Compare commits

...

166 Commits

Author SHA1 Message Date
Andy Lee
d9e5d5d6aa Merge branch 'main' into feature/graph-partition-support 2025-08-11 01:46:31 -07:00
GitHub Actions
239e35e2e6 chore: release v0.2.7 2025-08-11 03:11:46 +00:00
Andy Lee
2fac0c6fbf fix: improve gitignore and Jupyter notebook support (#28)
- Add nbconvert dependency for .ipynb file support
- Replace manual gitignore parsing with gitignore-parser library
- Proper recursive .gitignore handling (all subdirectories)
- Fix compliance with Git gitignore behavior
- Simplify code and improve reliability

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-authored-by: Claude <noreply@anthropic.com>
2025-08-10 20:02:46 -07:00
yichuan520030910320
9801aa581b [Readme]update embedding model config according to reddit feedback 2025-08-09 21:33:33 -07:00
GitHub Actions
5e97916608 chore: release v0.2.6 2025-08-10 03:39:45 +00:00
Andy Lee
8b9c2be8c9 Feat/claude code refine (#24)
* feat: Add Ollama embedding support for local embedding models

* docs: Add clear documentation for Ollama embedding usage

* fix: remove leann_ask

* docs: remove ollama embedding extra instructions

* simplify MCP interface for Claude Code

- Remove unnecessary search parameters: search_mode, recompute_embeddings, file_types, min_score
- Remove leann_clear tool (not needed for Claude Code workflow)
- Streamline search to only use: query, index_name, top_k, complexity
- Keep core tools: leann_index, leann_search, leann_status, leann_list

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* remove leann_index from MCP interface

Users should use CLI command 'leann build' to create indexes first.
MCP now only provides search functionality:
- leann_search: search existing indexes
- leann_status: check index health
- leann_list: list available indexes

This separates index creation (CLI) from search (Claude Code).

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* improve CLI with auto project name and .gitignore support

- Make index_name optional, auto-use current directory name
- Read .gitignore patterns and respect them during indexing
- Add _read_gitignore_patterns() to parse .gitignore files
- Add _should_exclude_file() for pattern matching
- Apply exclusion patterns to both PDF and general file processing
- Show helpful messages about gitignore usage

Now users can simply run: leann build
And it will use project name + respect .gitignore patterns.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-08-09 20:37:17 -07:00
Andy Lee
a437f558a3 fix: handle non-daemon threads blocking process exit
The root cause was pytest-timeout creating non-daemon threads that
prevented the Python process from exiting, even after all tests completed.

Fixes:
1. Configure pytest-timeout to use 'thread' method instead of default
   - Avoids creating problematic non-daemon threads

2. Add aggressive thread cleanup in conftest.py
   - Convert pytest-timeout threads to daemon threads
   - Force exit with os._exit(0) in CI if non-daemon threads remain

3. Enhanced cleanup in both global_test_cleanup and pytest_sessionfinish
   - Detect and handle stuck threads
   - Clear diagnostics about what's blocking exit

The issue was that even though tests finished in 51 seconds, a
non-daemon thread 'pytest_timeout tests/test_readme_examples.py::test_llm_config_hf'
was preventing process exit, causing the 6-minute CI timeout.

This should finally solve the hanging CI problem.
2025-08-08 23:20:52 -07:00
Andy Lee
742c9baabc fix: increase outer timeout to 360s to respect pytest's 300s timeout
The outer shell timeout must be larger than pytest's internal timeout (300s)
to allow pytest to handle its own timeout gracefully and perform cleanup.

Changes:
- Increased outer timeout from 180s to 360s (300s + 60s buffer)
- Made timeouts configurable via environment variables
- Added clear documentation about timeout hierarchy
- Display timeout configuration at runtime

Timeout hierarchy:
1. Individual test: 20s (markers)
2. Pytest session: 300s (pyproject.toml)
3. Outer shell: 360s (for cleanup)
4. GitHub Actions: 6 hours (default)

This prevents the outer timeout from killing pytest before it can finish
its own timeout handling, which was likely causing the hanging issues.
2025-08-08 22:48:40 -07:00
Andy Lee
60eef4b440 fix: add diagnostic script (force add to override .gitignore)
The diagnose_hang.sh script needs to be in git for CI to use it.
Using -f to override *.sh rule in .gitignore.
2025-08-08 21:27:04 -07:00
Andy Lee
f2c5355c73 feat: add comprehensive debugging capabilities with tmate integration
1. Tmate SSH Debugging:
   - Added manual workflow_dispatch trigger with debug_enabled option
   - Integrated mxschmitt/action-tmate@v3 for SSH access to CI runner
   - Can be triggered manually or by adding [debug] to commit message
   - Detached mode with 30min timeout, limited to actor only
   - Also triggers on test failure when debug is enabled

2. Enhanced Pytest Output:
   - Added --capture=no to see real-time output
   - Added --log-cli-level=DEBUG for maximum verbosity
   - Added --tb=short for cleaner tracebacks
   - Pipe output to tee for both display and logging
   - Show last 20 lines of output on completion

3. Environment Diagnostics:
   - Export PYTHONUNBUFFERED=1 for immediate output
   - Show Python/Pytest versions at start
   - Display relevant environment variables
   - Check network ports before/after tests

4. Diagnostic Script:
   - Created scripts/diagnose_hang.sh for comprehensive system checks
   - Shows processes, network, file descriptors, memory, ZMQ status
   - Automatically runs on timeout for detailed debugging info

This allows debugging CI hangs via SSH when needed while providing extensive logging by default.
2025-08-08 21:25:58 -07:00
Andy Lee
439debbd3f fix: add extensive logging and fix subprocess PIPE blocking
1. CI Logging Enhancements:
   - Added comprehensive diagnostics with process tree, network listeners, file descriptors
   - Added timestamps at every stage (before/during/after pytest)
   - Added trap EXIT to always show diagnostics
   - Added immediate process checks after pytest finishes
   - Added sub-shell execution with immediate cleanup

2. Fixed Subprocess PIPE Blocking:
   - Changed Colab mode from PIPE to DEVNULL to prevent blocking
   - PIPE without reading can cause parent process to wait indefinitely

3. Pytest Session Hooks:
   - Added pytest_sessionstart to log initial state
   - Added pytest_sessionfinish for aggressive cleanup before exit
   - Shows all child processes and their status

This should reveal exactly where the hang is happening.
2025-08-08 18:55:50 -07:00
Andy Lee
3ff5aac8e0 Add Ollama embedding support to enable local embedding models (#22)
* feat: Add Ollama embedding support for local embedding models

* docs: Add clear documentation for Ollama embedding usage

* feat: Enhance Ollama embedding with better error handling and concurrent processing

- Add intelligent model validation and suggestions (inspired by OllamaChat)
- Implement concurrent processing for better performance
- Add retry mechanism with timeout handling
- Provide user-friendly error messages with emojis
- Auto-detect and recommend embedding models
- Add text truncation for long texts
- Improve progress bar display logic

* docs: don't mention it in README
2025-08-08 18:44:07 -07:00
Andy Lee
a35bfb0354 fix: comprehensive ZMQ timeout and cleanup fixes based on detailed analysis
Based on excellent diagnostic suggestions, implemented multiple fixes:

1. Diagnostics:
   - Added faulthandler to dump stack traces 10s before CI timeout
   - Enhanced CI script with trap handler to show processes/network on timeout
   - Added diag() function to capture pstree, processes, network listeners

2. ZMQ Socket Timeouts (critical fix):
   - Added RCVTIMEO=1000ms and SNDTIMEO=1000ms to all client sockets
   - Added IMMEDIATE=1 to avoid connection blocking
   - Reduced searcher timeout from 30s to 5s
   - This prevents infinite blocking on recv/send operations

3. Context.instance() Fix (major issue):
   - NEVER call term() or destroy() on Context.instance()
   - This was causing blocking as it waits for ALL sockets to close
   - Now only set linger=0 without terminating

4. Enhanced Process Cleanup:
   - Added _reap_children fixture for aggressive session-end cleanup
   - Better recursive child process termination
   - Added final wait to ensure cleanup completes

The 180s timeout was happening because:
- ZMQ recv() was blocking indefinitely without timeout
- Context.instance().term() was waiting for all sockets
- Child processes weren't being fully cleaned up

These changes should prevent the hanging completely.
2025-08-08 18:29:09 -07:00
Andy Lee
a6dad47280 fix: address root cause of test hanging - improper ZMQ/C++ resource cleanup
Fixed the actual root cause instead of just masking it in tests:

1. Root Problem:
   - C++ side's ZmqDistanceComputer creates ZMQ connections but doesn't clean them
   - Python 3.9/3.13 are more sensitive to cleanup timing during shutdown

2. Core Fixes in SearcherBase and LeannSearcher:
   - Added cleanup() method to BaseSearcher that cleans ZMQ and embedding server
   - LeannSearcher.cleanup() now also handles ZMQ context cleanup
   - Both HNSW and DiskANN searchers now properly delete C++ index objects

3. Backend-Specific Cleanup:
   - HNSWSearcher.cleanup(): Deletes self.index to trigger C++ destructors
   - DiskannSearcher.cleanup(): Deletes self._index and resets state
   - Both force garbage collection after deletion

4. Test Infrastructure:
   - Added auto_cleanup_searcher fixture for explicit resource management
   - Global cleanup now more aggressive with ZMQ context destruction

This is the proper fix - cleaning up resources at the source, not just
working around the issue in tests. The hanging was caused by C++ side
ZMQ connections not being properly terminated when is_recompute=True.
2025-08-08 17:54:03 -07:00
yichuan520030910320
67fef60466 [Readme]More about claude code 2025-08-08 16:05:35 -07:00
Andy Lee
131f10b286 Merge branch 'main' into feature/graph-partition-support 2025-08-08 16:02:54 -07:00
Andy Lee
e3762458fc fix: prevent test runner hanging on Python 3.9/3.13 due to ZMQ and process cleanup issues
Based on excellent analysis from user, implemented comprehensive fixes:

1. ZMQ Socket Cleanup:
   - Set LINGER=0 on all ZMQ sockets (client and server)
   - Use try-finally blocks to ensure socket.close() and context.term()
   - Prevents blocking on exit when ZMQ contexts have pending operations

2. Global Test Cleanup:
   - Added tests/conftest.py with session-scoped cleanup fixture
   - Cleans up leftover ZMQ contexts and child processes after all tests
   - Lists remaining threads for debugging

3. CI Improvements:
   - Apply timeout to ALL Python versions on Linux (not just 3.13)
   - Increased timeout to 180s for better reliability
   - Added process cleanup (pkill) on timeout

4. Dependencies:
   - Added psutil>=5.9.0 to test dependencies for process management

Root cause: Python 3.9/3.13 are more sensitive to cleanup timing during
interpreter shutdown. ZMQ's default LINGER=-1 was blocking exit, and
atexit handlers were unreliable for cleanup.

This should resolve the 'all tests pass but CI hangs' issue.
2025-08-08 15:57:22 -07:00
GitHub Actions
b6ab6f1993 chore: release v0.2.5 2025-08-08 22:32:27 +00:00
joshuashaffer
9f2e82a838 Propagate hosts argument for ollama through chat.py (#21)
* Propigate hosts argument for ollama through chat.py

* Apply suggestions from code review

Good AI slop suggestions.

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

---------

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-08-08 15:31:15 -07:00
Andy Lee
05e1efa00a ci: use timeout command only on Linux for Python 3.13 debugging
- Added OS check ( == Linux) before using timeout command
- macOS doesn't have GNU timeout by default, so skip it there
- Still run tests with verbose output on all platforms
- This avoids 'timeout: command not found' error on macOS CI
2025-08-08 11:34:38 -07:00
Andy Lee
6363fc5f83 fix: correct pytest async plugin dependency
- Changed pytest-anyio to anyio (the correct package name)
- The anyio package includes built-in pytest plugin support
- pytest-anyio==0.0.0 was causing dependency resolution failures
- anyio>=4.0 provides the pytest plugin for async test support
2025-08-08 11:23:02 -07:00
Andy Lee
319dc34a24 ci: add timeout debugging for Python 3.13 pytest hanging issue
- Added timeout --signal=INT to pytest runs on Python 3.13
- This will interrupt hanging tests and provide full traceback
- Added extra debugging steps for Python 3.13 to isolate the issue:
  - Test collection only with timeout
  - Run single simple test with timeout
- Reference: https://youtu.be/QRywzsBftfc (debugging hanging tests)
- Will help identify if hanging occurs during collection or execution
2025-08-08 11:17:54 -07:00
Andy Lee
72a5993f02 fix: update pytest and dependencies for Python 3.13 compatibility
- Updated pytest to >=8.3.0 (required for Python 3.13 support)
- Updated pytest-cov to >=5.0
- Updated pytest-xdist to >=3.5
- Updated pytest-timeout to >=2.3
- Added pytest-anyio>=4.0 for async test support with Python 3.13
- These version requirements ensure compatibility with Python 3.13
- No need to disable Python 3.13 in CI matrix
2025-08-08 11:13:11 -07:00
Andy Lee
250272a3be fix: prevent test_document_rag_openai from hanging
- Skip the test in CI environment to avoid hanging on OpenAI API calls
- Add 60-second timeout decorator for local runs
- Import ci_timeout from test_timeout module
- The test uses OpenAI embeddings which can hang due to network/API issues
2025-08-08 10:28:19 -07:00
Andy Lee
042da1fe09 feat: add simulated LLM option to document_rag.py
- Add 'simulated' to the LLM choices in base_rag_example.py
- Handle simulated case in get_llm_config() method
- This allows tests to use --llm simulated to avoid API costs
2025-08-08 10:24:49 -07:00
Andy Lee
2d9c183ebb fix: skip OpenAI test in CI to avoid failures and API costs
- Add CI skip for test_document_rag_openai
- Test was failing because it incorrectly used --llm simulated which isn't supported by document_rag.py
2025-08-08 10:22:04 -07:00
yichuan520030910320
0b2b799d5a [README]fix instructions in cli 2025-08-08 01:04:13 -07:00
yichuan520030910320
0f790fbbd9 docs: polish README and add optimized MCP integration image
- Improve grammar and sentence structure in MCP section
- Add proper markdown image formatting with relative paths
- Optimize mcp_leann.png size (1.3MB -> 224KB)
- Update data description to be more specific about Chinese content
2025-08-08 00:58:36 -07:00
GitHub Actions
387ae21eba chore: release v0.2.4 2025-08-08 07:14:51 +00:00
Andy Lee
3cc329c3e7 fix: remove hardcoded paths from MCP server and documentation 2025-08-08 00:08:56 -07:00
Andy Lee
a8421c0475 Merge branch 'main' into feature/graph-partition-support 2025-08-07 23:57:28 -07:00
Andy Lee
0ec00e1a60 feat: add CI timeout protection for tests 2025-08-07 23:56:01 -07:00
Andy Lee
777b5fed01 fix: remove hardcoded paths from MCP server and documentation 2025-08-07 23:56:01 -07:00
Andy Lee
440ad6e816 fix: resolve CI hanging by removing problematic wait() in stop_server 2025-08-07 23:55:56 -07:00
Andy Lee
5567302316 feat: promote Claude Code integration as primary RAG feature 2025-08-07 23:19:19 -07:00
Andy Lee
8714472cd8 fix: prevent hang in CI by flushing print statements and redirecting embedding server output
- Add flush=True to all print statements in convert_to_csr.py to prevent buffer deadlock
- Redirect embedding server stdout/stderr to DEVNULL in CI environment (CI=true)
- Fix timeout in embedding_server_manager.stop_server() final wait call
2025-08-07 21:53:58 -07:00
GitHub Actions
075d4bd167 chore: release v0.2.2 2025-08-08 01:58:40 +00:00
yichuan520030910320
e4bcc76f88 fix cli & make recompute default true 2025-08-07 18:58:04 -07:00
yichuan520030910320
710e83b1fd fix cli if there is no other type of doc to make it robust 2025-08-07 18:46:05 -07:00
Andy Lee
c799d61a5a fix: add timeout to final wait() in stop_server to prevent infinite hang 2025-08-07 18:40:57 -07:00
yichuan520030910320
c96d653072 more support for type of docs in cli 2025-08-07 18:14:03 -07:00
Andy Lee
e409933149 chore: keep embedding server stdout/stderr visible; still use new session and pg-kill on stop 2025-08-07 17:55:42 -07:00
Andy Lee
bc31876a9f style: organize imports; fix process-group stop for embedding server 2025-08-07 17:54:26 -07:00
Andy Lee
e421c44b8b fix(py39): remove zip(strict=...) usage in api; Python 3.9 compatibility 2025-08-07 15:50:07 -07:00
Andy Lee
af69aa0508 fix(py39): replace remaining '| None' in diskann graph_partition (module-level function) 2025-08-07 15:28:29 -07:00
Andy Lee
575b354976 style: organize imports per ruff; finish py39 Optional changes
- Fix import ordering in embedding servers and graph_partition_simple
- Remove duplicate Optional import
- Complete Optional[...] replacements
2025-08-07 15:06:25 -07:00
Andy Lee
65bbff1d93 fix(py39): replace union type syntax in chat.py
- validate_model_and_suggest: str | None -> Optional[str]
- OpenAIChat.__init__: api_key: str | None -> Optional[str]
- get_llm: dict[str, Any] | None -> Optional[dict[str, Any]]

Ensures Python 3.9 compatibility for CI macOS 3.9.
2025-08-07 15:01:09 -07:00
Andy Lee
df798d350d ci(macOS): set MACOSX_DEPLOYMENT_TARGET back to 13.3
- Fix build failure: 'sgesdd_' only available on macOS 13.3+
- Keep other CI improvements (local builds, find-links installs)
2025-08-07 14:38:32 -07:00
Andy Lee
3fa6b2aa17 ci: allow resolving third-party deps from index; still prefer local wheels for our packages
- Remove --no-index so numpy/scipy/etc can be resolved on Python 3.13
- Keep --find-links to force our packages from local dist

Fixes: dependency resolution failure on Ubuntu Python 3.13 (numpy missing)
2025-08-07 13:29:30 -07:00
Andy Lee
ba95554fe7 ci: build all packages on all platforms; install from local wheels only
- Build leann-core and leann on macOS too
- Install all packages via --find-links and --no-index across platforms
- Lower macOS MACOSX_DEPLOYMENT_TARGET to 12.0 for wider compatibility

This ensures consistency and avoids PyPI drift while improving macOS compatibility.
2025-08-07 13:00:11 -07:00
Andy Lee
677eb0bae3 fix: Python 3.9 compatibility - replace Union type syntax
- Replace 'int | None' with 'Optional[int]' everywhere
- Replace 'subprocess.Popen | None' with 'Optional[subprocess.Popen]'
- Add Optional import to all affected files
- Update ruff target-version from py310 to py39
- The '|' syntax for Union types was introduced in Python 3.10 (PEP 604)

Fixes TypeError: unsupported operand type(s) for |: 'type' and 'NoneType'
2025-08-07 12:54:16 -07:00
Andy Lee
9cdfcec331 fix: resolve dependency issues in CI package installation
- Ubuntu: Install all packages from local builds with --no-index
- macOS: Install core packages from PyPI, backends from local builds
- Remove --no-index for macOS backend installation to allow dependency resolution
- Pin versions when installing from PyPI to ensure consistency

Fixes error: 'leann-core was not found in the provided package locations'
2025-08-07 12:20:42 -07:00
Andy Lee
f30d1a2530 fix: ensure venv uses correct Python version from matrix
- Explicitly specify Python version when creating venv with uv
- Prevents mismatch between build Python (e.g., 3.10) and test Python
- Fixes: _diskannpy.cpython-310-x86_64-linux-gnu.so in Python 3.11 error

The issue: uv venv was defaulting to Python 3.11 regardless of matrix version
2025-08-07 12:01:11 -07:00
Andy Lee
df69a49123 fix: ensure CI installs correct Python version wheel packages
- Use --find-links with --no-index to let uv select correct wheel
- Prevents installing wrong Python version wheel (e.g., cp310 for Python 3.11)
- Fixes ImportError: _diskannpy.cpython-310-x86_64-linux-gnu.so in Python 3.11

The issue was that *.whl glob matched all Python versions, causing
uv to potentially install a cp310 wheel in a Python 3.11 environment.
2025-08-07 11:31:25 -07:00
Andy Lee
65b54ff905 fix: remove invalid --plat argument from auditwheel repair
- Remove '--plat linux_x86_64' which is not a valid platform tag
- Let auditwheel automatically determine the correct platform
- Based on CI output, it will use manylinux_2_35_x86_64

This was causing auditwheel repair to fail, preventing proper wheel repair
2025-08-07 11:04:34 -07:00
Andy Lee
4db3e94f35 debug: add more CI diagnostics for DiskANN module import issue
- Check wheel contents before and after auditwheel repair
- Verify _diskannpy module installation after pip install
- List installed package directory structure
- Add explicit platform tag for auditwheel repair

This helps diagnose why ImportError: cannot import name '_diskannpy' occurs
2025-08-07 10:55:09 -07:00
Andy Lee
a2568f3ddc fix: force install local wheels in CI to prevent PyPI version conflicts
- Change from --find-links to direct wheel installation with --force-reinstall
- This ensures CI uses locally built packages with latest source code
- Prevents uv from using PyPI packages with same version number but old code
- Fixes CI test failures where old code (without metadata_file_path) was used

Root cause: CI was installing leann-backend-diskann v0.2.1 from PyPI
instead of the locally built wheel with same version number.
2025-08-07 00:36:07 -07:00
Andy Lee
45bdad4fa7 debug: add detailed logging for CI path resolution debugging
- Add logging in DiskANN embedding server to show metadata_file_path
- Add debug logging in PassageManager to trace path resolution
- This will help identify why CI fails to find passage files
2025-08-07 00:00:12 -07:00
Andy Lee
8b538d1ef9 fix: use uv tool install for ruff instead of uv pip install
- uv tool install is the correct way to install CLI tools like ruff
- uv pip install --system is for Python packages, not tools
2025-08-06 22:57:18 -07:00
Andy Lee
ada8bcbc70 fix: pin ruff version to 0.12.7 across all environments
- Pin ruff==0.12.7 in pyproject.toml dev dependencies
- Update CI to use exact ruff version instead of latest
- Add comments explaining version pinning rationale
- Ensures consistent formatting across local, CI, and pre-commit
2025-08-06 22:56:32 -07:00
Andy Lee
6061e8f2de fix: format test files with latest ruff version for CI compatibility 2025-08-06 22:53:40 -07:00
Andy Lee
9842ad8330 fix: update pre-commit ruff version and format compliance 2025-08-06 22:33:15 -07:00
Andy Lee
7d920f9071 docs: add ldg-times parameter for diskann graph locality optimization 2025-08-06 22:23:02 -07:00
Andy Lee
f28f15000c docs: highlight diskann readiness and add performance comparison 2025-08-06 22:10:56 -07:00
Andy Lee
1d657fd9f6 tests: diskann and partition 2025-08-06 21:59:51 -07:00
Andy Lee
d217adbe40 fix: diskann building and partitioning 2025-08-06 21:32:03 -07:00
Andy Lee
f790ec634f chore: more data 2025-08-06 21:28:14 -07:00
Andy Lee
b8da9d7b12 docs: tool cli install 2025-08-06 21:28:05 -07:00
Andy Lee
0cb0463929 fix: always use relative path in metadata 2025-08-06 21:27:43 -07:00
yichuan520030910320
b982241249 add a path related fix 2025-08-05 23:35:48 -07:00
yichuan520030910320
c66f197e1d ruff 2025-08-05 23:24:55 -07:00
yichuan520030910320
4a1353761a merge 2025-08-05 23:23:07 -07:00
yichuan520030910320
a72090d2ab merge 2025-08-05 23:22:48 -07:00
yichuan520030910320
669e622430 chore: Update DiskANN submodule to latest with graph partition tools
- Update DiskANN submodule to commit b2dc4ea
- Includes graph partition tools and CMake integration
- Enables graph partitioning functionality in DiskANN backend
2025-08-05 23:14:19 -07:00
yichuan520030910320
77d7b60a61 feat: Add graph partition support for DiskANN backend
- Add GraphPartitioner class for advanced graph partitioning
- Add partition_graph_simple function for easy-to-use partitioning
- Add pybind11 dependency for C++ executable building
- Update __init__.py to export partition functions
- Include test scripts for partition functionality

The partition functionality allows optimizing disk-based indices
for better search performance and memory efficiency.
2025-08-05 23:11:09 -07:00
Andy Lee
8b22d2b5d3 Merge pull request #19 from yichuan-w/feature/claude-code-research
Feature/claude code research
2025-08-05 23:02:34 -07:00
Andy Lee
4cb544ee38 docs: Update co-contributors with GitHub usernames (#18)
* docs: Update co-contributors with GitHub usernames

* docs: Use GitHub links for co-contributors and improve order

* docs: Change to Contributors and use personal homepage

* docs: Specify core contributors and welcome new contributors
2025-08-05 17:43:59 -07:00
yichuan520030910320
f94ce63d51 add gpt oss! serve your RAG using ollama 2025-08-05 16:49:52 -07:00
GitHub Actions
4271ff9d84 chore: release v0.2.1 2025-08-05 05:50:56 +00:00
Andy Lee
0d448c4a41 docs: config guidance (#17)
* docs: config guidance

* feat: add comprehensive configuration guide and update README

- Create docs/configuration-guide.md with detailed guidance on:
  - Embedding model selection (small/medium/large)
  - Index selection (HNSW vs DiskANN)
  - LLM engine and model comparison
  - Parameter tuning (build/search complexity, top-k)
  - Performance optimization tips
  - Deep dive into LEANN's recomputation feature
- Update README.md to link to the configuration guide
- Include latest 2025 model recommendations (Qwen3, DeepSeek-R1, O3-mini)

* chore: move evaluation data .gitattributes to correct location

* docs: Weaken DiskANN emphasis in README

- Change backend description to emphasize HNSW as default
- DiskANN positioned as optional for billion-scale datasets
- Simplify evaluation commands to be more generic

* docs: Adjust DiskANN positioning in features and roadmap

- features.md: Put HNSW/FAISS first as default, DiskANN as optional
- roadmap.md: Reorder to show HNSW integration before DiskANN
- Consistent with positioning DiskANN as advanced option for large-scale use

* docs: Improve configuration guide based on feedback

- List specific files in default data/ directory (2 AI papers, literature, tech report)
- Update examples to use English and better RAG-suitable queries
- Change full dataset reference to use --max-items -1
- Adjust small model guidance about upgrading to larger models when time allows
- Update top-k defaults to reflect actual default of 20
- Ensure consistent use of full model name Qwen/Qwen3-Embedding-0.6B
- Reorder optimization steps, move MLX to third position
- Remove incorrect chunk size tuning guidance
- Change README from 'Having trouble' to 'Need best practices'

* docs: Address all configuration guide feedback

- Fix grammar: 'If time is not a constraint' instead of 'time expense is not large'
- Highlight Qwen3-Embedding-0.6B performance (nearly OpenAI API level)
- Add OpenAI quick start section with configuration example
- Fold Cloud vs Local trade-offs into collapsible section
- Update HNSW as 'default and recommended for extreme low storage'
- Add DiskANN beta warning and explain PQ+rerank architecture
- Expand Ollama models: add qwen3:0.6b, 4b, 7b variants
- Note OpenAI as current default but recommend Ollama switch
- Add 'need to install extra software' warning for Ollama
- Remove incorrect latency numbers from search-complexity recommendations

* docs: add a link
2025-08-04 22:50:32 -07:00
yichuan520030910320
af5599e33c fix data example name 2025-08-04 17:49:03 -07:00
yichuan520030910320
efdf6d917a fix diskann for faster mode 2025-08-04 17:46:46 -07:00
Andy Lee
dd71ac8d71 feat: implement smart memory configuration for DiskANN (#16)
- Add intelligent memory calculation based on data size and system specs
- search_memory_maximum: 1/10 of embedding size (controls PQ compression)
- build_memory_maximum: 50% of available RAM (controls sharding)
- Provides optimal balance between performance and memory usage
- Automatic fallback to default values if parameters are explicitly provided
2025-08-04 14:36:29 -07:00
GitHub Actions
8bee1d4100 chore: release v0.2.0 2025-08-04 21:34:31 +00:00
yichuan520030910320
33521d6d00 add logs 2025-08-04 14:15:52 -07:00
Andy Lee
8899734952 refactor: Unify examples interface with BaseRAGExample (#12)
* refactor: Unify examples interface with BaseRAGExample

- Create BaseRAGExample base class for all RAG examples
- Refactor 4 examples to use unified interface:
  - document_rag.py (replaces main_cli_example.py)
  - email_rag.py (replaces mail_reader_leann.py)
  - browser_rag.py (replaces google_history_reader_leann.py)
  - wechat_rag.py (replaces wechat_history_reader_leann.py)
- Maintain 100% parameter compatibility with original files
- Add interactive mode support for all examples
- Unify parameter names (--max-items replaces --max-emails/--max-entries)
- Update README.md with new examples usage
- Add PARAMETER_CONSISTENCY.md documenting all parameter mappings
- Keep main_cli_example.py for backward compatibility with migration notice

All default values, LeannBuilder parameters, and chunking settings
remain identical to ensure full compatibility with existing indexes.

* fix: Update CI tests for new unified examples interface

- Rename test_main_cli.py to test_document_rag.py
- Update all references from main_cli_example.py to document_rag.py
- Update tests/README.md documentation

The tests now properly test the new unified interface while maintaining
the same test coverage and functionality.

* fix: Fix pre-commit issues and update tests

- Fix import sorting and unused imports
- Update type annotations to use built-in types (list, dict) instead of typing.List/Dict
- Fix trailing whitespace and end-of-file issues
- Fix Chinese fullwidth comma to regular comma
- Update test_main_cli.py to test_document_rag.py
- Add backward compatibility test for main_cli_example.py
- Pass all pre-commit hooks (ruff, ruff-format, etc.)

* refactor: Remove old example scripts and migration references

- Delete old example scripts (mail_reader_leann.py, google_history_reader_leann.py, etc.)
- Remove migration hints and backward compatibility
- Update tests to use new unified examples directly
- Clean up all references to old script names
- Users now only see the new unified interface

* fix: Restore embedding-mode parameter to all examples

- All examples now have --embedding-mode parameter (unified interface benefit)
- Default is 'sentence-transformers' (consistent with original behavior)
- Users can now use OpenAI or MLX embeddings with any data source
- Maintains functional equivalence with original scripts

* docs: Improve parameter categorization in README

- Clearly separate core (shared) vs specific parameters
- Move LLM and embedding examples to 'Example Commands' section
- Add descriptive comments for all specific parameters
- Keep only truly data-source-specific parameters in specific sections

* docs: Make example commands more representative

- Add default values to parameter descriptions
- Replace generic examples with real-world use cases
- Focus on data-source-specific features in examples
- Remove redundant demonstrations of common parameters

* docs: Reorganize parameter documentation structure

- Move common parameters to a dedicated section before all examples
- Rename sections to 'X-Specific Arguments' for clarity
- Remove duplicate common parameters from individual examples
- Better information architecture for users

* docs: polish applications

* docs: Add CLI installation instructions

- Add two installation options: venv and global uv tool
- Clearly explain when to use each option
- Make CLI more accessible for daily use

* docs: Clarify CLI global installation process

- Explain the transition from venv to global installation
- Add upgrade command for global installation
- Make it clear that global install allows usage without venv activation

* docs: Add collapsible section for CLI installation

- Wrap CLI installation instructions in details/summary tags
- Keep consistent with other collapsible sections in README
- Improve document readability and navigation

* style: format

* docs: Fix collapsible sections

- Make Common Parameters collapsible (as it's lengthy reference material)
- Keep CLI Installation visible (important for users to see immediately)
- Better information hierarchy

* docs: Add introduction for Common Parameters section

- Add 'Flexible Configuration' heading with descriptive sentence
- Create parallel structure with 'Generation Model Setup' section
- Improve document flow and readability

* docs: nit

* fix: Fix issues in unified examples

- Add smart path detection for data directory
- Fix add_texts -> add_text method call
- Handle both running from project root and examples directory

* fix: Fix async/await and add_text issues in unified examples

- Remove incorrect await from chat.ask() calls (not async)
- Fix add_texts -> add_text method calls
- Verify search-complexity correctly maps to efSearch parameter
- All examples now run successfully

* feat: Address review comments

- Add complexity parameter to LeannChat initialization (default: search_complexity)
- Fix chunk-size default in README documentation (256, not 2048)
- Add more index building parameters as CLI arguments:
  - --backend-name (hnsw/diskann)
  - --graph-degree (default: 32)
  - --build-complexity (default: 64)
  - --no-compact (disable compact storage)
  - --no-recompute (disable embedding recomputation)
- Update README to document all new parameters

* feat: Add chunk-size parameters and improve file type filtering

- Add --chunk-size and --chunk-overlap parameters to all RAG examples
- Preserve original default values for each data source:
  - Document: 256/128 (optimized for general documents)
  - Email: 256/25 (smaller overlap for email threads)
  - Browser: 256/128 (standard for web content)
  - WeChat: 192/64 (smaller chunks for chat messages)
- Make --file-types optional filter instead of restriction in document_rag
- Update README to clarify interactive mode and parameter usage
- Fix LLM default model documentation (gpt-4o, not gpt-4o-mini)

* feat: Update documentation based on review feedback

- Add MLX embedding example to README
- Clarify examples/data content description (two papers, Pride and Prejudice, Chinese README)
- Move chunk parameters to common parameters section
- Remove duplicate chunk parameters from document-specific section

* docs: Emphasize diverse data sources in examples/data description

* fix: update default embedding models for better performance

- Change WeChat, Browser, and Email RAG examples to use all-MiniLM-L6-v2
- Previous Qwen/Qwen3-Embedding-0.6B was too slow for these use cases
- all-MiniLM-L6-v2 is a fast 384-dim model, ideal for large-scale personal data

* add response highlight

* change rebuild logic

* fix some example

* feat: check if k is larger than #docs

* fix: WeChat history reader bugs and refactor wechat_rag to use unified architecture

* fix email wrong -1 to process all file

* refactor: reorgnize all examples/ and test/

* refactor: reorganize examples and add link checker

* fix: add init.py

* fix: handle certificate errors in link checker

* fix wechat

* merge

* docs: update README to use proper module imports for apps

- Change from 'python apps/xxx.py' to 'python -m apps.xxx'
- More professional and pythonic module calling
- Ensures proper module resolution and imports
- Better separation between apps/ (production tools) and examples/ (demos)

---------

Co-authored-by: yichuan520030910320 <yichuan_wang@berkeley.edu>
2025-08-03 23:06:24 -07:00
Andy Lee
54df6310c5 fix: diskann build and prevent termination from hanging
- Fix OpenMP library linking in DiskANN CMake configuration
- Add timeout protection for HuggingFace model loading to prevent hangs
- Improve embedding server process termination with better timeouts
- Make DiskANN backend default enabled alongside HNSW
- Update documentation to reflect both backends included by default
2025-08-03 21:16:52 -07:00
yichuan520030910320
19bcc07814 change readme discription 2025-07-28 20:52:45 -07:00
yichuan520030910320
8356e3c668 changr to openai main cli 2025-07-28 17:39:14 -07:00
GitHub Actions
08eac5c821 chore: release v0.1.16 2025-07-29 00:15:18 +00:00
Andy Lee
4671ed9b36 Fix macos ABI by using system default clang (#11)
* fix: auto-detect normalized embeddings and use cosine distance

- Add automatic detection for normalized embedding models (OpenAI, Voyage AI, Cohere)
- Automatically set distance_metric='cosine' for normalized embeddings
- Add warnings when using non-optimal distance metrics
- Implement manual L2 normalization in HNSW backend (custom Faiss build lacks normalize_L2)
- Fix DiskANN zmq_port compatibility with lazy loading strategy
- Add documentation for normalized embeddings feature

This fixes the low accuracy issue when using OpenAI text-embedding-3-small model with default MIPS metric.

* style: format

* feat: add OpenAI embeddings support to google_history_reader_leann.py

- Add --embedding-model and --embedding-mode arguments
- Support automatic detection of normalized embeddings
- Works correctly with cosine distance for OpenAI embeddings

* feat: add --use-existing-index option to google_history_reader_leann.py

- Allow using existing index without rebuilding
- Useful for testing pre-built indices

* fix: Improve OpenAI embeddings handling in HNSW backend

* fix: improve macOS C++ compatibility and add CI tests

* refactor: improve test structure and fix main_cli example

- Move pytest configuration from pytest.ini to pyproject.toml
- Remove unnecessary run_tests.py script (use test extras instead)
- Fix main_cli_example.py to properly use command line arguments for LLM config
- Add test_readme_examples.py to test code examples from README
- Refactor tests to use pytest fixtures and parametrization
- Update test documentation to reflect new structure
- Set proper environment variables in CI for test execution

* fix: add --distance-metric support to DiskANN embedding server and remove obsolete macOS ABI test markers

- Add --distance-metric parameter to diskann_embedding_server.py for consistency with other backends
- Remove pytest.skip and pytest.xfail markers for macOS C++ ABI issues as they have been fixed
- Fix test assertions to handle SearchResult objects correctly
- All tests now pass on macOS with the C++ ABI compatibility fixes

* chore: update lock file with test dependencies

* docs: remove obsolete C++ ABI compatibility warnings

- Remove outdated macOS C++ compatibility warnings from README
- Simplify CI workflow by removing macOS-specific failure handling
- All tests now pass consistently on macOS after ABI fixes

* fix: update macOS deployment target for DiskANN to 13.3

- DiskANN uses sgesdd_ LAPACK function which is only available on macOS 13.3+
- Update MACOSX_DEPLOYMENT_TARGET from 11.0 to 13.3 for DiskANN builds
- This fixes the compilation error on GitHub Actions macOS runners

* fix: align Python version requirements to 3.9

- Update root project to support Python 3.9, matching subpackages
- Restore macOS Python 3.9 support in CI
- This fixes the CI failure for Python 3.9 environments

* fix: handle MPS memory issues in CI tests

- Use smaller MiniLM-L6-v2 model (384 dimensions) for README tests in CI
- Skip other memory-intensive tests in CI environment
- Add minimal CI tests that don't require model loading
- Set CI environment variable and disable MPS fallback
- Ensure README examples always run correctly in CI

* fix: remove Python 3.10+ dependencies for compatibility

- Comment out llama-index-readers-docling and llama-index-node-parser-docling
- These packages require Python >= 3.10 and were causing CI failures on Python 3.9
- Regenerate uv.lock file to resolve dependency conflicts

* fix: use virtual environment in CI instead of system packages

- uv-managed Python environments don't allow --system installs
- Create and activate virtual environment before installing packages
- Update all CI steps to use the virtual environment

* add some env in ci

* fix: use --find-links to install platform-specific wheels

- Let uv automatically select the correct wheel for the current platform
- Fixes error when trying to install macOS wheels on Linux
- Simplifies the installation logic

* fix: disable OpenMP parallelism in CI to avoid libomp crashes

- Set OMP_NUM_THREADS=1 to avoid OpenMP thread synchronization issues
- Set MKL_NUM_THREADS=1 for single-threaded MKL operations
- This prevents segfaults in LayerNorm on macOS CI runners
- Addresses the libomp compatibility issues with PyTorch on Apple Silicon

* skip several macos test because strange issue on ci

---------

Co-authored-by: yichuan520030910320 <yichuan_wang@berkeley.edu>
2025-07-28 17:14:42 -07:00
yichuan520030910320
055c086398 add ablation of embedding model compare 2025-07-28 14:43:42 -07:00
Andy Lee
d505dcc5e3 Fix/OpenAI embeddings cosine distance (#10)
* fix: auto-detect normalized embeddings and use cosine distance

- Add automatic detection for normalized embedding models (OpenAI, Voyage AI, Cohere)
- Automatically set distance_metric='cosine' for normalized embeddings
- Add warnings when using non-optimal distance metrics
- Implement manual L2 normalization in HNSW backend (custom Faiss build lacks normalize_L2)
- Fix DiskANN zmq_port compatibility with lazy loading strategy
- Add documentation for normalized embeddings feature

This fixes the low accuracy issue when using OpenAI text-embedding-3-small model with default MIPS metric.

* style: format

* feat: add OpenAI embeddings support to google_history_reader_leann.py

- Add --embedding-model and --embedding-mode arguments
- Support automatic detection of normalized embeddings
- Works correctly with cosine distance for OpenAI embeddings

* feat: add --use-existing-index option to google_history_reader_leann.py

- Allow using existing index without rebuilding
- Useful for testing pre-built indices

* fix: Improve OpenAI embeddings handling in HNSW backend
2025-07-28 14:35:49 -07:00
Andy Lee
261006c36a docs: revert 2025-07-27 22:07:36 -07:00
GitHub Actions
b2eba23e21 chore: release v0.1.15 2025-07-28 05:05:30 +00:00
yichuan520030910320
e9ee687472 nit: fix readme 2025-07-27 21:56:05 -07:00
yichuan520030910320
6f5d5e4a77 fix some readme 2025-07-27 21:50:09 -07:00
Andy Lee
5c8921673a fix: auto-detect normalized embeddings and use cosine distance (#8)
* fix: auto-detect normalized embeddings and use cosine distance

- Add automatic detection for normalized embedding models (OpenAI, Voyage AI, Cohere)
- Automatically set distance_metric='cosine' for normalized embeddings
- Add warnings when using non-optimal distance metrics
- Implement manual L2 normalization in HNSW backend (custom Faiss build lacks normalize_L2)
- Fix DiskANN zmq_port compatibility with lazy loading strategy
- Add documentation for normalized embeddings feature

This fixes the low accuracy issue when using OpenAI text-embedding-3-small model with default MIPS metric.

* style: format
2025-07-27 21:19:29 -07:00
yichuan520030910320
e9d2d420bd fix some readme 2025-07-27 20:48:23 -07:00
yichuan520030910320
ebabfad066 Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-27 20:44:36 -07:00
yichuan520030910320
e6f612b5e8 fix install and readme 2025-07-27 20:44:28 -07:00
Andy Lee
51c41acd82 docs: add comprehensive CONTRIBUTING.md guide with pre-commit setup 2025-07-27 20:40:42 -07:00
yichuan520030910320
455f93fb7c fix emaple and add pypi example 2025-07-27 18:20:13 -07:00
yichuan520030910320
48207c3b69 add pypi example 2025-07-27 17:08:49 -07:00
yichuan520030910320
4de1caa40f fix redame install method 2025-07-27 17:00:28 -07:00
yichuan520030910320
60eaa8165c fix precommit and fix redame install method 2025-07-27 16:36:30 -07:00
yichuan520030910320
c1a5d0c624 fix readme 2025-07-27 02:24:28 -07:00
yichuan520030910320
af1790395a fix ruff errors and formatting 2025-07-27 02:22:54 -07:00
yichuan520030910320
383c6d8d7e add clear instructions 2025-07-27 02:19:27 -07:00
yichuan520030910320
bc0d839693 Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-27 02:07:41 -07:00
yichuan520030910320
8596562de5 add pip install option to README 2025-07-27 02:06:40 -07:00
GitHub Actions
5d09586853 chore: release v0.1.14 2025-07-27 08:50:56 +00:00
Andy Lee
a7cba078dd chore: consolidate essential fixes and add pre-commit hooks
- Add pre-commit configuration with ruff and black
- Fix lint CI job to use uv tool install instead of sync
- Add essential LlamaIndex dependencies to leann-core

Co-Authored-By: Yichuan Wang <73766326+yichuan-w@users.noreply.github.com>
2025-07-27 01:24:24 -07:00
Andy Lee
b3e9ee96fa fix: resolve all ruff linting errors and add lint CI check
- Fix ambiguous fullwidth characters (commas, parentheses) in strings and comments
- Replace Chinese comments with English equivalents
- Fix unused imports with proper noqa annotations for intentional imports
- Fix bare except clauses with specific exception types
- Fix redefined variables and undefined names
- Add ruff noqa annotations for generated protobuf files
- Add lint and format check to GitHub Actions CI pipeline
2025-07-26 22:38:13 -07:00
yichuan520030910320
8537a6b17e default args change 2025-07-26 21:51:14 -07:00
yichuan520030910320
7c8d7dc5c2 tones down 2025-07-26 21:47:55 -07:00
yichuan520030910320
8e23d663e6 Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-26 21:46:02 -07:00
yichuan520030910320
8a3994bf80 update colab now it works perfect 2025-07-26 21:45:56 -07:00
GitHub Actions
8375f601ba chore: release v0.1.13 2025-07-27 01:08:17 +00:00
yichuan520030910320
c87c0fe662 update colab install & fix colab path 2025-07-26 18:07:31 -07:00
yichuan520030910320
73927b68ef Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-26 17:09:55 -07:00
yichuan520030910320
cc1a62e5aa update pytoml version again 2025-07-26 17:09:45 -07:00
GitHub Actions
802020cb41 chore: release v0.1.12 2025-07-26 23:35:28 +00:00
yichuan520030910320
cdb92f7cf4 update pytoml version && fix colab env && fix pdf extract in pip 2025-07-26 16:33:13 -07:00
yichuan520030910320
dc69bdec00 Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-25 17:54:43 -07:00
yichuan520030910320
98073e9868 update missing pkg 2025-07-25 17:54:21 -07:00
GitHub Actions
cf2ef48967 chore: release v0.1.11 2025-07-26 00:12:37 +00:00
yichuan520030910320
0692bbf7a2 change workflow 2025-07-25 17:11:56 -07:00
GitHub Actions
52584a171f chore: release v0.1.10 2025-07-25 23:12:16 +00:00
Andy Lee
efd6b5324b fix: add protobuf as a dependency for DiskANN backend
- Fixes 'No module named google' error when starting DiskANN embedding server
- Prevents users from having to manually install protobuf
2025-07-25 16:10:25 -07:00
Andy Lee
2baaa4549b fix: handle relative paths in HNSW embedding server metadata
- Convert relative paths to absolute paths based on metadata file location
- Fixes FileNotFoundError when starting embedding server
- Resolves issue with passages file not found in different working directories
2025-07-25 16:09:53 -07:00
Andy Lee
35310ddd52 fix: pure Python packages not building due to ubuntu-latest check
The build workflow was checking for matrix.os == 'ubuntu-latest',
but we changed the matrix to use 'ubuntu-22.04', causing the
pure Python packages (leann-core and leann) to never be built.

Changed to use pattern matching [[ == ubuntu-* ]] to match any
Ubuntu version.

This explains why v0.1.9 only published the C++ backend packages
but not the pure Python packages.
2025-07-25 15:14:21 -07:00
Andy Lee
fc9c5cb39d fix: make release workflow idempotent
- Check if version is already updated before trying to update
- Check if tag already exists before creating
- Check if GitHub release already exists before creating
- This allows re-running the workflow after partial failures

Previously, if the workflow failed after updating version but before
completing the release, it couldn't be re-run with the same version.
2025-07-25 14:47:35 -07:00
Andy Lee
8f2a1e87ea Merge pull request #7 from yichuan-w/fix/simple-ubuntu22-build
fix: simplify build system for Colab compatibility
2025-07-25 14:08:37 -07:00
Andy Lee
50caf65f28 fix: change ubuntu-latest to ubuntu-22.04 and add Python 3.13
- Explicitly use ubuntu-22.04 instead of ubuntu-latest
- Add Python 3.13 to the build matrix
- This ensures we build on the same OS version as Google Colab
2025-07-25 13:48:59 -07:00
Andy Lee
1b48794ca8 cleanup: remove cibuildwheel workflow files
- Remove ci-cibuildwheel.yml and build-cibuildwheel.yml
- These files were not present in v0.1.5
- Keep only the simple build system
2025-07-25 13:48:08 -07:00
Andy Lee
4aef1d814e revert: simplify build system by removing manylinux/cibuildwheel
- Revert to simple Ubuntu 22.04 builds that should work with Colab
- Remove all manylinux container complexity
- Colab runs on Ubuntu 22.04, so direct builds should be compatible
- Restore build-reusable.yml to v0.1.5 version
- Remove cibuildwheel option from release workflow

This should fix the overcomplicated build issues while maintaining
Colab compatibility through direct Ubuntu 22.04 builds.
2025-07-25 13:46:51 -07:00
GitHub Actions
75ddcd6158 chore: release v0.1.9 2025-07-25 20:04:42 +00:00
Andy Lee
2a4df11f5c fix: absolute path for passages 2025-07-25 11:59:30 -07:00
Andy Lee
5eb893c62b ci: add Python 3.13 support to build matrix 2025-07-25 09:53:36 -07:00
yichuan520030910320
d91ce2e94d readme 2025-07-25 02:19:54 -07:00
yichuan520030910320
5c2ff8a641 clean research stuff 2025-07-25 02:14:15 -07:00
yichuan520030910320
d4f474c9b7 update broken link 2025-07-25 02:13:22 -07:00
yichuan520030910320
170f7644e9 simplify readme 2025-07-25 02:11:02 -07:00
yichuan520030910320
cd8b970eff Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-25 01:45:57 -07:00
yichuan520030910320
52153bbb69 update faiss compare 2025-07-25 01:45:50 -07:00
GitHub Actions
e1ae087207 chore: release v0.1.8 2025-07-25 08:24:40 +00:00
Andy Lee
48c5e12ac1 fix: use absolute path for passages_file to prevent FileNotFoundError
When embedding server is launched as a subprocess, it may run in a different
working directory. Using absolute paths ensures the server can always find
the metadata file regardless of where it's launched from.
2025-07-25 01:23:47 -07:00
yichuan520030910320
f8b5c97190 Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-25 00:37:33 -07:00
yichuan520030910320
d038c81b8b update benchmard section 2025-07-25 00:37:27 -07:00
Andy Lee
29cbbbd0d6 fix: resolve libzmq pkg-config issues in manylinux containers
- Add gcc-c++ and cmake to dependencies
- Create libzmq.pc file if missing (CentOS 7 issue)
- Set PKG_CONFIG_PATH through CIBW_ENVIRONMENT_LINUX
- Add protobuf-devel to ensure all headers are available
- Fix shell variable escaping in heredoc
2025-07-25 00:35:52 -07:00
Andy Lee
179f30bc36 fix: improve system dependency installation in manylinux containers
- Add yum cache cleaning and updating
- Make package installations more resilient with fallbacks
- Use pkgconfig instead of pkg-config (CentOS 7 naming)
- Handle optional packages that might not be available
- Add error handling for package installation failures
2025-07-25 00:30:29 -07:00
Andy Lee
c4a0a68581 fix: handle pure Python packages in cibuildwheel workflow
- Build pure Python packages (leann-core, leann) with standard build tool
- Only use cibuildwheel for C extension packages (leann-backend-hnsw, leann-backend-diskann)
- Build pure Python packages only once on ubuntu-latest
- Add Python setup for building pure packages
- Add package listing step for debugging
2025-07-25 00:26:15 -07:00
Andy Lee
5c836ad08e fix: handle git dubious ownership error in manylinux containers
- Add multiple safe.directory configurations to cover different possible paths
- This fixes 'detected dubious ownership in repository' error
- Ensures git works properly in manylinux2014 containers
2025-07-25 00:22:01 -07:00
Andy Lee
673fd9b7cd fix: upgrade to actions v4 and handle manylinux2014 compatibility
- Upgrade all GitHub Actions to v4 (v3 is deprecated)
- Use manual git checkout in manylinux2014 containers to avoid Node.js issues
- Update artifact naming to ensure uniqueness (required by v4)
- Add fail-fast: false to build strategies
- This maintains manylinux2014 compatibility while using latest actions
2025-07-25 00:20:21 -07:00
Andy Lee
84b24b233d feat: add cibuildwheel option to release workflow
- Add optional use_cibuildwheel parameter to release workflow
- Create separate CI workflow for testing cibuildwheel
- Support conditional build workflow selection in release process
- This allows building wheels compatible with Google Colab and older systems
- Maintains backward compatibility with existing build process
2025-07-25 00:16:08 -07:00
Andy Lee
499cdd7822 feat: add cibuildwheel workflow for better platform compatibility
- Use cibuildwheel for professional wheel building
- Specifically use manylinux2014 for Google Colab compatibility
- Supports Python 3.9-3.12 on Linux and macOS
- Handles monorepo structure with separate builds per package
- Includes basic import tests for each package
- This should resolve compatibility issues with older systems like Google Colab
2025-07-25 00:16:08 -07:00
yichuan520030910320
800d4cf111 Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-25 00:12:47 -07:00
yichuan520030910320
b6d43f5fd9 add gif 2025-07-25 00:12:35 -07:00
Andy Lee
3603cd5034 fix: downgrade GitHub Actions versions for manylinux2014 compatibility
- Use actions/checkout@v3 instead of v4 (Node.js 16 vs 20)
- Use actions/setup-python@v4 instead of v5
- Use actions/upload-artifact@v3 and download-artifact@v3
- This fixes GLIBC version errors in manylinux2014 containers
- manylinux2014 (CentOS 7) has glibc 2.17 but Node.js 20 needs 2.25+
2025-07-25 00:12:05 -07:00
Andy Lee
6df7893173 feat: use manylinux2014 containers for better Linux compatibility
- Add manylinux2014 Docker containers for Linux builds
- This will generate wheels compatible with older Linux systems (CentOS 7+, Ubuntu 16.04+)
- Separate build logic for container vs regular environments
- Install appropriate system dependencies for yum-based manylinux environment
- Use pip instead of uv in containers for better compatibility
- Fix Python version format for manylinux container paths
2025-07-25 00:08:42 -07:00
GitHub Actions
e64b599276 chore: release v0.1.7 2025-07-25 04:47:57 +00:00
Andy Lee
2dd59c4ba1 fix: let auditwheel auto-detect manylinux platform tag
- Remove --plat manylinux2014_x86_64 flag that was causing build failures
- Let auditwheel automatically determine the appropriate manylinux tag
- Add auditwheel show command to display compatibility info
- This fixes the 'too-recent versioned symbols' error
2025-07-24 21:44:15 -07:00
GitHub Actions
166986d5e6 chore: release v0.1.6 2025-07-25 04:30:07 +00:00
Andy Lee
a6aec68f32 fix: use manylinux2014 for better Linux compatibility
- Change auditwheel --plat to manylinux2014_x86_64
- This ensures wheels work on Ubuntu 16.04+ instead of requiring 24.04+
- Fixes compatibility issues for users on Ubuntu 22.04 and similar systems
2025-07-24 21:26:28 -07:00
GitHub Actions
ed27a127d5 chore: release v0.1.5 2025-07-25 04:00:54 +00:00
199 changed files with 10616 additions and 16144 deletions

View File

@@ -5,7 +5,16 @@ on:
branches: [ main ]
pull_request:
branches: [ main ]
workflow_dispatch:
inputs:
debug_enabled:
type: boolean
description: 'Run with tmate debugging enabled (SSH access to runner)'
required: false
default: false
jobs:
build:
uses: ./.github/workflows/build-reusable.yml
uses: ./.github/workflows/build-reusable.yml
with:
debug_enabled: ${{ github.event_name == 'workflow_dispatch' && inputs.debug_enabled || false }}

View File

@@ -8,21 +8,57 @@ on:
required: false
type: string
default: ''
debug_enabled:
description: 'Enable tmate debugging session for troubleshooting'
required: false
type: boolean
default: false
jobs:
lint:
name: Lint and Format Check
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
ref: ${{ inputs.ref }}
- name: Setup Python
uses: actions/setup-python@v5
with:
python-version: '3.11'
- name: Install uv
uses: astral-sh/setup-uv@v4
- name: Install ruff
run: |
uv tool install ruff==0.12.7
- name: Run ruff check
run: |
ruff check .
- name: Run ruff format check
run: |
ruff format --check .
build:
needs: lint
name: Build ${{ matrix.os }} Python ${{ matrix.python }}
strategy:
matrix:
include:
- os: ubuntu-latest
- os: ubuntu-22.04
python: '3.9'
- os: ubuntu-latest
- os: ubuntu-22.04
python: '3.10'
- os: ubuntu-latest
- os: ubuntu-22.04
python: '3.11'
- os: ubuntu-latest
- os: ubuntu-22.04
python: '3.12'
- os: ubuntu-22.04
python: '3.13'
- os: macos-latest
python: '3.9'
- os: macos-latest
@@ -31,41 +67,44 @@ jobs:
python: '3.11'
- os: macos-latest
python: '3.12'
- os: macos-latest
python: '3.13'
runs-on: ${{ matrix.os }}
steps:
- uses: actions/checkout@v4
with:
ref: ${{ inputs.ref }}
submodules: recursive
- name: Setup Python
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python }}
- name: Install uv
uses: astral-sh/setup-uv@v4
- name: Install system dependencies (Ubuntu)
if: runner.os == 'Linux'
run: |
sudo apt-get update
sudo apt-get install -y libomp-dev libboost-all-dev protobuf-compiler libzmq3-dev \
pkg-config libopenblas-dev patchelf libabsl-dev libaio-dev libprotobuf-dev
# Install Intel MKL for DiskANN
wget -q https://registrationcenter-download.intel.com/akdlm/IRC_NAS/79153e0f-74d7-45af-b8c2-258941adf58a/intel-onemkl-2025.0.0.940.sh
sudo sh intel-onemkl-2025.0.0.940.sh -a --components intel.oneapi.lin.mkl.devel --action install --eula accept -s
source /opt/intel/oneapi/setvars.sh
echo "MKLROOT=/opt/intel/oneapi/mkl/latest" >> $GITHUB_ENV
echo "LD_LIBRARY_PATH=/opt/intel/oneapi/mkl/latest/lib/intel64:$LD_LIBRARY_PATH" >> $GITHUB_ENV
- name: Install system dependencies (macOS)
if: runner.os == 'macOS'
run: |
brew install llvm libomp boost protobuf zeromq
# Don't install LLVM, use system clang for better compatibility
brew install libomp boost protobuf zeromq
- name: Install build dependencies
run: |
uv pip install --system scikit-build-core numpy swig Cython pybind11
@@ -74,41 +113,46 @@ jobs:
else
uv pip install --system delocate
fi
- name: Build packages
run: |
# Build core (platform independent)
if [ "${{ matrix.os }}" == "ubuntu-latest" ]; then
cd packages/leann-core
uv build
cd ../..
fi
# Build core (platform independent) on all platforms for consistency
cd packages/leann-core
uv build
cd ../..
# Build HNSW backend
cd packages/leann-backend-hnsw
if [ "${{ matrix.os }}" == "macos-latest" ]; then
CC=$(brew --prefix llvm)/bin/clang CXX=$(brew --prefix llvm)/bin/clang++ uv build --wheel --python python
# Use system clang instead of homebrew LLVM for better compatibility
export CC=clang
export CXX=clang++
export MACOSX_DEPLOYMENT_TARGET=11.0
uv build --wheel --python python
else
uv build --wheel --python python
fi
cd ../..
# Build DiskANN backend
cd packages/leann-backend-diskann
if [ "${{ matrix.os }}" == "macos-latest" ]; then
CC=$(brew --prefix llvm)/bin/clang CXX=$(brew --prefix llvm)/bin/clang++ uv build --wheel --python python
# Use system clang instead of homebrew LLVM for better compatibility
export CC=clang
export CXX=clang++
# sgesdd_ is only available on macOS 13.3+
export MACOSX_DEPLOYMENT_TARGET=13.3
uv build --wheel --python python
else
uv build --wheel --python python
fi
cd ../..
# Build meta package (platform independent)
if [ "${{ matrix.os }}" == "ubuntu-latest" ]; then
cd packages/leann
uv build
cd ../..
fi
# Build meta package (platform independent) on all platforms
cd packages/leann
uv build
cd ../..
- name: Repair wheels (Linux)
if: runner.os == 'Linux'
run: |
@@ -120,16 +164,21 @@ jobs:
mv dist_repaired dist
fi
cd ../..
# Repair DiskANN wheel
# Repair DiskANN wheel - use show first to debug
cd packages/leann-backend-diskann
if [ -d dist ]; then
echo "Checking DiskANN wheel contents before repair:"
unzip -l dist/*.whl | grep -E "\.so|\.pyd|_diskannpy" || echo "No .so files found"
auditwheel show dist/*.whl || echo "auditwheel show failed"
auditwheel repair dist/*.whl -w dist_repaired
echo "Checking DiskANN wheel contents after repair:"
unzip -l dist_repaired/*.whl | grep -E "\.so|\.pyd|_diskannpy" || echo "No .so files found after repair"
rm -rf dist
mv dist_repaired dist
fi
cd ../..
- name: Repair wheels (macOS)
if: runner.os == 'macOS'
run: |
@@ -141,7 +190,7 @@ jobs:
mv dist_repaired dist
fi
cd ../..
# Repair DiskANN wheel
cd packages/leann-backend-diskann
if [ -d dist ]; then
@@ -150,14 +199,262 @@ jobs:
mv dist_repaired dist
fi
cd ../..
- name: List built packages
run: |
echo "📦 Built packages:"
find packages/*/dist -name "*.whl" -o -name "*.tar.gz" | sort
- name: Install built packages for testing
run: |
# Create a virtual environment with the correct Python version
uv venv --python python${{ matrix.python }}
source .venv/bin/activate || source .venv/Scripts/activate
# Install the built wheels directly to ensure we use locally built packages
# Use only locally built wheels on all platforms for full consistency
FIND_LINKS="--find-links packages/leann-core/dist --find-links packages/leann/dist"
FIND_LINKS="$FIND_LINKS --find-links packages/leann-backend-hnsw/dist --find-links packages/leann-backend-diskann/dist"
uv pip install leann-core leann leann-backend-hnsw leann-backend-diskann \
$FIND_LINKS --force-reinstall
# Install test dependencies using extras
uv pip install -e ".[test]"
# Debug: Check if _diskannpy module is installed correctly
echo "Checking installed DiskANN module structure:"
python -c "import leann_backend_diskann; print('leann_backend_diskann location:', leann_backend_diskann.__file__)" || echo "Failed to import leann_backend_diskann"
python -c "from leann_backend_diskann import _diskannpy; print('_diskannpy imported successfully')" || echo "Failed to import _diskannpy"
ls -la $(python -c "import leann_backend_diskann; import os; print(os.path.dirname(leann_backend_diskann.__file__))" 2>/dev/null) 2>/dev/null || echo "Failed to list module directory"
# Extra debugging for Python 3.13
if [[ "${{ matrix.python }}" == "3.13" ]]; then
echo "=== Python 3.13 Debug Info ==="
echo "Python version details:"
python --version
python -c "import sys; print(f'sys.version_info: {sys.version_info}')"
echo "Pytest version:"
python -m pytest --version
echo "Testing basic pytest collection:"
if [[ "$RUNNER_OS" == "Linux" ]]; then
timeout --signal=INT 10 python -m pytest --collect-only tests/test_ci_minimal.py -v || echo "Collection timed out or failed"
else
# No timeout on macOS/Windows
python -m pytest --collect-only tests/test_ci_minimal.py -v || echo "Collection failed"
fi
echo "Testing single simple test:"
if [[ "$RUNNER_OS" == "Linux" ]]; then
timeout --signal=INT 10 python -m pytest tests/test_ci_minimal.py::test_package_imports --full-trace -v || echo "Simple test timed out or failed"
else
# No timeout on macOS/Windows
python -m pytest tests/test_ci_minimal.py::test_package_imports --full-trace -v || echo "Simple test failed"
fi
fi
# Enable tmate debugging session if requested
- name: Setup tmate session for debugging
if: ${{ inputs.debug_enabled }}
uses: mxschmitt/action-tmate@v3
with:
detached: true
timeout-minutes: 30
limit-access-to-actor: true
- name: Run tests with pytest
# Timeout hierarchy:
# 1. Individual test timeout: 20s (see pyproject.toml markers)
# 2. Pytest session timeout: 300s (see pyproject.toml [tool.pytest.ini_options])
# 3. Outer shell timeout: 360s (300s + 60s buffer for cleanup)
# 4. GitHub Actions job timeout: 6 hours (default)
env:
CI: true # Mark as CI environment to skip memory-intensive tests
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
HF_HUB_DISABLE_SYMLINKS: 1
TOKENIZERS_PARALLELISM: false
PYTORCH_ENABLE_MPS_FALLBACK: 0 # Disable MPS on macOS CI to avoid memory issues
OMP_NUM_THREADS: 1 # Disable OpenMP parallelism to avoid libomp crashes
MKL_NUM_THREADS: 1 # Single thread for MKL operations
run: |
# Activate virtual environment
source .venv/bin/activate || source .venv/Scripts/activate
# Define comprehensive diagnostic function
diag() {
echo "===== COMPREHENSIVE DIAGNOSTICS BEGIN ====="
date
echo ""
echo "### Current Shell Info ###"
echo "Shell PID: $$"
echo "Shell PPID: $PPID"
echo "Current directory: $(pwd)"
echo ""
echo "### Process Tree (full) ###"
pstree -ap 2>/dev/null || ps auxf || true
echo ""
echo "### All Python/Pytest Processes ###"
ps -ef | grep -E 'python|pytest' | grep -v grep || true
echo ""
echo "### Embedding Server Processes ###"
ps -ef | grep -E 'embedding|zmq|diskann' | grep -v grep || true
echo ""
echo "### Network Listeners ###"
ss -ltnp 2>/dev/null || netstat -ltn 2>/dev/null || true
echo ""
echo "### Open File Descriptors (lsof) ###"
lsof -p $$ 2>/dev/null | head -20 || true
echo ""
echo "### Zombie Processes ###"
ps aux | grep '<defunct>' || echo "No zombie processes"
echo ""
echo "### Current Jobs ###"
jobs -l || true
echo ""
echo "### /proc/PID/fd for current shell ###"
ls -la /proc/$$/fd 2>/dev/null || true
echo ""
echo "===== COMPREHENSIVE DIAGNOSTICS END ====="
}
# Enable verbose logging for debugging
export PYTHONUNBUFFERED=1
export PYTEST_CURRENT_TEST=1
# Run all tests with extensive logging
if [[ "$RUNNER_OS" == "Linux" ]]; then
echo "🚀 Starting Linux test execution with timeout..."
echo "Current time: $(date)"
echo "Shell PID: $$"
echo "Python: $(python --version)"
echo "Pytest: $(pytest --version)"
# Show environment variables for debugging
echo "📦 Environment variables:"
env | grep -E "PYTHON|PYTEST|CI|RUNNER" | sort
# Set trap for diagnostics
trap diag INT TERM EXIT
echo "📋 Pre-test diagnostics:"
ps -ef | grep -E 'python|pytest' | grep -v grep || echo "No python/pytest processes before test"
# Check for any listening ports before test
echo "🔌 Pre-test network state:"
ss -ltn 2>/dev/null | grep -E "555[0-9]|556[0-9]" || echo "No embedding server ports open"
# Set timeouts - outer must be larger than pytest's internal timeout
# IMPORTANT: Keep PYTEST_TIMEOUT_SEC in sync with pyproject.toml [tool.pytest.ini_options] timeout
PYTEST_TIMEOUT_SEC=${PYTEST_TIMEOUT_SEC:-300} # Default 300s, matches pyproject.toml
BUFFER_SEC=${TIMEOUT_BUFFER_SEC:-60} # Buffer for cleanup after pytest timeout
OUTER_TIMEOUT_SEC=${OUTER_TIMEOUT_SEC:-$((PYTEST_TIMEOUT_SEC + BUFFER_SEC))}
echo "⏰ Timeout configuration:"
echo " - Pytest internal timeout: ${PYTEST_TIMEOUT_SEC}s (from pyproject.toml)"
echo " - Cleanup buffer: ${BUFFER_SEC}s"
echo " - Outer shell timeout: ${OUTER_TIMEOUT_SEC}s (${PYTEST_TIMEOUT_SEC}s + ${BUFFER_SEC}s buffer)"
echo " - This ensures pytest can complete its own timeout handling and cleanup"
echo "🏃 Running pytest with ${OUTER_TIMEOUT_SEC}s outer timeout..."
# Export for inner shell
export PYTEST_TIMEOUT_SEC OUTER_TIMEOUT_SEC BUFFER_SEC
timeout --preserve-status --signal=INT --kill-after=10 ${OUTER_TIMEOUT_SEC} bash -c '
echo "⏱️ Pytest starting at: $(date)"
echo "Running command: pytest tests/ -vv --maxfail=3 --tb=short --capture=no"
# Run pytest with maximum verbosity and no output capture
pytest tests/ -vv --maxfail=3 --tb=short --capture=no --log-cli-level=DEBUG 2>&1 | tee pytest.log
PYTEST_EXIT=${PIPESTATUS[0]}
echo "✅ Pytest finished at: $(date) with exit code: $PYTEST_EXIT"
echo "Last 20 lines of pytest output:"
tail -20 pytest.log || true
# Immediately check for leftover processes
echo "🔍 Post-pytest process check:"
ps -ef | grep -E "python|pytest|embedding" | grep -v grep || echo "No leftover processes"
# Clean up any children before exit
echo "🧹 Cleaning up child processes..."
pkill -TERM -P $$ 2>/dev/null || true
sleep 0.5
pkill -KILL -P $$ 2>/dev/null || true
echo "📊 Final check before exit:"
ps -ef | grep -E "python|pytest|embedding" | grep -v grep || echo "All clean"
exit $PYTEST_EXIT
'
EXIT_CODE=$?
echo "🔚 Timeout command exited with code: $EXIT_CODE"
if [ $EXIT_CODE -eq 124 ]; then
echo "⚠️ TIMEOUT TRIGGERED - Tests took more than ${OUTER_TIMEOUT_SEC} seconds!"
echo "📸 Capturing full diagnostics..."
diag
# Run diagnostic script if available
if [ -f scripts/diagnose_hang.sh ]; then
echo "🔍 Running diagnostic script..."
bash scripts/diagnose_hang.sh || true
fi
# More aggressive cleanup
echo "💀 Killing all Python processes owned by runner..."
pkill -9 -u runner python || true
pkill -9 -u runner pytest || true
elif [ $EXIT_CODE -ne 0 ]; then
echo "❌ Tests failed with exit code: $EXIT_CODE"
else
echo "✅ All tests passed!"
fi
# Always show final state
echo "📍 Final state check:"
ps -ef | grep -E 'python|pytest|embedding' | grep -v grep || echo "No Python processes remaining"
exit $EXIT_CODE
else
# For macOS/Windows, run without GNU timeout
echo "🚀 Running tests on $RUNNER_OS..."
pytest tests/ -vv --maxfail=3 --tb=short --capture=no --log-cli-level=INFO
fi
# Provide tmate session on test failure for debugging
- name: Setup tmate session on failure
if: ${{ failure() && (inputs.debug_enabled || contains(github.event.head_commit.message, '[debug]')) }}
uses: mxschmitt/action-tmate@v3
with:
timeout-minutes: 30
limit-access-to-actor: true
- name: Run sanity checks (optional)
run: |
# Activate virtual environment
source .venv/bin/activate || source .venv/Scripts/activate
# Run distance function tests if available
if [ -f test/sanity_checks/test_distance_functions.py ]; then
echo "Running distance function sanity checks..."
python test/sanity_checks/test_distance_functions.py || echo "⚠️ Distance function test failed, continuing..."
fi
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
name: packages-${{ matrix.os }}-py${{ matrix.python }}
path: packages/*/dist/
path: packages/*/dist/

