Compare commits
17 Commits
v0.2.2
...
feat/claud
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
38ec6aae11 | ||
|
|
1e5d05e36a | ||
|
|
5d21f5bd9d | ||
|
|
42690cb74e | ||
|
|
a2a5b0db1b | ||
|
|
67c5a3e838 | ||
|
|
3ff5aac8e0 | ||
|
|
1071479c05 | ||
|
|
068fcd71cf | ||
|
|
67fef60466 | ||
|
|
b6ab6f1993 | ||
|
|
9f2e82a838 | ||
|
|
0b2b799d5a | ||
|
|
0f790fbbd9 | ||
|
|
387ae21eba | ||
|
|
3cc329c3e7 | ||
|
|
5567302316 |
40
README.md
40
README.md
@@ -6,6 +6,7 @@
|
|||||||
<img src="https://img.shields.io/badge/Python-3.9%2B-blue.svg" alt="Python 3.9+">
|
<img src="https://img.shields.io/badge/Python-3.9%2B-blue.svg" alt="Python 3.9+">
|
||||||
<img src="https://img.shields.io/badge/License-MIT-green.svg" alt="MIT License">
|
<img src="https://img.shields.io/badge/License-MIT-green.svg" alt="MIT License">
|
||||||
<img src="https://img.shields.io/badge/Platform-Linux%20%7C%20macOS-lightgrey" alt="Platform">
|
<img src="https://img.shields.io/badge/Platform-Linux%20%7C%20macOS-lightgrey" alt="Platform">
|
||||||
|
<img src="https://img.shields.io/badge/MCP-Native%20Integration-blue?style=flat-square" alt="MCP Integration">
|
||||||
</p>
|
</p>
|
||||||
|
|
||||||
<h2 align="center" tabindex="-1" class="heading-element" dir="auto">
|
<h2 align="center" tabindex="-1" class="heading-element" dir="auto">
|
||||||
@@ -16,9 +17,10 @@ LEANN is an innovative vector database that democratizes personal AI. Transform
|
|||||||
|
|
||||||
LEANN achieves this through *graph-based selective recomputation* with *high-degree preserving pruning*, computing embeddings on-demand instead of storing them all. [Illustration Fig →](#️-architecture--how-it-works) | [Paper →](https://arxiv.org/abs/2506.08276)
|
LEANN achieves this through *graph-based selective recomputation* with *high-degree preserving pruning*, computing embeddings on-demand instead of storing them all. [Illustration Fig →](#️-architecture--how-it-works) | [Paper →](https://arxiv.org/abs/2506.08276)
|
||||||
|
|
||||||
**Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can search your **[file system](#-personal-data-manager-process-any-documents-pdf-txt-md)**, **[emails](#-your-personal-email-secretary-rag-on-apple-mail)**, **[browser history](#-time-machine-for-the-web-rag-your-entire-browser-history)**, **[chat history](#-wechat-detective-unlock-your-golden-memories)**, or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy.
|
**Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can semantic search your **[file system](#-personal-data-manager-process-any-documents-pdf-txt-md)**, **[emails](#-your-personal-email-secretary-rag-on-apple-mail)**, **[browser history](#-time-machine-for-the-web-rag-your-entire-browser-history)**, **[chat history](#-wechat-detective-unlock-your-golden-memories)**, **[codebase](#-claude-code-integration-transform-your-development-workflow)**\* , or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy.
|
||||||
|
|
||||||
> **🚀 NEW: Claude Code Integration!** LEANN now provides native MCP integration for Claude Code users. Index your codebase and get intelligent code assistance directly in Claude Code. [Setup Guide →](packages/leann-mcp/README.md)
|
|
||||||
|
\* Claude Code only supports basic `grep`-style keyword search. **LEANN** is a drop-in **semantic search MCP service fully compatible with Claude Code**, unlocking intelligent retrieval without changing your workflow. 🔥 Check out [the easy setup →](packages/leann-mcp/README.md)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@@ -28,7 +30,7 @@ LEANN achieves this through *graph-based selective recomputation* with *high-deg
|
|||||||
<img src="assets/effects.png" alt="LEANN vs Traditional Vector DB Storage Comparison" width="70%">
|
<img src="assets/effects.png" alt="LEANN vs Traditional Vector DB Storage Comparison" width="70%">
|
||||||
</p>
|
</p>
|
||||||
|
|
||||||
> **The numbers speak for themselves:** Index 60 million Wikipedia chunks in just 6GB instead of 201GB. From emails to browser history, everything fits on your laptop. [See detailed benchmarks for different applications below ↓](#storage-comparison)
|
> **The numbers speak for themselves:** Index 60 million text chunks in just 6GB instead of 201GB. From emails to browser history, everything fits on your laptop. [See detailed benchmarks for different applications below ↓](#storage-comparison)
|
||||||
|
|
||||||
|
|
||||||
🔒 **Privacy:** Your data never leaves your laptop. No OpenAI, no cloud, no "terms of service".
|
🔒 **Privacy:** Your data never leaves your laptop. No OpenAI, no cloud, no "terms of service".
|
||||||
@@ -187,8 +189,8 @@ All RAG examples share these common parameters. **Interactive mode** is availabl
|
|||||||
--force-rebuild # Force rebuild index even if it exists
|
--force-rebuild # Force rebuild index even if it exists
|
||||||
|
|
||||||
# Embedding Parameters
|
# Embedding Parameters
|
||||||
--embedding-model MODEL # e.g., facebook/contriever, text-embedding-3-small or mlx-community/multilingual-e5-base-mlx
|
--embedding-model MODEL # e.g., facebook/contriever, text-embedding-3-small, nomic-embed-text, or mlx-community/multilingual-e5-base-mlx
|
||||||
--embedding-mode MODE # sentence-transformers, openai, or mlx
|
--embedding-mode MODE # sentence-transformers, openai, mlx, or ollama
|
||||||
|
|
||||||
# LLM Parameters (Text generation models)
|
# LLM Parameters (Text generation models)
|
||||||
--llm TYPE # LLM backend: openai, ollama, or hf (default: openai)
|
--llm TYPE # LLM backend: openai, ollama, or hf (default: openai)
|
||||||
@@ -221,7 +223,7 @@ Ask questions directly about your personal PDFs, documents, and any directory co
|
|||||||
<img src="videos/paper_clear.gif" alt="LEANN Document Search Demo" width="600">
|
<img src="videos/paper_clear.gif" alt="LEANN Document Search Demo" width="600">
|
||||||
</p>
|
</p>
|
||||||
|
|
||||||
The example below asks a question about summarizing our paper (uses default data in `data/`, which is a directory with diverse data sources: two papers, Pride and Prejudice, and a README in Chinese) and this is the **easiest example** to run here:
|
The example below asks a question about summarizing our paper (uses default data in `data/`, which is a directory with diverse data sources: two papers, Pride and Prejudice, and a Technical report about LLM in Huawei in Chinese), and this is the **easiest example** to run here:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
source .venv/bin/activate # Don't forget to activate the virtual environment
|
source .venv/bin/activate # Don't forget to activate the virtual environment
|
||||||
@@ -416,7 +418,26 @@ Once the index is built, you can ask questions like:
|
|||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
|
### 🚀 Claude Code Integration: Transform Your Development Workflow!
|
||||||
|
|
||||||
|
**The future of code assistance is here.** Transform your development workflow with LEANN's native MCP integration for Claude Code. Index your entire codebase and get intelligent code assistance directly in your IDE.
