wechat_export_direct") -> Path | None:
"""
Export WeChat chat history using wechat-exporter tool.
Args:
export_dir: Directory to save exported chat history
Returns:
Path to export directory if successful, None otherwise
"""
try:
import subprocess
import sys
# Create export directory
export_path = Path(export_dir)
export_path.mkdir(exist_ok=True)
print(f"Exporting WeChat chat history to {export_path}...")
# Check if wechat-exporter directory exists
if not self.wechat_exporter_dir.exists():
print(f"wechat-exporter directory not found at: {self.wechat_exporter_dir}")
return None
# Install requirements if needed
requirements_file = self.wechat_exporter_dir / "requirements.txt"
if requirements_file.exists():
print("Installing wechat-exporter requirements...")
subprocess.run([
"uv", "pip", "install", "-r", str(requirements_file)
], check=True)
subprocess.run(["uv", "pip", "install", "-r", str(requirements_file)], check=True)
# Run the export command
print("Running wechat-exporter...")
result = subprocess.run([
sys.executable, str(self.wechat_exporter_dir / "main.py"),
"export-all", str(export_path)
], capture_output=True, text=True, check=True)
result = subprocess.run(
[
sys.executable,
str(self.wechat_exporter_dir / "main.py"),
"export-all",
str(export_path),
],
capture_output=True,
text=True,
check=True,
)
print("Export command output:")
print(result.stdout)
if result.stderr:
print("Export errors:")
print(result.stderr)
# Check if export was successful
if export_path.exists() and any(export_path.glob("*.json")):
json_files = list(export_path.glob("*.json"))
print(f"Successfully exported {len(json_files)} chat history files to {export_path}")
print(
f"Successfully exported {len(json_files)} chat history files to {export_path}"
)
return export_path
else:
print("Export completed but no JSON files found")
return None
except subprocess.CalledProcessError as e:
print(f"Export command failed: {e}")
print(f"Command output: {e.stdout}")
@@ -678,18 +729,18 @@ Message: {readable_text if readable_text else message_text}
print("Please ensure WeChat is running and WeChatTweak is installed.")
return None
def find_or_export_wechat_data(self, export_dir: str = "./wechat_export_direct") -> List[Path]:
def find_or_export_wechat_data(self, export_dir: str = "./wechat_export_direct") -> list[Path]:
"""
Find existing WeChat exports or create new ones.
Args:
export_dir: Directory to save exported chat history if needed
Returns:
List of Path objects pointing to WeChat export directories
"""
export_dirs = []
# Look for existing exports in common locations
possible_export_dirs = [
Path("./wechat_database_export"),
@@ -697,23 +748,25 @@ Message: {readable_text if readable_text else message_text}
Path("./wechat_export"),
Path("./wechat_export_direct"),
Path("./wechat_chat_history"),
Path("./chat_export")
Path("./chat_export"),
]
for export_dir_path in possible_export_dirs:
if export_dir_path.exists() and any(export_dir_path.glob("*.json")):
export_dirs.append(export_dir_path)
print(f"Found existing export: {export_dir_path}")
# If no existing exports, try to export automatically
if not export_dirs:
print("No existing WeChat exports found. Starting direct export...")
# Try to export using wechat-exporter
exported_path = self.export_wechat_chat_history(export_dir)
if exported_path:
export_dirs = [exported_path]
else:
print("Failed to export WeChat data. Please ensure WeChat is running and WeChatTweak is installed.")
return export_dirs
print(
"Failed to export WeChat data. Please ensure WeChat is running and WeChatTweak is installed."
)
return export_dirs

View File

@@ -1,33 +1,42 @@
import argparse
import asyncio
import os
import sys
import asyncio
import dotenv
import argparse
from pathlib import Path
from typing import List, Any
import dotenv
# Add the project root to Python path so we can import from examples
project_root = Path(__file__).parent.parent
sys.path.insert(0, str(project_root))
from leann.api import LeannBuilder, LeannSearcher, LeannChat
from leann.api import LeannBuilder, LeannChat
from llama_index.core.node_parser import SentenceSplitter
dotenv.load_dotenv()
# Auto-detect user's mail path
def get_mail_path():
"""Get the mail path for the current user"""
home_dir = os.path.expanduser("~")
return os.path.join(home_dir, "Library", "Mail")
# Default mail path for macOS
DEFAULT_MAIL_PATH = "/Users/yichuan/Library/Mail/V10/0FCA0879-FD8C-4B7E-83BF-FDDA930791C5/[Gmail].mbox/All Mail.mbox/78BA5BE1-8819-4F9A-9613-EB63772F1DD0/Data"
def create_leann_index_from_multiple_sources(messages_dirs: List[Path], index_path: str = "mail_index.leann", max_count: int = -1, include_html: bool = False, embedding_model: str = "facebook/contriever"):
def create_leann_index_from_multiple_sources(
messages_dirs: list[Path],
index_path: str = "mail_index.leann",
max_count: int = -1,
include_html: bool = False,
embedding_model: str = "facebook/contriever",
):
"""
Create LEANN index from multiple mail data sources.
Args:
messages_dirs: List of Path objects pointing to Messages directories
index_path: Path to save the LEANN index
@@ -35,31 +44,32 @@ def create_leann_index_from_multiple_sources(messages_dirs: List[Path], index_pa
include_html: Whether to include HTML content in email processing
"""
print("Creating LEANN index from multiple mail data sources...")
# Load documents using EmlxReader from LEANN_email_reader
from examples.email_data.LEANN_email_reader import EmlxReader
reader = EmlxReader(include_html=include_html)
# from email_data.email import EmlxMboxReader
# from pathlib import Path
# reader = EmlxMboxReader()
INDEX_DIR = Path(index_path).parent
if not INDEX_DIR.exists():
print(f"--- Index directory not found, building new index ---")
print("--- Index directory not found, building new index ---")
all_documents = []
total_processed = 0
# Process each Messages directory
for i, messages_dir in enumerate(messages_dirs):
print(f"\nProcessing Messages directory {i+1}/{len(messages_dirs)}: {messages_dir}")
print(f"\nProcessing Messages directory {i + 1}/{len(messages_dirs)}: {messages_dir}")
try:
documents = reader.load_data(messages_dir)
if documents:
print(f"Loaded {len(documents)} email documents from {messages_dir}")
all_documents.extend(documents)
total_processed += len(documents)
# Check if we've reached the max count
if max_count > 0 and total_processed >= max_count:
print(f"Reached max count of {max_count} documents")
@@ -69,16 +79,18 @@ def create_leann_index_from_multiple_sources(messages_dirs: List[Path], index_pa
except Exception as e:
print(f"Error processing {messages_dir}: {e}")
continue
if not all_documents:
print("No documents loaded from any source. Exiting.")
return None
print(f"\nTotal loaded {len(all_documents)} email documents from {len(messages_dirs)} directories and starting to split them into chunks")
print(
f"\nTotal loaded {len(all_documents)} email documents from {len(messages_dirs)} directories and starting to split them into chunks"
)
# Create text splitter with 256 chunk size
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25)
# Convert Documents to text strings and chunk them
all_texts = []
for doc in all_documents:
@@ -88,44 +100,53 @@ def create_leann_index_from_multiple_sources(messages_dirs: List[Path], index_pa
text = node.get_content()
# text = '[subject] ' + doc.metadata["subject"] + '\n' + text
all_texts.append(text)
print(f"Finished splitting {len(all_documents)} documents into {len(all_texts)} text chunks")
print(
f"Finished splitting {len(all_documents)} documents into {len(all_texts)} text chunks"
)
# Create LEANN index directory
print(f"--- Index directory not found, building new index ---")
print("--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print(f"--- Building new LEANN index ---")
print(f"\n[PHASE 1] Building Leann index...")
print("--- Building new LEANN index ---")
print("\n[PHASE 1] Building Leann index...")
# Use HNSW backend for better macOS compatibility
builder = LeannBuilder(
backend_name="hnsw",
embedding_model=embedding_model,
graph_degree=32,
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1 # Force single-threaded mode
num_threads=1, # Force single-threaded mode
)
print(f"Adding {len(all_texts)} email chunks to index...")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(index_path)
print(f"\nLEANN index built at {index_path}!")
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
return index_path
def create_leann_index(mail_path: str, index_path: str = "mail_index.leann", max_count: int = 1000, include_html: bool = False, embedding_model: str = "facebook/contriever"):
def create_leann_index(
mail_path: str,
index_path: str = "mail_index.leann",
max_count: int = 1000,
include_html: bool = False,
embedding_model: str = "facebook/contriever",
):
"""
Create LEANN index from mail data.
Args:
mail_path: Path to the mail directory
index_path: Path to save the LEANN index
@@ -134,32 +155,33 @@ def create_leann_index(mail_path: str, index_path: str = "mail_index.leann", max
"""
print("Creating LEANN index from mail data...")
INDEX_DIR = Path(index_path).parent
if not INDEX_DIR.exists():
print(f"--- Index directory not found, building new index ---")
print("--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print(f"--- Building new LEANN index ---")
print(f"\n[PHASE 1] Building Leann index...")
print("--- Building new LEANN index ---")
print("\n[PHASE 1] Building Leann index...")
# Load documents using EmlxReader from LEANN_email_reader
from examples.email_data.LEANN_email_reader import EmlxReader
reader = EmlxReader(include_html=include_html)
# from email_data.email import EmlxMboxReader
# from pathlib import Path
# reader = EmlxMboxReader()
documents = reader.load_data(Path(mail_path))
if not documents:
print("No documents loaded. Exiting.")
return None
print(f"Loaded {len(documents)} email documents")
# Create text splitter with 256 chunk size
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=128)
# Convert Documents to text strings and chunk them
all_texts = []
for doc in documents:
@@ -167,111 +189,139 @@ def create_leann_index(mail_path: str, index_path: str = "mail_index.leann", max
nodes = text_splitter.get_nodes_from_documents([doc])
for node in nodes:
all_texts.append(node.get_content())
print(f"Created {len(all_texts)} text chunks from {len(documents)} documents")
# Create LEANN index directory
print(f"--- Index directory not found, building new index ---")
print("--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print(f"--- Building new LEANN index ---")
print(f"\n[PHASE 1] Building Leann index...")
print("--- Building new LEANN index ---")
print("\n[PHASE 1] Building Leann index...")
# Use HNSW backend for better macOS compatibility
builder = LeannBuilder(
backend_name="hnsw",
embedding_model=embedding_model,
graph_degree=32,
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1 # Force single-threaded mode
num_threads=1, # Force single-threaded mode
)
print(f"Adding {len(all_texts)} email chunks to index...")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(index_path)
print(f"\nLEANN index built at {index_path}!")
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
return index_path
async def query_leann_index(index_path: str, query: str):
"""
Query the LEANN index.
Args:
index_path: Path to the LEANN index
query: The query string
"""
print(f"\n[PHASE 2] Starting Leann chat session...")
chat = LeannChat(index_path=index_path,
llm_config={"type": "openai", "model": "gpt-4o"})
print("\n[PHASE 2] Starting Leann chat session...")
chat = LeannChat(index_path=index_path, llm_config={"type": "openai", "model": "gpt-4o"})
print(f"You: {query}")
import time
start_time = time.time()
time.time()
chat_response = chat.ask(
query,
top_k=20,
query,
top_k=20,
recompute_beighbor_embeddings=True,
complexity=32,
beam_width=1,
)
end_time = time.time()
time.time()
# print(f"Time taken: {end_time - start_time} seconds")
# highlight the answer
print(f"Leann chat response: \033[36m{chat_response}\033[0m")
async def main():
# Parse command line arguments
parser = argparse.ArgumentParser(description='LEANN Mail Reader - Create and query email index')
parser = argparse.ArgumentParser(description="LEANN Mail Reader - Create and query email index")
# Remove --mail-path argument and auto-detect all Messages directories
# Remove DEFAULT_MAIL_PATH
parser.add_argument('--index-dir', type=str, default="./mail_index",
help='Directory to store the LEANN index (default: ./mail_index_leann_raw_text_all_dicts)')
parser.add_argument('--max-emails', type=int, default=1000,
help='Maximum number of emails to process (-1 means all)')
parser.add_argument('--query', type=str, default="Give me some funny advertisement about apple or other companies",
help='Single query to run (default: runs example queries)')
parser.add_argument('--include-html', action='store_true', default=False,
help='Include HTML content in email processing (default: False)')
parser.add_argument('--embedding-model', type=str, default="facebook/contriever",
help='Embedding model to use (default: facebook/contriever)')
parser.add_argument(
"--index-dir",
type=str,
default="./mail_index",
help="Directory to store the LEANN index (default: ./mail_index_leann_raw_text_all_dicts)",
)
parser.add_argument(
"--max-emails",
type=int,
default=1000,
help="Maximum number of emails to process (-1 means all)",
)
parser.add_argument(
"--query",
type=str,
default="Give me some funny advertisement about apple or other companies",
help="Single query to run (default: runs example queries)",
)
parser.add_argument(
"--include-html",
action="store_true",
default=False,
help="Include HTML content in email processing (default: False)",
)
parser.add_argument(
"--embedding-model",
type=str,
default="facebook/contriever",
help="Embedding model to use (default: facebook/contriever)",
)
args = parser.parse_args()
print(f"args: {args}")
# Automatically find all Messages directories under the current user's Mail directory
from examples.email_data.LEANN_email_reader import find_all_messages_directories
mail_path = get_mail_path()
print(f"Searching for email data in: {mail_path}")
messages_dirs = find_all_messages_directories(mail_path)
# messages_dirs = find_all_messages_directories(DEFAULT_MAIL_PATH)
# messages_dirs = [DEFAULT_MAIL_PATH]
# messages_dirs = messages_dirs[:1]
print('len(messages_dirs): ', len(messages_dirs))
print("len(messages_dirs): ", len(messages_dirs))
if not messages_dirs:
print("No Messages directories found. Exiting.")
return
INDEX_DIR = Path(args.index_dir)
INDEX_PATH = str(INDEX_DIR / "mail_documents.leann")
print(f"Index directory: {INDEX_DIR}")
print(f"Found {len(messages_dirs)} Messages directories.")
# Create or load the LEANN index from all sources
index_path = create_leann_index_from_multiple_sources(messages_dirs, INDEX_PATH, args.max_emails, args.include_html, args.embedding_model)
index_path = create_leann_index_from_multiple_sources(
messages_dirs,
INDEX_PATH,
args.max_emails,
args.include_html,
args.embedding_model,
)
if index_path:
if args.query:
# Run single query
@@ -281,11 +331,12 @@ async def main():
queries = [
"Hows Berkeley Graduate Student Instructor",
"how's the icloud related advertisement saying",
"Whats the number of class recommend to take per semester for incoming EECS students"
"Whats the number of class recommend to take per semester for incoming EECS students",
]
for query in queries:
print("\n" + "="*60)
print("\n" + "=" * 60)
await query_leann_index(index_path, query)
if __name__ == "__main__":
asyncio.run(main())
asyncio.run(main())

View File

@@ -1,26 +1,30 @@
import argparse
import os
import sys
import argparse
from pathlib import Path
from typing import List, Any
# Add the project root to Python path so we can import from examples
project_root = Path(__file__).parent.parent
sys.path.insert(0, str(project_root))
from llama_index.core import VectorStoreIndex, StorageContext
import torch
from llama_index.core import StorageContext, VectorStoreIndex
from llama_index.core.node_parser import SentenceSplitter
# --- EMBEDDING MODEL ---
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
import torch
# --- END EMBEDDING MODEL ---
# Import EmlxReader from the new module
from examples.email_data.LEANN_email_reader import EmlxReader
def create_and_save_index(mail_path: str, save_dir: str = "mail_index_embedded", max_count: int = 1000, include_html: bool = False):
def create_and_save_index(
mail_path: str,
save_dir: str = "mail_index_embedded",
max_count: int = 1000,
include_html: bool = False,
):
print("Creating index from mail data with embedded metadata...")
documents = EmlxReader(include_html=include_html).load_data(mail_path, max_count=max_count)
if not documents:
@@ -30,7 +34,7 @@ def create_and_save_index(mail_path: str, save_dir: str = "mail_index_embedded",
# Use facebook/contriever as the embedder
embed_model = HuggingFaceEmbedding(model_name="facebook/contriever")
# set on device
import torch
if torch.cuda.is_available():
embed_model._model.to("cuda")
# set mps
@@ -39,21 +43,19 @@ def create_and_save_index(mail_path: str, save_dir: str = "mail_index_embedded",
else:
embed_model._model.to("cpu")
index = VectorStoreIndex.from_documents(
documents,
transformations=[text_splitter],
embed_model=embed_model
documents, transformations=[text_splitter], embed_model=embed_model
)
os.makedirs(save_dir, exist_ok=True)
index.storage_context.persist(persist_dir=save_dir)
print(f"Index saved to {save_dir}")
return index
def load_index(save_dir: str = "mail_index_embedded"):
try:
storage_context = StorageContext.from_defaults(persist_dir=save_dir)
index = VectorStoreIndex.from_vector_store(
storage_context.vector_store,
storage_context=storage_context
storage_context.vector_store, storage_context=storage_context
)
print(f"Index loaded from {save_dir}")
return index
@@ -61,6 +63,7 @@ def load_index(save_dir: str = "mail_index_embedded"):
print(f"Error loading index: {e}")
return None
def query_index(index, query: str):
if index is None:
print("No index available for querying.")
@@ -70,39 +73,63 @@ def query_index(index, query: str):
print(f"Query: {query}")
print(f"Response: {response}")
def main():
# Parse command line arguments
parser = argparse.ArgumentParser(description='LlamaIndex Mail Reader - Create and query email index')
parser.add_argument('--mail-path', type=str,
default="/Users/yichuan/Library/Mail/V10/0FCA0879-FD8C-4B7E-83BF-FDDA930791C5/[Gmail].mbox/All Mail.mbox/78BA5BE1-8819-4F9A-9613-EB63772F1DD0/Data/9/Messages",
help='Path to mail data directory')
parser.add_argument('--save-dir', type=str, default="mail_index_embedded",
help='Directory to store the index (default: mail_index_embedded)')
parser.add_argument('--max-emails', type=int, default=10000,
help='Maximum number of emails to process')
parser.add_argument('--include-html', action='store_true', default=False,
help='Include HTML content in email processing (default: False)')
parser = argparse.ArgumentParser(
description="LlamaIndex Mail Reader - Create and query email index"
)
parser.add_argument(
"--mail-path",
type=str,
default="/Users/yichuan/Library/Mail/V10/0FCA0879-FD8C-4B7E-83BF-FDDA930791C5/[Gmail].mbox/All Mail.mbox/78BA5BE1-8819-4F9A-9613-EB63772F1DD0/Data/9/Messages",
help="Path to mail data directory",
)
parser.add_argument(
"--save-dir",
type=str,
default="mail_index_embedded",
help="Directory to store the index (default: mail_index_embedded)",
)
parser.add_argument(
"--max-emails",
type=int,
default=10000,
help="Maximum number of emails to process",
)
parser.add_argument(
"--include-html",
action="store_true",
default=False,
help="Include HTML content in email processing (default: False)",
)
args = parser.parse_args()
mail_path = args.mail_path
save_dir = args.save_dir
if os.path.exists(save_dir) and os.path.exists(os.path.join(save_dir, "vector_store.json")):
print("Loading existing index...")
index = load_index(save_dir)
else:
print("Creating new index...")
index = create_and_save_index(mail_path, save_dir, max_count=args.max_emails, include_html=args.include_html)
index = create_and_save_index(
mail_path,
save_dir,
max_count=args.max_emails,
include_html=args.include_html,
)
if index:
queries = [
"Hows Berkeley Graduate Student Instructor",
"how's the icloud related advertisement saying",
"Whats the number of class recommend to take per semester for incoming EECS students"
"Whats the number of class recommend to take per semester for incoming EECS students",
]
for query in queries:
print("\n" + "="*50)
print("\n" + "=" * 50)
query_index(index, query)
if __name__ == "__main__":
main()
main()

View File

@@ -1,10 +1,11 @@
import argparse
from llama_index.core import SimpleDirectoryReader
from llama_index.core.node_parser import SentenceSplitter
import asyncio
from pathlib import Path
import dotenv
from leann.api import LeannBuilder, LeannChat
from pathlib import Path
from llama_index.core import SimpleDirectoryReader
from llama_index.core.node_parser import SentenceSplitter
dotenv.load_dotenv()
@@ -29,17 +30,22 @@ async def main(args):
all_texts = []
for doc in documents:
nodes = node_parser.get_nodes_from_documents([doc])
for node in nodes:
all_texts.append(node.get_content())
if nodes:
all_texts.extend(node.get_content() for node in nodes)
print("--- Index directory not found, building new index ---")
print("\n[PHASE 1] Building Leann index...")
# LeannBuilder now automatically detects normalized embeddings and sets appropriate distance metric
print(f"Using {args.embedding_model} with {args.embedding_mode} mode")
# Use HNSW backend for better macOS compatibility
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="facebook/contriever",
embedding_model=args.embedding_model,
embedding_mode=args.embedding_mode,
# distance_metric is automatically set based on embedding model
graph_degree=32,
complexity=64,
is_compact=True,
@@ -56,15 +62,25 @@ async def main(args):
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
print(f"\n[PHASE 2] Starting Leann chat session...")
print("\n[PHASE 2] Starting Leann chat session...")
llm_config = {"type": "hf", "model": "Qwen/Qwen3-4B"}
llm_config = {"type": "ollama", "model": "qwen3:8b"}
llm_config = {"type": "openai", "model": "gpt-4o"}
# Build llm_config based on command line arguments
if args.llm == "simulated":
llm_config = {"type": "simulated"}
elif args.llm == "ollama":
llm_config = {"type": "ollama", "model": args.model, "host": args.host}
elif args.llm == "hf":
llm_config = {"type": "hf", "model": args.model}
elif args.llm == "openai":
llm_config = {"type": "openai", "model": args.model}
else:
raise ValueError(f"Unknown LLM type: {args.llm}")
print(f"Using LLM: {args.llm} with model: {args.model if args.llm != 'simulated' else 'N/A'}")
chat = LeannChat(index_path=INDEX_PATH, llm_config=llm_config)
# query = (
# "什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面任务令一般在什么城市颁发"
# "什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发"
# )
query = args.query
@@ -74,9 +90,7 @@ async def main(args):
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Run Leann Chat with various LLM backends."
)
parser = argparse.ArgumentParser(description="Run Leann Chat with various LLM backends.")
parser.add_argument(
"--llm",
type=str,
@@ -90,6 +104,19 @@ if __name__ == "__main__":
default="Qwen/Qwen3-0.6B",
help="The model name to use (e.g., 'llama3:8b' for ollama, 'deepseek-ai/deepseek-llm-7b-chat' for hf, 'gpt-4o' for openai).",
)
parser.add_argument(
"--embedding-model",
type=str,
default="facebook/contriever",
help="The embedding model to use (e.g., 'facebook/contriever', 'text-embedding-3-small').",
)
parser.add_argument(
"--embedding-mode",
type=str,
default="sentence-transformers",
choices=["sentence-transformers", "openai", "mlx"],
help="The embedding backend mode.",
)
parser.add_argument(
"--host",
type=str,

View File

@@ -14,48 +14,55 @@ Key features:
- Document-level result consolidation
"""
import numpy as np
from typing import List, Dict, Any, Tuple, Optional
from dataclasses import dataclass
from collections import defaultdict
import json
from dataclasses import dataclass
from typing import Any
import numpy as np
@dataclass
class PatchResult:
"""Represents a single patch search result."""
patch_id: int
image_name: str
image_path: str
coordinates: Tuple[int, int, int, int] # (x1, y1, x2, y2)
coordinates: tuple[int, int, int, int] # (x1, y1, x2, y2)
score: float
attention_score: float
scale: float
metadata: Dict[str, Any]
metadata: dict[str, Any]
@dataclass
class AggregatedResult:
"""Represents an aggregated document-level result."""
image_name: str
image_path: str
doc_score: float
patch_count: int
best_patch: PatchResult
all_patches: List[PatchResult]
all_patches: list[PatchResult]
aggregation_method: str
spatial_clusters: Optional[List[List[PatchResult]]] = None
spatial_clusters: list[list[PatchResult]] | None = None
class MultiVectorAggregator:
"""
Aggregates multiple patch-level results into document-level results.
"""
def __init__(self,
aggregation_method: str = "maxsim",
spatial_clustering: bool = True,
cluster_distance_threshold: float = 100.0):
def __init__(
self,
aggregation_method: str = "maxsim",
spatial_clustering: bool = True,
cluster_distance_threshold: float = 100.0,
):
"""
Initialize the aggregator.
Args:
aggregation_method: "maxsim", "voting", "weighted", or "mean"
spatial_clustering: Whether to cluster spatially close patches
@@ -64,23 +71,23 @@ class MultiVectorAggregator:
self.aggregation_method = aggregation_method
self.spatial_clustering = spatial_clustering
self.cluster_distance_threshold = cluster_distance_threshold
def aggregate_results(self,
search_results: List[Dict[str, Any]],
top_k: int = 10) -> List[AggregatedResult]:
def aggregate_results(
self, search_results: list[dict[str, Any]], top_k: int = 10
) -> list[AggregatedResult]:
"""
Aggregate patch-level search results into document-level results.
Args:
search_results: List of search results from LeannSearcher
top_k: Number of top documents to return
Returns:
List of aggregated document results
"""
# Group results by image
image_groups = defaultdict(list)
for result in search_results:
metadata = result.metadata
if "image_name" in metadata and "patch_id" in metadata:
@@ -92,55 +99,57 @@ class MultiVectorAggregator:
score=result.score,
attention_score=metadata.get("attention_score", 0.0),
scale=metadata.get("scale", 1.0),
metadata=metadata
metadata=metadata,
)
image_groups[metadata["image_name"]].append(patch_result)
# Aggregate each image group
aggregated_results = []
for image_name, patches in image_groups.items():
if len(patches) == 0:
continue
agg_result = self._aggregate_image_patches(image_name, patches)
aggregated_results.append(agg_result)
# Sort by aggregated score and return top-k
aggregated_results.sort(key=lambda x: x.doc_score, reverse=True)
return aggregated_results[:top_k]
def _aggregate_image_patches(self, image_name: str, patches: List[PatchResult]) -> AggregatedResult:
def _aggregate_image_patches(
self, image_name: str, patches: list[PatchResult]
) -> AggregatedResult:
"""Aggregate patches for a single image."""
if self.aggregation_method == "maxsim":
doc_score = max(patch.score for patch in patches)
best_patch = max(patches, key=lambda p: p.score)
elif self.aggregation_method == "voting":
# Count patches above threshold
threshold = np.percentile([p.score for p in patches], 75)
doc_score = sum(1 for patch in patches if patch.score >= threshold)
best_patch = max(patches, key=lambda p: p.score)
elif self.aggregation_method == "weighted":
# Weight by attention scores
total_weighted_score = sum(p.score * p.attention_score for p in patches)
total_weights = sum(p.attention_score for p in patches)
doc_score = total_weighted_score / max(total_weights, 1e-8)
best_patch = max(patches, key=lambda p: p.score * p.attention_score)
elif self.aggregation_method == "mean":
doc_score = np.mean([patch.score for patch in patches])
best_patch = max(patches, key=lambda p: p.score)
else:
raise ValueError(f"Unknown aggregation method: {self.aggregation_method}")
# Spatial clustering if enabled
spatial_clusters = None
if self.spatial_clustering:
spatial_clusters = self._cluster_patches_spatially(patches)
return AggregatedResult(
image_name=image_name,
image_path=patches[0].image_path,
@@ -149,23 +158,23 @@ class MultiVectorAggregator:
best_patch=best_patch,
all_patches=sorted(patches, key=lambda p: p.score, reverse=True),
aggregation_method=self.aggregation_method,
spatial_clusters=spatial_clusters
spatial_clusters=spatial_clusters,
)
def _cluster_patches_spatially(self, patches: List[PatchResult]) -> List[List[PatchResult]]:
def _cluster_patches_spatially(self, patches: list[PatchResult]) -> list[list[PatchResult]]:
"""Cluster patches that are spatially close to each other."""
if len(patches) <= 1:
return [patches]
clusters = []
remaining_patches = patches.copy()
while remaining_patches:
# Start new cluster with highest scoring remaining patch
seed_patch = max(remaining_patches, key=lambda p: p.score)
current_cluster = [seed_patch]
remaining_patches.remove(seed_patch)
# Add nearby patches to cluster
added_to_cluster = True
while added_to_cluster:
@@ -175,145 +184,177 @@ class MultiVectorAggregator:
current_cluster.append(patch)
remaining_patches.remove(patch)
added_to_cluster = True
clusters.append(current_cluster)
return sorted(clusters, key=lambda cluster: max(p.score for p in cluster), reverse=True)
def _is_patch_nearby(self, patch: PatchResult, cluster: List[PatchResult]) -> bool:
def _is_patch_nearby(self, patch: PatchResult, cluster: list[PatchResult]) -> bool:
"""Check if a patch is spatially close to any patch in the cluster."""
patch_center = self._get_patch_center(patch.coordinates)
for cluster_patch in cluster:
cluster_center = self._get_patch_center(cluster_patch.coordinates)
distance = np.sqrt((patch_center[0] - cluster_center[0])**2 +
(patch_center[1] - cluster_center[1])**2)
distance = np.sqrt(
(patch_center[0] - cluster_center[0]) ** 2
+ (patch_center[1] - cluster_center[1]) ** 2
)
if distance <= self.cluster_distance_threshold:
return True
return False
def _get_patch_center(self, coordinates: Tuple[int, int, int, int]) -> Tuple[float, float]:
def _get_patch_center(self, coordinates: tuple[int, int, int, int]) -> tuple[float, float]:
"""Get center point of a patch."""
x1, y1, x2, y2 = coordinates
return ((x1 + x2) / 2, (y1 + y2) / 2)
def print_aggregated_results(self, results: List[AggregatedResult], max_patches_per_doc: int = 3):
def print_aggregated_results(
self, results: list[AggregatedResult], max_patches_per_doc: int = 3
):
"""Pretty print aggregated results."""
print(f"\n🔍 Aggregated Results (method: {self.aggregation_method})")
print("=" * 80)
for i, result in enumerate(results):
print(f"\n{i+1}. {result.image_name}")
print(f"\n{i + 1}. {result.image_name}")
print(f" Doc Score: {result.doc_score:.4f} | Patches: {result.patch_count}")
print(f" Path: {result.image_path}")
# Show best patch
best = result.best_patch
print(f" 🌟 Best Patch: #{best.patch_id} at {best.coordinates} (score: {best.score:.4f})")
print(
f" 🌟 Best Patch: #{best.patch_id} at {best.coordinates} (score: {best.score:.4f})"
)
# Show top patches
print(f" 📍 Top Patches:")
print(" 📍 Top Patches:")
for j, patch in enumerate(result.all_patches[:max_patches_per_doc]):
print(f" {j+1}. Patch #{patch.patch_id}: {patch.score:.4f} at {patch.coordinates}")
print(
f" {j + 1}. Patch #{patch.patch_id}: {patch.score:.4f} at {patch.coordinates}"
)
# Show spatial clusters if available
if result.spatial_clusters and len(result.spatial_clusters) > 1:
print(f" 🗂️ Spatial Clusters: {len(result.spatial_clusters)}")
for j, cluster in enumerate(result.spatial_clusters[:2]): # Show top 2 clusters
cluster_score = max(p.score for p in cluster)
print(f" Cluster {j+1}: {len(cluster)} patches (best: {cluster_score:.4f})")
print(
f" Cluster {j + 1}: {len(cluster)} patches (best: {cluster_score:.4f})"
)
def demo_aggregation():
"""Demonstrate the multi-vector aggregation functionality."""
print("=== Multi-Vector Aggregation Demo ===")
# Simulate some patch-level search results
# In real usage, these would come from LeannSearcher.search()
class MockResult:
def __init__(self, score, metadata):
self.score = score
self.metadata = metadata
# Simulate results for 2 images with multiple patches each
mock_results = [
# Image 1: cats_and_kitchen.jpg - 4 patches
MockResult(0.85, {
"image_name": "cats_and_kitchen.jpg",
"image_path": "/path/to/cats_and_kitchen.jpg",
"patch_id": 3,
"coordinates": [100, 50, 224, 174], # Kitchen area
"attention_score": 0.92,
"scale": 1.0
}),
MockResult(0.78, {
"image_name": "cats_and_kitchen.jpg",
"image_path": "/path/to/cats_and_kitchen.jpg",
"patch_id": 7,
"coordinates": [200, 300, 324, 424], # Cat area
"attention_score": 0.88,
"scale": 1.0
}),
MockResult(0.72, {
"image_name": "cats_and_kitchen.jpg",
"image_path": "/path/to/cats_and_kitchen.jpg",
"patch_id": 12,
"coordinates": [150, 100, 274, 224], # Appliances
"attention_score": 0.75,
"scale": 1.0
}),
MockResult(0.65, {
"image_name": "cats_and_kitchen.jpg",
"image_path": "/path/to/cats_and_kitchen.jpg",
"patch_id": 15,
"coordinates": [50, 250, 174, 374], # Furniture
"attention_score": 0.70,
"scale": 1.0
}),
# Image 2: city_street.jpg - 3 patches
MockResult(0.68, {
"image_name": "city_street.jpg",
"image_path": "/path/to/city_street.jpg",
"patch_id": 2,
"coordinates": [300, 100, 424, 224], # Buildings
"attention_score": 0.80,
"scale": 1.0
}),
MockResult(0.62, {
"image_name": "city_street.jpg",
"image_path": "/path/to/city_street.jpg",
"patch_id": 8,
"coordinates": [100, 350, 224, 474], # Street level
"attention_score": 0.75,
"scale": 1.0
}),
MockResult(0.55, {
"image_name": "city_street.jpg",
"image_path": "/path/to/city_street.jpg",
"patch_id": 11,
"coordinates": [400, 200, 524, 324], # Sky area
"attention_score": 0.60,
"scale": 1.0
}),
MockResult(
0.85,
{
"image_name": "cats_and_kitchen.jpg",
"image_path": "/path/to/cats_and_kitchen.jpg",
"patch_id": 3,
"coordinates": [100, 50, 224, 174], # Kitchen area
"attention_score": 0.92,
"scale": 1.0,
},
),
MockResult(
0.78,
{
"image_name": "cats_and_kitchen.jpg",
"image_path": "/path/to/cats_and_kitchen.jpg",
"patch_id": 7,
"coordinates": [200, 300, 324, 424], # Cat area
"attention_score": 0.88,
"scale": 1.0,
},
),
MockResult(
0.72,
{
"image_name": "cats_and_kitchen.jpg",
"image_path": "/path/to/cats_and_kitchen.jpg",
"patch_id": 12,
"coordinates": [150, 100, 274, 224], # Appliances
"attention_score": 0.75,
"scale": 1.0,
},
),
MockResult(
0.65,
{
"image_name": "cats_and_kitchen.jpg",
"image_path": "/path/to/cats_and_kitchen.jpg",
"patch_id": 15,
"coordinates": [50, 250, 174, 374], # Furniture
"attention_score": 0.70,
"scale": 1.0,
},
),
# Image 2: city_street.jpg - 3 patches
MockResult(
0.68,
{
"image_name": "city_street.jpg",
"image_path": "/path/to/city_street.jpg",
"patch_id": 2,
"coordinates": [300, 100, 424, 224], # Buildings
"attention_score": 0.80,
"scale": 1.0,
},
),
MockResult(
0.62,
{
"image_name": "city_street.jpg",
"image_path": "/path/to/city_street.jpg",
"patch_id": 8,
"coordinates": [100, 350, 224, 474], # Street level
"attention_score": 0.75,
"scale": 1.0,
},
),
MockResult(
0.55,
{
"image_name": "city_street.jpg",
"image_path": "/path/to/city_street.jpg",
"patch_id": 11,
"coordinates": [400, 200, 524, 324], # Sky area
"attention_score": 0.60,
"scale": 1.0,
},
),
]
# Test different aggregation methods
methods = ["maxsim", "voting", "weighted", "mean"]
for method in methods:
print(f"\n{'='*20} {method.upper()} AGGREGATION {'='*20}")
print(f"\n{'=' * 20} {method.upper()} AGGREGATION {'=' * 20}")
aggregator = MultiVectorAggregator(
aggregation_method=method,
spatial_clustering=True,
cluster_distance_threshold=100.0
cluster_distance_threshold=100.0,
)
aggregated = aggregator.aggregate_results(mock_results, top_k=5)
aggregator.print_aggregated_results(aggregated)
if __name__ == "__main__":
demo_aggregation()
demo_aggregation()