19
.github/workflows/link-check.yml vendored Normal file
View File

@@ -0,0 +1,19 @@
name: Link Check
on:
push:
branches: [ main, master ]
pull_request:
schedule:
- cron: "0 3 * * 1"
jobs:
link-check:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: lycheeverse/lychee-action@v2
with:
args: --no-progress --insecure README.md docs/ apps/ examples/ benchmarks/
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -16,65 +16,79 @@ jobs:
contents: write
outputs:
commit-sha: ${{ steps.push.outputs.commit-sha }}
steps:
- uses: actions/checkout@v4
- name: Validate version
run: |
if ! [[ "${{ inputs.version }}" =~ ^[0-9]+\.[0-9]+\.[0-9]+$ ]]; then
echo "❌ Invalid version format"
# Remove 'v' prefix if present for validation
VERSION_CLEAN="${{ inputs.version }}"
VERSION_CLEAN="${VERSION_CLEAN#v}"
if ! [[ "$VERSION_CLEAN" =~ ^[0-9]+\.[0-9]+\.[0-9]+$ ]]; then
echo "❌ Invalid version format. Expected format: X.Y.Z or vX.Y.Z"
exit 1
fi
echo "✅ Version format valid"
echo "✅ Version format valid: ${{ inputs.version }}"
- name: Update versions and push
id: push
run: |
./scripts/bump_version.sh ${{ inputs.version }}
git config user.name "GitHub Actions"
git config user.email "actions@github.com"
git add packages/*/pyproject.toml
git commit -m "chore: release v${{ inputs.version }}"
git push origin main
COMMIT_SHA=$(git rev-parse HEAD)
# Check current version
CURRENT_VERSION=$(grep "^version" packages/leann-core/pyproject.toml | cut -d'"' -f2)
echo "Current version: $CURRENT_VERSION"
echo "Target version: ${{ inputs.version }}"
if [ "$CURRENT_VERSION" = "${{ inputs.version }}" ]; then
echo "⚠️ Version is already ${{ inputs.version }}, skipping update"
COMMIT_SHA=$(git rev-parse HEAD)
else
./scripts/bump_version.sh ${{ inputs.version }}
git config user.name "GitHub Actions"
git config user.email "actions@github.com"
git add packages/*/pyproject.toml
git commit -m "chore: release v${{ inputs.version }}"
git push origin main
COMMIT_SHA=$(git rev-parse HEAD)
echo "✅ Pushed version update: $COMMIT_SHA"
fi
echo "commit-sha=$COMMIT_SHA" >> $GITHUB_OUTPUT
echo "✅ Pushed version update: $COMMIT_SHA"
build-packages:
name: Build packages
needs: update-version
uses: ./.github/workflows/build-reusable.yml
with:
ref: ${{ needs.update-version.outputs.commit-sha }}
ref: 'main'
publish:
name: Publish and Release
needs: build-packages
needs: [update-version, build-packages]
if: always() && needs.update-version.result == 'success' && needs.build-packages.result == 'success'
runs-on: ubuntu-latest
permissions:
contents: write
steps:
- uses: actions/checkout@v4
with:
ref: ${{ needs.update-version.outputs.commit-sha }}
ref: 'main'
- name: Download all artifacts
uses: actions/download-artifact@v4
with:
path: dist-artifacts
- name: Collect packages
run: |
mkdir -p dist
find dist-artifacts -name "*.whl" -exec cp {} dist/ \;
find dist-artifacts -name "*.tar.gz" -exec cp {} dist/ \;
echo "📦 Packages to publish:"
ls -la dist/
- name: Publish to PyPI
env:
TWINE_USERNAME: __token__
@@ -84,20 +98,32 @@ jobs:
echo "❌ PYPI_API_TOKEN not configured!"
exit 1
fi
pip install twine
twine upload dist/* --skip-existing --verbose
echo "✅ Published to PyPI!"
- name: Create release
run: |
git tag "v${{ inputs.version }}"
git push origin "v${{ inputs.version }}"
gh release create "v${{ inputs.version }}" \
--title "Release v${{ inputs.version }}" \
--notes "🚀 Released to PyPI: https://pypi.org/project/leann/${{ inputs.version }}/" \
--latest
# Check if tag already exists
if git rev-parse "v${{ inputs.version }}" >/dev/null 2>&1; then
echo "⚠️ Tag v${{ inputs.version }} already exists, skipping tag creation"
else
git tag "v${{ inputs.version }}"
git push origin "v${{ inputs.version }}"
echo "✅ Created and pushed tag v${{ inputs.version }}"
fi
# Check if release already exists
if gh release view "v${{ inputs.version }}" >/dev/null 2>&1; then
echo "⚠️ Release v${{ inputs.version }} already exists, skipping release creation"
else
gh release create "v${{ inputs.version }}" \
--title "Release v${{ inputs.version }}" \
--notes "🚀 Released to PyPI: https://pypi.org/project/leann/${{ inputs.version }}/" \
--latest
echo "✅ Created GitHub release v${{ inputs.version }}"
fi
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}

20
.gitignore vendored
View File

@@ -9,7 +9,7 @@ demo/indices/
outputs/
*.pkl
*.pdf
*.idx
*.idx
*.map
.history/
lm_eval.egg-info/
@@ -34,11 +34,15 @@ build/
nprobe_logs/
micro/results
micro/contriever-INT8
examples/data/*
!examples/data/2501.14312v1 (1).pdf
!examples/data/2506.08276v1.pdf
!examples/data/PrideandPrejudice.txt
!examples/data/README.md
data/*
!data/2501.14312v1 (1).pdf
!data/2506.08276v1.pdf
!data/PrideandPrejudice.txt
!data/huawei_pangu.md
!data/ground_truth/
!data/indices/
!data/queries/
!data/.gitattributes
*.qdstrm
benchmark_results/
results/
@@ -85,4 +89,6 @@ packages/leann-backend-diskann/third_party/DiskANN/_deps/
*.meta.json
*.passages.json
batchtest.py
batchtest.py
tests/__pytest_cache__/
tests/__pycache__/

16
.pre-commit-config.yaml Normal file
View File

@@ -0,0 +1,16 @@
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v5.0.0
hooks:
- id: trailing-whitespace
- id: end-of-file-fixer
- id: check-yaml
- id: check-added-large-files
- id: check-merge-conflict
- id: debug-statements
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.12.7 # Fixed version to match pyproject.toml
hooks:
- id: ruff
- id: ruff-format

523
README.md
View File

@@ -6,17 +6,21 @@
<img src="https://img.shields.io/badge/Python-3.9%2B-blue.svg" alt="Python 3.9+">
<img src="https://img.shields.io/badge/License-MIT-green.svg" alt="MIT License">
<img src="https://img.shields.io/badge/Platform-Linux%20%7C%20macOS-lightgrey" alt="Platform">
<img src="https://img.shields.io/badge/MCP-Native%20Integration-blue?style=flat-square" alt="MCP Integration">
</p>
<h2 align="center" tabindex="-1" class="heading-element" dir="auto">
The smallest vector index in the world. RAG Everything with LEANN!
</h2>
LEANN is a revolutionary vector database that democratizes personal AI. Transform your laptop into a powerful RAG system that can index and search through millions of documents while using **97% less storage** than traditional solutions **without accuracy loss**.
LEANN is an innovative vector database that democratizes personal AI. Transform your laptop into a powerful RAG system that can index and search through millions of documents while using **97% less storage** than traditional solutions **without accuracy loss**.
LEANN achieves this through *graph-based selective recomputation* with *high-degree preserving pruning*, computing embeddings on-demand instead of storing them all. [Illustration Fig →](#-architecture--how-it-works) | [Paper →](https://arxiv.org/abs/2506.08276)
**Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can search your **[file system](#-personal-data-manager-process-any-documents-pdf-txt-md)**, **[emails](#-your-personal-email-secretary-rag-on-apple-mail)**, **[browser history](#-time-machine-for-the-web-rag-your-entire-browser-history)**, **[chat history](#-wechat-detective-unlock-your-golden-memories)**, or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy.
**Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can semantic search your **[file system](#-personal-data-manager-process-any-documents-pdf-txt-md)**, **[emails](#-your-personal-email-secretary-rag-on-apple-mail)**, **[browser history](#-time-machine-for-the-web-rag-your-entire-browser-history)**, **[chat history](#-wechat-detective-unlock-your-golden-memories)**, **[codebase](#-claude-code-integration-transform-your-development-workflow)**\* , or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy.
\* Claude Code only supports basic `grep`-style keyword search. **LEANN** is a drop-in **semantic search MCP service fully compatible with Claude Code**, unlocking intelligent retrieval without changing your workflow. 🔥 Check out [the easy setup →](packages/leann-mcp/README.md)
@@ -26,21 +30,55 @@ LEANN achieves this through *graph-based selective recomputation* with *high-deg
<img src="assets/effects.png" alt="LEANN vs Traditional Vector DB Storage Comparison" width="70%">
</p>
> **The numbers speak for themselves:** Index 60 million Wikipedia chunks in just 6GB instead of 201GB. From emails to browser history, everything fits on your laptop. [See detailed benchmarks for different applications below ↓](#storage-usage-comparison)
> **The numbers speak for themselves:** Index 60 million text chunks in just 6GB instead of 201GB. From emails to browser history, everything fits on your laptop. [See detailed benchmarks for different applications below ↓](#storage-comparison)
🔒 **Privacy:** Your data never leaves your laptop. No OpenAI, no cloud, no "terms of service".
🪶 **Lightweight:** Graph-based recomputation eliminates heavy embedding storage, while smart graph pruning and CSR format minimize graph storage overhead. Always less storage, less memory usage!
📦 **Portable:** Transfer your entire knowledge base between devices (even with others) with minimal cost - your personal AI memory travels with you.
📈 **Scalability:** Handle messy personal data that would crash traditional vector DBs, easily managing your growing personalized data and agent generated memory!
**No Accuracy Loss:** Maintain the same search quality as heavyweight solutions while using 97% less storage.
## Installation
### 📦 Prerequisites: Install uv
[Install uv](https://docs.astral.sh/uv/getting-started/installation/#installation-methods) first if you don't have it. Typically, you can install it with:
```bash
git clone git@github.com:yichuan-w/LEANN.git leann
curl -LsSf https://astral.sh/uv/install.sh | sh
```
### 🚀 Quick Install
Clone the repository to access all examples and try amazing applications,
```bash
git clone https://github.com/yichuan-w/LEANN.git leann
cd leann
```
and install LEANN from [PyPI](https://pypi.org/project/leann/) to run them immediately:
```bash
uv venv
source .venv/bin/activate
uv pip install leann
```
<details>
<summary>
<strong>🔧 Build from Source (Recommended for development)</strong>
</summary>
```bash
git clone https://github.com/yichuan-w/LEANN.git leann
cd leann
git submodule update --init --recursive
```
@@ -48,27 +86,65 @@ git submodule update --init --recursive
**macOS:**
```bash
brew install llvm libomp boost protobuf zeromq pkgconf
# Install with HNSW backend (default, recommended for most users)
# Install uv first if you don't have it:
# curl -LsSf https://astral.sh/uv/install.sh | sh
# See: https://docs.astral.sh/uv/getting-started/installation/#installation-methods
CC=$(brew --prefix llvm)/bin/clang CXX=$(brew --prefix llvm)/bin/clang++ uv sync
```
**Linux:**
```bash
sudo apt-get install libomp-dev libboost-all-dev protobuf-compiler libabsl-dev libmkl-full-dev libaio-dev libzmq3-dev
# Install with HNSW backend (default, recommended for most users)
uv sync
```
</details>
**Ollama Setup (Recommended for full privacy):**
> *You can skip this installation if you only want to use OpenAI API for generation.*
## Quick Start
Our declarative API makes RAG as easy as writing a config file.
Check out [demo.ipynb](demo.ipynb) or [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/yichuan-w/LEANN/blob/main/demo.ipynb)
```python
from leann import LeannBuilder, LeannSearcher, LeannChat
from pathlib import Path
INDEX_PATH = str(Path("./").resolve() / "demo.leann")
# Build an index
builder = LeannBuilder(backend_name="hnsw")
builder.add_text("LEANN saves 97% storage compared to traditional vector databases.")
builder.add_text("Tung Tung Tung Sahur called—they need their bananacrocodile hybrid back")
builder.build_index(INDEX_PATH)
# Search
searcher = LeannSearcher(INDEX_PATH)
results = searcher.search("fantastical AI-generated creatures", top_k=1)
# Chat with your data
chat = LeannChat(INDEX_PATH, llm_config={"type": "hf", "model": "Qwen/Qwen3-0.6B"})
response = chat.ask("How much storage does LEANN save?", top_k=1)
```
## RAG on Everything!
LEANN supports RAG on various data sources including documents (`.pdf`, `.txt`, `.md`), Apple Mail, Google Search History, WeChat, and more.
### Generation Model Setup
LEANN supports multiple LLM providers for text generation (OpenAI API, HuggingFace, Ollama).
<details>
<summary><strong>🔑 OpenAI API Setup (Default)</strong></summary>
Set your OpenAI API key as an environment variable:
```bash
export OPENAI_API_KEY="your-api-key-here"
```
</details>
<details>
<summary><strong>🔧 Ollama Setup (Recommended for full privacy)</strong></summary>
**macOS:**
@@ -80,6 +156,7 @@ ollama pull llama3.2:1b
```
**Linux:**
```bash
# Install Ollama
curl -fsSL https://ollama.ai/install.sh | sh
@@ -91,89 +168,120 @@ ollama serve &
ollama pull llama3.2:1b
```
## Quick Start in 30s
</details>
Our declarative API makes RAG as easy as writing a config file.
[Try in this ipynb file →](demo.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/yichuan-w/LEANN/blob/main/demo.ipynb)
### ⭐ Flexible Configuration
```python
from leann.api import LeannBuilder, LeannSearcher, LeannChat
LEANN provides flexible parameters for embedding models, search strategies, and data processing to fit your specific needs.
# 1. Build the index (no embeddings stored!)
builder = LeannBuilder(backend_name="hnsw")
builder.add_text("C# is a powerful programming language")
builder.add_text("Python is a powerful programming language and it is very popular")
builder.add_text("Machine learning transforms industries")
builder.add_text("Neural networks process complex data")
builder.add_text("Leann is a great storage saving engine for RAG on your MacBook")
builder.build_index("knowledge.leann")
📚 **Need configuration best practices?** Check our [Configuration Guide](docs/configuration-guide.md) for detailed optimization tips, model selection advice, and solutions to common issues like slow embeddings or poor search quality.
# 2. Search with real-time embeddings
searcher = LeannSearcher("knowledge.leann")
results = searcher.search("programming languages", top_k=2)
<details>
<summary><strong>📋 Click to expand: Common Parameters (Available in All Examples)</strong></summary>
# 3. Chat with LEANN using retrieved results
llm_config = {
"type": "ollama",
"model": "llama3.2:1b"
}
All RAG examples share these common parameters. **Interactive mode** is available in all examples - simply run without `--query` to start a continuous Q&A session where you can ask multiple questions. Type 'quit' to exit.
chat = LeannChat(index_path="knowledge.leann", llm_config=llm_config)
response = chat.ask(
"Compare the two retrieved programming languages and say which one is more popular today.",
top_k=2,
)
```bash
# Core Parameters (General preprocessing for all examples)
--index-dir DIR # Directory to store the index (default: current directory)
--query "YOUR QUESTION" # Single query mode. Omit for interactive chat (type 'quit' to exit), and now you can play with your index interactively
--max-items N # Limit data preprocessing (default: -1, process all data)
--force-rebuild # Force rebuild index even if it exists
# Embedding Parameters
--embedding-model MODEL # e.g., facebook/contriever, text-embedding-3-small, nomic-embed-text, mlx-community/Qwen3-Embedding-0.6B-8bit or nomic-embed-text
--embedding-mode MODE # sentence-transformers, openai, mlx, or ollama
# LLM Parameters (Text generation models)
--llm TYPE # LLM backend: openai, ollama, or hf (default: openai)
--llm-model MODEL # Model name (default: gpt-4o) e.g., gpt-4o-mini, llama3.2:1b, Qwen/Qwen2.5-1.5B-Instruct
--thinking-budget LEVEL # Thinking budget for reasoning models: low/medium/high (supported by o3, o3-mini, GPT-Oss:20b, and other reasoning models)
# Search Parameters
--top-k N # Number of results to retrieve (default: 20)
--search-complexity N # Search complexity for graph traversal (default: 32)
# Chunking Parameters
--chunk-size N # Size of text chunks (default varies by source: 256 for most, 192 for WeChat)
--chunk-overlap N # Overlap between chunks (default varies: 25-128 depending on source)
# Index Building Parameters
--backend-name NAME # Backend to use: hnsw or diskann (default: hnsw)
--graph-degree N # Graph degree for index construction (default: 32)
--build-complexity N # Build complexity for index construction (default: 64)
--no-compact # Disable compact index storage (compact storage IS enabled to save storage by default)
--no-recompute # Disable embedding recomputation (recomputation IS enabled to save storage by default)
```
## RAG on Everything!
</details>
LEANN supports RAG on various data sources including documents (.pdf, .txt, .md), Apple Mail, Google Search History, WeChat, and more.
### 📄 Personal Data Manager: Process Any Documents (.pdf, .txt, .md)!
### 📄 Personal Data Manager: Process Any Documents (`.pdf`, `.txt`, `.md`)!
Ask questions directly about your personal PDFs, documents, and any directory containing your files!
The example below asks a question about summarizing two papers (uses default data in `examples/data`):
<p align="center">
<img src="videos/paper_clear.gif" alt="LEANN Document Search Demo" width="600">
</p>
The example below asks a question about summarizing our paper (uses default data in `data/`, which is a directory with diverse data sources: two papers, Pride and Prejudice, and a Technical report about LLM in Huawei in Chinese), and this is the **easiest example** to run here:
```bash
# Drop your PDFs, .txt, .md files into examples/data/
uv run ./examples/main_cli_example.py
source .venv/bin/activate # Don't forget to activate the virtual environment
python -m apps.document_rag --query "What are the main techniques LEANN explores?"
```
```
# Or use python directly
source .venv/bin/activate
python ./examples/main_cli_example.py
<details>
<summary><strong>📋 Click to expand: Document-Specific Arguments</strong></summary>
#### Parameters
```bash
--data-dir DIR # Directory containing documents to process (default: data)
--file-types .ext .ext # Filter by specific file types (optional - all LlamaIndex supported types if omitted)
```
#### Example Commands
```bash
# Process all documents with larger chunks for academic papers
python -m apps.document_rag --data-dir "~/Documents/Papers" --chunk-size 1024
# Filter only markdown and Python files with smaller chunks
python -m apps.document_rag --data-dir "./docs" --chunk-size 256 --file-types .md .py
```
</details>
### 📧 Your Personal Email Secretary: RAG on Apple Mail!
**Note:** You need to grant full disk access to your terminal/VS Code in System Preferences → Privacy & Security → Full Disk Access.
> **Note:** The examples below currently support macOS only. Windows support coming soon.
<p align="center">
<img src="videos/mail_clear.gif" alt="LEANN Email Search Demo" width="600">
</p>
Before running the example below, you need to grant full disk access to your terminal/VS Code in System Preferences → Privacy & Security → Full Disk Access.
```bash
python examples/mail_reader_leann.py --query "What's the food I ordered by doordash or Uber eat mostly?"
python -m apps.email_rag --query "What's the food I ordered by DoorDash or Uber Eats mostly?"
```
**780K email chunks → 78MB storage** Finally, search your email like you search Google.
**780K email chunks → 78MB storage.** Finally, search your email like you search Google.
<details>
<summary><strong>📋 Click to expand: Command Examples</strong></summary>
<summary><strong>📋 Click to expand: Email-Specific Arguments</strong></summary>
#### Parameters
```bash
# Use default mail path (works for most macOS setups)
python examples/mail_reader_leann.py
--mail-path PATH # Path to specific mail directory (auto-detects if omitted)
--include-html # Include HTML content in processing (useful for newsletters)
```
# Run with custom index directory
python examples/mail_reader_leann.py --index-dir "./my_mail_index"
#### Example Commands
```bash
# Search work emails from a specific account
python -m apps.email_rag --mail-path "~/Library/Mail/V10/WORK_ACCOUNT"
# Process all emails (may take time but indexes everything)
python examples/mail_reader_leann.py --max-emails -1
# Limit number of emails processed (useful for testing)
python examples/mail_reader_leann.py --max-emails 1000
# Run a single query
python examples/mail_reader_leann.py --query "What did my boss say about deadlines?"
# Find all receipts and order confirmations (includes HTML)
python -m apps.email_rag --query "receipt order confirmation invoice" --include-html
```
</details>
@@ -187,27 +295,32 @@ Once the index is built, you can ask questions like:
- "Show me emails about travel expenses"
</details>
### 🔍 Time Machine for the Web: RAG Your Entire Google Browser History!
### 🔍 Time Machine for the Web: RAG Your Entire Chrome Browser History!
<p align="center">
<img src="videos/google_clear.gif" alt="LEANN Browser History Search Demo" width="600">
</p>
```bash
python examples/google_history_reader_leann.py --query "Tell me my browser history about machine learning?"
python -m apps.browser_rag --query "Tell me my browser history about machine learning?"
```
**38K browser entries → 6MB storage.** Your browser history becomes your personal search engine.
<details>
<summary><strong>📋 Click to expand: Command Examples</strong></summary>
<summary><strong>📋 Click to expand: Browser-Specific Arguments</strong></summary>
#### Parameters
```bash
# Use default Chrome profile (auto-finds all profiles)
python examples/google_history_reader_leann.py
--chrome-profile PATH # Path to Chrome profile directory (auto-detects if omitted)
```
# Run with custom index directory
python examples/google_history_reader_leann.py --index-dir "./my_chrome_index"
#### Example Commands
```bash
# Search academic research from your browsing history
python -m apps.browser_rag --query "arxiv papers machine learning transformer architecture"
# Limit number of history entries processed (useful for testing)
python examples/google_history_reader_leann.py --max-entries 500
# Run a single query
python examples/google_history_reader_leann.py --query "What websites did I visit about machine learning?"
# Track competitor analysis across work profile
python -m apps.browser_rag --chrome-profile "~/Library/Application Support/Google/Chrome/Work Profile" --max-items 5000
```
</details>
@@ -242,8 +355,12 @@ Once the index is built, you can ask questions like:
### 💬 WeChat Detective: Unlock Your Golden Memories!
<p align="center">
<img src="videos/wechat_clear.gif" alt="LEANN WeChat Search Demo" width="600">
</p>
```bash
python examples/wechat_history_reader_leann.py --query "Show me all group chats about weekend plans"
python -m apps.wechat_rag --query "Show me all group chats about weekend plans"
```
**400K messages → 64MB storage** Search years of chat history in any language.
@@ -251,7 +368,13 @@ python examples/wechat_history_reader_leann.py --query "Show me all group chats
<details>
<summary><strong>🔧 Click to expand: Installation Requirements</strong></summary>
First, you need to install the WeChat exporter:
First, you need to install the [WeChat exporter](https://github.com/sunnyyoung/WeChatTweak-CLI),
```bash
brew install sunnyyoung/repo/wechattweak-cli
```
or install it manually (if you have issues with Homebrew):
```bash
sudo packages/wechat-exporter/wechattweak-cli install
@@ -260,30 +383,28 @@ sudo packages/wechat-exporter/wechattweak-cli install
**Troubleshooting:**
- **Installation issues**: Check the [WeChatTweak-CLI issues page](https://github.com/sunnyyoung/WeChatTweak-CLI/issues/41)
- **Export errors**: If you encounter the error below, try restarting WeChat
```
Failed to export WeChat data. Please ensure WeChat is running and WeChatTweak is installed.
Failed to find or export WeChat data. Exiting.
```
```bash
Failed to export WeChat data. Please ensure WeChat is running and WeChatTweak is installed.
Failed to find or export WeChat data. Exiting.
```
</details>
<details>
<summary><strong>📋 Click to expand: Command Examples</strong></summary>
<summary><strong>📋 Click to expand: WeChat-Specific Arguments</strong></summary>
#### Parameters
```bash
# Use default settings (recommended for first run)
python examples/wechat_history_reader_leann.py
--export-dir DIR # Directory to store exported WeChat data (default: wechat_export_direct)
--force-export # Force re-export even if data exists
```
# Run with custom export directory and wehn we run the first time, LEANN will export all chat history automatically for you
python examples/wechat_history_reader_leann.py --export-dir "./my_wechat_exports"
#### Example Commands
```bash
# Search for travel plans discussed in group chats
python -m apps.wechat_rag --query "travel plans" --max-items 10000
# Run with custom index directory
python examples/wechat_history_reader_leann.py --index-dir "./my_wechat_index"
# Limit number of chat entries processed (useful for testing)
python examples/wechat_history_reader_leann.py --max-entries 1000
# Run a single query
python examples/wechat_history_reader_leann.py --query "Show me conversations about travel plans"
# Re-export and search recent chats (useful after new messages)
python -m apps.wechat_rag --force-export --query "work schedule"
```
</details>
@@ -297,17 +418,59 @@ Once the index is built, you can ask questions like:
</details>
### 🚀 Claude Code Integration: Transform Your Development Workflow!
**The future of code assistance is here.** Transform your development workflow with LEANN's native MCP integration for Claude Code. Index your entire codebase and get intelligent code assistance directly in your IDE.
**Key features:**
- 🔍 **Semantic code search** across your entire project
- 📚 **Context-aware assistance** for debugging and development
- 🚀 **Zero-config setup** with automatic language detection
```bash
# Install LEANN globally for MCP integration
uv tool install leann-core
# Setup is automatic - just start using Claude Code!
```
Try our fully agentic pipeline with auto query rewriting, semantic search planning, and more:
![LEANN MCP Integration](assets/mcp_leann.png)
**Ready to supercharge your coding?** [Complete Setup Guide →](packages/leann-mcp/README.md)
## 🖥️ Command Line Interface
LEANN includes a powerful CLI for document processing and search. Perfect for quick document indexing and interactive chat.
```bash
# Build an index from documents
leann build my-docs --docs ./documents
### Installation
# Search your documents
If you followed the Quick Start, `leann` is already installed in your virtual environment:
```bash
source .venv/bin/activate
leann --help
```
**To make it globally available:**
```bash
# Install the LEANN CLI globally using uv tool
uv tool install leann-core
# Now you can use leann from anywhere without activating venv
leann --help
```
> **Note**: Global installation is required for Claude Code integration. The `leann_mcp` server depends on the globally available `leann` command.
### Usage Examples
```bash
# build from a specific directory, and my_docs is the index name
leann build my-docs --docs ./your_documents
# Search your documents
leann search my-docs "machine learning concepts"
# Interactive chat with your documents
@@ -375,60 +538,35 @@ Options:
**Core techniques:**
- **Graph-based selective recomputation:** Only compute embeddings for nodes in the search path
- **High-degree preserving pruning:** Keep important "hub" nodes while removing redundant connections
- **High-degree preserving pruning:** Keep important "hub" nodes while removing redundant connections
- **Dynamic batching:** Efficiently batch embedding computations for GPU utilization
- **Two-level search:** Smart graph traversal that prioritizes promising nodes
**Backends:** DiskANN or HNSW - pick what works for your data size.
**Backends:**
- **HNSW** (default): Ideal for most datasets with maximum storage savings through full recomputation
- **DiskANN**: Advanced option with superior search performance, using PQ-based graph traversal with real-time reranking for the best speed-accuracy trade-off
## Benchmarks
Run the comparison yourself:
```bash
python examples/compare_faiss_vs_leann.py
```
**[DiskANN vs HNSW Performance Comparison →](benchmarks/diskann_vs_hnsw_speed_comparison.py)** - Compare search performance between both backends
| System | Storage |
|--------|---------|
| FAISS HNSW | 5.5 MB |
| LEANN | 0.5 MB |
| **Savings** | **91%** |
**[Simple Example: Compare LEANN vs FAISS →](benchmarks/compare_faiss_vs_leann.py)** - See storage savings in action
Same dataset, same hardware, same embedding model. LEANN just works better.
### 📊 Storage Comparison
| System | DPR (2.1M) | Wiki (60M) | Chat (400K) | Email (780K) | Browser (38K) |
|--------|-------------|------------|-------------|--------------|---------------|
| Traditional vector database (e.g., FAISS) | 3.8 GB | 201 GB | 1.8 GB | 2.4 GB | 130 MB |
| LEANN | 324 MB | 6 GB | 64 MB | 79 MB | 6.4 MB |
| Savings| 91% | 97% | 97% | 97% | 95% |
### Storage Usage Comparison
| System | DPR (2.1M chunks) | RPJ-wiki (60M chunks) | Chat history (400K messages) | Apple emails (780K messages chunks) |Google Search History (38K entries)
|-----------------------|------------------|------------------------|-----------------------------|------------------------------|------------------------------|
| Traditional Vector DB(FAISS) | 3.8 GB | 201 GB | 1.8G | 2.4G |130.4 MB |
| **LEANN** | **324 MB** | **6 GB** | **64 MB** | **79 MB** |**6.4MB** |
| **Reduction** | **91% smaller** | **97% smaller** | **97% smaller** | **97% smaller** |**95% smaller** |
<!-- ### Memory Usage Comparison
| System j | DPR(2M docs) | RPJ-wiki(60M docs) | Chat history() |
| --------------------- | ---------------- | ---------------- | ---------------- |
| Traditional Vector DB(LLamaindex faiss) | x GB | x GB | x GB |
| **Leann** | **xx MB** | **x GB** | **x GB** |
| **Reduction** | **x%** | **x%** | **x%** |
### Query Performance of LEANN
| Backend | Index Size | Query Time | Recall@3 |
| ------------------- | ---------- | ---------- | --------- |
| DiskANN | 1M docs | xms | 0.95 |
| HNSW | 1M docs | xms | 0.95 | -->
*Benchmarks run on Apple M3 Pro 36 GB*
## Reproduce Our Results
```bash
uv pip install -e ".[dev]" # Install dev dependencies
python examples/run_evaluation.py data/indices/dpr/dpr_diskann # DPR dataset
python examples/run_evaluation.py data/indices/rpj_wiki/rpj_wiki.index # Wikipedia
python benchmarks/run_evaluation.py # Will auto-download evaluation data and run benchmarks
```
The evaluation script downloads data automatically on first run. The last three results were tested with partial personal data, and you can reproduce them with your own data!
@@ -440,108 +578,25 @@ If you find Leann useful, please cite:
```bibtex
@misc{wang2025leannlowstoragevectorindex,
title={LEANN: A Low-Storage Vector Index},
title={LEANN: A Low-Storage Vector Index},
author={Yichuan Wang and Shu Liu and Zhifei Li and Yongji Wu and Ziming Mao and Yilong Zhao and Xiao Yan and Zhiying Xu and Yang Zhou and Ion Stoica and Sewon Min and Matei Zaharia and Joseph E. Gonzalez},
year={2025},
eprint={2506.08276},
archivePrefix={arXiv},
primaryClass={cs.DB},
url={https://arxiv.org/abs/2506.08276},
url={https://arxiv.org/abs/2506.08276},
}
```
## ✨ Features
## ✨ [Detailed Features →](docs/features.md)
### 🔥 Core Features
- **🔄 Real-time Embeddings** - Eliminate heavy embedding storage with dynamic computation using optimized ZMQ servers and highly optimized search paradigm (overlapping and batching) with highly optimized embedding engine
- **📈 Scalable Architecture** - Handles millions of documents on consumer hardware; the larger your dataset, the more LEANN can save
- **🎯 Graph Pruning** - Advanced techniques to minimize the storage overhead of vector search to a limited footprint
- **🏗️ Pluggable Backends** - DiskANN, HNSW/FAISS with unified API
### 🛠️ Technical Highlights
- **🔄 Recompute Mode** - Highest accuracy scenarios while eliminating vector storage overhead
- **⚡ Zero-copy Operations** - Minimize IPC overhead by transferring distances instead of embeddings
- **🚀 High-throughput Embedding Pipeline** - Optimized batched processing for maximum efficiency
- **🎯 Two-level Search** - Novel coarse-to-fine search overlap for accelerated query processing (optional)
- **💾 Memory-mapped Indices** - Fast startup with raw text mapping to reduce memory overhead
- **🚀 MLX Support** - Ultra-fast recompute/build with quantized embedding models, accelerating building and search ([minimal example](test/build_mlx_index.py))
### 🎨 Developer Experience
- **Simple Python API** - Get started in minutes
- **Extensible backend system** - Easy to add new algorithms
- **Comprehensive examples** - From basic usage to production deployment
## 🤝 Contributing
We welcome contributions! Leann is built by the community, for the community.
### Ways to Contribute
- 🐛 **Bug Reports**: Found an issue? Let us know!
- 💡 **Feature Requests**: Have an idea? We'd love to hear it!
- 🔧 **Code Contributions**: PRs welcome for all skill levels
- 📖 **Documentation**: Help make Leann more accessible
- 🧪 **Benchmarks**: Share your performance results
## 🤝 [CONTRIBUTING →](docs/CONTRIBUTING.md)
<!-- ## ❓ FAQ
### Common Issues
#### NCCL Topology Error
**Problem**: You encounter `ncclTopoComputePaths` error during document processing:
```
ncclTopoComputePaths (system=<optimized out>, comm=comm@entry=0x5555a82fa3c0) at graph/paths.cc:688
```
**Solution**: Set these environment variables before running your script:
```bash
export NCCL_TOPO_DUMP_FILE=/tmp/nccl_topo.xml
export NCCL_DEBUG=INFO
export NCCL_DEBUG_SUBSYS=INIT,GRAPH
export NCCL_IB_DISABLE=1
export NCCL_NET_PLUGIN=none
export NCCL_SOCKET_IFNAME=ens5
``` -->
## FAQ
### 1. My building time seems long
You can speed up the process by using a lightweight embedding model. Add this to your arguments:
```bash
--embedding-model sentence-transformers/all-MiniLM-L6-v2
```
**Model sizes:** `all-MiniLM-L6-v2` (30M parameters), `facebook/contriever` (~100M parameters), `Qwen3-0.6B` (600M parameters)
## ❓ [FAQ →](docs/faq.md)
## 📈 Roadmap
### 🎯 Q2 2025
- [X] DiskANN backend with MIPS/L2/Cosine support
- [X] HNSW backend integration
- [X] Real-time embedding pipeline
- [X] Memory-efficient graph pruning
### 🚀 Q3 2025
- [ ] Advanced caching strategies
- [ ] Add contextual-retrieval https://www.anthropic.com/news/contextual-retrieval
- [ ] Add sleep-time-compute and summarize agent! to summarilze the file on computer!
- [ ] Add OpenAI recompute API
### 🌟 Q4 2025
- [ ] Integration with LangChain/LlamaIndex
- [ ] Visual similarity search
- [ ] Query rewrtiting, rerank and expansion
## 📈 [Roadmap →](docs/roadmap.md)
## 📄 License
@@ -549,10 +604,11 @@ MIT License - see [LICENSE](LICENSE) for details.
## 🙏 Acknowledgments
- **Microsoft Research** for the DiskANN algorithm
- **Meta AI** for FAISS and optimization insights
- **HuggingFace** for the transformer ecosystem
- **Our amazing contributors** who make this possible
Core Contributors: [Yichuan Wang](https://yichuan-w.github.io/) & [Zhifei Li](https://github.com/andylizf).
We welcome more contributors! Feel free to open issues or submit PRs.
This work is done at [**Berkeley Sky Computing Lab**](https://sky.cs.berkeley.edu/).
---
@@ -563,4 +619,3 @@ MIT License - see [LICENSE](LICENSE) for details.
<p align="center">
Made with ❤️ by the Leann team
</p>

324
apps/base_rag_example.py Normal file
View File

@@ -0,0 +1,324 @@
"""
Base class for unified RAG examples interface.
Provides common parameters and functionality for all RAG examples.
"""
import argparse
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Any
import dotenv
from leann.api import LeannBuilder, LeannChat
from llama_index.core.node_parser import SentenceSplitter
dotenv.load_dotenv()
class BaseRAGExample(ABC):
"""Base class for all RAG examples with unified interface."""
def __init__(
self,
name: str,
description: str,
default_index_name: str,
):
self.name = name
self.description = description
self.default_index_name = default_index_name
self.parser = self._create_parser()
def _create_parser(self) -> argparse.ArgumentParser:
"""Create argument parser with common parameters."""
parser = argparse.ArgumentParser(
description=self.description, formatter_class=argparse.RawDescriptionHelpFormatter
)
# Core parameters (all examples share these)
core_group = parser.add_argument_group("Core Parameters")
core_group.add_argument(
"--index-dir",
type=str,
default=f"./{self.default_index_name}",
help=f"Directory to store the index (default: ./{self.default_index_name})",
)
core_group.add_argument(
"--query",
type=str,
default=None,
help="Query to run (if not provided, will run in interactive mode)",
)
# Allow subclasses to override default max_items
max_items_default = getattr(self, "max_items_default", -1)
core_group.add_argument(
"--max-items",
type=int,
default=max_items_default,
help="Maximum number of items to process -1 for all, means index all documents, and you should set it to a reasonable number if you have a large dataset and try at the first time)",
)
core_group.add_argument(
"--force-rebuild", action="store_true", help="Force rebuild index even if it exists"
)
# Embedding parameters
embedding_group = parser.add_argument_group("Embedding Parameters")
# Allow subclasses to override default embedding_model
embedding_model_default = getattr(self, "embedding_model_default", "facebook/contriever")
embedding_group.add_argument(
"--embedding-model",
type=str,
default=embedding_model_default,
help=f"Embedding model to use (default: {embedding_model_default})",
)
embedding_group.add_argument(
"--embedding-mode",
type=str,
default="sentence-transformers",
choices=["sentence-transformers", "openai", "mlx", "ollama"],
help="Embedding backend mode (default: sentence-transformers)",
)
# LLM parameters
llm_group = parser.add_argument_group("LLM Parameters")
llm_group.add_argument(
"--llm",
type=str,
default="openai",
choices=["openai", "ollama", "hf", "simulated"],
help="LLM backend to use (default: openai)",
)
llm_group.add_argument(
"--llm-model",
type=str,
default=None,
help="LLM model name (default: gpt-4o for openai, llama3.2:1b for ollama)",
)
llm_group.add_argument(
"--llm-host",
type=str,
default="http://localhost:11434",
help="Host for Ollama API (default: http://localhost:11434)",
)
llm_group.add_argument(
"--thinking-budget",
type=str,
choices=["low", "medium", "high"],
default=None,
help="Thinking budget for reasoning models (low/medium/high). Supported by GPT-Oss:20b and other reasoning models.",
)
# Search parameters
search_group = parser.add_argument_group("Search Parameters")
search_group.add_argument(
"--top-k", type=int, default=20, help="Number of results to retrieve (default: 20)"
)
search_group.add_argument(
"--search-complexity",
type=int,
default=32,
help="Search complexity for graph traversal (default: 64)",
)
# Index building parameters
index_group = parser.add_argument_group("Index Building Parameters")
index_group.add_argument(
"--backend-name",
type=str,
default="hnsw",
choices=["hnsw", "diskann"],
help="Backend to use for index (default: hnsw)",
)
index_group.add_argument(
"--graph-degree",
type=int,
default=32,
help="Graph degree for index construction (default: 32)",
)
index_group.add_argument(
"--build-complexity",
type=int,
default=64,
help="Build complexity for index construction (default: 64)",
)
index_group.add_argument(
"--no-compact",
action="store_true",
help="Disable compact index storage",
)
index_group.add_argument(
"--no-recompute",
action="store_true",
help="Disable embedding recomputation",
)
# Add source-specific parameters
self._add_specific_arguments(parser)
return parser
@abstractmethod
def _add_specific_arguments(self, parser: argparse.ArgumentParser):
"""Add source-specific arguments. Override in subclasses."""
pass
@abstractmethod
async def load_data(self, args) -> list[str]:
"""Load data from the source. Returns list of text chunks."""
pass
def get_llm_config(self, args) -> dict[str, Any]:
"""Get LLM configuration based on arguments."""
config = {"type": args.llm}
if args.llm == "openai":
config["model"] = args.llm_model or "gpt-4o"
elif args.llm == "ollama":
config["model"] = args.llm_model or "llama3.2:1b"
config["host"] = args.llm_host
elif args.llm == "hf":
config["model"] = args.llm_model or "Qwen/Qwen2.5-1.5B-Instruct"
elif args.llm == "simulated":
# Simulated LLM doesn't need additional configuration
pass
return config
async def build_index(self, args, texts: list[str]) -> str:
"""Build LEANN index from texts."""
index_path = str(Path(args.index_dir) / f"{self.default_index_name}.leann")
print(f"\n[Building Index] Creating {self.name} index...")
print(f"Total text chunks: {len(texts)}")
builder = LeannBuilder(
backend_name=args.backend_name,
embedding_model=args.embedding_model,
embedding_mode=args.embedding_mode,
graph_degree=args.graph_degree,
complexity=args.build_complexity,
is_compact=not args.no_compact,
is_recompute=not args.no_recompute,
num_threads=1, # Force single-threaded mode
)
# Add texts in batches for better progress tracking
batch_size = 1000
for i in range(0, len(texts), batch_size):
batch = texts[i : i + batch_size]
for text in batch:
builder.add_text(text)
print(f"Added {min(i + batch_size, len(texts))}/{len(texts)} texts...")
print("Building index structure...")
builder.build_index(index_path)
print(f"Index saved to: {index_path}")
return index_path
async def run_interactive_chat(self, args, index_path: str):
"""Run interactive chat with the index."""
chat = LeannChat(
index_path,
llm_config=self.get_llm_config(args),
system_prompt=f"You are a helpful assistant that answers questions about {self.name} data.",
complexity=args.search_complexity,
)
print(f"\n[Interactive Mode] Chat with your {self.name} data!")
print("Type 'quit' or 'exit' to stop.\n")
while True:
try:
query = input("You: ").strip()
if query.lower() in ["quit", "exit", "q"]:
print("Goodbye!")
break
if not query:
continue
# Prepare LLM kwargs with thinking budget if specified
llm_kwargs = {}
if hasattr(args, "thinking_budget") and args.thinking_budget:
llm_kwargs["thinking_budget"] = args.thinking_budget
response = chat.ask(
query,
top_k=args.top_k,
complexity=args.search_complexity,
llm_kwargs=llm_kwargs,
)
print(f"\nAssistant: {response}\n")
except KeyboardInterrupt:
print("\nGoodbye!")
break
except Exception as e:
print(f"Error: {e}")
async def run_single_query(self, args, index_path: str, query: str):
"""Run a single query against the index."""
chat = LeannChat(
index_path,
llm_config=self.get_llm_config(args),
system_prompt=f"You are a helpful assistant that answers questions about {self.name} data.",
complexity=args.search_complexity,
)
print(f"\n[Query]: \033[36m{query}\033[0m")
# Prepare LLM kwargs with thinking budget if specified
llm_kwargs = {}
if hasattr(args, "thinking_budget") and args.thinking_budget:
llm_kwargs["thinking_budget"] = args.thinking_budget
response = chat.ask(
query, top_k=args.top_k, complexity=args.search_complexity, llm_kwargs=llm_kwargs
)
print(f"\n[Response]: \033[36m{response}\033[0m")
async def run(self):
"""Main entry point for the example."""
args = self.parser.parse_args()
# Check if index exists
index_path = str(Path(args.index_dir) / f"{self.default_index_name}.leann")
index_exists = Path(args.index_dir).exists()
if not index_exists or args.force_rebuild:
# Load data and build index
print(f"\n{'Rebuilding' if index_exists else 'Building'} index...")
texts = await self.load_data(args)
if not texts:
print("No data found to index!")
return
index_path = await self.build_index(args, texts)
else:
print(f"\nUsing existing index in {args.index_dir}")
# Run query or interactive mode
if args.query:
await self.run_single_query(args, index_path, args.query)
else:
await self.run_interactive_chat(args, index_path)
def create_text_chunks(documents, chunk_size=256, chunk_overlap=25) -> list[str]:
"""Helper function to create text chunks from documents."""
node_parser = SentenceSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
separator=" ",
paragraph_separator="\n\n",
)
all_texts = []
for doc in documents:
nodes = node_parser.get_nodes_from_documents([doc])
if nodes:
all_texts.extend(node.get_content() for node in nodes)
return all_texts

170
apps/browser_rag.py Normal file
View File

@@ -0,0 +1,170 @@
"""
Browser History RAG example using the unified interface.
Supports Chrome browser history.
"""
import os
import sys
from pathlib import Path
# Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent))
from base_rag_example import BaseRAGExample, create_text_chunks
from .history_data.history import ChromeHistoryReader
class BrowserRAG(BaseRAGExample):
"""RAG example for Chrome browser history."""
def __init__(self):
# Set default values BEFORE calling super().__init__
self.embedding_model_default = (
"sentence-transformers/all-MiniLM-L6-v2" # Fast 384-dim model
)
super().__init__(
name="Browser History",
description="Process and query Chrome browser history with LEANN",
default_index_name="google_history_index",
)
def _add_specific_arguments(self, parser):
"""Add browser-specific arguments."""
browser_group = parser.add_argument_group("Browser Parameters")
browser_group.add_argument(
"--chrome-profile",
type=str,
default=None,
help="Path to Chrome profile directory (auto-detected if not specified)",
)
browser_group.add_argument(
"--auto-find-profiles",
action="store_true",
default=True,
help="Automatically find all Chrome profiles (default: True)",
)
browser_group.add_argument(
"--chunk-size", type=int, default=256, help="Text chunk size (default: 256)"
)
browser_group.add_argument(
"--chunk-overlap", type=int, default=128, help="Text chunk overlap (default: 128)"
)
def _get_chrome_base_path(self) -> Path:
"""Get the base Chrome profile path based on OS."""
if sys.platform == "darwin":
return Path.home() / "Library" / "Application Support" / "Google" / "Chrome"
elif sys.platform.startswith("linux"):
return Path.home() / ".config" / "google-chrome"
elif sys.platform == "win32":
return Path(os.environ["LOCALAPPDATA"]) / "Google" / "Chrome" / "User Data"
else:
raise ValueError(f"Unsupported platform: {sys.platform}")
def _find_chrome_profiles(self) -> list[Path]:
"""Auto-detect all Chrome profiles."""
base_path = self._get_chrome_base_path()
if not base_path.exists():
return []
profiles = []
# Check Default profile
default_profile = base_path / "Default"
if default_profile.exists() and (default_profile / "History").exists():
profiles.append(default_profile)
# Check numbered profiles
for item in base_path.iterdir():
if item.is_dir() and item.name.startswith("Profile "):
if (item / "History").exists():
profiles.append(item)
return profiles
async def load_data(self, args) -> list[str]:
"""Load browser history and convert to text chunks."""
# Determine Chrome profiles
if args.chrome_profile and not args.auto_find_profiles:
profile_dirs = [Path(args.chrome_profile)]
else:
print("Auto-detecting Chrome profiles...")
profile_dirs = self._find_chrome_profiles()
# If specific profile given, filter to just that one
if args.chrome_profile:
profile_path = Path(args.chrome_profile)
profile_dirs = [p for p in profile_dirs if p == profile_path]
if not profile_dirs:
print("No Chrome profiles found!")
print("Please specify --chrome-profile manually")
return []
print(f"Found {len(profile_dirs)} Chrome profiles")
# Create reader
reader = ChromeHistoryReader()
# Process each profile
all_documents = []
total_processed = 0
for i, profile_dir in enumerate(profile_dirs):
print(f"\nProcessing profile {i + 1}/{len(profile_dirs)}: {profile_dir.name}")
try:
# Apply max_items limit per profile
max_per_profile = -1
if args.max_items > 0:
remaining = args.max_items - total_processed
if remaining <= 0:
break
max_per_profile = remaining
# Load history
documents = reader.load_data(
chrome_profile_path=str(profile_dir),
max_count=max_per_profile,
)
if documents:
all_documents.extend(documents)
total_processed += len(documents)
print(f"Processed {len(documents)} history entries from this profile")
except Exception as e:
print(f"Error processing {profile_dir}: {e}")
continue
if not all_documents:
print("No browser history found to process!")
return []
print(f"\nTotal history entries processed: {len(all_documents)}")
# Convert to text chunks
all_texts = create_text_chunks(
all_documents, chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
)
return all_texts
if __name__ == "__main__":
import asyncio
# Example queries for browser history RAG
print("\n🌐 Browser History RAG Example")
print("=" * 50)
print("\nExample queries you can try:")
print("- 'What websites did I visit about machine learning?'")
print("- 'Find my search history about programming'")
print("- 'What YouTube videos did I watch recently?'")
print("- 'Show me websites about travel planning'")
print("\nNote: Make sure Chrome is closed before running\n")
rag = BrowserRAG()
asyncio.run(rag.run())

108
apps/document_rag.py Normal file
View File

@@ -0,0 +1,108 @@
"""
Document RAG example using the unified interface.
Supports PDF, TXT, MD, and other document formats.
"""
import sys
from pathlib import Path
# Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent))
from base_rag_example import BaseRAGExample, create_text_chunks
from llama_index.core import SimpleDirectoryReader
class DocumentRAG(BaseRAGExample):
"""RAG example for document processing (PDF, TXT, MD, etc.)."""
def __init__(self):
super().__init__(
name="Document",
description="Process and query documents (PDF, TXT, MD, etc.) with LEANN",
default_index_name="test_doc_files",
)
def _add_specific_arguments(self, parser):
"""Add document-specific arguments."""
doc_group = parser.add_argument_group("Document Parameters")
doc_group.add_argument(
"--data-dir",
type=str,
default="data",
help="Directory containing documents to index (default: data)",
)
doc_group.add_argument(
"--file-types",
nargs="+",
default=None,
help="Filter by file types (e.g., .pdf .txt .md). If not specified, all supported types are processed",
)
doc_group.add_argument(
"--chunk-size", type=int, default=256, help="Text chunk size (default: 256)"
)
doc_group.add_argument(
"--chunk-overlap", type=int, default=128, help="Text chunk overlap (default: 128)"
)
async def load_data(self, args) -> list[str]:
"""Load documents and convert to text chunks."""
print(f"Loading documents from: {args.data_dir}")
if args.file_types:
print(f"Filtering by file types: {args.file_types}")
else:
print("Processing all supported file types")
# Check if data directory exists
data_path = Path(args.data_dir)
if not data_path.exists():
raise ValueError(f"Data directory not found: {args.data_dir}")
# Load documents
reader_kwargs = {
"recursive": True,
"encoding": "utf-8",
}
if args.file_types:
reader_kwargs["required_exts"] = args.file_types
documents = SimpleDirectoryReader(args.data_dir, **reader_kwargs).load_data(
show_progress=True
)
if not documents:
print(f"No documents found in {args.data_dir} with extensions {args.file_types}")
return []
print(f"Loaded {len(documents)} documents")
# Convert to text chunks
all_texts = create_text_chunks(
documents, chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
)
# Apply max_items limit if specified
if args.max_items > 0 and len(all_texts) > args.max_items:
print(f"Limiting to {args.max_items} chunks (from {len(all_texts)})")
all_texts = all_texts[: args.max_items]
return all_texts
if __name__ == "__main__":
import asyncio
# Example queries for document RAG
print("\n📄 Document RAG Example")
print("=" * 50)
print("\nExample queries you can try:")
print("- 'What are the main techniques LEANN uses?'")
print("- 'What is the technique DLPM?'")
print("- 'Who does Elizabeth Bennet marry?'")
print(
"- 'What is the problem of developing pan gu model Huawei meets? (盘古大模型开发中遇到什么问题?)'"
)
print("\nOr run without --query for interactive mode\n")
rag = DocumentRAG()
asyncio.run(rag.run())

View File

@@ -0,0 +1,167 @@
import email
import os
from pathlib import Path
from typing import Any
from llama_index.core import Document
from llama_index.core.readers.base import BaseReader
def find_all_messages_directories(root: str | None = None) -> list[Path]:
"""
Recursively find all 'Messages' directories under the given root.
Returns a list of Path objects.
"""
if root is None:
# Auto-detect user's mail path
home_dir = os.path.expanduser("~")
root = os.path.join(home_dir, "Library", "Mail")
messages_dirs = []
for dirpath, _dirnames, _filenames in os.walk(root):
if os.path.basename(dirpath) == "Messages":
messages_dirs.append(Path(dirpath))
return messages_dirs
class EmlxReader(BaseReader):
"""
Apple Mail .emlx file reader with embedded metadata.
Reads individual .emlx files from Apple Mail's storage format.
"""
def __init__(self, include_html: bool = False) -> None:
"""
Initialize.
Args:
include_html: Whether to include HTML content in the email body (default: False)
"""
self.include_html = include_html
def load_data(self, input_dir: str, **load_kwargs: Any) -> list[Document]:
"""
Load data from the input directory containing .emlx files.
Args:
input_dir: Directory containing .emlx files
**load_kwargs:
max_count (int): Maximum amount of messages to read.
"""
docs: list[Document] = []
max_count = load_kwargs.get("max_count", 1000)
count = 0
total_files = 0
successful_files = 0
failed_files = 0
print(f"Starting to process directory: {input_dir}")
# Walk through the directory recursively
for dirpath, dirnames, filenames in os.walk(input_dir):
# Skip hidden directories
dirnames[:] = [d for d in dirnames if not d.startswith(".")]
for filename in filenames:
# Check if we've reached the max count (skip if max_count == -1)
if max_count > 0 and count >= max_count:
break
if filename.endswith(".emlx"):
total_files += 1
filepath = os.path.join(dirpath, filename)
try:
# Read the .emlx file
with open(filepath, encoding="utf-8", errors="ignore") as f:
content = f.read()
# .emlx files have a length prefix followed by the email content
# The first line contains the length, followed by the email
lines = content.split("\n", 1)
if len(lines) >= 2:
email_content = lines[1]
# Parse the email using Python's email module
try:
msg = email.message_from_string(email_content)
# Extract email metadata
subject = msg.get("Subject", "No Subject")
from_addr = msg.get("From", "Unknown")
to_addr = msg.get("To", "Unknown")
date = msg.get("Date", "Unknown")
# Extract email body
body = ""
if msg.is_multipart():
for part in msg.walk():
if (
part.get_content_type() == "text/plain"
or part.get_content_type() == "text/html"
):
if (
part.get_content_type() == "text/html"
and not self.include_html
):
continue
try:
payload = part.get_payload(decode=True)
if payload:
body += payload.decode("utf-8", errors="ignore")
except Exception as e:
print(f"Error decoding payload: {e}")
continue
else:
try:
payload = msg.get_payload(decode=True)
if payload:
body = payload.decode("utf-8", errors="ignore")
except Exception as e:
print(f"Error decoding single part payload: {e}")
body = ""
# Only create document if we have some content
if body.strip() or subject != "No Subject":
# Create document content with metadata embedded in text
doc_content = f"""
[File]: {filename}
[From]: {from_addr}
[To]: {to_addr}
[Subject]: {subject}
[Date]: {date}
[EMAIL BODY Start]:
{body}
"""
# No separate metadata - everything is in the text
doc = Document(text=doc_content, metadata={})
docs.append(doc)
count += 1
successful_files += 1
# Print first few successful files for debugging
if successful_files <= 3:
print(
f"Successfully loaded: {filename} - Subject: {subject[:50]}..."
)
except Exception as e:
failed_files += 1
if failed_files <= 5: # Only print first few errors
print(f"Error parsing email from {filepath}: {e}")
continue
except Exception as e:
failed_files += 1
if failed_files <= 5: # Only print first few errors
print(f"Error reading file {filepath}: {e}")
continue
print("Processing summary:")
print(f" Total .emlx files found: {total_files}")
print(f" Successfully loaded: {successful_files}")
print(f" Failed to load: {failed_files}")
print(f" Final documents: {len(docs)}")
return docs

View File

@@ -7,9 +7,9 @@ Contains simple parser for mbox files.
import logging
from pathlib import Path
from typing import Any, Dict, List, Optional
from fsspec import AbstractFileSystem
from typing import Any
from fsspec import AbstractFileSystem
from llama_index.core.readers.base import BaseReader
from llama_index.core.schema import Document
@@ -27,11 +27,7 @@ class MboxReader(BaseReader):
"""
DEFAULT_MESSAGE_FORMAT: str = (
"Date: {_date}\n"
"From: {_from}\n"
"To: {_to}\n"
"Subject: {_subject}\n"
"Content: {_content}"
"Date: {_date}\nFrom: {_from}\nTo: {_to}\nSubject: {_subject}\nContent: {_content}"
)
def __init__(
@@ -45,9 +41,7 @@ class MboxReader(BaseReader):
try:
from bs4 import BeautifulSoup # noqa
except ImportError:
raise ImportError(
"`beautifulsoup4` package not found: `pip install beautifulsoup4`"
)
raise ImportError("`beautifulsoup4` package not found: `pip install beautifulsoup4`")
super().__init__(*args, **kwargs)
self.max_count = max_count
@@ -56,9 +50,9 @@ class MboxReader(BaseReader):
def load_data(
self,
file: Path,
extra_info: Optional[Dict] = None,
fs: Optional[AbstractFileSystem] = None,
) -> List[Document]:
extra_info: dict | None = None,
fs: AbstractFileSystem | None = None,
) -> list[Document]:
"""Parse file into string."""
# Import required libraries
import mailbox
@@ -74,7 +68,7 @@ class MboxReader(BaseReader):
)
i = 0
results: List[str] = []
results: list[str] = []
# Load file using mailbox
bytes_parser = BytesParser(policy=default).parse
mbox = mailbox.mbox(file, factory=bytes_parser) # type: ignore
@@ -124,7 +118,7 @@ class MboxReader(BaseReader):
class EmlxMboxReader(MboxReader):
"""
EmlxMboxReader - Modified MboxReader that handles directories of .emlx files.
Extends MboxReader to work with Apple Mail's .emlx format by:
1. Reading .emlx files from a directory
2. Converting them to mbox format in memory
@@ -134,13 +128,13 @@ class EmlxMboxReader(MboxReader):
def load_data(
self,
directory: Path,
extra_info: Optional[Dict] = None,
fs: Optional[AbstractFileSystem] = None,
) -> List[Document]:
extra_info: dict | None = None,
fs: AbstractFileSystem | None = None,
) -> list[Document]:
"""Parse .emlx files from directory into strings using MboxReader logic."""
import tempfile
import os
import tempfile
if fs:
logger.warning(
"fs was specified but EmlxMboxReader doesn't support loading "
@@ -150,37 +144,37 @@ class EmlxMboxReader(MboxReader):
# Find all .emlx files in the directory
emlx_files = list(directory.glob("*.emlx"))
logger.info(f"Found {len(emlx_files)} .emlx files in {directory}")
if not emlx_files:
logger.warning(f"No .emlx files found in {directory}")
return []
# Create a temporary mbox file
with tempfile.NamedTemporaryFile(mode='w', suffix='.mbox', delete=False) as temp_mbox:
with tempfile.NamedTemporaryFile(mode="w", suffix=".mbox", delete=False) as temp_mbox:
temp_mbox_path = temp_mbox.name
# Convert .emlx files to mbox format
for emlx_file in emlx_files:
try:
# Read the .emlx file
with open(emlx_file, 'r', encoding='utf-8', errors='ignore') as f:
with open(emlx_file, encoding="utf-8", errors="ignore") as f:
content = f.read()
# .emlx format: first line is length, rest is email content
lines = content.split('\n', 1)
lines = content.split("\n", 1)
if len(lines) >= 2:
email_content = lines[1] # Skip the length line
# Write to mbox format (each message starts with "From " and ends with blank line)
temp_mbox.write(f"From {emlx_file.name} {email_content}\n\n")
except Exception as e:
logger.warning(f"Failed to process {emlx_file}: {e}")
continue
# Close the temporary file so MboxReader can read it
temp_mbox.close()
try:
# Use the parent MboxReader's logic to parse the mbox file
return super().load_data(Path(temp_mbox_path), extra_info, fs)
@@ -188,5 +182,5 @@ class EmlxMboxReader(MboxReader):
# Clean up temporary file
try:
os.unlink(temp_mbox_path)
except:
pass
except OSError:
pass

156
apps/email_rag.py Normal file
View File

@@ -0,0 +1,156 @@
"""
Email RAG example using the unified interface.
Supports Apple Mail on macOS.
"""
import sys
from pathlib import Path
# Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent))
from base_rag_example import BaseRAGExample, create_text_chunks
from .email_data.LEANN_email_reader import EmlxReader
class EmailRAG(BaseRAGExample):
"""RAG example for Apple Mail processing."""
def __init__(self):
# Set default values BEFORE calling super().__init__
self.max_items_default = -1 # Process all emails by default
self.embedding_model_default = (
"sentence-transformers/all-MiniLM-L6-v2" # Fast 384-dim model
)
super().__init__(
name="Email",
description="Process and query Apple Mail emails with LEANN",
default_index_name="mail_index",
)
def _add_specific_arguments(self, parser):
"""Add email-specific arguments."""
email_group = parser.add_argument_group("Email Parameters")
email_group.add_argument(
"--mail-path",
type=str,
default=None,
help="Path to Apple Mail directory (auto-detected if not specified)",
)
email_group.add_argument(
"--include-html", action="store_true", help="Include HTML content in email processing"
)
email_group.add_argument(
"--chunk-size", type=int, default=256, help="Text chunk size (default: 256)"
)
email_group.add_argument(
"--chunk-overlap", type=int, default=25, help="Text chunk overlap (default: 25)"
)
def _find_mail_directories(self) -> list[Path]:
"""Auto-detect all Apple Mail directories."""
mail_base = Path.home() / "Library" / "Mail"
if not mail_base.exists():
return []
# Find all Messages directories
messages_dirs = []
for item in mail_base.rglob("Messages"):
if item.is_dir():
messages_dirs.append(item)
return messages_dirs
async def load_data(self, args) -> list[str]:
"""Load emails and convert to text chunks."""
# Determine mail directories
if args.mail_path:
messages_dirs = [Path(args.mail_path)]
else:
print("Auto-detecting Apple Mail directories...")
messages_dirs = self._find_mail_directories()
if not messages_dirs:
print("No Apple Mail directories found!")
print("Please specify --mail-path manually")
return []
print(f"Found {len(messages_dirs)} mail directories")
# Create reader
reader = EmlxReader(include_html=args.include_html)
# Process each directory
all_documents = []
total_processed = 0
for i, messages_dir in enumerate(messages_dirs):
print(f"\nProcessing directory {i + 1}/{len(messages_dirs)}: {messages_dir}")
try:
# Count emlx files
emlx_files = list(messages_dir.glob("*.emlx"))
print(f"Found {len(emlx_files)} email files")
# Apply max_items limit per directory
max_per_dir = -1 # Default to process all
if args.max_items > 0:
remaining = args.max_items - total_processed
if remaining <= 0:
break
max_per_dir = remaining
# If args.max_items == -1, max_per_dir stays -1 (process all)
# Load emails - fix the parameter passing
documents = reader.load_data(
input_dir=str(messages_dir),
max_count=max_per_dir,
)
if documents:
all_documents.extend(documents)
total_processed += len(documents)
print(f"Processed {len(documents)} emails from this directory")
except Exception as e:
print(f"Error processing {messages_dir}: {e}")
continue
if not all_documents:
print("No emails found to process!")
return []
print(f"\nTotal emails processed: {len(all_documents)}")
print("now starting to split into text chunks ... take some time")
# Convert to text chunks
# Email reader uses chunk_overlap=25 as in original
all_texts = create_text_chunks(
all_documents, chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
)
return all_texts
if __name__ == "__main__":
import asyncio
# Check platform
if sys.platform != "darwin":
print("\n⚠️ Warning: This example is designed for macOS (Apple Mail)")
print(" Windows/Linux support coming soon!\n")
# Example queries for email RAG
print("\n📧 Email RAG Example")
print("=" * 50)
print("\nExample queries you can try:")
print("- 'What did my boss say about deadlines?'")
print("- 'Find emails about travel expenses'")
print("- 'Show me emails from last month about the project'")
print("- 'What food did I order from DoorDash?'")
print("\nNote: You may need to grant Full Disk Access to your terminal\n")
rag = EmailRAG()
asyncio.run(rag.run())

View File

@@ -1,3 +1,3 @@
from .history import ChromeHistoryReader
__all__ = ['ChromeHistoryReader']
__all__ = ["ChromeHistoryReader"]