|
||||||
|
|
||||||
|
**Key features:**
|
||||||
|
- 🔍 **Semantic code search** across your entire project
|
||||||
|
- 📚 **Context-aware assistance** for debugging and development
|
||||||
|
- 🚀 **Zero-config setup** with automatic language detection
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Install LEANN globally for MCP integration
|
||||||
|
uv tool install leann-core
|
||||||
|
|
||||||
|
# Setup is automatic - just start using Claude Code!
|
||||||
|
```
|
||||||
|
Try our fully agentic pipeline with auto query rewriting, semantic search planning, and more:
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
**Ready to supercharge your coding?** [Complete Setup Guide →](packages/leann-mcp/README.md)
|
||||||
|
|
||||||
## 🖥️ Command Line Interface
|
## 🖥️ Command Line Interface
|
||||||
|
|
||||||
@@ -446,11 +467,8 @@ leann --help
|
|||||||
### Usage Examples
|
### Usage Examples
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
# Build an index from current directory (default)
|
# build from a specific directory, and my_docs is the index name
|
||||||
leann build my-docs
|
leann build my-docs --docs ./your_documents
|
||||||
|
|
||||||
# Or from specific directory
|
|
||||||
leann build my-docs --docs ./documents
|
|
||||||
|
|
||||||
# Search your documents
|
# Search your documents
|
||||||
leann search my-docs "machine learning concepts"
|
leann search my-docs "machine learning concepts"
|
||||||
|
|||||||
@@ -75,7 +75,7 @@ class BaseRAGExample(ABC):
|
|||||||
"--embedding-mode",
|
"--embedding-mode",
|
||||||
type=str,
|
type=str,
|
||||||
default="sentence-transformers",
|
default="sentence-transformers",
|
||||||
choices=["sentence-transformers", "openai", "mlx"],
|
choices=["sentence-transformers", "openai", "mlx", "ollama"],
|
||||||
help="Embedding backend mode (default: sentence-transformers)",
|
help="Embedding backend mode (default: sentence-transformers)",
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -85,7 +85,7 @@ class BaseRAGExample(ABC):
|
|||||||
"--llm",
|
"--llm",
|
||||||
type=str,
|
type=str,
|
||||||
default="openai",
|
default="openai",
|
||||||
choices=["openai", "ollama", "hf"],
|
choices=["openai", "ollama", "hf", "simulated"],
|
||||||
help="LLM backend to use (default: openai)",
|
help="LLM backend to use (default: openai)",
|
||||||
)
|
)
|
||||||
llm_group.add_argument(
|
llm_group.add_argument(
|
||||||
|
|||||||
BIN
assets/mcp_leann.png
Normal file
BIN
assets/mcp_leann.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 224 KiB |
@@ -1,150 +0,0 @@
|
|||||||
# Claude Code x LEANN 集成指南
|
|
||||||
|
|
||||||
## ✅ 现状:已经可以工作!
|
|
||||||
|
|
||||||
好消息:LEANN CLI已经完全可以在Claude Code中使用,无需任何修改!
|
|
||||||
|
|
||||||
## 🚀 立即开始
|
|
||||||
|
|
||||||
### 1. 激活环境
|
|
||||||
```bash
|
|
||||||
# 在LEANN项目目录下
|
|
||||||
source .venv/bin/activate.fish # fish shell
|
|
||||||
# 或
|
|
||||||
source .venv/bin/activate # bash shell
|
|
||||||
```
|
|
||||||
|
|
||||||
### 2. 基本命令
|
|
||||||
|
|
||||||
#### 查看现有索引
|
|
||||||
```bash
|
|
||||||
leann list
|
|
||||||
```
|
|
||||||
|
|
||||||
#### 搜索文档
|
|
||||||
```bash
|
|
||||||
leann search my-docs "machine learning" --recompute-embeddings
|
|
||||||
```
|
|
||||||
|
|
||||||
#### 问答对话
|
|
||||||
```bash
|
|
||||||
echo "What is machine learning?" | leann ask my-docs --llm ollama --model qwen3:8b --recompute-embeddings
|
|
||||||
```
|
|
||||||
|
|
||||||
#### 构建新索引
|
|
||||||
```bash
|
|
||||||
leann build project-docs --docs ./src --recompute-embeddings
|
|
||||||
```
|
|
||||||
|
|
||||||
## 💡 Claude Code 使用技巧
|
|
||||||
|
|
||||||
### 在Claude Code中直接使用
|
|
||||||
|
|
||||||
1. **激活环境**:
|
|
||||||
```bash
|
|
||||||
cd /Users/andyl/Projects/LEANN-RAG
|
|
||||||
source .venv/bin/activate.fish
|
|
||||||
```
|
|
||||||
|
|
||||||
2. **搜索代码库**:
|
|
||||||
```bash
|
|
||||||
leann search my-docs "authentication patterns" --recompute-embeddings --top-k 10
|
|
||||||
```
|
|
||||||
|
|
||||||
3. **智能问答**:
|
|
||||||
```bash
|
|
||||||
echo "How does the authentication system work?" | leann ask my-docs --llm ollama --model qwen3:8b --recompute-embeddings
|
|
||||||
```
|
|
||||||
|
|
||||||
### 批量操作示例
|
|
||||||
|
|
||||||
```bash
|
|
||||||
# 构建项目文档索引
|
|
||||||
leann build project-docs --docs ./docs --force
|
|
||||||
|
|
||||||
# 搜索多个关键词
|
|
||||||
leann search project-docs "API authentication" --recompute-embeddings
|
|
||||||
leann search project-docs "database schema" --recompute-embeddings
|
|
||||||
leann search project-docs "deployment guide" --recompute-embeddings
|
|
||||||
|
|
||||||
# 问答模式
|
|
||||||
echo "What are the API endpoints?" | leann ask project-docs --recompute-embeddings
|
|
||||||
```
|
|
||||||
|
|
||||||
## 🎯 Claude 可以立即执行的工作流
|
|
||||||
|
|
||||||
### 代码分析工作流
|
|
||||||
```bash
|
|
||||||
# 1. 构建代码库索引
|
|
||||||
leann build codebase --docs ./src --backend hnsw --recompute-embeddings
|
|
||||||
|
|
||||||
# 2. 分析架构
|
|
||||||
echo "What is the overall architecture?" | leann ask codebase --recompute-embeddings
|
|
||||||
|
|
||||||
# 3. 查找特定功能
|
|
||||||
leann search codebase "user authentication" --recompute-embeddings --top-k 5
|
|
||||||
|
|
||||||
# 4. 理解实现细节
|
|
||||||
echo "How is user authentication implemented?" | leann ask codebase --recompute-embeddings
|
|
||||||
```
|
|
||||||
|
|
||||||
### 文档理解工作流
|
|
||||||
```bash
|
|
||||||
# 1. 索引项目文档
|
|
||||||
leann build docs --docs ./docs --recompute-embeddings
|
|
||||||
|
|
||||||
# 2. 快速查找信息
|
|
||||||
leann search docs "installation requirements" --recompute-embeddings
|
|
||||||
|
|
||||||
# 3. 获取详细说明
|
|
||||||
echo "What are the system requirements?" | leann ask docs --recompute-embeddings
|
|
||||||
```
|
|
||||||
|
|
||||||
## ⚠️ 重要提示
|
|
||||||
|
|
||||||
1. **必须使用 `--recompute-embeddings`** - 这是关键参数,不加会报错
|
|
||||||
2. **需要先激活虚拟环境** - 确保有LEANN的Python环境
|
|
||||||
3. **Ollama需要预先安装** - ask功能需要本地LLM
|
|
||||||
|
|
||||||
## 🔥 立即可用的Claude提示词
|
|
||||||
|
|
||||||
```
|
|
||||||
Help me analyze this codebase using LEANN:
|
|
||||||
|
|
||||||
1. First, activate the environment:
|
|
||||||
cd /Users/andyl/Projects/LEANN-RAG && source .venv/bin/activate.fish
|
|
||||||
|
|
||||||
2. Build an index of the source code:
|
|
||||||
leann build codebase --docs ./src --recompute-embeddings
|
|
||||||
|
|
||||||
3. Search for authentication patterns:
|
|
||||||
leann search codebase "authentication middleware" --recompute-embeddings --top-k 10
|
|
||||||
|
|
||||||
4. Ask about the authentication system:
|
|
||||||
echo "How does user authentication work in this codebase?" | leann ask codebase --recompute-embeddings
|
|
||||||
|
|
||||||
Please execute these commands and help me understand the code structure.