View File

@@ -6,22 +6,24 @@ Complete example showing how to build and search with OpenAI embeddings using HN
"""
import os
import dotenv
from pathlib import Path
import dotenv
from leann.api import LeannBuilder, LeannSearcher
# Load environment variables
dotenv.load_dotenv()
def main():
# Check if OpenAI API key is available
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
print("ERROR: OPENAI_API_KEY environment variable not set")
return False
print(f"✅ OpenAI API key found: {api_key[:10]}...")
# Sample texts
sample_texts = [
"Machine learning is a powerful technology that enables computers to learn from data.",
@@ -33,15 +35,15 @@ def main():
"Artificial intelligence aims to create machines that can perform human-like tasks.",
"Python is a popular programming language used extensively in data science and AI.",
"Neural networks are inspired by the structure and function of the human brain.",
"Big data refers to extremely large datasets that require special tools to process."
"Big data refers to extremely large datasets that require special tools to process.",
]
INDEX_DIR = Path("./simple_openai_test_index")
INDEX_PATH = str(INDEX_DIR / "simple_test.leann")
print(f"\n=== Building Index with OpenAI Embeddings ===")
print("\n=== Building Index with OpenAI Embeddings ===")
print(f"Index path: {INDEX_PATH}")
try:
# Use proper configuration for OpenAI embeddings
builder = LeannBuilder(
@@ -49,60 +51,63 @@ def main():
embedding_model="text-embedding-3-small",
embedding_mode="openai",
# HNSW settings for OpenAI embeddings
M=16, # Smaller graph degree
efConstruction=64, # Smaller construction complexity
is_compact=True, # Enable compact storage for recompute
is_recompute=True, # MUST enable for OpenAI embeddings
M=16, # Smaller graph degree
efConstruction=64, # Smaller construction complexity
is_compact=True, # Enable compact storage for recompute
is_recompute=True, # MUST enable for OpenAI embeddings
num_threads=1,
)
print(f"Adding {len(sample_texts)} texts to the index...")
for i, text in enumerate(sample_texts):
metadata = {"id": f"doc_{i}", "topic": "AI"}
builder.add_text(text, metadata)
print("Building index...")
builder.build_index(INDEX_PATH)
print(f"✅ Index built successfully!")
print("✅ Index built successfully!")
except Exception as e:
print(f"❌ Error building index: {e}")
import traceback
traceback.print_exc()
return False
print(f"\n=== Testing Search ===")
print("\n=== Testing Search ===")
try:
searcher = LeannSearcher(INDEX_PATH)
test_queries = [
"What is machine learning?",
"How do neural networks work?",
"Programming languages for data science"
"Programming languages for data science",
]
for query in test_queries:
print(f"\n🔍 Query: '{query}'")
results = searcher.search(query, top_k=3)
print(f" Found {len(results)} results:")
for i, result in enumerate(results):
print(f" {i+1}. Score: {result.score:.4f}")
print(f" {i + 1}. Score: {result.score:.4f}")
print(f" Text: {result.text[:80]}...")
print(f"\n✅ Search test completed successfully!")
print("\n✅ Search test completed successfully!")
return True
except Exception as e:
print(f"❌ Error during search: {e}")
import traceback
traceback.print_exc()
return False
if __name__ == "__main__":
success = main()
if success:
print(f"\n🎉 Simple OpenAI index test completed successfully!")
print("\n🎉 Simple OpenAI index test completed successfully!")
else:
print(f"\n💥 Simple OpenAI index test failed!")
print("\n💥 Simple OpenAI index test failed!")

View File

@@ -1,18 +1,23 @@
import asyncio
from leann.api import LeannChat
from pathlib import Path
from leann.api import LeannChat
INDEX_DIR = Path("./test_pdf_index_huawei")
INDEX_PATH = str(INDEX_DIR / "pdf_documents.leann")
async def main():
print(f"\n[PHASE 2] Starting Leann chat session...")
print("\n[PHASE 2] Starting Leann chat session...")
chat = LeannChat(index_path=INDEX_PATH)
query = "What is the main idea of RL and give me 5 exapmle of classic RL algorithms?"
query = "Based on the paper, what are the main techniques LEANN explores to reduce the storage overhead and DLPM explore to achieve Fairness and Efiiciency trade-off?"
# query = "什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面任务令一般在什么城市颁发"
response = chat.ask(query,top_k=20,recompute_beighbor_embeddings=True,complexity=32,beam_width=1)
# query = "什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发"
response = chat.ask(
query, top_k=20, recompute_beighbor_embeddings=True, complexity=32, beam_width=1
)
print(f"\n[PHASE 2] Response: {response}")
if __name__ == "__main__":
asyncio.run(main())
asyncio.run(main())

View File

@@ -5,24 +5,21 @@ It correctly compares results by fetching the text content for both the new sear
results and the golden standard results, making the comparison robust to ID changes.
"""
import json
import argparse
import json
import sys
import time
from pathlib import Path
import sys
import numpy as np
from typing import List
from leann.api import LeannSearcher, LeannBuilder
import numpy as np
from leann.api import LeannBuilder, LeannSearcher
def download_data_if_needed(data_root: Path, download_embeddings: bool = False):
"""Checks if the data directory exists, and if not, downloads it from HF Hub."""
if not data_root.exists():
print(f"Data directory '{data_root}' not found.")
print(
"Downloading evaluation data from Hugging Face Hub... (this may take a moment)"
)
print("Downloading evaluation data from Hugging Face Hub... (this may take a moment)")
try:
from huggingface_hub import snapshot_download
@@ -63,7 +60,7 @@ def download_data_if_needed(data_root: Path, download_embeddings: bool = False):
sys.exit(1)
def download_embeddings_if_needed(data_root: Path, dataset_type: str = None):
def download_embeddings_if_needed(data_root: Path, dataset_type: str | None = None):
"""Download embeddings files specifically."""
embeddings_dir = data_root / "embeddings"
@@ -101,7 +98,7 @@ def download_embeddings_if_needed(data_root: Path, dataset_type: str = None):
# --- Helper Function to get Golden Passages ---
def get_golden_texts(searcher: LeannSearcher, golden_ids: List[int]) -> set:
def get_golden_texts(searcher: LeannSearcher, golden_ids: list[int]) -> set:
"""
Retrieves the text for golden passage IDs directly from the LeannSearcher's
passage manager.
@@ -113,24 +110,20 @@ def get_golden_texts(searcher: LeannSearcher, golden_ids: List[int]) -> set:
passage_data = searcher.passage_manager.get_passage(str(gid))
golden_texts.add(passage_data["text"])
except KeyError:
print(
f"Warning: Golden passage ID '{gid}' not found in the index's passage data."
)
print(f"Warning: Golden passage ID '{gid}' not found in the index's passage data.")
return golden_texts
def load_queries(file_path: Path) -> List[str]:
def load_queries(file_path: Path) -> list[str]:
queries = []
with open(file_path, "r", encoding="utf-8") as f:
with open(file_path, encoding="utf-8") as f:
for line in f:
data = json.loads(line)
queries.append(data["query"])
return queries
def build_index_from_embeddings(
embeddings_file: str, output_path: str, backend: str = "hnsw"
):
def build_index_from_embeddings(embeddings_file: str, output_path: str, backend: str = "hnsw"):
"""
Build a LEANN index from pre-computed embeddings.
@@ -173,9 +166,7 @@ def build_index_from_embeddings(
def main():
parser = argparse.ArgumentParser(
description="Run recall evaluation on a LEANN index."
)
parser = argparse.ArgumentParser(description="Run recall evaluation on a LEANN index.")
parser.add_argument(
"index_path",
type=str,
@@ -202,9 +193,7 @@ def main():
parser.add_argument(
"--num-queries", type=int, default=10, help="Number of queries to evaluate."
)
parser.add_argument(
"--top-k", type=int, default=3, help="The 'k' value for recall@k."
)
parser.add_argument("--top-k", type=int, default=3, help="The 'k' value for recall@k.")
parser.add_argument(
"--ef-search", type=int, default=120, help="The 'efSearch' parameter for HNSW."
)
@@ -219,9 +208,7 @@ def main():
# Download data based on mode
if args.mode == "build":
# For building mode, we need embeddings
download_data_if_needed(
data_root, download_embeddings=False
) # Basic data first
download_data_if_needed(data_root, download_embeddings=False) # Basic data first
# Auto-detect dataset type and download embeddings
if args.embeddings_file:
@@ -262,9 +249,7 @@ def main():
print(f"Index built successfully: {built_index_path}")
# Ask if user wants to run evaluation
eval_response = (
input("Run evaluation on the built index? (y/n): ").strip().lower()
)
eval_response = input("Run evaluation on the built index? (y/n): ").strip().lower()
if eval_response != "y":
print("Index building complete. Exiting.")
return
@@ -293,12 +278,8 @@ def main():
break
if not args.index_path:
print(
"No indices found. The data download should have included pre-built indices."
)
print(
"Please check the data/indices/ directory or provide --index-path manually."
)
print("No indices found. The data download should have included pre-built indices.")
print("Please check the data/indices/ directory or provide --index-path manually.")
sys.exit(1)
# Detect dataset type from index path to select the correct ground truth
@@ -310,14 +291,10 @@ def main():
else:
# Fallback: try to infer from the index directory name
dataset_type = Path(args.index_path).name
print(
f"WARNING: Could not detect dataset type from path, inferred '{dataset_type}'."
)
print(f"WARNING: Could not detect dataset type from path, inferred '{dataset_type}'.")
queries_file = data_root / "queries" / "nq_open.jsonl"
golden_results_file = (
data_root / "ground_truth" / dataset_type / "flat_results_nq_k3.json"
)
golden_results_file = data_root / "ground_truth" / dataset_type / "flat_results_nq_k3.json"
print(f"INFO: Detected dataset type: {dataset_type}")
print(f"INFO: Using queries file: {queries_file}")
@@ -327,7 +304,7 @@ def main():
searcher = LeannSearcher(args.index_path)
queries = load_queries(queries_file)
with open(golden_results_file, "r") as f:
with open(golden_results_file) as f:
golden_results_data = json.load(f)
num_eval_queries = min(args.num_queries, len(queries))
@@ -339,9 +316,7 @@ def main():
for i in range(num_eval_queries):
start_time = time.time()
new_results = searcher.search(
queries[i], top_k=args.top_k, ef=args.ef_search
)
new_results = searcher.search(queries[i], top_k=args.top_k, ef=args.ef_search)
search_times.append(time.time() - start_time)
# Correct Recall Calculation: Based on TEXT content

View File

@@ -4,18 +4,25 @@ Run: uv run python examples/simple_demo.py
"""
import argparse
from leann import LeannBuilder, LeannSearcher, LeannChat
from leann import LeannBuilder, LeannChat, LeannSearcher
def main():
parser = argparse.ArgumentParser(description="Simple demo of Leann with selectable embedding models.")
parser.add_argument("--embedding_model", type=str, default="sentence-transformers/all-mpnet-base-v2",
help="The embedding model to use, e.g., 'sentence-transformers/all-mpnet-base-v2' or 'text-embedding-ada-002'.")
parser = argparse.ArgumentParser(
description="Simple demo of Leann with selectable embedding models."
)
parser.add_argument(
"--embedding_model",
type=str,
default="sentence-transformers/all-mpnet-base-v2",
help="The embedding model to use, e.g., 'sentence-transformers/all-mpnet-base-v2' or 'text-embedding-ada-002'.",
)
args = parser.parse_args()
print(f"=== Leann Simple Demo with {args.embedding_model} ===")
print()
# Sample knowledge base
chunks = [
"Machine learning is a subset of artificial intelligence that enables computers to learn without being explicitly programmed.",
@@ -27,7 +34,7 @@ def main():
"Big data refers to extremely large datasets that require special tools and techniques to process.",
"Cloud computing provides on-demand access to computing resources over the internet.",
]
print("1. Building index (no embeddings stored)...")
builder = LeannBuilder(
embedding_model=args.embedding_model,
@@ -37,45 +44,45 @@ def main():
builder.add_text(chunk)
builder.build_index("demo_knowledge.leann")
print()
print("2. Searching with real-time embeddings...")
searcher = LeannSearcher("demo_knowledge.leann")
queries = [
"What is machine learning?",
"How does neural network work?",
"How does neural network work?",
"Tell me about data processing",
]
for query in queries:
print(f"Query: {query}")
results = searcher.search(query, top_k=2)
for i, result in enumerate(results, 1):
print(f" {i}. Score: {result.score:.3f}")
print(f" Text: {result.text[:100]}...")
print()
print("3. Interactive chat demo:")
print(" (Note: Requires OpenAI API key for real responses)")
chat = LeannChat("demo_knowledge.leann")
# Demo questions
demo_questions: list[str] = [
"What is the difference between machine learning and deep learning?",
"How is data science related to big data?",
]
for question in demo_questions:
print(f" Q: {question}")
response = chat.ask(question)
print(f" A: {response}")
print()
print("Demo completed! Try running:")
print(" uv run python examples/document_search.py")
if __name__ == "__main__":
main()
main()

View File

@@ -1,13 +1,11 @@
import os
import asyncio
import dotenv
import argparse
import asyncio
import os
from pathlib import Path
from typing import List, Any, Optional
from leann.api import LeannBuilder, LeannSearcher, LeannChat
import dotenv
from leann.api import LeannBuilder, LeannChat
from llama_index.core.node_parser import SentenceSplitter
import requests
import time
dotenv.load_dotenv()
@@ -16,7 +14,7 @@ DEFAULT_WECHAT_EXPORT_DIR = "./wechat_export_direct"
def create_leann_index_from_multiple_wechat_exports(
export_dirs: List[Path],
export_dirs: list[Path],
index_path: str = "wechat_history_index.leann",
max_count: int = -1,
):
@@ -38,15 +36,13 @@ def create_leann_index_from_multiple_wechat_exports(
INDEX_DIR = Path(index_path).parent
if not INDEX_DIR.exists():
print(f"--- Index directory not found, building new index ---")
print("--- Index directory not found, building new index ---")
all_documents = []
total_processed = 0
# Process each WeChat export directory
for i, export_dir in enumerate(export_dirs):
print(
f"\nProcessing WeChat export {i + 1}/{len(export_dirs)}: {export_dir}"
)
print(f"\nProcessing WeChat export {i + 1}/{len(export_dirs)}: {export_dir}")
try:
documents = reader.load_data(
@@ -86,7 +82,12 @@ def create_leann_index_from_multiple_wechat_exports(
# Split the document into chunks
nodes = text_splitter.get_nodes_from_documents([doc])
for node in nodes:
text = '[Contact] means the message is from: ' + doc.metadata["contact_name"] + '\n' + node.get_content()
text = (
"[Contact] means the message is from: "
+ doc.metadata["contact_name"]
+ "\n"
+ node.get_content()
)
all_texts.append(text)
print(
@@ -94,12 +95,12 @@ def create_leann_index_from_multiple_wechat_exports(
)
# Create LEANN index directory
print(f"--- Index directory not found, building new index ---")
print("--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print(f"--- Building new LEANN index ---")
print("--- Building new LEANN index ---")
print(f"\n[PHASE 1] Building Leann index...")
print("\n[PHASE 1] Building Leann index...")
# Use HNSW backend for better macOS compatibility
builder = LeannBuilder(
@@ -125,7 +126,7 @@ def create_leann_index_from_multiple_wechat_exports(
def create_leann_index(
export_dir: str = None,
export_dir: str | None = None,
index_path: str = "wechat_history_index.leann",
max_count: int = 1000,
):
@@ -141,12 +142,12 @@ def create_leann_index(
INDEX_DIR = Path(index_path).parent
if not INDEX_DIR.exists():
print(f"--- Index directory not found, building new index ---")
print("--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print(f"--- Building new LEANN index ---")
print("--- Building new LEANN index ---")
print(f"\n[PHASE 1] Building Leann index...")
print("\n[PHASE 1] Building Leann index...")
# Load documents using WeChatHistoryReader from history_data
from history_data.wechat_history import WeChatHistoryReader
@@ -179,12 +180,12 @@ def create_leann_index(
print(f"Created {len(all_texts)} text chunks from {len(documents)} documents")
# Create LEANN index directory
print(f"--- Index directory not found, building new index ---")
print("--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print(f"--- Building new LEANN index ---")
print("--- Building new LEANN index ---")
print(f"\n[PHASE 1] Building Leann index...")
print("\n[PHASE 1] Building Leann index...")
# Use HNSW backend for better macOS compatibility
builder = LeannBuilder(
@@ -217,7 +218,7 @@ async def query_leann_index(index_path: str, query: str):
index_path: Path to the LEANN index
query: The query string
"""
print(f"\n[PHASE 2] Starting Leann chat session...")
print("\n[PHASE 2] Starting Leann chat session...")
chat = LeannChat(index_path=index_path)
print(f"You: {query}")
@@ -307,7 +308,7 @@ async def main():
else:
# Example queries
queries = [
"我想买魔术师约翰逊的球衣给我一些对应聊天记录?",
"我想买魔术师约翰逊的球衣,给我一些对应聊天记录?",
]
for query in queries:

View File

@@ -1 +0,0 @@

View File

@@ -1 +1 @@
# This file makes the directory a Python package
# This file makes the directory a Python package

View File

@@ -1 +1 @@
from . import diskann_backend
from . import diskann_backend as diskann_backend

View File

@@ -1,20 +1,19 @@
import numpy as np
import contextlib
import logging
import os
import struct
import sys
from pathlib import Path
from typing import Dict, Any, List, Literal, Optional
import contextlib
from typing import Any, Literal
import logging
from leann.searcher_base import BaseSearcher
from leann.registry import register_backend
import numpy as np
from leann.interface import (
LeannBackendFactoryInterface,
LeannBackendBuilderInterface,
LeannBackendFactoryInterface,
LeannBackendSearcherInterface,
)
from leann.registry import register_backend
from leann.searcher_base import BaseSearcher
logger = logging.getLogger(__name__)
@@ -100,7 +99,7 @@ class DiskannBuilder(LeannBackendBuilderInterface):
def __init__(self, **kwargs):
self.build_params = kwargs
def build(self, data: np.ndarray, ids: List[str], index_path: str, **kwargs):
def build(self, data: np.ndarray, ids: list[str], index_path: str, **kwargs):
path = Path(index_path)
index_dir = path.parent
index_prefix = path.stem
@@ -164,18 +163,44 @@ class DiskannSearcher(BaseSearcher):
self.num_threads = kwargs.get("num_threads", 8)
fake_zmq_port = 6666
# For DiskANN, we need to reinitialize the index when zmq_port changes
# Store the initialization parameters for later use
full_index_prefix = str(self.index_dir / self.index_path.stem)
self._index = diskannpy.StaticDiskFloatIndex(
metric_enum,
full_index_prefix,
self.num_threads,
kwargs.get("num_nodes_to_cache", 0),
1,
fake_zmq_port, # Initial port, can be updated at runtime
"",
"",
)
self._init_params = {
"metric_enum": metric_enum,
"full_index_prefix": full_index_prefix,
"num_threads": self.num_threads,
"num_nodes_to_cache": kwargs.get("num_nodes_to_cache", 0),
"cache_mechanism": 1,
"pq_prefix": "",
"partition_prefix": "",
}
self._diskannpy = diskannpy
self._current_zmq_port = None
self._index = None
logger.debug("DiskANN searcher initialized (index will be loaded on first search)")
def _ensure_index_loaded(self, zmq_port: int):
"""Ensure the index is loaded with the correct zmq_port."""
if self._index is None or self._current_zmq_port != zmq_port:
# Need to (re)load the index with the correct zmq_port
with suppress_cpp_output_if_needed():
if self._index is not None:
logger.debug(f"Reloading DiskANN index with new zmq_port: {zmq_port}")
else:
logger.debug(f"Loading DiskANN index with zmq_port: {zmq_port}")
self._index = self._diskannpy.StaticDiskFloatIndex(
self._init_params["metric_enum"],
self._init_params["full_index_prefix"],
self._init_params["num_threads"],
self._init_params["num_nodes_to_cache"],
self._init_params["cache_mechanism"],
zmq_port,
self._init_params["pq_prefix"],
self._init_params["partition_prefix"],
)
self._current_zmq_port = zmq_port
def search(
self,
@@ -186,11 +211,11 @@ class DiskannSearcher(BaseSearcher):
prune_ratio: float = 0.0,
recompute_embeddings: bool = False,
pruning_strategy: Literal["global", "local", "proportional"] = "global",
zmq_port: Optional[int] = None,
zmq_port: int | None = None,
batch_recompute: bool = False,
dedup_node_dis: bool = False,
**kwargs,
) -> Dict[str, Any]:
) -> dict[str, Any]:
"""
Search for nearest neighbors using DiskANN index.
@@ -213,18 +238,15 @@ class DiskannSearcher(BaseSearcher):
Returns:
Dict with 'labels' (list of lists) and 'distances' (ndarray)
"""
# Handle zmq_port compatibility: DiskANN can now update port at runtime
# Handle zmq_port compatibility: Ensure index is loaded with correct port
if recompute_embeddings:
if zmq_port is None:
raise ValueError(
"zmq_port must be provided if recompute_embeddings is True"
)
current_port = self._index.get_zmq_port()
if zmq_port != current_port:
logger.debug(
f"Updating DiskANN zmq_port from {current_port} to {zmq_port}"
)
self._index.set_zmq_port(zmq_port)
raise ValueError("zmq_port must be provided if recompute_embeddings is True")
self._ensure_index_loaded(zmq_port)
else:
# If not recomputing, we still need an index, use a default port
if self._index is None:
self._ensure_index_loaded(6666) # Default port when not recomputing
# DiskANN doesn't support "proportional" strategy
if pruning_strategy == "proportional":
@@ -259,8 +281,6 @@ class DiskannSearcher(BaseSearcher):
use_global_pruning,
)
string_labels = [
[str(int_label) for int_label in batch_labels] for batch_labels in labels
]
string_labels = [[str(int_label) for int_label in batch_labels] for batch_labels in labels]
return {"labels": string_labels, "distances": distances}

View File

@@ -3,16 +3,16 @@ DiskANN-specific embedding server
"""
import argparse
import json
import logging
import os
import sys
import threading
import time
import os
import zmq
import numpy as np
import json
from pathlib import Path
from typing import Optional
import sys
import logging
import numpy as np
import zmq
# Set up logging based on environment variable
LOG_LEVEL = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
@@ -32,10 +32,11 @@ if not logger.handlers:
def create_diskann_embedding_server(
passages_file: Optional[str] = None,
passages_file: str | None = None,
zmq_port: int = 5555,
model_name: str = "sentence-transformers/all-mpnet-base-v2",
embedding_mode: str = "sentence-transformers",
distance_metric: str = "l2",
):
"""
Create and start a ZMQ-based embedding server for DiskANN backend.
@@ -50,8 +51,8 @@ def create_diskann_embedding_server(
sys.path.insert(0, str(leann_core_path))
try:
from leann.embedding_compute import compute_embeddings
from leann.api import PassageManager
from leann.embedding_compute import compute_embeddings
logger.info("Successfully imported unified embedding computation module")
except ImportError as e:
@@ -76,7 +77,7 @@ def create_diskann_embedding_server(
raise ValueError("Only metadata files (.meta.json) are supported")
# Load metadata to get passage sources
with open(passages_file, "r") as f:
with open(passages_file) as f:
meta = json.load(f)
passages = PassageManager(meta["passage_sources"])
@@ -150,9 +151,7 @@ def create_diskann_embedding_server(
):
texts = request
is_text_request = True
logger.info(
f"✅ MSGPACK: Direct text request for {len(texts)} texts"
)
logger.info(f"✅ MSGPACK: Direct text request for {len(texts)} texts")
else:
raise ValueError("Not a valid msgpack text request")
except Exception as msgpack_error:
@@ -167,9 +166,7 @@ def create_diskann_embedding_server(
passage_data = passages.get_passage(str(nid))
txt = passage_data["text"]
if not txt:
raise RuntimeError(
f"FATAL: Empty text for passage ID {nid}"
)
raise RuntimeError(f"FATAL: Empty text for passage ID {nid}")
texts.append(txt)
except KeyError as e:
logger.error(f"Passage ID {nid} not found: {e}")
@@ -180,9 +177,7 @@ def create_diskann_embedding_server(
# Debug logging
logger.debug(f"Processing {len(texts)} texts")
logger.debug(
f"Text lengths: {[len(t) for t in texts[:5]]}"
) # Show first 5
logger.debug(f"Text lengths: {[len(t) for t in texts[:5]]}") # Show first 5
# Process embeddings using unified computation
embeddings = compute_embeddings(texts, model_name, mode=embedding_mode)
@@ -199,9 +194,7 @@ def create_diskann_embedding_server(
else:
# For DiskANN C++ compatibility: return protobuf format
resp_proto = embedding_pb2.NodeEmbeddingResponse()
hidden_contiguous = np.ascontiguousarray(
embeddings, dtype=np.float32
)
hidden_contiguous = np.ascontiguousarray(embeddings, dtype=np.float32)
# Serialize embeddings data
resp_proto.embeddings_data = hidden_contiguous.tobytes()
@@ -271,6 +264,13 @@ if __name__ == "__main__":
choices=["sentence-transformers", "openai", "mlx"],
help="Embedding backend mode",
)
parser.add_argument(
"--distance-metric",
type=str,
default="l2",
choices=["l2", "mips", "cosine"],
help="Distance metric for similarity computation",
)
args = parser.parse_args()
@@ -280,4 +280,5 @@ if __name__ == "__main__":
zmq_port=args.zmq_port,
model_name=args.model_name,
embedding_mode=args.embedding_mode,
distance_metric=args.distance_metric,
)

View File

@@ -1,27 +1,28 @@
# -*- coding: utf-8 -*-
# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: embedding.proto
# ruff: noqa
"""Generated protocol buffer code."""
from google.protobuf.internal import builder as _builder
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
_sym_db = _symbol_database.Default()
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x0f\x65mbedding.proto\x12\x0eprotoembedding\"(\n\x14NodeEmbeddingRequest\x12\x10\n\x08node_ids\x18\x01 \x03(\r\"Y\n\x15NodeEmbeddingResponse\x12\x17\n\x0f\x65mbeddings_data\x18\x01 \x01(\x0c\x12\x12\n\ndimensions\x18\x02 \x03(\x05\x12\x13\n\x0bmissing_ids\x18\x03 \x03(\rb\x06proto3')
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(
b'\n\x0f\x65mbedding.proto\x12\x0eprotoembedding"(\n\x14NodeEmbeddingRequest\x12\x10\n\x08node_ids\x18\x01 \x03(\r"Y\n\x15NodeEmbeddingResponse\x12\x17\n\x0f\x65mbeddings_data\x18\x01 \x01(\x0c\x12\x12\n\ndimensions\x18\x02 \x03(\x05\x12\x13\n\x0bmissing_ids\x18\x03 \x03(\rb\x06proto3'
)
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, globals())
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'embedding_pb2', globals())
if _descriptor._USE_C_DESCRIPTORS == False:
DESCRIPTOR._options = None
_NODEEMBEDDINGREQUEST._serialized_start=35
_NODEEMBEDDINGREQUEST._serialized_end=75
_NODEEMBEDDINGRESPONSE._serialized_start=77
_NODEEMBEDDINGRESPONSE._serialized_end=166
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "embedding_pb2", globals())
if not _descriptor._USE_C_DESCRIPTORS:
DESCRIPTOR._options = None
_NODEEMBEDDINGREQUEST._serialized_start = 35
_NODEEMBEDDINGREQUEST._serialized_end = 75
_NODEEMBEDDINGRESPONSE._serialized_start = 77
_NODEEMBEDDINGRESPONSE._serialized_end = 166
# @@protoc_insertion_point(module_scope)

View File

@@ -4,8 +4,8 @@ build-backend = "scikit_build_core.build"
[project]
name = "leann-backend-diskann"
version = "0.1.9"
dependencies = ["leann-core==0.1.9", "numpy"]
version = "0.1.16"
dependencies = ["leann-core==0.1.16", "numpy", "protobuf>=3.19.0"]
[tool.scikit-build]
# Key: simplified CMake path
@@ -16,4 +16,4 @@ wheel.packages = ["leann_backend_diskann"]
editable.mode = "redirect"
cmake.build-type = "Release"
build.verbose = true
build.tool-args = ["-j8"]
build.tool-args = ["-j8"]

View File

@@ -2,12 +2,12 @@ syntax = "proto3";
package protoembedding;
message NodeEmbeddingRequest {
repeated uint32 node_ids = 1;
message NodeEmbeddingRequest {
repeated uint32 node_ids = 1;
}
message NodeEmbeddingResponse {
bytes embeddings_data = 1; // All embedded binary datas
repeated int32 dimensions = 2; // Shape [batch_size, embedding_dim]
repeated uint32 missing_ids = 3; // Missing node ids
}
}

View File

@@ -10,6 +10,14 @@ if(APPLE)
set(OpenMP_C_LIB_NAMES "omp")
set(OpenMP_CXX_LIB_NAMES "omp")
set(OpenMP_omp_LIBRARY "/opt/homebrew/opt/libomp/lib/libomp.dylib")
# Force use of system libc++ to avoid version mismatch
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -stdlib=libc++")
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -stdlib=libc++")
set(CMAKE_SHARED_LINKER_FLAGS "${CMAKE_SHARED_LINKER_FLAGS} -stdlib=libc++")
# Set minimum macOS version for better compatibility
set(CMAKE_OSX_DEPLOYMENT_TARGET "11.0" CACHE STRING "Minimum macOS version")
endif()
# Use system ZeroMQ instead of building from source
@@ -52,4 +60,4 @@ set(FAISS_BUILD_AVX512 OFF CACHE BOOL "" FORCE)
# IMPORTANT: Disable building AVX versions to speed up compilation
set(FAISS_BUILD_AVX_VERSIONS OFF CACHE BOOL "" FORCE)
add_subdirectory(third_party/faiss)
add_subdirectory(third_party/faiss)

View File

@@ -1 +1 @@
from . import hnsw_backend
from . import hnsw_backend as hnsw_backend