View File

@@ -1,77 +1,81 @@
import sqlite3
import os
import sqlite3
from pathlib import Path
from typing import List, Any
from typing import Any
from llama_index.core import Document
from llama_index.core.readers.base import BaseReader
class ChromeHistoryReader(BaseReader):
"""
Chrome browser history reader that extracts browsing data from SQLite database.
Reads Chrome history from the default Chrome profile location and creates documents
with embedded metadata similar to the email reader structure.
"""
def __init__(self) -> None:
"""Initialize."""
pass
def load_data(self, input_dir: str = None, **load_kwargs: Any) -> List[Document]:
def load_data(self, input_dir: str | None = None, **load_kwargs: Any) -> list[Document]:
"""
Load Chrome history data from the default Chrome profile location.
Args:
input_dir: Not used for Chrome history (kept for compatibility)
**load_kwargs:
max_count (int): Maximum amount of history entries to read.
chrome_profile_path (str): Custom path to Chrome profile directory.
"""
docs: List[Document] = []
max_count = load_kwargs.get('max_count', 1000)
chrome_profile_path = load_kwargs.get('chrome_profile_path', None)
docs: list[Document] = []
max_count = load_kwargs.get("max_count", 1000)
chrome_profile_path = load_kwargs.get("chrome_profile_path", None)
# Default Chrome profile path on macOS
if chrome_profile_path is None:
chrome_profile_path = os.path.expanduser("~/Library/Application Support/Google/Chrome/Default")
chrome_profile_path = os.path.expanduser(
"~/Library/Application Support/Google/Chrome/Default"
)
history_db_path = os.path.join(chrome_profile_path, "History")
if not os.path.exists(history_db_path):
print(f"Chrome history database not found at: {history_db_path}")
return docs
try:
# Connect to the Chrome history database
print(f"Connecting to database: {history_db_path}")
conn = sqlite3.connect(history_db_path)
cursor = conn.cursor()
# Query to get browsing history with metadata (removed created_time column)
query = """
SELECT
SELECT
datetime(last_visit_time/1000000-11644473600,'unixepoch','localtime') as last_visit,
url,
title,
visit_count,
typed_count,
url,
title,
visit_count,
typed_count,
hidden
FROM urls
FROM urls
ORDER BY last_visit_time DESC
"""
print(f"Executing query on database: {history_db_path}")
cursor.execute(query)
rows = cursor.fetchall()
print(f"Query returned {len(rows)} rows")
count = 0
for row in rows:
if count >= max_count and max_count > 0:
break
last_visit, url, title, visit_count, typed_count, hidden = row
# Create document content with metadata embedded in text
doc_content = f"""
[Title]: {title}
@@ -80,38 +84,43 @@ class ChromeHistoryReader(BaseReader):
[Visit times]: {visit_count}
[Typed times]: {typed_count}
"""
# Create document with embedded metadata
doc = Document(text=doc_content, metadata={ "title": title[0:150]})
doc = Document(text=doc_content, metadata={"title": title[0:150]})
# if len(title) > 150:
# print(f"Title is too long: {title}")
docs.append(doc)
count += 1
conn.close()
print(f"Loaded {len(docs)} Chrome history documents")
except Exception as e:
print(f"Error reading Chrome history: {e}")
# add you may need to close your browser to make the database file available
# also highlight in red
print(
"\033[91mYou may need to close your browser to make the database file available\033[0m"
)
return docs
return docs
@staticmethod
def find_chrome_profiles() -> List[Path]:
def find_chrome_profiles() -> list[Path]:
"""
Find all Chrome profile directories.
Returns:
List of Path objects pointing to Chrome profile directories
"""
chrome_base_path = Path(os.path.expanduser("~/Library/Application Support/Google/Chrome"))
profile_dirs = []
if not chrome_base_path.exists():
print(f"Chrome directory not found at: {chrome_base_path}")
return profile_dirs
# Find all profile directories
for profile_dir in chrome_base_path.iterdir():
if profile_dir.is_dir() and profile_dir.name != "System Profile":
@@ -119,53 +128,59 @@ class ChromeHistoryReader(BaseReader):
if history_path.exists():
profile_dirs.append(profile_dir)
print(f"Found Chrome profile: {profile_dir}")
print(f"Found {len(profile_dirs)} Chrome profiles")
return profile_dirs
@staticmethod
def export_history_to_file(output_file: str = "chrome_history_export.txt", max_count: int = 1000):
def export_history_to_file(
output_file: str = "chrome_history_export.txt", max_count: int = 1000
):
"""
Export Chrome history to a text file using the same SQL query format.
Args:
output_file: Path to the output file
max_count: Maximum number of entries to export
"""
chrome_profile_path = os.path.expanduser("~/Library/Application Support/Google/Chrome/Default")
chrome_profile_path = os.path.expanduser(
"~/Library/Application Support/Google/Chrome/Default"
)
history_db_path = os.path.join(chrome_profile_path, "History")
if not os.path.exists(history_db_path):
print(f"Chrome history database not found at: {history_db_path}")
return
try:
conn = sqlite3.connect(history_db_path)
cursor = conn.cursor()
query = """
SELECT
SELECT
datetime(last_visit_time/1000000-11644473600,'unixepoch','localtime') as last_visit,
url,
title,
visit_count,
typed_count,
url,
title,
visit_count,
typed_count,
hidden
FROM urls
FROM urls
ORDER BY last_visit_time DESC
LIMIT ?
"""
cursor.execute(query, (max_count,))
rows = cursor.fetchall()
with open(output_file, 'w', encoding='utf-8') as f:
with open(output_file, "w", encoding="utf-8") as f:
for row in rows:
last_visit, url, title, visit_count, typed_count, hidden = row
f.write(f"{last_visit}\t{url}\t{title}\t{visit_count}\t{typed_count}\t{hidden}\n")
f.write(
f"{last_visit}\t{url}\t{title}\t{visit_count}\t{typed_count}\t{hidden}\n"
)
conn.close()
print(f"Exported {len(rows)} history entries to {output_file}")
except Exception as e:
print(f"Error exporting Chrome history: {e}")
print(f"Error exporting Chrome history: {e}")

View File

@@ -2,30 +2,31 @@ import json
import os
import re
import subprocess
import sys
import time
from datetime import datetime
from pathlib import Path
from typing import List, Any, Dict, Optional
from typing import Any
from llama_index.core import Document
from llama_index.core.readers.base import BaseReader
from datetime import datetime
class WeChatHistoryReader(BaseReader):
"""
WeChat chat history reader that extracts chat data from exported JSON files.
Reads WeChat chat history from exported JSON files (from wechat-exporter tool)
and creates documents with embedded metadata similar to the Chrome history reader structure.
Also includes utilities for automatic WeChat chat history export.
"""
def __init__(self) -> None:
"""Initialize."""
self.packages_dir = Path(__file__).parent.parent.parent / "packages"
self.wechat_exporter_dir = self.packages_dir / "wechat-exporter"
self.wechat_decipher_dir = self.packages_dir / "wechat-decipher-macos"
def check_wechat_running(self) -> bool:
"""Check if WeChat is currently running."""
try:
@@ -33,24 +34,30 @@ class WeChatHistoryReader(BaseReader):
return result.returncode == 0
except Exception:
return False
def install_wechattweak(self) -> bool:
"""Install WeChatTweak CLI tool."""
try:
# Create wechat-exporter directory if it doesn't exist
self.wechat_exporter_dir.mkdir(parents=True, exist_ok=True)
wechattweak_path = self.wechat_exporter_dir / "wechattweak-cli"
if not wechattweak_path.exists():
print("Downloading WeChatTweak CLI...")
subprocess.run([
"curl", "-L", "-o", str(wechattweak_path),
"https://github.com/JettChenT/WeChatTweak-CLI/releases/latest/download/wechattweak-cli"
], check=True)
subprocess.run(
[
"curl",
"-L",
"-o",
str(wechattweak_path),
"https://github.com/JettChenT/WeChatTweak-CLI/releases/latest/download/wechattweak-cli",
],
check=True,
)
# Make executable
wechattweak_path.chmod(0o755)
# Install WeChatTweak
print("Installing WeChatTweak...")
subprocess.run(["sudo", str(wechattweak_path), "install"], check=True)
@@ -58,7 +65,7 @@ class WeChatHistoryReader(BaseReader):
except Exception as e:
print(f"Error installing WeChatTweak: {e}")
return False
def restart_wechat(self):
"""Restart WeChat to apply WeChatTweak."""
try:
@@ -69,302 +76,325 @@ class WeChatHistoryReader(BaseReader):
time.sleep(5) # Wait for WeChat to start
except Exception as e:
print(f"Error restarting WeChat: {e}")
def check_api_available(self) -> bool:
"""Check if WeChatTweak API is available."""
try:
result = subprocess.run([
"curl", "-s", "http://localhost:48065/wechat/allcontacts"
], capture_output=True, text=True, timeout=5)
result = subprocess.run(
["curl", "-s", "http://localhost:48065/wechat/allcontacts"],
capture_output=True,
text=True,
timeout=5,
)
return result.returncode == 0 and result.stdout.strip()
except Exception:
return False
def _extract_readable_text(self, content: str) -> str:
"""
Extract readable text from message content, removing XML and system messages.
Args:
content: The raw message content (can be string or dict)
Returns:
Cleaned, readable text
"""
if not content:
return ""
# Handle dictionary content (like quoted messages)
if isinstance(content, dict):
# Extract text from dictionary structure
text_parts = []
if 'title' in content:
text_parts.append(str(content['title']))
if 'quoted' in content:
text_parts.append(str(content['quoted']))
if 'content' in content:
text_parts.append(str(content['content']))
if 'text' in content:
text_parts.append(str(content['text']))
if "title" in content:
text_parts.append(str(content["title"]))
if "quoted" in content:
text_parts.append(str(content["quoted"]))
if "content" in content:
text_parts.append(str(content["content"]))
if "text" in content:
text_parts.append(str(content["text"]))
if text_parts:
return " | ".join(text_parts)
else:
# If we can't extract meaningful text from dict, return empty
return ""
# Handle string content
if not isinstance(content, str):
return ""
# Remove common prefixes like "wxid_xxx:\n"
clean_content = re.sub(r'^wxid_[^:]+:\s*', '', content)
clean_content = re.sub(r'^[^:]+:\s*', '', clean_content)
clean_content = re.sub(r"^wxid_[^:]+:\s*", "", content)
clean_content = re.sub(r"^[^:]+:\s*", "", clean_content)
# If it's just XML or system message, return empty
if clean_content.strip().startswith('<') or 'recalled a message' in clean_content:
if clean_content.strip().startswith("<") or "recalled a message" in clean_content:
return ""
return clean_content.strip()
def _is_text_message(self, content: str) -> bool:
"""
Check if a message contains readable text content.
Args:
content: The message content (can be string or dict)
Returns:
True if the message contains readable text, False otherwise
"""
if not content:
return False
# Handle dictionary content
if isinstance(content, dict):
# Check if dict has any readable text fields
text_fields = ['title', 'quoted', 'content', 'text']
text_fields = ["title", "quoted", "content", "text"]
for field in text_fields:
if field in content and content[field]:
if content.get(field):
return True
return False
# Handle string content
if not isinstance(content, str):
return False
# Skip image messages (contain XML with img tags)
if '<img' in content and 'cdnurl' in content:
if "<img" in content and "cdnurl" in content:
return False
# Skip emoji messages (contain emoji XML tags)
if '<emoji' in content and 'productid' in content:
if "<emoji" in content and "productid" in content:
return False
# Skip voice messages
if '<voice' in content:
if "<voice" in content:
return False
# Skip video messages
if '<video' in content:
if "<video" in content:
return False
# Skip file messages
if '<appmsg' in content and 'appid' in content:
if "<appmsg" in content and "appid" in content:
return False
# Skip system messages (like "recalled a message")
if 'recalled a message' in content:
if "recalled a message" in content:
return False
# Check if there's actual readable text (not just XML or system messages)
# Remove common prefixes like "wxid_xxx:\n" and check for actual content
clean_content = re.sub(r'^wxid_[^:]+:\s*', '', content)
clean_content = re.sub(r'^[^:]+:\s*', '', clean_content)
clean_content = re.sub(r"^wxid_[^:]+:\s*", "", content)
clean_content = re.sub(r"^[^:]+:\s*", "", clean_content)
# If after cleaning we have meaningful text, consider it readable
if len(clean_content.strip()) > 0 and not clean_content.strip().startswith('<'):
if len(clean_content.strip()) > 0 and not clean_content.strip().startswith("<"):
return True
return False
def _concatenate_messages(self, messages: List[Dict], max_length: int = 128,
time_window_minutes: int = 30, overlap_messages: int = 0) -> List[Dict]:
def _concatenate_messages(
self,
messages: list[dict],
max_length: int = 128,
time_window_minutes: int = 30,
overlap_messages: int = 0,
) -> list[dict]:
"""
Concatenate messages based on length and time rules.
Args:
messages: List of message dictionaries
max_length: Maximum length for concatenated message groups. Use -1 to disable length constraint.
time_window_minutes: Time window in minutes to group messages together. Use -1 to disable time constraint.
overlap_messages: Number of messages to overlap between consecutive groups
Returns:
List of concatenated message groups
"""
if not messages:
return []
concatenated_groups = []
current_group = []
current_length = 0
last_timestamp = None
for message in messages:
# Extract message info
content = message.get('content', '')
message_text = message.get('message', '')
create_time = message.get('createTime', 0)
from_user = message.get('fromUser', '')
to_user = message.get('toUser', '')
is_sent_from_self = message.get('isSentFromSelf', False)
content = message.get("content", "")
message_text = message.get("message", "")
create_time = message.get("createTime", 0)
message.get("fromUser", "")
message.get("toUser", "")
message.get("isSentFromSelf", False)
# Extract readable text
readable_text = self._extract_readable_text(content)
if not readable_text:
readable_text = message_text
# Skip empty messages
if not readable_text.strip():
continue
# Check time window constraint (only if time_window_minutes != -1)
if time_window_minutes != -1 and last_timestamp is not None and create_time > 0:
time_diff_minutes = (create_time - last_timestamp) / 60
if time_diff_minutes > time_window_minutes:
# Time gap too large, start new group
if current_group:
concatenated_groups.append({
'messages': current_group,
'total_length': current_length,
'start_time': current_group[0].get('createTime', 0),
'end_time': current_group[-1].get('createTime', 0)
})
concatenated_groups.append(
{
"messages": current_group,
"total_length": current_length,
"start_time": current_group[0].get("createTime", 0),
"end_time": current_group[-1].get("createTime", 0),
}
)
# Keep last few messages for overlap
if overlap_messages > 0 and len(current_group) > overlap_messages:
current_group = current_group[-overlap_messages:]
current_length = sum(len(self._extract_readable_text(msg.get('content', '')) or msg.get('message', '')) for msg in current_group)
current_length = sum(
len(
self._extract_readable_text(msg.get("content", ""))
or msg.get("message", "")
)
for msg in current_group
)
else:
current_group = []
current_length = 0
# Check length constraint (only if max_length != -1)
message_length = len(readable_text)
if max_length != -1 and current_length + message_length > max_length and current_group:
# Current group would exceed max length, save it and start new
concatenated_groups.append({
'messages': current_group,
'total_length': current_length,
'start_time': current_group[0].get('createTime', 0),
'end_time': current_group[-1].get('createTime', 0)
})
concatenated_groups.append(
{
"messages": current_group,
"total_length": current_length,
"start_time": current_group[0].get("createTime", 0),
"end_time": current_group[-1].get("createTime", 0),
}
)
# Keep last few messages for overlap
if overlap_messages > 0 and len(current_group) > overlap_messages:
current_group = current_group[-overlap_messages:]
current_length = sum(len(self._extract_readable_text(msg.get('content', '')) or msg.get('message', '')) for msg in current_group)
current_length = sum(
len(
self._extract_readable_text(msg.get("content", ""))
or msg.get("message", "")
)
for msg in current_group
)
else:
current_group = []
current_length = 0
# Add message to current group
current_group.append(message)
current_length += message_length
last_timestamp = create_time
# Add the last group if it exists
if current_group:
concatenated_groups.append({
'messages': current_group,
'total_length': current_length,
'start_time': current_group[0].get('createTime', 0),
'end_time': current_group[-1].get('createTime', 0)
})
concatenated_groups.append(
{
"messages": current_group,
"total_length": current_length,
"start_time": current_group[0].get("createTime", 0),
"end_time": current_group[-1].get("createTime", 0),
}
)
return concatenated_groups
def _create_concatenated_content(self, message_group: Dict, contact_name: str) -> str:
def _create_concatenated_content(self, message_group: dict, contact_name: str) -> str:
"""
Create concatenated content from a group of messages.
Args:
message_group: Dictionary containing messages and metadata
contact_name: Name of the contact
Returns:
Formatted concatenated content
"""
messages = message_group['messages']
start_time = message_group['start_time']
end_time = message_group['end_time']
messages = message_group["messages"]
start_time = message_group["start_time"]
end_time = message_group["end_time"]
# Format timestamps
if start_time:
try:
start_timestamp = datetime.fromtimestamp(start_time)
start_time_str = start_timestamp.strftime('%Y-%m-%d %H:%M:%S')
except:
start_time_str = start_timestamp.strftime("%Y-%m-%d %H:%M:%S")
except (ValueError, OSError):
start_time_str = str(start_time)
else:
start_time_str = "Unknown"
if end_time:
try:
end_timestamp = datetime.fromtimestamp(end_time)
end_time_str = end_timestamp.strftime('%Y-%m-%d %H:%M:%S')
except:
end_time_str = end_timestamp.strftime("%Y-%m-%d %H:%M:%S")
except (ValueError, OSError):
end_time_str = str(end_time)
else:
end_time_str = "Unknown"
# Build concatenated message content
message_parts = []
for message in messages:
content = message.get('content', '')
message_text = message.get('message', '')
create_time = message.get('createTime', 0)
is_sent_from_self = message.get('isSentFromSelf', False)
content = message.get("content", "")
message_text = message.get("message", "")
create_time = message.get("createTime", 0)
is_sent_from_self = message.get("isSentFromSelf", False)
# Extract readable text
readable_text = self._extract_readable_text(content)
if not readable_text:
readable_text = message_text
# Format individual message
if create_time:
try:
timestamp = datetime.fromtimestamp(create_time)
# change to YYYY-MM-DD HH:MM:SS
time_str = timestamp.strftime('%Y-%m-%d %H:%M:%S')
except:
time_str = timestamp.strftime("%Y-%m-%d %H:%M:%S")
except (ValueError, OSError):
time_str = str(create_time)
else:
time_str = "Unknown"
sender = "[Me]" if is_sent_from_self else "[Contact]"
message_parts.append(f"({time_str}) {sender}: {readable_text}")
concatenated_text = "\n".join(message_parts)
# Create final document content
doc_content = f"""
Contact: {contact_name}
Time Range: {start_time_str} - {end_time_str}
Messages ({len(messages)} messages, {message_group['total_length']} chars):
Messages ({len(messages)} messages, {message_group["total_length"]} chars):
{concatenated_text}
"""
# TODO @yichuan give better format and rich info here!
# TODO @yichuan give better format and rich info here!
doc_content = f"""
{concatenated_text}
"""
return doc_content, contact_name
def load_data(self, input_dir: str = None, **load_kwargs: Any) -> List[Document]:
def load_data(self, input_dir: str | None = None, **load_kwargs: Any) -> list[Document]:
"""
Load WeChat chat history data from exported JSON files.
Args:
input_dir: Directory containing exported WeChat JSON files
**load_kwargs:
@@ -376,97 +406,104 @@ Messages ({len(messages)} messages, {message_group['total_length']} chars):
time_window_minutes (int): Time window in minutes to group messages together (default: 30).
overlap_messages (int): Number of messages to overlap between consecutive groups (default: 2).
"""
docs: List[Document] = []
max_count = load_kwargs.get('max_count', 1000)
wechat_export_dir = load_kwargs.get('wechat_export_dir', None)
include_non_text = load_kwargs.get('include_non_text', False)
concatenate_messages = load_kwargs.get('concatenate_messages', False)
max_length = load_kwargs.get('max_length', 1000)
time_window_minutes = load_kwargs.get('time_window_minutes', 30)
docs: list[Document] = []
max_count = load_kwargs.get("max_count", 1000)
wechat_export_dir = load_kwargs.get("wechat_export_dir", None)
include_non_text = load_kwargs.get("include_non_text", False)
concatenate_messages = load_kwargs.get("concatenate_messages", False)
max_length = load_kwargs.get("max_length", 1000)
time_window_minutes = load_kwargs.get("time_window_minutes", 30)
# Default WeChat export path
if wechat_export_dir is None:
wechat_export_dir = "./wechat_export_test"
if not os.path.exists(wechat_export_dir):
print(f"WeChat export directory not found at: {wechat_export_dir}")
return docs
try:
# Find all JSON files in the export directory
json_files = list(Path(wechat_export_dir).glob("*.json"))
print(f"Found {len(json_files)} WeChat chat history files")
count = 0
for json_file in json_files:
if count >= max_count and max_count > 0:
break
try:
with open(json_file, 'r', encoding='utf-8') as f:
with open(json_file, encoding="utf-8") as f:
chat_data = json.load(f)
# Extract contact name from filename
contact_name = json_file.stem
if concatenate_messages:
# Filter messages to only include readable text messages
readable_messages = []
for message in chat_data:
try:
content = message.get('content', '')
content = message.get("content", "")
if not include_non_text and not self._is_text_message(content):
continue
readable_text = self._extract_readable_text(content)
if not readable_text and not include_non_text:
continue
readable_messages.append(message)
except Exception as e:
print(f"Error processing message in {json_file}: {e}")
continue
# Concatenate messages based on rules
message_groups = self._concatenate_messages(
readable_messages,
max_length=-1,
time_window_minutes=-1,
overlap_messages=0 # Keep 2 messages overlap between groups
readable_messages,
max_length=max_length,
time_window_minutes=time_window_minutes,
overlap_messages=0, # No overlap between groups
)
# Create documents from concatenated groups
for message_group in message_groups:
if count >= max_count and max_count > 0:
break
doc_content, contact_name = self._create_concatenated_content(message_group, contact_name)
doc = Document(text=doc_content, metadata={"contact_name": contact_name})
doc_content, contact_name = self._create_concatenated_content(
message_group, contact_name
)
doc = Document(
text=doc_content,
metadata={"contact_name": contact_name},
)
docs.append(doc)
count += 1
print(f"Created {len(message_groups)} concatenated message groups for {contact_name}")
print(
f"Created {len(message_groups)} concatenated message groups for {contact_name}"
)
else:
# Original single-message processing
for message in chat_data:
if count >= max_count and max_count > 0:
break
# Extract message information
from_user = message.get('fromUser', '')
to_user = message.get('toUser', '')
content = message.get('content', '')
message_text = message.get('message', '')
create_time = message.get('createTime', 0)
is_sent_from_self = message.get('isSentFromSelf', False)
message.get("fromUser", "")
message.get("toUser", "")
content = message.get("content", "")
message_text = message.get("message", "")
create_time = message.get("createTime", 0)
is_sent_from_self = message.get("isSentFromSelf", False)
# Handle content that might be dict or string
try:
# Check if this is a readable text message
if not include_non_text and not self._is_text_message(content):
continue
# Extract readable text
readable_text = self._extract_readable_text(content)
if not readable_text and not include_non_text:
@@ -475,17 +512,17 @@ Messages ({len(messages)} messages, {message_group['total_length']} chars):
# Skip messages that cause processing errors
print(f"Error processing message in {json_file}: {e}")
continue
# Convert timestamp to readable format
if create_time:
try:
timestamp = datetime.fromtimestamp(create_time)
time_str = timestamp.strftime('%Y-%m-%d %H:%M:%S')
except:
time_str = timestamp.strftime("%Y-%m-%d %H:%M:%S")
except (ValueError, OSError):
time_str = str(create_time)
else:
time_str = "Unknown"
# Create document content with metadata header and contact info
doc_content = f"""
Contact: {contact_name}
@@ -493,57 +530,66 @@ Is sent from self: {is_sent_from_self}
Time: {time_str}
Message: {readable_text if readable_text else message_text}
"""
# Create document with embedded metadata
doc = Document(text=doc_content, metadata={})
doc = Document(
text=doc_content, metadata={"contact_name": contact_name}
)
docs.append(doc)
count += 1
except Exception as e:
print(f"Error reading {json_file}: {e}")
continue
print(f"Loaded {len(docs)} WeChat chat documents")
except Exception as e:
print(f"Error reading WeChat history: {e}")
return docs
return docs
@staticmethod
def find_wechat_export_dirs() -> List[Path]:
def find_wechat_export_dirs() -> list[Path]:
"""
Find all WeChat export directories.
Returns:
List of Path objects pointing to WeChat export directories
"""
export_dirs = []
# Look for common export directory names
possible_dirs = [
Path("./wechat_export_test"),
Path("./wechat_export"),
Path("./wechat_export_direct"),
Path("./wechat_chat_history"),
Path("./chat_export")
Path("./chat_export"),
]
for export_dir in possible_dirs:
if export_dir.exists() and export_dir.is_dir():
json_files = list(export_dir.glob("*.json"))
if json_files:
export_dirs.append(export_dir)
print(f"Found WeChat export directory: {export_dir} with {len(json_files)} files")
print(
f"Found WeChat export directory: {export_dir} with {len(json_files)} files"
)
print(f"Found {len(export_dirs)} WeChat export directories")
return export_dirs
@staticmethod
def export_chat_to_file(output_file: str = "wechat_chat_export.txt", max_count: int = 1000, export_dir: str = None, include_non_text: bool = False):
def export_chat_to_file(
output_file: str = "wechat_chat_export.txt",
max_count: int = 1000,
export_dir: str | None = None,
include_non_text: bool = False,
):
"""
Export WeChat chat history to a text file.
Args:
output_file: Path to the output file
max_count: Maximum number of entries to export
@@ -552,36 +598,36 @@ Message: {readable_text if readable_text else message_text}
"""
if export_dir is None:
export_dir = "./wechat_export_test"
if not os.path.exists(export_dir):
print(f"WeChat export directory not found at: {export_dir}")
return
try:
json_files = list(Path(export_dir).glob("*.json"))
with open(output_file, 'w', encoding='utf-8') as f:
with open(output_file, "w", encoding="utf-8") as f:
count = 0
for json_file in json_files:
if count >= max_count and max_count > 0:
break
try:
with open(json_file, 'r', encoding='utf-8') as json_f:
with open(json_file, encoding="utf-8") as json_f:
chat_data = json.load(json_f)
contact_name = json_file.stem
f.write(f"\n=== Chat with {contact_name} ===\n")
for message in chat_data:
if count >= max_count and max_count > 0:
break
from_user = message.get('fromUser', '')
content = message.get('content', '')
message_text = message.get('message', '')
create_time = message.get('createTime', 0)
from_user = message.get("fromUser", "")
content = message.get("content", "")
message_text = message.get("message", "")
create_time = message.get("createTime", 0)
# Skip non-text messages unless requested
if not include_non_text:
reader = WeChatHistoryReader()
@@ -591,83 +637,90 @@ Message: {readable_text if readable_text else message_text}
if not readable_text:
continue
message_text = readable_text
if create_time:
try:
timestamp = datetime.fromtimestamp(create_time)
time_str = timestamp.strftime('%Y-%m-%d %H:%M:%S')
except:
time_str = timestamp.strftime("%Y-%m-%d %H:%M:%S")
except (ValueError, OSError):
time_str = str(create_time)
else:
time_str = "Unknown"
f.write(f"[{time_str}] {from_user}: {message_text}\n")
count += 1
except Exception as e:
print(f"Error processing {json_file}: {e}")
continue
print(f"Exported {count} chat entries to {output_file}")
except Exception as e:
print(f"Error exporting WeChat chat history: {e}")
def export_wechat_chat_history(self, export_dir: str = "./wechat_export_direct") -> Optional[Path]:
def export_wechat_chat_history(self, export_dir: str = "./wechat_export_direct") -> Path | None:
"""
Export WeChat chat history using wechat-exporter tool.
Args:
export_dir: Directory to save exported chat history
Returns:
Path to export directory if successful, None otherwise
"""
try:
import subprocess
import sys
# Create export directory
export_path = Path(export_dir)
export_path.mkdir(exist_ok=True)
print(f"Exporting WeChat chat history to {export_path}...")
# Check if wechat-exporter directory exists
if not self.wechat_exporter_dir.exists():
print(f"wechat-exporter directory not found at: {self.wechat_exporter_dir}")
return None
# Install requirements if needed
requirements_file = self.wechat_exporter_dir / "requirements.txt"
if requirements_file.exists():
print("Installing wechat-exporter requirements...")
subprocess.run([
"uv", "pip", "install", "-r", str(requirements_file)
], check=True)
subprocess.run(["uv", "pip", "install", "-r", str(requirements_file)], check=True)
# Run the export command
print("Running wechat-exporter...")
result = subprocess.run([
sys.executable, str(self.wechat_exporter_dir / "main.py"),
"export-all", str(export_path)
], capture_output=True, text=True, check=True)
result = subprocess.run(
[
sys.executable,
str(self.wechat_exporter_dir / "main.py"),
"export-all",
str(export_path),
],
capture_output=True,
text=True,
check=True,
)
print("Export command output:")
print(result.stdout)
if result.stderr:
print("Export errors:")
print(result.stderr)
# Check if export was successful
if export_path.exists() and any(export_path.glob("*.json")):
json_files = list(export_path.glob("*.json"))
print(f"Successfully exported {len(json_files)} chat history files to {export_path}")
print(
f"Successfully exported {len(json_files)} chat history files to {export_path}"
)
return export_path
else:
print("Export completed but no JSON files found")
return None
except subprocess.CalledProcessError as e:
print(f"Export command failed: {e}")
print(f"Command output: {e.stdout}")
@@ -678,18 +731,18 @@ Message: {readable_text if readable_text else message_text}
print("Please ensure WeChat is running and WeChatTweak is installed.")
return None
def find_or_export_wechat_data(self, export_dir: str = "./wechat_export_direct") -> List[Path]:
def find_or_export_wechat_data(self, export_dir: str = "./wechat_export_direct") -> list[Path]:
"""
Find existing WeChat exports or create new ones.
Args:
export_dir: Directory to save exported chat history if needed
Returns:
List of Path objects pointing to WeChat export directories
"""
export_dirs = []
# Look for existing exports in common locations
possible_export_dirs = [
Path("./wechat_database_export"),
@@ -697,23 +750,25 @@ Message: {readable_text if readable_text else message_text}
Path("./wechat_export"),
Path("./wechat_export_direct"),
Path("./wechat_chat_history"),
Path("./chat_export")
Path("./chat_export"),
]
for export_dir_path in possible_export_dirs:
if export_dir_path.exists() and any(export_dir_path.glob("*.json")):
export_dirs.append(export_dir_path)
print(f"Found existing export: {export_dir_path}")
# If no existing exports, try to export automatically
if not export_dirs:
print("No existing WeChat exports found. Starting direct export...")
# Try to export using wechat-exporter
exported_path = self.export_wechat_chat_history(export_dir)
if exported_path:
export_dirs = [exported_path]
else:
print("Failed to export WeChat data. Please ensure WeChat is running and WeChatTweak is installed.")
return export_dirs
print(
"Failed to export WeChat data. Please ensure WeChat is running and WeChatTweak is installed."
)
return export_dirs

189
apps/wechat_rag.py Normal file
View File

@@ -0,0 +1,189 @@
"""
WeChat History RAG example using the unified interface.
Supports WeChat chat history export and search.
"""
import subprocess
import sys
from pathlib import Path
# Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent))
from base_rag_example import BaseRAGExample
from .history_data.wechat_history import WeChatHistoryReader
class WeChatRAG(BaseRAGExample):
"""RAG example for WeChat chat history."""
def __init__(self):
# Set default values BEFORE calling super().__init__
self.max_items_default = -1 # Match original default
self.embedding_model_default = (
"sentence-transformers/all-MiniLM-L6-v2" # Fast 384-dim model
)
super().__init__(
name="WeChat History",
description="Process and query WeChat chat history with LEANN",
default_index_name="wechat_history_magic_test_11Debug_new",
)
def _add_specific_arguments(self, parser):
"""Add WeChat-specific arguments."""
wechat_group = parser.add_argument_group("WeChat Parameters")
wechat_group.add_argument(
"--export-dir",
type=str,
default="./wechat_export",
help="Directory to store WeChat exports (default: ./wechat_export)",
)
wechat_group.add_argument(
"--force-export",
action="store_true",
help="Force re-export of WeChat data even if exports exist",
)
wechat_group.add_argument(
"--chunk-size", type=int, default=192, help="Text chunk size (default: 192)"
)
wechat_group.add_argument(
"--chunk-overlap", type=int, default=64, help="Text chunk overlap (default: 64)"
)
def _export_wechat_data(self, export_dir: Path) -> bool:
"""Export WeChat data using wechattweak-cli."""
print("Exporting WeChat data...")
# Check if WeChat is running
try:
result = subprocess.run(["pgrep", "WeChat"], capture_output=True, text=True)
if result.returncode != 0:
print("WeChat is not running. Please start WeChat first.")
return False
except Exception:
pass # pgrep might not be available on all systems
# Create export directory
export_dir.mkdir(parents=True, exist_ok=True)
# Run export command
cmd = ["packages/wechat-exporter/wechattweak-cli", "export", str(export_dir)]
try:
print(f"Running: {' '.join(cmd)}")
result = subprocess.run(cmd, capture_output=True, text=True)
if result.returncode == 0:
print("WeChat data exported successfully!")
return True
else:
print(f"Export failed: {result.stderr}")
return False
except FileNotFoundError:
print("\nError: wechattweak-cli not found!")
print("Please install it first:")
print(" sudo packages/wechat-exporter/wechattweak-cli install")
return False
except Exception as e:
print(f"Export error: {e}")
return False
async def load_data(self, args) -> list[str]:
"""Load WeChat history and convert to text chunks."""
# Initialize WeChat reader with export capabilities
reader = WeChatHistoryReader()
# Find existing exports or create new ones using the centralized method
export_dirs = reader.find_or_export_wechat_data(args.export_dir)
if not export_dirs:
print("Failed to find or export WeChat data. Trying to find any existing exports...")
# Try to find any existing exports in common locations
export_dirs = reader.find_wechat_export_dirs()
if not export_dirs:
print("No WeChat data found. Please ensure WeChat exports exist.")
return []
# Load documents from all found export directories
all_documents = []
total_processed = 0
for i, export_dir in enumerate(export_dirs):
print(f"\nProcessing WeChat export {i + 1}/{len(export_dirs)}: {export_dir}")
try:
# Apply max_items limit per export
max_per_export = -1
if args.max_items > 0:
remaining = args.max_items - total_processed
if remaining <= 0:
break
max_per_export = remaining
documents = reader.load_data(
wechat_export_dir=str(export_dir),
max_count=max_per_export,
concatenate_messages=True, # Enable message concatenation for better context
)
if documents:
print(f"Loaded {len(documents)} chat documents from {export_dir}")
all_documents.extend(documents)
total_processed += len(documents)
else:
print(f"No documents loaded from {export_dir}")
except Exception as e:
print(f"Error processing {export_dir}: {e}")
continue
if not all_documents:
print("No documents loaded from any source. Exiting.")
return []
print(f"\nTotal loaded {len(all_documents)} chat documents from {len(export_dirs)} exports")
print("now starting to split into text chunks ... take some time")
# Convert to text chunks with contact information
all_texts = []
for doc in all_documents:
# Split the document into chunks
from llama_index.core.node_parser import SentenceSplitter
text_splitter = SentenceSplitter(
chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
)
nodes = text_splitter.get_nodes_from_documents([doc])
for node in nodes:
# Add contact information to each chunk
contact_name = doc.metadata.get("contact_name", "Unknown")
text = f"[Contact] means the message is from: {contact_name}\n" + node.get_content()
all_texts.append(text)
print(f"Created {len(all_texts)} text chunks from {len(all_documents)} documents")
return all_texts
if __name__ == "__main__":
import asyncio
# Check platform
if sys.platform != "darwin":
print("\n⚠️ Warning: WeChat export is only supported on macOS")
print(" You can still query existing exports on other platforms\n")
# Example queries for WeChat RAG
print("\n💬 WeChat History RAG Example")
print("=" * 50)
print("\nExample queries you can try:")
print("- 'Show me conversations about travel plans'")
print("- 'Find group chats about weekend activities'")
print("- '我想买魔术师约翰逊的球衣,给我一些对应聊天记录?'")
print("- 'What did we discuss about the project last month?'")
print("\nNote: WeChat must be running for export to work\n")
rag = WeChatRAG()
asyncio.run(rag.run())

View File

Binary file not shown.

After

Width:  |  Height:  |  Size: 73 KiB

BIN
assets/mcp_leann.png Normal file
View File

Binary file not shown.