|
|
||||||
```
|
|
||||||
|
|
||||||
## 📈 下一步改进计划
|
|
||||||
|
|
||||||
虽然现在已经可以用,但还可以进一步优化:
|
|
||||||
|
|
||||||
1. **简化命令** - 默认启用recompute-embeddings
|
|
||||||
2. **配置文件** - 避免重复输入参数
|
|
||||||
3. **状态管理** - 自动检测环境和索引
|
|
||||||
4. **输出格式** - 更适合Claude解析的格式
|
|
||||||
|
|
||||||
但这些都是锦上添花,现在就能用起来!
|
|
||||||
|
|
||||||
## 🎉 总结
|
|
||||||
|
|
||||||
**LEANN现在就可以在Claude Code中完美工作!**
|
|
||||||
|
|
||||||
- ✅ 搜索功能正常
|
|
||||||
- ✅ RAG问答功能正常
|
|
||||||
- ✅ 索引构建功能正常
|
|
||||||
- ✅ 支持多种数据源
|
|
||||||
- ✅ 支持本地LLM
|
|
||||||
|
|
||||||
只需要记住加上 `--recompute-embeddings` 参数就行!
|
|
||||||
@@ -49,14 +49,25 @@ Based on our experience developing LEANN, embedding models fall into three categ
|
|||||||
- **Cons**: Slower inference, longer index build times
|
- **Cons**: Slower inference, longer index build times
|
||||||
- **Use when**: Quality is paramount and you have sufficient compute resources. **Highly recommended** for production use
|
- **Use when**: Quality is paramount and you have sufficient compute resources. **Highly recommended** for production use
|
||||||
|
|
||||||
### Quick Start: OpenAI Embeddings (Fastest Setup)
|
### Quick Start: Cloud and Local Embedding Options
|
||||||
|
|
||||||
|
**OpenAI Embeddings (Fastest Setup)**
|
||||||
For immediate testing without local model downloads:
|
For immediate testing without local model downloads:
|
||||||
```bash
|
```bash
|
||||||
# Set OpenAI embeddings (requires OPENAI_API_KEY)
|
# Set OpenAI embeddings (requires OPENAI_API_KEY)
|
||||||
--embedding-mode openai --embedding-model text-embedding-3-small
|
--embedding-mode openai --embedding-model text-embedding-3-small
|
||||||
```
|
```
|
||||||
|
|
||||||
|
**Ollama Embeddings (Privacy-Focused)**
|
||||||
|
For local embeddings with complete privacy:
|
||||||
|
```bash
|
||||||
|
# First, pull an embedding model
|
||||||
|
ollama pull nomic-embed-text
|
||||||
|
|
||||||
|
# Use Ollama embeddings
|
||||||
|
--embedding-mode ollama --embedding-model nomic-embed-text
|
||||||
|
```
|
||||||
|
|
||||||
<details>
|
<details>
|
||||||
<summary><strong>Cloud vs Local Trade-offs</strong></summary>
|
<summary><strong>Cloud vs Local Trade-offs</strong></summary>
|
||||||
|
|
||||||
|
|||||||
@@ -261,7 +261,7 @@ if __name__ == "__main__":
|
|||||||
"--embedding-mode",
|
"--embedding-mode",
|
||||||
type=str,
|
type=str,
|
||||||
default="sentence-transformers",
|
default="sentence-transformers",
|
||||||
choices=["sentence-transformers", "openai", "mlx"],
|
choices=["sentence-transformers", "openai", "mlx", "ollama"],
|
||||||
help="Embedding backend mode",
|
help="Embedding backend mode",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
|
|||||||
@@ -4,8 +4,8 @@ build-backend = "scikit_build_core.build"
|
|||||||
|
|
||||||
[project]
|
[project]
|
||||||
name = "leann-backend-diskann"
|
name = "leann-backend-diskann"
|
||||||
version = "0.2.2"
|
version = "0.2.5"
|
||||||
dependencies = ["leann-core==0.2.2", "numpy", "protobuf>=3.19.0"]
|
dependencies = ["leann-core==0.2.5", "numpy", "protobuf>=3.19.0"]
|
||||||
|
|
||||||
[tool.scikit-build]
|
[tool.scikit-build]
|
||||||
# Key: simplified CMake path
|
# Key: simplified CMake path
|
||||||
|
|||||||
@@ -295,7 +295,7 @@ if __name__ == "__main__":
|
|||||||
"--embedding-mode",
|
"--embedding-mode",
|
||||||
type=str,
|
type=str,
|
||||||
default="sentence-transformers",
|
default="sentence-transformers",
|
||||||
choices=["sentence-transformers", "openai", "mlx"],
|
choices=["sentence-transformers", "openai", "mlx", "ollama"],
|
||||||
help="Embedding backend mode",
|
help="Embedding backend mode",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|||||||
@@ -6,10 +6,10 @@ build-backend = "scikit_build_core.build"
|
|||||||
|
|
||||||
[project]
|
[project]
|
||||||
name = "leann-backend-hnsw"
|
name = "leann-backend-hnsw"
|
||||||
version = "0.2.2"
|
version = "0.2.5"
|
||||||
description = "Custom-built HNSW (Faiss) backend for the Leann toolkit."
|
description = "Custom-built HNSW (Faiss) backend for the Leann toolkit."
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"leann-core==0.2.2",
|
"leann-core==0.2.5",
|
||||||
"numpy",
|
"numpy",
|
||||||
"pyzmq>=23.0.0",
|
"pyzmq>=23.0.0",
|
||||||
"msgpack>=1.0.0",
|
"msgpack>=1.0.0",
|
||||||
|
|||||||
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
|||||||
|
|
||||||
[project]
|
[project]
|
||||||
name = "leann-core"
|
name = "leann-core"
|
||||||
version = "0.2.2"
|
version = "0.2.5"
|
||||||
description = "Core API and plugin system for LEANN"
|
description = "Core API and plugin system for LEANN"
|
||||||
readme = "README.md"
|
readme = "README.md"
|
||||||
requires-python = ">=3.9"
|
requires-python = ">=3.9"
|
||||||
|
|||||||
@@ -17,12 +17,12 @@ logging.basicConfig(level=logging.INFO)
|
|||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
def check_ollama_models() -> list[str]:
|
def check_ollama_models(host: str) -> list[str]:
|
||||||
"""Check available Ollama models and return a list"""
|
"""Check available Ollama models and return a list"""
|
||||||
try:
|
try:
|
||||||
import requests
|
import requests
|
||||||
|
|
||||||
response = requests.get("http://localhost:11434/api/tags", timeout=5)
|
response = requests.get(f"{host}/api/tags", timeout=5)
|
||||||
if response.status_code == 200:
|
if response.status_code == 200:
|
||||||
data = response.json()
|
data = response.json()
|
||||||
return [model["name"] for model in data.get("models", [])]
|
return [model["name"] for model in data.get("models", [])]
|
||||||
@@ -309,10 +309,12 @@ def search_hf_models(query: str, limit: int = 10) -> list[str]:
|
|||||||
return search_hf_models_fuzzy(query, limit)
|
return search_hf_models_fuzzy(query, limit)
|
||||||
|
|
||||||
|
|
||||||
def validate_model_and_suggest(model_name: str, llm_type: str) -> str | None:
|
def validate_model_and_suggest(
|
||||||
|
model_name: str, llm_type: str, host: str = "http://localhost:11434"
|
||||||
|
) -> str | None:
|
||||||
"""Validate model name and provide suggestions if invalid"""
|
"""Validate model name and provide suggestions if invalid"""
|
||||||
if llm_type == "ollama":
|
if llm_type == "ollama":
|
||||||
available_models = check_ollama_models()
|
available_models = check_ollama_models(host)
|
||||||
if available_models and model_name not in available_models:
|
if available_models and model_name not in available_models:
|
||||||
error_msg = f"Model '{model_name}' not found in your local Ollama installation."