View File

@@ -1,87 +1,115 @@
import argparse
import gc # Import garbage collector interface
import os
import struct
import sys
import numpy as np
import os
import argparse
import gc # Import garbage collector interface
import time
import numpy as np
# --- FourCCs (add more if needed) ---
INDEX_HNSW_FLAT_FOURCC = int.from_bytes(b'IHNf', 'little')
INDEX_HNSW_FLAT_FOURCC = int.from_bytes(b"IHNf", "little")
# Add other HNSW fourccs if you expect different storage types inside HNSW
# INDEX_HNSW_PQ_FOURCC = int.from_bytes(b'IHNp', 'little')
# INDEX_HNSW_SQ_FOURCC = int.from_bytes(b'IHNs', 'little')
# INDEX_HNSW_CAGRA_FOURCC = int.from_bytes(b'IHNc', 'little') # Example
EXPECTED_HNSW_FOURCCS = {INDEX_HNSW_FLAT_FOURCC} # Modify if needed
NULL_INDEX_FOURCC = int.from_bytes(b'null', 'little')
EXPECTED_HNSW_FOURCCS = {INDEX_HNSW_FLAT_FOURCC} # Modify if needed
NULL_INDEX_FOURCC = int.from_bytes(b"null", "little")
# --- Helper functions for reading/writing binary data ---
def read_struct(f, fmt):
"""Reads data according to the struct format."""
size = struct.calcsize(fmt)
data = f.read(size)
if len(data) != size:
raise EOFError(f"File ended unexpectedly reading struct fmt '{fmt}'. Expected {size} bytes, got {len(data)}.")
raise EOFError(
f"File ended unexpectedly reading struct fmt '{fmt}'. Expected {size} bytes, got {len(data)}."
)
return struct.unpack(fmt, data)[0]
def read_vector_raw(f, element_fmt_char):
"""Reads a vector (size followed by data), returns count and raw bytes."""
count = -1 # Initialize count
total_bytes = -1 # Initialize total_bytes
count = -1 # Initialize count
total_bytes = -1 # Initialize total_bytes
try:
count = read_struct(f, '<Q') # size_t usually 64-bit unsigned
count = read_struct(f, "<Q") # size_t usually 64-bit unsigned
element_size = struct.calcsize(element_fmt_char)
# --- FIX for MemoryError: Check for unreasonably large count ---
max_reasonable_count = 10 * (10**9) # ~10 billion elements limit
max_reasonable_count = 10 * (10**9) # ~10 billion elements limit
if count > max_reasonable_count or count < 0:
raise MemoryError(f"Vector count {count} seems unreasonably large, possibly due to file corruption or incorrect format read.")
raise MemoryError(
f"Vector count {count} seems unreasonably large, possibly due to file corruption or incorrect format read."
)
total_bytes = count * element_size
# --- FIX for MemoryError: Check for huge byte size before allocation ---
max_reasonable_bytes = 50 * (1024**3) # ~50 GB limit
if total_bytes > max_reasonable_bytes or total_bytes < 0: # Check for overflow
raise MemoryError(f"Attempting to read {total_bytes} bytes ({count} elements * {element_size} bytes/element), which exceeds the safety limit. File might be corrupted or format mismatch.")
max_reasonable_bytes = 50 * (1024**3) # ~50 GB limit
if total_bytes > max_reasonable_bytes or total_bytes < 0: # Check for overflow
raise MemoryError(
f"Attempting to read {total_bytes} bytes ({count} elements * {element_size} bytes/element), which exceeds the safety limit. File might be corrupted or format mismatch."
)
data_bytes = f.read(total_bytes)
if len(data_bytes) != total_bytes:
raise EOFError(f"File ended unexpectedly reading vector data. Expected {total_bytes} bytes, got {len(data_bytes)}.")
raise EOFError(
f"File ended unexpectedly reading vector data. Expected {total_bytes} bytes, got {len(data_bytes)}."
)
return count, data_bytes
except (MemoryError, OverflowError) as e:
# Add context to the error message
print(f"\nError during raw vector read (element_fmt='{element_fmt_char}', count={count}, total_bytes={total_bytes}): {e}", file=sys.stderr)
raise e # Re-raise the original error type
# Add context to the error message
print(
f"\nError during raw vector read (element_fmt='{element_fmt_char}', count={count}, total_bytes={total_bytes}): {e}",
file=sys.stderr,
)
raise e # Re-raise the original error type
def read_numpy_vector(f, np_dtype, struct_fmt_char):
"""Reads a vector into a NumPy array."""
count = -1 # Initialize count for robust error handling
print(f" Reading vector (dtype={np_dtype}, fmt='{struct_fmt_char}')... ", end='', flush=True)
count = -1 # Initialize count for robust error handling
print(
f" Reading vector (dtype={np_dtype}, fmt='{struct_fmt_char}')... ",
end="",
flush=True,
)
try:
count, data_bytes = read_vector_raw(f, struct_fmt_char)
print(f"Count={count}, Bytes={len(data_bytes)}")
if count > 0 and len(data_bytes) > 0:
arr = np.frombuffer(data_bytes, dtype=np_dtype)
if arr.size != count:
raise ValueError(f"Inconsistent array size after reading. Expected {count}, got {arr.size}")
raise ValueError(
f"Inconsistent array size after reading. Expected {count}, got {arr.size}"
)
return arr
elif count == 0:
return np.array([], dtype=np_dtype)
return np.array([], dtype=np_dtype)
else:
raise ValueError("Read zero bytes but count > 0.")
raise ValueError("Read zero bytes but count > 0.")
except MemoryError as e:
# Now count should be defined (or -1 if error was in read_struct)
print(f"\nMemoryError creating NumPy array (dtype={np_dtype}, count={count}). {e}", file=sys.stderr)
print(
f"\nMemoryError creating NumPy array (dtype={np_dtype}, count={count}). {e}",
file=sys.stderr,
)
raise e
except Exception as e: # Catch other potential errors like ValueError
print(f"\nError reading numpy vector (dtype={np_dtype}, fmt='{struct_fmt_char}', count={count}): {e}", file=sys.stderr)
except Exception as e: # Catch other potential errors like ValueError
print(
f"\nError reading numpy vector (dtype={np_dtype}, fmt='{struct_fmt_char}', count={count}): {e}",
file=sys.stderr,
)
raise e
def write_numpy_vector(f, arr, struct_fmt_char):
"""Writes a NumPy array as a vector (size followed by data)."""
count = arr.size
f.write(struct.pack('<Q', count))
f.write(struct.pack("<Q", count))
try:
expected_dtype = np.dtype(struct_fmt_char)
if arr.dtype != expected_dtype:
@@ -89,23 +117,30 @@ def write_numpy_vector(f, arr, struct_fmt_char):
else:
data_to_write = arr.tobytes()
f.write(data_to_write)
del data_to_write # Hint GC
del data_to_write # Hint GC
except MemoryError as e:
print(f"\nMemoryError converting NumPy array to bytes for writing (size={count}, dtype={arr.dtype}). {e}", file=sys.stderr)
raise e
print(
f"\nMemoryError converting NumPy array to bytes for writing (size={count}, dtype={arr.dtype}). {e}",
file=sys.stderr,
)
raise e
def write_list_vector(f, lst, struct_fmt_char):
"""Writes a Python list as a vector iteratively."""
count = len(lst)
f.write(struct.pack('<Q', count))
fmt = '<' + struct_fmt_char
f.write(struct.pack("<Q", count))
fmt = "<" + struct_fmt_char
chunk_size = 1024 * 1024
element_size = struct.calcsize(fmt)
# Allocate buffer outside the loop if possible, or handle MemoryError during allocation
try:
buffer = bytearray(chunk_size * element_size)
except MemoryError:
print(f"MemoryError: Cannot allocate buffer for writing list vector chunk (size {chunk_size * element_size} bytes).", file=sys.stderr)
print(
f"MemoryError: Cannot allocate buffer for writing list vector chunk (size {chunk_size * element_size} bytes).",
file=sys.stderr,
)
raise
buffer_count = 0
@@ -116,66 +151,80 @@ def write_list_vector(f, lst, struct_fmt_char):
buffer_count += 1
if buffer_count == chunk_size or i == count - 1:
f.write(buffer[:buffer_count * element_size])
f.write(buffer[: buffer_count * element_size])
buffer_count = 0
except struct.error as e:
print(f"\nStruct packing error for item {item} at index {i} with format '{fmt}'. {e}", file=sys.stderr)
print(
f"\nStruct packing error for item {item} at index {i} with format '{fmt}'. {e}",
file=sys.stderr,
)
raise e
def get_cum_neighbors(cum_nneighbor_per_level_np, level):
"""Helper to get cumulative neighbors count, matching C++ logic."""
if level < 0: return 0
if level < 0:
return 0
if level < len(cum_nneighbor_per_level_np):
return cum_nneighbor_per_level_np[level]
else:
return cum_nneighbor_per_level_np[-1] if len(cum_nneighbor_per_level_np) > 0 else 0
def write_compact_format(f_out, original_hnsw_data, assign_probas_np, cum_nneighbor_per_level_np,
levels_np, compact_level_ptr, compact_node_offsets_np,
compact_neighbors_data, storage_fourcc, storage_data):
def write_compact_format(
f_out,
original_hnsw_data,
assign_probas_np,
cum_nneighbor_per_level_np,
levels_np,
compact_level_ptr,
compact_node_offsets_np,
compact_neighbors_data,
storage_fourcc,
storage_data,
):
"""Write HNSW data in compact format following C++ read order exactly."""
# Write IndexHNSW Header
f_out.write(struct.pack('<I', original_hnsw_data['index_fourcc']))
f_out.write(struct.pack('<i', original_hnsw_data['d']))
f_out.write(struct.pack('<q', original_hnsw_data['ntotal']))
f_out.write(struct.pack('<q', original_hnsw_data['dummy1']))
f_out.write(struct.pack('<q', original_hnsw_data['dummy2']))
f_out.write(struct.pack('<?', original_hnsw_data['is_trained']))
f_out.write(struct.pack('<i', original_hnsw_data['metric_type']))
if original_hnsw_data['metric_type'] > 1:
f_out.write(struct.pack('<f', original_hnsw_data['metric_arg']))
f_out.write(struct.pack("<I", original_hnsw_data["index_fourcc"]))
f_out.write(struct.pack("<i", original_hnsw_data["d"]))
f_out.write(struct.pack("<q", original_hnsw_data["ntotal"]))
f_out.write(struct.pack("<q", original_hnsw_data["dummy1"]))
f_out.write(struct.pack("<q", original_hnsw_data["dummy2"]))
f_out.write(struct.pack("<?", original_hnsw_data["is_trained"]))
f_out.write(struct.pack("<i", original_hnsw_data["metric_type"]))
if original_hnsw_data["metric_type"] > 1:
f_out.write(struct.pack("<f", original_hnsw_data["metric_arg"]))
# Write HNSW struct parts (standard order)
write_numpy_vector(f_out, assign_probas_np, 'd')
write_numpy_vector(f_out, cum_nneighbor_per_level_np, 'i')
write_numpy_vector(f_out, levels_np, 'i')
write_numpy_vector(f_out, assign_probas_np, "d")
write_numpy_vector(f_out, cum_nneighbor_per_level_np, "i")
write_numpy_vector(f_out, levels_np, "i")
# Write compact format flag
f_out.write(struct.pack('<?', True)) # storage_is_compact = True
f_out.write(struct.pack("<?", True)) # storage_is_compact = True
# Write compact data in CORRECT C++ read order: level_ptr, node_offsets FIRST
if isinstance(compact_level_ptr, np.ndarray):
write_numpy_vector(f_out, compact_level_ptr, 'Q')
write_numpy_vector(f_out, compact_level_ptr, "Q")
else:
write_list_vector(f_out, compact_level_ptr, 'Q')
write_numpy_vector(f_out, compact_node_offsets_np, 'Q')
write_list_vector(f_out, compact_level_ptr, "Q")
write_numpy_vector(f_out, compact_node_offsets_np, "Q")
# Write HNSW scalar parameters
f_out.write(struct.pack('<i', original_hnsw_data['entry_point']))
f_out.write(struct.pack('<i', original_hnsw_data['max_level']))
f_out.write(struct.pack('<i', original_hnsw_data['efConstruction']))
f_out.write(struct.pack('<i', original_hnsw_data['efSearch']))
f_out.write(struct.pack('<i', original_hnsw_data['dummy_upper_beam']))
f_out.write(struct.pack("<i", original_hnsw_data["entry_point"]))
f_out.write(struct.pack("<i", original_hnsw_data["max_level"]))
f_out.write(struct.pack("<i", original_hnsw_data["efConstruction"]))
f_out.write(struct.pack("<i", original_hnsw_data["efSearch"]))
f_out.write(struct.pack("<i", original_hnsw_data["dummy_upper_beam"]))
# Write storage fourcc (this determines how to read what follows)
f_out.write(struct.pack('<I', storage_fourcc))
f_out.write(struct.pack("<I", storage_fourcc))
# Write compact neighbors data AFTER storage fourcc
write_list_vector(f_out, compact_neighbors_data, 'i')
write_list_vector(f_out, compact_neighbors_data, "i")
# Write storage data if not NULL (only after neighbors)
if storage_fourcc != NULL_INDEX_FOURCC and storage_data:
f_out.write(storage_data)
@@ -183,11 +232,12 @@ def write_compact_format(f_out, original_hnsw_data, assign_probas_np, cum_nneigh
# --- Main Conversion Logic ---
def convert_hnsw_graph_to_csr(input_filename, output_filename, prune_embeddings=True):
"""
Converts an HNSW graph file to the CSR format.
Supports both original and already-compact formats (backward compatibility).
Args:
input_filename: Input HNSW index file
output_filename: Output CSR index file
@@ -196,172 +246,228 @@ def convert_hnsw_graph_to_csr(input_filename, output_filename, prune_embeddings=
print(f"Starting conversion: {input_filename} -> {output_filename}")
start_time = time.time()
original_hnsw_data = {}
neighbors_np = None # Initialize to allow check in finally block
neighbors_np = None # Initialize to allow check in finally block
try:
with open(input_filename, 'rb') as f_in, open(output_filename, 'wb') as f_out:
with open(input_filename, "rb") as f_in, open(output_filename, "wb") as f_out:
# --- Read IndexHNSW FourCC and Header ---
print(f"[{time.time() - start_time:.2f}s] Reading Index HNSW header...")
# ... (Keep the header reading logic as before) ...
hnsw_index_fourcc = read_struct(f_in, '<I')
hnsw_index_fourcc = read_struct(f_in, "<I")
if hnsw_index_fourcc not in EXPECTED_HNSW_FOURCCS:
print(f"Error: Expected HNSW Index FourCC ({list(EXPECTED_HNSW_FOURCCS)}), got {hnsw_index_fourcc:08x}.", file=sys.stderr)
return False
original_hnsw_data['index_fourcc'] = hnsw_index_fourcc
original_hnsw_data['d'] = read_struct(f_in, '<i')
original_hnsw_data['ntotal'] = read_struct(f_in, '<q')
original_hnsw_data['dummy1'] = read_struct(f_in, '<q')
original_hnsw_data['dummy2'] = read_struct(f_in, '<q')
original_hnsw_data['is_trained'] = read_struct(f_in, '?')
original_hnsw_data['metric_type'] = read_struct(f_in, '<i')
original_hnsw_data['metric_arg'] = 0.0
if original_hnsw_data['metric_type'] > 1:
original_hnsw_data['metric_arg'] = read_struct(f_in, '<f')
print(f"[{time.time() - start_time:.2f}s] Header read: d={original_hnsw_data['d']}, ntotal={original_hnsw_data['ntotal']}")
print(
f"Error: Expected HNSW Index FourCC ({list(EXPECTED_HNSW_FOURCCS)}), got {hnsw_index_fourcc:08x}.",
file=sys.stderr,
)
return False
original_hnsw_data["index_fourcc"] = hnsw_index_fourcc
original_hnsw_data["d"] = read_struct(f_in, "<i")
original_hnsw_data["ntotal"] = read_struct(f_in, "<q")
original_hnsw_data["dummy1"] = read_struct(f_in, "<q")
original_hnsw_data["dummy2"] = read_struct(f_in, "<q")
original_hnsw_data["is_trained"] = read_struct(f_in, "?")
original_hnsw_data["metric_type"] = read_struct(f_in, "<i")
original_hnsw_data["metric_arg"] = 0.0
if original_hnsw_data["metric_type"] > 1:
original_hnsw_data["metric_arg"] = read_struct(f_in, "<f")
print(
f"[{time.time() - start_time:.2f}s] Header read: d={original_hnsw_data['d']}, ntotal={original_hnsw_data['ntotal']}"
)
# --- Read original HNSW struct data ---
print(f"[{time.time() - start_time:.2f}s] Reading HNSW struct vectors...")
assign_probas_np = read_numpy_vector(f_in, np.float64, 'd')
print(f"[{time.time() - start_time:.2f}s] Read assign_probas ({assign_probas_np.size})")
assign_probas_np = read_numpy_vector(f_in, np.float64, "d")
print(
f"[{time.time() - start_time:.2f}s] Read assign_probas ({assign_probas_np.size})"
)
gc.collect()
cum_nneighbor_per_level_np = read_numpy_vector(f_in, np.int32, 'i')
print(f"[{time.time() - start_time:.2f}s] Read cum_nneighbor_per_level ({cum_nneighbor_per_level_np.size})")
cum_nneighbor_per_level_np = read_numpy_vector(f_in, np.int32, "i")
print(
f"[{time.time() - start_time:.2f}s] Read cum_nneighbor_per_level ({cum_nneighbor_per_level_np.size})"
)
gc.collect()
levels_np = read_numpy_vector(f_in, np.int32, 'i')
levels_np = read_numpy_vector(f_in, np.int32, "i")
print(f"[{time.time() - start_time:.2f}s] Read levels ({levels_np.size})")
gc.collect()
ntotal = len(levels_np)
if ntotal != original_hnsw_data['ntotal']:
print(f"Warning: ntotal mismatch! Header says {original_hnsw_data['ntotal']}, levels vector size is {ntotal}. Using levels vector size.", file=sys.stderr)
original_hnsw_data['ntotal'] = ntotal
if ntotal != original_hnsw_data["ntotal"]:
print(
f"Warning: ntotal mismatch! Header says {original_hnsw_data['ntotal']}, levels vector size is {ntotal}. Using levels vector size.",
file=sys.stderr,
)
original_hnsw_data["ntotal"] = ntotal
# --- Check for compact format flag ---
print(f"[{time.time() - start_time:.2f}s] Probing for compact storage flag...")
pos_before_compact = f_in.tell()
try:
is_compact_flag = read_struct(f_in, '<?')
is_compact_flag = read_struct(f_in, "<?")
print(f"[{time.time() - start_time:.2f}s] Found compact flag: {is_compact_flag}")
if is_compact_flag:
# Input is already in compact format - read compact data
print(f"[{time.time() - start_time:.2f}s] Input is already in compact format, reading compact data...")
compact_level_ptr = read_numpy_vector(f_in, np.uint64, 'Q')
print(f"[{time.time() - start_time:.2f}s] Read compact_level_ptr ({compact_level_ptr.size})")
compact_node_offsets_np = read_numpy_vector(f_in, np.uint64, 'Q')
print(f"[{time.time() - start_time:.2f}s] Read compact_node_offsets ({compact_node_offsets_np.size})")
print(
f"[{time.time() - start_time:.2f}s] Input is already in compact format, reading compact data..."
)
compact_level_ptr = read_numpy_vector(f_in, np.uint64, "Q")
print(
f"[{time.time() - start_time:.2f}s] Read compact_level_ptr ({compact_level_ptr.size})"
)
compact_node_offsets_np = read_numpy_vector(f_in, np.uint64, "Q")
print(
f"[{time.time() - start_time:.2f}s] Read compact_node_offsets ({compact_node_offsets_np.size})"
)
# Read scalar parameters
original_hnsw_data['entry_point'] = read_struct(f_in, '<i')
original_hnsw_data['max_level'] = read_struct(f_in, '<i')
original_hnsw_data['efConstruction'] = read_struct(f_in, '<i')
original_hnsw_data['efSearch'] = read_struct(f_in, '<i')
original_hnsw_data['dummy_upper_beam'] = read_struct(f_in, '<i')
print(f"[{time.time() - start_time:.2f}s] Read scalar params (ep={original_hnsw_data['entry_point']}, max_lvl={original_hnsw_data['max_level']})")
original_hnsw_data["entry_point"] = read_struct(f_in, "<i")
original_hnsw_data["max_level"] = read_struct(f_in, "<i")
original_hnsw_data["efConstruction"] = read_struct(f_in, "<i")
original_hnsw_data["efSearch"] = read_struct(f_in, "<i")
original_hnsw_data["dummy_upper_beam"] = read_struct(f_in, "<i")
print(
f"[{time.time() - start_time:.2f}s] Read scalar params (ep={original_hnsw_data['entry_point']}, max_lvl={original_hnsw_data['max_level']})"
)
# Read storage fourcc
storage_fourcc = read_struct(f_in, '<I')
print(f"[{time.time() - start_time:.2f}s] Found storage fourcc: {storage_fourcc:08x}")
storage_fourcc = read_struct(f_in, "<I")
print(
f"[{time.time() - start_time:.2f}s] Found storage fourcc: {storage_fourcc:08x}"
)
if prune_embeddings and storage_fourcc != NULL_INDEX_FOURCC:
# Read compact neighbors data
compact_neighbors_data_np = read_numpy_vector(f_in, np.int32, 'i')
print(f"[{time.time() - start_time:.2f}s] Read compact neighbors data ({compact_neighbors_data_np.size})")
compact_neighbors_data_np = read_numpy_vector(f_in, np.int32, "i")
print(
f"[{time.time() - start_time:.2f}s] Read compact neighbors data ({compact_neighbors_data_np.size})"
)
compact_neighbors_data = compact_neighbors_data_np.tolist()
del compact_neighbors_data_np
# Skip storage data and write with NULL marker
print(f"[{time.time() - start_time:.2f}s] Pruning embeddings: Writing NULL storage marker.")
print(
f"[{time.time() - start_time:.2f}s] Pruning embeddings: Writing NULL storage marker."
)
storage_fourcc = NULL_INDEX_FOURCC
elif not prune_embeddings:
# Read and preserve compact neighbors and storage
compact_neighbors_data_np = read_numpy_vector(f_in, np.int32, 'i')
compact_neighbors_data_np = read_numpy_vector(f_in, np.int32, "i")
compact_neighbors_data = compact_neighbors_data_np.tolist()
del compact_neighbors_data_np
# Read remaining storage data
storage_data = f_in.read()
else:
# Already pruned (NULL storage)
compact_neighbors_data_np = read_numpy_vector(f_in, np.int32, 'i')
compact_neighbors_data_np = read_numpy_vector(f_in, np.int32, "i")
compact_neighbors_data = compact_neighbors_data_np.tolist()
del compact_neighbors_data_np
storage_data = b''
storage_data = b""
# Write the updated compact format
print(f"[{time.time() - start_time:.2f}s] Writing updated compact format...")
write_compact_format(f_out, original_hnsw_data, assign_probas_np, cum_nneighbor_per_level_np,
levels_np, compact_level_ptr, compact_node_offsets_np,
compact_neighbors_data, storage_fourcc, storage_data if not prune_embeddings else b'')
write_compact_format(
f_out,
original_hnsw_data,
assign_probas_np,
cum_nneighbor_per_level_np,
levels_np,
compact_level_ptr,
compact_node_offsets_np,
compact_neighbors_data,
storage_fourcc,
storage_data if not prune_embeddings else b"",
)
print(f"[{time.time() - start_time:.2f}s] Conversion complete.")
return True
else:
# is_compact=False, rewind and read original format
f_in.seek(pos_before_compact)
print(f"[{time.time() - start_time:.2f}s] Compact flag is False, reading original format...")
print(
f"[{time.time() - start_time:.2f}s] Compact flag is False, reading original format..."
)
except EOFError:
# No compact flag found, assume original format
f_in.seek(pos_before_compact)
print(f"[{time.time() - start_time:.2f}s] No compact flag found, assuming original format...")
print(
f"[{time.time() - start_time:.2f}s] No compact flag found, assuming original format..."
)
# --- Handle potential extra byte in original format (like C++ code) ---
print(f"[{time.time() - start_time:.2f}s] Probing for potential extra byte before non-compact offsets...")
print(
f"[{time.time() - start_time:.2f}s] Probing for potential extra byte before non-compact offsets..."
)
pos_before_probe = f_in.tell()
try:
suspected_flag = read_struct(f_in, '<B') # Read 1 byte
suspected_flag = read_struct(f_in, "<B") # Read 1 byte
if suspected_flag == 0x00:
print(f"[{time.time() - start_time:.2f}s] Found and consumed an unexpected 0x00 byte.")
print(
f"[{time.time() - start_time:.2f}s] Found and consumed an unexpected 0x00 byte."
)
elif suspected_flag == 0x01:
print(f"[{time.time() - start_time:.2f}s] ERROR: Found 0x01 but is_compact should be False")
print(
f"[{time.time() - start_time:.2f}s] ERROR: Found 0x01 but is_compact should be False"
)
raise ValueError("Inconsistent compact flag state")
else:
# Rewind - this byte is part of offsets data
f_in.seek(pos_before_probe)
print(f"[{time.time() - start_time:.2f}s] Rewound to original position (byte was 0x{suspected_flag:02x})")
print(
f"[{time.time() - start_time:.2f}s] Rewound to original position (byte was 0x{suspected_flag:02x})"
)
except EOFError:
f_in.seek(pos_before_probe)
print(f"[{time.time() - start_time:.2f}s] No extra byte found (EOF), proceeding with offsets read")
print(
f"[{time.time() - start_time:.2f}s] No extra byte found (EOF), proceeding with offsets read"
)
# --- Read original format data ---
offsets_np = read_numpy_vector(f_in, np.uint64, 'Q')
offsets_np = read_numpy_vector(f_in, np.uint64, "Q")
print(f"[{time.time() - start_time:.2f}s] Read offsets ({offsets_np.size})")
if len(offsets_np) != ntotal + 1:
raise ValueError(f"Inconsistent offsets size: len(levels)={ntotal} but len(offsets)={len(offsets_np)}")
raise ValueError(
f"Inconsistent offsets size: len(levels)={ntotal} but len(offsets)={len(offsets_np)}"
)
gc.collect()
print(f"[{time.time() - start_time:.2f}s] Attempting to read neighbors vector...")
neighbors_np = read_numpy_vector(f_in, np.int32, 'i')
neighbors_np = read_numpy_vector(f_in, np.int32, "i")
print(f"[{time.time() - start_time:.2f}s] Read neighbors ({neighbors_np.size})")
expected_neighbors_size = offsets_np[-1] if ntotal > 0 else 0
if neighbors_np.size != expected_neighbors_size:
print(f"Warning: neighbors vector size mismatch. Expected {expected_neighbors_size} based on offsets, got {neighbors_np.size}.")
print(
f"Warning: neighbors vector size mismatch. Expected {expected_neighbors_size} based on offsets, got {neighbors_np.size}."
)
gc.collect()
original_hnsw_data['entry_point'] = read_struct(f_in, '<i')
original_hnsw_data['max_level'] = read_struct(f_in, '<i')
original_hnsw_data['efConstruction'] = read_struct(f_in, '<i')
original_hnsw_data['efSearch'] = read_struct(f_in, '<i')
original_hnsw_data['dummy_upper_beam'] = read_struct(f_in, '<i')
print(f"[{time.time() - start_time:.2f}s] Read scalar params (ep={original_hnsw_data['entry_point']}, max_lvl={original_hnsw_data['max_level']})")
original_hnsw_data["entry_point"] = read_struct(f_in, "<i")
original_hnsw_data["max_level"] = read_struct(f_in, "<i")
original_hnsw_data["efConstruction"] = read_struct(f_in, "<i")
original_hnsw_data["efSearch"] = read_struct(f_in, "<i")
original_hnsw_data["dummy_upper_beam"] = read_struct(f_in, "<i")
print(
f"[{time.time() - start_time:.2f}s] Read scalar params (ep={original_hnsw_data['entry_point']}, max_lvl={original_hnsw_data['max_level']})"
)
print(f"[{time.time() - start_time:.2f}s] Checking for storage data...")
storage_fourcc = None
try:
storage_fourcc = read_struct(f_in, '<I')
print(f"[{time.time() - start_time:.2f}s] Found storage fourcc: {storage_fourcc:08x}.")
storage_fourcc = read_struct(f_in, "<I")
print(
f"[{time.time() - start_time:.2f}s] Found storage fourcc: {storage_fourcc:08x}."
)
except EOFError:
print(f"[{time.time() - start_time:.2f}s] No storage data found (EOF).")
print(f"[{time.time() - start_time:.2f}s] No storage data found (EOF).")
except Exception as e:
print(f"[{time.time() - start_time:.2f}s] Error reading potential storage data: {e}")
print(
f"[{time.time() - start_time:.2f}s] Error reading potential storage data: {e}"
)
# --- Perform Conversion ---
print(f"[{time.time() - start_time:.2f}s] Converting to CSR format...")
@@ -373,17 +479,21 @@ def convert_hnsw_graph_to_csr(input_filename, output_filename, prune_embeddings=
current_level_ptr_idx = 0
current_data_idx = 0
total_valid_neighbors_counted = 0 # For validation
total_valid_neighbors_counted = 0 # For validation
# Optimize calculation by getting slices once per node if possible
for i in range(ntotal):
if i > 0 and i % (ntotal // 100 or 1) == 0: # Log progress roughly every 1%
if i > 0 and i % (ntotal // 100 or 1) == 0: # Log progress roughly every 1%
progress = (i / ntotal) * 100
elapsed = time.time() - start_time
print(f"\r[{elapsed:.2f}s] Converting node {i}/{ntotal} ({progress:.1f}%)...", end="")
print(
f"\r[{elapsed:.2f}s] Converting node {i}/{ntotal} ({progress:.1f}%)...",
end="",
)
node_max_level = levels_np[i] - 1
if node_max_level < -1: node_max_level = -1
if node_max_level < -1:
node_max_level = -1
node_ptr_start_index = current_level_ptr_idx
compact_node_offsets_np[i] = node_ptr_start_index
@@ -394,13 +504,17 @@ def convert_hnsw_graph_to_csr(input_filename, output_filename, prune_embeddings=
for level in range(node_max_level + 1):
compact_level_ptr.append(current_data_idx)
begin_orig_np = original_offset_start + get_cum_neighbors(cum_nneighbor_per_level_np, level)
end_orig_np = original_offset_start + get_cum_neighbors(cum_nneighbor_per_level_np, level + 1)
begin_orig_np = original_offset_start + get_cum_neighbors(
cum_nneighbor_per_level_np, level
)
end_orig_np = original_offset_start + get_cum_neighbors(
cum_nneighbor_per_level_np, level + 1
)
begin_orig = int(begin_orig_np)
end_orig = int(end_orig_np)
neighbors_len = len(neighbors_np) # Cache length
neighbors_len = len(neighbors_np) # Cache length
begin_orig = min(max(0, begin_orig), neighbors_len)
end_orig = min(max(begin_orig, end_orig), neighbors_len)
@@ -413,83 +527,117 @@ def convert_hnsw_graph_to_csr(input_filename, output_filename, prune_embeddings=
if num_valid > 0:
# Append valid neighbors
compact_neighbors_data.extend(level_neighbors_slice[valid_neighbors_mask])
compact_neighbors_data.extend(
level_neighbors_slice[valid_neighbors_mask]
)
current_data_idx += num_valid
total_valid_neighbors_counted += num_valid
compact_level_ptr.append(current_data_idx)
current_level_ptr_idx += num_pointers_expected
compact_node_offsets_np[ntotal] = current_level_ptr_idx
print(f"\r[{time.time() - start_time:.2f}s] Conversion loop finished. ") # Clear progress line
print(
f"\r[{time.time() - start_time:.2f}s] Conversion loop finished. "
) # Clear progress line
# --- Validation Checks ---
print(f"[{time.time() - start_time:.2f}s] Running validation checks...")
valid_check_passed = True
# Check 1: Total valid neighbors count
print(f" Checking total valid neighbor count...")
print(" Checking total valid neighbor count...")
expected_valid_count = np.sum(neighbors_np >= 0)
if total_valid_neighbors_counted != len(compact_neighbors_data):
print(f"Error: Mismatch between counted valid neighbors ({total_valid_neighbors_counted}) and final compact_data size ({len(compact_neighbors_data)})!", file=sys.stderr)
valid_check_passed = False
print(
f"Error: Mismatch between counted valid neighbors ({total_valid_neighbors_counted}) and final compact_data size ({len(compact_neighbors_data)})!",
file=sys.stderr,
)
valid_check_passed = False
if expected_valid_count != len(compact_neighbors_data):
print(f"Error: Mismatch between NumPy count of valid neighbors ({expected_valid_count}) and final compact_data size ({len(compact_neighbors_data)})!", file=sys.stderr)
valid_check_passed = False
print(
f"Error: Mismatch between NumPy count of valid neighbors ({expected_valid_count}) and final compact_data size ({len(compact_neighbors_data)})!",
file=sys.stderr,
)
valid_check_passed = False
else:
print(f" OK: Total valid neighbors = {len(compact_neighbors_data)}")
print(f" OK: Total valid neighbors = {len(compact_neighbors_data)}")
# Check 2: Final pointer indices consistency
print(f" Checking final pointer indices...")
print(" Checking final pointer indices...")
if compact_node_offsets_np[ntotal] != len(compact_level_ptr):
print(f"Error: Final node offset ({compact_node_offsets_np[ntotal]}) doesn't match level_ptr size ({len(compact_level_ptr)})!", file=sys.stderr)
valid_check_passed = False
if (len(compact_level_ptr) > 0 and compact_level_ptr[-1] != len(compact_neighbors_data)) or \
(len(compact_level_ptr) == 0 and len(compact_neighbors_data) != 0):
last_ptr = compact_level_ptr[-1] if len(compact_level_ptr) > 0 else -1
print(f"Error: Last level pointer ({last_ptr}) doesn't match compact_data size ({len(compact_neighbors_data)})!", file=sys.stderr)
valid_check_passed = False
print(
f"Error: Final node offset ({compact_node_offsets_np[ntotal]}) doesn't match level_ptr size ({len(compact_level_ptr)})!",
file=sys.stderr,
)
valid_check_passed = False
if (
len(compact_level_ptr) > 0 and compact_level_ptr[-1] != len(compact_neighbors_data)
) or (len(compact_level_ptr) == 0 and len(compact_neighbors_data) != 0):
last_ptr = compact_level_ptr[-1] if len(compact_level_ptr) > 0 else -1
print(
f"Error: Last level pointer ({last_ptr}) doesn't match compact_data size ({len(compact_neighbors_data)})!",
file=sys.stderr,
)
valid_check_passed = False
else:
print(f" OK: Final pointers match data size.")
print(" OK: Final pointers match data size.")
if not valid_check_passed:
print("Error: Validation checks failed. Output file might be incorrect.", file=sys.stderr)
print(
"Error: Validation checks failed. Output file might be incorrect.",
file=sys.stderr,
)
# Optional: Exit here if validation fails
# return False
# --- Explicitly delete large intermediate arrays ---
print(f"[{time.time() - start_time:.2f}s] Deleting original neighbors and offsets arrays...")
print(
f"[{time.time() - start_time:.2f}s] Deleting original neighbors and offsets arrays..."
)
del neighbors_np
del offsets_np
gc.collect()
print(f" CSR Stats: |data|={len(compact_neighbors_data)}, |level_ptr|={len(compact_level_ptr)}")
print(
f" CSR Stats: |data|={len(compact_neighbors_data)}, |level_ptr|={len(compact_level_ptr)}"
)
# --- Write CSR HNSW graph data using unified function ---
print(f"[{time.time() - start_time:.2f}s] Writing CSR HNSW graph data in FAISS-compatible order...")
print(
f"[{time.time() - start_time:.2f}s] Writing CSR HNSW graph data in FAISS-compatible order..."
)
# Determine storage fourcc and data based on prune_embeddings
if prune_embeddings:
print(f" Pruning embeddings: Writing NULL storage marker.")
print(" Pruning embeddings: Writing NULL storage marker.")
output_storage_fourcc = NULL_INDEX_FOURCC
storage_data = b''
storage_data = b""
else:
# Keep embeddings - read and preserve original storage data
if storage_fourcc and storage_fourcc != NULL_INDEX_FOURCC:
print(f" Preserving embeddings: Reading original storage data...")
print(" Preserving embeddings: Reading original storage data...")
storage_data = f_in.read() # Read remaining storage data
output_storage_fourcc = storage_fourcc
print(f" Read {len(storage_data)} bytes of storage data")
else:
print(f" No embeddings found in original file (NULL storage)")
print(" No embeddings found in original file (NULL storage)")
output_storage_fourcc = NULL_INDEX_FOURCC
storage_data = b''
storage_data = b""
# Use the unified write function
write_compact_format(f_out, original_hnsw_data, assign_probas_np, cum_nneighbor_per_level_np,
levels_np, compact_level_ptr, compact_node_offsets_np,
compact_neighbors_data, output_storage_fourcc, storage_data)
write_compact_format(
f_out,
original_hnsw_data,
assign_probas_np,
cum_nneighbor_per_level_np,
levels_np,
compact_level_ptr,
compact_node_offsets_np,
compact_neighbors_data,
output_storage_fourcc,
storage_data,
)
# Clean up memory
del assign_probas_np, cum_nneighbor_per_level_np, levels_np
del compact_neighbors_data, compact_level_ptr, compact_node_offsets_np
@@ -503,40 +651,66 @@ def convert_hnsw_graph_to_csr(input_filename, output_filename, prune_embeddings=
print(f"Error: Input file not found: {input_filename}", file=sys.stderr)
return False
except MemoryError as e:
print(f"\nFatal MemoryError during conversion: {e}. Insufficient RAM.", file=sys.stderr)
# Clean up potentially partially written output file?
try: os.remove(output_filename)
except OSError: pass
return False
print(
f"\nFatal MemoryError during conversion: {e}. Insufficient RAM.",
file=sys.stderr,
)
# Clean up potentially partially written output file?
try:
os.remove(output_filename)
except OSError:
pass
return False
except EOFError as e:
print(f"Error: Reached end of file unexpectedly reading {input_filename}. {e}", file=sys.stderr)
try: os.remove(output_filename)
except OSError: pass
print(
f"Error: Reached end of file unexpectedly reading {input_filename}. {e}",
file=sys.stderr,
)
try:
os.remove(output_filename)
except OSError:
pass
return False
except Exception as e:
print(f"An unexpected error occurred during conversion: {e}", file=sys.stderr)
import traceback
traceback.print_exc()
try:
os.remove(output_filename)
except OSError: pass
except OSError:
pass
return False
# Ensure neighbors_np is deleted even if an error occurs after its allocation
finally:
if 'neighbors_np' in locals() and neighbors_np is not None:
del neighbors_np
gc.collect()
try:
if "neighbors_np" in locals() and neighbors_np is not None:
del neighbors_np
gc.collect()
except NameError:
pass
# --- Script Execution ---
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Convert a Faiss IndexHNSWFlat file to a CSR-based HNSW graph file.")
parser = argparse.ArgumentParser(
description="Convert a Faiss IndexHNSWFlat file to a CSR-based HNSW graph file."
)
parser.add_argument("input_index_file", help="Path to the input IndexHNSWFlat file")
parser.add_argument("output_csr_graph_file", help="Path to write the output CSR HNSW graph file")
parser.add_argument("--prune-embeddings", action="store_true", default=True,
help="Prune embedding storage (write NULL storage marker)")
parser.add_argument("--keep-embeddings", action="store_true",
help="Keep embedding storage (overrides --prune-embeddings)")
parser.add_argument(
"output_csr_graph_file", help="Path to write the output CSR HNSW graph file"
)
parser.add_argument(
"--prune-embeddings",
action="store_true",
default=True,
help="Prune embedding storage (write NULL storage marker)",
)
parser.add_argument(
"--keep-embeddings",
action="store_true",
help="Keep embedding storage (overrides --prune-embeddings)",
)
args = parser.parse_args()
@@ -545,10 +719,12 @@ if __name__ == "__main__":
sys.exit(1)
if os.path.abspath(args.input_index_file) == os.path.abspath(args.output_csr_graph_file):
print(f"Error: Input and output filenames cannot be the same.", file=sys.stderr)
sys.exit(1)
print("Error: Input and output filenames cannot be the same.", file=sys.stderr)
sys.exit(1)
prune_embeddings = args.prune_embeddings and not args.keep_embeddings
success = convert_hnsw_graph_to_csr(args.input_index_file, args.output_csr_graph_file, prune_embeddings)
success = convert_hnsw_graph_to_csr(
args.input_index_file, args.output_csr_graph_file, prune_embeddings
)
if not success:
sys.exit(1)
sys.exit(1)