After

Width:  |  Height:  |  Size: 224 KiB

View File

@@ -1,13 +1,28 @@
# 🧪 Leann Sanity Checks
# 🧪 LEANN Benchmarks & Testing
This directory contains comprehensive sanity checks for the Leann system, ensuring all components work correctly across different configurations.
This directory contains performance benchmarks and comprehensive tests for the LEANN system, including backend comparisons and sanity checks across different configurations.
## 📁 Test Files
### `diskann_vs_hnsw_speed_comparison.py`
Performance comparison between DiskANN and HNSW backends:
- ✅ **Search latency** comparison with both backends using recompute
- ✅ **Index size** and **build time** measurements
- ✅ **Score validity** testing (ensures no -inf scores)
- ✅ **Configurable dataset sizes** for different scales
```bash
# Quick comparison with 500 docs, 10 queries
python benchmarks/diskann_vs_hnsw_speed_comparison.py
# Large-scale comparison with 2000 docs, 20 queries
python benchmarks/diskann_vs_hnsw_speed_comparison.py 2000 20
```
### `test_distance_functions.py`
Tests all supported distance functions across DiskANN backend:
- ✅ **MIPS** (Maximum Inner Product Search)
- ✅ **L2** (Euclidean Distance)
- ✅ **L2** (Euclidean Distance)
- ✅ **Cosine** (Cosine Similarity)
```bash
@@ -27,7 +42,7 @@ uv run python tests/sanity_checks/test_l2_verification.py
### `test_sanity_check.py`
Comprehensive end-to-end verification including:
- Distance function testing
- Embedding model compatibility
- Embedding model compatibility
- Search result correctness validation
- Backend integration testing
@@ -64,7 +79,7 @@ When all tests pass, you should see:
```
📊 测试结果总结:
mips : ✅ 通过
l2 : ✅ 通过
l2 : ✅ 通过
cosine : ✅ 通过
🎉 测试完成!
@@ -98,7 +113,7 @@ pkill -f "embedding_server"
### Typical Timing (3 documents, consumer hardware):
- **Index Building**: 2-5 seconds per distance function
- **Search Query**: 50-200ms
- **Search Query**: 50-200ms
- **Recompute Mode**: 5-15 seconds (higher accuracy)
### Memory Usage:
@@ -117,4 +132,4 @@ These tests are designed to be run in automated environments:
uv run python tests/sanity_checks/test_l2_verification.py
```
The tests are deterministic and should produce consistent results across different platforms.
The tests are deterministic and should produce consistent results across different platforms.

View File

@@ -1,43 +1,46 @@
import time
import numpy as np
import matplotlib.pyplot as plt
import torch
from sentence_transformers import SentenceTransformer
import mlx.core as mx
import numpy as np
import torch
from mlx_lm import load
from sentence_transformers import SentenceTransformer
# --- Configuration ---
MODEL_NAME_TORCH = "Qwen/Qwen3-Embedding-0.6B"
MODEL_NAME_MLX = "mlx-community/Qwen3-Embedding-0.6B-4bit-DWQ"
BATCH_SIZES = [1, 8, 16, 32, 64, 128]
NUM_RUNS = 10 # Number of runs to average for each batch size
WARMUP_RUNS = 2 # Number of warm-up runs
WARMUP_RUNS = 2 # Number of warm-up runs
# --- Generate Dummy Data ---
DUMMY_SENTENCES = ["This is a test sentence for benchmarking." * 5] * max(BATCH_SIZES)
# --- Benchmark Functions ---b
def benchmark_torch(model, sentences):
start_time = time.time()
model.encode(sentences, convert_to_numpy=True)
end_time = time.time()
return (end_time - start_time) * 1000 # Return time in ms
def benchmark_mlx(model, tokenizer, sentences):
start_time = time.time()
# Tokenize sentences using MLX tokenizer
tokens = []
for sentence in sentences:
token_ids = tokenizer.encode(sentence)
tokens.append(token_ids)
# Pad sequences to the same length
max_len = max(len(t) for t in tokens)
input_ids = []
attention_mask = []
for token_seq in tokens:
# Pad sequence
padded = token_seq + [tokenizer.eos_token_id] * (max_len - len(token_seq))
@@ -45,24 +48,25 @@ def benchmark_mlx(model, tokenizer, sentences):
# Create attention mask (1 for real tokens, 0 for padding)
mask = [1] * len(token_seq) + [0] * (max_len - len(token_seq))
attention_mask.append(mask)
# Convert to MLX arrays
input_ids = mx.array(input_ids)
attention_mask = mx.array(attention_mask)
# Get embeddings
embeddings = model(input_ids)
# Mean pooling
mask = mx.expand_dims(attention_mask, -1)
sum_embeddings = (embeddings * mask).sum(axis=1)
sum_mask = mask.sum(axis=1)
_ = sum_embeddings / sum_mask
mx.eval() # Ensure computation is finished
end_time = time.time()
return (end_time - start_time) * 1000 # Return time in ms
# --- Main Execution ---
def main():
print("--- Initializing Models ---")
@@ -92,13 +96,15 @@ def main():
for batch_size in BATCH_SIZES:
print(f"Benchmarking batch size: {batch_size}")
sentences_batch = DUMMY_SENTENCES[:batch_size]
# Benchmark PyTorch
torch_times = [benchmark_torch(model_torch, sentences_batch) for _ in range(NUM_RUNS)]
results_torch.append(np.mean(torch_times))
# Benchmark MLX
mlx_times = [benchmark_mlx(model_mlx, tokenizer_mlx, sentences_batch) for _ in range(NUM_RUNS)]
mlx_times = [
benchmark_mlx(model_mlx, tokenizer_mlx, sentences_batch) for _ in range(NUM_RUNS)
]
results_mlx.append(np.mean(mlx_times))
print("\n--- Benchmark Results (Average time per batch in ms) ---")
@@ -109,20 +115,27 @@ def main():
# --- Plotting ---
print("\n--- Generating Plot ---")
plt.figure(figsize=(10, 6))
plt.plot(BATCH_SIZES, results_torch, marker='o', linestyle='-', label=f'PyTorch ({device})')
plt.plot(BATCH_SIZES, results_mlx, marker='s', linestyle='-', label='MLX')
plt.plot(
BATCH_SIZES,
results_torch,
marker="o",
linestyle="-",
label=f"PyTorch ({device})",
)
plt.plot(BATCH_SIZES, results_mlx, marker="s", linestyle="-", label="MLX")
plt.title(f'Embedding Performance: MLX vs PyTorch\nModel: {MODEL_NAME_TORCH}')
plt.title(f"Embedding Performance: MLX vs PyTorch\nModel: {MODEL_NAME_TORCH}")
plt.xlabel("Batch Size")
plt.ylabel("Average Time per Batch (ms)")
plt.xticks(BATCH_SIZES)
plt.grid(True)
plt.legend()
# Save the plot
output_filename = "embedding_benchmark.png"
plt.savefig(output_filename)
print(f"Plot saved to {output_filename}")
if __name__ == "__main__":
main()

View File

@@ -3,14 +3,15 @@
Memory comparison between Faiss HNSW and LEANN HNSW backend
"""
import gc
import logging
import os
import subprocess
import sys
import time
import psutil
import gc
import subprocess
from pathlib import Path
import psutil
from llama_index.core.node_parser import SentenceSplitter
# Setup logging
@@ -61,7 +62,7 @@ def test_faiss_hnsw():
try:
result = subprocess.run(
[sys.executable, "examples/faiss_only.py"],
[sys.executable, "benchmarks/faiss_only.py"],
capture_output=True,
text=True,
timeout=300,
@@ -83,9 +84,7 @@ def test_faiss_hnsw():
for line in lines:
if "Peak Memory:" in line:
peak_memory = float(
line.split("Peak Memory:")[1].split("MB")[0].strip()
)
peak_memory = float(line.split("Peak Memory:")[1].split("MB")[0].strip())
return {"peak_memory": peak_memory}
@@ -111,13 +110,12 @@ def test_leann_hnsw():
tracker.checkpoint("After imports")
from leann.api import LeannBuilder
from llama_index.core import SimpleDirectoryReader
from leann.api import LeannBuilder, LeannSearcher
# Load and parse documents
documents = SimpleDirectoryReader(
"examples/data",
"data",
recursive=True,
encoding="utf-8",
required_exts=[".pdf", ".txt", ".md"],
@@ -135,6 +133,7 @@ def test_leann_hnsw():
nodes = node_parser.get_nodes_from_documents([doc])
for node in nodes:
all_texts.append(node.get_content())
print(f"Total number of chunks: {len(all_texts)}")
tracker.checkpoint("After text chunking")
@@ -196,16 +195,14 @@ def test_leann_hnsw():
runtime_start_mem = get_memory_usage()
print(f"Before load memory: {runtime_start_mem:.1f} MB")
tracker.checkpoint("Before load memory")
# Load searcher
searcher = LeannSearcher(index_path)
tracker.checkpoint("After searcher loading")
print("Running search queries...")
queries = [
"什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面任务令一般在什么城市颁发",
"什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发",
"What is LEANN and how does it work?",
"华为诺亚方舟实验室的主要研究内容",
]
@@ -303,21 +300,15 @@ def main():
print("\nLEANN vs Faiss Performance:")
memory_saving = faiss_results["peak_memory"] - leann_results["peak_memory"]
print(
f" Search Memory: {memory_ratio:.1f}x less ({memory_saving:.1f} MB saved)"
)
print(f" Search Memory: {memory_ratio:.1f}x less ({memory_saving:.1f} MB saved)")
# Storage comparison
if leann_storage_size > faiss_storage_size:
storage_ratio = leann_storage_size / faiss_storage_size
print(
f" Storage Size: {storage_ratio:.1f}x larger (LEANN uses more storage)"
)
print(f" Storage Size: {storage_ratio:.1f}x larger (LEANN uses more storage)")
elif faiss_storage_size > leann_storage_size:
storage_ratio = faiss_storage_size / leann_storage_size
print(
f" Storage Size: {storage_ratio:.1f}x smaller (LEANN uses less storage)"
)
print(f" Storage Size: {storage_ratio:.1f}x smaller (LEANN uses less storage)")
else:
print(" Storage Size: similar")
else:

View File

View File

@@ -0,0 +1,268 @@
#!/usr/bin/env python3
"""
DiskANN vs HNSW Search Performance Comparison
This benchmark compares search performance between DiskANN and HNSW backends:
- DiskANN: With graph partitioning enabled (is_recompute=True)
- HNSW: With recompute enabled (is_recompute=True)
- Tests performance across different dataset sizes
- Measures search latency, recall, and index size
"""
import gc
import tempfile
import time
from pathlib import Path
from typing import Any
import numpy as np
def create_test_texts(n_docs: int) -> list[str]:
"""Create synthetic test documents for benchmarking."""
np.random.seed(42)
topics = [
"machine learning and artificial intelligence",
"natural language processing and text analysis",
"computer vision and image recognition",
"data science and statistical analysis",
"deep learning and neural networks",
"information retrieval and search engines",
"database systems and data management",
"software engineering and programming",
"cybersecurity and network protection",
"cloud computing and distributed systems",
]
texts = []
for i in range(n_docs):
topic = topics[i % len(topics)]
variation = np.random.randint(1, 100)
text = (
f"This is document {i} about {topic}. Content variation {variation}. "
f"Additional information about {topic} with details and examples. "
f"Technical discussion of {topic} including implementation aspects."
)
texts.append(text)
return texts
def benchmark_backend(
backend_name: str, texts: list[str], test_queries: list[str], backend_kwargs: dict[str, Any]
) -> dict[str, float]:
"""Benchmark a specific backend with the given configuration."""
from leann.api import LeannBuilder, LeannSearcher
print(f"\n🔧 Testing {backend_name.upper()} backend...")
with tempfile.TemporaryDirectory() as temp_dir:
index_path = str(Path(temp_dir) / f"benchmark_{backend_name}.leann")
# Build index
print(f"📦 Building {backend_name} index with {len(texts)} documents...")
start_time = time.time()
builder = LeannBuilder(
backend_name=backend_name,
embedding_model="facebook/contriever",
embedding_mode="sentence-transformers",
**backend_kwargs,
)
for text in texts:
builder.add_text(text)
builder.build_index(index_path)
build_time = time.time() - start_time
# Measure index size
index_dir = Path(index_path).parent
index_files = list(index_dir.glob(f"{Path(index_path).stem}.*"))
total_size = sum(f.stat().st_size for f in index_files if f.is_file())
size_mb = total_size / (1024 * 1024)
print(f" ✅ Build completed in {build_time:.2f}s, index size: {size_mb:.1f}MB")
# Search benchmark
print("🔍 Running search benchmark...")
searcher = LeannSearcher(index_path)
search_times = []
all_results = []
for query in test_queries:
start_time = time.time()
results = searcher.search(query, top_k=5)
search_time = time.time() - start_time
search_times.append(search_time)
all_results.append(results)
avg_search_time = np.mean(search_times) * 1000 # Convert to ms
print(f" ✅ Average search time: {avg_search_time:.1f}ms")
# Check for valid scores (detect -inf issues)
all_scores = [
result.score
for results in all_results
for result in results
if result.score is not None
]
valid_scores = [
score for score in all_scores if score != float("-inf") and score != float("inf")
]
score_validity_rate = len(valid_scores) / len(all_scores) if all_scores else 0
# Clean up
try:
if hasattr(searcher, "__del__"):
searcher.__del__()
del searcher
del builder
gc.collect()
except Exception as e:
print(f"⚠️ Warning: Resource cleanup error: {e}")
return {
"build_time": build_time,
"avg_search_time_ms": avg_search_time,
"index_size_mb": size_mb,
"score_validity_rate": score_validity_rate,
}
def run_comparison(n_docs: int = 500, n_queries: int = 10):
"""Run performance comparison between DiskANN and HNSW."""
print("🚀 Starting DiskANN vs HNSW Performance Comparison")
print(f"📊 Dataset: {n_docs} documents, {n_queries} test queries")
# Create test data
texts = create_test_texts(n_docs)
test_queries = [
"machine learning algorithms",
"natural language processing",
"computer vision techniques",
"data analysis methods",
"neural network architectures",
"database query optimization",
"software development practices",
"security vulnerabilities",
"cloud infrastructure",
"distributed computing",
][:n_queries]
# HNSW benchmark
hnsw_results = benchmark_backend(
backend_name="hnsw",
texts=texts,
test_queries=test_queries,
backend_kwargs={
"is_recompute": True, # Enable recompute for fair comparison
"M": 16,
"efConstruction": 200,
},
)
# DiskANN benchmark
diskann_results = benchmark_backend(
backend_name="diskann",
texts=texts,
test_queries=test_queries,
backend_kwargs={
"is_recompute": True, # Enable graph partitioning
"num_neighbors": 32,
"search_list_size": 50,
},
)
# Performance comparison
print("\n📈 Performance Comparison Results")
print(f"{'=' * 60}")
print(f"{'Metric':<25} {'HNSW':<15} {'DiskANN':<15} {'Speedup':<10}")
print(f"{'-' * 60}")
# Build time comparison
build_speedup = hnsw_results["build_time"] / diskann_results["build_time"]
print(
f"{'Build Time (s)':<25} {hnsw_results['build_time']:<15.2f} {diskann_results['build_time']:<15.2f} {build_speedup:<10.2f}x"
)
# Search time comparison
search_speedup = hnsw_results["avg_search_time_ms"] / diskann_results["avg_search_time_ms"]
print(
f"{'Search Time (ms)':<25} {hnsw_results['avg_search_time_ms']:<15.1f} {diskann_results['avg_search_time_ms']:<15.1f} {search_speedup:<10.2f}x"
)
# Index size comparison
size_ratio = diskann_results["index_size_mb"] / hnsw_results["index_size_mb"]
print(
f"{'Index Size (MB)':<25} {hnsw_results['index_size_mb']:<15.1f} {diskann_results['index_size_mb']:<15.1f} {size_ratio:<10.2f}x"
)
# Score validity
print(
f"{'Score Validity (%)':<25} {hnsw_results['score_validity_rate'] * 100:<15.1f} {diskann_results['score_validity_rate'] * 100:<15.1f}"
)
print(f"{'=' * 60}")
print("\n🎯 Summary:")
if search_speedup > 1:
print(f" DiskANN is {search_speedup:.2f}x faster than HNSW for search")
else:
print(f" HNSW is {1 / search_speedup:.2f}x faster than DiskANN for search")
if size_ratio > 1:
print(f" DiskANN uses {size_ratio:.2f}x more storage than HNSW")
else:
print(f" DiskANN uses {1 / size_ratio:.2f}x less storage than HNSW")
print(
f" Both backends achieved {min(hnsw_results['score_validity_rate'], diskann_results['score_validity_rate']) * 100:.1f}% score validity"
)
if __name__ == "__main__":
import sys
try:
# Handle help request
if len(sys.argv) > 1 and sys.argv[1] in ["-h", "--help", "help"]:
print("DiskANN vs HNSW Performance Comparison")
print("=" * 50)
print(f"Usage: python {sys.argv[0]} [n_docs] [n_queries]")
print()
print("Arguments:")
print(" n_docs Number of documents to index (default: 500)")
print(" n_queries Number of test queries to run (default: 10)")
print()
print("Examples:")
print(" python benchmarks/diskann_vs_hnsw_speed_comparison.py")
print(" python benchmarks/diskann_vs_hnsw_speed_comparison.py 1000")
print(" python benchmarks/diskann_vs_hnsw_speed_comparison.py 2000 20")
sys.exit(0)
# Parse command line arguments
n_docs = int(sys.argv[1]) if len(sys.argv) > 1 else 500
n_queries = int(sys.argv[2]) if len(sys.argv) > 2 else 10
print("DiskANN vs HNSW Performance Comparison")
print("=" * 50)
print(f"Dataset: {n_docs} documents, {n_queries} queries")
print()
run_comparison(n_docs=n_docs, n_queries=n_queries)
except KeyboardInterrupt:
print("\n⚠️ Benchmark interrupted by user")
sys.exit(130)
except Exception as e:
print(f"\n❌ Benchmark failed: {e}")
sys.exit(1)
finally:
# Ensure clean exit
try:
gc.collect()
print("\n🧹 Cleanup completed")
except Exception:
pass
sys.exit(0)

View File

@@ -1,11 +1,11 @@
#!/usr/bin/env python3
"""Test only Faiss HNSW"""
import os
import sys
import time
import psutil
import gc
import os
def get_memory_usage():
@@ -37,20 +37,20 @@ def main():
import faiss
except ImportError:
print("Faiss is not installed.")
print("Please install it with `uv pip install faiss-cpu`")
print(
"Please install it with `uv pip install faiss-cpu` and you can then run this script again"
)
sys.exit(1)
from llama_index.core import (
SimpleDirectoryReader,
VectorStoreIndex,
StorageContext,
Settings,
node_parser,
Document,
SimpleDirectoryReader,
StorageContext,
VectorStoreIndex,
)
from llama_index.core.node_parser import SentenceSplitter
from llama_index.vector_stores.faiss import FaissVectorStore
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.vector_stores.faiss import FaissVectorStore
tracker = MemoryTracker("Faiss HNSW")
tracker.checkpoint("Initial")
@@ -65,7 +65,7 @@ def main():
tracker.checkpoint("After Faiss index creation")
documents = SimpleDirectoryReader(
"examples/data",
"data",
recursive=True,
encoding="utf-8",
required_exts=[".pdf", ".txt", ".md"],
@@ -90,8 +90,9 @@ def main():
vector_store=vector_store, persist_dir="./storage_faiss"
)
from llama_index.core import load_index_from_storage
index = load_index_from_storage(storage_context=storage_context)
print(f"Index loaded from ./storage_faiss")
print("Index loaded from ./storage_faiss")
tracker.checkpoint("After loading existing index")
index_loaded = True
except Exception as e:
@@ -99,19 +100,18 @@ def main():
print("Cleaning up corrupted index and building new one...")
# Clean up corrupted index
import shutil
if os.path.exists("./storage_faiss"):
shutil.rmtree("./storage_faiss")
if not index_loaded:
print("Building new Faiss HNSW index...")
# Use the correct Faiss building pattern from the example
vector_store = FaissVectorStore(faiss_index=faiss_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents,
storage_context=storage_context,
transformations=[node_parser]
documents, storage_context=storage_context, transformations=[node_parser]
)
tracker.checkpoint("After index building")
@@ -124,10 +124,10 @@ def main():
runtime_start_mem = get_memory_usage()
print(f"Before load memory: {runtime_start_mem:.1f} MB")
tracker.checkpoint("Before load memory")
query_engine = index.as_query_engine(similarity_top_k=20)
queries = [
"什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面任务令一般在什么城市颁发",
"什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发",
"What is LEANN and how does it work?",
"华为诺亚方舟实验室的主要研究内容",
]
@@ -141,7 +141,7 @@ def main():
runtime_end_mem = get_memory_usage()
runtime_overhead = runtime_end_mem - runtime_start_mem
peak_memory = tracker.summary()
print(f"Peak Memory: {peak_memory:.1f} MB")
print(f"Runtime Memory Overhead: {runtime_overhead:.1f} MB")

View File

@@ -2,20 +2,20 @@
import argparse
import time
from contextlib import contextmanager
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple
import numpy as np
import torch
from torch import nn
from transformers import AutoModel, BitsAndBytesConfig
from tqdm import tqdm
from contextlib import contextmanager
from transformers import AutoModel, BitsAndBytesConfig
@dataclass
class BenchmarkConfig:
model_path: str
batch_sizes: List[int]
batch_sizes: list[int]
seq_length: int
num_runs: int
use_fp16: bool = True
@@ -28,47 +28,45 @@ class BenchmarkConfig:
class GraphContainer:
"""Container for managing graphs for different batch sizes (CUDA graphs on NVIDIA, regular on others)."""
def __init__(self, model: nn.Module, seq_length: int):
self.model = model
self.seq_length = seq_length
self.graphs: Dict[int, 'GraphWrapper'] = {}
def get_or_create(self, batch_size: int) -> 'GraphWrapper':
self.graphs: dict[int, GraphWrapper] = {}
def get_or_create(self, batch_size: int) -> "GraphWrapper":
if batch_size not in self.graphs:
self.graphs[batch_size] = GraphWrapper(
self.model, batch_size, self.seq_length
)
self.graphs[batch_size] = GraphWrapper(self.model, batch_size, self.seq_length)
return self.graphs[batch_size]
class GraphWrapper:
"""Wrapper for graph capture and replay (CUDA graphs on NVIDIA, regular on others)."""
def __init__(self, model: nn.Module, batch_size: int, seq_length: int):
self.model = model
self.device = self._get_device()
self.static_input = self._create_random_batch(batch_size, seq_length)
self.static_attention_mask = torch.ones_like(self.static_input)
# Warm up
self._warmup()
# Only use CUDA graphs on NVIDIA GPUs
if torch.cuda.is_available() and hasattr(torch.cuda, 'CUDAGraph'):
if torch.cuda.is_available() and hasattr(torch.cuda, "CUDAGraph"):
# Capture graph
self.graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(self.graph):
self.static_output = self.model(
input_ids=self.static_input,
attention_mask=self.static_attention_mask
attention_mask=self.static_attention_mask,
)
self.use_cuda_graph = True
else:
# For MPS or CPU, just store the model
self.use_cuda_graph = False
self.static_output = None
def _get_device(self) -> str:
if torch.cuda.is_available():
return "cuda"
@@ -76,22 +74,20 @@ class GraphWrapper:
return "mps"
else:
return "cpu"
def _create_random_batch(self, batch_size: int, seq_length: int) -> torch.Tensor:
return torch.randint(
0, 1000, (batch_size, seq_length),
device=self.device,
dtype=torch.long
0, 1000, (batch_size, seq_length), device=self.device, dtype=torch.long
)
def _warmup(self, num_warmup: int = 3):
with torch.no_grad():
for _ in range(num_warmup):
self.model(
input_ids=self.static_input,
attention_mask=self.static_attention_mask
attention_mask=self.static_attention_mask,
)
def __call__(self, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
if self.use_cuda_graph:
self.static_input.copy_(input_ids)
@@ -105,14 +101,14 @@ class GraphWrapper:
class ModelOptimizer:
"""Applies various optimizations to the model."""
@staticmethod
def optimize(model: nn.Module, config: BenchmarkConfig) -> nn.Module:
print("\nApplying model optimizations:")
if model is None:
raise ValueError("Cannot optimize None model")
# Move to GPU
if torch.cuda.is_available():
model = model.cuda()
@@ -124,53 +120,59 @@ class ModelOptimizer:
model = model.cpu()
device = "cpu"
print(f"- Model moved to {device}")
# FP16
if config.use_fp16 and not config.use_int4:
model = model.half()
# use torch compile
model = torch.compile(model)
print("- Using FP16 precision")
# Check if using SDPA (only on CUDA)
if torch.cuda.is_available() and torch.version.cuda and float(torch.version.cuda[:3]) >= 11.6:
if hasattr(torch.nn.functional, 'scaled_dot_product_attention'):
if (
torch.cuda.is_available()
and torch.version.cuda
and float(torch.version.cuda[:3]) >= 11.6
):
if hasattr(torch.nn.functional, "scaled_dot_product_attention"):
print("- Using PyTorch SDPA (scaled_dot_product_attention)")
else:
print("- PyTorch SDPA not available")
# Flash Attention (only on CUDA)
if config.use_flash_attention and torch.cuda.is_available():
try:
from flash_attn.flash_attention import FlashAttention
from flash_attn.flash_attention import FlashAttention # noqa: F401
print("- Flash Attention 2 available")
if hasattr(model.config, "attention_mode"):
model.config.attention_mode = "flash_attention_2"
print(" - Enabled Flash Attention 2 mode")
except ImportError:
print("- Flash Attention not available")
# Memory efficient attention (only on CUDA)
if torch.cuda.is_available():
try:
from xformers.ops import memory_efficient_attention
if hasattr(model, 'enable_xformers_memory_efficient_attention'):
from xformers.ops import memory_efficient_attention # noqa: F401
if hasattr(model, "enable_xformers_memory_efficient_attention"):
model.enable_xformers_memory_efficient_attention()
print("- Enabled xformers memory efficient attention")
else:
print("- Model doesn't support xformers")
except (ImportError, AttributeError):
print("- Xformers not available")
model.eval()
print("- Model set to eval mode")
return model
class Timer:
"""Handles accurate GPU timing using GPU events or CPU timing."""
def __init__(self):
if torch.cuda.is_available():
self.start_event = torch.cuda.Event(enable_timing=True)
@@ -182,7 +184,7 @@ class Timer:
else:
# CPU timing
self.use_gpu_timing = False
@contextmanager
def timing(self):
if self.use_gpu_timing:
@@ -195,7 +197,7 @@ class Timer:
start_time = time.time()
yield
self.cpu_elapsed = time.time() - start_time
def elapsed_time(self) -> float:
if self.use_gpu_timing:
return self.start_event.elapsed_time(self.end_event) / 1000 # ms to seconds
@@ -205,14 +207,14 @@ class Timer:
class Benchmark:
"""Main benchmark runner."""
def __init__(self, config: BenchmarkConfig):
self.config = config
try:
self.model = self._load_model()
if self.model is None:
raise ValueError("Model initialization failed - model is None")
# Only use CUDA graphs on NVIDIA GPUs
if config.use_cuda_graphs and torch.cuda.is_available():
self.graphs = GraphContainer(self.model, config.seq_length)
@@ -220,25 +222,27 @@ class Benchmark:
self.graphs = None
self.timer = Timer()
except Exception as e:
print(f"ERROR in benchmark initialization: {str(e)}")
print(f"ERROR in benchmark initialization: {e!s}")
raise
def _load_model(self) -> nn.Module:
print(f"Loading model from {self.config.model_path}...")
try:
# Int4 quantization using HuggingFace integration
if self.config.use_int4:
import bitsandbytes as bnb
print(f"- bitsandbytes version: {bnb.__version__}")
# 检查是否使用自定义的8bit量化
if hasattr(self.config, 'use_linear8bitlt') and self.config.use_linear8bitlt:
# Check if using custom 8bit quantization
if hasattr(self.config, "use_linear8bitlt") and self.config.use_linear8bitlt:
print("- Using custom Linear8bitLt replacement for all linear layers")
# 加载原始模型(不使用量化配置)
# Load original model (without quantization config)
import bitsandbytes as bnb
import torch
# set default to half
torch.set_default_dtype(torch.float16)
compute_dtype = torch.float16 if self.config.use_fp16 else torch.float32
@@ -246,112 +250,121 @@ class Benchmark:
self.config.model_path,
torch_dtype=compute_dtype,
)
# 定义替换函数
# Define replacement function
def replace_linear_with_linear8bitlt(model):
"""递归地将模型中的所有nn.Linear层替换为Linear8bitLt"""
"""Recursively replace all nn.Linear layers with Linear8bitLt"""
for name, module in list(model.named_children()):
if isinstance(module, nn.Linear):
# 获取原始线性层的参数
# Get original linear layer parameters
in_features = module.in_features
out_features = module.out_features
bias = module.bias is not None
# 创建8bit线性层
# Create 8bit linear layer
# print size
print(f"in_features: {in_features}, out_features: {out_features}")
new_module = bnb.nn.Linear8bitLt(
in_features,
out_features,
bias=bias,
has_fp16_weights=False
in_features,
out_features,
bias=bias,
has_fp16_weights=False,
)
# 复制权重和偏置
# Copy weights and bias
new_module.weight.data = module.weight.data
if bias:
new_module.bias.data = module.bias.data
# 替换模块
# Replace module
setattr(model, name, new_module)
else:
# 递归处理子模块
# Process child modules recursively
replace_linear_with_linear8bitlt(module)
return model
# 替换所有线性层
# Replace all linear layers
model = replace_linear_with_linear8bitlt(model)
# add torch compile
model = torch.compile(model)
# 将模型移到GPU量化发生在这里
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
# Move model to GPU (quantization happens here)
device = (
"cuda"
if torch.cuda.is_available()
else "mps"
if torch.backends.mps.is_available()
else "cpu"
)
model = model.to(device)
print("- All linear layers replaced with Linear8bitLt")
else:
# 使用原来的Int4量化方法
# Use original Int4 quantization method
print("- Using bitsandbytes for Int4 quantization")
# Create quantization config
compute_dtype = torch.float16 if self.config.use_fp16 else torch.float32
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
bnb_4bit_quant_type="nf4",
)
print("- Quantization config:", quantization_config)
# Load model directly with quantization config
model = AutoModel.from_pretrained(
self.config.model_path,
quantization_config=quantization_config,
torch_dtype=compute_dtype,
device_map="auto" # Let HF decide on device mapping
device_map="auto", # Let HF decide on device mapping
)
# Check if model loaded successfully
if model is None:
raise ValueError("Model loading returned None")
print(f"- Model type: {type(model)}")
# Apply optimizations directly here
print("\nApplying model optimizations:")
if hasattr(self.config, 'use_linear8bitlt') and self.config.use_linear8bitlt:
if hasattr(self.config, "use_linear8bitlt") and self.config.use_linear8bitlt:
print("- Model moved to GPU with Linear8bitLt quantization")
else:
# Skip moving to GPU since device_map="auto" already did that
print("- Model already on GPU due to device_map='auto'")
# Skip FP16 conversion since we specified compute_dtype
print(f"- Using {compute_dtype} for compute dtype")
# Check CUDA and SDPA
if torch.cuda.is_available() and torch.version.cuda and float(torch.version.cuda[:3]) >= 11.6:
if hasattr(torch.nn.functional, 'scaled_dot_product_attention'):
if (
torch.cuda.is_available()
and torch.version.cuda
and float(torch.version.cuda[:3]) >= 11.6
):
if hasattr(torch.nn.functional, "scaled_dot_product_attention"):
print("- Using PyTorch SDPA (scaled_dot_product_attention)")
else:
print("- PyTorch SDPA not available")
# Try xformers if available (only on CUDA)
if torch.cuda.is_available():
try:
from xformers.ops import memory_efficient_attention
if hasattr(model, 'enable_xformers_memory_efficient_attention'):
if hasattr(model, "enable_xformers_memory_efficient_attention"):
model.enable_xformers_memory_efficient_attention()
print("- Enabled xformers memory efficient attention")
else:
print("- Model doesn't support xformers")
except (ImportError, AttributeError):
print("- Xformers not available")
# Set to eval mode
model.eval()
print("- Model set to eval mode")
@@ -365,76 +378,83 @@ class Benchmark:
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
)
model = AutoModel.from_pretrained(
self.config.model_path,
quantization_config=quantization_config,
torch_dtype=compute_dtype,
device_map="auto"
device_map="auto",
)
if model is None:
raise ValueError("Model loading returned None")
print(f"- Model type: {type(model)}")
model.eval()
print("- Model set to eval mode")
else:
# Standard loading for FP16/FP32
model = AutoModel.from_pretrained(self.config.model_path)
print("- Model loaded in standard precision")
print(f"- Model type: {type(model)}")
# Apply standard optimizations
# set default to half
import torch
torch.set_default_dtype(torch.bfloat16)
model = ModelOptimizer.optimize(model, self.config)
model = model.half()
# add torch compile
model = torch.compile(model)
# Final check to ensure model is not None
if model is None:
raise ValueError("Model is None after optimization")
print(f"- Final model type: {type(model)}")
return model
except Exception as e:
print(f"ERROR loading model: {str(e)}")
print(f"ERROR loading model: {e!s}")
import traceback
traceback.print_exc()
raise
def _create_random_batch(self, batch_size: int) -> torch.Tensor:
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
device = (
"cuda"
if torch.cuda.is_available()
else "mps"
if torch.backends.mps.is_available()
else "cpu"
)
return torch.randint(
0, 1000,
0,
1000,
(batch_size, self.config.seq_length),
device=device,
dtype=torch.long
dtype=torch.long,
)
def _run_inference(
self,
input_ids: torch.Tensor,
graph_wrapper: Optional[GraphWrapper] = None
) -> Tuple[float, torch.Tensor]:
self, input_ids: torch.Tensor, graph_wrapper: GraphWrapper | None = None
) -> tuple[float, torch.Tensor]:
attention_mask = torch.ones_like(input_ids)
with torch.no_grad(), self.timer.timing():
if graph_wrapper is not None:
output = graph_wrapper(input_ids, attention_mask)
else:
output = self.model(input_ids=input_ids, attention_mask=attention_mask)
return self.timer.elapsed_time(), output
def run(self) -> Dict[int, Dict[str, float]]:
def run(self) -> dict[int, dict[str, float]]:
results = {}
# Reset peak memory stats
if torch.cuda.is_available():
torch.cuda.reset_peak_memory_stats()
@@ -443,22 +463,20 @@ class Benchmark:
pass
else:
print("- No GPU memory stats available")
for batch_size in self.config.batch_sizes:
print(f"\nTesting batch size: {batch_size}")
times = []
# Get or create graph for this batch size
graph_wrapper = (
self.graphs.get_or_create(batch_size)
if self.graphs is not None
else None
self.graphs.get_or_create(batch_size) if self.graphs is not None else None
)
# Pre-allocate input tensor
input_ids = self._create_random_batch(batch_size)
print(f"Input shape: {input_ids.shape}")
# Run benchmark
for i in tqdm(range(self.config.num_runs), desc=f"Batch size {batch_size}"):
try:
@@ -469,44 +487,44 @@ class Benchmark:
except Exception as e:
print(f"Error during inference: {e}")
break
if not times:
print(f"No successful runs for batch size {batch_size}, skipping")
continue
# Calculate statistics
avg_time = np.mean(times)
std_time = np.std(times)
throughput = batch_size / avg_time
results[batch_size] = {
"avg_time": avg_time,
"std_time": std_time,
"throughput": throughput,
}
print(f"Avg Time: {avg_time:.4f}s ± {std_time:.4f}s")
print(f"Throughput: {throughput:.2f} sequences/second")
# Log memory usage
if torch.cuda.is_available():
peak_memory_gb = torch.cuda.max_memory_allocated() / (1024 ** 3)
peak_memory_gb = torch.cuda.max_memory_allocated() / (1024**3)
elif torch.backends.mps.is_available():
# MPS doesn't have max_memory_allocated, use 0
peak_memory_gb = 0.0
else:
peak_memory_gb = 0.0
print("- No GPU memory usage available")
if peak_memory_gb > 0:
print(f"\nPeak GPU memory usage: {peak_memory_gb:.2f} GB")
else:
print("\n- GPU memory usage not available")
# Add memory info to results
for batch_size in results:
results[batch_size]["peak_memory_gb"] = peak_memory_gb
return results
@@ -566,14 +584,14 @@ def main():
action="store_true",
help="Enable Linear8bitLt quantization for all linear layers",
)
args = parser.parse_args()
# Print arguments for debugging
print("\nCommand line arguments:")
for arg, value in vars(args).items():
print(f"- {arg}: {value}")
config = BenchmarkConfig(
model_path=args.model_path,
batch_sizes=[int(bs) for bs in args.batch_sizes.split(",")],
@@ -586,45 +604,56 @@ def main():
use_flash_attention=args.use_flash_attention,
use_linear8bitlt=args.use_linear8bitlt,
)
# Print configuration for debugging
print("\nBenchmark configuration:")
for field, value in vars(config).items():
print(f"- {field}: {value}")
try:
benchmark = Benchmark(config)
results = benchmark.run()
# Save results to file
import json
import os
# Create results directory if it doesn't exist
os.makedirs("results", exist_ok=True)
# Generate filename based on configuration
precision_type = "int4" if config.use_int4 else "int8" if config.use_int8 else "fp16" if config.use_fp16 else "fp32"
precision_type = (
"int4"
if config.use_int4
else "int8"
if config.use_int8
else "fp16"
if config.use_fp16
else "fp32"
)
model_name = os.path.basename(config.model_path)
output_file = f"results/benchmark_{model_name}_{precision_type}.json"
# Save results
with open(output_file, "w") as f:
json.dump(
{
"config": {k: str(v) if isinstance(v, list) else v for k, v in vars(config).items()},
"results": {str(k): v for k, v in results.items()}
},
f,
indent=2
"config": {
k: str(v) if isinstance(v, list) else v for k, v in vars(config).items()
},
"results": {str(k): v for k, v in results.items()},
},
f,
indent=2,
)
print(f"Results saved to {output_file}")
except Exception as e:
print(f"Benchmark failed: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
main()
main()

View File

@@ -5,24 +5,21 @@ It correctly compares results by fetching the text content for both the new sear
results and the golden standard results, making the comparison robust to ID changes.
"""
import json
import argparse
import json
import sys
import time
from pathlib import Path
import sys
import numpy as np
from typing import List
from leann.api import LeannSearcher, LeannBuilder
import numpy as np
from leann.api import LeannBuilder, LeannSearcher
def download_data_if_needed(data_root: Path, download_embeddings: bool = False):
"""Checks if the data directory exists, and if not, downloads it from HF Hub."""
if not data_root.exists():
print(f"Data directory '{data_root}' not found.")
print(
"Downloading evaluation data from Hugging Face Hub... (this may take a moment)"
)
print("Downloading evaluation data from Hugging Face Hub... (this may take a moment)")
try:
from huggingface_hub import snapshot_download
@@ -63,7 +60,7 @@ def download_data_if_needed(data_root: Path, download_embeddings: bool = False):
sys.exit(1)
def download_embeddings_if_needed(data_root: Path, dataset_type: str = None):
def download_embeddings_if_needed(data_root: Path, dataset_type: str | None = None):
"""Download embeddings files specifically."""
embeddings_dir = data_root / "embeddings"
@@ -101,7 +98,7 @@ def download_embeddings_if_needed(data_root: Path, dataset_type: str = None):
# --- Helper Function to get Golden Passages ---
def get_golden_texts(searcher: LeannSearcher, golden_ids: List[int]) -> set:
def get_golden_texts(searcher: LeannSearcher, golden_ids: list[int]) -> set:
"""
Retrieves the text for golden passage IDs directly from the LeannSearcher's
passage manager.
@@ -113,24 +110,20 @@ def get_golden_texts(searcher: LeannSearcher, golden_ids: List[int]) -> set:
passage_data = searcher.passage_manager.get_passage(str(gid))
golden_texts.add(passage_data["text"])
except KeyError:
print(
f"Warning: Golden passage ID '{gid}' not found in the index's passage data."
)
print(f"Warning: Golden passage ID '{gid}' not found in the index's passage data.")
return golden_texts
def load_queries(file_path: Path) -> List[str]:
def load_queries(file_path: Path) -> list[str]:
queries = []
with open(file_path, "r", encoding="utf-8") as f:
with open(file_path, encoding="utf-8") as f:
for line in f:
data = json.loads(line)
queries.append(data["query"])
return queries
def build_index_from_embeddings(
embeddings_file: str, output_path: str, backend: str = "hnsw"
):
def build_index_from_embeddings(embeddings_file: str, output_path: str, backend: str = "hnsw"):
"""
Build a LEANN index from pre-computed embeddings.
@@ -173,9 +166,7 @@ def build_index_from_embeddings(
def main():
parser = argparse.ArgumentParser(
description="Run recall evaluation on a LEANN index."
)
parser = argparse.ArgumentParser(description="Run recall evaluation on a LEANN index.")
parser.add_argument(
"index_path",
type=str,
@@ -202,26 +193,22 @@ def main():
parser.add_argument(
"--num-queries", type=int, default=10, help="Number of queries to evaluate."
)
parser.add_argument(
"--top-k", type=int, default=3, help="The 'k' value for recall@k."
)
parser.add_argument("--top-k", type=int, default=3, help="The 'k' value for recall@k.")
parser.add_argument(
"--ef-search", type=int, default=120, help="The 'efSearch' parameter for HNSW."
)
args = parser.parse_args()
# --- Path Configuration ---
# Assumes a project structure where the script is in 'examples/'
# and data is in 'data/' at the project root.
project_root = Path(__file__).resolve().parent.parent
data_root = project_root / "data"
# Assumes a project structure where the script is in 'benchmarks/'
# and evaluation data is in 'benchmarks/data/'.
script_dir = Path(__file__).resolve().parent
data_root = script_dir / "data"
# Download data based on mode
if args.mode == "build":
# For building mode, we need embeddings
download_data_if_needed(
data_root, download_embeddings=False
) # Basic data first
download_data_if_needed(data_root, download_embeddings=False) # Basic data first
# Auto-detect dataset type and download embeddings
if args.embeddings_file:
@@ -262,9 +249,7 @@ def main():
print(f"Index built successfully: {built_index_path}")
# Ask if user wants to run evaluation
eval_response = (
input("Run evaluation on the built index? (y/n): ").strip().lower()
)
eval_response = input("Run evaluation on the built index? (y/n): ").strip().lower()
if eval_response != "y":
print("Index building complete. Exiting.")
return
@@ -293,11 +278,9 @@ def main():
break
if not args.index_path:
print("No indices found. The data download should have included pre-built indices.")
print(
"No indices found. The data download should have included pre-built indices."
)
print(
"Please check the data/indices/ directory or provide --index-path manually."
"Please check the benchmarks/data/indices/ directory or provide --index-path manually."
)
sys.exit(1)
@@ -310,14 +293,10 @@ def main():
else:
# Fallback: try to infer from the index directory name
dataset_type = Path(args.index_path).name
print(
f"WARNING: Could not detect dataset type from path, inferred '{dataset_type}'."
)
print(f"WARNING: Could not detect dataset type from path, inferred '{dataset_type}'.")
queries_file = data_root / "queries" / "nq_open.jsonl"
golden_results_file = (
data_root / "ground_truth" / dataset_type / "flat_results_nq_k3.json"
)
golden_results_file = data_root / "ground_truth" / dataset_type / "flat_results_nq_k3.json"
print(f"INFO: Detected dataset type: {dataset_type}")
print(f"INFO: Using queries file: {queries_file}")
@@ -327,7 +306,7 @@ def main():
searcher = LeannSearcher(args.index_path)
queries = load_queries(queries_file)
with open(golden_results_file, "r") as f:
with open(golden_results_file) as f:
golden_results_data = json.load(f)
num_eval_queries = min(args.num_queries, len(queries))
@@ -339,9 +318,7 @@ def main():
for i in range(num_eval_queries):
start_time = time.time()
new_results = searcher.search(
queries[i], top_k=args.top_k, ef=args.ef_search
)
new_results = searcher.search(queries[i], top_k=args.top_k, ef=args.ef_search)
search_times.append(time.time() - start_time)
# Correct Recall Calculation: Based on TEXT content

View File

@@ -1,26 +1,27 @@
import time
from dataclasses import dataclass
from typing import Dict, List
import numpy as np
import torch
from torch import nn
from transformers import AutoModel, BitsAndBytesConfig
from tqdm import tqdm
from transformers import AutoModel
# Add MLX imports
try:
import mlx.core as mx
from mlx_lm.utils import load
MLX_AVAILABLE = True
except ImportError as e:
except ImportError:
print("MLX not available. Install with: uv pip install mlx mlx-lm")
MLX_AVAILABLE = False
@dataclass
class BenchmarkConfig:
model_path: str = "facebook/contriever"
batch_sizes: List[int] = None
batch_sizes: list[int] = None
seq_length: int = 256
num_runs: int = 5
use_fp16: bool = True
@@ -30,18 +31,19 @@ class BenchmarkConfig:
use_flash_attention: bool = False
use_linear8bitlt: bool = False
use_mlx: bool = False # New flag for MLX testing
def __post_init__(self):
if self.batch_sizes is None:
self.batch_sizes = [1, 2, 4, 8, 16, 32, 64]
class MLXBenchmark:
"""MLX-specific benchmark for embedding models"""
def __init__(self, config: BenchmarkConfig):
self.config = config
self.model, self.tokenizer = self._load_model()
def _load_model(self):
"""Load MLX model and tokenizer following the API pattern"""
print(f"Loading MLX model from {self.config.model_path}...")
@@ -52,55 +54,51 @@ class MLXBenchmark:
except Exception as e:
print(f"Error loading MLX model: {e}")
raise
def _create_random_batch(self, batch_size: int):
"""Create random input batches for MLX testing - same as PyTorch"""
return torch.randint(
0, 1000,
(batch_size, self.config.seq_length),
dtype=torch.long
)
return torch.randint(0, 1000, (batch_size, self.config.seq_length), dtype=torch.long)
def _run_inference(self, input_ids: torch.Tensor) -> float:
"""Run MLX inference with same input as PyTorch"""
start_time = time.time()
try:
# Convert PyTorch tensor to MLX array
input_ids_mlx = mx.array(input_ids.numpy())
# Get embeddings
embeddings = self.model(input_ids_mlx)
# Mean pooling (following the API pattern)
pooled = embeddings.mean(axis=1)
# Convert to numpy (following the API pattern)
pooled_numpy = np.array(pooled.tolist(), dtype=np.float32)
# Force computation
_ = pooled_numpy.shape
except Exception as e:
print(f"MLX inference error: {e}")
return float('inf')
return float("inf")
end_time = time.time()
return end_time - start_time
def run(self) -> Dict[int, Dict[str, float]]:
def run(self) -> dict[int, dict[str, float]]:
"""Run the MLX benchmark across all batch sizes"""
results = {}
print(f"Starting MLX benchmark with model: {self.config.model_path}")
print(f"Testing batch sizes: {self.config.batch_sizes}")
for batch_size in self.config.batch_sizes:
print(f"\n=== Testing MLX batch size: {batch_size} ===")
times = []
# Create input batch (same as PyTorch)
input_ids = self._create_random_batch(batch_size)
# Warm up
print("Warming up...")
for _ in range(3):
@@ -109,26 +107,26 @@ class MLXBenchmark:
except Exception as e:
print(f"Warmup error: {e}")
break
# Run benchmark
for i in tqdm(range(self.config.num_runs), desc=f"MLX Batch size {batch_size}"):
for _i in tqdm(range(self.config.num_runs), desc=f"MLX Batch size {batch_size}"):
try:
elapsed_time = self._run_inference(input_ids)
if elapsed_time != float('inf'):
if elapsed_time != float("inf"):
times.append(elapsed_time)
except Exception as e:
print(f"Error during MLX inference: {e}")
break
if not times:
print(f"Skipping batch size {batch_size} due to errors")
continue
# Calculate statistics
avg_time = np.mean(times)
std_time = np.std(times)
throughput = batch_size / avg_time
results[batch_size] = {
"avg_time": avg_time,
"std_time": std_time,
@@ -136,122 +134,127 @@ class MLXBenchmark:
"min_time": np.min(times),
"max_time": np.max(times),
}
print(f"MLX Results for batch size {batch_size}:")
print(f" Avg Time: {avg_time:.4f}s ± {std_time:.4f}s")
print(f" Min Time: {np.min(times):.4f}s")
print(f" Max Time: {np.max(times):.4f}s")
print(f" Throughput: {throughput:.2f} sequences/second")
return results
class Benchmark:
def __init__(self, config: BenchmarkConfig):
self.config = config
self.device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
self.device = (
"cuda"
if torch.cuda.is_available()
else "mps"
if torch.backends.mps.is_available()
else "cpu"
)
self.model = self._load_model()
def _load_model(self) -> nn.Module:
print(f"Loading model from {self.config.model_path}...")
model = AutoModel.from_pretrained(self.config.model_path)
if self.config.use_fp16:
model = model.half()
model = torch.compile(model)
model = model.to(self.device)
model.eval()
return model
def _create_random_batch(self, batch_size: int) -> torch.Tensor:
return torch.randint(
0, 1000,
0,
1000,
(batch_size, self.config.seq_length),
device=self.device,
dtype=torch.long
dtype=torch.long,
)
def _run_inference(self, input_ids: torch.Tensor) -> float:
attention_mask = torch.ones_like(input_ids)
start_time = time.time()
with torch.no_grad():
output = self.model(input_ids=input_ids, attention_mask=attention_mask)
self.model(input_ids=input_ids, attention_mask=attention_mask)
end_time = time.time()
return end_time - start_time
def run(self) -> Dict[int, Dict[str, float]]:
def run(self) -> dict[int, dict[str, float]]:
results = {}
if torch.cuda.is_available():
torch.cuda.reset_peak_memory_stats()
for batch_size in self.config.batch_sizes:
print(f"\nTesting batch size: {batch_size}")
times = []
input_ids = self._create_random_batch(batch_size)
for i in tqdm(range(self.config.num_runs), desc=f"Batch size {batch_size}"):
for _i in tqdm(range(self.config.num_runs), desc=f"Batch size {batch_size}"):
try:
elapsed_time = self._run_inference(input_ids)
times.append(elapsed_time)
except Exception as e:
print(f"Error during inference: {e}")
break
if not times:
continue
avg_time = np.mean(times)
std_time = np.std(times)
throughput = batch_size / avg_time
results[batch_size] = {
"avg_time": avg_time,
"std_time": std_time,
"throughput": throughput,
}
print(f"Avg Time: {avg_time:.4f}s ± {std_time:.4f}s")
print(f"Throughput: {throughput:.2f} sequences/second")
if torch.cuda.is_available():
peak_memory_gb = torch.cuda.max_memory_allocated() / (1024 ** 3)
peak_memory_gb = torch.cuda.max_memory_allocated() / (1024**3)
else:
peak_memory_gb = 0.0
for batch_size in results:
results[batch_size]["peak_memory_gb"] = peak_memory_gb
return results
def run_benchmark():
"""Main function to run the benchmark with optimized parameters."""
config = BenchmarkConfig()
try:
benchmark = Benchmark(config)
results = benchmark.run()
max_throughput = max(results[batch_size]["throughput"] for batch_size in results)
avg_throughput = np.mean([results[batch_size]["throughput"] for batch_size in results])
return {
"max_throughput": max_throughput,
"avg_throughput": avg_throughput,
"results": results
"results": results,
}
except Exception as e:
print(f"Benchmark failed: {e}")
return {
"max_throughput": 0.0,
"avg_throughput": 0.0,
"error": str(e)
}
return {"max_throughput": 0.0, "avg_throughput": 0.0, "error": str(e)}
def run_mlx_benchmark():
"""Run MLX-specific benchmark"""
@@ -260,55 +263,49 @@ def run_mlx_benchmark():
return {
"max_throughput": 0.0,
"avg_throughput": 0.0,
"error": "MLX not available"
"error": "MLX not available",
}
config = BenchmarkConfig(
model_path="mlx-community/all-MiniLM-L6-v2-4bit",
use_mlx=True
)
config = BenchmarkConfig(model_path="mlx-community/all-MiniLM-L6-v2-4bit", use_mlx=True)
try:
benchmark = MLXBenchmark(config)
results = benchmark.run()
if not results:
return {
"max_throughput": 0.0,
"avg_throughput": 0.0,
"error": "No valid results"
"error": "No valid results",
}
max_throughput = max(results[batch_size]["throughput"] for batch_size in results)
avg_throughput = np.mean([results[batch_size]["throughput"] for batch_size in results])
return {
"max_throughput": max_throughput,
"avg_throughput": avg_throughput,
"results": results
"results": results,
}
except Exception as e:
print(f"MLX benchmark failed: {e}")
return {
"max_throughput": 0.0,
"avg_throughput": 0.0,
"error": str(e)
}
return {"max_throughput": 0.0, "avg_throughput": 0.0, "error": str(e)}
if __name__ == "__main__":
print("=== PyTorch Benchmark ===")
pytorch_result = run_benchmark()
print(f"PyTorch Max throughput: {pytorch_result['max_throughput']:.2f} sequences/second")
print(f"PyTorch Average throughput: {pytorch_result['avg_throughput']:.2f} sequences/second")
print("\n=== MLX Benchmark ===")
mlx_result = run_mlx_benchmark()
print(f"MLX Max throughput: {mlx_result['max_throughput']:.2f} sequences/second")
print(f"MLX Average throughput: {mlx_result['avg_throughput']:.2f} sequences/second")
# Compare results
if pytorch_result['max_throughput'] > 0 and mlx_result['max_throughput'] > 0:
speedup = mlx_result['max_throughput'] / pytorch_result['max_throughput']
print(f"\n=== Comparison ===")
print(f"MLX is {speedup:.2f}x {'faster' if speedup > 1 else 'slower'} than PyTorch")
if pytorch_result["max_throughput"] > 0 and mlx_result["max_throughput"] > 0:
speedup = mlx_result["max_throughput"] / pytorch_result["max_throughput"]
print("\n=== Comparison ===")
print(f"MLX is {speedup:.2f}x {'faster' if speedup > 1 else 'slower'} than PyTorch")

View File

@@ -1,5 +1,5 @@
The Project Gutenberg eBook of Pride and Prejudice
This ebook is for the use of anyone anywhere in the United States and
most other parts of the world at no cost and with almost no restrictions
whatsoever. You may copy it, give it away or re-use it under the terms
@@ -14557,7 +14557,7 @@ her into Derbyshire, had been the means of uniting them.
*** END OF THE PROJECT GUTENBERG EBOOK PRIDE AND PREJUDICE ***
Updated editions will replace the previous one—the old editions will
be renamed.
@@ -14662,7 +14662,7 @@ performed, viewed, copied or distributed:
at www.gutenberg.org. If you
are not located in the United States, you will have to check the laws
of the country where you are located before using this eBook.
1.E.2. If an individual Project Gutenberg™ electronic work is
derived from texts not protected by U.S. copyright law (does not
contain a notice indicating that it is posted with permission of the
@@ -14724,7 +14724,7 @@ provided that:
Gutenberg Literary Archive Foundation at the address specified in
Section 4, “Information about donations to the Project Gutenberg
Literary Archive Foundation.”
• You provide a full refund of any money paid by a user who notifies
you in writing (or by e-mail) within 30 days of receipt that s/he
does not agree to the terms of the full Project Gutenberg™
@@ -14732,15 +14732,15 @@ provided that:
copies of the works possessed in a physical medium and discontinue
all use of and all access to other copies of Project Gutenberg™
works.
• You provide, in accordance with paragraph 1.F.3, a full refund of
any money paid for a work or a replacement copy, if a defect in the
electronic work is discovered and reported to you within 90 days of
receipt of the work.
• You comply with all other terms of this agreement for free
distribution of Project Gutenberg™ works.
1.E.9. If you wish to charge a fee or distribute a Project
Gutenberg™ electronic work or group of works on different terms than
@@ -14903,5 +14903,3 @@ This website includes information about Project Gutenberg™,
including how to make donations to the Project Gutenberg Literary
Archive Foundation, how to help produce our new eBooks, and how to
subscribe to our email newsletter to hear about new eBooks.

View File

@@ -1,44 +0,0 @@
---
license: mit
---
# LEANN-RAG Evaluation Data
This repository contains the necessary data to run the recall evaluation scripts for the [LEANN-RAG](https://huggingface.co/LEANN-RAG) project.
## Dataset Components
This dataset is structured into three main parts:
1. **Pre-built LEANN Indices**:
* `dpr/`: A pre-built index for the DPR dataset.
* `rpj_wiki/`: A pre-built index for the RPJ-Wiki dataset.
These indices were created using the `leann-core` library and are required by the `LeannSearcher`.
2. **Ground Truth Data**:
* `ground_truth/`: Contains the ground truth files (`flat_results_nq_k3.json`) for both the DPR and RPJ-Wiki datasets. These files map queries to the original passage IDs from the Natural Questions benchmark, evaluated using the Contriever model.
3. **Queries**:
* `queries/`: Contains the `nq_open.jsonl` file with the Natural Questions queries used for the evaluation.
## Usage
To use this data, you can download it locally using the `huggingface-hub` library. First, install the library:
```bash
pip install huggingface-hub
```
Then, you can download the entire dataset to a local directory (e.g., `data/`) with the following Python script:
```python
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="LEANN-RAG/leann-rag-evaluation-data",
repo_type="dataset",
local_dir="data"
)
```
This will download all the necessary files into a local `data` folder, preserving the repository structure. The evaluation scripts in the main [LEANN-RAG Space](https://huggingface.co/LEANN-RAG) are configured to work with this data structure.

View File

@@ -4,7 +4,11 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Quick Start in 30s"
"# Quick Start \n",
"\n",
"**Home GitHub Repository:** [LEANN on GitHub](https://github.com/yichuan-w/LEANN)\n",
"\n",
"**Important for Colab users:** Set your runtime type to T4 GPU for optimal performance. Go to Runtime → Change runtime type → Hardware accelerator → T4 GPU."
]
},
{
@@ -13,8 +17,25 @@
"metadata": {},
"outputs": [],
"source": [
"# install this if you areusing colab\n",
"! pip install leann"
"# install this if you are using colab\n",
"! uv pip install leann-core leann-backend-hnsw --no-deps\n",
"! uv pip install leann --no-deps\n",
"# For Colab environment, we need to set some environment variables\n",
"import os\n",
"\n",
"os.environ[\"LEANN_LOG_LEVEL\"] = \"INFO\" # Enable more detailed logging"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from pathlib import Path\n",
"\n",
"INDEX_DIR = Path(\"./\").resolve()\n",
"INDEX_PATH = str(INDEX_DIR / \"demo.leann\")"
]
},
{
@@ -26,91 +47,21 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO: Registering backend 'hnsw'\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/yichuan/Desktop/code/LEANN/leann/.venv/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n",
"INFO:sentence_transformers.SentenceTransformer:Load pretrained SentenceTransformer: facebook/contriever\n",
"WARNING:sentence_transformers.SentenceTransformer:No sentence-transformers model found with name facebook/contriever. Creating a new one with mean pooling.\n",
"Writing passages: 100%|██████████| 5/5 [00:00<00:00, 27887.66chunk/s]\n",
"Batches: 100%|██████████| 1/1 [00:00<00:00, 13.51it/s]\n",
"WARNING:leann_backend_hnsw.hnsw_backend:Converting data to float32, shape: (5, 768)\n",
"INFO:leann_backend_hnsw.hnsw_backend:INFO: Converting HNSW index to CSR-pruned format...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"M: 64 for level: 0\n",
"Starting conversion: knowledge.index -> knowledge.csr.tmp\n",
"[0.00s] Reading Index HNSW header...\n",
"[0.00s] Header read: d=768, ntotal=5\n",
"[0.00s] Reading HNSW struct vectors...\n",
" Reading vector (dtype=<class 'numpy.float64'>, fmt='d')... Count=6, Bytes=48\n",
"[0.00s] Read assign_probas (6)\n",
" Reading vector (dtype=<class 'numpy.int32'>, fmt='i')... Count=7, Bytes=28\n",
"[0.11s] Read cum_nneighbor_per_level (7)\n",
" Reading vector (dtype=<class 'numpy.int32'>, fmt='i')... Count=5, Bytes=20\n",
"[0.21s] Read levels (5)\n",
"[0.30s] Probing for compact storage flag...\n",
"[0.30s] Found compact flag: False\n",
"[0.30s] Compact flag is False, reading original format...\n",
"[0.30s] Probing for potential extra byte before non-compact offsets...\n",
"[0.30s] Found and consumed an unexpected 0x00 byte.\n",
" Reading vector (dtype=<class 'numpy.uint64'>, fmt='Q')... Count=6, Bytes=48\n",
"[0.30s] Read offsets (6)\n",
"[0.40s] Attempting to read neighbors vector...\n",
" Reading vector (dtype=<class 'numpy.int32'>, fmt='i')... Count=320, Bytes=1280\n",
"[0.40s] Read neighbors (320)\n",
"[0.50s] Read scalar params (ep=4, max_lvl=0)\n",
"[0.50s] Checking for storage data...\n",
"[0.50s] Found storage fourcc: 49467849.\n",
"[0.50s] Converting to CSR format...\n",
"[0.50s] Conversion loop finished. \n",
"[0.50s] Running validation checks...\n",
" Checking total valid neighbor count...\n",
" OK: Total valid neighbors = 20\n",
" Checking final pointer indices...\n",
" OK: Final pointers match data size.\n",
"[0.50s] Deleting original neighbors and offsets arrays...\n",
" CSR Stats: |data|=20, |level_ptr|=10\n",
"[0.59s] Writing CSR HNSW graph data in FAISS-compatible order...\n",
" Pruning embeddings: Writing NULL storage marker.\n",
"[0.69s] Conversion complete.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:leann_backend_hnsw.hnsw_backend:✅ CSR conversion successful.\n",
"INFO:leann_backend_hnsw.hnsw_backend:INFO: Replaced original index with CSR-pruned version at 'knowledge.index'\n"
]
}
],
"outputs": [],
"source": [
"from leann.api import LeannBuilder\n",
"\n",
"builder = LeannBuilder(backend_name=\"hnsw\")\n",
"builder.add_text(\"C# is a powerful programming language and it is good at game development\")\n",
"builder.add_text(\"Python is a powerful programming language and it is good at machine learning tasks\")\n",
"builder.add_text(\n",
" \"Python is a powerful programming language and it is good at machine learning tasks\"\n",
")\n",
"builder.add_text(\"Machine learning transforms industries\")\n",
"builder.add_text(\"Neural networks process complex data\")\n",
"builder.add_text(\"Leann is a great storage saving engine for RAG on your MacBook\")\n",
"builder.build_index(\"knowledge.leann\")"
"builder.build_index(INDEX_PATH)"
]
},
{
@@ -122,97 +73,13 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:leann.api:🔍 LeannSearcher.search() called:\n",
"INFO:leann.api: Query: 'programming languages'\n",
"INFO:leann.api: Top_k: 2\n",
"INFO:leann.api: Additional kwargs: {}\n",
"INFO:leann.embedding_server_manager:Port 5557 has incompatible server, trying next port...\n",
"INFO:leann.embedding_server_manager:Port 5558 has incompatible server, trying next port...\n",
"INFO:leann.embedding_server_manager:Port 5559 has incompatible server, trying next port...\n",
"INFO:leann.embedding_server_manager:Using port 5560 instead of 5557\n",
"INFO:leann.embedding_server_manager:Starting embedding server on port 5560...\n",
"INFO:leann.embedding_server_manager:Command: /Users/yichuan/Desktop/code/LEANN/leann/.venv/bin/python -m leann_backend_hnsw.hnsw_embedding_server --zmq-port 5560 --model-name facebook/contriever --passages-file knowledge.leann.meta.json\n",
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n",
"INFO:leann.embedding_server_manager:Server process started with PID: 4574\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[read_HNSW - CSR NL v4] Reading metadata & CSR indices (manual offset)...\n",
"[read_HNSW NL v4] Read levels vector, size: 5\n",
"[read_HNSW NL v4] Reading Compact Storage format indices...\n",
"[read_HNSW NL v4] Read compact_level_ptr, size: 10\n",
"[read_HNSW NL v4] Read compact_node_offsets, size: 6\n",
"[read_HNSW NL v4] Read entry_point: 4, max_level: 0\n",
"[read_HNSW NL v4] Read storage fourcc: 0x6c6c756e\n",
"[read_HNSW NL v4 FIX] Detected FileIOReader. Neighbors size field offset: 326\n",
"[read_HNSW NL v4] Reading neighbors data into memory.\n",
"[read_HNSW NL v4] Read neighbors data, size: 20\n",
"[read_HNSW NL v4] Finished reading metadata and CSR indices.\n",
"INFO: Skipping external storage loading, since is_recompute is true.\n",
"INFO: Registering backend 'hnsw'\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:leann.embedding_server_manager:Embedding server is ready!\n",
"INFO:leann.api: Launching server time: 1.078078269958496 seconds\n",
"INFO:leann.embedding_server_manager:Existing server process (PID 4574) is compatible\n",
"INFO:sentence_transformers.SentenceTransformer:Load pretrained SentenceTransformer: facebook/contriever\n",
"WARNING:sentence_transformers.SentenceTransformer:No sentence-transformers model found with name facebook/contriever. Creating a new one with mean pooling.\n",
"INFO:leann.api: Generated embedding shape: (1, 768)\n",
"INFO:leann.api: Embedding time: 2.9307072162628174 seconds\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"ZmqDistanceComputer initialized: d=768, metric=0\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:leann.api: Search time: 0.27327895164489746 seconds\n",
"INFO:leann.api: Backend returned: labels=2 results\n",
"INFO:leann.api: Processing 2 passage IDs:\n",
"INFO:leann.api: 1. passage_id='0' -> SUCCESS: C# is a powerful programming language and it is good at game development...\n",
"INFO:leann.api: 2. passage_id='1' -> SUCCESS: Python is a powerful programming language and it is good at machine learning tasks...\n",
"INFO:leann.api: Final enriched results: 2 passages\n"
]
},
{
"data": {
"text/plain": [
"[SearchResult(id='0', score=np.float32(0.9874103), text='C# is a powerful programming language and it is good at game development', metadata={}),\n",
" SearchResult(id='1', score=np.float32(0.8922168), text='Python is a powerful programming language and it is good at machine learning tasks', metadata={})]"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"outputs": [],
"source": [
"from leann.api import LeannSearcher\n",
"\n",
"searcher = LeannSearcher(\"knowledge.leann\")\n",
"searcher = LeannSearcher(INDEX_PATH)\n",
"results = searcher.search(\"programming languages\", top_k=2)\n",
"results"
]
@@ -228,79 +95,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:leann.chat:Attempting to create LLM of type='hf' with model='Qwen/Qwen3-0.6B'\n",
"INFO:leann.chat:Initializing HFChat with model='Qwen/Qwen3-0.6B'\n",
"INFO:leann.chat:MPS is available. Using Apple Silicon GPU.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[read_HNSW - CSR NL v4] Reading metadata & CSR indices (manual offset)...\n",
"[read_HNSW NL v4] Read levels vector, size: 5\n",
"[read_HNSW NL v4] Reading Compact Storage format indices...\n",
"[read_HNSW NL v4] Read compact_level_ptr, size: 10\n",
"[read_HNSW NL v4] Read compact_node_offsets, size: 6\n",
"[read_HNSW NL v4] Read entry_point: 4, max_level: 0\n",
"[read_HNSW NL v4] Read storage fourcc: 0x6c6c756e\n",
"[read_HNSW NL v4 FIX] Detected FileIOReader. Neighbors size field offset: 326\n",
"[read_HNSW NL v4] Reading neighbors data into memory.\n",
"[read_HNSW NL v4] Read neighbors data, size: 20\n",
"[read_HNSW NL v4] Finished reading metadata and CSR indices.\n",
"INFO: Skipping external storage loading, since is_recompute is true.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:leann.api:🔍 LeannSearcher.search() called:\n",
"INFO:leann.api: Query: 'Compare the two retrieved programming languages and tell me their advantages.'\n",
"INFO:leann.api: Top_k: 2\n",
"INFO:leann.api: Additional kwargs: {}\n",
"INFO:leann.embedding_server_manager:Port 5557 has incompatible server, trying next port...\n",
"INFO:leann.embedding_server_manager:Port 5558 has incompatible server, trying next port...\n",
"INFO:leann.embedding_server_manager:Port 5559 has incompatible server, trying next port...\n",
"INFO:leann.embedding_server_manager:Found compatible server on port 5560\n",
"INFO:leann.embedding_server_manager:Using existing compatible server on port 5560\n",
"INFO:leann.api: Launching server time: 0.04932403564453125 seconds\n",
"INFO:leann.embedding_server_manager:Found compatible server on port 5560\n",
"INFO:leann.embedding_server_manager:Using existing compatible server on port 5560\n",
"INFO:leann.api: Generated embedding shape: (1, 768)\n",
"INFO:leann.api: Embedding time: 0.06902289390563965 seconds\n",
"INFO:leann.api: Search time: 0.026793241500854492 seconds\n",
"INFO:leann.api: Backend returned: labels=2 results\n",
"INFO:leann.api: Processing 2 passage IDs:\n",
"INFO:leann.api: 1. passage_id='0' -> SUCCESS: C# is a powerful programming language and it is good at game development...\n",
"INFO:leann.api: 2. passage_id='1' -> SUCCESS: Python is a powerful programming language and it is good at machine learning tasks...\n",
"INFO:leann.api: Final enriched results: 2 passages\n",
"INFO:leann.chat:Generating with HuggingFace model, config: {'max_new_tokens': 128, 'temperature': 0.7, 'top_p': 0.9, 'do_sample': True, 'pad_token_id': 151645, 'eos_token_id': 151645}\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"ZmqDistanceComputer initialized: d=768, metric=0\n"
]
},
{
"data": {
"text/plain": [
"\"<think>\\n\\n</think>\\n\\nBased on the context provided, here's a comparison of the two retrieved programming languages:\\n\\n**C#** is known for being a powerful programming language and is well-suited for game development. It is often used in game development and is popular among developers working on Windows applications.\\n\\n**Python**, on the other hand, is also a powerful language and is well-suited for machine learning tasks. It is widely used for data analysis, scientific computing, and other applications that require handling large datasets or performing complex calculations.\\n\\n**Advantages**:\\n- C#: Strong for game development and cross-platform compatibility.\\n- Python: Strong for\""
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"outputs": [],
"source": [
"from leann.api import LeannChat\n",
"\n",
@@ -309,11 +104,11 @@
" \"model\": \"Qwen/Qwen3-0.6B\",\n",
"}\n",
"\n",
"chat = LeannChat(index_path=\"knowledge.leann\", llm_config=llm_config)\n",
"chat = LeannChat(index_path=INDEX_PATH, llm_config=llm_config)\n",
"response = chat.ask(\n",
" \"Compare the two retrieved programming languages and tell me their advantages.\",\n",
" top_k=2,\n",
" llm_kwargs={\"max_tokens\": 128}\n",
" llm_kwargs={\"max_tokens\": 128},\n",
")\n",
"response"
]

220
docs/CONTRIBUTING.md Normal file
View File

@@ -0,0 +1,220 @@
# 🤝 Contributing
We welcome contributions! Leann is built by the community, for the community.
## Ways to Contribute
- 🐛 **Bug Reports**: Found an issue? Let us know!
- 💡 **Feature Requests**: Have an idea? We'd love to hear it!
- 🔧 **Code Contributions**: PRs welcome for all skill levels
- 📖 **Documentation**: Help make Leann more accessible
- 🧪 **Benchmarks**: Share your performance results
## 🚀 Development Setup
### Prerequisites
1. **Install uv** (fast Python package installer):
```bash
curl -LsSf https://astral.sh/uv/install.sh | sh
```
2. **Clone the repository**:
```bash
git clone https://github.com/LEANN-RAG/LEANN-RAG.git
cd LEANN-RAG
```
3. **Install system dependencies**:
**macOS:**
```bash
brew install llvm libomp boost protobuf zeromq pkgconf
```
**Ubuntu/Debian:**
```bash
sudo apt-get install libomp-dev libboost-all-dev protobuf-compiler \
libabsl-dev libmkl-full-dev libaio-dev libzmq3-dev
```
4. **Build from source**:
```bash
# macOS
CC=$(brew --prefix llvm)/bin/clang CXX=$(brew --prefix llvm)/bin/clang++ uv sync
# Ubuntu/Debian
uv sync
```
## 🔨 Pre-commit Hooks
We use pre-commit hooks to ensure code quality and consistency. This runs automatically before each commit.
### Setup Pre-commit
1. **Install pre-commit** (already included when you run `uv sync`):
```bash
uv pip install pre-commit
```
2. **Install the git hooks**:
```bash
pre-commit install
```
3. **Run pre-commit manually** (optional):
```bash
pre-commit run --all-files
```
### Pre-commit Checks
Our pre-commit configuration includes:
- **Trailing whitespace removal**
- **End-of-file fixing**
- **YAML validation**
- **Large file prevention**
- **Merge conflict detection**
- **Debug statement detection**
- **Code formatting with ruff**
- **Code linting with ruff**
## 🧪 Testing
### Running Tests
```bash
# Run all tests
uv run pytest
# Run specific test file
uv run pytest test/test_filename.py
# Run with coverage
uv run pytest --cov=leann
```
### Writing Tests
- Place tests in the `test/` directory
- Follow the naming convention `test_*.py`
- Use descriptive test names that explain what's being tested
- Include both positive and negative test cases
## 📝 Code Style
We use `ruff` for both linting and formatting to ensure consistent code style.
### Format Your Code
```bash
# Format all files
ruff format
# Check formatting without changing files
ruff format --check
```
### Lint Your Code
```bash
# Run linter with auto-fix
ruff check --fix
# Just check without fixing
ruff check
```
### Style Guidelines
- Follow PEP 8 conventions
- Use descriptive variable names
- Add type hints where appropriate
- Write docstrings for all public functions and classes
- Keep functions focused and single-purpose
## 🚦 CI/CD
Our CI pipeline runs automatically on all pull requests. It includes:
1. **Linting and Formatting**: Ensures code follows our style guidelines
2. **Multi-platform builds**: Tests on Ubuntu and macOS
3. **Python version matrix**: Tests on Python 3.9-3.13
4. **Wheel building**: Ensures packages can be built and distributed
### CI Commands
The CI uses the same commands as pre-commit to ensure consistency:
```bash
# Linting
ruff check .
# Format checking
ruff format --check .
```
Make sure your code passes these checks locally before pushing!
## 🔄 Pull Request Process
1. **Fork the repository** and create your branch from `main`:
```bash
git checkout -b feature/your-feature-name
```
2. **Make your changes**:
- Write clean, documented code
- Add tests for new functionality
- Update documentation as needed
3. **Run pre-commit checks**:
```bash
pre-commit run --all-files
```
4. **Test your changes**:
```bash
uv run pytest
```
5. **Commit with descriptive messages**:
```bash
git commit -m "feat: add new search algorithm"
```
Follow [Conventional Commits](https://www.conventionalcommits.org/):
- `feat:` for new features
- `fix:` for bug fixes
- `docs:` for documentation changes
- `test:` for test additions/changes
- `refactor:` for code refactoring
- `perf:` for performance improvements
6. **Push and create a pull request**:
- Provide a clear description of your changes
- Reference any related issues
- Include examples or screenshots if applicable
## 📚 Documentation
When adding new features or making significant changes:
1. Update relevant documentation in `/docs`
2. Add docstrings to new functions/classes
3. Update README.md if needed