|
error_msg = f"Model '{model_name}' not found in your local Ollama installation."
|
||||||
|
|
||||||
@@ -469,7 +471,7 @@ class OllamaChat(LLMInterface):
|
|||||||
requests.get(host)
|
requests.get(host)
|
||||||
|
|
||||||
# Pre-check model availability with helpful suggestions
|
# Pre-check model availability with helpful suggestions
|
||||||
model_error = validate_model_and_suggest(model, "ollama")
|
model_error = validate_model_and_suggest(model, "ollama", host)
|
||||||
if model_error:
|
if model_error:
|
||||||
raise ValueError(model_error)
|
raise ValueError(model_error)
|
||||||
|
|
||||||
|
|||||||
@@ -86,7 +86,9 @@ Examples:
|
|||||||
|
|
||||||
# Build command
|
# Build command
|
||||||
build_parser = subparsers.add_parser("build", help="Build document index")
|
build_parser = subparsers.add_parser("build", help="Build document index")
|
||||||
build_parser.add_argument("index_name", help="Index name")
|
build_parser.add_argument(
|
||||||
|
"index_name", nargs="?", help="Index name (default: current directory name)"
|
||||||
|
)
|
||||||
build_parser.add_argument(
|
build_parser.add_argument(
|
||||||
"--docs", type=str, default=".", help="Documents directory (default: current directory)"
|
"--docs", type=str, default=".", help="Documents directory (default: current directory)"
|
||||||
)
|
)
|
||||||
@@ -94,6 +96,13 @@ Examples:
|
|||||||
"--backend", type=str, default="hnsw", choices=["hnsw", "diskann"]
|
"--backend", type=str, default="hnsw", choices=["hnsw", "diskann"]
|
||||||
)
|
)
|
||||||
build_parser.add_argument("--embedding-model", type=str, default="facebook/contriever")
|
build_parser.add_argument("--embedding-model", type=str, default="facebook/contriever")
|
||||||
|
build_parser.add_argument(
|
||||||
|
"--embedding-mode",
|
||||||
|
type=str,
|
||||||
|
default="sentence-transformers",
|
||||||
|
choices=["sentence-transformers", "openai", "mlx", "ollama"],
|
||||||
|
help="Embedding backend mode (default: sentence-transformers)",
|
||||||
|
)
|
||||||
build_parser.add_argument("--force", "-f", action="store_true", help="Force rebuild")
|
build_parser.add_argument("--force", "-f", action="store_true", help="Force rebuild")
|
||||||
build_parser.add_argument("--graph-degree", type=int, default=32)
|
build_parser.add_argument("--graph-degree", type=int, default=32)
|
||||||
build_parser.add_argument("--complexity", type=int, default=64)
|
build_parser.add_argument("--complexity", type=int, default=64)
|
||||||
@@ -194,6 +203,63 @@ Examples:
|
|||||||
with open(global_registry, "w") as f:
|
with open(global_registry, "w") as f:
|
||||||
json.dump(projects, f, indent=2)
|
json.dump(projects, f, indent=2)
|
||||||
|
|
||||||
|
def _read_gitignore_patterns(self, docs_dir: str) -> list[str]:
|
||||||
|
"""Read .gitignore file and return patterns for exclusion."""
|
||||||
|
gitignore_path = Path(docs_dir) / ".gitignore"
|
||||||
|
patterns = []
|
||||||
|
|
||||||
|
# Add some essential patterns that should always be excluded
|
||||||
|
essential_patterns = [
|
||||||
|
".git",
|
||||||
|
".DS_Store",
|
||||||
|
]
|
||||||
|
patterns.extend(essential_patterns)
|
||||||
|
|
||||||
|
if gitignore_path.exists():
|
||||||
|
try:
|
||||||
|
with open(gitignore_path, encoding="utf-8") as f:
|
||||||
|
for line in f:
|
||||||
|
line = line.strip()
|
||||||
|
# Skip empty lines and comments
|
||||||
|
if line and not line.startswith("#"):
|
||||||
|
# Remove leading slash if present (make it relative)
|
||||||
|
if line.startswith("/"):
|
||||||
|
line = line[1:]
|
||||||
|
patterns.append(line)
|
||||||
|
print(
|
||||||
|
f"📋 Loaded {len(patterns) - len(essential_patterns)} patterns from .gitignore"
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Warning: Could not read .gitignore: {e}")
|
||||||
|
else:
|
||||||
|
print("📋 No .gitignore found, using minimal exclusion patterns")
|
||||||
|
|
||||||
|
return patterns
|
||||||
|
|
||||||
|
def _should_exclude_file(self, relative_path: Path, exclude_patterns: list[str]) -> bool:
|
||||||
|
"""Check if a file should be excluded based on gitignore-style patterns."""
|
||||||
|
path_str = str(relative_path)
|
||||||
|
|
||||||
|
for pattern in exclude_patterns:
|
||||||
|
# Simple pattern matching (could be enhanced with full gitignore syntax)
|
||||||
|
if pattern.endswith("*"):
|
||||||
|
# Wildcard pattern
|
||||||
|
prefix = pattern[:-1]
|
||||||
|
if path_str.startswith(prefix):
|
||||||
|
return True
|
||||||
|
elif "*" in pattern:
|
||||||
|
# Contains wildcard - simple glob-like matching
|
||||||
|
import fnmatch
|
||||||
|
|
||||||
|
if fnmatch.fnmatch(path_str, pattern):
|
||||||
|
return True
|
||||||
|
else:
|
||||||
|
# Exact match or directory match
|
||||||
|
if path_str == pattern or path_str.startswith(pattern + "/"):
|
||||||
|
return True
|
||||||
|
|
||||||
|
return False
|
||||||
|
|
||||||
def list_indexes(self):
|
def list_indexes(self):
|
||||||
print("Stored LEANN indexes:")
|
print("Stored LEANN indexes:")
|
||||||
|
|
||||||
@@ -275,34 +341,49 @@ Examples:
|
|||||||
if custom_file_types:
|
if custom_file_types:
|
||||||
print(f"Using custom file types: {custom_file_types}")
|
print(f"Using custom file types: {custom_file_types}")
|
||||||
|
|
||||||
# Try to use better PDF parsers first
|
# Read .gitignore patterns first
|
||||||
|
exclude_patterns = self._read_gitignore_patterns(docs_dir)
|
||||||
|
|
||||||
|
# Try to use better PDF parsers first, but only if PDFs are requested
|
||||||
documents = []
|
documents = []
|
||||||
docs_path = Path(docs_dir)
|
docs_path = Path(docs_dir)
|
||||||
|
|
||||||
for file_path in docs_path.rglob("*.pdf"):
|
# Check if we should process PDFs
|
||||||
print(f"Processing PDF: {file_path}")
|
should_process_pdfs = custom_file_types is None or ".pdf" in custom_file_types
|
||||||
|
|
||||||
# Try PyMuPDF first (best quality)
|
if should_process_pdfs:
|
||||||
text = extract_pdf_text_with_pymupdf(str(file_path))
|
for file_path in docs_path.rglob("*.pdf"):
|
||||||
if text is None:
|
# Check if file matches any exclude pattern
|
||||||
# Try pdfplumber
|
relative_path = file_path.relative_to(docs_path)
|
||||||
text = extract_pdf_text_with_pdfplumber(str(file_path))
|
if self._should_exclude_file(relative_path, exclude_patterns):
|
||||||
|
continue
|
||||||
|
|
||||||
if text:
|
print(f"Processing PDF: {file_path}")
|
||||||
# Create a simple document structure
|
|
||||||
from llama_index.core import Document
|
|
||||||
|
|
||||||
doc = Document(text=text, metadata={"source": str(file_path)})
|
# Try PyMuPDF first (best quality)
|
||||||
documents.append(doc)
|
text = extract_pdf_text_with_pymupdf(str(file_path))
|
||||||
else:
|
if text is None:
|
||||||
# Fallback to default reader
|
# Try pdfplumber
|
||||||
print(f"Using default reader for {file_path}")
|
text = extract_pdf_text_with_pdfplumber(str(file_path))
|
||||||
default_docs = SimpleDirectoryReader(
|
|
||||||
str(file_path.parent),
|
if text:
|
||||||
filename_as_id=True,
|
# Create a simple document structure
|
||||||