View File

@@ -1,19 +1,19 @@
import numpy as np
import os
from pathlib import Path
from typing import Dict, Any, List, Literal, Optional
import shutil
import logging
import os
import shutil
from pathlib import Path
from typing import Any, Literal
from leann.searcher_base import BaseSearcher
from .convert_to_csr import convert_hnsw_graph_to_csr
from leann.registry import register_backend
import numpy as np
from leann.interface import (
LeannBackendFactoryInterface,
LeannBackendBuilderInterface,
LeannBackendFactoryInterface,
LeannBackendSearcherInterface,
)
from leann.registry import register_backend
from leann.searcher_base import BaseSearcher
from .convert_to_csr import convert_hnsw_graph_to_csr
logger = logging.getLogger(__name__)
@@ -28,6 +28,12 @@ def get_metric_map():
}
def normalize_l2(data: np.ndarray) -> np.ndarray:
norms = np.linalg.norm(data, axis=1, keepdims=True)
norms[norms == 0] = 1 # Avoid division by zero
return data / norms
@register_backend("hnsw")
class HNSWBackend(LeannBackendFactoryInterface):
@staticmethod
@@ -48,8 +54,14 @@ class HNSWBuilder(LeannBackendBuilderInterface):
self.efConstruction = self.build_params.setdefault("efConstruction", 200)
self.distance_metric = self.build_params.setdefault("distance_metric", "mips")
self.dimensions = self.build_params.get("dimensions")
if not self.is_recompute:
if self.is_compact:
# TODO: support this case @andy
raise ValueError(
"is_recompute is False, but is_compact is True. This is not compatible now. change is compact to False and you can use the original HNSW index."
)
def build(self, data: np.ndarray, ids: List[str], index_path: str, **kwargs):
def build(self, data: np.ndarray, ids: list[str], index_path: str, **kwargs):
from . import faiss # type: ignore
path = Path(index_path)
@@ -70,7 +82,7 @@ class HNSWBuilder(LeannBackendBuilderInterface):
index.hnsw.efConstruction = self.efConstruction
if self.distance_metric.lower() == "cosine":
faiss.normalize_L2(data)
data = normalize_l2(data)
index.add(data.shape[0], faiss.swig_ptr(data))
index_file = index_dir / f"{index_prefix}.index"
@@ -95,16 +107,12 @@ class HNSWBuilder(LeannBackendBuilderInterface):
# index_file_old = index_file.with_suffix(".old")
# shutil.move(str(index_file), str(index_file_old))
shutil.move(str(csr_temp_file), str(index_file))
logger.info(
f"INFO: Replaced original index with {mode_str} version at '{index_file}'"
)
logger.info(f"INFO: Replaced original index with {mode_str} version at '{index_file}'")
else:
# Clean up and fail fast
if csr_temp_file.exists():
os.remove(csr_temp_file)
raise RuntimeError(
"CSR conversion failed - cannot proceed with compact format"
)
raise RuntimeError("CSR conversion failed - cannot proceed with compact format")
class HNSWSearcher(BaseSearcher):
@@ -116,7 +124,9 @@ class HNSWSearcher(BaseSearcher):
)
from . import faiss # type: ignore
self.distance_metric = self.meta.get("distance_metric", "mips").lower()
self.distance_metric = (
self.meta.get("backend_kwargs", {}).get("distance_metric", "mips").lower()
)
metric_enum = get_metric_map().get(self.distance_metric)
if metric_enum is None:
raise ValueError(f"Unsupported distance_metric '{self.distance_metric}'.")
@@ -142,7 +152,7 @@ class HNSWSearcher(BaseSearcher):
self,
query: np.ndarray,
top_k: int,
zmq_port: Optional[int] = None,
zmq_port: int | None = None,
complexity: int = 64,
beam_width: int = 1,
prune_ratio: float = 0.0,
@@ -150,7 +160,7 @@ class HNSWSearcher(BaseSearcher):
pruning_strategy: Literal["global", "local", "proportional"] = "global",
batch_size: int = 0,
**kwargs,
) -> Dict[str, Any]:
) -> dict[str, Any]:
"""
Search for nearest neighbors using HNSW index.
@@ -179,23 +189,29 @@ class HNSWSearcher(BaseSearcher):
raise RuntimeError("Recompute is required for pruned index.")
if recompute_embeddings:
if zmq_port is None:
raise ValueError(
"zmq_port must be provided if recompute_embeddings is True"
)
raise ValueError("zmq_port must be provided if recompute_embeddings is True")
if query.dtype != np.float32:
query = query.astype(np.float32)
if self.distance_metric == "cosine":
faiss.normalize_L2(query)
query = normalize_l2(query)
params = faiss.SearchParametersHNSW()
if zmq_port is not None:
params.zmq_port = (
zmq_port # C++ code won't use this if recompute_embeddings is False
)
params.zmq_port = zmq_port # C++ code won't use this if recompute_embeddings is False
params.efSearch = complexity
params.beam_size = beam_width
# For OpenAI embeddings with cosine distance, disable relative distance check
# This prevents early termination when all scores are in a narrow range
embedding_model = self.meta.get("embedding_model", "").lower()
if self.distance_metric == "cosine" and any(
openai_model in embedding_model for openai_model in ["text-embedding", "openai"]
):
params.check_relative_distance = False
else:
params.check_relative_distance = True
# PQ pruning: direct mapping to HNSW's pq_pruning_ratio
params.pq_pruning_ratio = prune_ratio
@@ -205,9 +221,7 @@ class HNSWSearcher(BaseSearcher):
params.send_neigh_times_ratio = 0.0
elif pruning_strategy == "proportional":
params.local_prune = False
params.send_neigh_times_ratio = (
1.0 # Any value > 1e-6 triggers proportional mode
)
params.send_neigh_times_ratio = 1.0 # Any value > 1e-6 triggers proportional mode
else: # "global"
params.local_prune = False
params.send_neigh_times_ratio = 0.0
@@ -228,8 +242,6 @@ class HNSWSearcher(BaseSearcher):
params,
)
string_labels = [
[str(int_label) for int_label in batch_labels] for batch_labels in labels
]
string_labels = [[str(int_label) for int_label in batch_labels] for batch_labels in labels]
return {"labels": string_labels, "distances": distances}

View File

@@ -3,17 +3,17 @@ HNSW-specific embedding server
"""
import argparse
import json
import logging
import os
import sys
import threading
import time
import os
import zmq
import numpy as np
import msgpack
import json
from pathlib import Path
from typing import Optional
import sys
import logging
import msgpack
import numpy as np
import zmq
# Set up logging based on environment variable
LOG_LEVEL = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
@@ -33,7 +33,7 @@ if not logger.handlers:
def create_hnsw_embedding_server(
passages_file: Optional[str] = None,
passages_file: str | None = None,
zmq_port: int = 5555,
model_name: str = "sentence-transformers/all-mpnet-base-v2",
distance_metric: str = "mips",
@@ -52,8 +52,8 @@ def create_hnsw_embedding_server(
sys.path.insert(0, str(leann_core_path))
try:
from leann.embedding_compute import compute_embeddings
from leann.api import PassageManager
from leann.embedding_compute import compute_embeddings
logger.info("Successfully imported unified embedding computation module")
except ImportError as e:
@@ -78,10 +78,22 @@ def create_hnsw_embedding_server(
raise ValueError("Only metadata files (.meta.json) are supported")
# Load metadata to get passage sources
with open(passages_file, "r") as f:
with open(passages_file) as f:
meta = json.load(f)
passages = PassageManager(meta["passage_sources"])
# Convert relative paths to absolute paths based on metadata file location
metadata_dir = Path(passages_file).parent.parent # Go up one level from the metadata file
passage_sources = []
for source in meta["passage_sources"]:
source_copy = source.copy()
# Convert relative paths to absolute paths
if not Path(source_copy["path"]).is_absolute():
source_copy["path"] = str(metadata_dir / source_copy["path"])
if not Path(source_copy["index_path"]).is_absolute():
source_copy["index_path"] = str(metadata_dir / source_copy["index_path"])
passage_sources.append(source_copy)
passages = PassageManager(passage_sources)
logger.info(
f"Loaded PassageManager with {len(passages.global_offset_map)} passages from metadata"
)
@@ -120,9 +132,7 @@ def create_hnsw_embedding_server(
response = embeddings.tolist()
socket.send(msgpack.packb(response))
e2e_end = time.time()
logger.info(
f"⏱️ Text embedding E2E time: {e2e_end - e2e_start:.6f}s"
)
logger.info(f"⏱️ Text embedding E2E time: {e2e_end - e2e_start:.6f}s")
continue
# Handle distance calculation requests
@@ -148,17 +158,13 @@ def create_hnsw_embedding_server(
texts.append(txt)
except KeyError:
logger.error(f"Passage ID {nid} not found")
raise RuntimeError(
f"FATAL: Passage with ID {nid} not found"
)
raise RuntimeError(f"FATAL: Passage with ID {nid} not found")
except Exception as e:
logger.error(f"Exception looking up passage ID {nid}: {e}")
raise
# Process embeddings
embeddings = compute_embeddings(
texts, model_name, mode=embedding_mode
)
embeddings = compute_embeddings(texts, model_name, mode=embedding_mode)
logger.info(
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
)
@@ -172,18 +178,12 @@ def create_hnsw_embedding_server(
distances = -np.dot(embeddings, query_vector)
response_payload = distances.flatten().tolist()
response_bytes = msgpack.packb(
[response_payload], use_single_float=True
)
logger.debug(
f"Sending distance response with {len(distances)} distances"
)
response_bytes = msgpack.packb([response_payload], use_single_float=True)
logger.debug(f"Sending distance response with {len(distances)} distances")
socket.send(response_bytes)
e2e_end = time.time()
logger.info(
f"⏱️ Distance calculation E2E time: {e2e_end - e2e_start:.6f}s"
)
logger.info(f"⏱️ Distance calculation E2E time: {e2e_end - e2e_start:.6f}s")
continue
# Standard embedding request (passage ID lookup)
@@ -208,9 +208,7 @@ def create_hnsw_embedding_server(
passage_data = passages.get_passage(str(nid))
txt = passage_data["text"]
if not txt:
raise RuntimeError(
f"FATAL: Empty text for passage ID {nid}"
)
raise RuntimeError(f"FATAL: Empty text for passage ID {nid}")
texts.append(txt)
except KeyError:
raise RuntimeError(f"FATAL: Passage with ID {nid} not found")
@@ -229,11 +227,9 @@ def create_hnsw_embedding_server(
logger.error(
f"NaN or Inf detected in embeddings! Requested IDs: {node_ids[:5]}..."
)
assert False
raise AssertionError()
hidden_contiguous_f32 = np.ascontiguousarray(
embeddings, dtype=np.float32
)
hidden_contiguous_f32 = np.ascontiguousarray(embeddings, dtype=np.float32)
response_payload = [
list(hidden_contiguous_f32.shape),
hidden_contiguous_f32.flatten().tolist(),
@@ -270,15 +266,15 @@ def create_hnsw_embedding_server(
if __name__ == "__main__":
import signal
import sys
def signal_handler(sig, frame):
logger.info(f"Received signal {sig}, shutting down gracefully...")
sys.exit(0)
# Register signal handlers for graceful shutdown
signal.signal(signal.SIGTERM, signal_handler)
signal.signal(signal.SIGINT, signal_handler)
parser = argparse.ArgumentParser(description="HNSW Embedding service")
parser.add_argument("--zmq-port", type=int, default=5555, help="ZMQ port to run on")
parser.add_argument(

View File

@@ -6,10 +6,10 @@ build-backend = "scikit_build_core.build"
[project]
name = "leann-backend-hnsw"
version = "0.1.9"
version = "0.1.16"
description = "Custom-built HNSW (Faiss) backend for the Leann toolkit."
dependencies = [
"leann-core==0.1.9",
"leann-core==0.1.16",
"numpy",
"pyzmq>=23.0.0",
"msgpack>=1.0.0",
@@ -24,4 +24,4 @@ build.tool-args = ["-j8"]
# CMake definitions to optimize compilation
[tool.scikit-build.cmake.define]
CMAKE_BUILD_PARALLEL_LEVEL = "8"
CMAKE_BUILD_PARALLEL_LEVEL = "8"

View File

@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
[project]
name = "leann-core"
version = "0.1.9"
version = "0.1.16"
description = "Core API and plugin system for LEANN"
readme = "README.md"
requires-python = ">=3.9"
@@ -20,11 +20,30 @@ dependencies = [
"torch>=2.0.0",
"sentence-transformers>=2.2.0",
"llama-index-core>=0.12.0",
"llama-index-readers-file>=0.4.0", # Essential for document reading
"llama-index-embeddings-huggingface>=0.5.5", # For embeddings
"python-dotenv>=1.0.0",
"openai>=1.0.0",
"huggingface-hub>=0.20.0",
"transformers>=4.30.0",
"requests>=2.25.0",
"accelerate>=0.20.0",
"PyPDF2>=3.0.0",
"pymupdf>=1.23.0",
"pdfplumber>=0.10.0",
"mlx>=0.26.3; sys_platform == 'darwin'",
"mlx-lm>=0.26.0; sys_platform == 'darwin'",
]
[project.optional-dependencies]
colab = [
"torch>=2.0.0,<3.0.0", # Limit torch version to avoid conflicts
"transformers>=4.30.0,<5.0.0", # Limit transformers version
"accelerate>=0.20.0,<1.0.0", # Limit accelerate version
]
[project.scripts]
leann = "leann.cli:main"
[tool.setuptools.packages.find]
where = ["src"]
where = ["src"]

View File

@@ -8,10 +8,14 @@ if platform.system() == "Darwin":
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
os.environ["KMP_BLOCKTIME"] = "0"
# Additional fixes for PyTorch/sentence-transformers on macOS ARM64 only in CI
if os.environ.get("CI") == "true":
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "0"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
from .api import LeannBuilder, LeannChat, LeannSearcher
from .registry import BACKEND_REGISTRY, autodiscover_backends
autodiscover_backends()
__all__ = ["LeannBuilder", "LeannSearcher", "LeannChat", "BACKEND_REGISTRY"]
__all__ = ["BACKEND_REGISTRY", "LeannBuilder", "LeannChat", "LeannSearcher"]

View File

@@ -4,27 +4,36 @@ with the correct, original embedding logic from the user's reference code.
"""
import json
import pickle
from leann.interface import LeannBackendSearcherInterface
import numpy as np
import time
from pathlib import Path
from typing import List, Dict, Any, Optional, Literal
from dataclasses import dataclass, field
from .registry import BACKEND_REGISTRY
from .interface import LeannBackendFactoryInterface
from .chat import get_llm
import logging
import pickle
import time
import warnings
from dataclasses import dataclass, field
from pathlib import Path
from typing import Any, Literal
import numpy as np
from leann.interface import LeannBackendSearcherInterface
from .chat import get_llm
from .interface import LeannBackendFactoryInterface
from .registry import BACKEND_REGISTRY
logger = logging.getLogger(__name__)
def get_registered_backends() -> list[str]:
"""Get list of registered backend names."""
return list(BACKEND_REGISTRY.keys())
def compute_embeddings(
chunks: List[str],
chunks: list[str],
model_name: str,
mode: str = "sentence-transformers",
use_server: bool = True,
port: Optional[int] = None,
port: int | None = None,
is_build=False,
) -> np.ndarray:
"""
@@ -61,9 +70,7 @@ def compute_embeddings(
)
def compute_embeddings_via_server(
chunks: List[str], model_name: str, port: int
) -> np.ndarray:
def compute_embeddings_via_server(chunks: list[str], model_name: str, port: int) -> np.ndarray:
"""Computes embeddings using sentence-transformers.
Args:
@@ -73,9 +80,9 @@ def compute_embeddings_via_server(
logger.info(
f"Computing embeddings for {len(chunks)} chunks using SentenceTransformer model '{model_name}' (via embedding server)..."
)
import zmq
import msgpack
import numpy as np
import zmq
# Connect to embedding server
context = zmq.Context()
@@ -104,11 +111,11 @@ class SearchResult:
id: str
score: float
text: str
metadata: Dict[str, Any] = field(default_factory=dict)
metadata: dict[str, Any] = field(default_factory=dict)
class PassageManager:
def __init__(self, passage_sources: List[Dict[str, Any]]):
def __init__(self, passage_sources: list[dict[str, Any]]):
self.offset_maps = {}
self.passage_files = {}
self.global_offset_map = {} # Combined map for fast lookup
@@ -117,8 +124,15 @@ class PassageManager:
assert source["type"] == "jsonl", "only jsonl is supported"
passage_file = source["path"]
index_file = source["index_path"] # .idx file
# Fix path resolution for Colab and other environments
if not Path(index_file).is_absolute():
# If relative path, try to resolve it properly
index_file = str(Path(index_file).resolve())
if not Path(index_file).exists():
raise FileNotFoundError(f"Passage index file not found: {index_file}")
with open(index_file, "rb") as f:
offset_map = pickle.load(f)
self.offset_maps[passage_file] = offset_map
@@ -128,11 +142,11 @@ class PassageManager:
for passage_id, offset in offset_map.items():
self.global_offset_map[passage_id] = (passage_file, offset)
def get_passage(self, passage_id: str) -> Dict[str, Any]:
def get_passage(self, passage_id: str) -> dict[str, Any]:
if passage_id in self.global_offset_map:
passage_file, offset = self.global_offset_map[passage_id]
# Lazy file opening - only open when needed
with open(passage_file, "r", encoding="utf-8") as f:
with open(passage_file, encoding="utf-8") as f:
f.seek(offset)
return json.loads(f.readline())
raise KeyError(f"Passage ID not found: {passage_id}")
@@ -143,24 +157,92 @@ class LeannBuilder:
self,
backend_name: str,
embedding_model: str = "facebook/contriever",
dimensions: Optional[int] = None,
dimensions: int | None = None,
embedding_mode: str = "sentence-transformers",
**backend_kwargs,
):
self.backend_name = backend_name
backend_factory: LeannBackendFactoryInterface | None = BACKEND_REGISTRY.get(
backend_name
)
backend_factory: LeannBackendFactoryInterface | None = BACKEND_REGISTRY.get(backend_name)
if backend_factory is None:
raise ValueError(f"Backend '{backend_name}' not found or not registered.")
self.backend_factory = backend_factory
self.embedding_model = embedding_model
self.dimensions = dimensions
self.embedding_mode = embedding_mode
self.backend_kwargs = backend_kwargs
self.chunks: List[Dict[str, Any]] = []
def add_text(self, text: str, metadata: Optional[Dict[str, Any]] = None):
# Check if we need to use cosine distance for normalized embeddings
normalized_embeddings_models = {
# OpenAI models
("openai", "text-embedding-ada-002"),
("openai", "text-embedding-3-small"),
("openai", "text-embedding-3-large"),
# Voyage AI models
("voyage", "voyage-2"),
("voyage", "voyage-3"),
("voyage", "voyage-large-2"),
("voyage", "voyage-multilingual-2"),
("voyage", "voyage-code-2"),
# Cohere models
("cohere", "embed-english-v3.0"),
("cohere", "embed-multilingual-v3.0"),
("cohere", "embed-english-light-v3.0"),
("cohere", "embed-multilingual-light-v3.0"),
}
# Also check for patterns in model names
is_normalized = False
current_model_lower = embedding_model.lower()
current_mode_lower = embedding_mode.lower()
# Check exact matches
for mode, model in normalized_embeddings_models:
if (current_mode_lower == mode and current_model_lower == model) or (
mode in current_mode_lower and model in current_model_lower
):
is_normalized = True
break
# Check patterns
if not is_normalized:
# OpenAI patterns
if "openai" in current_mode_lower or "openai" in current_model_lower:
if any(
pattern in current_model_lower
for pattern in ["text-embedding", "ada", "3-small", "3-large"]
):
is_normalized = True
# Voyage patterns
elif "voyage" in current_mode_lower or "voyage" in current_model_lower:
is_normalized = True
# Cohere patterns
elif "cohere" in current_mode_lower or "cohere" in current_model_lower:
if "embed" in current_model_lower:
is_normalized = True
# Handle distance metric
if is_normalized and "distance_metric" not in backend_kwargs:
backend_kwargs["distance_metric"] = "cosine"
warnings.warn(
f"Detected normalized embeddings model '{embedding_model}' with mode '{embedding_mode}'. "
f"Automatically setting distance_metric='cosine' for optimal performance. "
f"Normalized embeddings (L2 norm = 1) should use cosine similarity instead of MIPS.",
UserWarning,
stacklevel=2,
)
elif is_normalized and backend_kwargs.get("distance_metric", "").lower() != "cosine":
current_metric = backend_kwargs.get("distance_metric", "mips")
warnings.warn(
f"Warning: Using '{current_metric}' distance metric with normalized embeddings model "
f"'{embedding_model}' may lead to suboptimal search results. "
f"Consider using 'cosine' distance metric for better performance.",
UserWarning,
stacklevel=2,
)
self.backend_kwargs = backend_kwargs
self.chunks: list[dict[str, Any]] = []
def add_text(self, text: str, metadata: dict[str, Any] | None = None):
if metadata is None:
metadata = {}
passage_id = metadata.get("id", str(len(self.chunks)))
@@ -190,9 +272,7 @@ class LeannBuilder:
try:
from tqdm import tqdm
chunk_iterator = tqdm(
self.chunks, desc="Writing passages", unit="chunk"
)
chunk_iterator = tqdm(self.chunks, desc="Writing passages", unit="chunk")
except ImportError:
chunk_iterator = self.chunks
@@ -222,9 +302,7 @@ class LeannBuilder:
string_ids = [chunk["id"] for chunk in self.chunks]
current_backend_kwargs = {**self.backend_kwargs, "dimensions": self.dimensions}
builder_instance = self.backend_factory.builder(**current_backend_kwargs)
builder_instance.build(
embeddings, string_ids, index_path, **current_backend_kwargs
)
builder_instance.build(embeddings, string_ids, index_path, **current_backend_kwargs)
leann_meta_path = index_dir / f"{index_name}.meta.json"
meta_data = {
"version": "1.0",
@@ -273,9 +351,7 @@ class LeannBuilder:
ids, embeddings = data
if not isinstance(embeddings, np.ndarray):
raise ValueError(
f"Expected embeddings to be numpy array, got {type(embeddings)}"
)
raise ValueError(f"Expected embeddings to be numpy array, got {type(embeddings)}")
if len(ids) != embeddings.shape[0]:
raise ValueError(
@@ -287,9 +363,7 @@ class LeannBuilder:
if self.dimensions is None:
self.dimensions = embedding_dim
elif self.dimensions != embedding_dim:
raise ValueError(
f"Dimension mismatch: expected {self.dimensions}, got {embedding_dim}"
)
raise ValueError(f"Dimension mismatch: expected {self.dimensions}, got {embedding_dim}")
logger.info(
f"Building index from precomputed embeddings: {len(ids)} items, {embedding_dim} dimensions"
@@ -374,26 +448,24 @@ class LeannBuilder:
with open(leann_meta_path, "w", encoding="utf-8") as f:
json.dump(meta_data, f, indent=2)
logger.info(
f"Index built successfully from precomputed embeddings: {index_path}"
)
logger.info(f"Index built successfully from precomputed embeddings: {index_path}")
class LeannSearcher:
def __init__(self, index_path: str, enable_warmup: bool = False, **backend_kwargs):
# Fix path resolution for Colab and other environments
if not Path(index_path).is_absolute():
index_path = str(Path(index_path).resolve())
self.meta_path_str = f"{index_path}.meta.json"
if not Path(self.meta_path_str).exists():
raise FileNotFoundError(
f"Leann metadata file not found at {self.meta_path_str}"
)
with open(self.meta_path_str, "r", encoding="utf-8") as f:
raise FileNotFoundError(f"Leann metadata file not found at {self.meta_path_str}")
with open(self.meta_path_str, encoding="utf-8") as f:
self.meta_data = json.load(f)
backend_name = self.meta_data["backend_name"]
self.embedding_model = self.meta_data["embedding_model"]
# Support both old and new format
self.embedding_mode = self.meta_data.get(
"embedding_mode", "sentence-transformers"
)
self.embedding_mode = self.meta_data.get("embedding_mode", "sentence-transformers")
self.passage_manager = PassageManager(self.meta_data.get("passage_sources", []))
backend_factory = BACKEND_REGISTRY.get(backend_name)
if backend_factory is None:
@@ -415,7 +487,7 @@ class LeannSearcher:
pruning_strategy: Literal["global", "local", "proportional"] = "global",
expected_zmq_port: int = 5557,
**kwargs,
) -> List[SearchResult]:
) -> list[SearchResult]:
logger.info("🔍 LeannSearcher.search() called:")
logger.info(f" Query: '{query}'")
logger.info(f" Top_k: {top_k}")
@@ -442,7 +514,7 @@ class LeannSearcher:
zmq_port=zmq_port,
)
# logger.info(f" Generated embedding shape: {query_embedding.shape}")
embedding_time = time.time() - start_time
time.time() - start_time
# logger.info(f" Embedding time: {embedding_time} seconds")
start_time = time.time()
@@ -457,17 +529,15 @@ class LeannSearcher:
zmq_port=zmq_port,
**kwargs,
)
search_time = time.time() - start_time
time.time() - start_time
# logger.info(f" Search time: {search_time} seconds")
logger.info(
f" Backend returned: labels={len(results.get('labels', [[]])[0])} results"
)
logger.info(f" Backend returned: labels={len(results.get('labels', [[]])[0])} results")
enriched_results = []
if "labels" in results and "distances" in results:
logger.info(f" Processing {len(results['labels'][0])} passage IDs:")
for i, (string_id, dist) in enumerate(
zip(results["labels"][0], results["distances"][0])
zip(results["labels"][0], results["distances"][0], strict=False)
):
try:
passage_data = self.passage_manager.get_passage(string_id)
@@ -479,15 +549,15 @@ class LeannSearcher:
metadata=passage_data.get("metadata", {}),
)
)
# Color codes for better logging
GREEN = "\033[92m"
BLUE = "\033[94m"
YELLOW = "\033[93m"
RESET = "\033[0m"
# Truncate text for display (first 100 chars)
display_text = passage_data['text']
display_text = passage_data["text"]
logger.info(
f" {GREEN}{RESET} {BLUE}[{i + 1:2d}]{RESET} {YELLOW}ID:{RESET} '{string_id}' {YELLOW}Score:{RESET} {dist:.4f} {YELLOW}Text:{RESET} {display_text}"
)
@@ -505,7 +575,7 @@ class LeannChat:
def __init__(
self,
index_path: str,
llm_config: Optional[Dict[str, Any]] = None,
llm_config: dict[str, Any] | None = None,
enable_warmup: bool = False,
**kwargs,
):
@@ -521,7 +591,7 @@ class LeannChat:
prune_ratio: float = 0.0,
recompute_embeddings: bool = True,
pruning_strategy: Literal["global", "local", "proportional"] = "global",
llm_kwargs: Optional[Dict[str, Any]] = None,
llm_kwargs: dict[str, Any] | None = None,
expected_zmq_port: int = 5557,
**search_kwargs,
):