4. Include usage examples
## 🤔 Getting Help
- **Discord**: Join our community for discussions
- **Issues**: Check existing issues or create a new one
- **Discussions**: For general questions and ideas
## 📄 License
By contributing, you agree that your contributions will be licensed under the same license as the project (MIT).
---
Thank you for contributing to LEANN! Every contribution, no matter how small, helps make the project better for everyone. 🌟

View File

@@ -19,4 +19,4 @@ That's it! The workflow will automatically:
- ✅ Publish to PyPI
- ✅ Create GitHub tag and release
Check progress: https://github.com/yichuan-w/LEANN/actions
Check progress: https://github.com/yichuan-w/LEANN/actions

View File

@@ -0,0 +1,123 @@
# Thinking Budget Feature Implementation
## Overview
This document describes the implementation of the **thinking budget** feature for LEANN, which allows users to control the computational effort for reasoning models like GPT-Oss:20b.
## Feature Description
The thinking budget feature provides three levels of computational effort for reasoning models:
- **`low`**: Fast responses, basic reasoning (default for simple queries)
- **`medium`**: Balanced speed and reasoning depth
- **`high`**: Maximum reasoning effort, best for complex analytical questions
## Implementation Details
### 1. Command Line Interface
Added `--thinking-budget` parameter to both CLI and RAG examples:
```bash
# LEANN CLI
leann ask my-index --llm ollama --model gpt-oss:20b --thinking-budget high
# RAG Examples
python apps/email_rag.py --llm ollama --llm-model gpt-oss:20b --thinking-budget high
python apps/document_rag.py --llm openai --llm-model o3 --thinking-budget medium
```
### 2. LLM Backend Support
#### Ollama Backend (`packages/leann-core/src/leann/chat.py`)
```python
def ask(self, prompt: str, **kwargs) -> str:
# Handle thinking budget for reasoning models
options = kwargs.copy()
thinking_budget = kwargs.get("thinking_budget")
if thinking_budget:
options.pop("thinking_budget", None)
if thinking_budget in ["low", "medium", "high"]:
options["reasoning"] = {"effort": thinking_budget, "exclude": False}
```
**API Format**: Uses Ollama's `reasoning` parameter with `effort` and `exclude` fields.
#### OpenAI Backend (`packages/leann-core/src/leann/chat.py`)
```python
def ask(self, prompt: str, **kwargs) -> str:
# Handle thinking budget for reasoning models
thinking_budget = kwargs.get("thinking_budget")
if thinking_budget and thinking_budget in ["low", "medium", "high"]:
# Check if this is an o-series model
o_series_models = ["o3", "o3-mini", "o4-mini", "o1", "o3-pro", "o3-deep-research"]
if any(model in self.model for model in o_series_models):
params["reasoning_effort"] = thinking_budget
```
**API Format**: Uses OpenAI's `reasoning_effort` parameter for o-series models.
### 3. Parameter Propagation
The thinking budget parameter is properly propagated through the LEANN architecture:
1. **CLI** (`packages/leann-core/src/leann/cli.py`): Captures `--thinking-budget` argument
2. **Base RAG** (`apps/base_rag_example.py`): Adds parameter to argument parser
3. **LeannChat** (`packages/leann-core/src/leann/api.py`): Passes `llm_kwargs` to LLM
4. **LLM Interface**: Handles the parameter in backend-specific implementations
## Files Modified
### Core Implementation
- `packages/leann-core/src/leann/chat.py`: Added thinking budget support to OllamaChat and OpenAIChat
- `packages/leann-core/src/leann/cli.py`: Added `--thinking-budget` argument
- `apps/base_rag_example.py`: Added thinking budget parameter to RAG examples
### Documentation
- `README.md`: Added thinking budget parameter to usage examples
- `docs/configuration-guide.md`: Added detailed documentation and usage guidelines
### Examples
- `examples/thinking_budget_demo.py`: Comprehensive demo script with usage examples
## Usage Examples
### Basic Usage
```bash
# High reasoning effort for complex questions
leann ask my-index --llm ollama --model gpt-oss:20b --thinking-budget high
# Medium reasoning for balanced performance
leann ask my-index --llm openai --model gpt-4o --thinking-budget medium
# Low reasoning for fast responses
leann ask my-index --llm ollama --model gpt-oss:20b --thinking-budget low
```
### RAG Examples
```bash
# Email RAG with high reasoning
python apps/email_rag.py --llm ollama --llm-model gpt-oss:20b --thinking-budget high
# Document RAG with medium reasoning
python apps/document_rag.py --llm openai --llm-model gpt-4o --thinking-budget medium
```
## Supported Models
### Ollama Models
- **GPT-Oss:20b**: Primary target model with reasoning capabilities
- **Other reasoning models**: Any Ollama model that supports the `reasoning` parameter
### OpenAI Models
- **o3, o3-mini, o4-mini, o1**: o-series reasoning models with `reasoning_effort` parameter
- **GPT-OSS models**: Models that support reasoning capabilities
## Testing
The implementation includes comprehensive testing:
- Parameter handling verification
- Backend-specific API format validation
- CLI argument parsing tests
- Integration with existing LEANN architecture

View File

@@ -0,0 +1,98 @@
"""
Comparison between Sentence Transformers and OpenAI embeddings
This example shows how different embedding models handle complex queries
and demonstrates the differences between local and API-based embeddings.
"""
import numpy as np
from leann.embedding_compute import compute_embeddings
# OpenAI API key should be set as environment variable
# export OPENAI_API_KEY="your-api-key-here"
# Test data
conference_text = "[Title]: COLING 2025 Conference\n[URL]: https://coling2025.org/"
browser_text = "[Title]: Browser Use Tool\n[URL]: https://github.com/browser-use"
# Two queries with same intent but different wording
query1 = "Tell me my browser history about some conference i often visit"
query2 = "browser history about conference I often visit"
texts = [query1, query2, conference_text, browser_text]
def cosine_similarity(a, b):
return np.dot(a, b) # Already normalized
def analyze_embeddings(embeddings, model_name):
print(f"\n=== {model_name} Results ===")
# Results for Query 1
sim1_conf = cosine_similarity(embeddings[0], embeddings[2])
sim1_browser = cosine_similarity(embeddings[0], embeddings[3])
print(f"Query 1: '{query1}'")
print(f" → Conference similarity: {sim1_conf:.4f} {'' if sim1_conf > sim1_browser else ''}")
print(
f" → Browser similarity: {sim1_browser:.4f} {'' if sim1_browser > sim1_conf else ''}"
)
print(f" Winner: {'Conference' if sim1_conf > sim1_browser else 'Browser'}")
# Results for Query 2
sim2_conf = cosine_similarity(embeddings[1], embeddings[2])
sim2_browser = cosine_similarity(embeddings[1], embeddings[3])
print(f"\nQuery 2: '{query2}'")
print(f" → Conference similarity: {sim2_conf:.4f} {'' if sim2_conf > sim2_browser else ''}")
print(
f" → Browser similarity: {sim2_browser:.4f} {'' if sim2_browser > sim2_conf else ''}"
)
print(f" Winner: {'Conference' if sim2_conf > sim2_browser else 'Browser'}")
# Show the impact
print("\n=== Impact Analysis ===")
print(f"Conference similarity change: {sim2_conf - sim1_conf:+.4f}")
print(f"Browser similarity change: {sim2_browser - sim1_browser:+.4f}")
if sim1_conf > sim1_browser and sim2_browser > sim2_conf:
print("❌ FLIP: Adding 'browser history' flips winner from Conference to Browser!")
elif sim1_conf > sim1_browser and sim2_conf > sim2_browser:
print("✅ STABLE: Conference remains winner in both queries")
elif sim1_browser > sim1_conf and sim2_browser > sim2_conf:
print("✅ STABLE: Browser remains winner in both queries")
else:
print("🔄 MIXED: Results vary between queries")
return {
"query1_conf": sim1_conf,
"query1_browser": sim1_browser,
"query2_conf": sim2_conf,
"query2_browser": sim2_browser,
}
# Test Sentence Transformers
print("Testing Sentence Transformers (facebook/contriever)...")
try:
st_embeddings = compute_embeddings(texts, "facebook/contriever", mode="sentence-transformers")
st_results = analyze_embeddings(st_embeddings, "Sentence Transformers (facebook/contriever)")
except Exception as e:
print(f"❌ Sentence Transformers failed: {e}")
st_results = None
# Test OpenAI
print("\n" + "=" * 60)
print("Testing OpenAI (text-embedding-3-small)...")
try:
openai_embeddings = compute_embeddings(texts, "text-embedding-3-small", mode="openai")
openai_results = analyze_embeddings(openai_embeddings, "OpenAI (text-embedding-3-small)")
except Exception as e:
print(f"❌ OpenAI failed: {e}")
openai_results = None
# Compare results
if st_results and openai_results:
print("\n" + "=" * 60)
print("=== COMPARISON SUMMARY ===")

300
docs/configuration-guide.md Normal file
View File

@@ -0,0 +1,300 @@
# LEANN Configuration Guide
This guide helps you optimize LEANN for different use cases and understand the trade-offs between various configuration options.
## Getting Started: Simple is Better
When first trying LEANN, start with a small dataset to quickly validate your approach:
**For document RAG**: The default `data/` directory works perfectly - includes 2 AI research papers, Pride and Prejudice literature, and a technical report
```bash
python -m apps.document_rag --query "What techniques does LEANN use?"
```
**For other data sources**: Limit the dataset size for quick testing
```bash
# WeChat: Test with recent messages only
python -m apps.wechat_rag --max-items 100 --query "What did we discuss about the project timeline?"
# Browser history: Last few days
python -m apps.browser_rag --max-items 500 --query "Find documentation about vector databases"
# Email: Recent inbox
python -m apps.email_rag --max-items 200 --query "Who sent updates about the deployment status?"
```
Once validated, scale up gradually:
- 100 documents → 1,000 → 10,000 → full dataset (`--max-items -1`)
- This helps identify issues early before committing to long processing times
## Embedding Model Selection: Understanding the Trade-offs
Based on our experience developing LEANN, embedding models fall into three categories:
### Small Models (< 100M parameters)
**Example**: `sentence-transformers/all-MiniLM-L6-v2` (22M params)
- **Pros**: Lightweight, fast for both indexing and inference
- **Cons**: Lower semantic understanding, may miss nuanced relationships
- **Use when**: Speed is critical, handling simple queries, interactive mode, or just experimenting with LEANN. If time is not a constraint, consider using a larger/better embedding model
### Medium Models (100M-500M parameters)
**Example**: `facebook/contriever` (110M params), `BAAI/bge-base-en-v1.5` (110M params)
- **Pros**: Balanced performance, good multilingual support, reasonable speed
- **Cons**: Requires more compute than small models
- **Use when**: Need quality results without extreme compute requirements, general-purpose RAG applications
### Large Models (500M+ parameters)
**Example**: `Qwen/Qwen3-Embedding-0.6B` (600M params), `intfloat/multilingual-e5-large` (560M params)
- **Pros**: Best semantic understanding, captures complex relationships, excellent multilingual support. **Qwen3-Embedding-0.6B achieves nearly OpenAI API performance!**
- **Cons**: Slower inference, longer index build times
- **Use when**: Quality is paramount and you have sufficient compute resources. **Highly recommended** for production use
### Quick Start: Cloud and Local Embedding Options
**OpenAI Embeddings (Fastest Setup)**
For immediate testing without local model downloads:
```bash
# Set OpenAI embeddings (requires OPENAI_API_KEY)
--embedding-mode openai --embedding-model text-embedding-3-small
```
**Ollama Embeddings (Privacy-Focused)**
For local embeddings with complete privacy:
```bash
# First, pull an embedding model
ollama pull nomic-embed-text
# Use Ollama embeddings
--embedding-mode ollama --embedding-model nomic-embed-text
```
<details>
<summary><strong>Cloud vs Local Trade-offs</strong></summary>
**OpenAI Embeddings** (`text-embedding-3-small/large`)
- **Pros**: No local compute needed, consistently fast, high quality
- **Cons**: Requires API key, costs money, data leaves your system, [known limitations with certain languages](https://yichuan-w.github.io/blog/lessons_learned_in_dev_leann/)
- **When to use**: Prototyping, non-sensitive data, need immediate results
**Local Embeddings**
- **Pros**: Complete privacy, no ongoing costs, full control, can sometimes outperform OpenAI embeddings
- **Cons**: Slower than cloud APIs, requires local compute resources
- **When to use**: Production systems, sensitive data, cost-sensitive applications
</details>
## Index Selection: Matching Your Scale
### HNSW (Hierarchical Navigable Small World)
**Best for**: Small to medium datasets (< 10M vectors) - **Default and recommended for extreme low storage**
- Full recomputation required
- High memory usage during build phase
- Excellent recall (95%+)
```bash
# Optimal for most use cases
--backend-name hnsw --graph-degree 32 --build-complexity 64
```
### DiskANN
**Best for**: Performance-critical applications and large datasets - **Production-ready with automatic graph partitioning**
**How it works:**
- **Product Quantization (PQ) + Real-time Reranking**: Uses compressed PQ codes for fast graph traversal, then recomputes exact embeddings for final candidates
- **Automatic Graph Partitioning**: When `is_recompute=True`, automatically partitions large indices and safely removes redundant files to save storage
- **Superior Speed-Accuracy Trade-off**: Faster search than HNSW while maintaining high accuracy
**Trade-offs compared to HNSW:**
-**Faster search latency** (typically 2-8x speedup)
-**Better scaling** for large datasets
-**Smart storage management** with automatic partitioning
-**Better graph locality** with `--ldg-times` parameter for SSD optimization
- ⚠️ **Slightly larger index size** due to PQ tables and graph metadata
```bash
# Recommended for most use cases
--backend-name diskann --graph-degree 32 --build-complexity 64
# For large-scale deployments
--backend-name diskann --graph-degree 64 --build-complexity 128
```
**Performance Benchmark**: Run `python benchmarks/diskann_vs_hnsw_speed_comparison.py` to compare DiskANN and HNSW on your system.
## LLM Selection: Engine and Model Comparison
### LLM Engines
**OpenAI** (`--llm openai`)
- **Pros**: Best quality, consistent performance, no local resources needed
- **Cons**: Costs money ($0.15-2.5 per million tokens), requires internet, data privacy concerns
- **Models**: `gpt-4o-mini` (fast, cheap), `gpt-4o` (best quality), `o3` (reasoning), `o3-mini` (reasoning, cheaper)
- **Thinking Budget**: Use `--thinking-budget low/medium/high` for o-series reasoning models (o3, o3-mini, o4-mini)
- **Note**: Our current default, but we recommend switching to Ollama for most use cases
**Ollama** (`--llm ollama`)
- **Pros**: Fully local, free, privacy-preserving, good model variety
- **Cons**: Requires local GPU/CPU resources, slower than cloud APIs, need to install extra [ollama app](https://github.com/ollama/ollama?tab=readme-ov-file#ollama) and pre-download models by `ollama pull`
- **Models**: `qwen3:0.6b` (ultra-fast), `qwen3:1.7b` (balanced), `qwen3:4b` (good quality), `qwen3:7b` (high quality), `deepseek-r1:1.5b` (reasoning)
- **Thinking Budget**: Use `--thinking-budget low/medium/high` for reasoning models like GPT-Oss:20b
**HuggingFace** (`--llm hf`)
- **Pros**: Free tier available, huge model selection, direct model loading (vs Ollama's server-based approach)
- **Cons**: More complex initial setup
- **Models**: `Qwen/Qwen3-1.7B-FP8`
## Parameter Tuning Guide
### Search Complexity Parameters
**`--build-complexity`** (index building)
- Controls thoroughness during index construction
- Higher = better recall but slower build
- Recommendations:
- 32: Quick prototyping
- 64: Balanced (default)
- 128: Production systems
- 256: Maximum quality
**`--search-complexity`** (query time)
- Controls search thoroughness
- Higher = better results but slower
- Recommendations:
- 16: Fast/Interactive search
- 32: High quality with diversity
- 64+: Maximum accuracy
### Top-K Selection
**`--top-k`** (number of retrieved chunks)
- More chunks = better context but slower LLM processing
- Should be always smaller than `--search-complexity`
- Guidelines:
- 10-20: General questions (default: 20)
- 30+: Complex multi-hop reasoning requiring comprehensive context
**Trade-off formula**:
- Retrieval time ∝ log(n) × search_complexity
- LLM processing time ∝ top_k × chunk_size
- Total context = top_k × chunk_size tokens
### Thinking Budget for Reasoning Models
**`--thinking-budget`** (reasoning effort level)
- Controls the computational effort for reasoning models
- Options: `low`, `medium`, `high`
- Guidelines:
- `low`: Fast responses, basic reasoning (default for simple queries)
- `medium`: Balanced speed and reasoning depth
- `high`: Maximum reasoning effort, best for complex analytical questions
- **Supported Models**:
- **Ollama**: `gpt-oss:20b`, `gpt-oss:120b`
- **OpenAI**: `o3`, `o3-mini`, `o4-mini`, `o1` (o-series reasoning models)
- **Note**: Models without reasoning support will show a warning and proceed without reasoning parameters
- **Example**: `--thinking-budget high` for complex analytical questions
**📖 For detailed usage examples and implementation details, check out [Thinking Budget Documentation](THINKING_BUDGET_FEATURE.md)**
**💡 Quick Examples:**
```bash
# OpenAI o-series reasoning model
python apps/document_rag.py --query "What are the main techniques LEANN explores?" \
--index-dir hnswbuild --backend hnsw \
--llm openai --llm-model o3 --thinking-budget medium
# Ollama reasoning model
python apps/document_rag.py --query "What are the main techniques LEANN explores?" \
--index-dir hnswbuild --backend hnsw \
--llm ollama --llm-model gpt-oss:20b --thinking-budget high
```
### Graph Degree (HNSW/DiskANN)
**`--graph-degree`**
- Number of connections per node in the graph
- Higher = better recall but more memory
- HNSW: 16-32 (default: 32)
- DiskANN: 32-128 (default: 64)
## Performance Optimization Checklist
### If Embedding is Too Slow
1. **Switch to smaller model**:
```bash
# From large model
--embedding-model Qwen/Qwen3-Embedding-0.6B
# To small model
--embedding-model sentence-transformers/all-MiniLM-L6-v2
```
2. **Limit dataset size for testing**:
```bash
--max-items 1000 # Process first 1k items only
```
3. **Use MLX on Apple Silicon** (optional optimization):
```bash
--embedding-mode mlx --embedding-model mlx-community/Qwen3-Embedding-0.6B-8bit
```
MLX might not be the best choice, as we tested and found that it only offers 1.3x acceleration compared to HF, so maybe using ollama is a better choice for embedding generation
4. **Use Ollama**
```bash
--embedding-mode ollama --embedding-model nomic-embed-text
```
To discover additional embedding models in ollama, check out https://ollama.com/search?c=embedding or read more about embedding models at https://ollama.com/blog/embedding-models, please do check the model size that works best for you
### If Search Quality is Poor
1. **Increase retrieval count**:
```bash
--top-k 30 # Retrieve more candidates
```
2. **Upgrade embedding model**:
```bash
# For English
--embedding-model BAAI/bge-base-en-v1.5
# For multilingual
--embedding-model intfloat/multilingual-e5-large
```
## Understanding the Trade-offs
Every configuration choice involves trade-offs:
| Factor | Small/Fast | Large/Quality |
|--------|------------|---------------|
| Embedding Model | `all-MiniLM-L6-v2` | `Qwen/Qwen3-Embedding-0.6B` |
| Chunk Size | 512 tokens | 128 tokens |
| Index Type | HNSW | DiskANN |
| LLM | `qwen3:1.7b` | `gpt-4o` |
The key is finding the right balance for your specific use case. Start small and simple, measure performance, then scale up only where needed.
## Deep Dive: Critical Configuration Decisions
### When to Disable Recomputation
LEANN's recomputation feature provides exact distance calculations but can be disabled for extreme QPS requirements:
```bash
--no-recompute # Disable selective recomputation
```
**Trade-offs**:
- **With recomputation** (default): Exact distances, best quality, higher latency, minimal storage (only stores metadata, recomputes embeddings on-demand)
- **Without recomputation**: Must store full embeddings, significantly higher memory and storage usage (10-100x more), but faster search
**Disable when**:
- You have abundant storage and memory
- Need extremely low latency (< 100ms)
- Running a read-heavy workload where storage cost is acceptable
## Further Reading
- [Lessons Learned Developing LEANN](https://yichuan-w.github.io/blog/lessons_learned_in_dev_leann/)
- [LEANN Technical Paper](https://arxiv.org/abs/2506.08276)
- [DiskANN Original Paper](https://papers.nips.cc/paper/2019/file/09853c7fb1d3f8ee67a61b6bf4a7f8e6-Paper.pdf)
- [SSD-based Graph Partitioning](https://github.com/SonglinLife/SSD_BASED_PLAN)

10
docs/faq.md Normal file
View File

@@ -0,0 +1,10 @@
# FAQ
## 1. My building time seems long
You can speed up the process by using a lightweight embedding model. Add this to your arguments:
```bash
--embedding-model sentence-transformers/all-MiniLM-L6-v2
```
**Model sizes:** `all-MiniLM-L6-v2` (30M parameters), `facebook/contriever` (~100M parameters), `Qwen3-0.6B` (600M parameters)

22
docs/features.md Normal file
View File

@@ -0,0 +1,22 @@
# ✨ Detailed Features
## 🔥 Core Features
- **🔄 Real-time Embeddings** - Eliminate heavy embedding storage with dynamic computation using optimized ZMQ servers and highly optimized search paradigm (overlapping and batching) with highly optimized embedding engine
- **📈 Scalable Architecture** - Handles millions of documents on consumer hardware; the larger your dataset, the more LEANN can save
- **🎯 Graph Pruning** - Advanced techniques to minimize the storage overhead of vector search to a limited footprint
- **🏗️ Pluggable Backends** - HNSW/FAISS (default), with optional DiskANN for large-scale deployments
## 🛠️ Technical Highlights
- **🔄 Recompute Mode** - Highest accuracy scenarios while eliminating vector storage overhead
- **⚡ Zero-copy Operations** - Minimize IPC overhead by transferring distances instead of embeddings
- **🚀 High-throughput Embedding Pipeline** - Optimized batched processing for maximum efficiency
- **🎯 Two-level Search** - Novel coarse-to-fine search overlap for accelerated query processing (optional)
- **💾 Memory-mapped Indices** - Fast startup with raw text mapping to reduce memory overhead
- **🚀 MLX Support** - Ultra-fast recompute/build with quantized embedding models, accelerating building and search ([minimal example](../examples/mlx_demo.py))
## 🎨 Developer Experience
- **Simple Python API** - Get started in minutes
- **Extensible backend system** - Easy to add new algorithms
- **Comprehensive examples** - From basic usage to production deployment

View File

@@ -0,0 +1,75 @@
# Normalized Embeddings Support in LEANN
LEANN now automatically detects normalized embedding models and sets the appropriate distance metric for optimal performance.
## What are Normalized Embeddings?
Normalized embeddings are vectors with L2 norm = 1 (unit vectors). These embeddings are optimized for cosine similarity rather than Maximum Inner Product Search (MIPS).
## Automatic Detection
When you create a `LeannBuilder` instance with a normalized embedding model, LEANN will:
1. **Automatically set `distance_metric="cosine"`** if not specified
2. **Show a warning** if you manually specify a different distance metric
3. **Provide optimal search performance** with the correct metric
## Supported Normalized Embedding Models
### OpenAI
All OpenAI text embedding models are normalized:
- `text-embedding-ada-002`
- `text-embedding-3-small`
- `text-embedding-3-large`
### Voyage AI
All Voyage AI embedding models are normalized:
- `voyage-2`
- `voyage-3`
- `voyage-large-2`
- `voyage-multilingual-2`
- `voyage-code-2`
### Cohere
All Cohere embedding models are normalized:
- `embed-english-v3.0`
- `embed-multilingual-v3.0`
- `embed-english-light-v3.0`
- `embed-multilingual-light-v3.0`
## Example Usage
```python
from leann.api import LeannBuilder
# Automatic detection - will use cosine distance
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="text-embedding-3-small",
embedding_mode="openai"
)
# Warning: Detected normalized embeddings model 'text-embedding-3-small'...
# Automatically setting distance_metric='cosine'
# Manual override (not recommended)
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="text-embedding-3-small",
embedding_mode="openai",
distance_metric="mips" # Will show warning
)
# Warning: Using 'mips' distance metric with normalized embeddings...
```
## Non-Normalized Embeddings
Models like `facebook/contriever` and other sentence-transformers models that are not normalized will continue to use MIPS by default, which is optimal for them.
## Why This Matters
Using the wrong distance metric with normalized embeddings can lead to:
- **Poor search quality** due to HNSW's early termination with narrow score ranges
- **Incorrect ranking** of search results
- **Suboptimal performance** compared to using the correct metric
For more details on why this happens, see our analysis in the [embedding detection code](../packages/leann-core/src/leann/api.py) which automatically handles normalized embeddings and MIPS distance metric issues.

21
docs/roadmap.md Normal file
View File

@@ -0,0 +1,21 @@
# 📈 Roadmap
## 🎯 Q2 2025
- [X] HNSW backend integration
- [X] DiskANN backend with MIPS/L2/Cosine support
- [X] Real-time embedding pipeline
- [X] Memory-efficient graph pruning
## 🚀 Q3 2025
- [ ] Advanced caching strategies
- [ ] Add contextual-retrieval https://www.anthropic.com/news/contextual-retrieval
- [ ] Add sleep-time-compute and summarize agent! to summarilze the file on computer!
- [ ] Add OpenAI recompute API
## 🌟 Q4 2025
- [ ] Integration with LangChain/LlamaIndex
- [ ] Visual similarity search
- [ ] Query rewrtiting, rerank and expansion

View File

@@ -1,21 +1,28 @@
"""
Simple demo showing basic leann usage
Run: uv run python examples/simple_demo.py
Run: uv run python examples/basic_demo.py
"""
import argparse
from leann import LeannBuilder, LeannSearcher, LeannChat
from leann import LeannBuilder, LeannChat, LeannSearcher
def main():
parser = argparse.ArgumentParser(description="Simple demo of Leann with selectable embedding models.")
parser.add_argument("--embedding_model", type=str, default="sentence-transformers/all-mpnet-base-v2",
help="The embedding model to use, e.g., 'sentence-transformers/all-mpnet-base-v2' or 'text-embedding-ada-002'.")
parser = argparse.ArgumentParser(
description="Simple demo of Leann with selectable embedding models."
)
parser.add_argument(
"--embedding_model",
type=str,
default="sentence-transformers/all-mpnet-base-v2",
help="The embedding model to use, e.g., 'sentence-transformers/all-mpnet-base-v2' or 'text-embedding-ada-002'.",
)
args = parser.parse_args()
print(f"=== Leann Simple Demo with {args.embedding_model} ===")
print()
# Sample knowledge base
chunks = [
"Machine learning is a subset of artificial intelligence that enables computers to learn without being explicitly programmed.",
@@ -27,7 +34,7 @@ def main():
"Big data refers to extremely large datasets that require special tools and techniques to process.",
"Cloud computing provides on-demand access to computing resources over the internet.",
]
print("1. Building index (no embeddings stored)...")
builder = LeannBuilder(
embedding_model=args.embedding_model,
@@ -37,45 +44,45 @@ def main():
builder.add_text(chunk)
builder.build_index("demo_knowledge.leann")
print()
print("2. Searching with real-time embeddings...")
searcher = LeannSearcher("demo_knowledge.leann")
queries = [
"What is machine learning?",
"How does neural network work?",
"How does neural network work?",
"Tell me about data processing",
]
for query in queries:
print(f"Query: {query}")
results = searcher.search(query, top_k=2)
for i, result in enumerate(results, 1):
print(f" {i}. Score: {result.score:.3f}")
print(f" Text: {result.text[:100]}...")
print()
print("3. Interactive chat demo:")
print(" (Note: Requires OpenAI API key for real responses)")
chat = LeannChat("demo_knowledge.leann")
# Demo questions
demo_questions: list[str] = [
"What is the difference between machine learning and deep learning?",
"How is data science related to big data?",
]
for question in demo_questions:
print(f" Q: {question}")
response = chat.ask(question)
print(f" A: {response}")
print()
print("Demo completed! Try running:")
print(" uv run python examples/document_search.py")
print(" uv run python apps/document_rag.py")
if __name__ == "__main__":
main()
main()

View File

@@ -1,146 +0,0 @@
#!/usr/bin/env python3
"""
Document search demo with recompute mode
"""
import os
from pathlib import Path
import shutil
import time
# Import backend packages to trigger plugin registration
try:
import leann_backend_diskann
import leann_backend_hnsw
print("INFO: Backend packages imported successfully.")
except ImportError as e:
print(f"WARNING: Could not import backend packages. Error: {e}")
# Import upper-level API from leann-core
from leann.api import LeannBuilder, LeannSearcher, LeannChat
def load_sample_documents():
"""Create sample documents for demonstration"""
docs = [
{"title": "Intro to Python", "content": "Python is a high-level, interpreted language known for simplicity."},
{"title": "ML Basics", "content": "Machine learning builds systems that learn from data."},
{"title": "Data Structures", "content": "Data structures like arrays, lists, and graphs organize data."},
]
return docs
def main():
print("==========================================================")
print("=== Leann Document Search Demo (DiskANN + Recompute) ===")
print("==========================================================")
INDEX_DIR = Path("./test_indices")
INDEX_PATH = str(INDEX_DIR / "documents.diskann")
BACKEND_TO_TEST = "diskann"
if INDEX_DIR.exists():
print(f"--- Cleaning up old index directory: {INDEX_DIR} ---")
shutil.rmtree(INDEX_DIR)
# --- 1. Build index ---
print(f"\n[PHASE 1] Building index using '{BACKEND_TO_TEST}' backend...")
builder = LeannBuilder(
backend_name=BACKEND_TO_TEST,
graph_degree=32,
complexity=64
)
documents = load_sample_documents()
print(f"Loaded {len(documents)} sample documents.")
for doc in documents:
builder.add_text(doc["content"], metadata={"title": doc["title"]})
builder.build_index(INDEX_PATH)
print(f"\nIndex built!")
# --- 2. Basic search demo ---
print(f"\n[PHASE 2] Basic search using '{BACKEND_TO_TEST}' backend...")
searcher = LeannSearcher(index_path=INDEX_PATH)
query = "What is machine learning?"
print(f"\nQuery: '{query}'")
print("\n--- Basic search mode (PQ computation) ---")
start_time = time.time()
results = searcher.search(query, top_k=2)
basic_time = time.time() - start_time
print(f"⏱️ Basic search time: {basic_time:.3f} seconds")
print(">>> Basic search results <<<")
for i, res in enumerate(results, 1):
print(f" {i}. ID: {res.id}, Score: {res.score:.4f}, Text: '{res.text}', Metadata: {res.metadata}")
# --- 3. Recompute search demo ---
print(f"\n[PHASE 3] Recompute search using embedding server...")
print("\n--- Recompute search mode (get real embeddings via network) ---")
# Configure recompute parameters
recompute_params = {
"recompute_beighbor_embeddings": True, # Enable network recomputation
"USE_DEFERRED_FETCH": False, # Don't use deferred fetch
"skip_search_reorder": True, # Skip search reordering
"dedup_node_dis": True, # Enable node distance deduplication
"prune_ratio": 0.1, # Pruning ratio 10%
"batch_recompute": False, # Don't use batch recomputation
"global_pruning": False, # Don't use global pruning
"zmq_port": 5555, # ZMQ port
"embedding_model": "sentence-transformers/all-mpnet-base-v2"
}
print("Recompute parameter configuration:")
for key, value in recompute_params.items():
print(f" {key}: {value}")
print(f"\n🔄 Executing Recompute search...")
try:
start_time = time.time()
recompute_results = searcher.search(query, top_k=2, **recompute_params)
recompute_time = time.time() - start_time
print(f"⏱️ Recompute search time: {recompute_time:.3f} seconds")
print(">>> Recompute search results <<<")
for i, res in enumerate(recompute_results, 1):
print(f" {i}. ID: {res.id}, Score: {res.score:.4f}, Text: '{res.text}', Metadata: {res.metadata}")
# Compare results
print(f"\n--- Result comparison ---")
print(f"Basic search time: {basic_time:.3f} seconds")
print(f"Recompute time: {recompute_time:.3f} seconds")
print("\nBasic search vs Recompute results:")
for i in range(min(len(results), len(recompute_results))):
basic_score = results[i].score
recompute_score = recompute_results[i].score
score_diff = abs(basic_score - recompute_score)
print(f" Position {i+1}: PQ={basic_score:.4f}, Recompute={recompute_score:.4f}, Difference={score_diff:.4f}")
if recompute_time > basic_time:
print(f"✅ Recompute mode working correctly (more accurate but slower)")
else:
print(f" Recompute time is unusually fast, network recomputation may not be enabled")
except Exception as e:
print(f"❌ Recompute search failed: {e}")
print("This usually indicates an embedding server connection issue")
# --- 4. Chat demo ---
print(f"\n[PHASE 4] Starting chat session...")
chat = LeannChat(index_path=INDEX_PATH)
chat_response = chat.ask(query)
print(f"You: {query}")
print(f"Leann: {chat_response}")
print("\n==========================================================")
print("✅ Demo finished successfully!")
print("==========================================================")
if __name__ == "__main__":
main()

View File

@@ -1,122 +0,0 @@
import os
import email
from pathlib import Path
from typing import List, Any
from llama_index.core import Document
from llama_index.core.readers.base import BaseReader
def find_all_messages_directories(root: str = None) -> List[Path]:
"""
Recursively find all 'Messages' directories under the given root.
Returns a list of Path objects.
"""
if root is None:
# Auto-detect user's mail path
home_dir = os.path.expanduser("~")
root = os.path.join(home_dir, "Library", "Mail")
messages_dirs = []
for dirpath, dirnames, filenames in os.walk(root):
if os.path.basename(dirpath) == "Messages":
messages_dirs.append(Path(dirpath))
return messages_dirs
class EmlxReader(BaseReader):
"""
Apple Mail .emlx file reader with embedded metadata.
Reads individual .emlx files from Apple Mail's storage format.
"""
def __init__(self, include_html: bool = False) -> None:
"""
Initialize.
Args:
include_html: Whether to include HTML content in the email body (default: False)
"""
self.include_html = include_html
def load_data(self, input_dir: str, **load_kwargs: Any) -> List[Document]:
"""
Load data from the input directory containing .emlx files.
Args:
input_dir: Directory containing .emlx files
**load_kwargs:
max_count (int): Maximum amount of messages to read.
"""
docs: List[Document] = []
max_count = load_kwargs.get('max_count', 1000)
count = 0
# Walk through the directory recursively
for dirpath, dirnames, filenames in os.walk(input_dir):
# Skip hidden directories
dirnames[:] = [d for d in dirnames if not d.startswith(".")]
for filename in filenames:
if count >= max_count:
break
if filename.endswith(".emlx"):
filepath = os.path.join(dirpath, filename)
try:
# Read the .emlx file
with open(filepath, 'r', encoding='utf-8', errors='ignore') as f:
content = f.read()
# .emlx files have a length prefix followed by the email content
# The first line contains the length, followed by the email
lines = content.split('\n', 1)
if len(lines) >= 2:
email_content = lines[1]
# Parse the email using Python's email module
try:
msg = email.message_from_string(email_content)
# Extract email metadata
subject = msg.get('Subject', 'No Subject')
from_addr = msg.get('From', 'Unknown')
to_addr = msg.get('To', 'Unknown')
date = msg.get('Date', 'Unknown')
# Extract email body
body = ""
if msg.is_multipart():
for part in msg.walk():
if part.get_content_type() == "text/plain" or part.get_content_type() == "text/html":
if part.get_content_type() == "text/html" and not self.include_html:
continue
body += part.get_payload(decode=True).decode('utf-8', errors='ignore')
# break
else:
body = msg.get_payload(decode=True).decode('utf-8', errors='ignore')
# Create document content with metadata embedded in text
doc_content = f"""
[File]: {filename}
[From]: {from_addr}
[To]: {to_addr}
[Subject]: {subject}
[Date]: {date}
[EMAIL BODY Start]:
{body}
"""
# No separate metadata - everything is in the text
doc = Document(text=doc_content, metadata={})
docs.append(doc)
count += 1
except Exception as e:
print(f"Error parsing email from {filepath}: {e}")
continue
except Exception as e:
print(f"Error reading file {filepath}: {e}")
continue
print(f"Loaded {len(docs)} email documents")
return docs

View File

@@ -1,285 +0,0 @@
import os
import asyncio
import argparse
try:
import dotenv
dotenv.load_dotenv()
except ModuleNotFoundError:
# python-dotenv is not installed; skip loading environment variables
dotenv = None
from pathlib import Path
from typing import List, Any
from leann.api import LeannBuilder, LeannSearcher, LeannChat
from llama_index.core.node_parser import SentenceSplitter
# dotenv.load_dotenv() # handled above if python-dotenv is available
# Default Chrome profile path
DEFAULT_CHROME_PROFILE = os.path.expanduser("~/Library/Application Support/Google/Chrome/Default")
def create_leann_index_from_multiple_chrome_profiles(profile_dirs: List[Path], index_path: str = "chrome_history_index.leann", max_count: int = -1):
"""
Create LEANN index from multiple Chrome profile data sources.
Args:
profile_dirs: List of Path objects pointing to Chrome profile directories
index_path: Path to save the LEANN index
max_count: Maximum number of history entries to process per profile
"""
print("Creating LEANN index from multiple Chrome profile data sources...")
# Load documents using ChromeHistoryReader from history_data
from history_data.history import ChromeHistoryReader
reader = ChromeHistoryReader()
INDEX_DIR = Path(index_path).parent
if not INDEX_DIR.exists():
print(f"--- Index directory not found, building new index ---")
all_documents = []
total_processed = 0
# Process each Chrome profile directory
for i, profile_dir in enumerate(profile_dirs):
print(f"\nProcessing Chrome profile {i+1}/{len(profile_dirs)}: {profile_dir}")
try:
documents = reader.load_data(
chrome_profile_path=str(profile_dir),
max_count=max_count
)
if documents:
print(f"Loaded {len(documents)} history documents from {profile_dir}")
all_documents.extend(documents)
total_processed += len(documents)
# Check if we've reached the max count
if max_count > 0 and total_processed >= max_count:
print(f"Reached max count of {max_count} documents")
break
else:
print(f"No documents loaded from {profile_dir}")
except Exception as e:
print(f"Error processing {profile_dir}: {e}")
continue
if not all_documents:
print("No documents loaded from any source. Exiting.")
# highlight info that you need to close all chrome browser before running this script and high light the instruction!!
print("\033[91mYou need to close or quit all chrome browser before running this script\033[0m")
return None
print(f"\nTotal loaded {len(all_documents)} history documents from {len(profile_dirs)} profiles")
# Create text splitter with 256 chunk size
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=128)
# Convert Documents to text strings and chunk them
all_texts = []
for doc in all_documents:
# Split the document into chunks
nodes = text_splitter.get_nodes_from_documents([doc])
for node in nodes:
text = node.get_content()
# text = '[Title] ' + doc.metadata["title"] + '\n' + text
all_texts.append(text)
print(f"Created {len(all_texts)} text chunks from {len(all_documents)} documents")
# Create LEANN index directory
print(f"--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print(f"--- Building new LEANN index ---")
print(f"\n[PHASE 1] Building Leann index...")
# Use HNSW backend for better macOS compatibility
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="facebook/contriever",
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1 # Force single-threaded mode
)
print(f"Adding {len(all_texts)} history chunks to index...")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(index_path)
print(f"\nLEANN index built at {index_path}!")
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
return index_path
def create_leann_index(profile_path: str = None, index_path: str = "chrome_history_index.leann", max_count: int = 1000):
"""
Create LEANN index from Chrome history data.
Args:
profile_path: Path to the Chrome profile directory (optional, uses default if None)
index_path: Path to save the LEANN index
max_count: Maximum number of history entries to process
"""
print("Creating LEANN index from Chrome history data...")
INDEX_DIR = Path(index_path).parent
if not INDEX_DIR.exists():
print(f"--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print(f"--- Building new LEANN index ---")
print(f"\n[PHASE 1] Building Leann index...")
# Load documents using ChromeHistoryReader from history_data
from history_data.history import ChromeHistoryReader
reader = ChromeHistoryReader()
documents = reader.load_data(
chrome_profile_path=profile_path,
max_count=max_count
)
if not documents:
print("No documents loaded. Exiting.")
return None
print(f"Loaded {len(documents)} history documents")
# Create text splitter with 256 chunk size
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25)
# Convert Documents to text strings and chunk them
all_texts = []
for doc in documents:
# Split the document into chunks
nodes = text_splitter.get_nodes_from_documents([doc])
for node in nodes:
all_texts.append(node.get_content())
print(f"Created {len(all_texts)} text chunks from {len(documents)} documents")
# Create LEANN index directory
print(f"--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print(f"--- Building new LEANN index ---")
print(f"\n[PHASE 1] Building Leann index...")
# Use HNSW backend for better macOS compatibility
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="facebook/contriever",
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1 # Force single-threaded mode
)
print(f"Adding {len(all_texts)} history chunks to index...")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(index_path)
print(f"\nLEANN index built at {index_path}!")
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
return index_path
async def query_leann_index(index_path: str, query: str):
"""
Query the LEANN index.
Args:
index_path: Path to the LEANN index
query: The query string
"""
print(f"\n[PHASE 2] Starting Leann chat session...")
chat = LeannChat(index_path=index_path)
print(f"You: {query}")
chat_response = chat.ask(
query,
top_k=10,
recompute_beighbor_embeddings=True,
complexity=32,
beam_width=1,
llm_config={
"type": "openai",
"model": "gpt-4o",
"api_key": os.getenv("OPENAI_API_KEY"),
},
llm_kwargs={
"temperature": 0.0,
"max_tokens": 1000
}
)
print(f"Leann: {chat_response}")
async def main():
# Parse command line arguments
parser = argparse.ArgumentParser(description='LEANN Chrome History Reader - Create and query browser history index')
parser.add_argument('--chrome-profile', type=str, default=DEFAULT_CHROME_PROFILE,
help=f'Path to Chrome profile directory (default: {DEFAULT_CHROME_PROFILE}), usually you dont need to change this')
parser.add_argument('--index-dir', type=str, default="./all_google_new",
help='Directory to store the LEANN index (default: ./chrome_history_index_leann_test)')
parser.add_argument('--max-entries', type=int, default=1000,
help='Maximum number of history entries to process (default: 1000)')
parser.add_argument('--query', type=str, default=None,
help='Single query to run (default: runs example queries)')
parser.add_argument('--auto-find-profiles', action='store_true', default=True,
help='Automatically find all Chrome profiles (default: True)')
args = parser.parse_args()
INDEX_DIR = Path(args.index_dir)
INDEX_PATH = str(INDEX_DIR / "chrome_history.leann")
print(f"Using Chrome profile: {args.chrome_profile}")
print(f"Index directory: {INDEX_DIR}")
print(f"Max entries: {args.max_entries}")
# Find Chrome profile directories
from history_data.history import ChromeHistoryReader
if args.auto_find_profiles:
profile_dirs = ChromeHistoryReader.find_chrome_profiles()
if not profile_dirs:
print("No Chrome profiles found automatically. Exiting.")
return
else:
# Use single specified profile
profile_path = Path(args.chrome_profile)
if not profile_path.exists():
print(f"Chrome profile not found: {profile_path}")
return
profile_dirs = [profile_path]
# Create or load the LEANN index from all sources
index_path = create_leann_index_from_multiple_chrome_profiles(profile_dirs, INDEX_PATH, args.max_entries)
if index_path:
if args.query:
# Run single query
await query_leann_index(index_path, args.query)
else:
# Example queries
queries = [
"What websites did I visit about machine learning?",
"Find my search history about programming"
]
for query in queries:
print("\n" + "="*60)
await query_leann_index(index_path, query)
if __name__ == "__main__":
asyncio.run(main())

View File

@@ -1,290 +0,0 @@
import os
import sys
import asyncio
import dotenv
import argparse
from pathlib import Path
from typing import List, Any
# Add the project root to Python path so we can import from examples
project_root = Path(__file__).parent.parent
sys.path.insert(0, str(project_root))
from leann.api import LeannBuilder, LeannSearcher, LeannChat
from llama_index.core.node_parser import SentenceSplitter
dotenv.load_dotenv()
# Auto-detect user's mail path
def get_mail_path():
"""Get the mail path for the current user"""
home_dir = os.path.expanduser("~")
return os.path.join(home_dir, "Library", "Mail")
# Default mail path for macOS
DEFAULT_MAIL_PATH = "/Users/yichuan/Library/Mail/V10/0FCA0879-FD8C-4B7E-83BF-FDDA930791C5/[Gmail].mbox/All Mail.mbox/78BA5BE1-8819-4F9A-9613-EB63772F1DD0/Data"
def create_leann_index_from_multiple_sources(messages_dirs: List[Path], index_path: str = "mail_index.leann", max_count: int = -1, include_html: bool = False, embedding_model: str = "facebook/contriever"):
"""
Create LEANN index from multiple mail data sources.
Args:
messages_dirs: List of Path objects pointing to Messages directories
index_path: Path to save the LEANN index
max_count: Maximum number of emails to process per directory
include_html: Whether to include HTML content in email processing
"""
print("Creating LEANN index from multiple mail data sources...")
# Load documents using EmlxReader from LEANN_email_reader
from examples.email_data.LEANN_email_reader import EmlxReader
reader = EmlxReader(include_html=include_html)
# from email_data.email import EmlxMboxReader
# from pathlib import Path
# reader = EmlxMboxReader()
INDEX_DIR = Path(index_path).parent
if not INDEX_DIR.exists():
print(f"--- Index directory not found, building new index ---")
all_documents = []
total_processed = 0
# Process each Messages directory
for i, messages_dir in enumerate(messages_dirs):
print(f"\nProcessing Messages directory {i+1}/{len(messages_dirs)}: {messages_dir}")
try:
documents = reader.load_data(messages_dir)
if documents:
print(f"Loaded {len(documents)} email documents from {messages_dir}")
all_documents.extend(documents)
total_processed += len(documents)
# Check if we've reached the max count
if max_count > 0 and total_processed >= max_count:
print(f"Reached max count of {max_count} documents")
break
else:
print(f"No documents loaded from {messages_dir}")
except Exception as e:
print(f"Error processing {messages_dir}: {e}")
continue
if not all_documents:
print("No documents loaded from any source. Exiting.")
return None
print(f"\nTotal loaded {len(all_documents)} email documents from {len(messages_dirs)} directories and starting to split them into chunks")
# Create text splitter with 256 chunk size
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25)
# Convert Documents to text strings and chunk them
all_texts = []
for doc in all_documents:
# Split the document into chunks
nodes = text_splitter.get_nodes_from_documents([doc])
for node in nodes:
text = node.get_content()
# text = '[subject] ' + doc.metadata["subject"] + '\n' + text
all_texts.append(text)
print(f"Finished splitting {len(all_documents)} documents into {len(all_texts)} text chunks")
# Create LEANN index directory
print(f"--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print(f"--- Building new LEANN index ---")
print(f"\n[PHASE 1] Building Leann index...")
# Use HNSW backend for better macOS compatibility
builder = LeannBuilder(
backend_name="hnsw",
embedding_model=embedding_model,
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1 # Force single-threaded mode
)
print(f"Adding {len(all_texts)} email chunks to index...")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(index_path)
print(f"\nLEANN index built at {index_path}!")
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
return index_path
def create_leann_index(mail_path: str, index_path: str = "mail_index.leann", max_count: int = 1000, include_html: bool = False, embedding_model: str = "facebook/contriever"):
"""
Create LEANN index from mail data.
Args:
mail_path: Path to the mail directory
index_path: Path to save the LEANN index
max_count: Maximum number of emails to process
include_html: Whether to include HTML content in email processing
"""
print("Creating LEANN index from mail data...")
INDEX_DIR = Path(index_path).parent
if not INDEX_DIR.exists():
print(f"--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print(f"--- Building new LEANN index ---")
print(f"\n[PHASE 1] Building Leann index...")
# Load documents using EmlxReader from LEANN_email_reader
from examples.email_data.LEANN_email_reader import EmlxReader
reader = EmlxReader(include_html=include_html)
# from email_data.email import EmlxMboxReader
# from pathlib import Path
# reader = EmlxMboxReader()
documents = reader.load_data(Path(mail_path))
if not documents:
print("No documents loaded. Exiting.")
return None
print(f"Loaded {len(documents)} email documents")
# Create text splitter with 256 chunk size
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=128)
# Convert Documents to text strings and chunk them
all_texts = []
for doc in documents:
# Split the document into chunks
nodes = text_splitter.get_nodes_from_documents([doc])
for node in nodes:
all_texts.append(node.get_content())
print(f"Created {len(all_texts)} text chunks from {len(documents)} documents")
# Create LEANN index directory
print(f"--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print(f"--- Building new LEANN index ---")
print(f"\n[PHASE 1] Building Leann index...")
# Use HNSW backend for better macOS compatibility
builder = LeannBuilder(
backend_name="hnsw",
embedding_model=embedding_model,
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1 # Force single-threaded mode
)
print(f"Adding {len(all_texts)} email chunks to index...")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(index_path)
print(f"\nLEANN index built at {index_path}!")
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
return index_path
async def query_leann_index(index_path: str, query: str):
"""
Query the LEANN index.
Args:
index_path: Path to the LEANN index
query: The query string
"""
print(f"\n[PHASE 2] Starting Leann chat session...")
chat = LeannChat(index_path=index_path,
llm_config={"type": "openai", "model": "gpt-4o"})
print(f"You: {query}")
import time
start_time = time.time()
chat_response = chat.ask(
query,
top_k=20,
recompute_beighbor_embeddings=True,
complexity=32,
beam_width=1,
)
end_time = time.time()
print(f"Time taken: {end_time - start_time} seconds")
print(f"Leann: {chat_response}")
async def main():
# Parse command line arguments
parser = argparse.ArgumentParser(description='LEANN Mail Reader - Create and query email index')
# Remove --mail-path argument and auto-detect all Messages directories
# Remove DEFAULT_MAIL_PATH
parser.add_argument('--index-dir', type=str, default="./mail_index_index_file",
help='Directory to store the LEANN index (default: ./mail_index_leann_raw_text_all_dicts)')
parser.add_argument('--max-emails', type=int, default=1000,
help='Maximum number of emails to process (-1 means all)')
parser.add_argument('--query', type=str, default="Give me some funny advertisement about apple or other companies",
help='Single query to run (default: runs example queries)')
parser.add_argument('--include-html', action='store_true', default=False,
help='Include HTML content in email processing (default: False)')
parser.add_argument('--embedding-model', type=str, default="facebook/contriever",
help='Embedding model to use (default: facebook/contriever)')
args = parser.parse_args()
print(f"args: {args}")
# Automatically find all Messages directories under the current user's Mail directory
from examples.email_data.LEANN_email_reader import find_all_messages_directories
mail_path = get_mail_path()
print(f"Searching for email data in: {mail_path}")
messages_dirs = find_all_messages_directories(mail_path)
# messages_dirs = find_all_messages_directories(DEFAULT_MAIL_PATH)
# messages_dirs = [DEFAULT_MAIL_PATH]
# messages_dirs = messages_dirs[:1]
print('len(messages_dirs): ', len(messages_dirs))
if not messages_dirs:
print("No Messages directories found. Exiting.")
return
INDEX_DIR = Path(args.index_dir)
INDEX_PATH = str(INDEX_DIR / "mail_documents.leann")
print(f"Index directory: {INDEX_DIR}")
print(f"Found {len(messages_dirs)} Messages directories.")
# Create or load the LEANN index from all sources
index_path = create_leann_index_from_multiple_sources(messages_dirs, INDEX_PATH, args.max_emails, args.include_html, args.embedding_model)
if index_path:
if args.query:
# Run single query
await query_leann_index(index_path, args.query)
else:
# Example queries
queries = [
"Hows Berkeley Graduate Student Instructor",
"how's the icloud related advertisement saying",
"Whats the number of class recommend to take per semester for incoming EECS students"
]
for query in queries:
print("\n" + "="*60)
await query_leann_index(index_path, query)
if __name__ == "__main__":
asyncio.run(main())

View File

@@ -1,108 +0,0 @@
import os
import sys
import argparse
from pathlib import Path
from typing import List, Any
# Add the project root to Python path so we can import from examples
project_root = Path(__file__).parent.parent
sys.path.insert(0, str(project_root))
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.core.node_parser import SentenceSplitter
# --- EMBEDDING MODEL ---
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
import torch
# --- END EMBEDDING MODEL ---
# Import EmlxReader from the new module
from examples.email_data.LEANN_email_reader import EmlxReader
def create_and_save_index(mail_path: str, save_dir: str = "mail_index_embedded", max_count: int = 1000, include_html: bool = False):
print("Creating index from mail data with embedded metadata...")
documents = EmlxReader(include_html=include_html).load_data(mail_path, max_count=max_count)
if not documents:
print("No documents loaded. Exiting.")
return None
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25)
# Use facebook/contriever as the embedder
embed_model = HuggingFaceEmbedding(model_name="facebook/contriever")
# set on device
import torch
if torch.cuda.is_available():
embed_model._model.to("cuda")
# set mps
elif torch.backends.mps.is_available():
embed_model._model.to("mps")
else:
embed_model._model.to("cpu")
index = VectorStoreIndex.from_documents(
documents,
transformations=[text_splitter],
embed_model=embed_model
)
os.makedirs(save_dir, exist_ok=True)
index.storage_context.persist(persist_dir=save_dir)
print(f"Index saved to {save_dir}")
return index
def load_index(save_dir: str = "mail_index_embedded"):
try:
storage_context = StorageContext.from_defaults(persist_dir=save_dir)
index = VectorStoreIndex.from_vector_store(
storage_context.vector_store,
storage_context=storage_context
)
print(f"Index loaded from {save_dir}")
return index
except Exception as e:
print(f"Error loading index: {e}")
return None
def query_index(index, query: str):
if index is None:
print("No index available for querying.")
return
query_engine = index.as_query_engine()
response = query_engine.query(query)
print(f"Query: {query}")
print(f"Response: {response}")
def main():
# Parse command line arguments
parser = argparse.ArgumentParser(description='LlamaIndex Mail Reader - Create and query email index')
parser.add_argument('--mail-path', type=str,
default="/Users/yichuan/Library/Mail/V10/0FCA0879-FD8C-4B7E-83BF-FDDA930791C5/[Gmail].mbox/All Mail.mbox/78BA5BE1-8819-4F9A-9613-EB63772F1DD0/Data/9/Messages",
help='Path to mail data directory')
parser.add_argument('--save-dir', type=str, default="mail_index_embedded",
help='Directory to store the index (default: mail_index_embedded)')
parser.add_argument('--max-emails', type=int, default=10000,
help='Maximum number of emails to process')
parser.add_argument('--include-html', action='store_true', default=False,
help='Include HTML content in email processing (default: False)')
args = parser.parse_args()
mail_path = args.mail_path
save_dir = args.save_dir
if os.path.exists(save_dir) and os.path.exists(os.path.join(save_dir, "vector_store.json")):
print("Loading existing index...")
index = load_index(save_dir)
else:
print("Creating new index...")
index = create_and_save_index(mail_path, save_dir, max_count=args.max_emails, include_html=args.include_html)
if index:
queries = [
"Hows Berkeley Graduate Student Instructor",
"how's the icloud related advertisement saying",
"Whats the number of class recommend to take per semester for incoming EECS students"
]
for query in queries:
print("\n" + "="*50)
query_index(index, query)
if __name__ == "__main__":
main()

View File

@@ -1,115 +0,0 @@
import argparse
from llama_index.core import SimpleDirectoryReader
from llama_index.core.node_parser import SentenceSplitter
import asyncio
import dotenv
from leann.api import LeannBuilder, LeannChat
from pathlib import Path
dotenv.load_dotenv()
async def main(args):
INDEX_DIR = Path(args.index_dir)
INDEX_PATH = str(INDEX_DIR / "pdf_documents.leann")
if not INDEX_DIR.exists():
node_parser = SentenceSplitter(
chunk_size=256, chunk_overlap=128, separator=" ", paragraph_separator="\n\n"
)
print("Loading documents...")
documents = SimpleDirectoryReader(
args.data_dir,
recursive=True,
encoding="utf-8",
required_exts=[".pdf", ".txt", ".md"],
).load_data(show_progress=True)
print("Documents loaded.")
all_texts = []
for doc in documents:
nodes = node_parser.get_nodes_from_documents([doc])
for node in nodes:
all_texts.append(node.get_content())
print("--- Index directory not found, building new index ---")
print("\n[PHASE 1] Building Leann index...")
# Use HNSW backend for better macOS compatibility
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="facebook/contriever",
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1, # Force single-threaded mode
)
print(f"Loaded {len(all_texts)} text chunks from documents.")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(INDEX_PATH)
print(f"\nLeann index built at {INDEX_PATH}!")
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
print(f"\n[PHASE 2] Starting Leann chat session...")
llm_config = {"type": "hf", "model": "Qwen/Qwen3-4B"}
llm_config = {"type": "ollama", "model": "qwen3:8b"}
llm_config = {"type": "openai", "model": "gpt-4o"}
chat = LeannChat(index_path=INDEX_PATH, llm_config=llm_config)
query = "Based on the paper, what are the main techniques LEANN explores to reduce the storage overhead and DLPM explore to achieve Fairness and Efiiciency trade-off?"
# query = (
# "什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发"
# )
print(f"You: {query}")
chat_response = chat.ask(query, top_k=20, recompute_embeddings=True, complexity=32)
print(f"Leann: {chat_response}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Run Leann Chat with various LLM backends."
)
parser.add_argument(
"--llm",
type=str,
default="hf",
choices=["simulated", "ollama", "hf", "openai"],
help="The LLM backend to use.",
)
parser.add_argument(
"--model",
type=str,
default="Qwen/Qwen3-0.6B",
help="The model name to use (e.g., 'llama3:8b' for ollama, 'deepseek-ai/deepseek-llm-7b-chat' for hf, 'gpt-4o' for openai).",
)
parser.add_argument(
"--host",
type=str,
default="http://localhost:11434",
help="The host for the Ollama API.",
)
parser.add_argument(
"--index-dir",
type=str,
default="./test_doc_files",
help="Directory where the Leann index will be stored.",
)
parser.add_argument(
"--data-dir",
type=str,
default="examples/data",
help="Directory containing documents to index (PDF, TXT, MD files).",
)
args = parser.parse_args()
asyncio.run(main(args))

View File

@@ -1,5 +1,6 @@
import os
from leann.api import LeannBuilder, LeannSearcher, LeannChat
from leann.api import LeannBuilder, LeannChat
# Define the path for our new MLX-based index
INDEX_PATH = "./mlx_diskann_index/leann"
@@ -38,7 +39,5 @@ chat = LeannChat(index_path=INDEX_PATH)
# add query
query = "MLX is an array framework for machine learning on Apple silicon."
print(f"Query: {query}")
response = chat.ask(
query, top_k=3, recompute_beighbor_embeddings=True, complexity=3, beam_width=1
)
response = chat.ask(query, top_k=3, recompute_beighbor_embeddings=True, complexity=3, beam_width=1)
print(f"Response: {response}")

View File

@@ -1,319 +0,0 @@
#!/usr/bin/env python3
"""
Multi-Vector Aggregator for Fat Embeddings
==========================================
This module implements aggregation strategies for multi-vector embeddings,
similar to ColPali's approach where multiple patch vectors represent a single document.
Key features:
- MaxSim aggregation (take maximum similarity across patches)
- Voting-based aggregation (count patch matches)
- Weighted aggregation (attention-score weighted)
- Spatial clustering of matching patches
- Document-level result consolidation
"""
import numpy as np
from typing import List, Dict, Any, Tuple, Optional
from dataclasses import dataclass
from collections import defaultdict
import json
@dataclass
class PatchResult:
"""Represents a single patch search result."""
patch_id: int
image_name: str
image_path: str
coordinates: Tuple[int, int, int, int] # (x1, y1, x2, y2)
score: float
attention_score: float
scale: float
metadata: Dict[str, Any]
@dataclass
class AggregatedResult:
"""Represents an aggregated document-level result."""
image_name: str
image_path: str
doc_score: float
patch_count: int
best_patch: PatchResult
all_patches: List[PatchResult]
aggregation_method: str
spatial_clusters: Optional[List[List[PatchResult]]] = None
class MultiVectorAggregator:
"""
Aggregates multiple patch-level results into document-level results.
"""
def __init__(self,
aggregation_method: str = "maxsim",
spatial_clustering: bool = True,
cluster_distance_threshold: float = 100.0):
"""
Initialize the aggregator.
Args:
aggregation_method: "maxsim", "voting", "weighted", or "mean"
spatial_clustering: Whether to cluster spatially close patches
cluster_distance_threshold: Distance threshold for spatial clustering
"""
self.aggregation_method = aggregation_method
self.spatial_clustering = spatial_clustering
self.cluster_distance_threshold = cluster_distance_threshold
def aggregate_results(self,
search_results: List[Dict[str, Any]],
top_k: int = 10) -> List[AggregatedResult]:
"""
Aggregate patch-level search results into document-level results.
Args:
search_results: List of search results from LeannSearcher
top_k: Number of top documents to return
Returns:
List of aggregated document results
"""
# Group results by image
image_groups = defaultdict(list)
for result in search_results:
metadata = result.metadata
if "image_name" in metadata and "patch_id" in metadata:
patch_result = PatchResult(
patch_id=metadata["patch_id"],
image_name=metadata["image_name"],
image_path=metadata["image_path"],
coordinates=tuple(metadata["coordinates"]),
score=result.score,
attention_score=metadata.get("attention_score", 0.0),
scale=metadata.get("scale", 1.0),
metadata=metadata
)
image_groups[metadata["image_name"]].append(patch_result)
# Aggregate each image group
aggregated_results = []
for image_name, patches in image_groups.items():
if len(patches) == 0:
continue
agg_result = self._aggregate_image_patches(image_name, patches)
aggregated_results.append(agg_result)
# Sort by aggregated score and return top-k
aggregated_results.sort(key=lambda x: x.doc_score, reverse=True)
return aggregated_results[:top_k]
def _aggregate_image_patches(self, image_name: str, patches: List[PatchResult]) -> AggregatedResult:
"""Aggregate patches for a single image."""
if self.aggregation_method == "maxsim":
doc_score = max(patch.score for patch in patches)
best_patch = max(patches, key=lambda p: p.score)
elif self.aggregation_method == "voting":
# Count patches above threshold
threshold = np.percentile([p.score for p in patches], 75)
doc_score = sum(1 for patch in patches if patch.score >= threshold)
best_patch = max(patches, key=lambda p: p.score)
elif self.aggregation_method == "weighted":
# Weight by attention scores
total_weighted_score = sum(p.score * p.attention_score for p in patches)
total_weights = sum(p.attention_score for p in patches)
doc_score = total_weighted_score / max(total_weights, 1e-8)
best_patch = max(patches, key=lambda p: p.score * p.attention_score)
elif self.aggregation_method == "mean":
doc_score = np.mean([patch.score for patch in patches])
best_patch = max(patches, key=lambda p: p.score)
else:
raise ValueError(f"Unknown aggregation method: {self.aggregation_method}")
# Spatial clustering if enabled
spatial_clusters = None
if self.spatial_clustering:
spatial_clusters = self._cluster_patches_spatially(patches)
return AggregatedResult(
image_name=image_name,
image_path=patches[0].image_path,
doc_score=float(doc_score),
patch_count=len(patches),
best_patch=best_patch,
all_patches=sorted(patches, key=lambda p: p.score, reverse=True),
aggregation_method=self.aggregation_method,
spatial_clusters=spatial_clusters
)
def _cluster_patches_spatially(self, patches: List[PatchResult]) -> List[List[PatchResult]]:
"""Cluster patches that are spatially close to each other."""
if len(patches) <= 1:
return [patches]
clusters = []
remaining_patches = patches.copy()
while remaining_patches:
# Start new cluster with highest scoring remaining patch
seed_patch = max(remaining_patches, key=lambda p: p.score)
current_cluster = [seed_patch]
remaining_patches.remove(seed_patch)
# Add nearby patches to cluster
added_to_cluster = True
while added_to_cluster:
added_to_cluster = False
for patch in remaining_patches.copy():
if self._is_patch_nearby(patch, current_cluster):
current_cluster.append(patch)
remaining_patches.remove(patch)
added_to_cluster = True
clusters.append(current_cluster)
return sorted(clusters, key=lambda cluster: max(p.score for p in cluster), reverse=True)
def _is_patch_nearby(self, patch: PatchResult, cluster: List[PatchResult]) -> bool:
"""Check if a patch is spatially close to any patch in the cluster."""
patch_center = self._get_patch_center(patch.coordinates)
for cluster_patch in cluster:
cluster_center = self._get_patch_center(cluster_patch.coordinates)
distance = np.sqrt((patch_center[0] - cluster_center[0])**2 +
(patch_center[1] - cluster_center[1])**2)
if distance <= self.cluster_distance_threshold:
return True
return False
def _get_patch_center(self, coordinates: Tuple[int, int, int, int]) -> Tuple[float, float]:
"""Get center point of a patch."""
x1, y1, x2, y2 = coordinates
return ((x1 + x2) / 2, (y1 + y2) / 2)
def print_aggregated_results(self, results: List[AggregatedResult], max_patches_per_doc: int = 3):
"""Pretty print aggregated results."""
print(f"\n🔍 Aggregated Results (method: {self.aggregation_method})")
print("=" * 80)
for i, result in enumerate(results):
print(f"\n{i+1}. {result.image_name}")
print(f" Doc Score: {result.doc_score:.4f} | Patches: {result.patch_count}")
print(f" Path: {result.image_path}")
# Show best patch
best = result.best_patch
print(f" 🌟 Best Patch: #{best.patch_id} at {best.coordinates} (score: {best.score:.4f})")
# Show top patches
print(f" 📍 Top Patches:")
for j, patch in enumerate(result.all_patches[:max_patches_per_doc]):
print(f" {j+1}. Patch #{patch.patch_id}: {patch.score:.4f} at {patch.coordinates}")
# Show spatial clusters if available
if result.spatial_clusters and len(result.spatial_clusters) > 1:
print(f" 🗂️ Spatial Clusters: {len(result.spatial_clusters)}")
for j, cluster in enumerate(result.spatial_clusters[:2]): # Show top 2 clusters
cluster_score = max(p.score for p in cluster)
print(f" Cluster {j+1}: {len(cluster)} patches (best: {cluster_score:.4f})")
def demo_aggregation():
"""Demonstrate the multi-vector aggregation functionality."""
print("=== Multi-Vector Aggregation Demo ===")
# Simulate some patch-level search results
# In real usage, these would come from LeannSearcher.search()
class MockResult:
def __init__(self, score, metadata):
self.score = score
self.metadata = metadata
# Simulate results for 2 images with multiple patches each
mock_results = [
# Image 1: cats_and_kitchen.jpg - 4 patches
MockResult(0.85, {
"image_name": "cats_and_kitchen.jpg",
"image_path": "/path/to/cats_and_kitchen.jpg",
"patch_id": 3,
"coordinates": [100, 50, 224, 174], # Kitchen area
"attention_score": 0.92,
"scale": 1.0
}),
MockResult(0.78, {
"image_name": "cats_and_kitchen.jpg",
"image_path": "/path/to/cats_and_kitchen.jpg",
"patch_id": 7,
"coordinates": [200, 300, 324, 424], # Cat area
"attention_score": 0.88,
"scale": 1.0
}),
MockResult(0.72, {
"image_name": "cats_and_kitchen.jpg",
"image_path": "/path/to/cats_and_kitchen.jpg",
"patch_id": 12,
"coordinates": [150, 100, 274, 224], # Appliances
"attention_score": 0.75,
"scale": 1.0
}),
MockResult(0.65, {
"image_name": "cats_and_kitchen.jpg",
"image_path": "/path/to/cats_and_kitchen.jpg",
"patch_id": 15,
"coordinates": [50, 250, 174, 374], # Furniture
"attention_score": 0.70,
"scale": 1.0
}),
# Image 2: city_street.jpg - 3 patches
MockResult(0.68, {
"image_name": "city_street.jpg",
"image_path": "/path/to/city_street.jpg",
"patch_id": 2,
"coordinates": [300, 100, 424, 224], # Buildings
"attention_score": 0.80,
"scale": 1.0
}),
MockResult(0.62, {
"image_name": "city_street.jpg",
"image_path": "/path/to/city_street.jpg",
"patch_id": 8,
"coordinates": [100, 350, 224, 474], # Street level
"attention_score": 0.75,
"scale": 1.0
}),
MockResult(0.55, {
"image_name": "city_street.jpg",
"image_path": "/path/to/city_street.jpg",
"patch_id": 11,
"coordinates": [400, 200, 524, 324], # Sky area
"attention_score": 0.60,
"scale": 1.0
}),
]
# Test different aggregation methods
methods = ["maxsim", "voting", "weighted", "mean"]
for method in methods:
print(f"\n{'='*20} {method.upper()} AGGREGATION {'='*20}")
aggregator = MultiVectorAggregator(
aggregation_method=method,
spatial_clustering=True,
cluster_distance_threshold=100.0
)
aggregated = aggregator.aggregate_results(mock_results, top_k=5)
aggregator.print_aggregated_results(aggregated)
if __name__ == "__main__":
demo_aggregation()

View File

@@ -1,108 +0,0 @@
#!/usr/bin/env python3
"""
OpenAI Embedding Example
Complete example showing how to build and search with OpenAI embeddings using HNSW backend.
"""
import os
import dotenv
from pathlib import Path
from leann.api import LeannBuilder, LeannSearcher
# Load environment variables
dotenv.load_dotenv()
def main():
# Check if OpenAI API key is available
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
print("ERROR: OPENAI_API_KEY environment variable not set")
return False
print(f"✅ OpenAI API key found: {api_key[:10]}...")
# Sample texts
sample_texts = [
"Machine learning is a powerful technology that enables computers to learn from data.",
"Natural language processing helps computers understand and generate human language.",
"Deep learning uses neural networks with multiple layers to solve complex problems.",
"Computer vision allows machines to interpret and understand visual information.",
"Reinforcement learning trains agents to make decisions through trial and error.",
"Data science combines statistics, math, and programming to extract insights from data.",
"Artificial intelligence aims to create machines that can perform human-like tasks.",
"Python is a popular programming language used extensively in data science and AI.",
"Neural networks are inspired by the structure and function of the human brain.",