required_exts=[file_path.suffix],
|
from llama_index.core import Document
|
||||||
).load_data()
|
|
||||||
documents.extend(default_docs)
|
doc = Document(text=text, metadata={"source": str(file_path)})
|
||||||
|
documents.append(doc)
|
||||||
|
else:
|
||||||
|
# Fallback to default reader
|
||||||
|
print(f"Using default reader for {file_path}")
|
||||||
|
try:
|
||||||
|
default_docs = SimpleDirectoryReader(
|
||||||
|
str(file_path.parent),
|
||||||
|
filename_as_id=True,
|
||||||
|
required_exts=[file_path.suffix],
|
||||||
|
).load_data()
|
||||||
|
documents.extend(default_docs)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Warning: Could not process {file_path}: {e}")
|
||||||
|
|
||||||
# Load other file types with default reader
|
# Load other file types with default reader
|
||||||
if custom_file_types:
|
if custom_file_types:
|
||||||
@@ -373,6 +454,7 @@ Examples:
|
|||||||
recursive=True,
|
recursive=True,
|
||||||
encoding="utf-8",
|
encoding="utf-8",
|
||||||
required_exts=code_extensions,
|
required_exts=code_extensions,
|
||||||
|
exclude=exclude_patterns,
|
||||||
).load_data(show_progress=True)
|
).load_data(show_progress=True)
|
||||||
documents.extend(other_docs)
|
documents.extend(other_docs)
|
||||||
except ValueError as e:
|
except ValueError as e:
|
||||||
@@ -447,7 +529,13 @@ Examples:
|
|||||||
|
|
||||||
async def build_index(self, args):
|
async def build_index(self, args):
|
||||||
docs_dir = args.docs
|
docs_dir = args.docs
|
||||||
index_name = args.index_name
|
# Use current directory name if index_name not provided
|
||||||
|
if args.index_name:
|
||||||
|
index_name = args.index_name
|
||||||
|
else:
|
||||||
|
index_name = Path.cwd().name
|
||||||
|
print(f"Using current directory name as index: '{index_name}'")
|
||||||
|
|
||||||
index_dir = self.indexes_dir / index_name
|
index_dir = self.indexes_dir / index_name
|
||||||
index_path = self.get_index_path(index_name)
|
index_path = self.get_index_path(index_name)
|
||||||
|
|
||||||
@@ -469,6 +557,7 @@ Examples:
|
|||||||
builder = LeannBuilder(
|
builder = LeannBuilder(
|
||||||
backend_name=args.backend,
|
backend_name=args.backend,
|
||||||
embedding_model=args.embedding_model,
|
embedding_model=args.embedding_model,
|
||||||
|
embedding_mode=args.embedding_mode,
|
||||||
graph_degree=args.graph_degree,
|
graph_degree=args.graph_degree,
|
||||||
complexity=args.complexity,
|
complexity=args.complexity,
|
||||||
is_compact=args.compact,
|
is_compact=args.compact,
|
||||||
|
|||||||
@@ -6,6 +6,7 @@ Preserves all optimization parameters to ensure performance
|
|||||||
|
|
||||||
import logging
|
import logging
|
||||||
import os
|
import os
|
||||||
|
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||||
from typing import Any
|
from typing import Any
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@@ -35,7 +36,7 @@ def compute_embeddings(
|
|||||||
Args:
|
Args:
|
||||||
texts: List of texts to compute embeddings for
|
texts: List of texts to compute embeddings for
|
||||||
model_name: Model name
|
model_name: Model name
|
||||||
mode: Computation mode ('sentence-transformers', 'openai', 'mlx')
|
mode: Computation mode ('sentence-transformers', 'openai', 'mlx', 'ollama')
|
||||||
is_build: Whether this is a build operation (shows progress bar)
|
is_build: Whether this is a build operation (shows progress bar)
|
||||||
batch_size: Batch size for processing
|
batch_size: Batch size for processing
|
||||||
adaptive_optimization: Whether to use adaptive optimization based on batch size
|
adaptive_optimization: Whether to use adaptive optimization based on batch size
|
||||||
@@ -55,6 +56,8 @@ def compute_embeddings(
|
|||||||
return compute_embeddings_openai(texts, model_name)
|
return compute_embeddings_openai(texts, model_name)
|
||||||
elif mode == "mlx":
|
elif mode == "mlx":
|
||||||
return compute_embeddings_mlx(texts, model_name)
|
return compute_embeddings_mlx(texts, model_name)
|
||||||
|
elif mode == "ollama":
|
||||||
|
return compute_embeddings_ollama(texts, model_name, is_build=is_build)
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Unsupported embedding mode: {mode}")
|
raise ValueError(f"Unsupported embedding mode: {mode}")
|
||||||
|
|
||||||
@@ -365,3 +368,262 @@ def compute_embeddings_mlx(chunks: list[str], model_name: str, batch_size: int =
|
|||||||
|
|
||||||
# Stack numpy arrays
|
# Stack numpy arrays
|
||||||
return np.stack(all_embeddings)
|
return np.stack(all_embeddings)
|
||||||
|
|
||||||
|
|
||||||
|
def compute_embeddings_ollama(
|
||||||
|
texts: list[str], model_name: str, is_build: bool = False, host: str = "http://localhost:11434"
|
||||||
|
) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Compute embeddings using Ollama API.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
texts: List of texts to compute embeddings for
|
||||||
|
model_name: Ollama model name (e.g., "nomic-embed-text", "mxbai-embed-large")
|
||||||
|
is_build: Whether this is a build operation (shows progress bar)
|
||||||
|
host: Ollama host URL (default: http://localhost:11434)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Normalized embeddings array, shape: (len(texts), embedding_dim)
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
import requests
|
||||||
|
except ImportError:
|
||||||
|
raise ImportError(
|
||||||
|
"The 'requests' library is required for Ollama embeddings. Install with: uv pip install requests"
|
||||||
|
)
|
||||||
|
|
||||||
|
if not texts:
|
||||||
|
raise ValueError("Cannot compute embeddings for empty text list")
|
||||||
|
|
||||||
|
logger.info(
|
||||||
|
f"Computing embeddings for {len(texts)} texts using Ollama API, model: '{model_name}'"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Check if Ollama is running
|
||||||
|
try:
|
||||||
|
response = requests.get(f"{host}/api/version", timeout=5)
|
||||||
|
response.raise_for_status()
|
||||||
|
except requests.exceptions.ConnectionError:
|
||||||
|
error_msg = (
|
||||||
|
f"❌ Could not connect to Ollama at {host}.\n\n"
|
||||||
|
"Please ensure Ollama is running:\n"
|
||||||
|
" • macOS/Linux: ollama serve\n"
|
||||||
|
" • Windows: Make sure Ollama is running in the system tray\n\n"
|
||||||
|
"Installation: https://ollama.com/download"
|
||||||
|
)
|
||||||
|
raise RuntimeError(error_msg)
|
||||||
|
except Exception as e:
|
||||||
|
raise RuntimeError(f"Unexpected error connecting to Ollama: {e}")
|
||||||
|
|
||||||
|
# Check if model exists and provide helpful suggestions
|
||||||
|
try:
|
||||||
|
response = requests.get(f"{host}/api/tags", timeout=5)
|
||||||
|
response.raise_for_status()
|
||||||
|
models = response.json()
|
||||||
|
model_names = [model["name"] for model in models.get("models", [])]
|
||||||
|
|
||||||
|
# Filter for embedding models (models that support embeddings)
|
||||||
|
embedding_models = []
|
||||||
|
suggested_embedding_models = [
|
||||||
|
"nomic-embed-text",
|
||||||
|
"mxbai-embed-large",
|
||||||
|
"bge-m3",
|
||||||
|
"all-minilm",
|
||||||
|
"snowflake-arctic-embed",
|
||||||
|
]