View File

@@ -4,11 +4,12 @@ This file contains the chat generation logic for the LEANN project,
supporting different backends like Ollama, Hugging Face Transformers, and a simulation mode.
"""
from abc import ABC, abstractmethod
from typing import Dict, Any, Optional, List
import difflib
import logging
import os
import difflib
from abc import ABC, abstractmethod
from typing import Any
import torch
# Configure logging
@@ -16,10 +17,11 @@ logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def check_ollama_models() -> List[str]:
def check_ollama_models() -> list[str]:
"""Check available Ollama models and return a list"""
try:
import requests
response = requests.get("http://localhost:11434/api/tags", timeout=5)
if response.status_code == 200:
data = response.json()
@@ -31,51 +33,52 @@ def check_ollama_models() -> List[str]:
def check_ollama_model_exists_remotely(model_name: str) -> tuple[bool, list[str]]:
"""Check if a model exists in Ollama's remote library and return available tags
Returns:
(model_exists, available_tags): bool and list of matching tags
"""
try:
import requests
import re
import requests
# Split model name and tag
if ':' in model_name:
base_model, requested_tag = model_name.split(':', 1)
if ":" in model_name:
base_model, requested_tag = model_name.split(":", 1)
else:
base_model, requested_tag = model_name, None
# First check if base model exists in library
library_response = requests.get("https://ollama.com/library", timeout=8)
if library_response.status_code != 200:
return True, [] # Assume exists if can't check
# Extract model names from library page
models_in_library = re.findall(r'href="/library/([^"]+)"', library_response.text)
if base_model not in models_in_library:
return False, [] # Base model doesn't exist
# If base model exists, get available tags
tags_response = requests.get(f"https://ollama.com/library/{base_model}/tags", timeout=8)
if tags_response.status_code != 200:
return True, [] # Base model exists but can't get tags
# Extract tags for this model - be more specific to avoid HTML artifacts
tag_pattern = rf'{re.escape(base_model)}:[a-zA-Z0-9\.\-_]+'
tag_pattern = rf"{re.escape(base_model)}:[a-zA-Z0-9\.\-_]+"
raw_tags = re.findall(tag_pattern, tags_response.text)
# Clean up tags - remove HTML artifacts and duplicates
available_tags = []
seen = set()
for tag in raw_tags:
# Skip if it looks like HTML (contains < or >)
if '<' in tag or '>' in tag:
if "<" in tag or ">" in tag:
continue
if tag not in seen:
seen.add(tag)
available_tags.append(tag)
# Check if exact model exists
if requested_tag is None:
# User just requested base model, suggest tags
@@ -83,76 +86,80 @@ def check_ollama_model_exists_remotely(model_name: str) -> tuple[bool, list[str]
else:
exact_match = model_name in available_tags
return exact_match, available_tags[:10]
except Exception:
pass
# If scraping fails, assume model might exist (don't block user)
return True, []
def search_ollama_models_fuzzy(query: str, available_models: List[str]) -> List[str]:
def search_ollama_models_fuzzy(query: str, available_models: list[str]) -> list[str]:
"""Use intelligent fuzzy search for Ollama models"""
if not available_models:
return []
query_lower = query.lower()
suggestions = []
# 1. Exact matches first
exact_matches = [m for m in available_models if query_lower == m.lower()]
suggestions.extend(exact_matches)
# 2. Starts with query
starts_with = [m for m in available_models if m.lower().startswith(query_lower) and m not in suggestions]
starts_with = [
m for m in available_models if m.lower().startswith(query_lower) and m not in suggestions
]
suggestions.extend(starts_with)
# 3. Contains query
contains = [m for m in available_models if query_lower in m.lower() and m not in suggestions]
suggestions.extend(contains)
# 4. Base model name matching (remove version numbers)
def get_base_name(model_name: str) -> str:
"""Extract base name without version (e.g., 'llama3:8b' -> 'llama3')"""
return model_name.split(':')[0].split('-')[0]
return model_name.split(":")[0].split("-")[0]
query_base = get_base_name(query_lower)
base_matches = [
m for m in available_models
m
for m in available_models
if get_base_name(m.lower()) == query_base and m not in suggestions
]
suggestions.extend(base_matches)
# 5. Family/variant matching
model_families = {
'llama': ['llama2', 'llama3', 'alpaca', 'vicuna', 'codellama'],
'qwen': ['qwen', 'qwen2', 'qwen3'],
'gemma': ['gemma', 'gemma2'],
'phi': ['phi', 'phi2', 'phi3'],
'mistral': ['mistral', 'mixtral', 'openhermes'],
'dolphin': ['dolphin', 'openchat'],
'deepseek': ['deepseek', 'deepseek-coder']
"llama": ["llama2", "llama3", "alpaca", "vicuna", "codellama"],
"qwen": ["qwen", "qwen2", "qwen3"],
"gemma": ["gemma", "gemma2"],
"phi": ["phi", "phi2", "phi3"],
"mistral": ["mistral", "mixtral", "openhermes"],
"dolphin": ["dolphin", "openchat"],
"deepseek": ["deepseek", "deepseek-coder"],
}
query_family = None
for family, variants in model_families.items():
if any(variant in query_lower for variant in variants):
query_family = family
break
if query_family:
family_variants = model_families[query_family]
family_matches = [
m for m in available_models
m
for m in available_models
if any(variant in m.lower() for variant in family_variants) and m not in suggestions
]
suggestions.extend(family_matches)
# 6. Use difflib for remaining fuzzy matches
remaining_models = [m for m in available_models if m not in suggestions]
difflib_matches = difflib.get_close_matches(query_lower, remaining_models, n=3, cutoff=0.4)
suggestions.extend(difflib_matches)
return suggestions[:8] # Return top 8 suggestions
@@ -162,15 +169,13 @@ def search_ollama_models_fuzzy(query: str, available_models: List[str]) -> List[
# Remove this too - no need for fallback
def suggest_similar_models(invalid_model: str, available_models: List[str]) -> List[str]:
def suggest_similar_models(invalid_model: str, available_models: list[str]) -> list[str]:
"""Use difflib to find similar model names"""
if not available_models:
return []
# Get close matches using fuzzy matching
suggestions = difflib.get_close_matches(
invalid_model, available_models, n=3, cutoff=0.3
)
suggestions = difflib.get_close_matches(invalid_model, available_models, n=3, cutoff=0.3)
return suggestions
@@ -178,49 +183,50 @@ def check_hf_model_exists(model_name: str) -> bool:
"""Quick check if HuggingFace model exists without downloading"""
try:
from huggingface_hub import model_info
model_info(model_name)
return True
except Exception:
return False
def get_popular_hf_models() -> List[str]:
def get_popular_hf_models() -> list[str]:
"""Return a list of popular HuggingFace models for suggestions"""
try:
from huggingface_hub import list_models
# Get popular text-generation models, sorted by downloads
models = list_models(
filter="text-generation",
sort="downloads",
direction=-1,
limit=20 # Get top 20 most downloaded
limit=20, # Get top 20 most downloaded
)
# Extract model names and filter for chat/conversation models
model_names = []
chat_keywords = ['chat', 'instruct', 'dialog', 'conversation', 'assistant']
chat_keywords = ["chat", "instruct", "dialog", "conversation", "assistant"]
for model in models:
model_name = model.id if hasattr(model, 'id') else str(model)
model_name = model.id if hasattr(model, "id") else str(model)
# Prioritize models with chat-related keywords
if any(keyword in model_name.lower() for keyword in chat_keywords):
model_names.append(model_name)
elif len(model_names) < 10: # Fill up with other popular models
model_names.append(model_name)
return model_names[:10] if model_names else _get_fallback_hf_models()
except Exception:
# Fallback to static list if API call fails
return _get_fallback_hf_models()
def _get_fallback_hf_models() -> List[str]:
def _get_fallback_hf_models() -> list[str]:
"""Fallback list of popular HuggingFace models"""
return [
"microsoft/DialoGPT-medium",
"microsoft/DialoGPT-large",
"microsoft/DialoGPT-large",
"facebook/blenderbot-400M-distill",
"microsoft/phi-2",
"deepseek-ai/deepseek-llm-7b-chat",
@@ -228,44 +234,44 @@ def _get_fallback_hf_models() -> List[str]:
"facebook/blenderbot_small-90M",
"microsoft/phi-1_5",
"facebook/opt-350m",
"EleutherAI/gpt-neo-1.3B"
"EleutherAI/gpt-neo-1.3B",
]
def search_hf_models_fuzzy(query: str, limit: int = 10) -> List[str]:
def search_hf_models_fuzzy(query: str, limit: int = 10) -> list[str]:
"""Use HuggingFace Hub's native fuzzy search for model suggestions"""
try:
from huggingface_hub import list_models
# HF Hub's search is already fuzzy! It handles typos and partial matches
models = list_models(
search=query,
filter="text-generation",
sort="downloads",
sort="downloads",
direction=-1,
limit=limit
limit=limit,
)
model_names = [model.id if hasattr(model, 'id') else str(model) for model in models]
model_names = [model.id if hasattr(model, "id") else str(model) for model in models]
# If direct search doesn't return enough results, try some variations
if len(model_names) < 3:
# Try searching for partial matches or common variations
variations = []
# Extract base name (e.g., "gpt3" from "gpt-3.5")
base_query = query.lower().replace('-', '').replace('.', '').replace('_', '')
base_query = query.lower().replace("-", "").replace(".", "").replace("_", "")
if base_query != query.lower():
variations.append(base_query)
# Try common model name patterns
if 'gpt' in query.lower():
variations.extend(['gpt2', 'gpt-neo', 'gpt-j', 'dialoGPT'])
elif 'llama' in query.lower():
variations.extend(['llama2', 'alpaca', 'vicuna'])
elif 'bert' in query.lower():
variations.extend(['roberta', 'distilbert', 'albert'])
if "gpt" in query.lower():
variations.extend(["gpt2", "gpt-neo", "gpt-j", "dialoGPT"])
elif "llama" in query.lower():
variations.extend(["llama2", "alpaca", "vicuna"])
elif "bert" in query.lower():
variations.extend(["roberta", "distilbert", "albert"])
# Search with variations
for var in variations[:2]: # Limit to 2 variations to avoid too many API calls
try:
@@ -274,13 +280,15 @@ def search_hf_models_fuzzy(query: str, limit: int = 10) -> List[str]:
filter="text-generation",
sort="downloads",
direction=-1,
limit=3
limit=3,
)
var_names = [model.id if hasattr(model, 'id') else str(model) for model in var_models]
var_names = [
model.id if hasattr(model, "id") else str(model) for model in var_models
]
model_names.extend(var_names)
except:
except Exception:
continue
# Remove duplicates while preserving order
seen = set()
unique_models = []
@@ -288,65 +296,67 @@ def search_hf_models_fuzzy(query: str, limit: int = 10) -> List[str]:
if model not in seen:
seen.add(model)
unique_models.append(model)
return unique_models[:limit]
except Exception:
# If search fails, return empty list
return []
def search_hf_models(query: str, limit: int = 10) -> List[str]:
def search_hf_models(query: str, limit: int = 10) -> list[str]:
"""Simple search for HuggingFace models based on query (kept for backward compatibility)"""
return search_hf_models_fuzzy(query, limit)
def validate_model_and_suggest(model_name: str, llm_type: str) -> Optional[str]:
def validate_model_and_suggest(model_name: str, llm_type: str) -> str | None:
"""Validate model name and provide suggestions if invalid"""
if llm_type == "ollama":
available_models = check_ollama_models()
if available_models and model_name not in available_models:
error_msg = f"Model '{model_name}' not found in your local Ollama installation."
# Check if the model exists remotely and get available tags
model_exists_remotely, available_tags = check_ollama_model_exists_remotely(model_name)
if model_exists_remotely and model_name in available_tags:
# Exact model exists remotely - suggest pulling it
error_msg += f"\n\nTo install the requested model:\n"
error_msg += "\n\nTo install the requested model:\n"
error_msg += f" ollama pull {model_name}\n"
# Show local alternatives
suggestions = search_ollama_models_fuzzy(model_name, available_models)
if suggestions:
error_msg += "\nOr use one of these similar installed models:\n"
for i, suggestion in enumerate(suggestions, 1):
error_msg += f" {i}. {suggestion}\n"
elif model_exists_remotely and available_tags:
# Base model exists but requested tag doesn't - suggest correct tags
base_model = model_name.split(':')[0]
requested_tag = model_name.split(':', 1)[1] if ':' in model_name else None
error_msg += f"\n\nModel '{base_model}' exists, but tag '{requested_tag}' is not available."
base_model = model_name.split(":")[0]
requested_tag = model_name.split(":", 1)[1] if ":" in model_name else None
error_msg += (
f"\n\nModel '{base_model}' exists, but tag '{requested_tag}' is not available."
)
error_msg += f"\n\nAvailable {base_model} models you can install:\n"
for i, tag in enumerate(available_tags[:8], 1):
error_msg += f" {i}. ollama pull {tag}\n"
if len(available_tags) > 8:
error_msg += f" ... and {len(available_tags) - 8} more variants\n"
# Also show local alternatives
suggestions = search_ollama_models_fuzzy(model_name, available_models)
if suggestions:
error_msg += "\nOr use one of these similar installed models:\n"
for i, suggestion in enumerate(suggestions, 1):
error_msg += f" {i}. {suggestion}\n"
else:
# Model doesn't exist remotely - show fuzzy suggestions
suggestions = search_ollama_models_fuzzy(model_name, available_models)
error_msg += f"\n\nModel '{model_name}' was not found in Ollama's library."
if suggestions:
error_msg += "\n\nDid you mean one of these installed models?\n"
for i, suggestion in enumerate(suggestions, 1):
@@ -357,23 +367,25 @@ def validate_model_and_suggest(model_name: str, llm_type: str) -> Optional[str]:
error_msg += f" {i}. {model}\n"
if len(available_models) > 8:
error_msg += f" ... and {len(available_models) - 8} more\n"
error_msg += "\n\nCommands:"
error_msg += "\n ollama list # List installed models"
if model_exists_remotely and available_tags:
if model_name in available_tags:
error_msg += f"\n ollama pull {model_name} # Install requested model"
else:
error_msg += f"\n ollama pull {available_tags[0]} # Install recommended variant"
error_msg += (
f"\n ollama pull {available_tags[0]} # Install recommended variant"
)
error_msg += "\n https://ollama.com/library # Browse available models"
return error_msg
elif llm_type == "hf":
# For HF models, we can do a quick existence check
if not check_hf_model_exists(model_name):
# Use HF Hub's native fuzzy search directly
search_suggestions = search_hf_models_fuzzy(model_name, limit=8)
error_msg = f"Model '{model_name}' not found on HuggingFace Hub."
if search_suggestions:
error_msg += "\n\nDid you mean one of these?\n"
@@ -385,10 +397,10 @@ def validate_model_and_suggest(model_name: str, llm_type: str) -> Optional[str]:
error_msg += "\n\nPopular chat models:\n"
for i, model in enumerate(popular_models[:5], 1):
error_msg += f" {i}. {model}\n"
error_msg += f"\nSearch more: https://huggingface.co/models?search={model_name}&pipeline_tag=text-generation"
return error_msg
return None # Model is valid or we can't check
@@ -451,28 +463,27 @@ class OllamaChat(LLMInterface):
# Check if the Ollama server is responsive
if host:
requests.get(host)
# Pre-check model availability with helpful suggestions
model_error = validate_model_and_suggest(model, "ollama")
if model_error:
raise ValueError(model_error)
except ImportError:
raise ImportError(
"The 'requests' library is required for Ollama. Please install it with 'pip install requests'."
)
except requests.exceptions.ConnectionError:
logger.error(
f"Could not connect to Ollama at {host}. Please ensure Ollama is running."
)
logger.error(f"Could not connect to Ollama at {host}. Please ensure Ollama is running.")
raise ConnectionError(
f"Could not connect to Ollama at {host}. Please ensure Ollama is running."
)
def ask(self, prompt: str, **kwargs) -> str:
import requests
import json
import requests
full_url = f"{self.host}/api/generate"
payload = {
"model": self.model,
@@ -482,7 +493,7 @@ class OllamaChat(LLMInterface):
}
logger.debug(f"Sending request to Ollama: {payload}")
try:
logger.info(f"Sending request to Ollama and waiting for response...")
logger.info("Sending request to Ollama and waiting for response...")
response = requests.post(full_url, data=json.dumps(payload))
response.raise_for_status()
@@ -506,15 +517,15 @@ class HFChat(LLMInterface):
def __init__(self, model_name: str = "deepseek-ai/deepseek-llm-7b-chat"):
logger.info(f"Initializing HFChat with model='{model_name}'")
# Pre-check model availability with helpful suggestions
model_error = validate_model_and_suggest(model_name, "hf")
if model_error:
raise ValueError(model_error)
try:
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
except ImportError:
raise ImportError(
"The 'transformers' and 'torch' libraries are required for Hugging Face models. Please install them with 'pip install transformers torch'."
@@ -537,36 +548,34 @@ class HFChat(LLMInterface):
model_name,
torch_dtype=torch.float16 if self.device != "cpu" else torch.float32,
device_map="auto" if self.device != "cpu" else None,
trust_remote_code=True
trust_remote_code=True,
)
# Move model to device if not using device_map
if self.device != "cpu" and "device_map" not in str(self.model):
self.model = self.model.to(self.device)
# Set pad token if not present
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
def ask(self, prompt: str, **kwargs) -> str:
print('kwargs in HF: ', kwargs)
print("kwargs in HF: ", kwargs)
# Check if this is a Qwen model and add /no_think by default
is_qwen_model = "qwen" in self.model.config._name_or_path.lower()
# For Qwen models, automatically add /no_think to the prompt
if is_qwen_model and "/no_think" not in prompt and "/think" not in prompt:
prompt = prompt + " /no_think"
# Prepare chat template
messages = [{"role": "user", "content": prompt}]
# Apply chat template if available
if hasattr(self.tokenizer, "apply_chat_template"):
try:
formatted_prompt = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
messages, tokenize=False, add_generation_prompt=True
)
except Exception as e:
logger.warning(f"Chat template failed, using raw prompt: {e}")
@@ -577,13 +586,13 @@ class HFChat(LLMInterface):
# Tokenize input
inputs = self.tokenizer(
formatted_prompt,
return_tensors="pt",
formatted_prompt,
return_tensors="pt",
padding=True,
truncation=True,
max_length=2048
max_length=2048,
)
# Move inputs to device
if self.device != "cpu":
inputs = {k: v.to(self.device) for k, v in inputs.items()}
@@ -597,32 +606,29 @@ class HFChat(LLMInterface):
"pad_token_id": self.tokenizer.eos_token_id,
"eos_token_id": self.tokenizer.eos_token_id,
}
# Handle temperature=0 for greedy decoding
if generation_config["temperature"] == 0.0:
generation_config["do_sample"] = False
generation_config.pop("temperature")
logger.info(f"Generating with HuggingFace model, config: {generation_config}")
# Generate
with torch.no_grad():
outputs = self.model.generate(
**inputs,
**generation_config
)
outputs = self.model.generate(**inputs, **generation_config)
# Decode response
generated_tokens = outputs[0][inputs["input_ids"].shape[1]:]
generated_tokens = outputs[0][inputs["input_ids"].shape[1] :]
response = self.tokenizer.decode(generated_tokens, skip_special_tokens=True)
return response.strip()
class OpenAIChat(LLMInterface):
"""LLM interface for OpenAI models."""
def __init__(self, model: str = "gpt-4o", api_key: Optional[str] = None):
def __init__(self, model: str = "gpt-4o", api_key: str | None = None):
self.model = model
self.api_key = api_key or os.getenv("OPENAI_API_KEY")
@@ -649,11 +655,7 @@ class OpenAIChat(LLMInterface):
"messages": [{"role": "user", "content": prompt}],
"max_tokens": kwargs.get("max_tokens", 1000),
"temperature": kwargs.get("temperature", 0.7),
**{
k: v
for k, v in kwargs.items()
if k not in ["max_tokens", "temperature"]
},
**{k: v for k, v in kwargs.items() if k not in ["max_tokens", "temperature"]},
}
logger.info(f"Sending request to OpenAI with model {self.model}")
@@ -675,7 +677,7 @@ class SimulatedChat(LLMInterface):
return "This is a simulated answer from the LLM based on the retrieved context."
def get_llm(llm_config: Optional[Dict[str, Any]] = None) -> LLMInterface:
def get_llm(llm_config: dict[str, Any] | None = None) -> LLMInterface:
"""
Factory function to get an LLM interface based on configuration.

View File

@@ -5,7 +5,38 @@ from pathlib import Path
from llama_index.core import SimpleDirectoryReader
from llama_index.core.node_parser import SentenceSplitter
from .api import LeannBuilder, LeannSearcher, LeannChat
from .api import LeannBuilder, LeannChat, LeannSearcher
def extract_pdf_text_with_pymupdf(file_path: str) -> str:
"""Extract text from PDF using PyMuPDF for better quality."""
try:
import fitz # PyMuPDF
doc = fitz.open(file_path)
text = ""
for page in doc:
text += page.get_text()
doc.close()
return text
except ImportError:
# Fallback to default reader
return None
def extract_pdf_text_with_pdfplumber(file_path: str) -> str:
"""Extract text from PDF using pdfplumber for better quality."""
try:
import pdfplumber
text = ""
with pdfplumber.open(file_path) as pdf:
for page in pdf.pages:
text += page.extract_text() or ""
return text
except ImportError:
# Fallback to default reader
return None
class LeannCLI:
@@ -45,18 +76,12 @@ Examples:
# Build command
build_parser = subparsers.add_parser("build", help="Build document index")
build_parser.add_argument("index_name", help="Index name")
build_parser.add_argument(
"--docs", type=str, required=True, help="Documents directory"
)
build_parser.add_argument("--docs", type=str, required=True, help="Documents directory")
build_parser.add_argument(
"--backend", type=str, default="hnsw", choices=["hnsw", "diskann"]
)
build_parser.add_argument(
"--embedding-model", type=str, default="facebook/contriever"
)
build_parser.add_argument(
"--force", "-f", action="store_true", help="Force rebuild"
)
build_parser.add_argument("--embedding-model", type=str, default="facebook/contriever")
build_parser.add_argument("--force", "-f", action="store_true", help="Force rebuild")
build_parser.add_argument("--graph-degree", type=int, default=32)
build_parser.add_argument("--complexity", type=int, default=64)
build_parser.add_argument("--num-threads", type=int, default=1)
@@ -102,7 +127,7 @@ Examples:
)
# List command
list_parser = subparsers.add_parser("list", help="List all indexes")
subparsers.add_parser("list", help="List all indexes")
return parser
@@ -110,17 +135,13 @@ Examples:
print("Stored LEANN indexes:")
if not self.indexes_dir.exists():
print(
"No indexes found. Use 'leann build <name> --docs <dir>' to create one."
)
print("No indexes found. Use 'leann build <name> --docs <dir>' to create one.")
return
index_dirs = [d for d in self.indexes_dir.iterdir() if d.is_dir()]
if not index_dirs:
print(
"No indexes found. Use 'leann build <name> --docs <dir>' to create one."
)
print("No indexes found. Use 'leann build <name> --docs <dir>' to create one.")
return
print(f"Found {len(index_dirs)} indexes:")
@@ -130,27 +151,58 @@ Examples:
print(f" {i}. {index_name} [{status}]")
if self.index_exists(index_name):
meta_file = index_dir / "documents.leann.meta.json"
size_mb = sum(
f.stat().st_size for f in index_dir.iterdir() if f.is_file()
) / (1024 * 1024)
index_dir / "documents.leann.meta.json"
size_mb = sum(f.stat().st_size for f in index_dir.iterdir() if f.is_file()) / (
1024 * 1024
)
print(f" Size: {size_mb:.1f} MB")
if index_dirs:
example_name = index_dirs[0].name
print(f"\nUsage:")
print("\nUsage:")
print(f' leann search {example_name} "your query"')
print(f" leann ask {example_name} --interactive")
def load_documents(self, docs_dir: str):
print(f"Loading documents from {docs_dir}...")
documents = SimpleDirectoryReader(
# Try to use better PDF parsers first
documents = []
docs_path = Path(docs_dir)
for file_path in docs_path.rglob("*.pdf"):
print(f"Processing PDF: {file_path}")
# Try PyMuPDF first (best quality)
text = extract_pdf_text_with_pymupdf(str(file_path))
if text is None:
# Try pdfplumber
text = extract_pdf_text_with_pdfplumber(str(file_path))
if text:
# Create a simple document structure
from llama_index.core import Document
doc = Document(text=text, metadata={"source": str(file_path)})
documents.append(doc)
else:
# Fallback to default reader
print(f"Using default reader for {file_path}")
default_docs = SimpleDirectoryReader(
str(file_path.parent),
filename_as_id=True,
required_exts=[file_path.suffix],
).load_data()
documents.extend(default_docs)
# Load other file types with default reader
other_docs = SimpleDirectoryReader(
docs_dir,
recursive=True,
encoding="utf-8",
required_exts=[".pdf", ".txt", ".md", ".docx"],
required_exts=[".txt", ".md", ".docx"],
).load_data(show_progress=True)
documents.extend(other_docs)
all_texts = []
for doc in documents:

View File

@@ -4,11 +4,12 @@ Consolidates all embedding computation logic using SentenceTransformer
Preserves all optimization parameters to ensure performance
"""
import numpy as np
import torch
from typing import List, Dict, Any
import logging
import os
from typing import Any
import numpy as np
import torch
# Set up logger with proper level
logger = logging.getLogger(__name__)
@@ -17,11 +18,11 @@ log_level = getattr(logging, LOG_LEVEL, logging.WARNING)
logger.setLevel(log_level)
# Global model cache to avoid repeated loading
_model_cache: Dict[str, Any] = {}
_model_cache: dict[str, Any] = {}
def compute_embeddings(
texts: List[str],
texts: list[str],
model_name: str,
mode: str = "sentence-transformers",
is_build: bool = False,
@@ -59,7 +60,7 @@ def compute_embeddings(
def compute_embeddings_sentence_transformers(
texts: List[str],
texts: list[str],
model_name: str,
use_fp16: bool = True,
device: str = "auto",
@@ -114,9 +115,7 @@ def compute_embeddings_sentence_transformers(
logger.info(f"Using cached optimized model: {model_name}")
model = _model_cache[cache_key]
else:
logger.info(
f"Loading and caching optimized SentenceTransformer model: {model_name}"
)
logger.info(f"Loading and caching optimized SentenceTransformer model: {model_name}")
from sentence_transformers import SentenceTransformer
logger.info(f"Using device: {device}")
@@ -134,9 +133,7 @@ def compute_embeddings_sentence_transformers(
if hasattr(torch.mps, "set_per_process_memory_fraction"):
torch.mps.set_per_process_memory_fraction(0.9)
except AttributeError:
logger.warning(
"Some MPS optimizations not available in this PyTorch version"
)
logger.warning("Some MPS optimizations not available in this PyTorch version")
elif device == "cpu":
# TODO: Haven't tested this yet
torch.set_num_threads(min(8, os.cpu_count() or 4))
@@ -226,25 +223,22 @@ def compute_embeddings_sentence_transformers(
device=device,
)
logger.info(
f"Generated {len(embeddings)} embeddings, dimension: {embeddings.shape[1]}"
)
logger.info(f"Generated {len(embeddings)} embeddings, dimension: {embeddings.shape[1]}")
# Validate results
if np.isnan(embeddings).any() or np.isinf(embeddings).any():
raise RuntimeError(
f"Detected NaN or Inf values in embeddings, model: {model_name}"
)
raise RuntimeError(f"Detected NaN or Inf values in embeddings, model: {model_name}")
return embeddings
def compute_embeddings_openai(texts: List[str], model_name: str) -> np.ndarray:
def compute_embeddings_openai(texts: list[str], model_name: str) -> np.ndarray:
# TODO: @yichuan-w add progress bar only in build mode
"""Compute embeddings using OpenAI API"""
try:
import openai
import os
import openai
except ImportError as e:
raise ImportError(f"OpenAI package not installed: {e}")
@@ -264,9 +258,10 @@ def compute_embeddings_openai(texts: List[str], model_name: str) -> np.ndarray:
logger.info(
f"Computing embeddings for {len(texts)} texts using OpenAI API, model: '{model_name}'"
)
print(f"len of texts: {len(texts)}")
# OpenAI has limits on batch size and input length
max_batch_size = 100 # Conservative batch size
max_batch_size = 1000 # Conservative batch size
all_embeddings = []
try:
@@ -293,15 +288,12 @@ def compute_embeddings_openai(texts: List[str], model_name: str) -> np.ndarray:
raise
embeddings = np.array(all_embeddings, dtype=np.float32)
logger.info(
f"Generated {len(embeddings)} embeddings, dimension: {embeddings.shape[1]}"
)
logger.info(f"Generated {len(embeddings)} embeddings, dimension: {embeddings.shape[1]}")
print(f"len of embeddings: {len(embeddings)}")
return embeddings
def compute_embeddings_mlx(
chunks: List[str], model_name: str, batch_size: int = 16
) -> np.ndarray:
def compute_embeddings_mlx(chunks: list[str], model_name: str, batch_size: int = 16) -> np.ndarray:
# TODO: @yichuan-w add progress bar only in build mode
"""Computes embeddings using an MLX model."""
try:

View File

@@ -1,12 +1,12 @@
import time
import atexit
import logging
import os
import socket
import subprocess
import sys
import os
import logging
import time
from pathlib import Path
from typing import Optional
import psutil
# Set up logging based on environment variable
@@ -18,6 +18,24 @@ logging.basicConfig(
logger = logging.getLogger(__name__)
def _is_colab_environment() -> bool:
"""Check if we're running in Google Colab environment."""
return "COLAB_GPU" in os.environ or "COLAB_TPU" in os.environ
def _get_available_port(start_port: int = 5557) -> int:
"""Get an available port starting from start_port."""
port = start_port
while port < start_port + 100: # Try up to 100 ports
try:
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.bind(("localhost", port))
return port
except OSError:
port += 1
raise RuntimeError(f"No available ports found in range {start_port}-{start_port + 100}")
def _check_port(port: int) -> bool:
"""Check if a port is in use"""
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
@@ -164,8 +182,8 @@ class EmbeddingServerManager:
e.g., "leann_backend_diskann.embedding_server"
"""
self.backend_module_name = backend_module_name
self.server_process: Optional[subprocess.Popen] = None
self.server_port: Optional[int] = None
self.server_process: subprocess.Popen | None = None
self.server_port: int | None = None
self._atexit_registered = False
def start_server(
@@ -175,68 +193,69 @@ class EmbeddingServerManager:
embedding_mode: str = "sentence-transformers",
**kwargs,
) -> tuple[bool, int]:
"""
Starts the embedding server process.
Args:
port (int): The preferred ZMQ port for the server.
model_name (str): The name of the embedding model to use.
**kwargs: Additional arguments for the server.
Returns:
tuple[bool, int]: (success, actual_port_used)
"""
"""Start the embedding server."""
passages_file = kwargs.get("passages_file")
assert isinstance(passages_file, str), "passages_file must be a string"
# Check if we have a compatible running server
# Check if we have a compatible server already running
if self._has_compatible_running_server(model_name, passages_file):
assert self.server_port is not None, (
"a compatible running server should set server_port"
)
return True, self.server_port
logger.info("Found compatible running server!")
return True, port
# Find available port (compatible or free)
try:
actual_port, is_compatible = _find_compatible_port_or_next_available(
port, model_name, passages_file
)
except RuntimeError as e:
logger.error(str(e))
return False, port
# For Colab environment, use a different strategy
if _is_colab_environment():
logger.info("Detected Colab environment, using alternative startup strategy")
return self._start_server_colab(port, model_name, embedding_mode, **kwargs)
# Find a compatible port or next available
actual_port, is_compatible = _find_compatible_port_or_next_available(
port, model_name, passages_file
)
if is_compatible:
logger.info(f"Using existing compatible server on port {actual_port}")
self.server_port = actual_port
self.server_process = None # We don't own this process
logger.info(f"Found compatible server on port {actual_port}")
return True, actual_port
if actual_port != port:
logger.info(f"Using port {actual_port} instead of {port}")
# Start new server
# Start a new server
return self._start_new_server(actual_port, model_name, embedding_mode, **kwargs)
def _has_compatible_running_server(
self, model_name: str, passages_file: str
) -> bool:
def _start_server_colab(
self,
port: int,
model_name: str,
embedding_mode: str = "sentence-transformers",
**kwargs,
) -> tuple[bool, int]:
"""Start server with Colab-specific configuration."""
# Try to find an available port
try:
actual_port = _get_available_port(port)
except RuntimeError:
logger.error("No available ports found")
return False, port
logger.info(f"Starting server on port {actual_port} for Colab environment")
# Use a simpler startup strategy for Colab
command = self._build_server_command(actual_port, model_name, embedding_mode, **kwargs)
try:
# In Colab, we'll use a more direct approach
self._launch_server_process_colab(command, actual_port)
return self._wait_for_server_ready_colab(actual_port)
except Exception as e:
logger.error(f"Failed to start embedding server in Colab: {e}")
return False, actual_port
def _has_compatible_running_server(self, model_name: str, passages_file: str) -> bool:
"""Check if we have a compatible running server."""
if not (
self.server_process
and self.server_process.poll() is None
and self.server_port
):
if not (self.server_process and self.server_process.poll() is None and self.server_port):
return False
if _check_process_matches_config(self.server_port, model_name, passages_file):
logger.info(
f"Existing server process (PID {self.server_process.pid}) is compatible"
)
logger.info(f"Existing server process (PID {self.server_process.pid}) is compatible")
return True
logger.info(
"Existing server process is incompatible. Should start a new server."
)
logger.info("Existing server process is incompatible. Should start a new server.")
return False
def _start_new_server(
@@ -274,6 +293,8 @@ class EmbeddingServerManager:
command.extend(["--passages-file", str(passages_file)])
if embedding_mode != "sentence-transformers":
command.extend(["--embedding-mode", embedding_mode])
if kwargs.get("distance_metric"):
command.extend(["--distance-metric", kwargs["distance_metric"]])
return command
@@ -348,3 +369,45 @@ class EmbeddingServerManager:
pass
self.server_process = None
def _launch_server_process_colab(self, command: list, port: int) -> None:
"""Launch the server process with Colab-specific settings."""
logger.info(f"Colab Command: {' '.join(command)}")
# In Colab, we need to be more careful about process management
self.server_process = subprocess.Popen(
command,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
)
self.server_port = port
logger.info(f"Colab server process started with PID: {self.server_process.pid}")
# Register atexit callback
if not self._atexit_registered:
atexit.register(lambda: self.stop_server() if self.server_process else None)
self._atexit_registered = True
def _wait_for_server_ready_colab(self, port: int) -> tuple[bool, int]:
"""Wait for the server to be ready with Colab-specific timeout."""
max_wait, wait_interval = 30, 0.5 # Shorter timeout for Colab
for _ in range(int(max_wait / wait_interval)):
if _check_port(port):
logger.info("Colab embedding server is ready!")
return True, port
if self.server_process and self.server_process.poll() is not None:
# Check for error output
stdout, stderr = self.server_process.communicate()
logger.error("Colab server terminated during startup.")
logger.error(f"stdout: {stdout}")
logger.error(f"stderr: {stderr}")
return False, port
time.sleep(wait_interval)
logger.error(f"Colab server failed to start within {max_wait} seconds.")
self.stop_server()
return False, port