"Big data refers to extremely large datasets that require special tools to process."
]
INDEX_DIR = Path("./simple_openai_test_index")
INDEX_PATH = str(INDEX_DIR / "simple_test.leann")
print(f"\n=== Building Index with OpenAI Embeddings ===")
print(f"Index path: {INDEX_PATH}")
try:
# Use proper configuration for OpenAI embeddings
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="text-embedding-3-small",
embedding_mode="openai",
# HNSW settings for OpenAI embeddings
M=16, # Smaller graph degree
efConstruction=64, # Smaller construction complexity
is_compact=True, # Enable compact storage for recompute
is_recompute=True, # MUST enable for OpenAI embeddings
num_threads=1,
)
print(f"Adding {len(sample_texts)} texts to the index...")
for i, text in enumerate(sample_texts):
metadata = {"id": f"doc_{i}", "topic": "AI"}
builder.add_text(text, metadata)
print("Building index...")
builder.build_index(INDEX_PATH)
print(f"✅ Index built successfully!")
except Exception as e:
print(f"❌ Error building index: {e}")
import traceback
traceback.print_exc()
return False
print(f"\n=== Testing Search ===")
try:
searcher = LeannSearcher(INDEX_PATH)
test_queries = [
"What is machine learning?",
"How do neural networks work?",
"Programming languages for data science"
]
for query in test_queries:
print(f"\n🔍 Query: '{query}'")
results = searcher.search(query, top_k=3)
print(f" Found {len(results)} results:")
for i, result in enumerate(results):
print(f" {i+1}. Score: {result.score:.4f}")
print(f" Text: {result.text[:80]}...")
print(f"\n✅ Search test completed successfully!")
return True
except Exception as e:
print(f"❌ Error during search: {e}")
import traceback
traceback.print_exc()
return False
if __name__ == "__main__":
success = main()
if success:
print(f"\n🎉 Simple OpenAI index test completed successfully!")
else:
print(f"\n💥 Simple OpenAI index test failed!")

View File

@@ -1,18 +0,0 @@
import asyncio
from leann.api import LeannChat
from pathlib import Path
INDEX_DIR = Path("./test_pdf_index_huawei")
INDEX_PATH = str(INDEX_DIR / "pdf_documents.leann")
async def main():
print(f"\n[PHASE 2] Starting Leann chat session...")
chat = LeannChat(index_path=INDEX_PATH)
query = "What is the main idea of RL and give me 5 exapmle of classic RL algorithms?"
query = "Based on the paper, what are the main techniques LEANN explores to reduce the storage overhead and DLPM explore to achieve Fairness and Efiiciency trade-off?"
# query = "什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发"
response = chat.ask(query,top_k=20,recompute_beighbor_embeddings=True,complexity=32,beam_width=1)
print(f"\n[PHASE 2] Response: {response}")
if __name__ == "__main__":
asyncio.run(main())

View File

@@ -1,319 +0,0 @@
import os
import asyncio
import dotenv
import argparse
from pathlib import Path
from typing import List, Any, Optional
from leann.api import LeannBuilder, LeannSearcher, LeannChat
from llama_index.core.node_parser import SentenceSplitter
import requests
import time
dotenv.load_dotenv()
# Default WeChat export directory
DEFAULT_WECHAT_EXPORT_DIR = "./wechat_export_direct"
def create_leann_index_from_multiple_wechat_exports(
export_dirs: List[Path],
index_path: str = "wechat_history_index.leann",
max_count: int = -1,
):
"""
Create LEANN index from multiple WeChat export data sources.
Args:
export_dirs: List of Path objects pointing to WeChat export directories
index_path: Path to save the LEANN index
max_count: Maximum number of chat entries to process per export
"""
print("Creating LEANN index from multiple WeChat export data sources...")
# Load documents using WeChatHistoryReader from history_data
from history_data.wechat_history import WeChatHistoryReader
reader = WeChatHistoryReader()
INDEX_DIR = Path(index_path).parent
if not INDEX_DIR.exists():
print(f"--- Index directory not found, building new index ---")
all_documents = []
total_processed = 0
# Process each WeChat export directory
for i, export_dir in enumerate(export_dirs):
print(
f"\nProcessing WeChat export {i + 1}/{len(export_dirs)}: {export_dir}"
)
try:
documents = reader.load_data(
wechat_export_dir=str(export_dir),
max_count=max_count,
concatenate_messages=True, # Disable concatenation - one message per document
)
if documents:
print(f"Loaded {len(documents)} chat documents from {export_dir}")
all_documents.extend(documents)
total_processed += len(documents)
# Check if we've reached the max count
if max_count > 0 and total_processed >= max_count:
print(f"Reached max count of {max_count} documents")
break
else:
print(f"No documents loaded from {export_dir}")
except Exception as e:
print(f"Error processing {export_dir}: {e}")
continue
if not all_documents:
print("No documents loaded from any source. Exiting.")
return None
print(
f"\nTotal loaded {len(all_documents)} chat documents from {len(export_dirs)} exports and starting to split them into chunks"
)
# Create text splitter with 256 chunk size
text_splitter = SentenceSplitter(chunk_size=192, chunk_overlap=64)
# Convert Documents to text strings and chunk them
all_texts = []
for doc in all_documents:
# Split the document into chunks
nodes = text_splitter.get_nodes_from_documents([doc])
for node in nodes:
text = '[Contact] means the message is from: ' + doc.metadata["contact_name"] + '\n' + node.get_content()
all_texts.append(text)
print(
f"Finished splitting {len(all_documents)} documents into {len(all_texts)} text chunks"
)
# Create LEANN index directory
print(f"--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print(f"--- Building new LEANN index ---")
print(f"\n[PHASE 1] Building Leann index...")
# Use HNSW backend for better macOS compatibility
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="Qwen/Qwen3-Embedding-0.6B",
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1, # Force single-threaded mode
)
print(f"Adding {len(all_texts)} chat chunks to index...")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(index_path)
print(f"\nLEANN index built at {index_path}!")
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
return index_path
def create_leann_index(
export_dir: str = None,
index_path: str = "wechat_history_index.leann",
max_count: int = 1000,
):
"""
Create LEANN index from WeChat chat history data.
Args:
export_dir: Path to the WeChat export directory (optional, uses default if None)
index_path: Path to save the LEANN index
max_count: Maximum number of chat entries to process
"""
print("Creating LEANN index from WeChat chat history data...")
INDEX_DIR = Path(index_path).parent
if not INDEX_DIR.exists():
print(f"--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print(f"--- Building new LEANN index ---")
print(f"\n[PHASE 1] Building Leann index...")
# Load documents using WeChatHistoryReader from history_data
from history_data.wechat_history import WeChatHistoryReader
reader = WeChatHistoryReader()
documents = reader.load_data(
wechat_export_dir=export_dir,
max_count=max_count,
concatenate_messages=False, # Disable concatenation - one message per document
)
if not documents:
print("No documents loaded. Exiting.")
return None
print(f"Loaded {len(documents)} chat documents")
# Create text splitter with 256 chunk size
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25)
# Convert Documents to text strings and chunk them
all_texts = []
for doc in documents:
# Split the document into chunks
nodes = text_splitter.get_nodes_from_documents([doc])
for node in nodes:
all_texts.append(node.get_content())
print(f"Created {len(all_texts)} text chunks from {len(documents)} documents")
# Create LEANN index directory
print(f"--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print(f"--- Building new LEANN index ---")
print(f"\n[PHASE 1] Building Leann index...")
# Use HNSW backend for better macOS compatibility
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="mlx-community/Qwen3-Embedding-0.6B-4bit-DWQ", # MLX-optimized model
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1, # Force single-threaded mode
)
print(f"Adding {len(all_texts)} chat chunks to index...")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(index_path)
print(f"\nLEANN index built at {index_path}!")
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
return index_path
async def query_leann_index(index_path: str, query: str):
"""
Query the LEANN index.
Args:
index_path: Path to the LEANN index
query: The query string
"""
print(f"\n[PHASE 2] Starting Leann chat session...")
chat = LeannChat(index_path=index_path)
print(f"You: {query}")
chat_response = chat.ask(
query,
top_k=20,
recompute_beighbor_embeddings=True,
complexity=16,
beam_width=1,
llm_config={
"type": "openai",
"model": "gpt-4o",
"api_key": os.getenv("OPENAI_API_KEY"),
},
llm_kwargs={"temperature": 0.0, "max_tokens": 1000},
)
print(f"Leann: {chat_response}")
async def main():
"""Main function with integrated WeChat export functionality."""
# Parse command line arguments
parser = argparse.ArgumentParser(
description="LEANN WeChat History Reader - Create and query WeChat chat history index"
)
parser.add_argument(
"--export-dir",
type=str,
default=DEFAULT_WECHAT_EXPORT_DIR,
help=f"Directory to store WeChat exports (default: {DEFAULT_WECHAT_EXPORT_DIR})",
)
parser.add_argument(
"--index-dir",
type=str,
default="./wechat_history_magic_test_11Debug_new",
help="Directory to store the LEANN index (default: ./wechat_history_index_leann_test)",
)
parser.add_argument(
"--max-entries",
type=int,
default=50,
help="Maximum number of chat entries to process (default: 5000)",
)
parser.add_argument(
"--query",
type=str,
default=None,
help="Single query to run (default: runs example queries)",
)
parser.add_argument(
"--force-export",
action="store_true",
default=False,
help="Force re-export of WeChat data even if exports exist",
)
args = parser.parse_args()
INDEX_DIR = Path(args.index_dir)
INDEX_PATH = str(INDEX_DIR / "wechat_history.leann")
print(f"Using WeChat export directory: {args.export_dir}")
print(f"Index directory: {INDEX_DIR}")
print(f"Max entries: {args.max_entries}")
# Initialize WeChat reader with export capabilities
from history_data.wechat_history import WeChatHistoryReader
reader = WeChatHistoryReader()
# Find existing exports or create new ones using the centralized method
export_dirs = reader.find_or_export_wechat_data(args.export_dir)
if not export_dirs:
print("Failed to find or export WeChat data. Exiting.")
return
# Create or load the LEANN index from all sources
index_path = create_leann_index_from_multiple_wechat_exports(
export_dirs, INDEX_PATH, max_count=args.max_entries
)
if index_path:
if args.query:
# Run single query
await query_leann_index(index_path, args.query)
else:
# Example queries
queries = [
"我想买魔术师约翰逊的球衣,给我一些对应聊天记录?",
]
for query in queries:
print("\n" + "=" * 60)
await query_leann_index(index_path, query)
if __name__ == "__main__":
asyncio.run(main())

View File

@@ -1 +0,0 @@

View File

@@ -1 +1 @@
# This file makes the directory a Python package
# This file makes the directory a Python package

View File

@@ -1 +1,7 @@
from . import diskann_backend
from . import diskann_backend as diskann_backend
from . import graph_partition
# Export main classes and functions
from .graph_partition import GraphPartitioner, partition_graph
__all__ = ["GraphPartitioner", "diskann_backend", "graph_partition", "partition_graph"]

View File

@@ -1,20 +1,20 @@
import numpy as np
import contextlib
import logging
import os
import struct
import sys
from pathlib import Path
from typing import Dict, Any, List, Literal, Optional
import contextlib
from typing import Any, Literal, Optional
import logging
from leann.searcher_base import BaseSearcher
from leann.registry import register_backend
import numpy as np
import psutil
from leann.interface import (
LeannBackendFactoryInterface,
LeannBackendBuilderInterface,
LeannBackendFactoryInterface,
LeannBackendSearcherInterface,
)
from leann.registry import register_backend
from leann.searcher_base import BaseSearcher
logger = logging.getLogger(__name__)
@@ -85,6 +85,43 @@ def _write_vectors_to_bin(data: np.ndarray, file_path: Path):
f.write(data.tobytes())
def _calculate_smart_memory_config(data: np.ndarray) -> tuple[float, float]:
"""
Calculate smart memory configuration for DiskANN based on data size and system specs.
Args:
data: The embedding data array
Returns:
tuple: (search_memory_maximum, build_memory_maximum) in GB
"""
num_vectors, dim = data.shape
# Calculate embedding storage size
embedding_size_bytes = num_vectors * dim * 4 # float32 = 4 bytes
embedding_size_gb = embedding_size_bytes / (1024**3)
# search_memory_maximum: 1/10 of embedding size for optimal PQ compression
# This controls Product Quantization size - smaller means more compression
search_memory_gb = max(0.1, embedding_size_gb / 10) # At least 100MB
# build_memory_maximum: Based on available system RAM for sharding control
# This controls how much memory DiskANN uses during index construction
available_memory_gb = psutil.virtual_memory().available / (1024**3)
total_memory_gb = psutil.virtual_memory().total / (1024**3)
# Use 50% of available memory, but at least 2GB and at most 75% of total
build_memory_gb = max(2.0, min(available_memory_gb * 0.5, total_memory_gb * 0.75))
logger.info(
f"Smart memory config - Data: {embedding_size_gb:.2f}GB, "
f"Search mem: {search_memory_gb:.2f}GB (PQ control), "
f"Build mem: {build_memory_gb:.2f}GB (sharding control)"
)
return search_memory_gb, build_memory_gb
@register_backend("diskann")
class DiskannBackend(LeannBackendFactoryInterface):
@staticmethod
@@ -100,7 +137,72 @@ class DiskannBuilder(LeannBackendBuilderInterface):
def __init__(self, **kwargs):
self.build_params = kwargs
def build(self, data: np.ndarray, ids: List[str], index_path: str, **kwargs):
def _safe_cleanup_after_partition(self, index_dir: Path, index_prefix: str):
"""
Safely cleanup files after partition.
In partition mode, C++ doesn't read _disk.index content,
so we can delete it if all derived files exist.
"""
disk_index_file = index_dir / f"{index_prefix}_disk.index"
beam_search_file = index_dir / f"{index_prefix}_disk_beam_search.index"
# Required files that C++ partition mode needs
# Note: C++ generates these with _disk.index suffix
disk_suffix = "_disk.index"
required_files = [
f"{index_prefix}{disk_suffix}_medoids.bin", # Critical: assert fails if missing
# Note: _centroids.bin is not created in single-shot build - C++ handles this automatically
f"{index_prefix}_pq_pivots.bin", # PQ table
f"{index_prefix}_pq_compressed.bin", # PQ compressed vectors
]
# Check if all required files exist
missing_files = []
for filename in required_files:
file_path = index_dir / filename
if not file_path.exists():
missing_files.append(filename)
if missing_files:
logger.warning(
f"Cannot safely delete _disk.index - missing required files: {missing_files}"
)
logger.info("Keeping all original files for safety")
return
# Calculate space savings
space_saved = 0
files_to_delete = []
if disk_index_file.exists():
space_saved += disk_index_file.stat().st_size
files_to_delete.append(disk_index_file)
if beam_search_file.exists():
space_saved += beam_search_file.stat().st_size
files_to_delete.append(beam_search_file)
# Safe to delete!
for file_to_delete in files_to_delete:
try:
os.remove(file_to_delete)
logger.info(f"✅ Safely deleted: {file_to_delete.name}")
except Exception as e:
logger.warning(f"Failed to delete {file_to_delete.name}: {e}")
if space_saved > 0:
space_saved_mb = space_saved / (1024 * 1024)
logger.info(f"💾 Space saved: {space_saved_mb:.1f} MB")
# Show what files are kept
logger.info("📁 Kept essential files for partition mode:")
for filename in required_files:
file_path = index_dir / filename
if file_path.exists():
size_mb = file_path.stat().st_size / (1024 * 1024)
logger.info(f" - {filename} ({size_mb:.1f} MB)")
def build(self, data: np.ndarray, ids: list[str], index_path: str, **kwargs):
path = Path(index_path)
index_dir = path.parent
index_prefix = path.stem
@@ -114,6 +216,17 @@ class DiskannBuilder(LeannBackendBuilderInterface):
_write_vectors_to_bin(data, index_dir / data_filename)
build_kwargs = {**self.build_params, **kwargs}
# Extract is_recompute from nested backend_kwargs if needed
is_recompute = build_kwargs.get("is_recompute", False)
if not is_recompute and "backend_kwargs" in build_kwargs:
is_recompute = build_kwargs["backend_kwargs"].get("is_recompute", False)
# Flatten all backend_kwargs parameters to top level for compatibility
if "backend_kwargs" in build_kwargs:
nested_params = build_kwargs.pop("backend_kwargs")
build_kwargs.update(nested_params)
metric_enum = _get_diskann_metrics().get(
build_kwargs.get("distance_metric", "mips").lower()
)
@@ -122,6 +235,16 @@ class DiskannBuilder(LeannBackendBuilderInterface):
f"Unsupported distance_metric '{build_kwargs.get('distance_metric', 'unknown')}'."
)
# Calculate smart memory configuration if not explicitly provided
if (
"search_memory_maximum" not in build_kwargs
or "build_memory_maximum" not in build_kwargs
):
smart_search_mem, smart_build_mem = _calculate_smart_memory_config(data)
else:
smart_search_mem = build_kwargs.get("search_memory_maximum", 4.0)
smart_build_mem = build_kwargs.get("build_memory_maximum", 8.0)
try:
from . import _diskannpy as diskannpy # type: ignore
@@ -132,12 +255,36 @@ class DiskannBuilder(LeannBackendBuilderInterface):
index_prefix,
build_kwargs.get("complexity", 64),
build_kwargs.get("graph_degree", 32),
build_kwargs.get("search_memory_maximum", 4.0),
build_kwargs.get("build_memory_maximum", 8.0),
build_kwargs.get("search_memory_maximum", smart_search_mem),
build_kwargs.get("build_memory_maximum", smart_build_mem),
build_kwargs.get("num_threads", 8),
build_kwargs.get("pq_disk_bytes", 0),
"",
)
# Auto-partition if is_recompute is enabled
if build_kwargs.get("is_recompute", False):
logger.info("is_recompute=True, starting automatic graph partitioning...")
from .graph_partition import partition_graph
# Partition the index using absolute paths
# Convert to absolute paths to avoid issues with working directory changes
absolute_index_dir = Path(index_dir).resolve()
absolute_index_prefix_path = str(absolute_index_dir / index_prefix)
disk_graph_path, partition_bin_path = partition_graph(
index_prefix_path=absolute_index_prefix_path,
output_dir=str(absolute_index_dir),
partition_prefix=index_prefix,
)
# Safe cleanup: In partition mode, C++ doesn't read _disk.index content
# but still needs the derived files (_medoids.bin, _centroids.bin, etc.)
self._safe_cleanup_after_partition(index_dir, index_prefix)
logger.info("✅ Graph partitioning completed successfully!")
logger.info(f" - Disk graph: {disk_graph_path}")
logger.info(f" - Partition file: {partition_bin_path}")
finally:
temp_data_file = index_dir / data_filename
if temp_data_file.exists():
@@ -164,18 +311,69 @@ class DiskannSearcher(BaseSearcher):
self.num_threads = kwargs.get("num_threads", 8)
fake_zmq_port = 6666
full_index_prefix = str(self.index_dir / self.index_path.stem)
self._index = diskannpy.StaticDiskFloatIndex(
metric_enum,
full_index_prefix,
self.num_threads,
kwargs.get("num_nodes_to_cache", 0),
1,
fake_zmq_port, # Initial port, can be updated at runtime
"",
"",
)
# For DiskANN, we need to reinitialize the index when zmq_port changes
# Store the initialization parameters for later use
# Note: C++ load method expects the BASE path (without _disk.index suffix)
# C++ internally constructs: index_prefix + "_disk.index"
index_name = self.index_path.stem # "simple_test.leann" -> "simple_test"
diskann_index_prefix = str(self.index_dir / index_name) # /path/to/simple_test
full_index_prefix = diskann_index_prefix # /path/to/simple_test (base path)
# Auto-detect partition files and set partition_prefix
partition_graph_file = self.index_dir / f"{index_name}_disk_graph.index"
partition_bin_file = self.index_dir / f"{index_name}_partition.bin"
partition_prefix = ""
if partition_graph_file.exists() and partition_bin_file.exists():
# C++ expects full path prefix, not just filename
partition_prefix = str(self.index_dir / index_name) # /path/to/simple_test
logger.info(
f"✅ Detected partition files, using partition_prefix='{partition_prefix}'"
)
else:
logger.debug("No partition files detected, using standard index files")
self._init_params = {
"metric_enum": metric_enum,
"full_index_prefix": full_index_prefix,
"num_threads": self.num_threads,
"num_nodes_to_cache": kwargs.get("num_nodes_to_cache", 0),
"cache_mechanism": 1,
"pq_prefix": "",
"partition_prefix": partition_prefix,
}
# Log partition configuration for debugging
if partition_prefix:
logger.info(
f"✅ Detected partition files, using partition_prefix='{partition_prefix}'"
)
self._diskannpy = diskannpy
self._current_zmq_port = None
self._index = None
logger.debug("DiskANN searcher initialized (index will be loaded on first search)")
def _ensure_index_loaded(self, zmq_port: int):
"""Ensure the index is loaded with the correct zmq_port."""
if self._index is None or self._current_zmq_port != zmq_port:
# Need to (re)load the index with the correct zmq_port
with suppress_cpp_output_if_needed():
if self._index is not None:
logger.debug(f"Reloading DiskANN index with new zmq_port: {zmq_port}")
else:
logger.debug(f"Loading DiskANN index with zmq_port: {zmq_port}")
self._index = self._diskannpy.StaticDiskFloatIndex(
self._init_params["metric_enum"],
self._init_params["full_index_prefix"],
self._init_params["num_threads"],
self._init_params["num_nodes_to_cache"],
self._init_params["cache_mechanism"],
zmq_port,
self._init_params["pq_prefix"],
self._init_params["partition_prefix"],
)
self._current_zmq_port = zmq_port
def search(
self,
@@ -190,7 +388,7 @@ class DiskannSearcher(BaseSearcher):
batch_recompute: bool = False,
dedup_node_dis: bool = False,
**kwargs,
) -> Dict[str, Any]:
) -> dict[str, Any]:
"""
Search for nearest neighbors using DiskANN index.
@@ -213,18 +411,15 @@ class DiskannSearcher(BaseSearcher):
Returns:
Dict with 'labels' (list of lists) and 'distances' (ndarray)
"""
# Handle zmq_port compatibility: DiskANN can now update port at runtime
# Handle zmq_port compatibility: Ensure index is loaded with correct port
if recompute_embeddings:
if zmq_port is None:
raise ValueError(
"zmq_port must be provided if recompute_embeddings is True"
)
current_port = self._index.get_zmq_port()
if zmq_port != current_port:
logger.debug(
f"Updating DiskANN zmq_port from {current_port} to {zmq_port}"
)
self._index.set_zmq_port(zmq_port)
raise ValueError("zmq_port must be provided if recompute_embeddings is True")
self._ensure_index_loaded(zmq_port)
else:
# If not recomputing, we still need an index, use a default port
if self._index is None:
self._ensure_index_loaded(6666) # Default port when not recomputing
# DiskANN doesn't support "proportional" strategy
if pruning_strategy == "proportional":
@@ -242,6 +437,8 @@ class DiskannSearcher(BaseSearcher):
use_global_pruning = True
# Perform search with suppressed C++ output based on log level
use_deferred_fetch = kwargs.get("USE_DEFERRED_FETCH", True)
recompute_neighors = False
with suppress_cpp_output_if_needed():
labels, distances = self._index.batch_search(
query,
@@ -250,17 +447,37 @@ class DiskannSearcher(BaseSearcher):
complexity,
beam_width,
self.num_threads,
kwargs.get("USE_DEFERRED_FETCH", False),
use_deferred_fetch,
kwargs.get("skip_search_reorder", False),
recompute_embeddings,
recompute_neighors,
dedup_node_dis,
prune_ratio,
batch_recompute,
use_global_pruning,
)
string_labels = [
[str(int_label) for int_label in batch_labels] for batch_labels in labels
]
string_labels = [[str(int_label) for int_label in batch_labels] for batch_labels in labels]
return {"labels": string_labels, "distances": distances}
def cleanup(self):
"""Cleanup DiskANN-specific resources including C++ index."""
# Call parent cleanup first
super().cleanup()
# Delete the C++ index to trigger destructors
try:
if hasattr(self, "_index") and self._index is not None:
del self._index
self._index = None
self._current_zmq_port = None
except Exception:
pass
# Force garbage collection to ensure C++ objects are destroyed
try:
import gc
gc.collect()
except Exception:
pass

View File

@@ -3,16 +3,17 @@ DiskANN-specific embedding server
"""
import argparse
import json
import logging
import os
import sys
import threading
import time
import os
import zmq
import numpy as np
import json
from pathlib import Path
from typing import Optional
import sys
import logging
import numpy as np
import zmq
# Set up logging based on environment variable
LOG_LEVEL = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
@@ -36,6 +37,7 @@ def create_diskann_embedding_server(
zmq_port: int = 5555,
model_name: str = "sentence-transformers/all-mpnet-base-v2",
embedding_mode: str = "sentence-transformers",
distance_metric: str = "l2",
):
"""
Create and start a ZMQ-based embedding server for DiskANN backend.
@@ -50,8 +52,8 @@ def create_diskann_embedding_server(
sys.path.insert(0, str(leann_core_path))
try:
from leann.embedding_compute import compute_embeddings
from leann.api import PassageManager
from leann.embedding_compute import compute_embeddings
logger.info("Successfully imported unified embedding computation module")
except ImportError as e:
@@ -76,10 +78,11 @@ def create_diskann_embedding_server(
raise ValueError("Only metadata files (.meta.json) are supported")
# Load metadata to get passage sources
with open(passages_file, "r") as f:
with open(passages_file) as f:
meta = json.load(f)
passages = PassageManager(meta["passage_sources"])
logger.info(f"Loading PassageManager with metadata_file_path: {passages_file}")
passages = PassageManager(meta["passage_sources"], metadata_file_path=passages_file)
logger.info(
f"Loaded PassageManager with {len(passages.global_offset_map)} passages from metadata"
)
@@ -97,6 +100,7 @@ def create_diskann_embedding_server(
socket = context.socket(
zmq.REP
) # REP socket for both BaseSearcher and DiskANN C++ REQ clients
socket.setsockopt(zmq.LINGER, 0) # Don't block on close
socket.bind(f"tcp://*:{zmq_port}")
logger.info(f"DiskANN ZMQ REP server listening on port {zmq_port}")
@@ -150,9 +154,7 @@ def create_diskann_embedding_server(
):
texts = request
is_text_request = True
logger.info(
f"✅ MSGPACK: Direct text request for {len(texts)} texts"
)
logger.info(f"✅ MSGPACK: Direct text request for {len(texts)} texts")
else:
raise ValueError("Not a valid msgpack text request")
except Exception as msgpack_error:
@@ -167,9 +169,7 @@ def create_diskann_embedding_server(
passage_data = passages.get_passage(str(nid))
txt = passage_data["text"]
if not txt:
raise RuntimeError(
f"FATAL: Empty text for passage ID {nid}"
)
raise RuntimeError(f"FATAL: Empty text for passage ID {nid}")
texts.append(txt)
except KeyError as e:
logger.error(f"Passage ID {nid} not found: {e}")
@@ -180,9 +180,7 @@ def create_diskann_embedding_server(
# Debug logging
logger.debug(f"Processing {len(texts)} texts")
logger.debug(
f"Text lengths: {[len(t) for t in texts[:5]]}"
) # Show first 5
logger.debug(f"Text lengths: {[len(t) for t in texts[:5]]}") # Show first 5
# Process embeddings using unified computation
embeddings = compute_embeddings(texts, model_name, mode=embedding_mode)
@@ -199,9 +197,7 @@ def create_diskann_embedding_server(
else:
# For DiskANN C++ compatibility: return protobuf format
resp_proto = embedding_pb2.NodeEmbeddingResponse()
hidden_contiguous = np.ascontiguousarray(
embeddings, dtype=np.float32
)
hidden_contiguous = np.ascontiguousarray(embeddings, dtype=np.float32)
# Serialize embeddings data
resp_proto.embeddings_data = hidden_contiguous.tobytes()
@@ -268,9 +264,16 @@ if __name__ == "__main__":
"--embedding-mode",
type=str,
default="sentence-transformers",
choices=["sentence-transformers", "openai", "mlx"],
choices=["sentence-transformers", "openai", "mlx", "ollama"],
help="Embedding backend mode",
)
parser.add_argument(
"--distance-metric",
type=str,
default="l2",
choices=["l2", "mips", "cosine"],
help="Distance metric for similarity computation",
)
args = parser.parse_args()
@@ -280,4 +283,5 @@ if __name__ == "__main__":
zmq_port=args.zmq_port,
model_name=args.model_name,
embedding_mode=args.embedding_mode,
distance_metric=args.distance_metric,
)

View File

@@ -1,27 +1,28 @@
# -*- coding: utf-8 -*-
# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: embedding.proto
# ruff: noqa
"""Generated protocol buffer code."""
from google.protobuf.internal import builder as _builder
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
_sym_db = _symbol_database.Default()
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x0f\x65mbedding.proto\x12\x0eprotoembedding\"(\n\x14NodeEmbeddingRequest\x12\x10\n\x08node_ids\x18\x01 \x03(\r\"Y\n\x15NodeEmbeddingResponse\x12\x17\n\x0f\x65mbeddings_data\x18\x01 \x01(\x0c\x12\x12\n\ndimensions\x18\x02 \x03(\x05\x12\x13\n\x0bmissing_ids\x18\x03 \x03(\rb\x06proto3')
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(
b'\n\x0f\x65mbedding.proto\x12\x0eprotoembedding"(\n\x14NodeEmbeddingRequest\x12\x10\n\x08node_ids\x18\x01 \x03(\r"Y\n\x15NodeEmbeddingResponse\x12\x17\n\x0f\x65mbeddings_data\x18\x01 \x01(\x0c\x12\x12\n\ndimensions\x18\x02 \x03(\x05\x12\x13\n\x0bmissing_ids\x18\x03 \x03(\rb\x06proto3'
)
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, globals())
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'embedding_pb2', globals())
if _descriptor._USE_C_DESCRIPTORS == False:
DESCRIPTOR._options = None
_NODEEMBEDDINGREQUEST._serialized_start=35
_NODEEMBEDDINGREQUEST._serialized_end=75
_NODEEMBEDDINGRESPONSE._serialized_start=77
_NODEEMBEDDINGRESPONSE._serialized_end=166
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "embedding_pb2", globals())
if not _descriptor._USE_C_DESCRIPTORS:
DESCRIPTOR._options = None
_NODEEMBEDDINGREQUEST._serialized_start = 35
_NODEEMBEDDINGREQUEST._serialized_end = 75
_NODEEMBEDDINGRESPONSE._serialized_start = 77
_NODEEMBEDDINGRESPONSE._serialized_end = 166
# @@protoc_insertion_point(module_scope)

View File

@@ -0,0 +1,299 @@
#!/usr/bin/env python3
"""
Graph Partition Module for LEANN DiskANN Backend
This module provides Python bindings for the graph partition functionality
of DiskANN, allowing users to partition disk-based indices for better
performance.
"""
import os
import shutil
import subprocess
import tempfile
from pathlib import Path
from typing import Optional
class GraphPartitioner:
"""
A Python interface for DiskANN's graph partition functionality.
This class provides methods to partition disk-based indices for improved
search performance and memory efficiency.
"""
def __init__(self, build_type: str = "release"):
"""
Initialize the GraphPartitioner.
Args:
build_type: Build type for the executables ("debug" or "release")
"""
self.build_type = build_type
self._ensure_executables()
def _get_executable_path(self, name: str) -> str:
"""Get the path to a graph partition executable."""
# Get the directory where this Python module is located
module_dir = Path(__file__).parent
# Navigate to the graph_partition directory
graph_partition_dir = module_dir.parent / "third_party" / "DiskANN" / "graph_partition"
executable_path = graph_partition_dir / "build" / self.build_type / "graph_partition" / name
if not executable_path.exists():
raise FileNotFoundError(f"Executable {name} not found at {executable_path}")
return str(executable_path)
def _ensure_executables(self):
"""Ensure that the required executables are built."""
try:
self._get_executable_path("partitioner")
self._get_executable_path("index_relayout")
except FileNotFoundError:
# Try to build the executables automatically
print("Executables not found, attempting to build them...")
self._build_executables()
def _build_executables(self):
"""Build the required executables."""
graph_partition_dir = (
Path(__file__).parent.parent / "third_party" / "DiskANN" / "graph_partition"
)
original_dir = os.getcwd()
try:
os.chdir(graph_partition_dir)
# Clean any existing build
if (graph_partition_dir / "build").exists():
shutil.rmtree(graph_partition_dir / "build")
# Run the build script
cmd = ["./build.sh", self.build_type, "split_graph", "/tmp/dummy"]
subprocess.run(cmd, capture_output=True, text=True, cwd=graph_partition_dir)
# Check if executables were created
partitioner_path = self._get_executable_path("partitioner")
relayout_path = self._get_executable_path("index_relayout")
print(f"✅ Built partitioner: {partitioner_path}")
print(f"✅ Built index_relayout: {relayout_path}")
except Exception as e:
raise RuntimeError(f"Failed to build executables: {e}")
finally:
os.chdir(original_dir)
def partition_graph(
self,
index_prefix_path: str,
output_dir: Optional[str] = None,
partition_prefix: Optional[str] = None,
**kwargs,
) -> tuple[str, str]:
"""
Partition a disk-based index for improved performance.
Args:
index_prefix_path: Path to the index prefix (e.g., "/path/to/index")
output_dir: Output directory for results (defaults to parent of index_prefix_path)
partition_prefix: Prefix for output files (defaults to basename of index_prefix_path)
**kwargs: Additional parameters for graph partitioning:
- gp_times: Number of LDG partition iterations (default: 10)
- lock_nums: Number of lock nodes (default: 10)
- cut: Cut adjacency list degree (default: 100)
- scale_factor: Scale factor (default: 1)
- data_type: Data type (default: "float")
- thread_nums: Number of threads (default: 10)
Returns:
Tuple of (disk_graph_index_path, partition_bin_path)
Raises:
RuntimeError: If the partitioning process fails
"""
# Set default parameters
params = {
"gp_times": 10,
"lock_nums": 10,
"cut": 100,
"scale_factor": 1,
"data_type": "float",
"thread_nums": 10,
**kwargs,
}
# Determine output directory
if output_dir is None:
output_dir = str(Path(index_prefix_path).parent)
# Create output directory if it doesn't exist
Path(output_dir).mkdir(parents=True, exist_ok=True)
# Determine partition prefix
if partition_prefix is None:
partition_prefix = Path(index_prefix_path).name
# Get executable paths
partitioner_path = self._get_executable_path("partitioner")
relayout_path = self._get_executable_path("index_relayout")
# Create temporary directory for processing
with tempfile.TemporaryDirectory() as temp_dir:
# Change to the graph_partition directory for temporary files
graph_partition_dir = (
Path(__file__).parent.parent / "third_party" / "DiskANN" / "graph_partition"
)
original_dir = os.getcwd()
try:
os.chdir(graph_partition_dir)
# Create temporary data directory
temp_data_dir = Path(temp_dir) / "data"
temp_data_dir.mkdir(parents=True, exist_ok=True)
# Set up paths for temporary files
graph_path = temp_data_dir / "starling" / "_M_R_L_B" / "GRAPH"
graph_gp_path = (
graph_path
/ f"GP_TIMES_{params['gp_times']}_LOCK_{params['lock_nums']}_GP_USE_FREQ0_CUT{params['cut']}_SCALE{params['scale_factor']}"
)
graph_gp_path.mkdir(parents=True, exist_ok=True)
# Find input index file
old_index_file = f"{index_prefix_path}_disk_beam_search.index"
if not os.path.exists(old_index_file):
old_index_file = f"{index_prefix_path}_disk.index"
if not os.path.exists(old_index_file):
raise RuntimeError(f"Index file not found: {old_index_file}")
# Run partitioner
gp_file_path = graph_gp_path / "_part.bin"
partitioner_cmd = [
partitioner_path,
"--index_file",
old_index_file,
"--data_type",
params["data_type"],
"--gp_file",
str(gp_file_path),
"-T",
str(params["thread_nums"]),
"--ldg_times",
str(params["gp_times"]),
"--scale",
str(params["scale_factor"]),
"--mode",
"1",
]
print(f"Running partitioner: {' '.join(partitioner_cmd)}")
result = subprocess.run(
partitioner_cmd, capture_output=True, text=True, cwd=graph_partition_dir
)
if result.returncode != 0:
raise RuntimeError(
f"Partitioner failed with return code {result.returncode}.\n"
f"stdout: {result.stdout}\n"
f"stderr: {result.stderr}"
)
# Run relayout
part_tmp_index = graph_gp_path / "_part_tmp.index"
relayout_cmd = [
relayout_path,
old_index_file,
str(gp_file_path),
params["data_type"],
"1",
]
print(f"Running relayout: {' '.join(relayout_cmd)}")
result = subprocess.run(
relayout_cmd, capture_output=True, text=True, cwd=graph_partition_dir
)
if result.returncode != 0:
raise RuntimeError(
f"Relayout failed with return code {result.returncode}.\n"
f"stdout: {result.stdout}\n"
f"stderr: {result.stderr}"
)
# Copy results to output directory
disk_graph_path = Path(output_dir) / f"{partition_prefix}_disk_graph.index"
partition_bin_path = Path(output_dir) / f"{partition_prefix}_partition.bin"
shutil.copy2(part_tmp_index, disk_graph_path)
shutil.copy2(gp_file_path, partition_bin_path)
print(f"Results copied to: {output_dir}")
return str(disk_graph_path), str(partition_bin_path)
finally:
os.chdir(original_dir)
def get_partition_info(self, partition_bin_path: str) -> dict:
"""
Get information about a partition file.
Args:
partition_bin_path: Path to the partition binary file
Returns:
Dictionary containing partition information
"""
if not os.path.exists(partition_bin_path):
raise FileNotFoundError(f"Partition file not found: {partition_bin_path}")
# For now, return basic file information
# In the future, this could parse the binary file for detailed info
stat = os.stat(partition_bin_path)
return {
"file_size": stat.st_size,
"file_path": partition_bin_path,
"modified_time": stat.st_mtime,
}
def partition_graph(
index_prefix_path: str,
output_dir: Optional[str] = None,
partition_prefix: Optional[str] = None,
build_type: str = "release",
**kwargs,
) -> tuple[str, str]:
"""
Convenience function to partition a graph index.
Args:
index_prefix_path: Path to the index prefix
output_dir: Output directory (defaults to parent of index_prefix_path)
partition_prefix: Prefix for output files (defaults to basename of index_prefix_path)
build_type: Build type for executables ("debug" or "release")
**kwargs: Additional parameters for graph partitioning
Returns:
Tuple of (disk_graph_index_path, partition_bin_path)
"""
partitioner = GraphPartitioner(build_type=build_type)
return partitioner.partition_graph(index_prefix_path, output_dir, partition_prefix, **kwargs)
# Example usage:
if __name__ == "__main__":
# Example: partition an index
try:
disk_graph_path, partition_bin_path = partition_graph(
"/path/to/your/index_prefix", gp_times=10, lock_nums=10, cut=100
)
print("Partitioning completed successfully!")
print(f"Disk graph index: {disk_graph_path}")
print(f"Partition binary: {partition_bin_path}")
except Exception as e:
print(f"Partitioning failed: {e}")

View File

@@ -0,0 +1,137 @@
#!/usr/bin/env python3
"""
Simplified Graph Partition Module for LEANN DiskANN Backend
This module provides a simple Python interface for graph partitioning
that directly calls the existing executables.
"""
import os
import subprocess
import tempfile
from pathlib import Path
from typing import Optional
def partition_graph_simple(
index_prefix_path: str, output_dir: Optional[str] = None, **kwargs
) -> tuple[str, str]:
"""
Simple function to partition a graph index.
Args:
index_prefix_path: Path to the index prefix (e.g., "/path/to/index")
output_dir: Output directory (defaults to parent of index_prefix_path)
**kwargs: Additional parameters for graph partitioning
Returns:
Tuple of (disk_graph_index_path, partition_bin_path)
"""
# Set default parameters
params = {
"gp_times": 10,
"lock_nums": 10,
"cut": 100,
"scale_factor": 1,
"data_type": "float",
"thread_nums": 10,
**kwargs,
}
# Determine output directory
if output_dir is None:
output_dir = str(Path(index_prefix_path).parent)
# Find the graph_partition directory
current_file = Path(__file__)
graph_partition_dir = current_file.parent.parent / "third_party" / "DiskANN" / "graph_partition"
if not graph_partition_dir.exists():
raise RuntimeError(f"Graph partition directory not found: {graph_partition_dir}")
# Find input index file
old_index_file = f"{index_prefix_path}_disk_beam_search.index"
if not os.path.exists(old_index_file):
old_index_file = f"{index_prefix_path}_disk.index"
if not os.path.exists(old_index_file):
raise RuntimeError(f"Index file not found: {old_index_file}")
# Create temporary directory for processing
with tempfile.TemporaryDirectory() as temp_dir:
temp_data_dir = Path(temp_dir) / "data"
temp_data_dir.mkdir(parents=True, exist_ok=True)
# Set up paths for temporary files
graph_path = temp_data_dir / "starling" / "_M_R_L_B" / "GRAPH"
graph_gp_path = (
graph_path
/ f"GP_TIMES_{params['gp_times']}_LOCK_{params['lock_nums']}_GP_USE_FREQ0_CUT{params['cut']}_SCALE{params['scale_factor']}"
)
graph_gp_path.mkdir(parents=True, exist_ok=True)
# Run the build script with our parameters
cmd = [str(graph_partition_dir / "build.sh"), "release", "split_graph", index_prefix_path]
# Set environment variables for parameters
env = os.environ.copy()
env.update(
{
"GP_TIMES": str(params["gp_times"]),
"GP_LOCK_NUMS": str(params["lock_nums"]),
"GP_CUT": str(params["cut"]),
"GP_SCALE_F": str(params["scale_factor"]),
"DATA_TYPE": params["data_type"],
"GP_T": str(params["thread_nums"]),
}
)
print(f"Running graph partition with command: {' '.join(cmd)}")
print(f"Working directory: {graph_partition_dir}")
# Run the command
result = subprocess.run(
cmd, env=env, capture_output=True, text=True, cwd=graph_partition_dir
)
if result.returncode != 0:
print(f"Command failed with return code {result.returncode}")
print(f"stdout: {result.stdout}")
print(f"stderr: {result.stderr}")
raise RuntimeError(
f"Graph partitioning failed with return code {result.returncode}.\n"
f"stdout: {result.stdout}\n"
f"stderr: {result.stderr}"
)
# Check if output files were created
disk_graph_path = Path(output_dir) / "_disk_graph.index"
partition_bin_path = Path(output_dir) / "_partition.bin"
if not disk_graph_path.exists():
raise RuntimeError(f"Expected output file not found: {disk_graph_path}")
if not partition_bin_path.exists():
raise RuntimeError(f"Expected output file not found: {partition_bin_path}")
print("✅ Partitioning completed successfully!")
print(f" Disk graph index: {disk_graph_path}")
print(f" Partition binary: {partition_bin_path}")
return str(disk_graph_path), str(partition_bin_path)
# Example usage
if __name__ == "__main__":
try:
disk_graph_path, partition_bin_path = partition_graph_simple(
"/Users/yichuan/Desktop/release2/leann/diskannbuild/test_doc_files",
gp_times=5,
lock_nums=5,
cut=50,
)
print("Success! Output files:")
print(f" - {disk_graph_path}")
print(f" - {partition_bin_path}")
except Exception as e:
print(f"Error: {e}")

View File

@@ -4,8 +4,8 @@ build-backend = "scikit_build_core.build"
[project]
name = "leann-backend-diskann"
version = "0.1.4"
dependencies = ["leann-core==0.1.4", "numpy"]
version = "0.2.7"
dependencies = ["leann-core==0.2.7", "numpy", "protobuf>=3.19.0"]
[tool.scikit-build]
# Key: simplified CMake path
@@ -16,4 +16,4 @@ wheel.packages = ["leann_backend_diskann"]
editable.mode = "redirect"
cmake.build-type = "Release"
build.verbose = true
build.tool-args = ["-j8"]
build.tool-args = ["-j8"]

View File

@@ -2,12 +2,12 @@ syntax = "proto3";
package protoembedding;
message NodeEmbeddingRequest {
repeated uint32 node_ids = 1;
message NodeEmbeddingRequest {
repeated uint32 node_ids = 1;
}
message NodeEmbeddingResponse {
bytes embeddings_data = 1; // All embedded binary datas
repeated int32 dimensions = 2; // Shape [batch_size, embedding_dim]
repeated uint32 missing_ids = 3; // Missing node ids
}
}

View File

@@ -10,6 +10,14 @@ if(APPLE)
set(OpenMP_C_LIB_NAMES "omp")
set(OpenMP_CXX_LIB_NAMES "omp")
set(OpenMP_omp_LIBRARY "/opt/homebrew/opt/libomp/lib/libomp.dylib")
# Force use of system libc++ to avoid version mismatch
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -stdlib=libc++")
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -stdlib=libc++")
set(CMAKE_SHARED_LINKER_FLAGS "${CMAKE_SHARED_LINKER_FLAGS} -stdlib=libc++")
# Set minimum macOS version for better compatibility
set(CMAKE_OSX_DEPLOYMENT_TARGET "11.0" CACHE STRING "Minimum macOS version")
endif()
# Use system ZeroMQ instead of building from source
@@ -52,4 +60,4 @@ set(FAISS_BUILD_AVX512 OFF CACHE BOOL "" FORCE)
# IMPORTANT: Disable building AVX versions to speed up compilation
set(FAISS_BUILD_AVX_VERSIONS OFF CACHE BOOL "" FORCE)
add_subdirectory(third_party/faiss)
add_subdirectory(third_party/faiss)

View File

@@ -1 +1 @@
from . import hnsw_backend
from . import hnsw_backend as hnsw_backend

View File

@@ -1,87 +1,122 @@
import argparse
import gc # Import garbage collector interface
import logging
import os
import struct
import sys
import numpy as np
import os
import argparse
import gc # Import garbage collector interface
import time
import numpy as np
# Set up logging to avoid print buffer issues
logger = logging.getLogger(__name__)
LOG_LEVEL = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
log_level = getattr(logging, LOG_LEVEL, logging.WARNING)
logger.setLevel(log_level)
# --- FourCCs (add more if needed) ---
INDEX_HNSW_FLAT_FOURCC = int.from_bytes(b'IHNf', 'little')
INDEX_HNSW_FLAT_FOURCC = int.from_bytes(b"IHNf", "little")
# Add other HNSW fourccs if you expect different storage types inside HNSW
# INDEX_HNSW_PQ_FOURCC = int.from_bytes(b'IHNp', 'little')
# INDEX_HNSW_SQ_FOURCC = int.from_bytes(b'IHNs', 'little')
# INDEX_HNSW_CAGRA_FOURCC = int.from_bytes(b'IHNc', 'little') # Example
EXPECTED_HNSW_FOURCCS = {INDEX_HNSW_FLAT_FOURCC} # Modify if needed
NULL_INDEX_FOURCC = int.from_bytes(b'null', 'little')
EXPECTED_HNSW_FOURCCS = {INDEX_HNSW_FLAT_FOURCC} # Modify if needed
NULL_INDEX_FOURCC = int.from_bytes(b"null", "little")
# --- Helper functions for reading/writing binary data ---
def read_struct(f, fmt):
"""Reads data according to the struct format."""
size = struct.calcsize(fmt)
data = f.read(size)
if len(data) != size:
raise EOFError(f"File ended unexpectedly reading struct fmt '{fmt}'. Expected {size} bytes, got {len(data)}.")
raise EOFError(
f"File ended unexpectedly reading struct fmt '{fmt}'. Expected {size} bytes, got {len(data)}."
)
return struct.unpack(fmt, data)[0]
def read_vector_raw(f, element_fmt_char):
"""Reads a vector (size followed by data), returns count and raw bytes."""
count = -1 # Initialize count
total_bytes = -1 # Initialize total_bytes
count = -1 # Initialize count
total_bytes = -1 # Initialize total_bytes
try:
count = read_struct(f, '<Q') # size_t usually 64-bit unsigned
count = read_struct(f, "<Q") # size_t usually 64-bit unsigned
element_size = struct.calcsize(element_fmt_char)
# --- FIX for MemoryError: Check for unreasonably large count ---
max_reasonable_count = 10 * (10**9) # ~10 billion elements limit
max_reasonable_count = 10 * (10**9) # ~10 billion elements limit
if count > max_reasonable_count or count < 0:
raise MemoryError(f"Vector count {count} seems unreasonably large, possibly due to file corruption or incorrect format read.")
raise MemoryError(
f"Vector count {count} seems unreasonably large, possibly due to file corruption or incorrect format read."
)
total_bytes = count * element_size
# --- FIX for MemoryError: Check for huge byte size before allocation ---
max_reasonable_bytes = 50 * (1024**3) # ~50 GB limit
if total_bytes > max_reasonable_bytes or total_bytes < 0: # Check for overflow
raise MemoryError(f"Attempting to read {total_bytes} bytes ({count} elements * {element_size} bytes/element), which exceeds the safety limit. File might be corrupted or format mismatch.")
max_reasonable_bytes = 50 * (1024**3) # ~50 GB limit
if total_bytes > max_reasonable_bytes or total_bytes < 0: # Check for overflow
raise MemoryError(
f"Attempting to read {total_bytes} bytes ({count} elements * {element_size} bytes/element), which exceeds the safety limit. File might be corrupted or format mismatch."
)
data_bytes = f.read(total_bytes)
if len(data_bytes) != total_bytes:
raise EOFError(f"File ended unexpectedly reading vector data. Expected {total_bytes} bytes, got {len(data_bytes)}.")
raise EOFError(
f"File ended unexpectedly reading vector data. Expected {total_bytes} bytes, got {len(data_bytes)}."
)
return count, data_bytes
except (MemoryError, OverflowError) as e:
# Add context to the error message
print(f"\nError during raw vector read (element_fmt='{element_fmt_char}', count={count}, total_bytes={total_bytes}): {e}", file=sys.stderr)
raise e # Re-raise the original error type
# Add context to the error message
print(
f"\nError during raw vector read (element_fmt='{element_fmt_char}', count={count}, total_bytes={total_bytes}): {e}",
file=sys.stderr,
)
raise e # Re-raise the original error type
def read_numpy_vector(f, np_dtype, struct_fmt_char):
"""Reads a vector into a NumPy array."""
count = -1 # Initialize count for robust error handling
print(f" Reading vector (dtype={np_dtype}, fmt='{struct_fmt_char}')... ", end='', flush=True)
count = -1 # Initialize count for robust error handling
print(
f" Reading vector (dtype={np_dtype}, fmt='{struct_fmt_char}')... ",
end="",
flush=True,
)
try:
count, data_bytes = read_vector_raw(f, struct_fmt_char)
print(f"Count={count}, Bytes={len(data_bytes)}")
if count > 0 and len(data_bytes) > 0:
arr = np.frombuffer(data_bytes, dtype=np_dtype)
if arr.size != count:
raise ValueError(f"Inconsistent array size after reading. Expected {count}, got {arr.size}")
raise ValueError(
f"Inconsistent array size after reading. Expected {count}, got {arr.size}"
)
return arr
elif count == 0:
return np.array([], dtype=np_dtype)
return np.array([], dtype=np_dtype)
else:
raise ValueError("Read zero bytes but count > 0.")
raise ValueError("Read zero bytes but count > 0.")
except MemoryError as e:
# Now count should be defined (or -1 if error was in read_struct)
print(f"\nMemoryError creating NumPy array (dtype={np_dtype}, count={count}). {e}", file=sys.stderr)
print(
f"\nMemoryError creating NumPy array (dtype={np_dtype}, count={count}). {e}",
file=sys.stderr,
)
raise e
except Exception as e: # Catch other potential errors like ValueError
print(f"\nError reading numpy vector (dtype={np_dtype}, fmt='{struct_fmt_char}', count={count}): {e}", file=sys.stderr)
except Exception as e: # Catch other potential errors like ValueError
print(
f"\nError reading numpy vector (dtype={np_dtype}, fmt='{struct_fmt_char}', count={count}): {e}",
file=sys.stderr,
)
raise e
def write_numpy_vector(f, arr, struct_fmt_char):
"""Writes a NumPy array as a vector (size followed by data)."""
count = arr.size
f.write(struct.pack('<Q', count))
f.write(struct.pack("<Q", count))
try:
expected_dtype = np.dtype(struct_fmt_char)
if arr.dtype != expected_dtype:
@@ -89,23 +124,30 @@ def write_numpy_vector(f, arr, struct_fmt_char):
else:
data_to_write = arr.tobytes()
f.write(data_to_write)
del data_to_write # Hint GC
del data_to_write # Hint GC
except MemoryError as e:
print(f"\nMemoryError converting NumPy array to bytes for writing (size={count}, dtype={arr.dtype}). {e}", file=sys.stderr)
raise e
print(
f"\nMemoryError converting NumPy array to bytes for writing (size={count}, dtype={arr.dtype}). {e}",
file=sys.stderr,
)
raise e
def write_list_vector(f, lst, struct_fmt_char):
"""Writes a Python list as a vector iteratively."""
count = len(lst)
f.write(struct.pack('<Q', count))
fmt = '<' + struct_fmt_char
f.write(struct.pack("<Q", count))
fmt = "<" + struct_fmt_char
chunk_size = 1024 * 1024
element_size = struct.calcsize(fmt)
# Allocate buffer outside the loop if possible, or handle MemoryError during allocation
try:
buffer = bytearray(chunk_size * element_size)
except MemoryError:
print(f"MemoryError: Cannot allocate buffer for writing list vector chunk (size {chunk_size * element_size} bytes).", file=sys.stderr)
print(
f"MemoryError: Cannot allocate buffer for writing list vector chunk (size {chunk_size * element_size} bytes).",
file=sys.stderr,
)
raise
buffer_count = 0
@@ -116,66 +158,80 @@ def write_list_vector(f, lst, struct_fmt_char):
buffer_count += 1
if buffer_count == chunk_size or i == count - 1:
f.write(buffer[:buffer_count * element_size])
f.write(buffer[: buffer_count * element_size])
buffer_count = 0
except struct.error as e:
print(f"\nStruct packing error for item {item} at index {i} with format '{fmt}'. {e}", file=sys.stderr)
print(
f"\nStruct packing error for item {item} at index {i} with format '{fmt}'. {e}",
file=sys.stderr,
)
raise e
def get_cum_neighbors(cum_nneighbor_per_level_np, level):
"""Helper to get cumulative neighbors count, matching C++ logic."""
if level < 0: return 0
if level < 0:
return 0
if level < len(cum_nneighbor_per_level_np):
return cum_nneighbor_per_level_np[level]
else:
return cum_nneighbor_per_level_np[-1] if len(cum_nneighbor_per_level_np) > 0 else 0
def write_compact_format(f_out, original_hnsw_data, assign_probas_np, cum_nneighbor_per_level_np,
levels_np, compact_level_ptr, compact_node_offsets_np,
compact_neighbors_data, storage_fourcc, storage_data):
def write_compact_format(
f_out,
original_hnsw_data,
assign_probas_np,
cum_nneighbor_per_level_np,
levels_np,
compact_level_ptr,
compact_node_offsets_np,
compact_neighbors_data,
storage_fourcc,
storage_data,
):
"""Write HNSW data in compact format following C++ read order exactly."""
# Write IndexHNSW Header
f_out.write(struct.pack('<I', original_hnsw_data['index_fourcc']))
f_out.write(struct.pack('<i', original_hnsw_data['d']))
f_out.write(struct.pack('<q', original_hnsw_data['ntotal']))
f_out.write(struct.pack('<q', original_hnsw_data['dummy1']))
f_out.write(struct.pack('<q', original_hnsw_data['dummy2']))
f_out.write(struct.pack('<?', original_hnsw_data['is_trained']))
f_out.write(struct.pack('<i', original_hnsw_data['metric_type']))
if original_hnsw_data['metric_type'] > 1:
f_out.write(struct.pack('<f', original_hnsw_data['metric_arg']))
f_out.write(struct.pack("<I", original_hnsw_data["index_fourcc"]))
f_out.write(struct.pack("<i", original_hnsw_data["d"]))
f_out.write(struct.pack("<q", original_hnsw_data["ntotal"]))
f_out.write(struct.pack("<q", original_hnsw_data["dummy1"]))
f_out.write(struct.pack("<q", original_hnsw_data["dummy2"]))
f_out.write(struct.pack("<?", original_hnsw_data["is_trained"]))
f_out.write(struct.pack("<i", original_hnsw_data["metric_type"]))
if original_hnsw_data["metric_type"] > 1:
f_out.write(struct.pack("<f", original_hnsw_data["metric_arg"]))
# Write HNSW struct parts (standard order)
write_numpy_vector(f_out, assign_probas_np, 'd')
write_numpy_vector(f_out, cum_nneighbor_per_level_np, 'i')
write_numpy_vector(f_out, levels_np, 'i')
write_numpy_vector(f_out, assign_probas_np, "d")
write_numpy_vector(f_out, cum_nneighbor_per_level_np, "i")
write_numpy_vector(f_out, levels_np, "i")
# Write compact format flag
f_out.write(struct.pack('<?', True)) # storage_is_compact = True
f_out.write(struct.pack("<?", True)) # storage_is_compact = True
# Write compact data in CORRECT C++ read order: level_ptr, node_offsets FIRST
if isinstance(compact_level_ptr, np.ndarray):
write_numpy_vector(f_out, compact_level_ptr, 'Q')
write_numpy_vector(f_out, compact_level_ptr, "Q")
else:
write_list_vector(f_out, compact_level_ptr, 'Q')
write_numpy_vector(f_out, compact_node_offsets_np, 'Q')
write_list_vector(f_out, compact_level_ptr, "Q")
write_numpy_vector(f_out, compact_node_offsets_np, "Q")
# Write HNSW scalar parameters
f_out.write(struct.pack('<i', original_hnsw_data['entry_point']))
f_out.write(struct.pack('<i', original_hnsw_data['max_level']))
f_out.write(struct.pack('<i', original_hnsw_data['efConstruction']))
f_out.write(struct.pack('<i', original_hnsw_data['efSearch']))
f_out.write(struct.pack('<i', original_hnsw_data['dummy_upper_beam']))
f_out.write(struct.pack("<i", original_hnsw_data["entry_point"]))
f_out.write(struct.pack("<i", original_hnsw_data["max_level"]))
f_out.write(struct.pack("<i", original_hnsw_data["efConstruction"]))
f_out.write(struct.pack("<i", original_hnsw_data["efSearch"]))
f_out.write(struct.pack("<i", original_hnsw_data["dummy_upper_beam"]))
# Write storage fourcc (this determines how to read what follows)
f_out.write(struct.pack('<I', storage_fourcc))
f_out.write(struct.pack("<I", storage_fourcc))
# Write compact neighbors data AFTER storage fourcc
write_list_vector(f_out, compact_neighbors_data, 'i')
write_list_vector(f_out, compact_neighbors_data, "i")
# Write storage data if not NULL (only after neighbors)
if storage_fourcc != NULL_INDEX_FOURCC and storage_data:
f_out.write(storage_data)
@@ -183,185 +239,248 @@ def write_compact_format(f_out, original_hnsw_data, assign_probas_np, cum_nneigh
# --- Main Conversion Logic ---
def convert_hnsw_graph_to_csr(input_filename, output_filename, prune_embeddings=True):
"""
Converts an HNSW graph file to the CSR format.
Supports both original and already-compact formats (backward compatibility).
Args:
input_filename: Input HNSW index file
output_filename: Output CSR index file
prune_embeddings: Whether to prune embedding storage (write NULL storage marker)
"""
# Disable buffering for print statements to avoid deadlock in CI/pytest
import functools
global print
print = functools.partial(print, flush=True)
print(f"Starting conversion: {input_filename} -> {output_filename}")
start_time = time.time()
original_hnsw_data = {}
neighbors_np = None # Initialize to allow check in finally block
neighbors_np = None # Initialize to allow check in finally block
try:
with open(input_filename, 'rb') as f_in, open(output_filename, 'wb') as f_out:
with open(input_filename, "rb") as f_in, open(output_filename, "wb") as f_out:
# --- Read IndexHNSW FourCC and Header ---
print(f"[{time.time() - start_time:.2f}s] Reading Index HNSW header...")
# ... (Keep the header reading logic as before) ...
hnsw_index_fourcc = read_struct(f_in, '<I')
hnsw_index_fourcc = read_struct(f_in, "<I")
if hnsw_index_fourcc not in EXPECTED_HNSW_FOURCCS:
print(f"Error: Expected HNSW Index FourCC ({list(EXPECTED_HNSW_FOURCCS)}), got {hnsw_index_fourcc:08x}.", file=sys.stderr)
return False
original_hnsw_data['index_fourcc'] = hnsw_index_fourcc
original_hnsw_data['d'] = read_struct(f_in, '<i')
original_hnsw_data['ntotal'] = read_struct(f_in, '<q')
original_hnsw_data['dummy1'] = read_struct(f_in, '<q')
original_hnsw_data['dummy2'] = read_struct(f_in, '<q')
original_hnsw_data['is_trained'] = read_struct(f_in, '?')
original_hnsw_data['metric_type'] = read_struct(f_in, '<i')
original_hnsw_data['metric_arg'] = 0.0
if original_hnsw_data['metric_type'] > 1:
original_hnsw_data['metric_arg'] = read_struct(f_in, '<f')
print(f"[{time.time() - start_time:.2f}s] Header read: d={original_hnsw_data['d']}, ntotal={original_hnsw_data['ntotal']}")
print(
f"Error: Expected HNSW Index FourCC ({list(EXPECTED_HNSW_FOURCCS)}), got {hnsw_index_fourcc:08x}.",
file=sys.stderr,
)
return False
original_hnsw_data["index_fourcc"] = hnsw_index_fourcc
original_hnsw_data["d"] = read_struct(f_in, "<i")
original_hnsw_data["ntotal"] = read_struct(f_in, "<q")
original_hnsw_data["dummy1"] = read_struct(f_in, "<q")
original_hnsw_data["dummy2"] = read_struct(f_in, "<q")
original_hnsw_data["is_trained"] = read_struct(f_in, "?")
original_hnsw_data["metric_type"] = read_struct(f_in, "<i")
original_hnsw_data["metric_arg"] = 0.0
if original_hnsw_data["metric_type"] > 1:
original_hnsw_data["metric_arg"] = read_struct(f_in, "<f")
print(
f"[{time.time() - start_time:.2f}s] Header read: d={original_hnsw_data['d']}, ntotal={original_hnsw_data['ntotal']}"
)
# --- Read original HNSW struct data ---
print(f"[{time.time() - start_time:.2f}s] Reading HNSW struct vectors...")
assign_probas_np = read_numpy_vector(f_in, np.float64, 'd')
print(f"[{time.time() - start_time:.2f}s] Read assign_probas ({assign_probas_np.size})")
assign_probas_np = read_numpy_vector(f_in, np.float64, "d")
print(
f"[{time.time() - start_time:.2f}s] Read assign_probas ({assign_probas_np.size})"
)
gc.collect()
cum_nneighbor_per_level_np = read_numpy_vector(f_in, np.int32, 'i')
print(f"[{time.time() - start_time:.2f}s] Read cum_nneighbor_per_level ({cum_nneighbor_per_level_np.size})")
cum_nneighbor_per_level_np = read_numpy_vector(f_in, np.int32, "i")
print(
f"[{time.time() - start_time:.2f}s] Read cum_nneighbor_per_level ({cum_nneighbor_per_level_np.size})"
)
gc.collect()
levels_np = read_numpy_vector(f_in, np.int32, 'i')
levels_np = read_numpy_vector(f_in, np.int32, "i")
print(f"[{time.time() - start_time:.2f}s] Read levels ({levels_np.size})")
gc.collect()
ntotal = len(levels_np)
if ntotal != original_hnsw_data['ntotal']:
print(f"Warning: ntotal mismatch! Header says {original_hnsw_data['ntotal']}, levels vector size is {ntotal}. Using levels vector size.", file=sys.stderr)
original_hnsw_data['ntotal'] = ntotal
if ntotal != original_hnsw_data["ntotal"]:
print(
f"Warning: ntotal mismatch! Header says {original_hnsw_data['ntotal']}, levels vector size is {ntotal}. Using levels vector size.",
file=sys.stderr,
)
original_hnsw_data["ntotal"] = ntotal
# --- Check for compact format flag ---
print(f"[{time.time() - start_time:.2f}s] Probing for compact storage flag...")
pos_before_compact = f_in.tell()
try:
is_compact_flag = read_struct(f_in, '<?')
is_compact_flag = read_struct(f_in, "<?")
print(f"[{time.time() - start_time:.2f}s] Found compact flag: {is_compact_flag}")
if is_compact_flag:
# Input is already in compact format - read compact data
print(f"[{time.time() - start_time:.2f}s] Input is already in compact format, reading compact data...")
compact_level_ptr = read_numpy_vector(f_in, np.uint64, 'Q')
print(f"[{time.time() - start_time:.2f}s] Read compact_level_ptr ({compact_level_ptr.size})")
compact_node_offsets_np = read_numpy_vector(f_in, np.uint64, 'Q')
print(f"[{time.time() - start_time:.2f}s] Read compact_node_offsets ({compact_node_offsets_np.size})")
print(
f"[{time.time() - start_time:.2f}s] Input is already in compact format, reading compact data..."
)
compact_level_ptr = read_numpy_vector(f_in, np.uint64, "Q")
print(
f"[{time.time() - start_time:.2f}s] Read compact_level_ptr ({compact_level_ptr.size})"
)
compact_node_offsets_np = read_numpy_vector(f_in, np.uint64, "Q")
print(
f"[{time.time() - start_time:.2f}s] Read compact_node_offsets ({compact_node_offsets_np.size})"
)
# Read scalar parameters
original_hnsw_data['entry_point'] = read_struct(f_in, '<i')
original_hnsw_data['max_level'] = read_struct(f_in, '<i')
original_hnsw_data['efConstruction'] = read_struct(f_in, '<i')
original_hnsw_data['efSearch'] = read_struct(f_in, '<i')
original_hnsw_data['dummy_upper_beam'] = read_struct(f_in, '<i')
print(f"[{time.time() - start_time:.2f}s] Read scalar params (ep={original_hnsw_data['entry_point']}, max_lvl={original_hnsw_data['max_level']})")
original_hnsw_data["entry_point"] = read_struct(f_in, "<i")
original_hnsw_data["max_level"] = read_struct(f_in, "<i")
original_hnsw_data["efConstruction"] = read_struct(f_in, "<i")
original_hnsw_data["efSearch"] = read_struct(f_in, "<i")
original_hnsw_data["dummy_upper_beam"] = read_struct(f_in, "<i")
print(
f"[{time.time() - start_time:.2f}s] Read scalar params (ep={original_hnsw_data['entry_point']}, max_lvl={original_hnsw_data['max_level']})"
)
# Read storage fourcc
storage_fourcc = read_struct(f_in, '<I')
print(f"[{time.time() - start_time:.2f}s] Found storage fourcc: {storage_fourcc:08x}")
storage_fourcc = read_struct(f_in, "<I")
print(
f"[{time.time() - start_time:.2f}s] Found storage fourcc: {storage_fourcc:08x}"
)
if prune_embeddings and storage_fourcc != NULL_INDEX_FOURCC:
# Read compact neighbors data
compact_neighbors_data_np = read_numpy_vector(f_in, np.int32, 'i')
print(f"[{time.time() - start_time:.2f}s] Read compact neighbors data ({compact_neighbors_data_np.size})")
compact_neighbors_data_np = read_numpy_vector(f_in, np.int32, "i")
print(
f"[{time.time() - start_time:.2f}s] Read compact neighbors data ({compact_neighbors_data_np.size})"
)
compact_neighbors_data = compact_neighbors_data_np.tolist()
del compact_neighbors_data_np
# Skip storage data and write with NULL marker
print(f"[{time.time() - start_time:.2f}s] Pruning embeddings: Writing NULL storage marker.")
print(
f"[{time.time() - start_time:.2f}s] Pruning embeddings: Writing NULL storage marker."
)
storage_fourcc = NULL_INDEX_FOURCC
elif not prune_embeddings:
# Read and preserve compact neighbors and storage
compact_neighbors_data_np = read_numpy_vector(f_in, np.int32, 'i')
compact_neighbors_data_np = read_numpy_vector(f_in, np.int32, "i")
compact_neighbors_data = compact_neighbors_data_np.tolist()
del compact_neighbors_data_np
# Read remaining storage data
storage_data = f_in.read()
else:
# Already pruned (NULL storage)
compact_neighbors_data_np = read_numpy_vector(f_in, np.int32, 'i')
compact_neighbors_data_np = read_numpy_vector(f_in, np.int32, "i")
compact_neighbors_data = compact_neighbors_data_np.tolist()
del compact_neighbors_data_np
storage_data = b''
storage_data = b""
# Write the updated compact format
print(f"[{time.time() - start_time:.2f}s] Writing updated compact format...")
write_compact_format(f_out, original_hnsw_data, assign_probas_np, cum_nneighbor_per_level_np,
levels_np, compact_level_ptr, compact_node_offsets_np,
compact_neighbors_data, storage_fourcc, storage_data if not prune_embeddings else b'')
write_compact_format(
f_out,
original_hnsw_data,
assign_probas_np,
cum_nneighbor_per_level_np,
levels_np,
compact_level_ptr,
compact_node_offsets_np,
compact_neighbors_data,
storage_fourcc,
storage_data if not prune_embeddings else b"",
)
print(f"[{time.time() - start_time:.2f}s] Conversion complete.")
return True
else:
# is_compact=False, rewind and read original format
f_in.seek(pos_before_compact)
print(f"[{time.time() - start_time:.2f}s] Compact flag is False, reading original format...")
print(
f"[{time.time() - start_time:.2f}s] Compact flag is False, reading original format..."
)
except EOFError:
# No compact flag found, assume original format
f_in.seek(pos_before_compact)
print(f"[{time.time() - start_time:.2f}s] No compact flag found, assuming original format...")
print(
f"[{time.time() - start_time:.2f}s] No compact flag found, assuming original format..."
)
# --- Handle potential extra byte in original format (like C++ code) ---
print(f"[{time.time() - start_time:.2f}s] Probing for potential extra byte before non-compact offsets...")
print(
f"[{time.time() - start_time:.2f}s] Probing for potential extra byte before non-compact offsets..."
)
pos_before_probe = f_in.tell()
try:
suspected_flag = read_struct(f_in, '<B') # Read 1 byte
suspected_flag = read_struct(f_in, "<B") # Read 1 byte
if suspected_flag == 0x00:
print(f"[{time.time() - start_time:.2f}s] Found and consumed an unexpected 0x00 byte.")
print(
f"[{time.time() - start_time:.2f}s] Found and consumed an unexpected 0x00 byte."
)
elif suspected_flag == 0x01:
print(f"[{time.time() - start_time:.2f}s] ERROR: Found 0x01 but is_compact should be False")
print(
f"[{time.time() - start_time:.2f}s] ERROR: Found 0x01 but is_compact should be False"
)
raise ValueError("Inconsistent compact flag state")
else:
# Rewind - this byte is part of offsets data
f_in.seek(pos_before_probe)
print(f"[{time.time() - start_time:.2f}s] Rewound to original position (byte was 0x{suspected_flag:02x})")
print(
f"[{time.time() - start_time:.2f}s] Rewound to original position (byte was 0x{suspected_flag:02x})"
)
except EOFError:
f_in.seek(pos_before_probe)
print(f"[{time.time() - start_time:.2f}s] No extra byte found (EOF), proceeding with offsets read")
print(
f"[{time.time() - start_time:.2f}s] No extra byte found (EOF), proceeding with offsets read"
)
# --- Read original format data ---
offsets_np = read_numpy_vector(f_in, np.uint64, 'Q')
offsets_np = read_numpy_vector(f_in, np.uint64, "Q")
print(f"[{time.time() - start_time:.2f}s] Read offsets ({offsets_np.size})")
if len(offsets_np) != ntotal + 1:
raise ValueError(f"Inconsistent offsets size: len(levels)={ntotal} but len(offsets)={len(offsets_np)}")
raise ValueError(
f"Inconsistent offsets size: len(levels)={ntotal} but len(offsets)={len(offsets_np)}"
)
gc.collect()
print(f"[{time.time() - start_time:.2f}s] Attempting to read neighbors vector...")
neighbors_np = read_numpy_vector(f_in, np.int32, 'i')
neighbors_np = read_numpy_vector(f_in, np.int32, "i")
print(f"[{time.time() - start_time:.2f}s] Read neighbors ({neighbors_np.size})")
expected_neighbors_size = offsets_np[-1] if ntotal > 0 else 0
if neighbors_np.size != expected_neighbors_size:
print(f"Warning: neighbors vector size mismatch. Expected {expected_neighbors_size} based on offsets, got {neighbors_np.size}.")
print(
f"Warning: neighbors vector size mismatch. Expected {expected_neighbors_size} based on offsets, got {neighbors_np.size}."
)
gc.collect()
original_hnsw_data['entry_point'] = read_struct(f_in, '<i')
original_hnsw_data['max_level'] = read_struct(f_in, '<i')
original_hnsw_data['efConstruction'] = read_struct(f_in, '<i')
original_hnsw_data['efSearch'] = read_struct(f_in, '<i')
original_hnsw_data['dummy_upper_beam'] = read_struct(f_in, '<i')
print(f"[{time.time() - start_time:.2f}s] Read scalar params (ep={original_hnsw_data['entry_point']}, max_lvl={original_hnsw_data['max_level']})")
original_hnsw_data["entry_point"] = read_struct(f_in, "<i")
original_hnsw_data["max_level"] = read_struct(f_in, "<i")
original_hnsw_data["efConstruction"] = read_struct(f_in, "<i")
original_hnsw_data["efSearch"] = read_struct(f_in, "<i")
original_hnsw_data["dummy_upper_beam"] = read_struct(f_in, "<i")
print(
f"[{time.time() - start_time:.2f}s] Read scalar params (ep={original_hnsw_data['entry_point']}, max_lvl={original_hnsw_data['max_level']})"
)
print(f"[{time.time() - start_time:.2f}s] Checking for storage data...")
storage_fourcc = None
try:
storage_fourcc = read_struct(f_in, '<I')
print(f"[{time.time() - start_time:.2f}s] Found storage fourcc: {storage_fourcc:08x}.")
storage_fourcc = read_struct(f_in, "<I")
print(
f"[{time.time() - start_time:.2f}s] Found storage fourcc: {storage_fourcc:08x}."
)
except EOFError:
print(f"[{time.time() - start_time:.2f}s] No storage data found (EOF).")
print(f"[{time.time() - start_time:.2f}s] No storage data found (EOF).")
except Exception as e:
print(f"[{time.time() - start_time:.2f}s] Error reading potential storage data: {e}")
print(
f"[{time.time() - start_time:.2f}s] Error reading potential storage data: {e}"
)
# --- Perform Conversion ---
print(f"[{time.time() - start_time:.2f}s] Converting to CSR format...")
@@ -373,17 +492,21 @@ def convert_hnsw_graph_to_csr(input_filename, output_filename, prune_embeddings=
current_level_ptr_idx = 0
current_data_idx = 0
total_valid_neighbors_counted = 0 # For validation
total_valid_neighbors_counted = 0 # For validation
# Optimize calculation by getting slices once per node if possible
for i in range(ntotal):
if i > 0 and i % (ntotal // 100 or 1) == 0: # Log progress roughly every 1%
if i > 0 and i % (ntotal // 100 or 1) == 0: # Log progress roughly every 1%
progress = (i / ntotal) * 100
elapsed = time.time() - start_time
print(f"\r[{elapsed:.2f}s] Converting node {i}/{ntotal} ({progress:.1f}%)...", end="")
print(
f"\r[{elapsed:.2f}s] Converting node {i}/{ntotal} ({progress:.1f}%)...",
end="",
)
node_max_level = levels_np[i] - 1
if node_max_level < -1: node_max_level = -1
if node_max_level < -1:
node_max_level = -1
node_ptr_start_index = current_level_ptr_idx
compact_node_offsets_np[i] = node_ptr_start_index
@@ -394,13 +517,17 @@ def convert_hnsw_graph_to_csr(input_filename, output_filename, prune_embeddings=
for level in range(node_max_level + 1):
compact_level_ptr.append(current_data_idx)
begin_orig_np = original_offset_start + get_cum_neighbors(cum_nneighbor_per_level_np, level)
end_orig_np = original_offset_start + get_cum_neighbors(cum_nneighbor_per_level_np, level + 1)
begin_orig_np = original_offset_start + get_cum_neighbors(
cum_nneighbor_per_level_np, level
)
end_orig_np = original_offset_start + get_cum_neighbors(
cum_nneighbor_per_level_np, level + 1
)
begin_orig = int(begin_orig_np)
end_orig = int(end_orig_np)
neighbors_len = len(neighbors_np) # Cache length
neighbors_len = len(neighbors_np) # Cache length
begin_orig = min(max(0, begin_orig), neighbors_len)
end_orig = min(max(begin_orig, end_orig), neighbors_len)
@@ -413,83 +540,117 @@ def convert_hnsw_graph_to_csr(input_filename, output_filename, prune_embeddings=
if num_valid > 0:
# Append valid neighbors
compact_neighbors_data.extend(level_neighbors_slice[valid_neighbors_mask])
compact_neighbors_data.extend(
level_neighbors_slice[valid_neighbors_mask]
)
current_data_idx += num_valid
total_valid_neighbors_counted += num_valid
compact_level_ptr.append(current_data_idx)
current_level_ptr_idx += num_pointers_expected