|
||||||
|
|
||||||
|
for model in model_names:
|
||||||
|
# Check if it's an embedding model (by name patterns or known models)
|
||||||
|
base_name = model.split(":")[0]
|
||||||
|
if any(emb in base_name for emb in ["embed", "bge", "minilm", "e5"]):
|
||||||
|
embedding_models.append(model)
|
||||||
|
|
||||||
|
# Check if model exists (handle versioned names)
|
||||||
|
model_found = any(
|
||||||
|
model_name == name.split(":")[0] or model_name == name for name in model_names
|
||||||
|
)
|
||||||
|
|
||||||
|
if not model_found:
|
||||||
|
error_msg = f"❌ Model '{model_name}' not found in local Ollama.\n\n"
|
||||||
|
|
||||||
|
# Suggest pulling the model
|
||||||
|
error_msg += "📦 To install this embedding model:\n"
|
||||||
|
error_msg += f" ollama pull {model_name}\n\n"
|
||||||
|
|
||||||
|
# Show available embedding models
|
||||||
|
if embedding_models:
|
||||||
|
error_msg += "✅ Available embedding models:\n"
|
||||||
|
for model in embedding_models[:5]:
|
||||||
|
error_msg += f" • {model}\n"
|
||||||
|
if len(embedding_models) > 5:
|
||||||
|
error_msg += f" ... and {len(embedding_models) - 5} more\n"
|
||||||
|
else:
|
||||||
|
error_msg += "💡 Popular embedding models to install:\n"
|
||||||
|
for model in suggested_embedding_models[:3]:
|
||||||
|
error_msg += f" • ollama pull {model}\n"
|
||||||
|
|
||||||
|
error_msg += "\n📚 Browse more: https://ollama.com/library"
|
||||||
|
raise ValueError(error_msg)
|
||||||
|
|
||||||
|
# Verify the model supports embeddings by testing it
|
||||||
|
try:
|
||||||
|
test_response = requests.post(
|
||||||
|
f"{host}/api/embeddings", json={"model": model_name, "prompt": "test"}, timeout=10
|
||||||
|
)
|
||||||
|
if test_response.status_code != 200:
|
||||||
|
error_msg = (
|
||||||
|
f"⚠️ Model '{model_name}' exists but may not support embeddings.\n\n"
|
||||||
|
f"Please use an embedding model like:\n"
|
||||||
|
)
|
||||||
|
for model in suggested_embedding_models[:3]:
|
||||||
|
error_msg += f" • {model}\n"
|
||||||
|
raise ValueError(error_msg)
|
||||||
|
except requests.exceptions.RequestException:
|
||||||
|
# If test fails, continue anyway - model might still work
|
||||||
|
pass
|
||||||
|
|
||||||
|
except requests.exceptions.RequestException as e:
|
||||||
|
logger.warning(f"Could not verify model existence: {e}")
|
||||||
|
|
||||||
|
# Process embeddings with optimized concurrent processing
|
||||||
|
import requests
|
||||||
|
|
||||||
|
def get_single_embedding(text_idx_tuple):
|
||||||
|
"""Helper function to get embedding for a single text."""
|
||||||
|
text, idx = text_idx_tuple
|
||||||
|
max_retries = 3
|
||||||
|
retry_count = 0
|
||||||
|
|
||||||
|
# Truncate very long texts to avoid API issues
|
||||||
|
truncated_text = text[:8000] if len(text) > 8000 else text
|
||||||
|
|
||||||
|
while retry_count < max_retries:
|
||||||
|
try:
|
||||||
|
response = requests.post(
|
||||||
|
f"{host}/api/embeddings",
|
||||||
|
json={"model": model_name, "prompt": truncated_text},
|
||||||
|
timeout=30,
|
||||||
|
)
|
||||||
|
response.raise_for_status()
|
||||||
|
|
||||||
|
result = response.json()
|
||||||
|
embedding = result.get("embedding")
|
||||||
|
|
||||||
|
if embedding is None:
|
||||||
|
raise ValueError(f"No embedding returned for text {idx}")
|
||||||
|
|
||||||
|
return idx, embedding
|
||||||
|
|
||||||
|
except requests.exceptions.Timeout:
|
||||||
|
retry_count += 1
|
||||||
|
if retry_count >= max_retries:
|
||||||
|
logger.warning(f"Timeout for text {idx} after {max_retries} retries")
|
||||||
|
return idx, None
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
if retry_count >= max_retries - 1:
|
||||||
|
logger.error(f"Failed to get embedding for text {idx}: {e}")
|
||||||
|
return idx, None
|
||||||
|
retry_count += 1
|
||||||
|
|
||||||
|
return idx, None
|
||||||
|
|
||||||
|
# Determine if we should use concurrent processing
|
||||||
|
use_concurrent = (
|
||||||
|
len(texts) > 5 and not is_build
|
||||||
|
) # Don't use concurrent in build mode to avoid overwhelming
|
||||||
|
max_workers = min(4, len(texts)) # Limit concurrent requests to avoid overwhelming Ollama
|
||||||
|
|
||||||
|
all_embeddings = [None] * len(texts) # Pre-allocate list to maintain order
|
||||||
|
failed_indices = []
|
||||||
|
|
||||||
|
if use_concurrent:
|
||||||
|
logger.info(
|
||||||
|
f"Using concurrent processing with {max_workers} workers for {len(texts)} texts"
|
||||||
|
)
|
||||||
|
|
||||||
|
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
||||||
|
# Submit all tasks
|
||||||
|
future_to_idx = {
|
||||||
|
executor.submit(get_single_embedding, (text, idx)): idx
|
||||||
|
for idx, text in enumerate(texts)
|
||||||
|
}
|
||||||
|
|
||||||
|
# Add progress bar for concurrent processing
|
||||||
|
try:
|
||||||
|
if is_build or len(texts) > 10:
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
futures_iterator = tqdm(
|
||||||
|
as_completed(future_to_idx),
|
||||||
|
total=len(texts),
|
||||||
|
desc="Computing Ollama embeddings",
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
futures_iterator = as_completed(future_to_idx)
|
||||||
|
except ImportError:
|
||||||
|
futures_iterator = as_completed(future_to_idx)
|
||||||
|
|
||||||
|
# Collect results as they complete
|
||||||
|
for future in futures_iterator:
|
||||||
|
try:
|
||||||
|
idx, embedding = future.result()
|
||||||
|
if embedding is not None:
|
||||||
|
all_embeddings[idx] = embedding
|
||||||
|
else:
|
||||||
|
failed_indices.append(idx)
|
||||||
|
except Exception as e:
|
||||||
|
idx = future_to_idx[future]
|
||||||
|
logger.error(f"Exception for text {idx}: {e}")
|
||||||
|
failed_indices.append(idx)
|
||||||
|
|
||||||
|
else:
|
||||||
|
# Sequential processing with progress bar
|
||||||
|
show_progress = is_build or len(texts) > 10
|
||||||
|
|
||||||
|
try:
|
||||||
|
if show_progress:
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
iterator = tqdm(
|
||||||
|
enumerate(texts), total=len(texts), desc="Computing Ollama embeddings"
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
iterator = enumerate(texts)
|
||||||
|
except ImportError:
|
||||||
|
iterator = enumerate(texts)
|
||||||
|
|
||||||
|
for idx, text in iterator:
|
||||||
|
result_idx, embedding = get_single_embedding((text, idx))
|
||||||
|
if embedding is not None:
|
||||||
|
all_embeddings[idx] = embedding
|
||||||
|
else:
|
||||||
|
failed_indices.append(idx)
|
||||||
|
|
||||||
|
# Handle failed embeddings
|
||||||
|
if failed_indices:
|
||||||
|
if len(failed_indices) == len(texts):
|
||||||
|
raise RuntimeError("Failed to compute any embeddings")
|
||||||
|
|
||||||
|
logger.warning(f"Failed to compute embeddings for {len(failed_indices)}/{len(texts)} texts")
|
||||||
|
|
||||||
|
# Use zero embeddings as fallback for failed ones
|
||||||
|
valid_embedding = next((e for e in all_embeddings if e is not None), None)
|
||||||
|
if valid_embedding:
|
||||||
|
embedding_dim = len(valid_embedding)
|
||||||
|
for idx in failed_indices:
|
||||||
|
all_embeddings[idx] = [0.0] * embedding_dim