View File

@@ -1,15 +1,14 @@
from abc import ABC, abstractmethod
from typing import Any, Literal
import numpy as np
from typing import Dict, Any, List, Literal, Optional
class LeannBackendBuilderInterface(ABC):
"""Backend interface for building indexes"""
@abstractmethod
def build(
self, data: np.ndarray, ids: List[str], index_path: str, **kwargs
) -> None:
def build(self, data: np.ndarray, ids: list[str], index_path: str, **kwargs) -> None:
"""Build index
Args:
@@ -35,9 +34,7 @@ class LeannBackendSearcherInterface(ABC):
pass
@abstractmethod
def _ensure_server_running(
self, passages_source_file: str, port: Optional[int], **kwargs
) -> int:
def _ensure_server_running(self, passages_source_file: str, port: int | None, **kwargs) -> int:
"""Ensure server is running"""
pass
@@ -51,9 +48,9 @@ class LeannBackendSearcherInterface(ABC):
prune_ratio: float = 0.0,
recompute_embeddings: bool = False,
pruning_strategy: Literal["global", "local", "proportional"] = "global",
zmq_port: Optional[int] = None,
zmq_port: int | None = None,
**kwargs,
) -> Dict[str, Any]:
) -> dict[str, Any]:
"""Search for nearest neighbors
Args:
@@ -77,7 +74,7 @@ class LeannBackendSearcherInterface(ABC):
self,
query: str,
use_server_if_available: bool = True,
zmq_port: Optional[int] = None,
zmq_port: int | None = None,
) -> np.ndarray:
"""Compute embedding for a query string

View File

@@ -1,13 +1,13 @@
# packages/leann-core/src/leann/registry.py
from typing import Dict, TYPE_CHECKING
import importlib
import importlib.metadata
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from leann.interface import LeannBackendFactoryInterface
BACKEND_REGISTRY: Dict[str, "LeannBackendFactoryInterface"] = {}
BACKEND_REGISTRY: dict[str, "LeannBackendFactoryInterface"] = {}
def register_backend(name: str):
@@ -31,13 +31,11 @@ def autodiscover_backends():
backend_module_name = dist_name.replace("-", "_")
discovered_backends.append(backend_module_name)
for backend_module_name in sorted(
discovered_backends
): # sort for deterministic loading
for backend_module_name in sorted(discovered_backends): # sort for deterministic loading
try:
importlib.import_module(backend_module_name)
# Registration message is printed by the decorator
except ImportError as e:
except ImportError:
# print(f"WARN: Could not import backend module '{backend_module_name}': {e}")
pass
# print("INFO: Backend auto-discovery finished.")

View File

@@ -1,7 +1,7 @@
import json
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Dict, Any, Literal, Optional
from typing import Any, Literal
import numpy as np
@@ -38,9 +38,7 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
self.embedding_model = self.meta.get("embedding_model")
if not self.embedding_model:
print(
"WARNING: embedding_model not found in meta.json. Recompute will fail."
)
print("WARNING: embedding_model not found in meta.json. Recompute will fail.")
self.embedding_mode = self.meta.get("embedding_mode", "sentence-transformers")
@@ -48,39 +46,40 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
backend_module_name=backend_module_name,
)
def _load_meta(self) -> Dict[str, Any]:
def _load_meta(self) -> dict[str, Any]:
"""Loads the metadata file associated with the index."""
# This is the corrected logic for finding the meta file.
meta_path = self.index_dir / f"{self.index_path.name}.meta.json"
if not meta_path.exists():
raise FileNotFoundError(f"Leann metadata file not found at {meta_path}")
with open(meta_path, "r", encoding="utf-8") as f:
with open(meta_path, encoding="utf-8") as f:
return json.load(f)
def _ensure_server_running(
self, passages_source_file: str, port: int, **kwargs
) -> int:
def _ensure_server_running(self, passages_source_file: str, port: int, **kwargs) -> int:
"""
Ensures the embedding server is running if recompute is needed.
This is a helper for subclasses.
"""
if not self.embedding_model:
raise ValueError(
"Cannot use recompute mode without 'embedding_model' in meta.json."
)
raise ValueError("Cannot use recompute mode without 'embedding_model' in meta.json.")
# Get distance_metric from meta if not provided in kwargs
distance_metric = (
kwargs.get("distance_metric")
or self.meta.get("backend_kwargs", {}).get("distance_metric")
or "mips"
)
server_started, actual_port = self.embedding_server_manager.start_server(
port=port,
model_name=self.embedding_model,
embedding_mode=self.embedding_mode,
passages_file=passages_source_file,
distance_metric=kwargs.get("distance_metric"),
distance_metric=distance_metric,
enable_warmup=kwargs.get("enable_warmup", False),
)
if not server_started:
raise RuntimeError(
f"Failed to start embedding server on port {actual_port}"
)
raise RuntimeError(f"Failed to start embedding server on port {actual_port}")
return actual_port
@@ -109,9 +108,7 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
# on that port?
# Ensure we have a server with passages_file for compatibility
passages_source_file = (
self.index_dir / f"{self.index_path.name}.meta.json"
)
passages_source_file = self.index_dir / f"{self.index_path.name}.meta.json"
# Convert to absolute path to ensure server can find it
zmq_port = self._ensure_server_running(
str(passages_source_file.resolve()), zmq_port
@@ -132,8 +129,8 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
def _compute_embedding_via_server(self, chunks: list, zmq_port: int) -> np.ndarray:
"""Compute embeddings using the ZMQ embedding server."""
import zmq
import msgpack
import zmq
try:
context = zmq.Context()
@@ -172,9 +169,9 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
prune_ratio: float = 0.0,
recompute_embeddings: bool = False,
pruning_strategy: Literal["global", "local", "proportional"] = "global",
zmq_port: Optional[int] = None,
zmq_port: int | None = None,
**kwargs,
) -> Dict[str, Any]:
) -> dict[str, Any]:
"""
Search for the top_k nearest neighbors of the query vector.

View File

@@ -16,25 +16,24 @@ uv pip install leann[diskann]
```python
from leann import LeannBuilder, LeannSearcher, LeannChat
from pathlib import Path
INDEX_PATH = str(Path("./").resolve() / "demo.leann")
# Build an index
builder = LeannBuilder(backend_name="hnsw")
builder.add_text("LEANN saves 97% storage compared to traditional vector databases.")
builder.build_index("my_index.leann")
builder.add_text("Tung Tung Tung Sahur called—they need their bananacrocodile hybrid back")
builder.build_index(INDEX_PATH)
# Search
searcher = LeannSearcher("my_index.leann")
results = searcher.search("storage savings", top_k=3)
searcher = LeannSearcher(INDEX_PATH)
results = searcher.search("fantastical AI-generated creatures", top_k=1)
# Chat with your data
chat = LeannChat("my_index.leann", llm_config={"type": "ollama", "model": "llama3.2:1b"})
response = chat.ask("How much storage does LEANN save?")
chat = LeannChat(INDEX_PATH, llm_config={"type": "hf", "model": "Qwen/Qwen3-0.6B"})
response = chat.ask("How much storage does LEANN save?", top_k=1)
```
## Documentation
For full documentation, visit [https://leann.readthedocs.io](https://leann.readthedocs.io)
## License
MIT License
MIT License

View File

@@ -7,6 +7,6 @@ A revolutionary vector database that democratizes personal AI.
__version__ = "0.1.0"
# Re-export main API from leann-core
from leann_core import LeannBuilder, LeannSearcher, LeannChat
from leann_core import LeannBuilder, LeannChat, LeannSearcher
__all__ = ["LeannBuilder", "LeannSearcher", "LeannChat"]
__all__ = ["LeannBuilder", "LeannChat", "LeannSearcher"]

View File

@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
[project]
name = "leann"
version = "0.1.9"
version = "0.1.16"
description = "LEANN - The smallest vector index in the world. RAG Everything with LEANN!"
readme = "README.md"
requires-python = ">=3.9"
@@ -36,7 +36,5 @@ diskann = [
]
[project.urls]
Homepage = "https://github.com/yourusername/leann"
Documentation = "https://leann.readthedocs.io"
Repository = "https://github.com/yourusername/leann"
Issues = "https://github.com/yourusername/leann/issues"
Repository = "https://github.com/yichuan-w/LEANN"
Issues = "https://github.com/yichuan-w/LEANN/issues"

View File

@@ -1,22 +1,23 @@
import json
import typer
from pathlib import Path
import requests
from tqdm import tqdm
import xml.etree.ElementTree as ET
from typing_extensions import Annotated
import sqlite3
import xml.etree.ElementTree as ElementTree
from pathlib import Path
from typing import Annotated
import requests
import typer
from tqdm import tqdm
app = typer.Typer()
def get_safe_path(s: str) -> str:
"""
Remove invalid characters to sanitize a path.
:param s: str to sanitize
:returns: sanitized str
"""
ban_chars = "\\ / : * ? \" ' < > | $ \r \n".replace(
' ', '')
ban_chars = "\\ / : * ? \" ' < > | $ \r \n".replace(" ", "")
for i in ban_chars:
s = s.replace(i, "")
return s
@@ -25,36 +26,40 @@ def get_safe_path(s: str) -> str:
def process_history(history: str):
if history.startswith("<?xml") or history.startswith("<msg>"):
try:
root = ET.fromstring(history)
title = root.find('.//title').text if root.find('.//title') is not None else None
quoted = root.find('.//refermsg/content').text if root.find('.//refermsg/content') is not None else None
root = ElementTree.fromstring(history)
title = root.find(".//title").text if root.find(".//title") is not None else None
quoted = (
root.find(".//refermsg/content").text
if root.find(".//refermsg/content") is not None
else None
)
if title and quoted:
return {
"title": title,
"quoted": process_history(quoted)
}
return {"title": title, "quoted": process_history(quoted)}
if title:
return title
except Exception:
return history
return history
def get_message(history: dict | str):
if isinstance(history, dict):
if 'title' in history:
return history['title']
if "title" in history:
return history["title"]
else:
return history
def export_chathistory(user_id: str):
res = requests.get("http://localhost:48065/wechat/chatlog", params={
"userId": user_id,
"count": 100000
}).json()
for i in range(len(res['chatLogs'])):
res['chatLogs'][i]['content'] = process_history(res['chatLogs'][i]['content'])
res['chatLogs'][i]['message'] = get_message(res['chatLogs'][i]['content'])
return res['chatLogs']
res = requests.get(
"http://localhost:48065/wechat/chatlog",
params={"userId": user_id, "count": 100000},
).json()
for i in range(len(res["chatLogs"])):
res["chatLogs"][i]["content"] = process_history(res["chatLogs"][i]["content"])
res["chatLogs"][i]["message"] = get_message(res["chatLogs"][i]["content"])
return res["chatLogs"]
@app.command()
def export_all(dest: Annotated[Path, typer.Argument(help="Destination path to export to.")]):
@@ -64,7 +69,7 @@ def export_all(dest: Annotated[Path, typer.Argument(help="Destination path to ex
if not dest.is_dir():
if not dest.exists():
inp = typer.prompt("Destination path does not exist, create it? (y/n)")
if inp.lower() == 'y':
if inp.lower() == "y":
dest.mkdir(parents=True)
else:
typer.echo("Aborted.", err=True)
@@ -77,12 +82,12 @@ def export_all(dest: Annotated[Path, typer.Argument(help="Destination path to ex
exported_count = 0
for user in tqdm(all_users):
try:
usr_chatlog = export_chathistory(user['arg'])
usr_chatlog = export_chathistory(user["arg"])
# Only write file if there are messages
if len(usr_chatlog) > 0:
out_path = dest/get_safe_path((user['title'] or "")+"-"+user['arg']+'.json')
with open(out_path, 'w', encoding='utf-8') as f:
out_path = dest / get_safe_path((user["title"] or "") + "-" + user["arg"] + ".json")
with open(out_path, "w", encoding="utf-8") as f:
json.dump(usr_chatlog, f, ensure_ascii=False, indent=2)
exported_count += 1
except Exception as e:
@@ -91,23 +96,43 @@ def export_all(dest: Annotated[Path, typer.Argument(help="Destination path to ex
print(f"Exported {exported_count} users' chat history to {dest} in json.")
@app.command()
def export_sqlite(dest: Annotated[Path, typer.Argument(help="Destination path to export to.")] = Path("chatlog.db")):
def export_sqlite(
dest: Annotated[Path, typer.Argument(help="Destination path to export to.")] = Path(
"chatlog.db"
),
):
"""
Export all users' chat history to a sqlite database.
"""
connection = sqlite3.connect(dest)
cursor = connection.cursor()
cursor.execute("CREATE TABLE IF NOT EXISTS chatlog (id INTEGER PRIMARY KEY AUTOINCREMENT, with_id TEXT, from_user TEXT, to_user TEXT, message TEXT, timest DATETIME, auxiliary TEXT)")
cursor.execute(
"CREATE TABLE IF NOT EXISTS chatlog (id INTEGER PRIMARY KEY AUTOINCREMENT, with_id TEXT, from_user TEXT, to_user TEXT, message TEXT, timest DATETIME, auxiliary TEXT)"
)
cursor.execute("CREATE INDEX IF NOT EXISTS chatlog_with_id_index ON chatlog (with_id)")
cursor.execute("CREATE TABLE iF NOT EXISTS users (id TEXT PRIMARY KEY, name TEXT)")
all_users = requests.get("http://localhost:48065/wechat/allcontacts").json()
for user in tqdm(all_users):
cursor.execute("INSERT OR IGNORE INTO users (id, name) VALUES (?, ?)", (user['arg'], user['title']))
usr_chatlog = export_chathistory(user['arg'])
cursor.execute(
"INSERT OR IGNORE INTO users (id, name) VALUES (?, ?)",
(user["arg"], user["title"]),
)
usr_chatlog = export_chathistory(user["arg"])
for msg in usr_chatlog:
cursor.execute("INSERT INTO chatlog (with_id, from_user, to_user, message, timest, auxiliary) VALUES (?, ?, ?, ?, ?, ?)", (user['arg'], msg['fromUser'], msg['toUser'], msg['message'], msg['createTime'], str(msg['content'])))
cursor.execute(
"INSERT INTO chatlog (with_id, from_user, to_user, message, timest, auxiliary) VALUES (?, ?, ?, ?, ?, ?)",
(
user["arg"],
msg["fromUser"],
msg["toUser"],
msg["message"],
msg["createTime"],
str(msg["content"]),
),
)
connection.commit()

View File

@@ -5,7 +5,7 @@ build-backend = "setuptools.build_meta"
[project]
name = "leann-workspace"
version = "0.1.0"
requires-python = ">=3.10"
requires-python = ">=3.9"
dependencies = [
"leann-core",
@@ -25,14 +25,21 @@ dependencies = [
"requests>=2.25.0",
"sentence-transformers>=2.2.0",
"openai>=1.0.0",
# PDF parsing dependencies - essential for document processing
"PyPDF2>=3.0.0",
"pdfplumber>=0.11.0",
"pymupdf>=1.26.0",
"pypdfium2>=4.30.0",
# LlamaIndex core and readers - updated versions
"llama-index>=0.12.44",
"llama-index-readers-docling",
"llama-index-node-parser-docling",
"ipykernel==6.29.5",
"msgpack>=1.1.1",
"llama-index-readers-file>=0.4.0", # Essential for PDF parsing
# "llama-index-readers-docling", # Requires Python >= 3.10
# "llama-index-node-parser-docling", # Requires Python >= 3.10
"llama-index-vector-stores-faiss>=0.4.0",
"llama-index-embeddings-huggingface>=0.5.5",
# Other dependencies
"ipykernel==6.29.5",
"msgpack>=1.1.1",
"mlx>=0.26.3; sys_platform == 'darwin'",
"mlx-lm>=0.26.0; sys_platform == 'darwin'",
"psutil>=5.8.0",
@@ -42,16 +49,35 @@ dependencies = [
dev = [
"pytest>=7.0",
"pytest-cov>=4.0",
"pytest-xdist>=3.0", # For parallel test execution
"black>=23.0",
"ruff>=0.1.0",
"matplotlib",
"huggingface-hub>=0.20.0",
"pre-commit>=3.5.0",
]
test = [
"pytest>=7.0",
"pytest-timeout>=2.0",
"llama-index-core>=0.12.0",
"llama-index-readers-file>=0.4.0",
"python-dotenv>=1.0.0",
"sentence-transformers>=2.2.0",
]
diskann = [
"leann-backend-diskann",
]
# Add a new optional dependency group for document processing
documents = [
"beautifulsoup4>=4.13.0", # For HTML parsing
"python-docx>=0.8.11", # For Word documents
"openpyxl>=3.1.0", # For Excel files
"pandas>=2.2.0", # For data processing
]
[tool.setuptools]
py-modules = []
@@ -60,3 +86,71 @@ py-modules = []
leann-core = { path = "packages/leann-core", editable = true }
leann-backend-diskann = { path = "packages/leann-backend-diskann", editable = true }
leann-backend-hnsw = { path = "packages/leann-backend-hnsw", editable = true }
[tool.ruff]
target-version = "py310"
line-length = 100
extend-exclude = [
"third_party",
"*.egg-info",
"__pycache__",
".git",
".venv",
]
[tool.ruff.lint]
select = [
"E", # pycodestyle errors
"W", # pycodestyle warnings
"F", # pyflakes
"I", # isort
"B", # flake8-bugbear
"C4", # flake8-comprehensions
"UP", # pyupgrade
"N", # pep8-naming
"RUF", # ruff-specific rules
]
ignore = [
"E501", # line too long (handled by formatter)
"B008", # do not perform function calls in argument defaults
"B904", # raise without from
"N812", # lowercase imported as non-lowercase
"N806", # variable in function should be lowercase
"RUF012", # mutable class attributes should be annotated with typing.ClassVar
]
[tool.ruff.lint.per-file-ignores]
"test/**/*.py" = ["E402"] # module level import not at top of file (common in tests)
"examples/**/*.py" = ["E402"] # module level import not at top of file (common in examples)
[tool.ruff.format]
quote-style = "double"
indent-style = "space"
skip-magic-trailing-comma = false
line-ending = "auto"
[dependency-groups]
dev = [
"ruff>=0.12.4",
]
[tool.pytest.ini_options]
testpaths = ["tests"]
python_files = ["test_*.py"]
python_classes = ["Test*"]
python_functions = ["test_*"]
markers = [
"slow: marks tests as slow (deselect with '-m \"not slow\"')",
"openai: marks tests that require OpenAI API key",
]
timeout = 600
addopts = [
"-v",
"--tb=short",
"--strict-markers",
"--disable-warnings",
]
env = [
"HF_HUB_DISABLE_SYMLINKS=1",
"TOKENIZERS_PARALLELISM=false",
]

View File

@@ -19,16 +19,16 @@ uv pip install build twine delocate auditwheel scikit-build-core cmake pybind11
build_package() {
local package_dir=$1
local package_name=$(basename $package_dir)
echo "Building $package_name..."
cd $package_dir
# Clean previous builds
rm -rf dist/ build/ _skbuild/
# Build directly with pip wheel (avoids sdist issues)
pip wheel . --no-deps -w dist
# Repair wheel for binary packages
if [[ "$package_name" != "leann-core" ]] && [[ "$package_name" != "leann" ]]; then
if [[ "$OSTYPE" == "darwin"* ]]; then
@@ -57,7 +57,7 @@ build_package() {
fi
fi
fi
echo "Built wheels in $package_dir/dist/"
ls -la dist/
cd - > /dev/null
@@ -84,4 +84,4 @@ else
fi
echo -e "\nBuild complete! Test with:"
echo "uv pip install packages/*/dist/*.whl"
echo "uv pip install packages/*/dist/*.whl"

View File

@@ -28,4 +28,4 @@ else
fi
echo "✅ Version updated to $NEW_VERSION"
echo "✅ Dependencies updated to use leann-core==$NEW_VERSION"
echo "✅ Dependencies updated to use leann-core==$NEW_VERSION"

View File

@@ -15,4 +15,4 @@ VERSION=$1
git add . && git commit -m "chore: bump version to $VERSION" && git push
# Create release (triggers CI)
gh release create v$VERSION --generate-notes
gh release create v$VERSION --generate-notes

View File

@@ -27,4 +27,4 @@ else
else
echo "Cancelled"
fi
fi
fi

View File

@@ -1,5 +1,6 @@
import os
from leann.api import LeannBuilder, LeannSearcher, LeannChat
from leann.api import LeannBuilder, LeannChat
# Define the path for our new MLX-based index
INDEX_PATH = "./mlx_diskann_index/leann"
@@ -38,7 +39,5 @@ chat = LeannChat(index_path=INDEX_PATH)
# add query
query = "MLX is an array framework for machine learning on Apple silicon."
print(f"Query: {query}")
response = chat.ask(
query, top_k=3, recompute_beighbor_embeddings=True, complexity=3, beam_width=1
)
response = chat.ask(query, top_k=3, recompute_beighbor_embeddings=True, complexity=3, beam_width=1)
print(f"Response: {response}")

View File

@@ -1,76 +1,84 @@
import os
import email
from pathlib import Path
from typing import List, Any
from llama_index.core import VectorStoreIndex, Document
import os
from typing import Any
from llama_index.core import Document, VectorStoreIndex
from llama_index.core.readers.base import BaseReader
class EmlxReader(BaseReader):
"""
Apple Mail .emlx file reader.
Reads individual .emlx files from Apple Mail's storage format.
"""
def __init__(self) -> None:
"""Initialize."""
pass
def load_data(self, input_dir: str, **load_kwargs: Any) -> List[Document]:
def load_data(self, input_dir: str, **load_kwargs: Any) -> list[Document]:
"""
Load data from the input directory containing .emlx files.
Args:
input_dir: Directory containing .emlx files
**load_kwargs:
max_count (int): Maximum amount of messages to read.
"""
docs: List[Document] = []
max_count = load_kwargs.get('max_count', 1000)
docs: list[Document] = []
max_count = load_kwargs.get("max_count", 1000)
count = 0
# Walk through the directory recursively
for dirpath, dirnames, filenames in os.walk(input_dir):
# Skip hidden directories
dirnames[:] = [d for d in dirnames if not d.startswith(".")]
for filename in filenames:
if count >= max_count:
break
if filename.endswith(".emlx"):
filepath = os.path.join(dirpath, filename)
try:
# Read the .emlx file
with open(filepath, 'r', encoding='utf-8', errors='ignore') as f:
with open(filepath, encoding="utf-8", errors="ignore") as f:
content = f.read()
# .emlx files have a length prefix followed by the email content
# The first line contains the length, followed by the email
lines = content.split('\n', 1)
lines = content.split("\n", 1)
if len(lines) >= 2:
email_content = lines[1]
# Parse the email using Python's email module
try:
msg = email.message_from_string(email_content)
# Extract email metadata
subject = msg.get('Subject', 'No Subject')
from_addr = msg.get('From', 'Unknown')
to_addr = msg.get('To', 'Unknown')
date = msg.get('Date', 'Unknown')
subject = msg.get("Subject", "No Subject")
from_addr = msg.get("From", "Unknown")
to_addr = msg.get("To", "Unknown")
date = msg.get("Date", "Unknown")
# Extract email body
body = ""
if msg.is_multipart():
for part in msg.walk():
if part.get_content_type() == "text/plain" or part.get_content_type() == "text/html":
body += part.get_payload(decode=True).decode('utf-8', errors='ignore')
if (
part.get_content_type() == "text/plain"
or part.get_content_type() == "text/html"
):
body += part.get_payload(decode=True).decode(
"utf-8", errors="ignore"
)
# break
else:
body = msg.get_payload(decode=True).decode('utf-8', errors='ignore')
body = msg.get_payload(decode=True).decode(
"utf-8", errors="ignore"
)
# Create document content
doc_content = f"""
From: {from_addr}
@@ -80,32 +88,38 @@ Date: {date}
{body}
"""
# Create metadata
metadata = {
'file_path': filepath,
'subject': subject,
'from': from_addr,
'to': to_addr,
'date': date,
'filename': filename
"file_path": filepath,
"subject": subject,
"from": from_addr,
"to": to_addr,
"date": date,
"filename": filename,
}
if count == 0:
print("--------------------------------")
print('dir path', dirpath)
print("dir path", dirpath)
print(metadata)
print(doc_content)
print("--------------------------------")
body=[]
body = []
if msg.is_multipart():
for part in msg.walk():
print("-------------------------------- get content type -------------------------------")
print(
"-------------------------------- get content type -------------------------------"
)
print(part.get_content_type())
print(part)
# body.append(part.get_payload(decode=True).decode('utf-8', errors='ignore'))
print("-------------------------------- get content type -------------------------------")
print(
"-------------------------------- get content type -------------------------------"
)
else:
body = msg.get_payload(decode=True).decode('utf-8', errors='ignore')
body = msg.get_payload(decode=True).decode(
"utf-8", errors="ignore"
)
print(body)
print(body)
@@ -113,22 +127,23 @@ Date: {date}
doc = Document(text=doc_content, metadata=metadata)
docs.append(doc)
count += 1
except Exception as e:
print(f"!!!!!!! Error parsing email from {filepath}: {e} !!!!!!!!")
continue
except Exception as e:
print(f"!!!!!!! Error reading file !!!!!!!! {filepath}: {e}")
continue
print(f"Loaded {len(docs)} email documents")
return docs
# Use the custom EmlxReader instead of MboxReader
documents = EmlxReader().load_data(
"/Users/yichuan/Library/Mail/V10/0FCA0879-FD8C-4B7E-83BF-FDDA930791C5/[Gmail].mbox/All Mail.mbox/78BA5BE1-8819-4F9A-9613-EB63772F1DD0/Data/9/Messages",
max_count=1000
"/Users/yichuan/Library/Mail/V10/0FCA0879-FD8C-4B7E-83BF-FDDA930791C5/[Gmail].mbox/All Mail.mbox/78BA5BE1-8819-4F9A-9613-EB63772F1DD0/Data/9/Messages",
max_count=1000,
) # Returns list of documents
# Configure the index with larger chunk size to handle long metadata
@@ -138,10 +153,9 @@ from llama_index.core.node_parser import SentenceSplitter
text_splitter = SentenceSplitter(chunk_size=2048, chunk_overlap=200)
index = VectorStoreIndex.from_documents(
documents,
transformations=[text_splitter]
documents, transformations=[text_splitter]
) # Initialize index with documents
query_engine = index.as_query_engine()
res = query_engine.query("Hows Berkeley Graduate Student Instructor")
print(res)
print(res)

View File

@@ -1,77 +1,82 @@
import os
import email
from pathlib import Path
from typing import List, Any
from llama_index.core import VectorStoreIndex, Document, StorageContext
from llama_index.core.readers.base import BaseReader
import os
from typing import Any
from llama_index.core import Document, StorageContext, VectorStoreIndex
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.readers.base import BaseReader
class EmlxReader(BaseReader):
"""
Apple Mail .emlx file reader.
Reads individual .emlx files from Apple Mail's storage format.
"""
def __init__(self) -> None:
"""Initialize."""
pass
def load_data(self, input_dir: str, **load_kwargs: Any) -> List[Document]:
def load_data(self, input_dir: str, **load_kwargs: Any) -> list[Document]:
"""
Load data from the input directory containing .emlx files.
Args:
input_dir: Directory containing .emlx files
**load_kwargs:
max_count (int): Maximum amount of messages to read.
"""
docs: List[Document] = []
max_count = load_kwargs.get('max_count', 1000)
docs: list[Document] = []
max_count = load_kwargs.get("max_count", 1000)
count = 0
# Walk through the directory recursively
for dirpath, dirnames, filenames in os.walk(input_dir):
# Skip hidden directories
dirnames[:] = [d for d in dirnames if not d.startswith(".")]
for filename in filenames:
if count >= max_count:
break
if filename.endswith(".emlx"):
filepath = os.path.join(dirpath, filename)
try:
# Read the .emlx file
with open(filepath, 'r', encoding='utf-8', errors='ignore') as f:
with open(filepath, encoding="utf-8", errors="ignore") as f:
content = f.read()
# .emlx files have a length prefix followed by the email content
# The first line contains the length, followed by the email
lines = content.split('\n', 1)
lines = content.split("\n", 1)
if len(lines) >= 2:
email_content = lines[1]
# Parse the email using Python's email module
try:
msg = email.message_from_string(email_content)
# Extract email metadata
subject = msg.get('Subject', 'No Subject')
from_addr = msg.get('From', 'Unknown')
to_addr = msg.get('To', 'Unknown')
date = msg.get('Date', 'Unknown')
subject = msg.get("Subject", "No Subject")
from_addr = msg.get("From", "Unknown")
to_addr = msg.get("To", "Unknown")
date = msg.get("Date", "Unknown")
# Extract email body
body = ""
if msg.is_multipart():
for part in msg.walk():
if part.get_content_type() == "text/plain":
body = part.get_payload(decode=True).decode('utf-8', errors='ignore')
body = part.get_payload(decode=True).decode(
"utf-8", errors="ignore"
)
break
else:
body = msg.get_payload(decode=True).decode('utf-8', errors='ignore')
body = msg.get_payload(decode=True).decode(
"utf-8", errors="ignore"
)
# Create document content
doc_content = f"""
From: {from_addr}
@@ -81,97 +86,96 @@ Date: {date}
{body}
"""
# Create metadata
metadata = {
'file_path': filepath,
'subject': subject,
'from': from_addr,
'to': to_addr,
'date': date,
'filename': filename
"file_path": filepath,
"subject": subject,
"from": from_addr,
"to": to_addr,
"date": date,
"filename": filename,
}
doc = Document(text=doc_content, metadata=metadata)
docs.append(doc)
count += 1
except Exception as e:
print(f"Error parsing email from {filepath}: {e}")
continue
except Exception as e:
print(f"Error reading file {filepath}: {e}")
continue
print(f"Loaded {len(docs)} email documents")
return docs
def create_and_save_index(mail_path: str, save_dir: str = "mail_index", max_count: int = 1000):
"""
Create the index from mail data and save it to disk.
Args:
mail_path: Path to the mail directory
save_dir: Directory to save the index
max_count: Maximum number of emails to process
"""
print("Creating index from mail data...")
# Load documents
documents = EmlxReader().load_data(mail_path, max_count=max_count)
if not documents:
print("No documents loaded. Exiting.")
return None
# Create text splitter
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=0)
# Create index
index = VectorStoreIndex.from_documents(
documents,
transformations=[text_splitter]
)
index = VectorStoreIndex.from_documents(documents, transformations=[text_splitter])
# Save the index
os.makedirs(save_dir, exist_ok=True)
index.storage_context.persist(persist_dir=save_dir)
print(f"Index saved to {save_dir}")
return index
def load_index(save_dir: str = "mail_index"):
"""
Load the saved index from disk.
Args:
save_dir: Directory where the index is saved
Returns:
Loaded index or None if loading fails
"""
try:
# Load storage context
storage_context = StorageContext.from_defaults(persist_dir=save_dir)
# Load index
index = VectorStoreIndex.from_vector_store(
storage_context.vector_store,
storage_context=storage_context
storage_context.vector_store, storage_context=storage_context
)
print(f"Index loaded from {save_dir}")
return index
except Exception as e:
print(f"Error loading index: {e}")
return None
def query_index(index, query: str):
"""
Query the loaded index.
Args:
index: The loaded index
query: The query string
@@ -179,16 +183,17 @@ def query_index(index, query: str):
if index is None:
print("No index available for querying.")
return
query_engine = index.as_query_engine()
response = query_engine.query(query)
print(f"Query: {query}")
print(f"Response: {response}")
def main():
mail_path = "/Users/yichuan/Library/Mail/V10/0FCA0879-FD8C-4B7E-83BF-FDDA930791C5/[Gmail].mbox/All Mail.mbox/78BA5BE1-8819-4F9A-9613-EB63772F1DD0/Data/9/Messages"
save_dir = "mail_index"
# Check if index already exists
if os.path.exists(save_dir) and os.path.exists(os.path.join(save_dir, "vector_store.json")):
print("Loading existing index...")
@@ -196,18 +201,19 @@ def main():
else:
print("Creating new index...")
index = create_and_save_index(mail_path, save_dir, max_count=1000)
if index:
# Example queries
queries = [
"Hows Berkeley Graduate Student Instructor",
"What emails mention GSR appointments?",
"Find emails about deadlines"
"Find emails about deadlines",
]
for query in queries:
print("\n" + "="*50)
print("\n" + "=" * 50)
query_index(index, query)
if __name__ == "__main__":
main()
main()