compact_node_offsets_np[ntotal] = current_level_ptr_idx
print(f"\r[{time.time() - start_time:.2f}s] Conversion loop finished. ") # Clear progress line
print(
f"\r[{time.time() - start_time:.2f}s] Conversion loop finished. "
) # Clear progress line
# --- Validation Checks ---
print(f"[{time.time() - start_time:.2f}s] Running validation checks...")
valid_check_passed = True
# Check 1: Total valid neighbors count
print(f" Checking total valid neighbor count...")
print(" Checking total valid neighbor count...")
expected_valid_count = np.sum(neighbors_np >= 0)
if total_valid_neighbors_counted != len(compact_neighbors_data):
print(f"Error: Mismatch between counted valid neighbors ({total_valid_neighbors_counted}) and final compact_data size ({len(compact_neighbors_data)})!", file=sys.stderr)
valid_check_passed = False
print(
f"Error: Mismatch between counted valid neighbors ({total_valid_neighbors_counted}) and final compact_data size ({len(compact_neighbors_data)})!",
file=sys.stderr,
)
valid_check_passed = False
if expected_valid_count != len(compact_neighbors_data):
print(f"Error: Mismatch between NumPy count of valid neighbors ({expected_valid_count}) and final compact_data size ({len(compact_neighbors_data)})!", file=sys.stderr)
valid_check_passed = False
print(
f"Error: Mismatch between NumPy count of valid neighbors ({expected_valid_count}) and final compact_data size ({len(compact_neighbors_data)})!",
file=sys.stderr,
)
valid_check_passed = False
else:
print(f" OK: Total valid neighbors = {len(compact_neighbors_data)}")
print(f" OK: Total valid neighbors = {len(compact_neighbors_data)}")
# Check 2: Final pointer indices consistency
print(f" Checking final pointer indices...")
print(" Checking final pointer indices...")
if compact_node_offsets_np[ntotal] != len(compact_level_ptr):
print(f"Error: Final node offset ({compact_node_offsets_np[ntotal]}) doesn't match level_ptr size ({len(compact_level_ptr)})!", file=sys.stderr)
valid_check_passed = False
if (len(compact_level_ptr) > 0 and compact_level_ptr[-1] != len(compact_neighbors_data)) or \
(len(compact_level_ptr) == 0 and len(compact_neighbors_data) != 0):
last_ptr = compact_level_ptr[-1] if len(compact_level_ptr) > 0 else -1
print(f"Error: Last level pointer ({last_ptr}) doesn't match compact_data size ({len(compact_neighbors_data)})!", file=sys.stderr)
valid_check_passed = False
print(
f"Error: Final node offset ({compact_node_offsets_np[ntotal]}) doesn't match level_ptr size ({len(compact_level_ptr)})!",
file=sys.stderr,
)
valid_check_passed = False
if (
len(compact_level_ptr) > 0 and compact_level_ptr[-1] != len(compact_neighbors_data)
) or (len(compact_level_ptr) == 0 and len(compact_neighbors_data) != 0):
last_ptr = compact_level_ptr[-1] if len(compact_level_ptr) > 0 else -1
print(
f"Error: Last level pointer ({last_ptr}) doesn't match compact_data size ({len(compact_neighbors_data)})!",
file=sys.stderr,
)
valid_check_passed = False
else:
print(f" OK: Final pointers match data size.")
print(" OK: Final pointers match data size.")
if not valid_check_passed:
print("Error: Validation checks failed. Output file might be incorrect.", file=sys.stderr)
print(
"Error: Validation checks failed. Output file might be incorrect.",
file=sys.stderr,
)
# Optional: Exit here if validation fails
# return False
# --- Explicitly delete large intermediate arrays ---
print(f"[{time.time() - start_time:.2f}s] Deleting original neighbors and offsets arrays...")
print(
f"[{time.time() - start_time:.2f}s] Deleting original neighbors and offsets arrays..."
)
del neighbors_np
del offsets_np
gc.collect()
print(f" CSR Stats: |data|={len(compact_neighbors_data)}, |level_ptr|={len(compact_level_ptr)}")
print(
f" CSR Stats: |data|={len(compact_neighbors_data)}, |level_ptr|={len(compact_level_ptr)}"
)
# --- Write CSR HNSW graph data using unified function ---
print(f"[{time.time() - start_time:.2f}s] Writing CSR HNSW graph data in FAISS-compatible order...")
print(
f"[{time.time() - start_time:.2f}s] Writing CSR HNSW graph data in FAISS-compatible order..."
)
# Determine storage fourcc and data based on prune_embeddings
if prune_embeddings:
print(f" Pruning embeddings: Writing NULL storage marker.")
print(" Pruning embeddings: Writing NULL storage marker.")
output_storage_fourcc = NULL_INDEX_FOURCC
storage_data = b''
storage_data = b""
else:
# Keep embeddings - read and preserve original storage data
if storage_fourcc and storage_fourcc != NULL_INDEX_FOURCC:
print(f" Preserving embeddings: Reading original storage data...")
print(" Preserving embeddings: Reading original storage data...")
storage_data = f_in.read() # Read remaining storage data
output_storage_fourcc = storage_fourcc
print(f" Read {len(storage_data)} bytes of storage data")
else:
print(f" No embeddings found in original file (NULL storage)")
print(" No embeddings found in original file (NULL storage)")
output_storage_fourcc = NULL_INDEX_FOURCC
storage_data = b''
storage_data = b""
# Use the unified write function
write_compact_format(f_out, original_hnsw_data, assign_probas_np, cum_nneighbor_per_level_np,
levels_np, compact_level_ptr, compact_node_offsets_np,
compact_neighbors_data, output_storage_fourcc, storage_data)
write_compact_format(
f_out,
original_hnsw_data,
assign_probas_np,
cum_nneighbor_per_level_np,
levels_np,
compact_level_ptr,
compact_node_offsets_np,
compact_neighbors_data,
output_storage_fourcc,
storage_data,
)
# Clean up memory
del assign_probas_np, cum_nneighbor_per_level_np, levels_np
del compact_neighbors_data, compact_level_ptr, compact_node_offsets_np
@@ -503,40 +664,66 @@ def convert_hnsw_graph_to_csr(input_filename, output_filename, prune_embeddings=
print(f"Error: Input file not found: {input_filename}", file=sys.stderr)
return False
except MemoryError as e:
print(f"\nFatal MemoryError during conversion: {e}. Insufficient RAM.", file=sys.stderr)
# Clean up potentially partially written output file?
try: os.remove(output_filename)
except OSError: pass
return False
print(
f"\nFatal MemoryError during conversion: {e}. Insufficient RAM.",
file=sys.stderr,
)
# Clean up potentially partially written output file?
try:
os.remove(output_filename)
except OSError:
pass
return False
except EOFError as e:
print(f"Error: Reached end of file unexpectedly reading {input_filename}. {e}", file=sys.stderr)
try: os.remove(output_filename)
except OSError: pass
print(
f"Error: Reached end of file unexpectedly reading {input_filename}. {e}",
file=sys.stderr,
)
try:
os.remove(output_filename)
except OSError:
pass
return False
except Exception as e:
print(f"An unexpected error occurred during conversion: {e}", file=sys.stderr)
import traceback
traceback.print_exc()
try:
os.remove(output_filename)
except OSError: pass
except OSError:
pass
return False
# Ensure neighbors_np is deleted even if an error occurs after its allocation
finally:
if 'neighbors_np' in locals() and neighbors_np is not None:
del neighbors_np
gc.collect()
try:
if "neighbors_np" in locals() and neighbors_np is not None:
del neighbors_np
gc.collect()
except NameError:
pass
# --- Script Execution ---
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Convert a Faiss IndexHNSWFlat file to a CSR-based HNSW graph file.")
parser = argparse.ArgumentParser(
description="Convert a Faiss IndexHNSWFlat file to a CSR-based HNSW graph file."
)
parser.add_argument("input_index_file", help="Path to the input IndexHNSWFlat file")
parser.add_argument("output_csr_graph_file", help="Path to write the output CSR HNSW graph file")
parser.add_argument("--prune-embeddings", action="store_true", default=True,
help="Prune embedding storage (write NULL storage marker)")
parser.add_argument("--keep-embeddings", action="store_true",
help="Keep embedding storage (overrides --prune-embeddings)")
parser.add_argument(
"output_csr_graph_file", help="Path to write the output CSR HNSW graph file"
)
parser.add_argument(
"--prune-embeddings",
action="store_true",
default=True,
help="Prune embedding storage (write NULL storage marker)",
)
parser.add_argument(
"--keep-embeddings",
action="store_true",
help="Keep embedding storage (overrides --prune-embeddings)",
)
args = parser.parse_args()
@@ -545,10 +732,12 @@ if __name__ == "__main__":
sys.exit(1)
if os.path.abspath(args.input_index_file) == os.path.abspath(args.output_csr_graph_file):
print(f"Error: Input and output filenames cannot be the same.", file=sys.stderr)
sys.exit(1)
print("Error: Input and output filenames cannot be the same.", file=sys.stderr)
sys.exit(1)
prune_embeddings = args.prune_embeddings and not args.keep_embeddings
success = convert_hnsw_graph_to_csr(args.input_index_file, args.output_csr_graph_file, prune_embeddings)
success = convert_hnsw_graph_to_csr(
args.input_index_file, args.output_csr_graph_file, prune_embeddings
)
if not success:
sys.exit(1)
sys.exit(1)

View File

@@ -1,19 +1,19 @@
import numpy as np
import os
from pathlib import Path
from typing import Dict, Any, List, Literal, Optional
import shutil
import logging
import os
import shutil
from pathlib import Path
from typing import Any, Literal, Optional
from leann.searcher_base import BaseSearcher
from .convert_to_csr import convert_hnsw_graph_to_csr
from leann.registry import register_backend
import numpy as np
from leann.interface import (
LeannBackendFactoryInterface,
LeannBackendBuilderInterface,
LeannBackendFactoryInterface,
LeannBackendSearcherInterface,
)
from leann.registry import register_backend
from leann.searcher_base import BaseSearcher
from .convert_to_csr import convert_hnsw_graph_to_csr
logger = logging.getLogger(__name__)
@@ -28,6 +28,12 @@ def get_metric_map():
}
def normalize_l2(data: np.ndarray) -> np.ndarray:
norms = np.linalg.norm(data, axis=1, keepdims=True)
norms[norms == 0] = 1 # Avoid division by zero
return data / norms
@register_backend("hnsw")
class HNSWBackend(LeannBackendFactoryInterface):
@staticmethod
@@ -48,8 +54,14 @@ class HNSWBuilder(LeannBackendBuilderInterface):
self.efConstruction = self.build_params.setdefault("efConstruction", 200)
self.distance_metric = self.build_params.setdefault("distance_metric", "mips")
self.dimensions = self.build_params.get("dimensions")
if not self.is_recompute:
if self.is_compact:
# TODO: support this case @andy
raise ValueError(
"is_recompute is False, but is_compact is True. This is not compatible now. change is compact to False and you can use the original HNSW index."
)
def build(self, data: np.ndarray, ids: List[str], index_path: str, **kwargs):
def build(self, data: np.ndarray, ids: list[str], index_path: str, **kwargs):
from . import faiss # type: ignore
path = Path(index_path)
@@ -70,7 +82,7 @@ class HNSWBuilder(LeannBackendBuilderInterface):
index.hnsw.efConstruction = self.efConstruction
if self.distance_metric.lower() == "cosine":
faiss.normalize_L2(data)
data = normalize_l2(data)
index.add(data.shape[0], faiss.swig_ptr(data))
index_file = index_dir / f"{index_prefix}.index"
@@ -92,19 +104,15 @@ class HNSWBuilder(LeannBackendBuilderInterface):
if success:
logger.info("✅ CSR conversion successful.")
index_file_old = index_file.with_suffix(".old")
shutil.move(str(index_file), str(index_file_old))
# index_file_old = index_file.with_suffix(".old")
# shutil.move(str(index_file), str(index_file_old))
shutil.move(str(csr_temp_file), str(index_file))
logger.info(
f"INFO: Replaced original index with {mode_str} version at '{index_file}'"
)
logger.info(f"INFO: Replaced original index with {mode_str} version at '{index_file}'")
else:
# Clean up and fail fast
if csr_temp_file.exists():
os.remove(csr_temp_file)
raise RuntimeError(
"CSR conversion failed - cannot proceed with compact format"
)
raise RuntimeError("CSR conversion failed - cannot proceed with compact format")
class HNSWSearcher(BaseSearcher):
@@ -116,7 +124,9 @@ class HNSWSearcher(BaseSearcher):
)
from . import faiss # type: ignore
self.distance_metric = self.meta.get("distance_metric", "mips").lower()
self.distance_metric = (
self.meta.get("backend_kwargs", {}).get("distance_metric", "mips").lower()
)
metric_enum = get_metric_map().get(self.distance_metric)
if metric_enum is None:
raise ValueError(f"Unsupported distance_metric '{self.distance_metric}'.")
@@ -150,7 +160,7 @@ class HNSWSearcher(BaseSearcher):
pruning_strategy: Literal["global", "local", "proportional"] = "global",
batch_size: int = 0,
**kwargs,
) -> Dict[str, Any]:
) -> dict[str, Any]:
"""
Search for nearest neighbors using HNSW index.
@@ -179,23 +189,29 @@ class HNSWSearcher(BaseSearcher):
raise RuntimeError("Recompute is required for pruned index.")
if recompute_embeddings:
if zmq_port is None:
raise ValueError(
"zmq_port must be provided if recompute_embeddings is True"
)
raise ValueError("zmq_port must be provided if recompute_embeddings is True")
if query.dtype != np.float32:
query = query.astype(np.float32)
if self.distance_metric == "cosine":
faiss.normalize_L2(query)
query = normalize_l2(query)
params = faiss.SearchParametersHNSW()
if zmq_port is not None:
params.zmq_port = (
zmq_port # C++ code won't use this if recompute_embeddings is False
)
params.zmq_port = zmq_port # C++ code won't use this if recompute_embeddings is False
params.efSearch = complexity
params.beam_size = beam_width
# For OpenAI embeddings with cosine distance, disable relative distance check
# This prevents early termination when all scores are in a narrow range
embedding_model = self.meta.get("embedding_model", "").lower()
if self.distance_metric == "cosine" and any(
openai_model in embedding_model for openai_model in ["text-embedding", "openai"]
):
params.check_relative_distance = False
else:
params.check_relative_distance = True
# PQ pruning: direct mapping to HNSW's pq_pruning_ratio
params.pq_pruning_ratio = prune_ratio
@@ -205,9 +221,7 @@ class HNSWSearcher(BaseSearcher):
params.send_neigh_times_ratio = 0.0
elif pruning_strategy == "proportional":
params.local_prune = False
params.send_neigh_times_ratio = (
1.0 # Any value > 1e-6 triggers proportional mode
)
params.send_neigh_times_ratio = 1.0 # Any value > 1e-6 triggers proportional mode
else: # "global"
params.local_prune = False
params.send_neigh_times_ratio = 0.0
@@ -228,8 +242,28 @@ class HNSWSearcher(BaseSearcher):
params,
)
string_labels = [
[str(int_label) for int_label in batch_labels] for batch_labels in labels
]
string_labels = [[str(int_label) for int_label in batch_labels] for batch_labels in labels]
return {"labels": string_labels, "distances": distances}
def cleanup(self):
"""Cleanup HNSW-specific resources including C++ ZMQ connections."""
# Call parent cleanup first
super().cleanup()
# Additional cleanup for C++ side ZMQ connections
# The ZmqDistanceComputer in C++ uses ZMQ connections that need cleanup
try:
# Delete the index to trigger C++ destructors
if hasattr(self, "index"):
del self.index
except Exception:
pass
# Force garbage collection to ensure C++ objects are destroyed
try:
import gc
gc.collect()
except Exception:
pass

View File

@@ -3,17 +3,18 @@ HNSW-specific embedding server
"""
import argparse
import json
import logging
import os
import sys
import threading
import time
import os
import zmq
import numpy as np
import msgpack
import json
from pathlib import Path
from typing import Optional
import sys
import logging
import msgpack
import numpy as np
import zmq
# Set up logging based on environment variable
LOG_LEVEL = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
@@ -52,8 +53,8 @@ def create_hnsw_embedding_server(
sys.path.insert(0, str(leann_core_path))
try:
from leann.embedding_compute import compute_embeddings
from leann.api import PassageManager
from leann.embedding_compute import compute_embeddings
logger.info("Successfully imported unified embedding computation module")
except ImportError as e:
@@ -78,10 +79,11 @@ def create_hnsw_embedding_server(
raise ValueError("Only metadata files (.meta.json) are supported")
# Load metadata to get passage sources
with open(passages_file, "r") as f:
with open(passages_file) as f:
meta = json.load(f)
passages = PassageManager(meta["passage_sources"])
# Let PassageManager handle path resolution uniformly
passages = PassageManager(meta["passage_sources"], metadata_file_path=passages_file)
logger.info(
f"Loaded PassageManager with {len(passages.global_offset_map)} passages from metadata"
)
@@ -90,6 +92,7 @@ def create_hnsw_embedding_server(
"""ZMQ server thread"""
context = zmq.Context()
socket = context.socket(zmq.REP)
socket.setsockopt(zmq.LINGER, 0) # Don't block on close
socket.bind(f"tcp://*:{zmq_port}")
logger.info(f"HNSW ZMQ server listening on port {zmq_port}")
@@ -120,9 +123,7 @@ def create_hnsw_embedding_server(
response = embeddings.tolist()
socket.send(msgpack.packb(response))
e2e_end = time.time()
logger.info(
f"⏱️ Text embedding E2E time: {e2e_end - e2e_start:.6f}s"
)
logger.info(f"⏱️ Text embedding E2E time: {e2e_end - e2e_start:.6f}s")
continue
# Handle distance calculation requests
@@ -148,17 +149,13 @@ def create_hnsw_embedding_server(
texts.append(txt)
except KeyError:
logger.error(f"Passage ID {nid} not found")
raise RuntimeError(
f"FATAL: Passage with ID {nid} not found"
)
raise RuntimeError(f"FATAL: Passage with ID {nid} not found")
except Exception as e:
logger.error(f"Exception looking up passage ID {nid}: {e}")
raise
# Process embeddings
embeddings = compute_embeddings(
texts, model_name, mode=embedding_mode
)
embeddings = compute_embeddings(texts, model_name, mode=embedding_mode)
logger.info(
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
)
@@ -172,18 +169,12 @@ def create_hnsw_embedding_server(
distances = -np.dot(embeddings, query_vector)
response_payload = distances.flatten().tolist()
response_bytes = msgpack.packb(
[response_payload], use_single_float=True
)
logger.debug(
f"Sending distance response with {len(distances)} distances"
)
response_bytes = msgpack.packb([response_payload], use_single_float=True)
logger.debug(f"Sending distance response with {len(distances)} distances")
socket.send(response_bytes)
e2e_end = time.time()
logger.info(
f"⏱️ Distance calculation E2E time: {e2e_end - e2e_start:.6f}s"
)
logger.info(f"⏱️ Distance calculation E2E time: {e2e_end - e2e_start:.6f}s")
continue
# Standard embedding request (passage ID lookup)
@@ -208,9 +199,7 @@ def create_hnsw_embedding_server(
passage_data = passages.get_passage(str(nid))
txt = passage_data["text"]
if not txt:
raise RuntimeError(
f"FATAL: Empty text for passage ID {nid}"
)
raise RuntimeError(f"FATAL: Empty text for passage ID {nid}")
texts.append(txt)
except KeyError:
raise RuntimeError(f"FATAL: Passage with ID {nid} not found")
@@ -229,11 +218,9 @@ def create_hnsw_embedding_server(
logger.error(
f"NaN or Inf detected in embeddings! Requested IDs: {node_ids[:5]}..."
)
assert False
raise AssertionError()
hidden_contiguous_f32 = np.ascontiguousarray(
embeddings, dtype=np.float32
)
hidden_contiguous_f32 = np.ascontiguousarray(embeddings, dtype=np.float32)
response_payload = [
list(hidden_contiguous_f32.shape),
hidden_contiguous_f32.flatten().tolist(),
@@ -270,15 +257,15 @@ def create_hnsw_embedding_server(
if __name__ == "__main__":
import signal
import sys
def signal_handler(sig, frame):
logger.info(f"Received signal {sig}, shutting down gracefully...")
sys.exit(0)
# Register signal handlers for graceful shutdown
signal.signal(signal.SIGTERM, signal_handler)
signal.signal(signal.SIGINT, signal_handler)
parser = argparse.ArgumentParser(description="HNSW Embedding service")
parser.add_argument("--zmq-port", type=int, default=5555, help="ZMQ port to run on")
parser.add_argument(
@@ -299,7 +286,7 @@ if __name__ == "__main__":
"--embedding-mode",
type=str,
default="sentence-transformers",
choices=["sentence-transformers", "openai", "mlx"],
choices=["sentence-transformers", "openai", "mlx", "ollama"],
help="Embedding backend mode",
)

View File

@@ -6,10 +6,10 @@ build-backend = "scikit_build_core.build"
[project]
name = "leann-backend-hnsw"
version = "0.1.4"
version = "0.2.7"
description = "Custom-built HNSW (Faiss) backend for the Leann toolkit."
dependencies = [
"leann-core==0.1.4",
"leann-core==0.2.7",
"numpy",
"pyzmq>=23.0.0",
"msgpack>=1.0.0",
@@ -24,4 +24,4 @@ build.tool-args = ["-j8"]
# CMake definitions to optimize compilation
[tool.scikit-build.cmake.define]
CMAKE_BUILD_PARALLEL_LEVEL = "8"
CMAKE_BUILD_PARALLEL_LEVEL = "8"

View File

@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
[project]
name = "leann-core"
version = "0.1.4"
version = "0.2.7"
description = "Core API and plugin system for LEANN"
readme = "README.md"
requires-python = ">=3.9"
@@ -20,11 +20,33 @@ dependencies = [
"torch>=2.0.0",
"sentence-transformers>=2.2.0",
"llama-index-core>=0.12.0",
"llama-index-readers-file>=0.4.0", # Essential for document reading
"llama-index-embeddings-huggingface>=0.5.5", # For embeddings
"python-dotenv>=1.0.0",
"openai>=1.0.0",
"huggingface-hub>=0.20.0",
"transformers>=4.30.0",
"requests>=2.25.0",
"accelerate>=0.20.0",
"PyPDF2>=3.0.0",
"pymupdf>=1.23.0",
"pdfplumber>=0.10.0",
"nbconvert>=7.0.0", # For .ipynb file support
"gitignore-parser>=0.1.12", # For proper .gitignore handling
"mlx>=0.26.3; sys_platform == 'darwin'",
"mlx-lm>=0.26.0; sys_platform == 'darwin'",
]
[project.optional-dependencies]
colab = [
"torch>=2.0.0,<3.0.0", # Limit torch version to avoid conflicts
"transformers>=4.30.0,<5.0.0", # Limit transformers version
"accelerate>=0.20.0,<1.0.0", # Limit accelerate version
]
[project.scripts]
leann = "leann.cli:main"
leann_mcp = "leann.mcp:main"
[tool.setuptools.packages.find]
where = ["src"]
where = ["src"]

View File

@@ -8,10 +8,14 @@ if platform.system() == "Darwin":
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
os.environ["KMP_BLOCKTIME"] = "0"
# Additional fixes for PyTorch/sentence-transformers on macOS ARM64 only in CI
if os.environ.get("CI") == "true":
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "0"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
from .api import LeannBuilder, LeannChat, LeannSearcher
from .registry import BACKEND_REGISTRY, autodiscover_backends
autodiscover_backends()
__all__ = ["LeannBuilder", "LeannSearcher", "LeannChat", "BACKEND_REGISTRY"]
__all__ = ["BACKEND_REGISTRY", "LeannBuilder", "LeannChat", "LeannSearcher"]

View File

@@ -4,23 +4,32 @@ with the correct, original embedding logic from the user's reference code.
"""
import json
import pickle
from leann.interface import LeannBackendSearcherInterface
import numpy as np
import time
from pathlib import Path
from typing import List, Dict, Any, Optional, Literal
from dataclasses import dataclass, field
from .registry import BACKEND_REGISTRY
from .interface import LeannBackendFactoryInterface
from .chat import get_llm
import logging
import pickle
import time
import warnings
from dataclasses import dataclass, field
from pathlib import Path
from typing import Any, Literal, Optional
import numpy as np
from leann.interface import LeannBackendSearcherInterface
from .chat import get_llm
from .interface import LeannBackendFactoryInterface
from .registry import BACKEND_REGISTRY
logger = logging.getLogger(__name__)
def get_registered_backends() -> list[str]:
"""Get list of registered backend names."""
return list(BACKEND_REGISTRY.keys())
def compute_embeddings(
chunks: List[str],
chunks: list[str],
model_name: str,
mode: str = "sentence-transformers",
use_server: bool = True,
@@ -61,9 +70,7 @@ def compute_embeddings(
)
def compute_embeddings_via_server(
chunks: List[str], model_name: str, port: int
) -> np.ndarray:
def compute_embeddings_via_server(chunks: list[str], model_name: str, port: int) -> np.ndarray:
"""Computes embeddings using sentence-transformers.
Args:
@@ -73,28 +80,33 @@ def compute_embeddings_via_server(
logger.info(
f"Computing embeddings for {len(chunks)} chunks using SentenceTransformer model '{model_name}' (via embedding server)..."
)
import zmq
import msgpack
import numpy as np
import zmq
# Connect to embedding server
context = zmq.Context()
socket = context.socket(zmq.REQ)
socket.setsockopt(zmq.LINGER, 0) # Don't block on close
socket.setsockopt(zmq.RCVTIMEO, 1000) # 1s timeout on receive
socket.setsockopt(zmq.SNDTIMEO, 1000) # 1s timeout on send
socket.setsockopt(zmq.IMMEDIATE, 1) # Don't wait for connection
socket.connect(f"tcp://localhost:{port}")
# Send chunks to server for embedding computation
request = chunks
socket.send(msgpack.packb(request))
try:
# Send chunks to server for embedding computation
request = chunks
socket.send(msgpack.packb(request))
# Receive embeddings from server
response = socket.recv()
embeddings_list = msgpack.unpackb(response)
# Receive embeddings from server
response = socket.recv()
embeddings_list = msgpack.unpackb(response)
# Convert back to numpy array
embeddings = np.array(embeddings_list, dtype=np.float32)
socket.close()
context.term()
# Convert back to numpy array
embeddings = np.array(embeddings_list, dtype=np.float32)
finally:
socket.close(linger=0)
context.term()
return embeddings
@@ -104,11 +116,13 @@ class SearchResult:
id: str
score: float
text: str
metadata: Dict[str, Any] = field(default_factory=dict)
metadata: dict[str, Any] = field(default_factory=dict)
class PassageManager:
def __init__(self, passage_sources: List[Dict[str, Any]]):
def __init__(
self, passage_sources: list[dict[str, Any]], metadata_file_path: Optional[str] = None
):
self.offset_maps = {}
self.passage_files = {}
self.global_offset_map = {} # Combined map for fast lookup
@@ -117,8 +131,31 @@ class PassageManager:
assert source["type"] == "jsonl", "only jsonl is supported"
passage_file = source["path"]
index_file = source["index_path"] # .idx file
# Fix path resolution - relative paths should be relative to metadata file directory
if not Path(index_file).is_absolute():
if metadata_file_path:
# Resolve relative to metadata file directory
metadata_dir = Path(metadata_file_path).parent
logger.debug(
f"PassageManager: Resolving relative paths from metadata_dir: {metadata_dir}"
)
index_file = str((metadata_dir / index_file).resolve())
passage_file = str((metadata_dir / passage_file).resolve())
logger.debug(f"PassageManager: Resolved index_file: {index_file}")
else:
# Fallback to current directory resolution (legacy behavior)
logger.warning(
"PassageManager: No metadata_file_path provided, using fallback resolution from cwd"
)
logger.debug(f"PassageManager: Current working directory: {Path.cwd()}")
index_file = str(Path(index_file).resolve())
passage_file = str(Path(passage_file).resolve())
logger.debug(f"PassageManager: Fallback resolved index_file: {index_file}")
if not Path(index_file).exists():
raise FileNotFoundError(f"Passage index file not found: {index_file}")
with open(index_file, "rb") as f:
offset_map = pickle.load(f)
self.offset_maps[passage_file] = offset_map
@@ -128,11 +165,11 @@ class PassageManager:
for passage_id, offset in offset_map.items():
self.global_offset_map[passage_id] = (passage_file, offset)
def get_passage(self, passage_id: str) -> Dict[str, Any]:
def get_passage(self, passage_id: str) -> dict[str, Any]:
if passage_id in self.global_offset_map:
passage_file, offset = self.global_offset_map[passage_id]
# Lazy file opening - only open when needed
with open(passage_file, "r", encoding="utf-8") as f:
with open(passage_file, encoding="utf-8") as f:
f.seek(offset)
return json.loads(f.readline())
raise KeyError(f"Passage ID not found: {passage_id}")
@@ -148,19 +185,87 @@ class LeannBuilder:
**backend_kwargs,
):
self.backend_name = backend_name
backend_factory: LeannBackendFactoryInterface | None = BACKEND_REGISTRY.get(
backend_name
)
backend_factory: Optional[LeannBackendFactoryInterface] = BACKEND_REGISTRY.get(backend_name)
if backend_factory is None:
raise ValueError(f"Backend '{backend_name}' not found or not registered.")
self.backend_factory = backend_factory
self.embedding_model = embedding_model
self.dimensions = dimensions
self.embedding_mode = embedding_mode
self.backend_kwargs = backend_kwargs
self.chunks: List[Dict[str, Any]] = []
def add_text(self, text: str, metadata: Optional[Dict[str, Any]] = None):
# Check if we need to use cosine distance for normalized embeddings
normalized_embeddings_models = {
# OpenAI models
("openai", "text-embedding-ada-002"),
("openai", "text-embedding-3-small"),
("openai", "text-embedding-3-large"),
# Voyage AI models
("voyage", "voyage-2"),
("voyage", "voyage-3"),
("voyage", "voyage-large-2"),
("voyage", "voyage-multilingual-2"),
("voyage", "voyage-code-2"),
# Cohere models
("cohere", "embed-english-v3.0"),
("cohere", "embed-multilingual-v3.0"),
("cohere", "embed-english-light-v3.0"),
("cohere", "embed-multilingual-light-v3.0"),
}
# Also check for patterns in model names
is_normalized = False
current_model_lower = embedding_model.lower()
current_mode_lower = embedding_mode.lower()
# Check exact matches
for mode, model in normalized_embeddings_models:
if (current_mode_lower == mode and current_model_lower == model) or (
mode in current_mode_lower and model in current_model_lower
):
is_normalized = True
break
# Check patterns
if not is_normalized:
# OpenAI patterns
if "openai" in current_mode_lower or "openai" in current_model_lower:
if any(
pattern in current_model_lower
for pattern in ["text-embedding", "ada", "3-small", "3-large"]
):
is_normalized = True
# Voyage patterns
elif "voyage" in current_mode_lower or "voyage" in current_model_lower:
is_normalized = True
# Cohere patterns
elif "cohere" in current_mode_lower or "cohere" in current_model_lower:
if "embed" in current_model_lower:
is_normalized = True
# Handle distance metric
if is_normalized and "distance_metric" not in backend_kwargs:
backend_kwargs["distance_metric"] = "cosine"
warnings.warn(
f"Detected normalized embeddings model '{embedding_model}' with mode '{embedding_mode}'. "
f"Automatically setting distance_metric='cosine' for optimal performance. "
f"Normalized embeddings (L2 norm = 1) should use cosine similarity instead of MIPS.",
UserWarning,
stacklevel=2,
)
elif is_normalized and backend_kwargs.get("distance_metric", "").lower() != "cosine":
current_metric = backend_kwargs.get("distance_metric", "mips")
warnings.warn(
f"Warning: Using '{current_metric}' distance metric with normalized embeddings model "
f"'{embedding_model}' may lead to suboptimal search results. "
f"Consider using 'cosine' distance metric for better performance.",
UserWarning,
stacklevel=2,
)
self.backend_kwargs = backend_kwargs
self.chunks: list[dict[str, Any]] = []
def add_text(self, text: str, metadata: Optional[dict[str, Any]] = None):
if metadata is None:
metadata = {}
passage_id = metadata.get("id", str(len(self.chunks)))
@@ -190,9 +295,7 @@ class LeannBuilder:
try:
from tqdm import tqdm
chunk_iterator = tqdm(
self.chunks, desc="Writing passages", unit="chunk"
)
chunk_iterator = tqdm(self.chunks, desc="Writing passages", unit="chunk")
except ImportError:
chunk_iterator = self.chunks
@@ -222,9 +325,7 @@ class LeannBuilder:
string_ids = [chunk["id"] for chunk in self.chunks]
current_backend_kwargs = {**self.backend_kwargs, "dimensions": self.dimensions}
builder_instance = self.backend_factory.builder(**current_backend_kwargs)
builder_instance.build(
embeddings, string_ids, index_path, **current_backend_kwargs
)
builder_instance.build(embeddings, string_ids, index_path, **current_backend_kwargs)
leann_meta_path = index_dir / f"{index_name}.meta.json"
meta_data = {
"version": "1.0",
@@ -236,8 +337,8 @@ class LeannBuilder:
"passage_sources": [
{
"type": "jsonl",
"path": str(passages_file),
"index_path": str(offset_file),
"path": passages_file.name, # Use relative path (just filename)
"index_path": offset_file.name, # Use relative path (just filename)
}
],
}
@@ -273,9 +374,7 @@ class LeannBuilder:
ids, embeddings = data
if not isinstance(embeddings, np.ndarray):
raise ValueError(
f"Expected embeddings to be numpy array, got {type(embeddings)}"
)
raise ValueError(f"Expected embeddings to be numpy array, got {type(embeddings)}")
if len(ids) != embeddings.shape[0]:
raise ValueError(
@@ -287,9 +386,7 @@ class LeannBuilder:
if self.dimensions is None:
self.dimensions = embedding_dim
elif self.dimensions != embedding_dim:
raise ValueError(
f"Dimension mismatch: expected {self.dimensions}, got {embedding_dim}"
)
raise ValueError(f"Dimension mismatch: expected {self.dimensions}, got {embedding_dim}")
logger.info(
f"Building index from precomputed embeddings: {len(ids)} items, {embedding_dim} dimensions"
@@ -356,8 +453,8 @@ class LeannBuilder:
"passage_sources": [
{
"type": "jsonl",
"path": str(passages_file),
"index_path": str(offset_file),
"path": passages_file.name, # Use relative path (just filename)
"index_path": offset_file.name, # Use relative path (just filename)
}
],
"built_from_precomputed_embeddings": True,
@@ -374,27 +471,34 @@ class LeannBuilder:
with open(leann_meta_path, "w", encoding="utf-8") as f:
json.dump(meta_data, f, indent=2)
logger.info(
f"Index built successfully from precomputed embeddings: {index_path}"
)
logger.info(f"Index built successfully from precomputed embeddings: {index_path}")
class LeannSearcher:
def __init__(self, index_path: str, enable_warmup: bool = False, **backend_kwargs):
# Fix path resolution for Colab and other environments
if not Path(index_path).is_absolute():
index_path = str(Path(index_path).resolve())
self.meta_path_str = f"{index_path}.meta.json"
if not Path(self.meta_path_str).exists():
raise FileNotFoundError(
f"Leann metadata file not found at {self.meta_path_str}"
parent_dir = Path(index_path).parent
print(
f"Leann metadata file not found at {self.meta_path_str}, and you may need to rm -rf {parent_dir}"
)
with open(self.meta_path_str, "r", encoding="utf-8") as f:
# highlight in red the filenotfound error
raise FileNotFoundError(
f"Leann metadata file not found at {self.meta_path_str}, \033[91m you may need to rm -rf {parent_dir}\033[0m"
)
with open(self.meta_path_str, encoding="utf-8") as f:
self.meta_data = json.load(f)
backend_name = self.meta_data["backend_name"]
self.embedding_model = self.meta_data["embedding_model"]
# Support both old and new format
self.embedding_mode = self.meta_data.get(
"embedding_mode", "sentence-transformers"
self.embedding_mode = self.meta_data.get("embedding_mode", "sentence-transformers")
self.passage_manager = PassageManager(
self.meta_data.get("passage_sources", []), metadata_file_path=self.meta_path_str
)
self.passage_manager = PassageManager(self.meta_data.get("passage_sources", []))
backend_factory = BACKEND_REGISTRY.get(backend_name)
if backend_factory is None:
raise ValueError(f"Backend '{backend_name}' not found.")
@@ -415,12 +519,22 @@ class LeannSearcher:
pruning_strategy: Literal["global", "local", "proportional"] = "global",
expected_zmq_port: int = 5557,
**kwargs,
) -> List[SearchResult]:
) -> list[SearchResult]:
logger.info("🔍 LeannSearcher.search() called:")
logger.info(f" Query: '{query}'")
logger.info(f" Top_k: {top_k}")
logger.info(f" Additional kwargs: {kwargs}")
# Smart top_k detection and adjustment
total_docs = len(self.passage_manager.global_offset_map)
original_top_k = top_k
if top_k > total_docs:
top_k = total_docs
logger.warning(
f" ⚠️ Requested top_k ({original_top_k}) exceeds total documents ({total_docs})"
)
logger.warning(f" ✅ Auto-adjusted top_k to {top_k} to match available documents")
zmq_port = None
start_time = time.time()
@@ -441,9 +555,9 @@ class LeannSearcher:
use_server_if_available=recompute_embeddings,
zmq_port=zmq_port,
)
logger.info(f" Generated embedding shape: {query_embedding.shape}")
embedding_time = time.time() - start_time
logger.info(f" Embedding time: {embedding_time} seconds")
# logger.info(f" Generated embedding shape: {query_embedding.shape}")
time.time() - start_time
# logger.info(f" Embedding time: {embedding_time} seconds")
start_time = time.time()
results = self.backend_impl.search(
@@ -457,15 +571,13 @@ class LeannSearcher:
zmq_port=zmq_port,
**kwargs,
)
search_time = time.time() - start_time
logger.info(f" Search time: {search_time} seconds")
logger.info(
f" Backend returned: labels={len(results.get('labels', [[]])[0])} results"
)
# logger.info(f" Search time: {search_time} seconds")
logger.info(f" Backend returned: labels={len(results.get('labels', [[]])[0])} results")
enriched_results = []
if "labels" in results and "distances" in results:
logger.info(f" Processing {len(results['labels'][0])} passage IDs:")
# Python 3.9 does not support zip(strict=...); lengths are expected to match
for i, (string_id, dist) in enumerate(
zip(results["labels"][0], results["distances"][0])
):
@@ -479,23 +591,59 @@ class LeannSearcher:
metadata=passage_data.get("metadata", {}),
)
)
# Color codes for better logging
GREEN = "\033[92m"
BLUE = "\033[94m"
YELLOW = "\033[93m"
RESET = "\033[0m"
# Truncate text for display (first 100 chars)
display_text = passage_data["text"]
logger.info(
f" {i + 1}. passage_id='{string_id}' -> SUCCESS: {passage_data['text']}..."
f" {GREEN}{RESET} {BLUE}[{i + 1:2d}]{RESET} {YELLOW}ID:{RESET} '{string_id}' {YELLOW}Score:{RESET} {dist:.4f} {YELLOW}Text:{RESET} {display_text}"
)
except KeyError:
RED = "\033[91m"
RESET = "\033[0m"
logger.error(
f" {i + 1}. passage_id='{string_id}' -> ERROR: Passage not found in PassageManager!"
f" {RED}{RESET} [{i + 1:2d}] ID: '{string_id}' -> {RED}ERROR: Passage not found!{RESET}"
)
logger.info(f" Final enriched results: {len(enriched_results)} passages")
# Define color codes outside the loop for final message
GREEN = "\033[92m"
RESET = "\033[0m"
logger.info(f" {GREEN}✓ Final enriched results: {len(enriched_results)} passages{RESET}")
return enriched_results
def cleanup(self):
"""Explicitly cleanup embedding server and ZMQ resources.
This method should be called after you're done using the searcher,
especially in test environments or batch processing scenarios.
"""
# Stop embedding server
if hasattr(self.backend_impl, "embedding_server_manager"):
self.backend_impl.embedding_server_manager.stop_server()
# Set ZMQ linger but don't terminate global context
try:
import zmq
# Just set linger on the global instance
ctx = zmq.Context.instance()
ctx.linger = 0
# NEVER call ctx.term() or destroy() on the global instance
# That would block waiting for all sockets to close
except Exception:
pass
class LeannChat:
def __init__(
self,
index_path: str,
llm_config: Optional[Dict[str, Any]] = None,
llm_config: Optional[dict[str, Any]] = None,
enable_warmup: bool = False,
**kwargs,
):
@@ -511,13 +659,13 @@ class LeannChat:
prune_ratio: float = 0.0,
recompute_embeddings: bool = True,
pruning_strategy: Literal["global", "local", "proportional"] = "global",
llm_kwargs: Optional[Dict[str, Any]] = None,
llm_kwargs: Optional[dict[str, Any]] = None,
expected_zmq_port: int = 5557,
**search_kwargs,
):
if llm_kwargs is None:
llm_kwargs = {}
search_time = time.time()
results = self.searcher.search(
question,
top_k=top_k,
@@ -529,6 +677,8 @@ class LeannChat:
expected_zmq_port=expected_zmq_port,
**search_kwargs,
)
search_time = time.time() - search_time
# logger.info(f" Search time: {search_time} seconds")
context = "\n\n".join([r.text for r in results])
prompt = (
"Here is some retrieved context that might help answer your question:\n\n"
@@ -537,7 +687,10 @@ class LeannChat:
"Please provide the best answer you can based on this context and your knowledge."
)
ask_time = time.time()
ans = self.llm.ask(prompt, **llm_kwargs)
ask_time = time.time() - ask_time
logger.info(f" Ask time: {ask_time} seconds")
return ans
def start_interactive(self):
@@ -554,3 +707,12 @@ class LeannChat:
except (KeyboardInterrupt, EOFError):
print("\nGoodbye!")
break
def cleanup(self):
"""Explicitly cleanup embedding server resources.
This method should be called after you're done using the chat interface,
especially in test environments or batch processing scenarios.
"""
if hasattr(self.searcher, "cleanup"):
self.searcher.cleanup()

View File

@@ -4,11 +4,12 @@ This file contains the chat generation logic for the LEANN project,
supporting different backends like Ollama, Hugging Face Transformers, and a simulation mode.
"""
from abc import ABC, abstractmethod
from typing import Dict, Any, Optional, List
import difflib
import logging
import os
import difflib
from abc import ABC, abstractmethod
from typing import Any, Optional
import torch
# Configure logging
@@ -16,11 +17,12 @@ logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def check_ollama_models() -> List[str]:
def check_ollama_models(host: str) -> list[str]:
"""Check available Ollama models and return a list"""
try:
import requests
response = requests.get("http://localhost:11434/api/tags", timeout=5)
response = requests.get(f"{host}/api/tags", timeout=5)
if response.status_code == 200:
data = response.json()
return [model["name"] for model in data.get("models", [])]
@@ -31,51 +33,52 @@ def check_ollama_models() -> List[str]:
def check_ollama_model_exists_remotely(model_name: str) -> tuple[bool, list[str]]:
"""Check if a model exists in Ollama's remote library and return available tags
Returns:
(model_exists, available_tags): bool and list of matching tags
"""
try:
import requests
import re
import requests
# Split model name and tag
if ':' in model_name:
base_model, requested_tag = model_name.split(':', 1)
if ":" in model_name:
base_model, requested_tag = model_name.split(":", 1)
else:
base_model, requested_tag = model_name, None
# First check if base model exists in library
library_response = requests.get("https://ollama.com/library", timeout=8)
if library_response.status_code != 200:
return True, [] # Assume exists if can't check
# Extract model names from library page
models_in_library = re.findall(r'href="/library/([^"]+)"', library_response.text)
if base_model not in models_in_library:
return False, [] # Base model doesn't exist
# If base model exists, get available tags
tags_response = requests.get(f"https://ollama.com/library/{base_model}/tags", timeout=8)
if tags_response.status_code != 200:
return True, [] # Base model exists but can't get tags
# Extract tags for this model - be more specific to avoid HTML artifacts
tag_pattern = rf'{re.escape(base_model)}:[a-zA-Z0-9\.\-_]+'
tag_pattern = rf"{re.escape(base_model)}:[a-zA-Z0-9\.\-_]+"
raw_tags = re.findall(tag_pattern, tags_response.text)
# Clean up tags - remove HTML artifacts and duplicates
available_tags = []
seen = set()
for tag in raw_tags:
# Skip if it looks like HTML (contains < or >)
if '<' in tag or '>' in tag:
if "<" in tag or ">" in tag:
continue
if tag not in seen:
seen.add(tag)
available_tags.append(tag)
# Check if exact model exists
if requested_tag is None:
# User just requested base model, suggest tags
@@ -83,76 +86,80 @@ def check_ollama_model_exists_remotely(model_name: str) -> tuple[bool, list[str]
else:
exact_match = model_name in available_tags
return exact_match, available_tags[:10]
except Exception:
pass
# If scraping fails, assume model might exist (don't block user)
return True, []
def search_ollama_models_fuzzy(query: str, available_models: List[str]) -> List[str]:
def search_ollama_models_fuzzy(query: str, available_models: list[str]) -> list[str]:
"""Use intelligent fuzzy search for Ollama models"""
if not available_models:
return []
query_lower = query.lower()
suggestions = []
# 1. Exact matches first
exact_matches = [m for m in available_models if query_lower == m.lower()]
suggestions.extend(exact_matches)
# 2. Starts with query
starts_with = [m for m in available_models if m.lower().startswith(query_lower) and m not in suggestions]
starts_with = [
m for m in available_models if m.lower().startswith(query_lower) and m not in suggestions
]
suggestions.extend(starts_with)
# 3. Contains query
contains = [m for m in available_models if query_lower in m.lower() and m not in suggestions]
suggestions.extend(contains)
# 4. Base model name matching (remove version numbers)
def get_base_name(model_name: str) -> str:
"""Extract base name without version (e.g., 'llama3:8b' -> 'llama3')"""
return model_name.split(':')[0].split('-')[0]
return model_name.split(":")[0].split("-")[0]
query_base = get_base_name(query_lower)
base_matches = [
m for m in available_models
m
for m in available_models
if get_base_name(m.lower()) == query_base and m not in suggestions
]
suggestions.extend(base_matches)
# 5. Family/variant matching
model_families = {
'llama': ['llama2', 'llama3', 'alpaca', 'vicuna', 'codellama'],
'qwen': ['qwen', 'qwen2', 'qwen3'],
'gemma': ['gemma', 'gemma2'],
'phi': ['phi', 'phi2', 'phi3'],
'mistral': ['mistral', 'mixtral', 'openhermes'],
'dolphin': ['dolphin', 'openchat'],
'deepseek': ['deepseek', 'deepseek-coder']
"llama": ["llama2", "llama3", "alpaca", "vicuna", "codellama"],
"qwen": ["qwen", "qwen2", "qwen3"],
"gemma": ["gemma", "gemma2"],
"phi": ["phi", "phi2", "phi3"],
"mistral": ["mistral", "mixtral", "openhermes"],
"dolphin": ["dolphin", "openchat"],
"deepseek": ["deepseek", "deepseek-coder"],
}
query_family = None
for family, variants in model_families.items():
if any(variant in query_lower for variant in variants):
query_family = family
break
if query_family:
family_variants = model_families[query_family]
family_matches = [
m for m in available_models
m
for m in available_models
if any(variant in m.lower() for variant in family_variants) and m not in suggestions
]
suggestions.extend(family_matches)
# 6. Use difflib for remaining fuzzy matches
remaining_models = [m for m in available_models if m not in suggestions]
difflib_matches = difflib.get_close_matches(query_lower, remaining_models, n=3, cutoff=0.4)
suggestions.extend(difflib_matches)
return suggestions[:8] # Return top 8 suggestions
@@ -162,15 +169,13 @@ def search_ollama_models_fuzzy(query: str, available_models: List[str]) -> List[
# Remove this too - no need for fallback
def suggest_similar_models(invalid_model: str, available_models: List[str]) -> List[str]:
def suggest_similar_models(invalid_model: str, available_models: list[str]) -> list[str]:
"""Use difflib to find similar model names"""
if not available_models:
return []
# Get close matches using fuzzy matching
suggestions = difflib.get_close_matches(
invalid_model, available_models, n=3, cutoff=0.3
)
suggestions = difflib.get_close_matches(invalid_model, available_models, n=3, cutoff=0.3)
return suggestions
@@ -178,49 +183,50 @@ def check_hf_model_exists(model_name: str) -> bool:
"""Quick check if HuggingFace model exists without downloading"""
try:
from huggingface_hub import model_info
model_info(model_name)
return True
except Exception:
return False
def get_popular_hf_models() -> List[str]:
def get_popular_hf_models() -> list[str]:
"""Return a list of popular HuggingFace models for suggestions"""
try:
from huggingface_hub import list_models
# Get popular text-generation models, sorted by downloads
models = list_models(
filter="text-generation",
sort="downloads",
direction=-1,
limit=20 # Get top 20 most downloaded
limit=20, # Get top 20 most downloaded
)
# Extract model names and filter for chat/conversation models
model_names = []
chat_keywords = ['chat', 'instruct', 'dialog', 'conversation', 'assistant']
chat_keywords = ["chat", "instruct", "dialog", "conversation", "assistant"]
for model in models:
model_name = model.id if hasattr(model, 'id') else str(model)
model_name = model.id if hasattr(model, "id") else str(model)
# Prioritize models with chat-related keywords
if any(keyword in model_name.lower() for keyword in chat_keywords):
model_names.append(model_name)
elif len(model_names) < 10: # Fill up with other popular models
model_names.append(model_name)
return model_names[:10] if model_names else _get_fallback_hf_models()
except Exception:
# Fallback to static list if API call fails
return _get_fallback_hf_models()
def _get_fallback_hf_models() -> List[str]:
def _get_fallback_hf_models() -> list[str]:
"""Fallback list of popular HuggingFace models"""
return [
"microsoft/DialoGPT-medium",
"microsoft/DialoGPT-large",
"microsoft/DialoGPT-large",
"facebook/blenderbot-400M-distill",
"microsoft/phi-2",
"deepseek-ai/deepseek-llm-7b-chat",
@@ -228,44 +234,44 @@ def _get_fallback_hf_models() -> List[str]:
"facebook/blenderbot_small-90M",
"microsoft/phi-1_5",
"facebook/opt-350m",
"EleutherAI/gpt-neo-1.3B"
"EleutherAI/gpt-neo-1.3B",
]
def search_hf_models_fuzzy(query: str, limit: int = 10) -> List[str]:
def search_hf_models_fuzzy(query: str, limit: int = 10) -> list[str]:
"""Use HuggingFace Hub's native fuzzy search for model suggestions"""
try:
from huggingface_hub import list_models
# HF Hub's search is already fuzzy! It handles typos and partial matches
models = list_models(
search=query,
filter="text-generation",
sort="downloads",
sort="downloads",
direction=-1,
limit=limit
limit=limit,
)
model_names = [model.id if hasattr(model, 'id') else str(model) for model in models]
model_names = [model.id if hasattr(model, "id") else str(model) for model in models]
# If direct search doesn't return enough results, try some variations
if len(model_names) < 3:
# Try searching for partial matches or common variations
variations = []
# Extract base name (e.g., "gpt3" from "gpt-3.5")
base_query = query.lower().replace('-', '').replace('.', '').replace('_', '')
base_query = query.lower().replace("-", "").replace(".", "").replace("_", "")
if base_query != query.lower():
variations.append(base_query)
# Try common model name patterns
if 'gpt' in query.lower():
variations.extend(['gpt2', 'gpt-neo', 'gpt-j', 'dialoGPT'])
elif 'llama' in query.lower():
variations.extend(['llama2', 'alpaca', 'vicuna'])
elif 'bert' in query.lower():
variations.extend(['roberta', 'distilbert', 'albert'])
if "gpt" in query.lower():
variations.extend(["gpt2", "gpt-neo", "gpt-j", "dialoGPT"])
elif "llama" in query.lower():
variations.extend(["llama2", "alpaca", "vicuna"])
elif "bert" in query.lower():
variations.extend(["roberta", "distilbert", "albert"])
# Search with variations
for var in variations[:2]: # Limit to 2 variations to avoid too many API calls
try:
@@ -274,13 +280,15 @@ def search_hf_models_fuzzy(query: str, limit: int = 10) -> List[str]:
filter="text-generation",
sort="downloads",
direction=-1,
limit=3
limit=3,
)
var_names = [model.id if hasattr(model, 'id') else str(model) for model in var_models]
var_names = [
model.id if hasattr(model, "id") else str(model) for model in var_models
]
model_names.extend(var_names)
except:
except Exception:
continue
# Remove duplicates while preserving order
seen = set()
unique_models = []
@@ -288,67 +296,75 @@ def search_hf_models_fuzzy(query: str, limit: int = 10) -> List[str]:
if model not in seen:
seen.add(model)
unique_models.append(model)
return unique_models[:limit]
except Exception:
# If search fails, return empty list
return []
def search_hf_models(query: str, limit: int = 10) -> List[str]:
def search_hf_models(query: str, limit: int = 10) -> list[str]:
"""Simple search for HuggingFace models based on query (kept for backward compatibility)"""
return search_hf_models_fuzzy(query, limit)
def validate_model_and_suggest(model_name: str, llm_type: str) -> Optional[str]:
def validate_model_and_suggest(
model_name: str, llm_type: str, host: str = "http://localhost:11434"
) -> Optional[str]:
"""Validate model name and provide suggestions if invalid"""
if llm_type == "ollama":
available_models = check_ollama_models()
available_models = check_ollama_models(host)
if available_models and model_name not in available_models:
error_msg = f"Model '{model_name}' not found in your local Ollama installation."
# Check if the model exists remotely and get available tags
model_exists_remotely, available_tags = check_ollama_model_exists_remotely(model_name)
if model_exists_remotely and model_name in available_tags:
# Exact model exists remotely - suggest pulling it
error_msg += f"\n\nTo install the requested model:\n"
error_msg += "\n\nTo install the requested model:\n"
error_msg += f" ollama pull {model_name}\n"
# Show local alternatives
suggestions = search_ollama_models_fuzzy(model_name, available_models)
if suggestions:
error_msg += "\nOr use one of these similar installed models:\n"
for i, suggestion in enumerate(suggestions, 1):
error_msg += f" {i}. {suggestion}\n"
elif model_exists_remotely and available_tags:
# Base model exists but requested tag doesn't - suggest correct tags
base_model = model_name.split(':')[0]
requested_tag = model_name.split(':', 1)[1] if ':' in model_name else None
error_msg += f"\n\nModel '{base_model}' exists, but tag '{requested_tag}' is not available."
base_model = model_name.split(":")[0]
requested_tag = model_name.split(":", 1)[1] if ":" in model_name else None
error_msg += (
f"\n\nModel '{base_model}' exists, but tag '{requested_tag}' is not available."
)
error_msg += f"\n\nAvailable {base_model} models you can install:\n"
for i, tag in enumerate(available_tags[:8], 1):
error_msg += f" {i}. ollama pull {tag}\n"
if len(available_tags) > 8:
error_msg += f" ... and {len(available_tags) - 8} more variants\n"
# Also show local alternatives
suggestions = search_ollama_models_fuzzy(model_name, available_models)
if suggestions:
error_msg += "\nOr use one of these similar installed models:\n"
for i, suggestion in enumerate(suggestions, 1):
error_msg += f" {i}. {suggestion}\n"
else:
# Model doesn't exist remotely - show fuzzy suggestions
suggestions = search_ollama_models_fuzzy(model_name, available_models)
error_msg += f"\n\nModel '{model_name}' was not found in Ollama's library."
if suggestions:
error_msg += "\n\nDid you mean one of these installed models?\n"
error_msg += (
"\n\nDid you mean one of these installed models?\n"
+ "\nTry to use ollama pull to install the model you need\n"
)
for i, suggestion in enumerate(suggestions, 1):
error_msg += f" {i}. {suggestion}\n"
else:
@@ -357,23 +373,25 @@ def validate_model_and_suggest(model_name: str, llm_type: str) -> Optional[str]:
error_msg += f" {i}. {model}\n"
if len(available_models) > 8:
error_msg += f" ... and {len(available_models) - 8} more\n"
error_msg += "\n\nCommands:"
error_msg += "\n ollama list # List installed models"
if model_exists_remotely and available_tags:
if model_name in available_tags:
error_msg += f"\n ollama pull {model_name} # Install requested model"
else:
error_msg += f"\n ollama pull {available_tags[0]} # Install recommended variant"
error_msg += (
f"\n ollama pull {available_tags[0]} # Install recommended variant"
)
error_msg += "\n https://ollama.com/library # Browse available models"
return error_msg
elif llm_type == "hf":
# For HF models, we can do a quick existence check
if not check_hf_model_exists(model_name):
# Use HF Hub's native fuzzy search directly
search_suggestions = search_hf_models_fuzzy(model_name, limit=8)
error_msg = f"Model '{model_name}' not found on HuggingFace Hub."
if search_suggestions:
error_msg += "\n\nDid you mean one of these?\n"
@@ -385,10 +403,10 @@ def validate_model_and_suggest(model_name: str, llm_type: str) -> Optional[str]:
error_msg += "\n\nPopular chat models:\n"
for i, model in enumerate(popular_models[:5], 1):
error_msg += f" {i}. {model}\n"
error_msg += f"\nSearch more: https://huggingface.co/models?search={model_name}&pipeline_tag=text-generation"
return error_msg
return None # Model is valid or we can't check
@@ -451,38 +469,61 @@ class OllamaChat(LLMInterface):
# Check if the Ollama server is responsive
if host:
requests.get(host)
# Pre-check model availability with helpful suggestions
model_error = validate_model_and_suggest(model, "ollama")
model_error = validate_model_and_suggest(model, "ollama", host)
if model_error:
raise ValueError(model_error)
except ImportError:
raise ImportError(
"The 'requests' library is required for Ollama. Please install it with 'pip install requests'."
)
except requests.exceptions.ConnectionError:
logger.error(
f"Could not connect to Ollama at {host}. Please ensure Ollama is running."
)
logger.error(f"Could not connect to Ollama at {host}. Please ensure Ollama is running.")
raise ConnectionError(
f"Could not connect to Ollama at {host}. Please ensure Ollama is running."
)
def ask(self, prompt: str, **kwargs) -> str:
import requests
import json
import requests
full_url = f"{self.host}/api/generate"
# Handle thinking budget for reasoning models
options = kwargs.copy()
thinking_budget = kwargs.get("thinking_budget")
if thinking_budget:
# Remove thinking_budget from options as it's not a standard Ollama option
options.pop("thinking_budget", None)
# Only apply reasoning parameters to models that support it
reasoning_supported_models = [
"gpt-oss:20b",
"gpt-oss:120b",
"deepseek-r1",
"deepseek-coder",
]
if thinking_budget in ["low", "medium", "high"]:
if any(model in self.model.lower() for model in reasoning_supported_models):
options["reasoning"] = {"effort": thinking_budget, "exclude": False}
logger.info(f"Applied reasoning effort={thinking_budget} to model {self.model}")
else:
logger.warning(
f"Thinking budget '{thinking_budget}' requested but model '{self.model}' may not support reasoning parameters. Proceeding without reasoning."
)
payload = {
"model": self.model,
"prompt": prompt,
"stream": False, # Keep it simple for now
"options": kwargs,
"options": options,
}
logger.debug(f"Sending request to Ollama: {payload}")
try:
logger.info(f"Sending request to Ollama and waiting for response...")
logger.info("Sending request to Ollama and waiting for response...")
response = requests.post(full_url, data=json.dumps(payload))
response.raise_for_status()
@@ -506,15 +547,15 @@ class HFChat(LLMInterface):
def __init__(self, model_name: str = "deepseek-ai/deepseek-llm-7b-chat"):
logger.info(f"Initializing HFChat with model='{model_name}'")
# Pre-check model availability with helpful suggestions
model_error = validate_model_and_suggest(model_name, "hf")
if model_error:
raise ValueError(model_error)
try:
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
except ImportError:
raise ImportError(
"The 'transformers' and 'torch' libraries are required for Hugging Face models. Please install them with 'pip install transformers torch'."
@@ -531,42 +572,67 @@ class HFChat(LLMInterface):
self.device = "cpu"
logger.info("No GPU detected. Using CPU.")
# Load tokenizer and model
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16 if self.device != "cpu" else torch.float32,
device_map="auto" if self.device != "cpu" else None,
trust_remote_code=True
)
# Load tokenizer and model with timeout protection
try:
import signal
def timeout_handler(signum, frame):
raise TimeoutError("Model download/loading timed out")
# Set timeout for model loading (60 seconds)
old_handler = signal.signal(signal.SIGALRM, timeout_handler)
signal.alarm(60)
try:
logger.info(f"Loading tokenizer for {model_name}...")
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
logger.info(f"Loading model {model_name}...")
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16 if self.device != "cpu" else torch.float32,
device_map="auto" if self.device != "cpu" else None,
trust_remote_code=True,
)
logger.info(f"Successfully loaded {model_name}")
finally:
signal.alarm(0) # Cancel the alarm
signal.signal(signal.SIGALRM, old_handler) # Restore old handler
except TimeoutError:
logger.error(f"Model loading timed out for {model_name}")
raise RuntimeError(
f"Model loading timed out for {model_name}. Please check your internet connection or try a smaller model."
)
except Exception as e:
logger.error(f"Failed to load model {model_name}: {e}")
raise
# Move model to device if not using device_map
if self.device != "cpu" and "device_map" not in str(self.model):
self.model = self.model.to(self.device)
# Set pad token if not present
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
def ask(self, prompt: str, **kwargs) -> str:
print('kwargs in HF: ', kwargs)
print("kwargs in HF: ", kwargs)
# Check if this is a Qwen model and add /no_think by default
is_qwen_model = "qwen" in self.model.config._name_or_path.lower()
# For Qwen models, automatically add /no_think to the prompt
if is_qwen_model and "/no_think" not in prompt and "/think" not in prompt:
prompt = prompt + " /no_think"
# Prepare chat template
messages = [{"role": "user", "content": prompt}]
# Apply chat template if available
if hasattr(self.tokenizer, "apply_chat_template"):
try:
formatted_prompt = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
messages, tokenize=False, add_generation_prompt=True
)
except Exception as e:
logger.warning(f"Chat template failed, using raw prompt: {e}")
@@ -577,13 +643,13 @@ class HFChat(LLMInterface):
# Tokenize input
inputs = self.tokenizer(
formatted_prompt,
return_tensors="pt",
formatted_prompt,
return_tensors="pt",
padding=True,
truncation=True,
max_length=2048
max_length=2048,
)
# Move inputs to device
if self.device != "cpu":
inputs = {k: v.to(self.device) for k, v in inputs.items()}
@@ -597,25 +663,22 @@ class HFChat(LLMInterface):
"pad_token_id": self.tokenizer.eos_token_id,
"eos_token_id": self.tokenizer.eos_token_id,
}
# Handle temperature=0 for greedy decoding
if generation_config["temperature"] == 0.0:
generation_config["do_sample"] = False
generation_config.pop("temperature")
logger.info(f"Generating with HuggingFace model, config: {generation_config}")
# Generate
with torch.no_grad():
outputs = self.model.generate(
**inputs,
**generation_config
)
outputs = self.model.generate(**inputs, **generation_config)
# Decode response
generated_tokens = outputs[0][inputs["input_ids"].shape[1]:]
generated_tokens = outputs[0][inputs["input_ids"].shape[1] :]
response = self.tokenizer.decode(generated_tokens, skip_special_tokens=True)
return response.strip()
@@ -647,15 +710,38 @@ class OpenAIChat(LLMInterface):
params = {
"model": self.model,
"messages": [{"role": "user", "content": prompt}],
"max_tokens": kwargs.get("max_tokens", 1000),
"temperature": kwargs.get("temperature", 0.7),
**{
k: v
for k, v in kwargs.items()
if k not in ["max_tokens", "temperature"]
},
}
# Handle max_tokens vs max_completion_tokens based on model
max_tokens = kwargs.get("max_tokens", 1000)
if "o3" in self.model or "o4" in self.model or "o1" in self.model:
# o-series models use max_completion_tokens
params["max_completion_tokens"] = max_tokens
params["temperature"] = 1.0
else:
# Other models use max_tokens
params["max_tokens"] = max_tokens
# Handle thinking budget for reasoning models
thinking_budget = kwargs.get("thinking_budget")
if thinking_budget and thinking_budget in ["low", "medium", "high"]:
# Check if this is an o-series model (partial match for model names)
o_series_models = ["o3", "o3-mini", "o4-mini", "o1", "o3-pro", "o3-deep-research"]
if any(model in self.model for model in o_series_models):
# Use the correct OpenAI reasoning parameter format
params["reasoning_effort"] = thinking_budget
logger.info(f"Applied reasoning_effort={thinking_budget} to model {self.model}")
else:
logger.warning(
f"Thinking budget '{thinking_budget}' requested but model '{self.model}' may not support reasoning parameters. Proceeding without reasoning."
)
# Add other kwargs (excluding thinking_budget as it's handled above)
for k, v in kwargs.items():
if k not in ["max_tokens", "temperature", "thinking_budget"]:
params[k] = v
logger.info(f"Sending request to OpenAI with model {self.model}")
try:
@@ -675,7 +761,7 @@ class SimulatedChat(LLMInterface):
return "This is a simulated answer from the LLM based on the retrieved context."
def get_llm(llm_config: Optional[Dict[str, Any]] = None) -> LLMInterface:
def get_llm(llm_config: Optional[dict[str, Any]] = None) -> LLMInterface:
"""
Factory function to get an LLM interface based on configuration.

View File

@@ -5,18 +5,59 @@ from pathlib import Path
from llama_index.core import SimpleDirectoryReader
from llama_index.core.node_parser import SentenceSplitter
from .api import LeannBuilder, LeannSearcher, LeannChat
from .api import LeannBuilder, LeannChat, LeannSearcher
def extract_pdf_text_with_pymupdf(file_path: str) -> str:
"""Extract text from PDF using PyMuPDF for better quality."""
try:
import fitz # PyMuPDF
doc = fitz.open(file_path)
text = ""
for page in doc:
text += page.get_text()
doc.close()
return text
except ImportError:
# Fallback to default reader
return None
def extract_pdf_text_with_pdfplumber(file_path: str) -> str:
"""Extract text from PDF using pdfplumber for better quality."""
try:
import pdfplumber
text = ""
with pdfplumber.open(file_path) as pdf:
for page in pdf.pages:
text += page.extract_text() or ""
return text
except ImportError:
# Fallback to default reader
return None
class LeannCLI:
def __init__(self):
self.indexes_dir = Path.home() / ".leann" / "indexes"
# Always use project-local .leann directory (like .git)
self.indexes_dir = Path.cwd() / ".leann" / "indexes"
self.indexes_dir.mkdir(parents=True, exist_ok=True)
# Default parser for documents
self.node_parser = SentenceSplitter(
chunk_size=256, chunk_overlap=128, separator=" ", paragraph_separator="\n\n"
)
# Code-optimized parser
self.code_parser = SentenceSplitter(
chunk_size=512, # Larger chunks for code context
chunk_overlap=50, # Less overlap to preserve function boundaries
separator="\n", # Split by lines for code
paragraph_separator="\n\n", # Preserve logical code blocks
)
def get_index_path(self, index_name: str) -> str:
index_dir = self.indexes_dir / index_name
return str(index_dir / "documents.leann")
@@ -33,10 +74,11 @@ class LeannCLI:
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
leann build my-docs --docs ./documents # Build index named my-docs
leann search my-docs "query" # Search in my-docs index
leann ask my-docs "question" # Ask my-docs index
leann list # List all stored indexes
leann build my-docs --docs ./documents # Build index named my-docs
leann build my-ppts --docs ./ --file-types .pptx,.pdf # Index only PowerPoint and PDF files
leann search my-docs "query" # Search in my-docs index
leann ask my-docs "question" # Ask my-docs index
leann list # List all stored indexes
""",
)
@@ -44,24 +86,34 @@ Examples:
# Build command
build_parser = subparsers.add_parser("build", help="Build document index")
build_parser.add_argument("index_name", help="Index name")
build_parser.add_argument(
"--docs", type=str, required=True, help="Documents directory"
"index_name", nargs="?", help="Index name (default: current directory name)"
)
build_parser.add_argument(
"--docs", type=str, default=".", help="Documents directory (default: current directory)"
)
build_parser.add_argument(
"--backend", type=str, default="hnsw", choices=["hnsw", "diskann"]
)
build_parser.add_argument("--embedding-model", type=str, default="facebook/contriever")
build_parser.add_argument(
"--embedding-model", type=str, default="facebook/contriever"
)
build_parser.add_argument(
"--force", "-f", action="store_true", help="Force rebuild"
"--embedding-mode",
type=str,
default="sentence-transformers",
choices=["sentence-transformers", "openai", "mlx", "ollama"],
help="Embedding backend mode (default: sentence-transformers)",
)
build_parser.add_argument("--force", "-f", action="store_true", help="Force rebuild")
build_parser.add_argument("--graph-degree", type=int, default=32)
build_parser.add_argument("--complexity", type=int, default=64)
build_parser.add_argument("--num-threads", type=int, default=1)
build_parser.add_argument("--compact", action="store_true", default=True)
build_parser.add_argument("--recompute", action="store_true", default=True)
build_parser.add_argument(
"--file-types",
type=str,
help="Comma-separated list of file extensions to include (e.g., '.txt,.pdf,.pptx'). If not specified, uses default supported types.",
)
# Search command
search_parser = subparsers.add_parser("search", help="Search documents")
@@ -71,7 +123,12 @@ Examples:
search_parser.add_argument("--complexity", type=int, default=64)
search_parser.add_argument("--beam-width", type=int, default=1)
search_parser.add_argument("--prune-ratio", type=float, default=0.0)
search_parser.add_argument("--recompute-embeddings", action="store_true")
search_parser.add_argument(
"--recompute-embeddings",
action="store_true",
default=True,
help="Recompute embeddings (default: True)",
)
search_parser.add_argument(
"--pruning-strategy",
choices=["global", "local", "proportional"],
@@ -94,67 +151,370 @@ Examples:
ask_parser.add_argument("--complexity", type=int, default=32)
ask_parser.add_argument("--beam-width", type=int, default=1)
ask_parser.add_argument("--prune-ratio", type=float, default=0.0)
ask_parser.add_argument("--recompute-embeddings", action="store_true")
ask_parser.add_argument(
"--recompute-embeddings",
action="store_true",
default=True,
help="Recompute embeddings (default: True)",
)
ask_parser.add_argument(
"--pruning-strategy",
choices=["global", "local", "proportional"],
default="global",
)
ask_parser.add_argument(
"--thinking-budget",
type=str,
choices=["low", "medium", "high"],
default=None,
help="Thinking budget for reasoning models (low/medium/high). Supported by GPT-Oss:20b and other reasoning models.",
)
# List command
list_parser = subparsers.add_parser("list", help="List all indexes")
subparsers.add_parser("list", help="List all indexes")
return parser
def register_project_dir(self):
"""Register current project directory in global registry"""
global_registry = Path.home() / ".leann" / "projects.json"
global_registry.parent.mkdir(exist_ok=True)
current_dir = str(Path.cwd())
# Load existing registry
projects = []
if global_registry.exists():
try:
import json
with open(global_registry) as f:
projects = json.load(f)
except Exception:
projects = []
# Add current directory if not already present
if current_dir not in projects:
projects.append(current_dir)
# Save registry
import json
with open(global_registry, "w") as f:
json.dump(projects, f, indent=2)
def _build_gitignore_parser(self, docs_dir: str):
"""Build gitignore parser using gitignore-parser library."""
from gitignore_parser import parse_gitignore
# Try to parse the root .gitignore
gitignore_path = Path(docs_dir) / ".gitignore"
if gitignore_path.exists():
try:
# gitignore-parser automatically handles all subdirectory .gitignore files!
matches = parse_gitignore(str(gitignore_path))
print(f"📋 Loaded .gitignore from {docs_dir} (includes all subdirectories)")
return matches
except Exception as e:
print(f"Warning: Could not parse .gitignore: {e}")
else:
print("📋 No .gitignore found")
# Fallback: basic pattern matching for essential files
essential_patterns = {".git", ".DS_Store", "__pycache__", "node_modules", ".venv", "venv"}
def basic_matches(file_path):
path_parts = Path(file_path).parts
return any(part in essential_patterns for part in path_parts)
return basic_matches
def _should_exclude_file(self, relative_path: Path, gitignore_matches) -> bool:
"""Check if a file should be excluded using gitignore parser."""
return gitignore_matches(str(relative_path))
def list_indexes(self):
print("Stored LEANN indexes:")
if not self.indexes_dir.exists():
print(
"No indexes found. Use 'leann build <name> --docs <dir>' to create one."
)
# Get all project directories with .leann
global_registry = Path.home() / ".leann" / "projects.json"
all_projects = []
if global_registry.exists():
try:
import json
with open(global_registry) as f:
all_projects = json.load(f)
except Exception:
pass
# Filter to only existing directories with .leann
valid_projects = []
for project_dir in all_projects:
project_path = Path(project_dir)
if project_path.exists() and (project_path / ".leann" / "indexes").exists():
valid_projects.append(project_path)
# Add current project if it has .leann but not in registry
current_path = Path.cwd()
if (current_path / ".leann" / "indexes").exists() and current_path not in valid_projects:
valid_projects.append(current_path)
if not valid_projects:
print("No indexes found. Use 'leann build <name> --docs <dir>' to create one.")
return
index_dirs = [d for d in self.indexes_dir.iterdir() if d.is_dir()]
total_indexes = 0
current_dir = Path.cwd()
if not index_dirs:
print(
"No indexes found. Use 'leann build <name> --docs <dir>' to create one."
)
return
for project_path in valid_projects:
indexes_dir = project_path / ".leann" / "indexes"
if not indexes_dir.exists():
continue
print(f"Found {len(index_dirs)} indexes:")
for i, index_dir in enumerate(index_dirs, 1):
index_name = index_dir.name
status = "" if self.index_exists(index_name) else ""
index_dirs = [d for d in indexes_dir.iterdir() if d.is_dir()]
if not index_dirs:
continue
print(f" {i}. {index_name} [{status}]")
if self.index_exists(index_name):
# Show project header
if project_path == current_dir:
print(f"\n📁 Current project ({project_path}):")
else:
print(f"\n📂 {project_path}:")