|
||||||
|
|
||||||
|
# Remove None values and convert to numpy array
|
||||||
|
all_embeddings = [e for e in all_embeddings if e is not None]
|
||||||
|
|
||||||
|
# Convert to numpy array and normalize
|
||||||
|
embeddings = np.array(all_embeddings, dtype=np.float32)
|
||||||
|
|
||||||
|
# Normalize embeddings (L2 normalization)
|
||||||
|
norms = np.linalg.norm(embeddings, axis=1, keepdims=True)
|
||||||
|
embeddings = embeddings / (norms + 1e-8) # Add small epsilon to avoid division by zero
|
||||||
|
|
||||||
|
logger.info(f"Generated {len(embeddings)} embeddings, dimension: {embeddings.shape[1]}")
|
||||||
|
|
||||||
|
return embeddings
|
||||||
|
|||||||
@@ -1,7 +1,6 @@
|
|||||||
#!/usr/bin/env python3
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
import json
|
import json
|
||||||
import os
|
|
||||||
import subprocess
|
import subprocess
|
||||||
import sys
|
import sys
|
||||||
|
|
||||||
@@ -26,32 +25,61 @@ def handle_request(request):
|
|||||||
"tools": [
|
"tools": [
|
||||||
{
|
{
|
||||||
"name": "leann_search",
|
"name": "leann_search",
|
||||||
"description": "Search LEANN index",
|
"description": """🔍 Search code using natural language - like having a coding assistant who knows your entire codebase!
|
||||||
|
|
||||||
|
🎯 **Perfect for**:
|
||||||
|
- "How does authentication work?" → finds auth-related code
|
||||||
|
- "Error handling patterns" → locates try-catch blocks and error logic
|
||||||
|
- "Database connection setup" → finds DB initialization code
|
||||||
|
- "API endpoint definitions" → locates route handlers
|
||||||
|
- "Configuration management" → finds config files and usage
|
||||||
|
|
||||||
|
💡 **Pro tip**: Use this before making any changes to understand existing patterns and conventions.""",
|
||||||
"inputSchema": {
|
"inputSchema": {
|
||||||
"type": "object",
|
"type": "object",
|
||||||
"properties": {
|
"properties": {
|
||||||
"index_name": {"type": "string"},
|
"index_name": {
|
||||||
"query": {"type": "string"},
|
"type": "string",
|
||||||
"top_k": {"type": "integer", "default": 5},
|
"description": "Name of the LEANN index to search. Use 'leann_list' first to see available indexes.",
|
||||||
|
},
|
||||||
|
"query": {
|
||||||
|
"type": "string",
|
||||||
|
"description": "Search query - can be natural language (e.g., 'how to handle errors') or technical terms (e.g., 'async function definition')",
|
||||||
|
},
|
||||||
|
"top_k": {
|
||||||
|
"type": "integer",
|
||||||
|
"default": 5,
|
||||||
|
"minimum": 1,
|
||||||
|
"maximum": 20,
|
||||||
|
"description": "Number of search results to return. Use 5-10 for focused results, 15-20 for comprehensive exploration.",
|
||||||
|
},
|
||||||
|
"complexity": {
|
||||||
|
"type": "integer",
|
||||||
|
"default": 32,
|
||||||
|
"minimum": 16,
|
||||||
|
"maximum": 128,
|
||||||
|
"description": "Search complexity level. Use 16-32 for fast searches (recommended), 64+ for higher precision when needed.",
|
||||||
|
},
|
||||||
},
|
},
|
||||||
"required": ["index_name", "query"],
|
"required": ["index_name", "query"],
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "leann_ask",
|
"name": "leann_status",
|
||||||
"description": "Ask question using LEANN RAG",
|
"description": "📊 Check the health and stats of your code indexes - like a medical checkup for your codebase knowledge!",
|
||||||
"inputSchema": {
|
"inputSchema": {
|
||||||
"type": "object",
|
"type": "object",
|
||||||
"properties": {
|
"properties": {
|
||||||
"index_name": {"type": "string"},
|
"index_name": {
|
||||||
"question": {"type": "string"},
|
"type": "string",
|
||||||
|
"description": "Optional: Name of specific index to check. If not provided, shows status of all indexes.",
|
||||||
|
}
|
||||||
},
|
},
|
||||||
"required": ["index_name", "question"],
|
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "leann_list",
|
"name": "leann_list",
|
||||||
"description": "List all LEANN indexes",
|
"description": "📋 Show all your indexed codebases - your personal code library! Use this to see what's available for search.",
|
||||||
"inputSchema": {"type": "object", "properties": {}},
|
"inputSchema": {"type": "object", "properties": {}},
|
||||||
},
|
},
|
||||||
]
|
]
|
||||||
@@ -62,32 +90,46 @@ def handle_request(request):
|
|||||||
tool_name = request["params"]["name"]
|
tool_name = request["params"]["name"]
|
||||||
args = request["params"].get("arguments", {})
|
args = request["params"].get("arguments", {})
|
||||||
|
|
||||||
# Set working directory and environment
|
|
||||||
env = os.environ.copy()
|
|
||||||
cwd = "/Users/andyl/Projects/LEANN-RAG"
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
if tool_name == "leann_search":
|
if tool_name == "leann_search":
|
||||||
|
# Validate required parameters
|
||||||
|
if not args.get("index_name") or not args.get("query"):
|
||||||
|
return {
|
||||||
|
"jsonrpc": "2.0",
|
||||||
|
"id": request.get("id"),
|
||||||
|
"result": {
|
||||||
|
"content": [
|
||||||
|
{
|
||||||
|
"type": "text",
|
||||||
|
"text": "Error: Both index_name and query are required",
|
||||||
|
}
|
||||||
|
]
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
# Build simplified command
|
||||||
cmd = [
|
cmd = [
|
||||||
"leann",
|
"leann",
|
||||||
"search",
|
"search",
|
||||||
args["index_name"],
|
args["index_name"],
|
||||||
args["query"],
|
args["query"],
|
||||||
"--recompute-embeddings",
|
|
||||||
f"--top-k={args.get('top_k', 5)}",
|
f"--top-k={args.get('top_k', 5)}",
|
||||||
|
f"--complexity={args.get('complexity', 32)}",
|
||||||
]
|
]
|
||||||
result = subprocess.run(cmd, capture_output=True, text=True, cwd=cwd, env=env)
|
|
||||||
|
|
||||||
elif tool_name == "leann_ask":
|
result = subprocess.run(cmd, capture_output=True, text=True)
|
||||||
cmd = f'echo "{args["question"]}" | leann ask {args["index_name"]} --recompute-embeddings --llm ollama --model qwen3:8b'
|
|
||||||
result = subprocess.run(
|
elif tool_name == "leann_status":
|
||||||
cmd, shell=True, capture_output=True, text=True, cwd=cwd, env=env
|
if args.get("index_name"):
|
||||||
)
|
# Check specific index status - for now, we'll use leann list and filter
|
||||||
|
result = subprocess.run(["leann", "list"], capture_output=True, text=True)
|
||||||
|
# We could enhance this to show more detailed status per index
|
||||||
|
else:
|
||||||
|
# Show all indexes status
|
||||||
|
result = subprocess.run(["leann", "list"], capture_output=True, text=True)
|
||||||
|
|
||||||
elif tool_name == "leann_list":
|
elif tool_name == "leann_list":
|
||||||
result = subprocess.run(
|
result = subprocess.run(["leann", "list"], capture_output=True, text=True)
|
||||||
["leann", "list"], capture_output=True, text=True, cwd=cwd, env=env
|
|
||||||
)
|
|
||||||
|
|
||||||
return {
|
return {
|
||||||
"jsonrpc": "2.0",
|
"jsonrpc": "2.0",
|
||||||
|
|||||||
@@ -1,18 +1,25 @@
|
|||||||
# LEANN Claude Code Integration
|
# 🔥 LEANN Claude Code Integration
|
||||||
|
|
||||||
Intelligent code assistance using LEANN's vector search directly in Claude Code.