View File

@@ -1,77 +1,82 @@
import os
import email
from pathlib import Path
from typing import List, Any
from llama_index.core import VectorStoreIndex, Document, StorageContext
from llama_index.core.readers.base import BaseReader
import os
from typing import Any
from llama_index.core import Document, StorageContext, VectorStoreIndex
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.readers.base import BaseReader
class EmlxReader(BaseReader):
"""
Apple Mail .emlx file reader with reduced metadata.
Reads individual .emlx files from Apple Mail's storage format.
"""
def __init__(self) -> None:
"""Initialize."""
pass
def load_data(self, input_dir: str, **load_kwargs: Any) -> List[Document]:
def load_data(self, input_dir: str, **load_kwargs: Any) -> list[Document]:
"""
Load data from the input directory containing .emlx files.
Args:
input_dir: Directory containing .emlx files
**load_kwargs:
max_count (int): Maximum amount of messages to read.
"""
docs: List[Document] = []
max_count = load_kwargs.get('max_count', 1000)
docs: list[Document] = []
max_count = load_kwargs.get("max_count", 1000)
count = 0
# Walk through the directory recursively
for dirpath, dirnames, filenames in os.walk(input_dir):
# Skip hidden directories
dirnames[:] = [d for d in dirnames if not d.startswith(".")]
for filename in filenames:
if count >= max_count:
break
if filename.endswith(".emlx"):
filepath = os.path.join(dirpath, filename)
try:
# Read the .emlx file
with open(filepath, 'r', encoding='utf-8', errors='ignore') as f:
with open(filepath, encoding="utf-8", errors="ignore") as f:
content = f.read()
# .emlx files have a length prefix followed by the email content
# The first line contains the length, followed by the email
lines = content.split('\n', 1)
lines = content.split("\n", 1)
if len(lines) >= 2:
email_content = lines[1]
# Parse the email using Python's email module
try:
msg = email.message_from_string(email_content)
# Extract email metadata
subject = msg.get('Subject', 'No Subject')
from_addr = msg.get('From', 'Unknown')
to_addr = msg.get('To', 'Unknown')
date = msg.get('Date', 'Unknown')
subject = msg.get("Subject", "No Subject")
from_addr = msg.get("From", "Unknown")
to_addr = msg.get("To", "Unknown")
date = msg.get("Date", "Unknown")
# Extract email body
body = ""
if msg.is_multipart():
for part in msg.walk():
if part.get_content_type() == "text/plain":
body = part.get_payload(decode=True).decode('utf-8', errors='ignore')
body = part.get_payload(decode=True).decode(
"utf-8", errors="ignore"
)
break
else:
body = msg.get_payload(decode=True).decode('utf-8', errors='ignore')
body = msg.get_payload(decode=True).decode(
"utf-8", errors="ignore"
)
# Create document content with metadata embedded in text
doc_content = f"""
From: {from_addr}
@@ -81,95 +86,96 @@ Date: {date}
{body}
"""
# Create minimal metadata (only essential info)
metadata = {
'subject': subject[:50], # Truncate subject
'from': from_addr[:30], # Truncate from
'date': date[:20], # Truncate date
'filename': filename # Keep filename
"subject": subject[:50], # Truncate subject
"from": from_addr[:30], # Truncate from
"date": date[:20], # Truncate date
"filename": filename, # Keep filename
}
doc = Document(text=doc_content, metadata=metadata)
docs.append(doc)
count += 1
except Exception as e:
print(f"Error parsing email from {filepath}: {e}")
continue
except Exception as e:
print(f"Error reading file {filepath}: {e}")
continue
print(f"Loaded {len(docs)} email documents")
return docs
def create_and_save_index(mail_path: str, save_dir: str = "mail_index_small", max_count: int = 1000):
def create_and_save_index(
mail_path: str, save_dir: str = "mail_index_small", max_count: int = 1000
):
"""
Create the index from mail data and save it to disk.
Args:
mail_path: Path to the mail directory
save_dir: Directory to save the index
max_count: Maximum number of emails to process
"""
print("Creating index from mail data with small chunks...")
# Load documents
documents = EmlxReader().load_data(mail_path, max_count=max_count)
if not documents:
print("No documents loaded. Exiting.")
return None
# Create text splitter with small chunk size
text_splitter = SentenceSplitter(chunk_size=512, chunk_overlap=50)
# Create index
index = VectorStoreIndex.from_documents(
documents,
transformations=[text_splitter]
)
index = VectorStoreIndex.from_documents(documents, transformations=[text_splitter])
# Save the index
os.makedirs(save_dir, exist_ok=True)
index.storage_context.persist(persist_dir=save_dir)
print(f"Index saved to {save_dir}")
return index
def load_index(save_dir: str = "mail_index_small"):
"""
Load the saved index from disk.
Args:
save_dir: Directory where the index is saved
Returns:
Loaded index or None if loading fails
"""
try:
# Load storage context
storage_context = StorageContext.from_defaults(persist_dir=save_dir)
# Load index
index = VectorStoreIndex.from_vector_store(
storage_context.vector_store,
storage_context=storage_context
storage_context.vector_store, storage_context=storage_context
)
print(f"Index loaded from {save_dir}")
return index
except Exception as e:
print(f"Error loading index: {e}")
return None
def query_index(index, query: str):
"""
Query the loaded index.
Args:
index: The loaded index
query: The query string
@@ -177,16 +183,17 @@ def query_index(index, query: str):
if index is None:
print("No index available for querying.")
return
query_engine = index.as_query_engine()
response = query_engine.query(query)
print(f"Query: {query}")
print(f"Response: {response}")
def main():
mail_path = "/Users/yichuan/Library/Mail/V10/0FCA0879-FD8C-4B7E-83BF-FDDA930791C5/[Gmail].mbox/All Mail.mbox/78BA5BE1-8819-4F9A-9613-EB63772F1DD0/Data/9/Messages"
save_dir = "mail_index_small"
# Check if index already exists
if os.path.exists(save_dir) and os.path.exists(os.path.join(save_dir, "vector_store.json")):
print("Loading existing index...")
@@ -194,18 +201,19 @@ def main():
else:
print("Creating new index...")
index = create_and_save_index(mail_path, save_dir, max_count=1000)
if index:
# Example queries
queries = [
"Hows Berkeley Graduate Student Instructor",
"What emails mention GSR appointments?",
"Find emails about deadlines"
"Find emails about deadlines",
]
for query in queries:
print("\n" + "="*50)
print("\n" + "=" * 50)
query_index(index, query)
if __name__ == "__main__":
main()
main()

View File

@@ -1,89 +1,94 @@
import os
import email
from pathlib import Path
from typing import List, Any
from llama_index.core import VectorStoreIndex, Document
import os
from typing import Any
from llama_index.core import Document, VectorStoreIndex
from llama_index.core.readers.base import BaseReader
class EmlxReader(BaseReader):
"""
Apple Mail .emlx file reader.
Reads individual .emlx files from Apple Mail's storage format.
"""
def __init__(self) -> None:
"""Initialize."""
pass
def load_data(self, input_dir: str, **load_kwargs: Any) -> List[Document]:
def load_data(self, input_dir: str, **load_kwargs: Any) -> list[Document]:
"""
Load data from the input directory containing .emlx files.
Args:
input_dir: Directory containing .emlx files
**load_kwargs:
max_count (int): Maximum amount of messages to read.
"""
docs: List[Document] = []
max_count = load_kwargs.get('max_count', 1000)
docs: list[Document] = []
max_count = load_kwargs.get("max_count", 1000)
count = 0
# Check if directory exists and is accessible
if not os.path.exists(input_dir):
print(f"Error: Directory '{input_dir}' does not exist")
return docs
if not os.access(input_dir, os.R_OK):
print(f"Error: Directory '{input_dir}' is not accessible (permission denied)")
print("This is likely due to macOS security restrictions on Mail app data")
return docs
print(f"Scanning directory: {input_dir}")
# Walk through the directory recursively
for dirpath, dirnames, filenames in os.walk(input_dir):
# Skip hidden directories
dirnames[:] = [d for d in dirnames if not d.startswith(".")]
for filename in filenames:
if count >= max_count:
break
if filename.endswith(".emlx"):
filepath = os.path.join(dirpath, filename)
print(f"Found .emlx file: {filepath}")
try:
# Read the .emlx file
with open(filepath, 'r', encoding='utf-8', errors='ignore') as f:
with open(filepath, encoding="utf-8", errors="ignore") as f:
content = f.read()
# .emlx files have a length prefix followed by the email content
# The first line contains the length, followed by the email
lines = content.split('\n', 1)
lines = content.split("\n", 1)
if len(lines) >= 2:
email_content = lines[1]
# Parse the email using Python's email module
try:
msg = email.message_from_string(email_content)
# Extract email metadata
subject = msg.get('Subject', 'No Subject')
from_addr = msg.get('From', 'Unknown')
to_addr = msg.get('To', 'Unknown')
date = msg.get('Date', 'Unknown')
subject = msg.get("Subject", "No Subject")
from_addr = msg.get("From", "Unknown")
to_addr = msg.get("To", "Unknown")
date = msg.get("Date", "Unknown")
# Extract email body
body = ""
if msg.is_multipart():
for part in msg.walk():
if part.get_content_type() == "text/plain":
body = part.get_payload(decode=True).decode('utf-8', errors='ignore')
body = part.get_payload(decode=True).decode(
"utf-8", errors="ignore"
)
break
else:
body = msg.get_payload(decode=True).decode('utf-8', errors='ignore')
body = msg.get_payload(decode=True).decode(
"utf-8", errors="ignore"
)
# Create document content
doc_content = f"""
From: {from_addr}
@@ -93,55 +98,57 @@ Date: {date}
{body}
"""
# Create metadata
metadata = {
'file_path': filepath,
'subject': subject,
'from': from_addr,
'to': to_addr,
'date': date,
'filename': filename
"file_path": filepath,
"subject": subject,
"from": from_addr,
"to": to_addr,
"date": date,
"filename": filename,
}
doc = Document(text=doc_content, metadata=metadata)
docs.append(doc)
count += 1
except Exception as e:
print(f"Error parsing email from {filepath}: {e}")
continue
except Exception as e:
print(f"Error reading file {filepath}: {e}")
continue
print(f"Loaded {len(docs)} email documents")
return docs
def main():
# Use the current directory where the sample.emlx file is located
current_dir = os.path.dirname(os.path.abspath(__file__))
print("Testing EmlxReader with sample .emlx file...")
print(f"Scanning directory: {current_dir}")
# Use the custom EmlxReader
documents = EmlxReader().load_data(current_dir, max_count=1000)
if not documents:
print("No documents loaded. Make sure sample.emlx exists in the examples directory.")
return
print(f"\nSuccessfully loaded {len(documents)} document(s)")
# Initialize index with documents
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()
print("\nTesting query: 'Hows Berkeley Graduate Student Instructor'")
res = query_engine.query("Hows Berkeley Graduate Student Instructor")
print(f"Response: {res}")
if __name__ == "__main__":
main()
main()

View File

@@ -2,20 +2,20 @@
import argparse
import time
from contextlib import contextmanager
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple
import numpy as np
import torch
from torch import nn
from transformers import AutoModel, BitsAndBytesConfig
from tqdm import tqdm
from contextlib import contextmanager
from transformers import AutoModel, BitsAndBytesConfig
@dataclass
class BenchmarkConfig:
model_path: str
batch_sizes: List[int]
batch_sizes: list[int]
seq_length: int
num_runs: int
use_fp16: bool = True
@@ -28,47 +28,45 @@ class BenchmarkConfig:
class GraphContainer:
"""Container for managing graphs for different batch sizes (CUDA graphs on NVIDIA, regular on others)."""
def __init__(self, model: nn.Module, seq_length: int):
self.model = model
self.seq_length = seq_length
self.graphs: Dict[int, 'GraphWrapper'] = {}
def get_or_create(self, batch_size: int) -> 'GraphWrapper':
self.graphs: dict[int, GraphWrapper] = {}
def get_or_create(self, batch_size: int) -> "GraphWrapper":
if batch_size not in self.graphs:
self.graphs[batch_size] = GraphWrapper(
self.model, batch_size, self.seq_length
)
self.graphs[batch_size] = GraphWrapper(self.model, batch_size, self.seq_length)
return self.graphs[batch_size]
class GraphWrapper:
"""Wrapper for graph capture and replay (CUDA graphs on NVIDIA, regular on others)."""
def __init__(self, model: nn.Module, batch_size: int, seq_length: int):
self.model = model
self.device = self._get_device()
self.static_input = self._create_random_batch(batch_size, seq_length)
self.static_attention_mask = torch.ones_like(self.static_input)
# Warm up
self._warmup()
# Only use CUDA graphs on NVIDIA GPUs
if torch.cuda.is_available() and hasattr(torch.cuda, 'CUDAGraph'):
if torch.cuda.is_available() and hasattr(torch.cuda, "CUDAGraph"):
# Capture graph
self.graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(self.graph):
self.static_output = self.model(
input_ids=self.static_input,
attention_mask=self.static_attention_mask
attention_mask=self.static_attention_mask,
)
self.use_cuda_graph = True
else:
# For MPS or CPU, just store the model
self.use_cuda_graph = False
self.static_output = None
def _get_device(self) -> str:
if torch.cuda.is_available():
return "cuda"
@@ -76,22 +74,20 @@ class GraphWrapper:
return "mps"
else:
return "cpu"
def _create_random_batch(self, batch_size: int, seq_length: int) -> torch.Tensor:
return torch.randint(
0, 1000, (batch_size, seq_length),
device=self.device,
dtype=torch.long
0, 1000, (batch_size, seq_length), device=self.device, dtype=torch.long
)
def _warmup(self, num_warmup: int = 3):
with torch.no_grad():
for _ in range(num_warmup):
self.model(
input_ids=self.static_input,
attention_mask=self.static_attention_mask
attention_mask=self.static_attention_mask,
)
def __call__(self, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
if self.use_cuda_graph:
self.static_input.copy_(input_ids)
@@ -105,14 +101,14 @@ class GraphWrapper:
class ModelOptimizer:
"""Applies various optimizations to the model."""
@staticmethod
def optimize(model: nn.Module, config: BenchmarkConfig) -> nn.Module:
print("\nApplying model optimizations:")
if model is None:
raise ValueError("Cannot optimize None model")
# Move to GPU
if torch.cuda.is_available():
model = model.cuda()
@@ -124,53 +120,59 @@ class ModelOptimizer:
model = model.cpu()
device = "cpu"
print(f"- Model moved to {device}")
# FP16
if config.use_fp16 and not config.use_int4:
model = model.half()
# use torch compile
model = torch.compile(model)
print("- Using FP16 precision")
# Check if using SDPA (only on CUDA)
if torch.cuda.is_available() and torch.version.cuda and float(torch.version.cuda[:3]) >= 11.6:
if hasattr(torch.nn.functional, 'scaled_dot_product_attention'):
if (
torch.cuda.is_available()
and torch.version.cuda
and float(torch.version.cuda[:3]) >= 11.6
):
if hasattr(torch.nn.functional, "scaled_dot_product_attention"):
print("- Using PyTorch SDPA (scaled_dot_product_attention)")
else:
print("- PyTorch SDPA not available")
# Flash Attention (only on CUDA)
if config.use_flash_attention and torch.cuda.is_available():
try:
from flash_attn.flash_attention import FlashAttention
from flash_attn.flash_attention import FlashAttention # noqa: F401
print("- Flash Attention 2 available")
if hasattr(model.config, "attention_mode"):
model.config.attention_mode = "flash_attention_2"
print(" - Enabled Flash Attention 2 mode")
except ImportError:
print("- Flash Attention not available")
# Memory efficient attention (only on CUDA)
if torch.cuda.is_available():
try:
from xformers.ops import memory_efficient_attention
if hasattr(model, 'enable_xformers_memory_efficient_attention'):
from xformers.ops import memory_efficient_attention # noqa: F401
if hasattr(model, "enable_xformers_memory_efficient_attention"):
model.enable_xformers_memory_efficient_attention()
print("- Enabled xformers memory efficient attention")
else:
print("- Model doesn't support xformers")
except (ImportError, AttributeError):
print("- Xformers not available")
model.eval()
print("- Model set to eval mode")
return model
class Timer:
"""Handles accurate GPU timing using GPU events or CPU timing."""
def __init__(self):
if torch.cuda.is_available():
self.start_event = torch.cuda.Event(enable_timing=True)
@@ -182,7 +184,7 @@ class Timer:
else:
# CPU timing
self.use_gpu_timing = False
@contextmanager
def timing(self):
if self.use_gpu_timing:
@@ -195,7 +197,7 @@ class Timer:
start_time = time.time()
yield
self.cpu_elapsed = time.time() - start_time
def elapsed_time(self) -> float:
if self.use_gpu_timing:
return self.start_event.elapsed_time(self.end_event) / 1000 # ms to seconds
@@ -205,14 +207,14 @@ class Timer:
class Benchmark:
"""Main benchmark runner."""
def __init__(self, config: BenchmarkConfig):
self.config = config
try:
self.model = self._load_model()
if self.model is None:
raise ValueError("Model initialization failed - model is None")
# Only use CUDA graphs on NVIDIA GPUs
if config.use_cuda_graphs and torch.cuda.is_available():
self.graphs = GraphContainer(self.model, config.seq_length)
@@ -220,25 +222,27 @@ class Benchmark:
self.graphs = None
self.timer = Timer()
except Exception as e:
print(f"ERROR in benchmark initialization: {str(e)}")
print(f"ERROR in benchmark initialization: {e!s}")
raise
def _load_model(self) -> nn.Module:
print(f"Loading model from {self.config.model_path}...")
try:
# Int4 quantization using HuggingFace integration
if self.config.use_int4:
import bitsandbytes as bnb
print(f"- bitsandbytes version: {bnb.__version__}")
# 检查是否使用自定义的8bit量化
if hasattr(self.config, 'use_linear8bitlt') and self.config.use_linear8bitlt:
# Check if using custom 8bit quantization
if hasattr(self.config, "use_linear8bitlt") and self.config.use_linear8bitlt:
print("- Using custom Linear8bitLt replacement for all linear layers")
# 加载原始模型(不使用量化配置)
# Load original model (without quantization config)
import bitsandbytes as bnb
import torch
# set default to half
torch.set_default_dtype(torch.float16)
compute_dtype = torch.float16 if self.config.use_fp16 else torch.float32
@@ -246,112 +250,121 @@ class Benchmark:
self.config.model_path,
torch_dtype=compute_dtype,
)
# 定义替换函数
# Define replacement function
def replace_linear_with_linear8bitlt(model):
"""递归地将模型中的所有nn.Linear层替换为Linear8bitLt"""
"""Recursively replace all nn.Linear layers with Linear8bitLt"""
for name, module in list(model.named_children()):
if isinstance(module, nn.Linear):
# 获取原始线性层的参数
# Get original linear layer parameters
in_features = module.in_features
out_features = module.out_features
bias = module.bias is not None
# 创建8bit线性层
# Create 8bit linear layer
# print size
print(f"in_features: {in_features}, out_features: {out_features}")
new_module = bnb.nn.Linear8bitLt(
in_features,
out_features,
bias=bias,
has_fp16_weights=False
in_features,
out_features,
bias=bias,
has_fp16_weights=False,
)
# 复制权重和偏置
# Copy weights and bias
new_module.weight.data = module.weight.data
if bias:
new_module.bias.data = module.bias.data
# 替换模块
# Replace module
setattr(model, name, new_module)
else:
# 递归处理子模块
# Process child modules recursively
replace_linear_with_linear8bitlt(module)
return model
# 替换所有线性层
# Replace all linear layers
model = replace_linear_with_linear8bitlt(model)
# add torch compile
model = torch.compile(model)
# 将模型移到GPU量化发生在这里
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
# Move model to GPU (quantization happens here)
device = (
"cuda"
if torch.cuda.is_available()
else "mps"
if torch.backends.mps.is_available()
else "cpu"
)
model = model.to(device)
print("- All linear layers replaced with Linear8bitLt")
else:
# 使用原来的Int4量化方法
# Use original Int4 quantization method
print("- Using bitsandbytes for Int4 quantization")
# Create quantization config
compute_dtype = torch.float16 if self.config.use_fp16 else torch.float32
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
bnb_4bit_quant_type="nf4",
)
print("- Quantization config:", quantization_config)
# Load model directly with quantization config
model = AutoModel.from_pretrained(
self.config.model_path,
quantization_config=quantization_config,
torch_dtype=compute_dtype,
device_map="auto" # Let HF decide on device mapping
device_map="auto", # Let HF decide on device mapping
)
# Check if model loaded successfully
if model is None:
raise ValueError("Model loading returned None")
print(f"- Model type: {type(model)}")
# Apply optimizations directly here
print("\nApplying model optimizations:")
if hasattr(self.config, 'use_linear8bitlt') and self.config.use_linear8bitlt:
if hasattr(self.config, "use_linear8bitlt") and self.config.use_linear8bitlt:
print("- Model moved to GPU with Linear8bitLt quantization")
else:
# Skip moving to GPU since device_map="auto" already did that
print("- Model already on GPU due to device_map='auto'")
# Skip FP16 conversion since we specified compute_dtype
print(f"- Using {compute_dtype} for compute dtype")
# Check CUDA and SDPA
if torch.cuda.is_available() and torch.version.cuda and float(torch.version.cuda[:3]) >= 11.6:
if hasattr(torch.nn.functional, 'scaled_dot_product_attention'):
if (
torch.cuda.is_available()
and torch.version.cuda
and float(torch.version.cuda[:3]) >= 11.6
):
if hasattr(torch.nn.functional, "scaled_dot_product_attention"):
print("- Using PyTorch SDPA (scaled_dot_product_attention)")
else:
print("- PyTorch SDPA not available")
# Try xformers if available (only on CUDA)
if torch.cuda.is_available():
try:
from xformers.ops import memory_efficient_attention
if hasattr(model, 'enable_xformers_memory_efficient_attention'):
if hasattr(model, "enable_xformers_memory_efficient_attention"):
model.enable_xformers_memory_efficient_attention()
print("- Enabled xformers memory efficient attention")
else:
print("- Model doesn't support xformers")
except (ImportError, AttributeError):
print("- Xformers not available")
# Set to eval mode
model.eval()
print("- Model set to eval mode")
@@ -365,76 +378,83 @@ class Benchmark:
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
)
model = AutoModel.from_pretrained(
self.config.model_path,
quantization_config=quantization_config,
torch_dtype=compute_dtype,
device_map="auto"
device_map="auto",
)
if model is None:
raise ValueError("Model loading returned None")
print(f"- Model type: {type(model)}")
model.eval()
print("- Model set to eval mode")
else:
# Standard loading for FP16/FP32
model = AutoModel.from_pretrained(self.config.model_path)
print("- Model loaded in standard precision")
print(f"- Model type: {type(model)}")
# Apply standard optimizations
# set default to half
import torch
torch.set_default_dtype(torch.bfloat16)
model = ModelOptimizer.optimize(model, self.config)
model = model.half()
# add torch compile
model = torch.compile(model)
# Final check to ensure model is not None
if model is None:
raise ValueError("Model is None after optimization")
print(f"- Final model type: {type(model)}")
return model
except Exception as e:
print(f"ERROR loading model: {str(e)}")
print(f"ERROR loading model: {e!s}")
import traceback
traceback.print_exc()
raise
def _create_random_batch(self, batch_size: int) -> torch.Tensor:
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
device = (
"cuda"
if torch.cuda.is_available()
else "mps"
if torch.backends.mps.is_available()
else "cpu"
)
return torch.randint(
0, 1000,
0,
1000,
(batch_size, self.config.seq_length),
device=device,
dtype=torch.long
dtype=torch.long,
)
def _run_inference(
self,
input_ids: torch.Tensor,
graph_wrapper: Optional[GraphWrapper] = None
) -> Tuple[float, torch.Tensor]:
self, input_ids: torch.Tensor, graph_wrapper: GraphWrapper | None = None
) -> tuple[float, torch.Tensor]:
attention_mask = torch.ones_like(input_ids)
with torch.no_grad(), self.timer.timing():
if graph_wrapper is not None:
output = graph_wrapper(input_ids, attention_mask)
else:
output = self.model(input_ids=input_ids, attention_mask=attention_mask)
return self.timer.elapsed_time(), output
def run(self) -> Dict[int, Dict[str, float]]:
def run(self) -> dict[int, dict[str, float]]:
results = {}
# Reset peak memory stats
if torch.cuda.is_available():
torch.cuda.reset_peak_memory_stats()
@@ -443,22 +463,20 @@ class Benchmark:
pass
else:
print("- No GPU memory stats available")
for batch_size in self.config.batch_sizes:
print(f"\nTesting batch size: {batch_size}")
times = []
# Get or create graph for this batch size
graph_wrapper = (
self.graphs.get_or_create(batch_size)
if self.graphs is not None
else None
self.graphs.get_or_create(batch_size) if self.graphs is not None else None
)
# Pre-allocate input tensor
input_ids = self._create_random_batch(batch_size)
print(f"Input shape: {input_ids.shape}")
# Run benchmark
for i in tqdm(range(self.config.num_runs), desc=f"Batch size {batch_size}"):
try:
@@ -469,44 +487,44 @@ class Benchmark:
except Exception as e:
print(f"Error during inference: {e}")
break
if not times:
print(f"No successful runs for batch size {batch_size}, skipping")
continue
# Calculate statistics
avg_time = np.mean(times)
std_time = np.std(times)
throughput = batch_size / avg_time
results[batch_size] = {
"avg_time": avg_time,
"std_time": std_time,
"throughput": throughput,
}
print(f"Avg Time: {avg_time:.4f}s ± {std_time:.4f}s")
print(f"Throughput: {throughput:.2f} sequences/second")
# Log memory usage
if torch.cuda.is_available():
peak_memory_gb = torch.cuda.max_memory_allocated() / (1024 ** 3)
peak_memory_gb = torch.cuda.max_memory_allocated() / (1024**3)
elif torch.backends.mps.is_available():
# MPS doesn't have max_memory_allocated, use 0
peak_memory_gb = 0.0
else:
peak_memory_gb = 0.0
print("- No GPU memory usage available")
if peak_memory_gb > 0:
print(f"\nPeak GPU memory usage: {peak_memory_gb:.2f} GB")
else:
print("\n- GPU memory usage not available")
# Add memory info to results
for batch_size in results:
results[batch_size]["peak_memory_gb"] = peak_memory_gb
return results
@@ -566,14 +584,14 @@ def main():
action="store_true",
help="Enable Linear8bitLt quantization for all linear layers",
)
args = parser.parse_args()
# Print arguments for debugging
print("\nCommand line arguments:")
for arg, value in vars(args).items():
print(f"- {arg}: {value}")
config = BenchmarkConfig(
model_path=args.model_path,
batch_sizes=[int(bs) for bs in args.batch_sizes.split(",")],
@@ -586,45 +604,56 @@ def main():
use_flash_attention=args.use_flash_attention,
use_linear8bitlt=args.use_linear8bitlt,
)
# Print configuration for debugging
print("\nBenchmark configuration:")
for field, value in vars(config).items():
print(f"- {field}: {value}")
try:
benchmark = Benchmark(config)
results = benchmark.run()
# Save results to file
import json
import os
# Create results directory if it doesn't exist
os.makedirs("results", exist_ok=True)
# Generate filename based on configuration
precision_type = "int4" if config.use_int4 else "int8" if config.use_int8 else "fp16" if config.use_fp16 else "fp32"
precision_type = (
"int4"
if config.use_int4
else "int8"
if config.use_int8
else "fp16"
if config.use_fp16
else "fp32"
)
model_name = os.path.basename(config.model_path)
output_file = f"results/benchmark_{model_name}_{precision_type}.json"
# Save results
with open(output_file, "w") as f:
json.dump(
{
"config": {k: str(v) if isinstance(v, list) else v for k, v in vars(config).items()},
"results": {str(k): v for k, v in results.items()}
},
f,
indent=2
"config": {
k: str(v) if isinstance(v, list) else v for k, v in vars(config).items()
},
"results": {str(k): v for k, v in results.items()},
},
f,
indent=2,
)
print(f"Results saved to {output_file}")
except Exception as e:
print(f"Benchmark failed: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
main()
main()

View File

@@ -1,37 +1,39 @@
import os
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.core import StorageContext, VectorStoreIndex
def load_index(save_dir: str = "mail_index"):
"""
Load the saved index from disk.
Args:
save_dir: Directory where the index is saved
Returns:
Loaded index or None if loading fails
"""
try:
# Load storage context
storage_context = StorageContext.from_defaults(persist_dir=save_dir)
# Load index
index = VectorStoreIndex.from_vector_store(
storage_context.vector_store,
storage_context=storage_context
storage_context.vector_store, storage_context=storage_context
)
print(f"Index loaded from {save_dir}")
return index
except Exception as e:
print(f"Error loading index: {e}")
return None
def query_index(index, query: str):
"""
Query the loaded index.
Args:
index: The loaded index
query: The query string
@@ -39,44 +41,47 @@ def query_index(index, query: str):
if index is None:
print("No index available for querying.")
return
query_engine = index.as_query_engine()
response = query_engine.query(query)
print(f"\nQuery: {query}")
print(f"Response: {response}")
def main():
save_dir = "mail_index"
# Check if index exists
if not os.path.exists(save_dir) or not os.path.exists(os.path.join(save_dir, "vector_store.json")):
if not os.path.exists(save_dir) or not os.path.exists(
os.path.join(save_dir, "vector_store.json")
):
print(f"Index not found in {save_dir}")
print("Please run mail_reader_save_load.py first to create the index.")
return
# Load the index
index = load_index(save_dir)
if not index:
print("Failed to load index.")
return
print("\n" + "="*60)
print("\n" + "=" * 60)
print("Email Query Interface")
print("="*60)
print("=" * 60)
print("Type 'quit' to exit")
print("Type 'help' for example queries")
print("="*60)
print("=" * 60)
# Interactive query loop
while True:
try:
query = input("\nEnter your query: ").strip()
if query.lower() == 'quit':
if query.lower() == "quit":
print("Goodbye!")
break
elif query.lower() == 'help':
elif query.lower() == "help":
print("\nExample queries:")
print("- Hows Berkeley Graduate Student Instructor")
print("- What emails mention GSR appointments?")
@@ -86,14 +91,15 @@ def main():
continue
elif not query:
continue
query_index(index, query)
except KeyboardInterrupt:
print("\nGoodbye!")
break
except Exception as e:
print(f"Error processing query: {e}")
if __name__ == "__main__":
main()
main()

View File

@@ -7,7 +7,7 @@ This directory contains comprehensive sanity checks for the Leann system, ensuri
### `test_distance_functions.py`
Tests all supported distance functions across DiskANN backend:
-**MIPS** (Maximum Inner Product Search)
-**L2** (Euclidean Distance)
-**L2** (Euclidean Distance)
-**Cosine** (Cosine Similarity)
```bash
@@ -27,7 +27,7 @@ uv run python tests/sanity_checks/test_l2_verification.py
### `test_sanity_check.py`
Comprehensive end-to-end verification including:
- Distance function testing
- Embedding model compatibility
- Embedding model compatibility
- Search result correctness validation
- Backend integration testing
@@ -64,7 +64,7 @@ When all tests pass, you should see:
```
📊 测试结果总结:
mips : ✅ 通过
l2 : ✅ 通过
l2 : ✅ 通过
cosine : ✅ 通过
🎉 测试完成!
@@ -98,7 +98,7 @@ pkill -f "embedding_server"
### Typical Timing (3 documents, consumer hardware):
- **Index Building**: 2-5 seconds per distance function
- **Search Query**: 50-200ms
- **Search Query**: 50-200ms
- **Recompute Mode**: 5-15 seconds (higher accuracy)
### Memory Usage:
@@ -117,4 +117,4 @@ These tests are designed to be run in automated environments:
uv run python tests/sanity_checks/test_l2_verification.py
```
The tests are deterministic and should produce consistent results across different platforms.
The tests are deterministic and should produce consistent results across different platforms.

View File

@@ -1,43 +1,46 @@
import time
import numpy as np
import matplotlib.pyplot as plt
import torch
from sentence_transformers import SentenceTransformer
import mlx.core as mx
import numpy as np
import torch
from mlx_lm import load
from sentence_transformers import SentenceTransformer
# --- Configuration ---
MODEL_NAME_TORCH = "Qwen/Qwen3-Embedding-0.6B"
MODEL_NAME_MLX = "mlx-community/Qwen3-Embedding-0.6B-4bit-DWQ"
BATCH_SIZES = [1, 8, 16, 32, 64, 128]
NUM_RUNS = 10 # Number of runs to average for each batch size
WARMUP_RUNS = 2 # Number of warm-up runs
WARMUP_RUNS = 2 # Number of warm-up runs
# --- Generate Dummy Data ---
DUMMY_SENTENCES = ["This is a test sentence for benchmarking." * 5] * max(BATCH_SIZES)
# --- Benchmark Functions ---b
def benchmark_torch(model, sentences):
start_time = time.time()
model.encode(sentences, convert_to_numpy=True)
end_time = time.time()
return (end_time - start_time) * 1000 # Return time in ms
def benchmark_mlx(model, tokenizer, sentences):
start_time = time.time()
# Tokenize sentences using MLX tokenizer
tokens = []
for sentence in sentences:
token_ids = tokenizer.encode(sentence)
tokens.append(token_ids)
# Pad sequences to the same length
max_len = max(len(t) for t in tokens)
input_ids = []
attention_mask = []
for token_seq in tokens:
# Pad sequence
padded = token_seq + [tokenizer.eos_token_id] * (max_len - len(token_seq))
@@ -45,24 +48,25 @@ def benchmark_mlx(model, tokenizer, sentences):
# Create attention mask (1 for real tokens, 0 for padding)
mask = [1] * len(token_seq) + [0] * (max_len - len(token_seq))
attention_mask.append(mask)
# Convert to MLX arrays
input_ids = mx.array(input_ids)
attention_mask = mx.array(attention_mask)
# Get embeddings
embeddings = model(input_ids)
# Mean pooling
mask = mx.expand_dims(attention_mask, -1)
sum_embeddings = (embeddings * mask).sum(axis=1)
sum_mask = mask.sum(axis=1)
_ = sum_embeddings / sum_mask
mx.eval() # Ensure computation is finished
end_time = time.time()
return (end_time - start_time) * 1000 # Return time in ms
# --- Main Execution ---
def main():
print("--- Initializing Models ---")
@@ -92,13 +96,15 @@ def main():
for batch_size in BATCH_SIZES:
print(f"Benchmarking batch size: {batch_size}")
sentences_batch = DUMMY_SENTENCES[:batch_size]
# Benchmark PyTorch
torch_times = [benchmark_torch(model_torch, sentences_batch) for _ in range(NUM_RUNS)]
results_torch.append(np.mean(torch_times))
# Benchmark MLX
mlx_times = [benchmark_mlx(model_mlx, tokenizer_mlx, sentences_batch) for _ in range(NUM_RUNS)]
mlx_times = [
benchmark_mlx(model_mlx, tokenizer_mlx, sentences_batch) for _ in range(NUM_RUNS)
]
results_mlx.append(np.mean(mlx_times))
print("\n--- Benchmark Results (Average time per batch in ms) ---")
@@ -109,20 +115,27 @@ def main():
# --- Plotting ---
print("\n--- Generating Plot ---")
plt.figure(figsize=(10, 6))
plt.plot(BATCH_SIZES, results_torch, marker='o', linestyle='-', label=f'PyTorch ({device})')
plt.plot(BATCH_SIZES, results_mlx, marker='s', linestyle='-', label='MLX')
plt.plot(
BATCH_SIZES,
results_torch,
marker="o",
linestyle="-",
label=f"PyTorch ({device})",
)
plt.plot(BATCH_SIZES, results_mlx, marker="s", linestyle="-", label="MLX")
plt.title(f'Embedding Performance: MLX vs PyTorch\nModel: {MODEL_NAME_TORCH}')
plt.title(f"Embedding Performance: MLX vs PyTorch\nModel: {MODEL_NAME_TORCH}")
plt.xlabel("Batch Size")
plt.ylabel("Average Time per Batch (ms)")
plt.xticks(BATCH_SIZES)
plt.grid(True)
plt.legend()
# Save the plot
output_filename = "embedding_benchmark.png"
plt.savefig(output_filename)
print(f"Plot saved to {output_filename}")
if __name__ == "__main__":
main()

View File

@@ -3,49 +3,52 @@
Debug script to test ZMQ communication with the exact same setup as main_cli_example.py
"""
import zmq
import time
import threading
import sys
sys.path.append('packages/leann-backend-diskann')
import time
import zmq
sys.path.append("packages/leann-backend-diskann")
from leann_backend_diskann import embedding_pb2
def test_zmq_with_same_model():
print("=== Testing ZMQ with same model as main_cli_example.py ===")
# Test the exact same model that main_cli_example.py uses
model_name = "sentence-transformers/all-mpnet-base-v2"
# Start server with the same model
import subprocess
server_cmd = [
sys.executable, "-m",
sys.executable,
"-m",
"packages.leann-backend-diskann.leann_backend_diskann.embedding_server",
"--zmq-port", "5556", # Use different port to avoid conflicts
"--model-name", model_name
"--zmq-port",
"5556", # Use different port to avoid conflicts
"--model-name",
model_name,
]
print(f"Starting server with command: {' '.join(server_cmd)}")
server_process = subprocess.Popen(
server_cmd,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True
server_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True
)
# Wait for server to start
print("Waiting for server to start...")
time.sleep(10)
# Check if server is running
if server_process.poll() is not None:
stdout, stderr = server_process.communicate()
print(f"Server failed to start. stdout: {stdout}")
print(f"Server failed to start. stderr: {stderr}")
return False
print(f"Server started with PID: {server_process.pid}")
try:
# Test client
context = zmq.Context()
@@ -53,39 +56,39 @@ def test_zmq_with_same_model():
socket.connect("tcp://127.0.0.1:5556")
socket.setsockopt(zmq.RCVTIMEO, 30000) # 30 second timeout like C++
socket.setsockopt(zmq.SNDTIMEO, 30000)
# Create request with same format as C++
request = embedding_pb2.NodeEmbeddingRequest()
request.node_ids.extend([0, 1, 2, 3, 4]) # Test with some node IDs
print(f"Sending request with {len(request.node_ids)} node IDs...")
start_time = time.time()
# Send request
socket.send(request.SerializeToString())
# Receive response
response_data = socket.recv()
end_time = time.time()
print(f"Received response in {end_time - start_time:.3f} seconds")
print(f"Response size: {len(response_data)} bytes")
# Parse response
response = embedding_pb2.NodeEmbeddingResponse()
response.ParseFromString(response_data)
print(f"Response dimensions: {list(response.dimensions)}")
print(f"Embeddings data size: {len(response.embeddings_data)} bytes")
print(f"Missing IDs: {list(response.missing_ids)}")
# Calculate expected size
if len(response.dimensions) == 2:
batch_size = response.dimensions[0]
embedding_dim = response.dimensions[1]
expected_bytes = batch_size * embedding_dim * 4 # 4 bytes per float
print(f"Expected bytes: {expected_bytes}, Actual: {len(response.embeddings_data)}")
if len(response.embeddings_data) == expected_bytes:
print("✅ Response format is correct!")
return True
@@ -95,7 +98,7 @@ def test_zmq_with_same_model():
else:
print("❌ Invalid response dimensions!")
return False
except Exception as e:
print(f"❌ Error during ZMQ test: {e}")
return False
@@ -105,9 +108,10 @@ def test_zmq_with_same_model():
server_process.wait()
print("Server terminated")
if __name__ == "__main__":
success = test_zmq_with_same_model()
if success:
print("\n✅ ZMQ communication test passed!")
else:
print("\n❌ ZMQ communication test failed!")
print("\n❌ ZMQ communication test failed!")

View File

@@ -1,26 +1,27 @@
import time
from dataclasses import dataclass
from typing import Dict, List
import numpy as np
import torch
from torch import nn
from transformers import AutoModel, BitsAndBytesConfig
from tqdm import tqdm
from transformers import AutoModel
# Add MLX imports
try:
import mlx.core as mx
from mlx_lm.utils import load
MLX_AVAILABLE = True
except ImportError as e:
except ImportError:
print("MLX not available. Install with: uv pip install mlx mlx-lm")
MLX_AVAILABLE = False
@dataclass
class BenchmarkConfig:
model_path: str = "facebook/contriever"
batch_sizes: List[int] = None
batch_sizes: list[int] = None
seq_length: int = 256
num_runs: int = 5
use_fp16: bool = True
@@ -30,18 +31,19 @@ class BenchmarkConfig:
use_flash_attention: bool = False
use_linear8bitlt: bool = False
use_mlx: bool = False # New flag for MLX testing
def __post_init__(self):
if self.batch_sizes is None:
self.batch_sizes = [1, 2, 4, 8, 16, 32, 64]
class MLXBenchmark:
"""MLX-specific benchmark for embedding models"""
def __init__(self, config: BenchmarkConfig):
self.config = config
self.model, self.tokenizer = self._load_model()
def _load_model(self):
"""Load MLX model and tokenizer following the API pattern"""
print(f"Loading MLX model from {self.config.model_path}...")
@@ -52,55 +54,51 @@ class MLXBenchmark:
except Exception as e:
print(f"Error loading MLX model: {e}")
raise
def _create_random_batch(self, batch_size: int):
"""Create random input batches for MLX testing - same as PyTorch"""
return torch.randint(
0, 1000,
(batch_size, self.config.seq_length),
dtype=torch.long
)
return torch.randint(0, 1000, (batch_size, self.config.seq_length), dtype=torch.long)
def _run_inference(self, input_ids: torch.Tensor) -> float:
"""Run MLX inference with same input as PyTorch"""
start_time = time.time()
try:
# Convert PyTorch tensor to MLX array
input_ids_mlx = mx.array(input_ids.numpy())
# Get embeddings
embeddings = self.model(input_ids_mlx)
# Mean pooling (following the API pattern)
pooled = embeddings.mean(axis=1)
# Convert to numpy (following the API pattern)
pooled_numpy = np.array(pooled.tolist(), dtype=np.float32)
# Force computation
_ = pooled_numpy.shape
except Exception as e:
print(f"MLX inference error: {e}")
return float('inf')
return float("inf")
end_time = time.time()
return end_time - start_time
def run(self) -> Dict[int, Dict[str, float]]:
def run(self) -> dict[int, dict[str, float]]:
"""Run the MLX benchmark across all batch sizes"""
results = {}
print(f"Starting MLX benchmark with model: {self.config.model_path}")
print(f"Testing batch sizes: {self.config.batch_sizes}")
for batch_size in self.config.batch_sizes:
print(f"\n=== Testing MLX batch size: {batch_size} ===")
times = []
# Create input batch (same as PyTorch)
input_ids = self._create_random_batch(batch_size)
# Warm up
print("Warming up...")
for _ in range(3):
@@ -109,26 +107,26 @@ class MLXBenchmark:
except Exception as e:
print(f"Warmup error: {e}")
break
# Run benchmark
for i in tqdm(range(self.config.num_runs), desc=f"MLX Batch size {batch_size}"):
for _i in tqdm(range(self.config.num_runs), desc=f"MLX Batch size {batch_size}"):
try:
elapsed_time = self._run_inference(input_ids)
if elapsed_time != float('inf'):
if elapsed_time != float("inf"):
times.append(elapsed_time)
except Exception as e:
print(f"Error during MLX inference: {e}")
break
if not times:
print(f"Skipping batch size {batch_size} due to errors")
continue
# Calculate statistics
avg_time = np.mean(times)
std_time = np.std(times)
throughput = batch_size / avg_time
results[batch_size] = {
"avg_time": avg_time,
"std_time": std_time,
@@ -136,122 +134,127 @@ class MLXBenchmark:
"min_time": np.min(times),
"max_time": np.max(times),
}
print(f"MLX Results for batch size {batch_size}:")
print(f" Avg Time: {avg_time:.4f}s ± {std_time:.4f}s")
print(f" Min Time: {np.min(times):.4f}s")
print(f" Max Time: {np.max(times):.4f}s")
print(f" Throughput: {throughput:.2f} sequences/second")
return results
class Benchmark:
def __init__(self, config: BenchmarkConfig):
self.config = config
self.device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
self.device = (
"cuda"
if torch.cuda.is_available()
else "mps"
if torch.backends.mps.is_available()
else "cpu"
)
self.model = self._load_model()
def _load_model(self) -> nn.Module:
print(f"Loading model from {self.config.model_path}...")
model = AutoModel.from_pretrained(self.config.model_path)
if self.config.use_fp16:
model = model.half()
model = torch.compile(model)
model = model.to(self.device)
model.eval()
return model
def _create_random_batch(self, batch_size: int) -> torch.Tensor:
return torch.randint(
0, 1000,
0,
1000,
(batch_size, self.config.seq_length),
device=self.device,
dtype=torch.long
dtype=torch.long,
)
def _run_inference(self, input_ids: torch.Tensor) -> float:
attention_mask = torch.ones_like(input_ids)
start_time = time.time()
with torch.no_grad():
output = self.model(input_ids=input_ids, attention_mask=attention_mask)
self.model(input_ids=input_ids, attention_mask=attention_mask)
end_time = time.time()
return end_time - start_time
def run(self) -> Dict[int, Dict[str, float]]:
def run(self) -> dict[int, dict[str, float]]:
results = {}
if torch.cuda.is_available():
torch.cuda.reset_peak_memory_stats()
for batch_size in self.config.batch_sizes:
print(f"\nTesting batch size: {batch_size}")
times = []
input_ids = self._create_random_batch(batch_size)
for i in tqdm(range(self.config.num_runs), desc=f"Batch size {batch_size}"):
for _i in tqdm(range(self.config.num_runs), desc=f"Batch size {batch_size}"):
try:
elapsed_time = self._run_inference(input_ids)
times.append(elapsed_time)
except Exception as e:
print(f"Error during inference: {e}")
break
if not times:
continue
avg_time = np.mean(times)
std_time = np.std(times)
throughput = batch_size / avg_time
results[batch_size] = {
"avg_time": avg_time,
"std_time": std_time,
"throughput": throughput,
}
print(f"Avg Time: {avg_time:.4f}s ± {std_time:.4f}s")
print(f"Throughput: {throughput:.2f} sequences/second")
if torch.cuda.is_available():
peak_memory_gb = torch.cuda.max_memory_allocated() / (1024 ** 3)
peak_memory_gb = torch.cuda.max_memory_allocated() / (1024**3)
else:
peak_memory_gb = 0.0
for batch_size in results:
results[batch_size]["peak_memory_gb"] = peak_memory_gb
return results
def run_benchmark():
"""Main function to run the benchmark with optimized parameters."""
config = BenchmarkConfig()
try:
benchmark = Benchmark(config)
results = benchmark.run()
max_throughput = max(results[batch_size]["throughput"] for batch_size in results)
avg_throughput = np.mean([results[batch_size]["throughput"] for batch_size in results])
return {
"max_throughput": max_throughput,
"avg_throughput": avg_throughput,
"results": results
"results": results,
}
except Exception as e:
print(f"Benchmark failed: {e}")
return {
"max_throughput": 0.0,
"avg_throughput": 0.0,
"error": str(e)
}
return {"max_throughput": 0.0, "avg_throughput": 0.0, "error": str(e)}
def run_mlx_benchmark():
"""Run MLX-specific benchmark"""
@@ -260,55 +263,49 @@ def run_mlx_benchmark():
return {
"max_throughput": 0.0,
"avg_throughput": 0.0,
"error": "MLX not available"
"error": "MLX not available",
}
config = BenchmarkConfig(
model_path="mlx-community/all-MiniLM-L6-v2-4bit",
use_mlx=True
)
config = BenchmarkConfig(model_path="mlx-community/all-MiniLM-L6-v2-4bit", use_mlx=True)
try:
benchmark = MLXBenchmark(config)
results = benchmark.run()
if not results:
return {
"max_throughput": 0.0,
"avg_throughput": 0.0,
"error": "No valid results"
"error": "No valid results",
}
max_throughput = max(results[batch_size]["throughput"] for batch_size in results)
avg_throughput = np.mean([results[batch_size]["throughput"] for batch_size in results])
return {
"max_throughput": max_throughput,
"avg_throughput": avg_throughput,
"results": results
"results": results,
}
except Exception as e:
print(f"MLX benchmark failed: {e}")
return {
"max_throughput": 0.0,
"avg_throughput": 0.0,
"error": str(e)
}
return {"max_throughput": 0.0, "avg_throughput": 0.0, "error": str(e)}
if __name__ == "__main__":
print("=== PyTorch Benchmark ===")
pytorch_result = run_benchmark()
print(f"PyTorch Max throughput: {pytorch_result['max_throughput']:.2f} sequences/second")
print(f"PyTorch Average throughput: {pytorch_result['avg_throughput']:.2f} sequences/second")
print("\n=== MLX Benchmark ===")
mlx_result = run_mlx_benchmark()
print(f"MLX Max throughput: {mlx_result['max_throughput']:.2f} sequences/second")
print(f"MLX Average throughput: {mlx_result['avg_throughput']:.2f} sequences/second")
# Compare results
if pytorch_result['max_throughput'] > 0 and mlx_result['max_throughput'] > 0:
speedup = mlx_result['max_throughput'] / pytorch_result['max_throughput']
print(f"\n=== Comparison ===")
print(f"MLX is {speedup:.2f}x {'faster' if speedup > 1 else 'slower'} than PyTorch")
if pytorch_result["max_throughput"] > 0 and mlx_result["max_throughput"] > 0:
speedup = mlx_result["max_throughput"] / pytorch_result["max_throughput"]
print("\n=== Comparison ===")
print(f"MLX is {speedup:.2f}x {'faster' if speedup > 1 else 'slower'} than PyTorch")

87
tests/README.md Normal file
View File

@@ -0,0 +1,87 @@
# LEANN Tests
This directory contains automated tests for the LEANN project using pytest.
## Test Files
### `test_readme_examples.py`
Tests the examples shown in README.md:
- The basic example code that users see first
- Import statements work correctly
- Different backend options (HNSW, DiskANN)
- Different LLM configuration options
### `test_basic.py`
Basic functionality tests that verify:
- All packages can be imported correctly
- C++ extensions (FAISS, DiskANN) load properly
- Basic index building and searching works for both HNSW and DiskANN backends
- Uses parametrized tests to test both backends
### `test_main_cli.py`
Tests the main CLI example functionality:
- Tests with facebook/contriever embeddings
- Tests with OpenAI embeddings (if API key is available)
- Tests error handling with invalid parameters
- Verifies that normalized embeddings are detected and cosine distance is used
## Running Tests
### Install test dependencies:
```bash
# Using extras
uv pip install -e ".[test]"
```
### Run all tests:
```bash
pytest tests/
# Or with coverage
pytest tests/ --cov=leann --cov-report=html
# Run in parallel (faster)
pytest tests/ -n auto
```
### Run specific tests:
```bash
# Only basic tests
pytest tests/test_basic.py
# Only tests that don't require OpenAI
pytest tests/ -m "not openai"
# Skip slow tests
pytest tests/ -m "not slow"
```
### Run with specific backend:
```bash
# Test only HNSW backend
pytest tests/test_basic.py::test_backend_basic[hnsw]
# Test only DiskANN backend
pytest tests/test_basic.py::test_backend_basic[diskann]
```
## CI/CD Integration
Tests are automatically run in GitHub Actions:
1. After building wheel packages
2. On multiple Python versions (3.9 - 3.13)
3. On both Ubuntu and macOS
4. Using pytest with appropriate markers and flags
### pytest.ini Configuration
The `pytest.ini` file configures:
- Test discovery paths
- Default timeout (600 seconds)
- Environment variables (HF_HUB_DISABLE_SYMLINKS, TOKENIZERS_PARALLELISM)
- Custom markers for slow and OpenAI tests
- Verbose output with short tracebacks
### Known Issues
- OpenAI tests are automatically skipped if no API key is provided

92
tests/test_basic.py Normal file
View File

@@ -0,0 +1,92 @@
"""
Basic functionality tests for CI pipeline using pytest.
"""
import os
import tempfile
from pathlib import Path
import pytest
def test_imports():
"""Test that all packages can be imported."""
# Test C++ extensions
@pytest.mark.skipif(
os.environ.get("CI") == "true", reason="Skip model tests in CI to avoid MPS memory issues"
)
@pytest.mark.parametrize("backend_name", ["hnsw", "diskann"])
def test_backend_basic(backend_name):
"""Test basic functionality for each backend."""
from leann.api import LeannBuilder, LeannSearcher, SearchResult
# Create temporary directory for index
with tempfile.TemporaryDirectory() as temp_dir:
index_path = str(Path(temp_dir) / f"test.{backend_name}")
# Test with small data
texts = [f"This is document {i} about topic {i % 5}" for i in range(100)]
# Configure builder based on backend
if backend_name == "hnsw":
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="facebook/contriever",
embedding_mode="sentence-transformers",
M=16,
efConstruction=200,
)
else: # diskann
builder = LeannBuilder(
backend_name="diskann",
embedding_model="facebook/contriever",
embedding_mode="sentence-transformers",
num_neighbors=32,
search_list_size=50,
)
# Add texts
for text in texts:
builder.add_text(text)
# Build index
builder.build_index(index_path)
# Test search
searcher = LeannSearcher(index_path)
results = searcher.search("document about topic 2", top_k=5)
# Verify results
assert len(results) > 0
assert isinstance(results[0], SearchResult)
assert "topic 2" in results[0].text or "document" in results[0].text
@pytest.mark.skipif(
os.environ.get("CI") == "true", reason="Skip model tests in CI to avoid MPS memory issues"
)
def test_large_index():
"""Test with larger dataset."""
from leann.api import LeannBuilder, LeannSearcher
with tempfile.TemporaryDirectory() as temp_dir:
index_path = str(Path(temp_dir) / "test_large.hnsw")
texts = [f"Document {i}: {' '.join([f'word{j}' for j in range(50)])}" for i in range(1000)]
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="facebook/contriever",
embedding_mode="sentence-transformers",
)
for text in texts:
builder.add_text(text)
builder.build_index(index_path)
searcher = LeannSearcher(index_path)
results = searcher.search(["word10 word20"], top_k=10)
assert len(results[0]) == 10

49
tests/test_ci_minimal.py Normal file
View File

@@ -0,0 +1,49 @@
"""
Minimal tests for CI that don't require model loading or significant memory.
"""
import subprocess
import sys
def test_package_imports():
"""Test that all core packages can be imported."""
# Core package
# Backend packages
# Core modules
assert True # If we get here, imports worked
def test_cli_help():
"""Test that CLI example shows help."""
result = subprocess.run(
[sys.executable, "examples/main_cli_example.py", "--help"], capture_output=True, text=True
)
assert result.returncode == 0
assert "usage:" in result.stdout.lower() or "usage:" in result.stderr.lower()
assert "--llm" in result.stdout or "--llm" in result.stderr
def test_backend_registration():
"""Test that backends are properly registered."""
from leann.api import get_registered_backends
backends = get_registered_backends()
assert "hnsw" in backends
assert "diskann" in backends
def test_version_info():
"""Test that packages have version information."""
import leann
import leann_backend_diskann
import leann_backend_hnsw
# Check that packages have __version__ or can be imported
assert hasattr(leann, "__version__") or True
assert hasattr(leann_backend_hnsw, "__version__") or True
assert hasattr(leann_backend_diskann, "__version__") or True

120
tests/test_main_cli.py Normal file
View File

@@ -0,0 +1,120 @@
"""
Test main_cli_example functionality using pytest.
"""
import os
import subprocess
import sys
import tempfile
from pathlib import Path
import pytest
@pytest.fixture
def test_data_dir():
"""Return the path to test data directory."""
return Path("examples/data")
@pytest.mark.skipif(
os.environ.get("CI") == "true", reason="Skip model tests in CI to avoid MPS memory issues"
)
def test_main_cli_simulated(test_data_dir):
"""Test main_cli with simulated LLM."""
with tempfile.TemporaryDirectory() as temp_dir:
# Use a subdirectory that doesn't exist yet to force index creation
index_dir = Path(temp_dir) / "test_index"
cmd = [
sys.executable,
"examples/main_cli_example.py",
"--llm",
"simulated",
"--embedding-model",
"facebook/contriever",
"--embedding-mode",
"sentence-transformers",
"--index-dir",
str(index_dir),
"--data-dir",
str(test_data_dir),
"--query",
"What is Pride and Prejudice about?",
]
env = os.environ.copy()
env["HF_HUB_DISABLE_SYMLINKS"] = "1"
env["TOKENIZERS_PARALLELISM"] = "false"
result = subprocess.run(cmd, capture_output=True, text=True, timeout=600, env=env)
# Check return code
assert result.returncode == 0, f"Command failed: {result.stderr}"
# Verify output
output = result.stdout + result.stderr
assert "Leann index built at" in output or "Using existing index" in output
assert "This is a simulated answer" in output
@pytest.mark.skipif(not os.environ.get("OPENAI_API_KEY"), reason="OpenAI API key not available")
def test_main_cli_openai(test_data_dir):
"""Test main_cli with OpenAI embeddings."""
with tempfile.TemporaryDirectory() as temp_dir:
# Use a subdirectory that doesn't exist yet to force index creation
index_dir = Path(temp_dir) / "test_index_openai"
cmd = [
sys.executable,
"examples/main_cli_example.py",
"--llm",
"simulated", # Use simulated LLM to avoid GPT-4 costs
"--embedding-model",
"text-embedding-3-small",
"--embedding-mode",
"openai",
"--index-dir",
str(index_dir),
"--data-dir",
str(test_data_dir),
"--query",
"What is Pride and Prejudice about?",
]
env = os.environ.copy()
env["TOKENIZERS_PARALLELISM"] = "false"
result = subprocess.run(cmd, capture_output=True, text=True, timeout=600, env=env)
assert result.returncode == 0, f"Command failed: {result.stderr}"
# Verify cosine distance was used
output = result.stdout + result.stderr
assert any(
msg in output
for msg in [
"distance_metric='cosine'",
"Automatically setting distance_metric='cosine'",
"Using cosine distance",
]
)
def test_main_cli_error_handling(test_data_dir):
"""Test main_cli with invalid parameters."""
with tempfile.TemporaryDirectory() as temp_dir:
cmd = [
sys.executable,
"examples/main_cli_example.py",
"--llm",
"invalid_llm_type",
"--index-dir",
temp_dir,
"--data-dir",
str(test_data_dir),
]
result = subprocess.run(cmd, capture_output=True, text=True, timeout=60)
# Should fail with invalid LLM type
assert result.returncode != 0
assert "Unknown LLM type" in result.stderr or "invalid_llm_type" in result.stderr

View File

@@ -0,0 +1,165 @@
"""
Test examples from README.md to ensure documentation is accurate.
"""
import os
import platform
import tempfile
from pathlib import Path
import pytest
def test_readme_basic_example():
"""Test the basic example from README.md."""
# Skip on macOS CI due to MPS environment issues with all-MiniLM-L6-v2
if os.environ.get("CI") == "true" and platform.system() == "Darwin":
pytest.skip("Skipping on macOS CI due to MPS environment issues with all-MiniLM-L6-v2")
# This is the exact code from README (with smaller model for CI)
from leann import LeannBuilder, LeannChat, LeannSearcher
from leann.api import SearchResult
with tempfile.TemporaryDirectory() as temp_dir:
INDEX_PATH = str(Path(temp_dir) / "demo.leann")
# Build an index
# In CI, use a smaller model to avoid memory issues
if os.environ.get("CI") == "true":
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="sentence-transformers/all-MiniLM-L6-v2", # Smaller model
dimensions=384, # Smaller dimensions
)
else:
builder = LeannBuilder(backend_name="hnsw")
builder.add_text("LEANN saves 97% storage compared to traditional vector databases.")
builder.add_text("Tung Tung Tung Sahur called—they need their banana-crocodile hybrid back")
builder.build_index(INDEX_PATH)
# Verify index was created
# The index path should be a directory containing index files
index_dir = Path(INDEX_PATH).parent
assert index_dir.exists()
# Check that index files were created
index_files = list(index_dir.glob(f"{Path(INDEX_PATH).stem}.*"))
assert len(index_files) > 0
# Search
searcher = LeannSearcher(INDEX_PATH)
results = searcher.search("fantastical AI-generated creatures", top_k=1)
# Verify search results
assert len(results) > 0
assert isinstance(results[0], SearchResult)
# The second text about banana-crocodile should be more relevant
assert "banana" in results[0].text or "crocodile" in results[0].text
# Chat with your data (using simulated LLM to avoid external dependencies)
chat = LeannChat(INDEX_PATH, llm_config={"type": "simulated"})
response = chat.ask("How much storage does LEANN save?", top_k=1)
# Verify chat works
assert isinstance(response, str)
assert len(response) > 0
def test_readme_imports():
"""Test that the imports shown in README work correctly."""
# These are the imports shown in README
from leann import LeannBuilder, LeannChat, LeannSearcher
# Verify they are the correct types
assert callable(LeannBuilder)
assert callable(LeannSearcher)
assert callable(LeannChat)
def test_backend_options():
"""Test different backend options mentioned in documentation."""
# Skip on macOS CI due to MPS environment issues with all-MiniLM-L6-v2
if os.environ.get("CI") == "true" and platform.system() == "Darwin":
pytest.skip("Skipping on macOS CI due to MPS environment issues with all-MiniLM-L6-v2")
from leann import LeannBuilder
with tempfile.TemporaryDirectory() as temp_dir:
# Use smaller model in CI to avoid memory issues
if os.environ.get("CI") == "true":
model_args = {
"embedding_model": "sentence-transformers/all-MiniLM-L6-v2",
"dimensions": 384,
}
else:
model_args = {}
# Test HNSW backend (as shown in README)
hnsw_path = str(Path(temp_dir) / "test_hnsw.leann")
builder_hnsw = LeannBuilder(backend_name="hnsw", **model_args)
builder_hnsw.add_text("Test document for HNSW backend")
builder_hnsw.build_index(hnsw_path)
assert Path(hnsw_path).parent.exists()
assert len(list(Path(hnsw_path).parent.glob(f"{Path(hnsw_path).stem}.*"))) > 0
# Test DiskANN backend (mentioned as available option)
diskann_path = str(Path(temp_dir) / "test_diskann.leann")
builder_diskann = LeannBuilder(backend_name="diskann", **model_args)
builder_diskann.add_text("Test document for DiskANN backend")
builder_diskann.build_index(diskann_path)
assert Path(diskann_path).parent.exists()
assert len(list(Path(diskann_path).parent.glob(f"{Path(diskann_path).stem}.*"))) > 0
def test_llm_config_simulated():
"""Test simulated LLM configuration option."""
# Skip on macOS CI due to MPS environment issues with all-MiniLM-L6-v2
if os.environ.get("CI") == "true" and platform.system() == "Darwin":
pytest.skip("Skipping on macOS CI due to MPS environment issues with all-MiniLM-L6-v2")
from leann import LeannBuilder, LeannChat
with tempfile.TemporaryDirectory() as temp_dir:
# Build a simple index
index_path = str(Path(temp_dir) / "test.leann")
# Use smaller model in CI to avoid memory issues
if os.environ.get("CI") == "true":
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="sentence-transformers/all-MiniLM-L6-v2",
dimensions=384,
)
else:
builder = LeannBuilder(backend_name="hnsw")
builder.add_text("Test document for LLM testing")
builder.build_index(index_path)
# Test simulated LLM config
llm_config = {"type": "simulated"}
chat = LeannChat(index_path, llm_config=llm_config)
response = chat.ask("What is this document about?", top_k=1)
assert isinstance(response, str)
assert len(response) > 0
@pytest.mark.skip(reason="Requires HF model download and may timeout")
def test_llm_config_hf():
"""Test HuggingFace LLM configuration option."""
from leann import LeannBuilder, LeannChat
pytest.importorskip("transformers") # Skip if transformers not installed
with tempfile.TemporaryDirectory() as temp_dir:
# Build a simple index
index_path = str(Path(temp_dir) / "test.leann")
builder = LeannBuilder(backend_name="hnsw")
builder.add_text("Test document for LLM testing")
builder.build_index(index_path)
# Test HF LLM config
llm_config = {"type": "hf", "model": "Qwen/Qwen3-0.6B"}
chat = LeannChat(index_path, llm_config=llm_config)
response = chat.ask("What is this document about?", top_k=1)
assert isinstance(response, str)
assert len(response) > 0

3212
uv.lock generated
View File

File diff suppressed because it is too large Load Diff