|
Transform your development workflow with intelligent code assistance using LEANN's semantic search directly in Claude Code.
|
||||||
|
|
||||||
## Prerequisites
|
## Prerequisites
|
||||||
|
|
||||||
First, install LEANN CLI globally:
|
**Step 1:** First, complete the basic LEANN installation following the [📦 Installation guide](../../README.md#installation) in the root README:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
uv tool install leann
|
uv venv
|
||||||
|
source .venv/bin/activate
|
||||||
|
uv pip install leann
|
||||||
|
```
|
||||||
|
|
||||||
|
**Step 2:** Install LEANN globally for MCP integration:
|
||||||
|
```bash
|
||||||
|
uv tool install leann-core
|
||||||
```
|
```
|
||||||
|
|
||||||
This makes the `leann` command available system-wide, which `leann_mcp` requires.
|
This makes the `leann` command available system-wide, which `leann_mcp` requires.
|
||||||
|
|
||||||
## Quick Setup
|
## 🚀 Quick Setup
|
||||||
|
|
||||||
Add the LEANN MCP server to Claude Code:
|
Add the LEANN MCP server to Claude Code:
|
||||||
|
|
||||||
@@ -20,23 +27,25 @@ Add the LEANN MCP server to Claude Code:
|
|||||||
claude mcp add leann-server -- leann_mcp
|
claude mcp add leann-server -- leann_mcp
|
||||||
```
|
```
|
||||||
|
|
||||||
## Available Tools
|
## 🛠️ Available Tools
|
||||||
|
|
||||||
- **`leann_list`** - List available indexes across all projects
|
Once connected, you'll have access to these powerful semantic search tools in Claude Code:
|
||||||
- **`leann_search`** - Search code and documents with semantic queries
|
|
||||||
- **`leann_ask`** - Ask questions and get AI-powered answers from your codebase
|
|
||||||
|
|
||||||
## Quick Start
|
- **`leann_list`** - List all available indexes across your projects
|
||||||
|
- **`leann_search`** - Perform semantic searches across code and documents
|
||||||
|
- **`leann_ask`** - Ask natural language questions and get AI-powered answers from your codebase
|
||||||
|
|
||||||
|
## 🎯 Quick Start Example
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
# Build an index for your project
|
# Build an index for your project (change to your actual path)
|
||||||
leann build my-project
|
leann build my-project --docs ./
|
||||||
|
|
||||||
# Start Claude Code
|
# Start Claude Code
|
||||||
claude
|
claude
|
||||||
```
|
```
|
||||||
|
|
||||||
Then in Claude Code:
|
**Try this in Claude Code:**
|
||||||
```
|
```
|
||||||
Help me understand this codebase. List available indexes and search for authentication patterns.
|
Help me understand this codebase. List available indexes and search for authentication patterns.
|
||||||
```
|
```
|
||||||
@@ -46,24 +55,37 @@ Help me understand this codebase. List available indexes and search for authenti
|
|||||||
</p>
|
</p>
|
||||||
|
|
||||||
|
|
||||||
## How It Works
|
## 🧠 How It Works
|
||||||
|
|
||||||
- **`leann`** - Core CLI tool for indexing and searching (installed globally)
|
The integration consists of three key components working seamlessly together:
|
||||||
|
|
||||||
|
- **`leann`** - Core CLI tool for indexing and searching (installed globally via `uv tool install`)
|
||||||
- **`leann_mcp`** - MCP server that wraps `leann` commands for Claude Code integration
|
- **`leann_mcp`** - MCP server that wraps `leann` commands for Claude Code integration
|
||||||
- Claude Code calls `leann_mcp`, which executes `leann` commands and returns results
|
- **Claude Code** - Calls `leann_mcp`, which executes `leann` commands and returns intelligent results
|
||||||
|
|
||||||
## File Support
|
## 📁 File Support
|
||||||
|
|
||||||
Python, JavaScript, TypeScript, Java, Go, Rust, SQL, YAML, JSON, and 30+ more file types.
|
LEANN understands **30+ file types** including:
|
||||||
|
- **Programming**: Python, JavaScript, TypeScript, Java, Go, Rust, C++, C#
|
||||||
|
- **Data**: SQL, YAML, JSON, CSV, XML
|
||||||
|
- **Documentation**: Markdown, TXT, PDF
|
||||||
|
- **And many more!**
|
||||||
|
|
||||||
## Storage
|
## 💾 Storage & Organization
|
||||||
|
|
||||||
- Project indexes in `.leann/` directory (like `.git`)
|
- **Project indexes**: Stored in `.leann/` directory (just like `.git`)
|
||||||
- Global project registry at `~/.leann/projects.json`
|
- **Global registry**: Project tracking at `~/.leann/projects.json`
|
||||||
- Multi-project support built-in
|
- **Multi-project support**: Switch between different codebases seamlessly
|
||||||
|
- **Portable**: Transfer indexes between machines with minimal overhead
|
||||||
|
|
||||||
## Removing
|
## 🗑️ Uninstalling
|
||||||
|
|
||||||
|
To remove the LEANN MCP server from Claude Code:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
claude mcp remove leann-server
|
claude mcp remove leann-server
|
||||||
```
|
```
|
||||||
|
To remove LEANN
|
||||||
|
```
|
||||||
|
uv pip uninstall leann leann-backend-hnsw leann-core
|
||||||
|
```
|
||||||
|
|||||||
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
|||||||
|
|
||||||
[project]
|
[project]
|
||||||
name = "leann"
|
name = "leann"
|
||||||
version = "0.2.2"
|
version = "0.2.5"
|
||||||
description = "LEANN - The smallest vector index in the world. RAG Everything with LEANN!"
|
description = "LEANN - The smallest vector index in the world. RAG Everything with LEANN!"
|
||||||
readme = "README.md"
|
readme = "README.md"
|
||||||
requires-python = ">=3.9"
|
requires-python = ">=3.9"
|
||||||
|
|||||||
Reference in New Issue
Block a user