for index_dir in index_dirs:
total_indexes += 1
index_name = index_dir.name
meta_file = index_dir / "documents.leann.meta.json"
size_mb = sum(
f.stat().st_size for f in index_dir.iterdir() if f.is_file()
) / (1024 * 1024)
print(f" Size: {size_mb:.1f} MB")
status = "" if meta_file.exists() else ""
if index_dirs:
example_name = index_dirs[0].name
print(f"\nUsage:")
print(f' leann search {example_name} "your query"')
print(f" leann ask {example_name} --interactive")
print(f" {total_indexes}. {index_name} [{status}]")
if status == "":
size_mb = sum(f.stat().st_size for f in index_dir.iterdir() if f.is_file()) / (
1024 * 1024
)
print(f" Size: {size_mb:.1f} MB")
def load_documents(self, docs_dir: str):
if total_indexes > 0:
print(f"\nTotal: {total_indexes} indexes across {len(valid_projects)} projects")
print("\nUsage (current project only):")
# Show example from current project
current_indexes_dir = current_dir / ".leann" / "indexes"
if current_indexes_dir.exists():
current_index_dirs = [d for d in current_indexes_dir.iterdir() if d.is_dir()]
if current_index_dirs:
example_name = current_index_dirs[0].name
print(f' leann search {example_name} "your query"')
print(f" leann ask {example_name} --interactive")
def load_documents(self, docs_dir: str, custom_file_types: str | None = None):
print(f"Loading documents from {docs_dir}...")
if custom_file_types:
print(f"Using custom file types: {custom_file_types}")
documents = SimpleDirectoryReader(
docs_dir,
recursive=True,
encoding="utf-8",
required_exts=[".pdf", ".txt", ".md", ".docx"],
).load_data(show_progress=True)
# Build gitignore parser
gitignore_matches = self._build_gitignore_parser(docs_dir)
# Try to use better PDF parsers first, but only if PDFs are requested
documents = []
docs_path = Path(docs_dir)
# Check if we should process PDFs
should_process_pdfs = custom_file_types is None or ".pdf" in custom_file_types
if should_process_pdfs:
for file_path in docs_path.rglob("*.pdf"):
# Check if file matches any exclude pattern
relative_path = file_path.relative_to(docs_path)
if self._should_exclude_file(relative_path, gitignore_matches):
continue
print(f"Processing PDF: {file_path}")
# Try PyMuPDF first (best quality)
text = extract_pdf_text_with_pymupdf(str(file_path))
if text is None:
# Try pdfplumber
text = extract_pdf_text_with_pdfplumber(str(file_path))
if text:
# Create a simple document structure
from llama_index.core import Document
doc = Document(text=text, metadata={"source": str(file_path)})
documents.append(doc)
else:
# Fallback to default reader
print(f"Using default reader for {file_path}")
try:
default_docs = SimpleDirectoryReader(
str(file_path.parent),
filename_as_id=True,
required_exts=[file_path.suffix],
).load_data()
documents.extend(default_docs)
except Exception as e:
print(f"Warning: Could not process {file_path}: {e}")
# Load other file types with default reader
if custom_file_types:
# Parse custom file types from comma-separated string
code_extensions = [ext.strip() for ext in custom_file_types.split(",") if ext.strip()]
# Ensure extensions start with a dot
code_extensions = [ext if ext.startswith(".") else f".{ext}" for ext in code_extensions]
else:
# Use default supported file types
code_extensions = [
# Original document types
".txt",
".md",
".docx",
".pptx",
# Code files for Claude Code integration
".py",
".js",
".ts",
".jsx",
".tsx",
".java",
".cpp",
".c",
".h",
".hpp",
".cs",
".go",
".rs",
".rb",
".php",
".swift",
".kt",
".scala",
".r",
".sql",
".sh",
".bash",
".zsh",
".fish",
".ps1",
".bat",
# Config and markup files
".json",
".yaml",
".yml",
".xml",
".toml",
".ini",
".cfg",
".conf",
".html",
".css",
".scss",
".less",
".vue",
".svelte",
# Data science
".ipynb",
".R",
".py",
".jl",
]
# Try to load other file types, but don't fail if none are found
try:
# Create a custom file filter function using our PathSpec
def file_filter(file_path: str) -> bool:
"""Return True if file should be included (not excluded)"""
try:
docs_path_obj = Path(docs_dir)
file_path_obj = Path(file_path)
relative_path = file_path_obj.relative_to(docs_path_obj)
return not self._should_exclude_file(relative_path, gitignore_matches)
except (ValueError, OSError):
return True # Include files that can't be processed
other_docs = SimpleDirectoryReader(
docs_dir,
recursive=True,
encoding="utf-8",
required_exts=code_extensions,
file_extractor={}, # Use default extractors
filename_as_id=True,
).load_data(show_progress=True)
# Filter documents after loading based on gitignore rules
filtered_docs = []
for doc in other_docs:
file_path = doc.metadata.get("file_path", "")
if file_filter(file_path):
filtered_docs.append(doc)
documents.extend(filtered_docs)
except ValueError as e:
if "No files found" in str(e):
print("No additional files found for other supported types.")
else:
raise e
all_texts = []
# Define code file extensions for intelligent chunking
code_file_exts = {
".py",
".js",
".ts",
".jsx",
".tsx",
".java",
".cpp",
".c",
".h",
".hpp",
".cs",
".go",
".rs",
".rb",
".php",
".swift",
".kt",
".scala",
".r",
".sql",
".sh",
".bash",
".zsh",
".fish",
".ps1",
".bat",
".json",
".yaml",
".yml",
".xml",
".toml",
".ini",
".cfg",
".conf",
".html",
".css",
".scss",
".less",
".vue",
".svelte",
".ipynb",
".R",
".jl",
}
for doc in documents:
nodes = self.node_parser.get_nodes_from_documents([doc])
# Check if this is a code file based on source path
source_path = doc.metadata.get("source", "")
is_code_file = any(source_path.endswith(ext) for ext in code_file_exts)
# Use appropriate parser based on file type
parser = self.code_parser if is_code_file else self.node_parser
nodes = parser.get_nodes_from_documents([doc])
for node in nodes:
all_texts.append(node.get_content())
@@ -163,15 +523,23 @@ Examples:
async def build_index(self, args):
docs_dir = args.docs
index_name = args.index_name
# Use current directory name if index_name not provided
if args.index_name:
index_name = args.index_name
else:
index_name = Path.cwd().name
print(f"Using current directory name as index: '{index_name}'")
index_dir = self.indexes_dir / index_name
index_path = self.get_index_path(index_name)
print(f"📂 Indexing: {Path(docs_dir).resolve()}")
if index_dir.exists() and not args.force:
print(f"Index '{index_name}' already exists. Use --force to rebuild.")
return
all_texts = self.load_documents(docs_dir)
all_texts = self.load_documents(docs_dir, args.file_types)
if not all_texts:
print("No documents found")
return
@@ -183,6 +551,7 @@ Examples:
builder = LeannBuilder(
backend_name=args.backend,
embedding_model=args.embedding_model,
embedding_mode=args.embedding_mode,
graph_degree=args.graph_degree,
complexity=args.complexity,
is_compact=args.compact,
@@ -196,6 +565,9 @@ Examples:
builder.build_index(index_path)
print(f"Index built at {index_path}")
# Register this project directory in global registry
self.register_project_dir()
async def search_documents(self, args):
index_name = args.index_name
query = args.query
@@ -256,6 +628,11 @@ Examples:
if not user_input:
continue
# Prepare LLM kwargs with thinking budget if specified
llm_kwargs = {}
if args.thinking_budget:
llm_kwargs["thinking_budget"] = args.thinking_budget
response = chat.ask(
user_input,
top_k=args.top_k,
@@ -264,11 +641,17 @@ Examples:
prune_ratio=args.prune_ratio,
recompute_embeddings=args.recompute_embeddings,
pruning_strategy=args.pruning_strategy,
llm_kwargs=llm_kwargs,
)
print(f"LEANN: {response}")
else:
query = input("Enter your question: ").strip()
if query:
# Prepare LLM kwargs with thinking budget if specified
llm_kwargs = {}
if args.thinking_budget:
llm_kwargs["thinking_budget"] = args.thinking_budget
response = chat.ask(
query,
top_k=args.top_k,
@@ -277,6 +660,7 @@ Examples:
prune_ratio=args.prune_ratio,
recompute_embeddings=args.recompute_embeddings,
pruning_strategy=args.pruning_strategy,
llm_kwargs=llm_kwargs,
)
print(f"LEANN: {response}")

View File

@@ -4,11 +4,13 @@ Consolidates all embedding computation logic using SentenceTransformer
Preserves all optimization parameters to ensure performance
"""
import numpy as np
import torch
from typing import List, Dict, Any
import logging
import os
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import Any
import numpy as np
import torch
# Set up logger with proper level
logger = logging.getLogger(__name__)
@@ -17,11 +19,11 @@ log_level = getattr(logging, LOG_LEVEL, logging.WARNING)
logger.setLevel(log_level)
# Global model cache to avoid repeated loading
_model_cache: Dict[str, Any] = {}
_model_cache: dict[str, Any] = {}
def compute_embeddings(
texts: List[str],
texts: list[str],
model_name: str,
mode: str = "sentence-transformers",
is_build: bool = False,
@@ -34,7 +36,7 @@ def compute_embeddings(
Args:
texts: List of texts to compute embeddings for
model_name: Model name
mode: Computation mode ('sentence-transformers', 'openai', 'mlx')
mode: Computation mode ('sentence-transformers', 'openai', 'mlx', 'ollama')
is_build: Whether this is a build operation (shows progress bar)
batch_size: Batch size for processing
adaptive_optimization: Whether to use adaptive optimization based on batch size
@@ -54,12 +56,14 @@ def compute_embeddings(
return compute_embeddings_openai(texts, model_name)
elif mode == "mlx":
return compute_embeddings_mlx(texts, model_name)
elif mode == "ollama":
return compute_embeddings_ollama(texts, model_name, is_build=is_build)
else:
raise ValueError(f"Unsupported embedding mode: {mode}")
def compute_embeddings_sentence_transformers(
texts: List[str],
texts: list[str],
model_name: str,
use_fp16: bool = True,
device: str = "auto",
@@ -114,9 +118,7 @@ def compute_embeddings_sentence_transformers(
logger.info(f"Using cached optimized model: {model_name}")
model = _model_cache[cache_key]
else:
logger.info(
f"Loading and caching optimized SentenceTransformer model: {model_name}"
)
logger.info(f"Loading and caching optimized SentenceTransformer model: {model_name}")
from sentence_transformers import SentenceTransformer
logger.info(f"Using device: {device}")
@@ -134,9 +136,7 @@ def compute_embeddings_sentence_transformers(
if hasattr(torch.mps, "set_per_process_memory_fraction"):
torch.mps.set_per_process_memory_fraction(0.9)
except AttributeError:
logger.warning(
"Some MPS optimizations not available in this PyTorch version"
)
logger.warning("Some MPS optimizations not available in this PyTorch version")
elif device == "cpu":
# TODO: Haven't tested this yet
torch.set_num_threads(min(8, os.cpu_count() or 4))
@@ -226,25 +226,22 @@ def compute_embeddings_sentence_transformers(
device=device,
)
logger.info(
f"Generated {len(embeddings)} embeddings, dimension: {embeddings.shape[1]}"
)
logger.info(f"Generated {len(embeddings)} embeddings, dimension: {embeddings.shape[1]}")
# Validate results
if np.isnan(embeddings).any() or np.isinf(embeddings).any():
raise RuntimeError(
f"Detected NaN or Inf values in embeddings, model: {model_name}"
)
raise RuntimeError(f"Detected NaN or Inf values in embeddings, model: {model_name}")
return embeddings
def compute_embeddings_openai(texts: List[str], model_name: str) -> np.ndarray:
def compute_embeddings_openai(texts: list[str], model_name: str) -> np.ndarray:
# TODO: @yichuan-w add progress bar only in build mode
"""Compute embeddings using OpenAI API"""
try:
import openai
import os
import openai
except ImportError as e:
raise ImportError(f"OpenAI package not installed: {e}")
@@ -264,9 +261,10 @@ def compute_embeddings_openai(texts: List[str], model_name: str) -> np.ndarray:
logger.info(
f"Computing embeddings for {len(texts)} texts using OpenAI API, model: '{model_name}'"
)
print(f"len of texts: {len(texts)}")
# OpenAI has limits on batch size and input length
max_batch_size = 100 # Conservative batch size
max_batch_size = 1000 # Conservative batch size
all_embeddings = []
try:
@@ -293,15 +291,12 @@ def compute_embeddings_openai(texts: List[str], model_name: str) -> np.ndarray:
raise
embeddings = np.array(all_embeddings, dtype=np.float32)
logger.info(
f"Generated {len(embeddings)} embeddings, dimension: {embeddings.shape[1]}"
)
logger.info(f"Generated {len(embeddings)} embeddings, dimension: {embeddings.shape[1]}")
print(f"len of embeddings: {len(embeddings)}")
return embeddings
def compute_embeddings_mlx(
chunks: List[str], model_name: str, batch_size: int = 16
) -> np.ndarray:
def compute_embeddings_mlx(chunks: list[str], model_name: str, batch_size: int = 16) -> np.ndarray:
# TODO: @yichuan-w add progress bar only in build mode
"""Computes embeddings using an MLX model."""
try:
@@ -373,3 +368,262 @@ def compute_embeddings_mlx(
# Stack numpy arrays
return np.stack(all_embeddings)
def compute_embeddings_ollama(
texts: list[str], model_name: str, is_build: bool = False, host: str = "http://localhost:11434"
) -> np.ndarray:
"""
Compute embeddings using Ollama API.
Args:
texts: List of texts to compute embeddings for
model_name: Ollama model name (e.g., "nomic-embed-text", "mxbai-embed-large")
is_build: Whether this is a build operation (shows progress bar)
host: Ollama host URL (default: http://localhost:11434)
Returns:
Normalized embeddings array, shape: (len(texts), embedding_dim)
"""
try:
import requests
except ImportError:
raise ImportError(
"The 'requests' library is required for Ollama embeddings. Install with: uv pip install requests"
)
if not texts:
raise ValueError("Cannot compute embeddings for empty text list")
logger.info(
f"Computing embeddings for {len(texts)} texts using Ollama API, model: '{model_name}'"
)
# Check if Ollama is running
try:
response = requests.get(f"{host}/api/version", timeout=5)
response.raise_for_status()
except requests.exceptions.ConnectionError:
error_msg = (
f"❌ Could not connect to Ollama at {host}.\n\n"
"Please ensure Ollama is running:\n"
" • macOS/Linux: ollama serve\n"
" • Windows: Make sure Ollama is running in the system tray\n\n"
"Installation: https://ollama.com/download"
)
raise RuntimeError(error_msg)
except Exception as e:
raise RuntimeError(f"Unexpected error connecting to Ollama: {e}")
# Check if model exists and provide helpful suggestions
try:
response = requests.get(f"{host}/api/tags", timeout=5)
response.raise_for_status()
models = response.json()
model_names = [model["name"] for model in models.get("models", [])]
# Filter for embedding models (models that support embeddings)
embedding_models = []
suggested_embedding_models = [
"nomic-embed-text",
"mxbai-embed-large",
"bge-m3",
"all-minilm",
"snowflake-arctic-embed",
]
for model in model_names:
# Check if it's an embedding model (by name patterns or known models)
base_name = model.split(":")[0]
if any(emb in base_name for emb in ["embed", "bge", "minilm", "e5"]):
embedding_models.append(model)
# Check if model exists (handle versioned names)
model_found = any(
model_name == name.split(":")[0] or model_name == name for name in model_names
)
if not model_found:
error_msg = f"❌ Model '{model_name}' not found in local Ollama.\n\n"
# Suggest pulling the model
error_msg += "📦 To install this embedding model:\n"
error_msg += f" ollama pull {model_name}\n\n"
# Show available embedding models
if embedding_models:
error_msg += "✅ Available embedding models:\n"
for model in embedding_models[:5]:
error_msg += f"{model}\n"
if len(embedding_models) > 5:
error_msg += f" ... and {len(embedding_models) - 5} more\n"
else:
error_msg += "💡 Popular embedding models to install:\n"
for model in suggested_embedding_models[:3]:
error_msg += f" • ollama pull {model}\n"
error_msg += "\n📚 Browse more: https://ollama.com/library"
raise ValueError(error_msg)
# Verify the model supports embeddings by testing it
try:
test_response = requests.post(
f"{host}/api/embeddings", json={"model": model_name, "prompt": "test"}, timeout=10
)
if test_response.status_code != 200:
error_msg = (
f"⚠️ Model '{model_name}' exists but may not support embeddings.\n\n"
f"Please use an embedding model like:\n"
)
for model in suggested_embedding_models[:3]:
error_msg += f"{model}\n"
raise ValueError(error_msg)
except requests.exceptions.RequestException:
# If test fails, continue anyway - model might still work
pass
except requests.exceptions.RequestException as e:
logger.warning(f"Could not verify model existence: {e}")
# Process embeddings with optimized concurrent processing
import requests
def get_single_embedding(text_idx_tuple):
"""Helper function to get embedding for a single text."""
text, idx = text_idx_tuple
max_retries = 3
retry_count = 0
# Truncate very long texts to avoid API issues
truncated_text = text[:8000] if len(text) > 8000 else text
while retry_count < max_retries:
try:
response = requests.post(
f"{host}/api/embeddings",
json={"model": model_name, "prompt": truncated_text},
timeout=30,
)
response.raise_for_status()
result = response.json()
embedding = result.get("embedding")
if embedding is None:
raise ValueError(f"No embedding returned for text {idx}")
return idx, embedding
except requests.exceptions.Timeout:
retry_count += 1
if retry_count >= max_retries:
logger.warning(f"Timeout for text {idx} after {max_retries} retries")
return idx, None
except Exception as e:
if retry_count >= max_retries - 1:
logger.error(f"Failed to get embedding for text {idx}: {e}")
return idx, None
retry_count += 1
return idx, None
# Determine if we should use concurrent processing
use_concurrent = (
len(texts) > 5 and not is_build
) # Don't use concurrent in build mode to avoid overwhelming
max_workers = min(4, len(texts)) # Limit concurrent requests to avoid overwhelming Ollama
all_embeddings = [None] * len(texts) # Pre-allocate list to maintain order
failed_indices = []
if use_concurrent:
logger.info(
f"Using concurrent processing with {max_workers} workers for {len(texts)} texts"
)
with ThreadPoolExecutor(max_workers=max_workers) as executor:
# Submit all tasks
future_to_idx = {
executor.submit(get_single_embedding, (text, idx)): idx
for idx, text in enumerate(texts)
}
# Add progress bar for concurrent processing
try:
if is_build or len(texts) > 10:
from tqdm import tqdm
futures_iterator = tqdm(
as_completed(future_to_idx),
total=len(texts),
desc="Computing Ollama embeddings",
)
else:
futures_iterator = as_completed(future_to_idx)
except ImportError:
futures_iterator = as_completed(future_to_idx)
# Collect results as they complete
for future in futures_iterator:
try:
idx, embedding = future.result()
if embedding is not None:
all_embeddings[idx] = embedding
else:
failed_indices.append(idx)
except Exception as e:
idx = future_to_idx[future]
logger.error(f"Exception for text {idx}: {e}")
failed_indices.append(idx)
else:
# Sequential processing with progress bar
show_progress = is_build or len(texts) > 10
try:
if show_progress:
from tqdm import tqdm
iterator = tqdm(
enumerate(texts), total=len(texts), desc="Computing Ollama embeddings"
)
else:
iterator = enumerate(texts)
except ImportError:
iterator = enumerate(texts)
for idx, text in iterator:
result_idx, embedding = get_single_embedding((text, idx))
if embedding is not None:
all_embeddings[idx] = embedding
else:
failed_indices.append(idx)
# Handle failed embeddings
if failed_indices:
if len(failed_indices) == len(texts):
raise RuntimeError("Failed to compute any embeddings")
logger.warning(f"Failed to compute embeddings for {len(failed_indices)}/{len(texts)} texts")
# Use zero embeddings as fallback for failed ones
valid_embedding = next((e for e in all_embeddings if e is not None), None)
if valid_embedding:
embedding_dim = len(valid_embedding)
for idx in failed_indices:
all_embeddings[idx] = [0.0] * embedding_dim
# Remove None values and convert to numpy array
all_embeddings = [e for e in all_embeddings if e is not None]
# Convert to numpy array and normalize
embeddings = np.array(all_embeddings, dtype=np.float32)
# Normalize embeddings (L2 normalization)
norms = np.linalg.norm(embeddings, axis=1, keepdims=True)
embeddings = embeddings / (norms + 1e-8) # Add small epsilon to avoid division by zero
logger.info(f"Generated {len(embeddings)} embeddings, dimension: {embeddings.shape[1]}")
return embeddings

View File

@@ -1,12 +1,14 @@
import time
import atexit
import logging
import os
import signal
import socket
import subprocess
import sys
import os
import logging
import time
from pathlib import Path
from typing import Optional
import psutil
# Set up logging based on environment variable
@@ -18,6 +20,24 @@ logging.basicConfig(
logger = logging.getLogger(__name__)
def _is_colab_environment() -> bool:
"""Check if we're running in Google Colab environment."""
return "COLAB_GPU" in os.environ or "COLAB_TPU" in os.environ
def _get_available_port(start_port: int = 5557) -> int:
"""Get an available port starting from start_port."""
port = start_port
while port < start_port + 100: # Try up to 100 ports
try:
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.bind(("localhost", port))
return port
except OSError:
port += 1
raise RuntimeError(f"No available ports found in range {start_port}-{start_port + 100}")
def _check_port(port: int) -> bool:
"""Check if a port is in use"""
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
@@ -175,68 +195,69 @@ class EmbeddingServerManager:
embedding_mode: str = "sentence-transformers",
**kwargs,
) -> tuple[bool, int]:
"""
Starts the embedding server process.
Args:
port (int): The preferred ZMQ port for the server.
model_name (str): The name of the embedding model to use.
**kwargs: Additional arguments for the server.
Returns:
tuple[bool, int]: (success, actual_port_used)
"""
"""Start the embedding server."""
passages_file = kwargs.get("passages_file")
assert isinstance(passages_file, str), "passages_file must be a string"
# Check if we have a compatible running server
# Check if we have a compatible server already running
if self._has_compatible_running_server(model_name, passages_file):
assert self.server_port is not None, (
"a compatible running server should set server_port"
)
return True, self.server_port
logger.info("Found compatible running server!")
return True, port
# Find available port (compatible or free)
try:
actual_port, is_compatible = _find_compatible_port_or_next_available(
port, model_name, passages_file
)
except RuntimeError as e:
logger.error(str(e))
return False, port
# For Colab environment, use a different strategy
if _is_colab_environment():
logger.info("Detected Colab environment, using alternative startup strategy")
return self._start_server_colab(port, model_name, embedding_mode, **kwargs)
# Find a compatible port or next available
actual_port, is_compatible = _find_compatible_port_or_next_available(
port, model_name, passages_file
)
if is_compatible:
logger.info(f"Using existing compatible server on port {actual_port}")
self.server_port = actual_port
self.server_process = None # We don't own this process
logger.info(f"Found compatible server on port {actual_port}")
return True, actual_port
if actual_port != port:
logger.info(f"Using port {actual_port} instead of {port}")
# Start new server
# Start a new server
return self._start_new_server(actual_port, model_name, embedding_mode, **kwargs)
def _has_compatible_running_server(
self, model_name: str, passages_file: str
) -> bool:
def _start_server_colab(
self,
port: int,
model_name: str,
embedding_mode: str = "sentence-transformers",
**kwargs,
) -> tuple[bool, int]:
"""Start server with Colab-specific configuration."""
# Try to find an available port
try:
actual_port = _get_available_port(port)
except RuntimeError:
logger.error("No available ports found")
return False, port
logger.info(f"Starting server on port {actual_port} for Colab environment")
# Use a simpler startup strategy for Colab
command = self._build_server_command(actual_port, model_name, embedding_mode, **kwargs)
try:
# In Colab, we'll use a more direct approach
self._launch_server_process_colab(command, actual_port)
return self._wait_for_server_ready_colab(actual_port)
except Exception as e:
logger.error(f"Failed to start embedding server in Colab: {e}")
return False, actual_port
def _has_compatible_running_server(self, model_name: str, passages_file: str) -> bool:
"""Check if we have a compatible running server."""
if not (
self.server_process
and self.server_process.poll() is None
and self.server_port
):
if not (self.server_process and self.server_process.poll() is None and self.server_port):
return False
if _check_process_matches_config(self.server_port, model_name, passages_file):
logger.info(
f"Existing server process (PID {self.server_process.pid}) is compatible"
)
logger.info(f"Existing server process (PID {self.server_process.pid}) is compatible")
return True
logger.info(
"Existing server process is incompatible. Should start a new server."
)
logger.info("Existing server process is incompatible. Should start a new server.")
return False
def _start_new_server(
@@ -269,9 +290,13 @@ class EmbeddingServerManager:
]
if kwargs.get("passages_file"):
command.extend(["--passages-file", str(kwargs["passages_file"])])
# Convert to absolute path to ensure subprocess can find the file
passages_file = Path(kwargs["passages_file"]).resolve()
command.extend(["--passages-file", str(passages_file)])
if embedding_mode != "sentence-transformers":
command.extend(["--embedding-mode", embedding_mode])
if kwargs.get("distance_metric"):
command.extend(["--distance-metric", kwargs["distance_metric"]])
return command
@@ -280,13 +305,24 @@ class EmbeddingServerManager:
project_root = Path(__file__).parent.parent.parent.parent.parent
logger.info(f"Command: {' '.join(command)}")
# Let server output go directly to console
# The server will respect LEANN_LOG_LEVEL environment variable
# In CI environment, redirect output to avoid buffer deadlock
# Embedding servers use many print statements that can fill buffers
is_ci = os.environ.get("CI") == "true"
if is_ci:
stdout_target = subprocess.DEVNULL
stderr_target = subprocess.DEVNULL
logger.info("CI environment detected, redirecting embedding server output to DEVNULL")
else:
stdout_target = None # Direct to console for visible logs
stderr_target = None # Direct to console for visible logs
# IMPORTANT: Use a new session so we can manage the whole process group reliably
self.server_process = subprocess.Popen(
command,
cwd=project_root,
stdout=None, # Direct to console
stderr=None, # Direct to console
stdout=stdout_target,
stderr=stderr_target,
start_new_session=True,
)
self.server_port = port
logger.info(f"Server process started with PID: {self.server_process.pid}")
@@ -328,21 +364,79 @@ class EmbeddingServerManager:
logger.info(
f"Terminating server process (PID: {self.server_process.pid}) for backend {self.backend_module_name}..."
)
self.server_process.terminate()
# Try terminating the whole process group first (POSIX)
try:
pgid = os.getpgid(self.server_process.pid)
os.killpg(pgid, signal.SIGTERM)
except Exception:
# Fallback to terminating just the process
self.server_process.terminate()
try:
self.server_process.wait(timeout=5)
self.server_process.wait(timeout=3)
logger.info(f"Server process {self.server_process.pid} terminated.")
except subprocess.TimeoutExpired:
logger.warning(
f"Server process {self.server_process.pid} did not terminate gracefully, killing it."
f"Server process {self.server_process.pid} did not terminate gracefully within 3 seconds, killing it."
)
self.server_process.kill()
# Clean up process resources to prevent resource tracker warnings
try:
self.server_process.wait() # Ensure process is fully cleaned up
except Exception:
pass
try:
pgid = os.getpgid(self.server_process.pid)
os.killpg(pgid, signal.SIGKILL)
except Exception:
self.server_process.kill()
try:
self.server_process.wait(timeout=2)
logger.info(f"Server process {self.server_process.pid} killed successfully.")
except subprocess.TimeoutExpired:
logger.error(
f"Failed to kill server process {self.server_process.pid} - it may be hung"
)
# Don't hang indefinitely
# Clean up process resources without waiting
# The process should already be terminated/killed above
# Don't wait here as it can hang CI indefinitely
self.server_process = None
def _launch_server_process_colab(self, command: list, port: int) -> None:
"""Launch the server process with Colab-specific settings."""
logger.info(f"Colab Command: {' '.join(command)}")
# In Colab, redirect to DEVNULL to avoid pipe blocking
# PIPE without reading can cause hangs
self.server_process = subprocess.Popen(
command,
stdout=subprocess.DEVNULL,
stderr=subprocess.DEVNULL,
text=True,
)
self.server_port = port
logger.info(f"Colab server process started with PID: {self.server_process.pid}")
# Register atexit callback
if not self._atexit_registered:
atexit.register(lambda: self.stop_server() if self.server_process else None)
self._atexit_registered = True
def _wait_for_server_ready_colab(self, port: int) -> tuple[bool, int]:
"""Wait for the server to be ready with Colab-specific timeout."""
max_wait, wait_interval = 30, 0.5 # Shorter timeout for Colab
for _ in range(int(max_wait / wait_interval)):
if _check_port(port):
logger.info("Colab embedding server is ready!")
return True, port
if self.server_process and self.server_process.poll() is not None:
# Check for error output
stdout, stderr = self.server_process.communicate()
logger.error("Colab server terminated during startup.")
logger.error(f"stdout: {stdout}")
logger.error(f"stderr: {stderr}")
return False, port
time.sleep(wait_interval)
logger.error(f"Colab server failed to start within {max_wait} seconds.")
self.stop_server()
return False, port

View File

@@ -1,15 +1,14 @@
from abc import ABC, abstractmethod
from typing import Any, Literal, Optional
import numpy as np
from typing import Dict, Any, List, Literal, Optional
class LeannBackendBuilderInterface(ABC):
"""Backend interface for building indexes"""
@abstractmethod
def build(
self, data: np.ndarray, ids: List[str], index_path: str, **kwargs
) -> None:
def build(self, data: np.ndarray, ids: list[str], index_path: str, **kwargs) -> None:
"""Build index
Args:
@@ -53,7 +52,7 @@ class LeannBackendSearcherInterface(ABC):
pruning_strategy: Literal["global", "local", "proportional"] = "global",
zmq_port: Optional[int] = None,
**kwargs,
) -> Dict[str, Any]:
) -> dict[str, Any]:
"""Search for nearest neighbors
Args:

View File

@@ -0,0 +1,176 @@
#!/usr/bin/env python3
import json
import subprocess
import sys
def handle_request(request):
if request.get("method") == "initialize":
return {
"jsonrpc": "2.0",
"id": request.get("id"),
"result": {
"capabilities": {"tools": {}},
"protocolVersion": "2024-11-05",
"serverInfo": {"name": "leann-mcp", "version": "1.0.0"},
},
}
elif request.get("method") == "tools/list":
return {
"jsonrpc": "2.0",
"id": request.get("id"),
"result": {
"tools": [
{
"name": "leann_search",
"description": """🔍 Search code using natural language - like having a coding assistant who knows your entire codebase!
🎯 **Perfect for**:
- "How does authentication work?" → finds auth-related code
- "Error handling patterns" → locates try-catch blocks and error logic
- "Database connection setup" → finds DB initialization code
- "API endpoint definitions" → locates route handlers
- "Configuration management" → finds config files and usage
💡 **Pro tip**: Use this before making any changes to understand existing patterns and conventions.""",
"inputSchema": {
"type": "object",
"properties": {
"index_name": {
"type": "string",
"description": "Name of the LEANN index to search. Use 'leann_list' first to see available indexes.",
},
"query": {
"type": "string",
"description": "Search query - can be natural language (e.g., 'how to handle errors') or technical terms (e.g., 'async function definition')",
},
"top_k": {
"type": "integer",
"default": 5,
"minimum": 1,
"maximum": 20,
"description": "Number of search results to return. Use 5-10 for focused results, 15-20 for comprehensive exploration.",
},
"complexity": {
"type": "integer",
"default": 32,
"minimum": 16,
"maximum": 128,
"description": "Search complexity level. Use 16-32 for fast searches (recommended), 64+ for higher precision when needed.",
},
},
"required": ["index_name", "query"],
},
},
{
"name": "leann_status",
"description": "📊 Check the health and stats of your code indexes - like a medical checkup for your codebase knowledge!",
"inputSchema": {
"type": "object",
"properties": {
"index_name": {
"type": "string",
"description": "Optional: Name of specific index to check. If not provided, shows status of all indexes.",
}
},
},
},
{
"name": "leann_list",
"description": "📋 Show all your indexed codebases - your personal code library! Use this to see what's available for search.",
"inputSchema": {"type": "object", "properties": {}},
},
]
},
}
elif request.get("method") == "tools/call":
tool_name = request["params"]["name"]
args = request["params"].get("arguments", {})
try:
if tool_name == "leann_search":
# Validate required parameters
if not args.get("index_name") or not args.get("query"):
return {
"jsonrpc": "2.0",
"id": request.get("id"),
"result": {
"content": [
{
"type": "text",
"text": "Error: Both index_name and query are required",
}
]
},
}
# Build simplified command
cmd = [
"leann",
"search",
args["index_name"],
args["query"],
f"--top-k={args.get('top_k', 5)}",
f"--complexity={args.get('complexity', 32)}",
]
result = subprocess.run(cmd, capture_output=True, text=True)
elif tool_name == "leann_status":
if args.get("index_name"):
# Check specific index status - for now, we'll use leann list and filter
result = subprocess.run(["leann", "list"], capture_output=True, text=True)
# We could enhance this to show more detailed status per index
else:
# Show all indexes status
result = subprocess.run(["leann", "list"], capture_output=True, text=True)
elif tool_name == "leann_list":
result = subprocess.run(["leann", "list"], capture_output=True, text=True)
return {
"jsonrpc": "2.0",
"id": request.get("id"),
"result": {
"content": [
{
"type": "text",
"text": result.stdout
if result.returncode == 0
else f"Error: {result.stderr}",
}
]
},
}
except Exception as e:
return {
"jsonrpc": "2.0",
"id": request.get("id"),
"error": {"code": -1, "message": str(e)},
}
def main():
for line in sys.stdin:
try:
request = json.loads(line.strip())
response = handle_request(request)
if response:
print(json.dumps(response))
sys.stdout.flush()
except Exception as e:
error_response = {
"jsonrpc": "2.0",
"id": None,
"error": {"code": -1, "message": str(e)},
}
print(json.dumps(error_response))
sys.stdout.flush()
if __name__ == "__main__":
main()

View File

@@ -1,13 +1,13 @@
# packages/leann-core/src/leann/registry.py
from typing import Dict, TYPE_CHECKING
import importlib
import importlib.metadata
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from leann.interface import LeannBackendFactoryInterface
BACKEND_REGISTRY: Dict[str, "LeannBackendFactoryInterface"] = {}
BACKEND_REGISTRY: dict[str, "LeannBackendFactoryInterface"] = {}
def register_backend(name: str):
@@ -31,13 +31,11 @@ def autodiscover_backends():
backend_module_name = dist_name.replace("-", "_")
discovered_backends.append(backend_module_name)
for backend_module_name in sorted(
discovered_backends
): # sort for deterministic loading
for backend_module_name in sorted(discovered_backends): # sort for deterministic loading
try:
importlib.import_module(backend_module_name)
# Registration message is printed by the decorator
except ImportError as e:
except ImportError:
# print(f"WARN: Could not import backend module '{backend_module_name}': {e}")
pass
# print("INFO: Backend auto-discovery finished.")

View File

@@ -1,7 +1,7 @@
import json
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Dict, Any, Literal, Optional
from typing import Any, Literal, Optional
import numpy as np
@@ -38,9 +38,7 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
self.embedding_model = self.meta.get("embedding_model")
if not self.embedding_model:
print(
"WARNING: embedding_model not found in meta.json. Recompute will fail."
)
print("WARNING: embedding_model not found in meta.json. Recompute will fail.")
self.embedding_mode = self.meta.get("embedding_mode", "sentence-transformers")
@@ -48,39 +46,40 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
backend_module_name=backend_module_name,
)
def _load_meta(self) -> Dict[str, Any]:
def _load_meta(self) -> dict[str, Any]:
"""Loads the metadata file associated with the index."""
# This is the corrected logic for finding the meta file.
meta_path = self.index_dir / f"{self.index_path.name}.meta.json"
if not meta_path.exists():
raise FileNotFoundError(f"Leann metadata file not found at {meta_path}")
with open(meta_path, "r", encoding="utf-8") as f:
with open(meta_path, encoding="utf-8") as f:
return json.load(f)
def _ensure_server_running(
self, passages_source_file: str, port: int, **kwargs
) -> int:
def _ensure_server_running(self, passages_source_file: str, port: int, **kwargs) -> int:
"""
Ensures the embedding server is running if recompute is needed.
This is a helper for subclasses.
"""
if not self.embedding_model:
raise ValueError(
"Cannot use recompute mode without 'embedding_model' in meta.json."
)
raise ValueError("Cannot use recompute mode without 'embedding_model' in meta.json.")
# Get distance_metric from meta if not provided in kwargs
distance_metric = (
kwargs.get("distance_metric")
or self.meta.get("backend_kwargs", {}).get("distance_metric")
or "mips"
)
server_started, actual_port = self.embedding_server_manager.start_server(
port=port,
model_name=self.embedding_model,
embedding_mode=self.embedding_mode,
passages_file=passages_source_file,
distance_metric=kwargs.get("distance_metric"),
distance_metric=distance_metric,
enable_warmup=kwargs.get("enable_warmup", False),
)
if not server_started:
raise RuntimeError(
f"Failed to start embedding server on port {actual_port}"
)
raise RuntimeError(f"Failed to start embedding server on port {actual_port}")
return actual_port
@@ -109,11 +108,10 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
# on that port?
# Ensure we have a server with passages_file for compatibility
passages_source_file = (
self.index_dir / f"{self.index_path.name}.meta.json"
)
passages_source_file = self.index_dir / f"{self.index_path.name}.meta.json"
# Convert to absolute path to ensure server can find it
zmq_port = self._ensure_server_running(
str(passages_source_file), zmq_port
str(passages_source_file.resolve()), zmq_port
)
return self._compute_embedding_via_server([query], zmq_port)[
@@ -131,13 +129,18 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
def _compute_embedding_via_server(self, chunks: list, zmq_port: int) -> np.ndarray:
"""Compute embeddings using the ZMQ embedding server."""
import zmq
import msgpack
import zmq
context = None
socket = None
try:
context = zmq.Context()
socket = context.socket(zmq.REQ)
socket.setsockopt(zmq.RCVTIMEO, 30000) # 30 second timeout
socket.setsockopt(zmq.LINGER, 0) # Don't block on close
socket.setsockopt(zmq.RCVTIMEO, 5000) # 5 second timeout
socket.setsockopt(zmq.SNDTIMEO, 5000) # 5 second timeout
socket.setsockopt(zmq.IMMEDIATE, 1) # Don't wait for connection
socket.connect(f"tcp://localhost:{zmq_port}")
# Send embedding request
@@ -149,9 +152,6 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
response_bytes = socket.recv()
response = msgpack.unpackb(response_bytes)
socket.close()
context.term()
# Convert response to numpy array
if isinstance(response, list) and len(response) > 0:
return np.array(response, dtype=np.float32)
@@ -160,6 +160,11 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
except Exception as e:
raise RuntimeError(f"Failed to compute embeddings via server: {e}")
finally:
if socket:
socket.close(linger=0)
if context:
context.term()
@abstractmethod
def search(
@@ -173,7 +178,7 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
pruning_strategy: Literal["global", "local", "proportional"] = "global",
zmq_port: Optional[int] = None,
**kwargs,
) -> Dict[str, Any]:
) -> dict[str, Any]:
"""
Search for the top_k nearest neighbors of the query vector.
@@ -193,7 +198,27 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
"""
pass
def __del__(self):
"""Ensures the embedding server is stopped when the searcher is destroyed."""
def cleanup(self):
"""Cleanup resources including embedding server and ZMQ connections."""
# Stop embedding server
if hasattr(self, "embedding_server_manager"):
self.embedding_server_manager.stop_server()
# Set ZMQ linger but don't terminate global context
try:
import zmq
# Just set linger on the global instance
ctx = zmq.Context.instance()
ctx.linger = 0
# NEVER call ctx.term() on the global instance
except Exception:
pass
def __del__(self):
"""Ensures resources are cleaned up when the searcher is destroyed."""
try:
self.cleanup()
except Exception:
# Ignore errors during destruction
pass

View File

@@ -0,0 +1,91 @@
# 🔥 LEANN Claude Code Integration
Transform your development workflow with intelligent code assistance using LEANN's semantic search directly in Claude Code.
## Prerequisites
**Step 1:** First, complete the basic LEANN installation following the [📦 Installation guide](../../README.md#installation) in the root README:
```bash
uv venv
source .venv/bin/activate
uv pip install leann
```
**Step 2:** Install LEANN globally for MCP integration:
```bash
uv tool install leann-core
```
This makes the `leann` command available system-wide, which `leann_mcp` requires.
## 🚀 Quick Setup
Add the LEANN MCP server to Claude Code:
```bash
claude mcp add leann-server -- leann_mcp
```
## 🛠️ Available Tools
Once connected, you'll have access to these powerful semantic search tools in Claude Code:
- **`leann_list`** - List all available indexes across your projects
- **`leann_search`** - Perform semantic searches across code and documents
- **`leann_ask`** - Ask natural language questions and get AI-powered answers from your codebase
## 🎯 Quick Start Example
```bash
# Build an index for your project (change to your actual path)
leann build my-project --docs ./
# Start Claude Code
claude
```
**Try this in Claude Code:**
```
Help me understand this codebase. List available indexes and search for authentication patterns.
```
<p align="center">
<img src="../../assets/claude_code_leann.png" alt="LEANN in Claude Code" width="80%">
</p>
## 🧠 How It Works
The integration consists of three key components working seamlessly together:
- **`leann`** - Core CLI tool for indexing and searching (installed globally via `uv tool install`)
- **`leann_mcp`** - MCP server that wraps `leann` commands for Claude Code integration
- **Claude Code** - Calls `leann_mcp`, which executes `leann` commands and returns intelligent results
## 📁 File Support
LEANN understands **30+ file types** including:
- **Programming**: Python, JavaScript, TypeScript, Java, Go, Rust, C++, C#
- **Data**: SQL, YAML, JSON, CSV, XML
- **Documentation**: Markdown, TXT, PDF
- **And many more!**
## 💾 Storage & Organization
- **Project indexes**: Stored in `.leann/` directory (just like `.git`)
- **Global registry**: Project tracking at `~/.leann/projects.json`
- **Multi-project support**: Switch between different codebases seamlessly
- **Portable**: Transfer indexes between machines with minimal overhead
## 🗑️ Uninstalling
To remove the LEANN MCP server from Claude Code:
```bash
claude mcp remove leann-server
```
To remove LEANN
```
uv pip uninstall leann leann-backend-hnsw leann-core
```

View File

@@ -5,36 +5,32 @@ LEANN is a revolutionary vector database that democratizes personal AI. Transfor
## Installation
```bash
# Default installation (HNSW backend, recommended)
# Default installation (includes both HNSW and DiskANN backends)
uv pip install leann
# With DiskANN backend (for large-scale deployments)
uv pip install leann[diskann]
```
## Quick Start
```python
from leann import LeannBuilder, LeannSearcher, LeannChat
from pathlib import Path
INDEX_PATH = str(Path("./").resolve() / "demo.leann")
# Build an index
builder = LeannBuilder(backend_name="hnsw")
# Build an index (choose backend: "hnsw" or "diskann")
builder = LeannBuilder(backend_name="hnsw") # or "diskann" for large-scale deployments
builder.add_text("LEANN saves 97% storage compared to traditional vector databases.")
builder.build_index("my_index.leann")
builder.add_text("Tung Tung Tung Sahur called—they need their bananacrocodile hybrid back")
builder.build_index(INDEX_PATH)
# Search
searcher = LeannSearcher("my_index.leann")
results = searcher.search("storage savings", top_k=3)
searcher = LeannSearcher(INDEX_PATH)
results = searcher.search("fantastical AI-generated creatures", top_k=1)
# Chat with your data
chat = LeannChat("my_index.leann", llm_config={"type": "ollama", "model": "llama3.2:1b"})
response = chat.ask("How much storage does LEANN save?")
chat = LeannChat(INDEX_PATH, llm_config={"type": "hf", "model": "Qwen/Qwen3-0.6B"})
response = chat.ask("How much storage does LEANN save?", top_k=1)
```
## Documentation
For full documentation, visit [https://leann.readthedocs.io](https://leann.readthedocs.io)
## License
MIT License
MIT License

View File

@@ -7,6 +7,6 @@ A revolutionary vector database that democratizes personal AI.
__version__ = "0.1.0"
# Re-export main API from leann-core
from leann_core import LeannBuilder, LeannSearcher, LeannChat
from leann_core import LeannBuilder, LeannChat, LeannSearcher
__all__ = ["LeannBuilder", "LeannSearcher", "LeannChat"]
__all__ = ["LeannBuilder", "LeannChat", "LeannSearcher"]

View File

@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
[project]
name = "leann"
version = "0.1.4"
version = "0.2.7"
description = "LEANN - The smallest vector index in the world. RAG Everything with LEANN!"
readme = "README.md"
requires-python = ">=3.9"
@@ -24,19 +24,16 @@ classifiers = [
"Programming Language :: Python :: 3.12",
]
# Default installation: core + hnsw
# Default installation: core + hnsw + diskann
dependencies = [
"leann-core>=0.1.0",
"leann-backend-hnsw>=0.1.0",
]
[project.optional-dependencies]
diskann = [
"leann-backend-diskann>=0.1.0",
]
[project.optional-dependencies]
# All backends now included by default
[project.urls]
Homepage = "https://github.com/yourusername/leann"
Documentation = "https://leann.readthedocs.io"
Repository = "https://github.com/yourusername/leann"
Issues = "https://github.com/yourusername/leann/issues"
Repository = "https://github.com/yichuan-w/LEANN"
Issues = "https://github.com/yichuan-w/LEANN/issues"

View File

@@ -1,22 +1,23 @@
import json
import typer
from pathlib import Path
import requests
from tqdm import tqdm
import xml.etree.ElementTree as ET
from typing_extensions import Annotated
import sqlite3
import xml.etree.ElementTree as ElementTree
from pathlib import Path
from typing import Annotated
import requests
import typer
from tqdm import tqdm
app = typer.Typer()
def get_safe_path(s: str) -> str:
"""
Remove invalid characters to sanitize a path.
:param s: str to sanitize
:returns: sanitized str
"""
ban_chars = "\\ / : * ? \" ' < > | $ \r \n".replace(
' ', '')
ban_chars = "\\ / : * ? \" ' < > | $ \r \n".replace(" ", "")
for i in ban_chars:
s = s.replace(i, "")
return s
@@ -25,36 +26,40 @@ def get_safe_path(s: str) -> str:
def process_history(history: str):
if history.startswith("<?xml") or history.startswith("<msg>"):
try:
root = ET.fromstring(history)
title = root.find('.//title').text if root.find('.//title') is not None else None
quoted = root.find('.//refermsg/content').text if root.find('.//refermsg/content') is not None else None
root = ElementTree.fromstring(history)
title = root.find(".//title").text if root.find(".//title") is not None else None
quoted = (
root.find(".//refermsg/content").text
if root.find(".//refermsg/content") is not None
else None
)
if title and quoted:
return {
"title": title,
"quoted": process_history(quoted)
}
return {"title": title, "quoted": process_history(quoted)}
if title:
return title
except Exception:
return history
return history
def get_message(history: dict | str):
if isinstance(history, dict):
if 'title' in history:
return history['title']
if "title" in history:
return history["title"]
else:
return history
def export_chathistory(user_id: str):
res = requests.get("http://localhost:48065/wechat/chatlog", params={
"userId": user_id,
"count": 100000
}).json()
for i in range(len(res['chatLogs'])):
res['chatLogs'][i]['content'] = process_history(res['chatLogs'][i]['content'])
res['chatLogs'][i]['message'] = get_message(res['chatLogs'][i]['content'])
return res['chatLogs']
res = requests.get(
"http://localhost:48065/wechat/chatlog",
params={"userId": user_id, "count": 100000},
).json()
for i in range(len(res["chatLogs"])):
res["chatLogs"][i]["content"] = process_history(res["chatLogs"][i]["content"])
res["chatLogs"][i]["message"] = get_message(res["chatLogs"][i]["content"])
return res["chatLogs"]
@app.command()
def export_all(dest: Annotated[Path, typer.Argument(help="Destination path to export to.")]):
@@ -64,7 +69,7 @@ def export_all(dest: Annotated[Path, typer.Argument(help="Destination path to ex
if not dest.is_dir():
if not dest.exists():
inp = typer.prompt("Destination path does not exist, create it? (y/n)")
if inp.lower() == 'y':
if inp.lower() == "y":
dest.mkdir(parents=True)
else:
typer.echo("Aborted.", err=True)
@@ -77,12 +82,12 @@ def export_all(dest: Annotated[Path, typer.Argument(help="Destination path to ex
exported_count = 0
for user in tqdm(all_users):
try:
usr_chatlog = export_chathistory(user['arg'])
usr_chatlog = export_chathistory(user["arg"])
# Only write file if there are messages
if len(usr_chatlog) > 0:
out_path = dest/get_safe_path((user['title'] or "")+"-"+user['arg']+'.json')
with open(out_path, 'w', encoding='utf-8') as f:
out_path = dest / get_safe_path((user["title"] or "") + "-" + user["arg"] + ".json")
with open(out_path, "w", encoding="utf-8") as f:
json.dump(usr_chatlog, f, ensure_ascii=False, indent=2)
exported_count += 1
except Exception as e:
@@ -91,23 +96,43 @@ def export_all(dest: Annotated[Path, typer.Argument(help="Destination path to ex
print(f"Exported {exported_count} users' chat history to {dest} in json.")
@app.command()
def export_sqlite(dest: Annotated[Path, typer.Argument(help="Destination path to export to.")] = Path("chatlog.db")):
def export_sqlite(
dest: Annotated[Path, typer.Argument(help="Destination path to export to.")] = Path(
"chatlog.db"
),
):
"""
Export all users' chat history to a sqlite database.
"""
connection = sqlite3.connect(dest)
cursor = connection.cursor()
cursor.execute("CREATE TABLE IF NOT EXISTS chatlog (id INTEGER PRIMARY KEY AUTOINCREMENT, with_id TEXT, from_user TEXT, to_user TEXT, message TEXT, timest DATETIME, auxiliary TEXT)")
cursor.execute(
"CREATE TABLE IF NOT EXISTS chatlog (id INTEGER PRIMARY KEY AUTOINCREMENT, with_id TEXT, from_user TEXT, to_user TEXT, message TEXT, timest DATETIME, auxiliary TEXT)"
)
cursor.execute("CREATE INDEX IF NOT EXISTS chatlog_with_id_index ON chatlog (with_id)")
cursor.execute("CREATE TABLE iF NOT EXISTS users (id TEXT PRIMARY KEY, name TEXT)")
all_users = requests.get("http://localhost:48065/wechat/allcontacts").json()
for user in tqdm(all_users):
cursor.execute("INSERT OR IGNORE INTO users (id, name) VALUES (?, ?)", (user['arg'], user['title']))
usr_chatlog = export_chathistory(user['arg'])
cursor.execute(
"INSERT OR IGNORE INTO users (id, name) VALUES (?, ?)",
(user["arg"], user["title"]),
)
usr_chatlog = export_chathistory(user["arg"])
for msg in usr_chatlog:
cursor.execute("INSERT INTO chatlog (with_id, from_user, to_user, message, timest, auxiliary) VALUES (?, ?, ?, ?, ?, ?)", (user['arg'], msg['fromUser'], msg['toUser'], msg['message'], msg['createTime'], str(msg['content'])))
cursor.execute(
"INSERT INTO chatlog (with_id, from_user, to_user, message, timest, auxiliary) VALUES (?, ?, ?, ?, ?, ?)",
(
user["arg"],
msg["fromUser"],
msg["toUser"],
msg["message"],
msg["createTime"],
str(msg["content"]),
),
)
connection.commit()

View File

@@ -5,7 +5,7 @@ build-backend = "setuptools.build_meta"
[project]
name = "leann-workspace"
version = "0.1.0"
requires-python = ">=3.10"
requires-python = ">=3.9"
dependencies = [
"leann-core",
@@ -25,33 +25,65 @@ dependencies = [
"requests>=2.25.0",
"sentence-transformers>=2.2.0",
"openai>=1.0.0",
# PDF parsing dependencies - essential for document processing
"PyPDF2>=3.0.0",
"pdfplumber>=0.11.0",
"pymupdf>=1.26.0",
"pypdfium2>=4.30.0",
# LlamaIndex core and readers - updated versions
"llama-index>=0.12.44",
"llama-index-readers-docling",
"llama-index-node-parser-docling",
"ipykernel==6.29.5",
"msgpack>=1.1.1",
"llama-index-readers-file>=0.4.0", # Essential for PDF parsing
# "llama-index-readers-docling", # Requires Python >= 3.10
# "llama-index-node-parser-docling", # Requires Python >= 3.10
"llama-index-vector-stores-faiss>=0.4.0",
"llama-index-embeddings-huggingface>=0.5.5",
# Other dependencies
"ipykernel==6.29.5",
"msgpack>=1.1.1",
"mlx>=0.26.3; sys_platform == 'darwin'",
"mlx-lm>=0.26.0; sys_platform == 'darwin'",
"psutil>=5.8.0",
"pybind11>=3.0.0",
"pathspec>=0.12.1",
"nbconvert>=7.16.6",
"gitignore-parser>=0.1.12",
]
[project.optional-dependencies]
dev = [
"pytest>=7.0",
"pytest-cov>=4.0",
"pytest>=8.3.0", # Minimum version for Python 3.13 support
"pytest-cov>=5.0",
"pytest-xdist>=3.5", # For parallel test execution
"black>=23.0",
"ruff>=0.1.0",
"ruff==0.12.7", # Fixed version to ensure consistent formatting across all environments
"matplotlib",
"huggingface-hub>=0.20.0",
"pre-commit>=3.5.0",
]
test = [
"pytest>=8.3.0", # Minimum version for Python 3.13 support
"pytest-timeout>=2.3",
"anyio>=4.0", # For async test support (includes pytest plugin)
"psutil>=5.9.0", # For process cleanup in tests
"llama-index-core>=0.12.0",
"llama-index-readers-file>=0.4.0",
"python-dotenv>=1.0.0",
"sentence-transformers>=2.2.0",
]
diskann = [
"leann-backend-diskann",
]
# Add a new optional dependency group for document processing
documents = [
"beautifulsoup4>=4.13.0", # For HTML parsing
"python-docx>=0.8.11", # For Word documents
"openpyxl>=3.1.0", # For Excel files
"pandas>=2.2.0", # For data processing
]
[tool.setuptools]
py-modules = []
@@ -60,3 +92,80 @@ py-modules = []
leann-core = { path = "packages/leann-core", editable = true }
leann-backend-diskann = { path = "packages/leann-backend-diskann", editable = true }
leann-backend-hnsw = { path = "packages/leann-backend-hnsw", editable = true }
[tool.ruff]
target-version = "py39"
line-length = 100
extend-exclude = [
"third_party",
"*.egg-info",
"__pycache__",
".git",
".venv",
]
[tool.ruff.lint]
select = [
"E", # pycodestyle errors
"W", # pycodestyle warnings
"F", # pyflakes
"I", # isort
"B", # flake8-bugbear
"C4", # flake8-comprehensions
"UP", # pyupgrade
"N", # pep8-naming
"RUF", # ruff-specific rules
]
ignore = [
"E501", # line too long (handled by formatter)
"B008", # do not perform function calls in argument defaults
"B904", # raise without from
"N812", # lowercase imported as non-lowercase
"N806", # variable in function should be lowercase
"RUF012", # mutable class attributes should be annotated with typing.ClassVar
]
[tool.ruff.lint.per-file-ignores]
"test/**/*.py" = ["E402"] # module level import not at top of file (common in tests)
"examples/**/*.py" = ["E402"] # module level import not at top of file (common in examples)
[tool.ruff.format]
quote-style = "double"
indent-style = "space"
skip-magic-trailing-comma = false
line-ending = "auto"
[dependency-groups]
dev = [
"ruff>=0.12.4",
]
[tool.lychee]
accept = ["200", "403", "429", "503"]
timeout = 20
max_retries = 2
exclude = ["localhost", "127.0.0.1", "example.com"]
exclude_path = [".git/", ".venv/", "__pycache__/", "third_party/"]
scheme = ["https", "http"]
[tool.pytest.ini_options]
testpaths = ["tests"]
python_files = ["test_*.py"]
python_classes = ["Test*"]
python_functions = ["test_*"]
markers = [
"slow: marks tests as slow (deselect with '-m \"not slow\"')",
"openai: marks tests that require OpenAI API key",
]
timeout = 300 # Reduced from 600s (10min) to 300s (5min) for CI safety
timeout_method = "thread" # Use thread method to avoid non-daemon thread issues
addopts = [
"-v",
"--tb=short",
"--strict-markers",
"--disable-warnings",
]
env = [
"HF_HUB_DISABLE_SYMLINKS=1",
"TOKENIZERS_PARALLELISM=false",
]

View File

@@ -1,12 +0,0 @@
import faiss
hnsw_index = faiss.read_index("/opt/dlami/nvme/scaling_out/indices/rpj_wiki/facebook/contriever-msmarco/hnsw/hnsw_IP_M30_efC128.index", faiss.IO_FLAG_ONDISK_SAME_DIR)
# print total number of nodes
print(hnsw_index.ntotal)
# print stats of the graph
print(hnsw_index.hnsw.print_neighbor_stats(0))
# save_degree_distribution
hnsw_index.hnsw.save_degree_distribution(0, "degree_distribution_HNSW_M30.txt")

View File

@@ -1,11 +0,0 @@
import faiss
nsg_index = faiss.read_index("/opt/dlami/nvme/scaling_out/indices/rpj_wiki/facebook/contriever-msmarco/nsg_R16.index", faiss.IO_FLAG_ONDISK_SAME_DIR)
# print total number of nodes
print(nsg_index.ntotal)
# print stats of the graph
print(nsg_index.nsg.print_neighbor_stats(0))
# save degree distribution
nsg_index.nsg.save_degree_distribution("degree_distribution_NSG_R60.txt")

View File

@@ -1,63 +0,0 @@
import torch
import torch.nn as nn
import time
# import bitsandbytes as bnb
from bitsandbytes.nn import Linear8bitLt
# set default to half
import torch
torch.set_default_dtype(torch.float16)
M = 2048
N = 2048
bsz = 2048
import torch_int
from torch_int.nn.linear import W8A8BFP32OFP32Linear, W8A8B8O8Linear, W8A8B8O8LinearReLU
fp16_model = nn.Sequential(
nn.Linear(M, N),
# nn.Linear(2048, 2048)
)
int8_model = nn.Sequential(
Linear8bitLt(M, N, has_fp16_weights=False),
# Linear8bitLt(2048, 2048, has_fp16_weights=False)
)
int8_model.load_state_dict(fp16_model.state_dict())
int8_model = int8_model.to(0) # Quantization happens here
fp16_model = fp16_model.to(0) # Move fp16 model to GPU as well
# Create random input tensor
input_tensor = torch.randn(bsz, M, device=0) # Batch of 1000 vectors
# Speed test function
def speed_test(model, input_tensor, name, num_iterations=100):
# Warmup
for _ in range(10):
_ = model(input_tensor)
# Actual timing
torch.cuda.synchronize()
start_time = time.time()
for _ in range(num_iterations):
_ = model(input_tensor)
torch.cuda.synchronize()
end_time = time.time()
avg_time = (end_time - start_time) / num_iterations
print(f"{name} model: {avg_time:.6f} seconds per iteration")
return avg_time
# Run speed tests
with torch.no_grad(): # Disable gradient calculation for inference
fp16_time = speed_test(fp16_model, input_tensor, "FP16")
int8_time = speed_test(int8_model, input_tensor, "INT8")
# Calculate speedup
speedup = fp16_time / int8_time
print(f"INT8 is {speedup:.2f}x faster than FP16")

View File

@@ -1,89 +0,0 @@
n,d,seqlen,bs,latency,h,flop,io,intensity,throughput,series
3,256,256,2048,0.009623501679245285,768,618475290624,167.48502132816208,3692720015.912285,64267177503366.266,dense
3,256,256,1024,0.004853848615384615,768,309237645312,166.15392854317415,1861151572.059558,63709783682138.234,dense
3,256,256,512,0.0024687246971962615,768,154618822656,163.57953256539062,945221081.3366361,62631051097597.516,dense
3,256,256,256,0.0012845360838052097,768,77309411328,157.64931990085577,490388486.1451936,60184694149645.54,dense
3,256,256,128,0.0006901147179878049,768,38654705664,147.57393422494675,261934506.70684624,56012000116019.945,dense
3,256,256,64,0.0003363830693015702,768,19327352832,153.1328437752606,126212981.84970059,57456378146882.51,dense
3,256,256,32,0.00018671159748991485,768,9663676416,141.10249365427362,68486928.65540518,51757237075334.75,dense
3,256,256,16,0.00012353640857142858,768,4831838208,111.40488993609125,43371868.24359184,39112665358133.98,dense
3,256,256,8,9.774760007849294e-05,768,2415919104,76.43260800265766,31608487.09906635,24715891766754.14,dense
3,256,256,4,6.672271167474822e-05,768,1207959552,64.82614227498455,18633833.660438772,18104173551704.773,dense
3,256,256,2,4.9758770289855074e-05,768,603979776,55.317122669351576,10918495.880745342,12138157202874.861,dense
3,256,1,2048,9.785507940251571e-05,768,2415919104,76.34865809334705,31643242.518371396,24688745017132.86,dense
3,256,1,1024,6.692813470149253e-05,768,1207959552,64.62717090938949,18691202.70936228,18048606275785.867,dense
3,256,1,512,4.9680950036205655e-05,768,603979776,55.40377142534654,10901419.893658841,12157170415618.898,dense
3,256,1,256,4.2781118741058655e-05,768,301989888,45.95672244805227,6571179.83862661,7058952568020.829,dense
3,256,1,128,5.0662328255350016e-05,768,150994944,31.046026784880404,4863583.512513602,2980418571348.519,dense
3,256,1,64,4.475009253945481e-05,768,75497472,30.75426042497223,2454862.219307235,1687090857598.4766,dense
3,256,1,32,4.51682671454219e-05,768,37748736,28.29313765537115,1334201.1218340008,835735758435.5786,dense
3,256,1,16,5.03585186661834e-05,768,18874368,24.401035466223117,773506.846712577,374799904761.1871,dense
3,256,1,8,5.023459565217391e-05,768,9437184,23.972005435021096,393675.19858030166,187862246674.45105,dense
3,256,1,4,5.053219391083726e-05,768,4718592,23.58765586356967,200044.97383259286,93377936614.54384,dense
3,256,1,2,4.4607398995335484e-05,768,2359296,26.58285456464288,88752.54515134107,52890239133.797226,dense
12,256,256,2048,0.14480779847058822,3072,9895604649984,44.620009282941716,221775046868.20184,68336130750540.26,dense
12,256,256,1024,0.07254347629166667,3072,4947802324992,44.664248332585096,110777691547.58836,68204648824643.82,dense
12,256,256,512,0.036310761444444443,3072,2473901162496,44.876147984203506,55127306456.13385,68131349056975.164,dense
12,256,256,256,0.01821551906896552,3072,1236950581248,45.24607467289738,27338295977.947884,67906414116709.98,dense
12,256,256,128,0.009229417903030302,3072,618475290624,45.67217092440895,13541622351.335684,67011299859001.46,dense
12,256,256,64,0.004754550595394737,3072,309237645312,46.31372736116993,6677019167.566916,65040352207320.695,dense
12,256,256,32,0.002405752659340659,3072,154618822656,49.68826015254682,3111777755.5766335,64270456921525.82,dense
12,256,256,16,0.0012287219045005488,3072,77309411328,56.323579604557374,1372594069.3184311,62918558743709.18,dense
12,256,256,8,0.0006206816149425287,3072,38654705664,70.95456179103653,544781120.315271,62277832520589.78,dense
12,256,256,4,0.0003875502697142857,3072,19327352832,81.16954743236613,238110885.71245712,49870569942445.75,dense
12,256,256,2,0.00027502018627941914,3072,9663676416,91.50537035282076,105607751.53129694,35138062215483.168,dense
12,256,1,2048,0.0006202853873290136,3072,38654705664,70.99988634205897,544433345.6784943,62317614526515.766,dense
12,256,1,1024,0.00038721467732724153,3072,19327352832,81.2398957010995,237904697.74985722,49913791918755.53,dense
12,256,1,512,0.000274364799,3072,9663676416,91.72395326121995,105356082.81599998,35221998052308.45,dense
12,256,1,256,0.00012488918589482266,3072,4831838208,176.31707535146046,27404255.647778228,38689003962834.75,dense
12,256,1,128,8.976711102514506e-05,3072,2415919104,227.78088507574267,10606329.425740216,26913187652026.21,dense
12,256,1,64,8.715176287471176e-05,3072,1207959552,225.59268282689945,5354604.31102229,13860414432884.701,dense
12,256,1,32,8.523013435114503e-05,3072,603979776,226.06539514085782,2671703.8033338524,7086458100741.991,dense
12,256,1,16,7.901561645904116e-05,3072,301989888,241.35704882952732,1251216.3595988373,3821901309300.556,dense
12,256,1,8,7.827949114210329e-05,3072,150994944,242.37091635608994,622991.1833900034,1928920867994.581,dense
12,256,1,4,7.779445951035782e-05,3072,75497472,243.25022783249054,310369.58391664835,970473636235.5986,dense
12,256,1,2,7.758845406626506e-05,3072,37748736,243.57933441822672,154975.11761480253,486525172518.07056,dense
3,256,256,2048,0.00507974918466899,768,206158430208,475.59810852303485,433471930.42508715,40584371927298.98,qk_init
3,256,256,1024,0.0025616677649325623,768,103079215104,471.5519977009198,218595649.27424532,40239103803811.82,qk_init
3,256,256,512,0.0013029336670480549,768,51539607552,463.55374128015677,111183672.92143403,39556585922573.38,qk_init
3,256,256,256,0.0006738189029345373,768,25769803776,448.1766342333362,57499213.050413854,38244406121244.69,qk_init
3,256,256,128,0.000358254672959467,768,12884901888,421.47375986100144,30571065.425874516,35965760841472.125,qk_init
3,256,256,64,0.0002007051105022831,768,6442450944,376.1611839930762,17126836.096194826,32099087700742.5,qk_init
3,256,256,32,0.00012189697230142565,768,3221225472,309.6773881032524,10401874.969721656,26425803784810.87,qk_init
3,256,256,16,8.453561698040722e-05,768,1610612736,223.2711923587723,7213705.982328083,19052475081281.902,qk_init
3,256,256,8,6.407660705009276e-05,768,805306368,147.2797083750448,5467870.468274581,12567868448003.822,qk_init
3,256,256,4,5.036328747284576e-05,768,402653184,93.69110391262903,4297667.197682838,7994974200544.344,qk_init
3,256,256,2,4.5488761135057476e-05,768,201326592,51.865470527877875,3881707.616858238,4425853485045.578,qk_init
12,256,256,2048,0.020202365999999996,3072,824633720832,478.3437947812648,1723935231.9999998,40818670488001.266,qk_init
12,256,256,1024,0.010124155888157895,3072,412316860416,477.2583770318811,863927969.1228071,40726048173387.19,qk_init
12,256,256,512,0.005085633937062937,3072,206158430208,475.04777848703077,433974095.9627039,40537410430893.29,qk_init
12,256,256,256,0.0025654916853281853,3072,103079215104,470.84913933193053,218921957.14800516,40179126556324.74,qk_init
12,256,256,128,0.0013045765704467354,3072,51539607552,462.9699702434292,111323867.34478809,39506770794105.96,qk_init
12,256,256,64,0.0006742801519939804,3072,25769803776,447.87005387442576,57538572.970153,38218244597284.33,qk_init
12,256,256,32,0.00035831976790671853,3072,12884901888,421.3971919051604,30576620.194706645,35959227042573.69,qk_init
12,256,256,16,0.0002005369068918302,3072,6442450944,376.4766953382971,17112482.721436176,32126011335534.68,qk_init
12,256,256,8,0.00012179187250509165,3072,3221225472,309.94462293386505,10392906.453767821,26448607823689.82,qk_init
12,256,256,4,8.452507263643351e-05,3072,1610612736,223.2990450204527,7212806.198308992,19054851841745.297,qk_init
12,256,256,2,6.412381767545489e-05,3072,805306368,147.17127491946468,5471899.108305484,12558615459794.32,qk_init
3,256,256,2048,0.0016183739398395718,768,805306368,811597824.0,0.9922480620155039,1265467.7325087283,qk_ar
3,256,256,1024,0.0008322699728813558,768,402653184,405798912.0,0.9922480620155039,1230369.9921491416,qk_ar
3,256,256,512,0.00043886859397590365,768,201326592,202899456.0,0.9922480620155039,1166636.2255762408,qk_ar
3,256,256,256,0.00024185948322147648,768,100663296,101449728.0,0.9922480620155039,1058465.8355760013,qk_ar
3,256,256,128,0.00014308985100166944,768,50331648,50724864.0,0.9922480620155039,894542.82818777,qk_ar
3,256,256,64,9.382939365815932e-05,768,25165824,25362432.0,0.9922480620155039,682089.028872613,qk_ar
3,256,256,32,6.856070612244899e-05,768,12582912,12681216.0,0.9922480620155039,466739.6503012703,qk_ar
3,256,256,16,5.452260553129549e-05,768,6291456,6340608.0,0.9922480620155039,293456.26174846216,qk_ar
3,256,256,8,4.608557533261417e-05,768,3145728,3170304.0,0.9922480620155039,173590.1080166944,qk_ar
3,256,256,4,4.386146957766642e-05,768,1572864,1585152.0,0.9922480620155039,91196.21477609445,qk_ar
3,256,256,2,4.330941094420601e-05,768,786432,792576.0,0.9922480620155039,46179.33969539622,qk_ar
12,256,256,2048,0.006347041645299144,3072,3221225472,3246391296.0,0.9922480620155039,322670.011392918,qk_ar
12,256,256,1024,0.0031943104467592586,3072,1610612736,1623195648.0,0.9922480620155039,320569.96872013,qk_ar
12,256,256,512,0.0016183416350267381,3072,805306368,811597824.0,0.9922480620155039,316373.2483416833,qk_ar
12,256,256,256,0.0008325934893977947,3072,402653184,405798912.0,0.9922480620155039,307472.9784221131,qk_ar
12,256,256,128,0.0004389725746987952,3072,201326592,202899456.0,0.9922480620155039,291589.9702568624,qk_ar
12,256,256,64,0.00024191767449664432,3072,100663296,101449728.0,0.9922480620155039,264552.8076159138,qk_ar
12,256,256,32,0.0001431546143572621,3072,50331648,50724864.0,0.9922480620155039,223534.53392804778,qk_ar
12,256,256,16,9.404283597678917e-05,3072,25165824,25362432.0,0.9922480620155039,170135.23501087292,qk_ar
12,256,256,8,6.855550037091989e-05,3072,12582912,12681216.0,0.9922480620155039,116693.773026467,qk_ar
12,256,256,4,5.4802094978165945e-05,3072,6291456,6340608.0,0.9922480620155039,72989.91036006316,qk_ar
12,256,256,2,4.608510707869206e-05,3072,3145728,3170304.0,0.9922480620155039,43397.96795057727,qk_ar
1 n d seqlen bs latency h flop io intensity throughput series
2 3 256 256 2048 0.009623501679245285 768 618475290624 167.48502132816208 3692720015.912285 64267177503366.266 dense
3 3 256 256 1024 0.004853848615384615 768 309237645312 166.15392854317415 1861151572.059558 63709783682138.234 dense
4 3 256 256 512 0.0024687246971962615 768 154618822656 163.57953256539062 945221081.3366361 62631051097597.516 dense
5 3 256 256 256 0.0012845360838052097 768 77309411328 157.64931990085577 490388486.1451936 60184694149645.54 dense
6 3 256 256 128 0.0006901147179878049 768 38654705664 147.57393422494675 261934506.70684624 56012000116019.945 dense
7 3 256 256 64 0.0003363830693015702 768 19327352832 153.1328437752606 126212981.84970059 57456378146882.51 dense
8 3 256 256 32 0.00018671159748991485 768 9663676416 141.10249365427362 68486928.65540518 51757237075334.75 dense
9 3 256 256 16 0.00012353640857142858 768 4831838208 111.40488993609125 43371868.24359184 39112665358133.98 dense
10 3 256 256 8 9.774760007849294e-05 768 2415919104 76.43260800265766 31608487.09906635 24715891766754.14 dense
11 3 256 256 4 6.672271167474822e-05 768 1207959552 64.82614227498455 18633833.660438772 18104173551704.773 dense
12 3 256 256 2 4.9758770289855074e-05 768 603979776 55.317122669351576 10918495.880745342 12138157202874.861 dense
13 3 256 1 2048 9.785507940251571e-05 768 2415919104 76.34865809334705 31643242.518371396 24688745017132.86 dense
14 3 256 1 1024 6.692813470149253e-05 768 1207959552 64.62717090938949 18691202.70936228 18048606275785.867 dense
15 3 256 1 512 4.9680950036205655e-05 768 603979776 55.40377142534654 10901419.893658841 12157170415618.898 dense
16 3 256 1 256 4.2781118741058655e-05 768 301989888 45.95672244805227 6571179.83862661 7058952568020.829 dense
17 3 256 1 128 5.0662328255350016e-05 768 150994944 31.046026784880404 4863583.512513602 2980418571348.519 dense
18 3 256 1 64 4.475009253945481e-05 768 75497472 30.75426042497223 2454862.219307235 1687090857598.4766 dense
19 3 256 1 32 4.51682671454219e-05 768 37748736 28.29313765537115 1334201.1218340008 835735758435.5786 dense
20 3 256 1 16 5.03585186661834e-05 768 18874368 24.401035466223117 773506.846712577 374799904761.1871 dense
21 3 256 1 8 5.023459565217391e-05 768 9437184 23.972005435021096 393675.19858030166 187862246674.45105 dense
22 3 256 1 4 5.053219391083726e-05 768 4718592 23.58765586356967 200044.97383259286 93377936614.54384 dense
23 3 256 1 2 4.4607398995335484e-05 768 2359296 26.58285456464288 88752.54515134107 52890239133.797226 dense
24 12 256 256 2048 0.14480779847058822 3072 9895604649984 44.620009282941716 221775046868.20184 68336130750540.26 dense
25 12 256 256 1024 0.07254347629166667 3072 4947802324992 44.664248332585096 110777691547.58836 68204648824643.82 dense
26 12 256 256 512 0.036310761444444443 3072 2473901162496 44.876147984203506 55127306456.13385 68131349056975.164 dense
27 12 256 256 256 0.01821551906896552 3072 1236950581248 45.24607467289738 27338295977.947884 67906414116709.98 dense
28 12 256 256 128 0.009229417903030302 3072 618475290624 45.67217092440895 13541622351.335684 67011299859001.46 dense
29 12 256 256 64 0.004754550595394737 3072 309237645312 46.31372736116993 6677019167.566916 65040352207320.695 dense
30 12 256 256 32 0.002405752659340659 3072 154618822656 49.68826015254682 3111777755.5766335 64270456921525.82 dense
31 12 256 256 16 0.0012287219045005488 3072 77309411328 56.323579604557374 1372594069.3184311 62918558743709.18 dense
32 12 256 256 8 0.0006206816149425287 3072 38654705664 70.95456179103653 544781120.315271 62277832520589.78 dense
33 12 256 256 4 0.0003875502697142857 3072 19327352832 81.16954743236613 238110885.71245712 49870569942445.75 dense
34 12 256 256 2 0.00027502018627941914 3072 9663676416 91.50537035282076 105607751.53129694 35138062215483.168 dense
35 12 256 1 2048 0.0006202853873290136 3072 38654705664 70.99988634205897 544433345.6784943 62317614526515.766 dense
36 12 256 1 1024 0.00038721467732724153 3072 19327352832 81.2398957010995 237904697.74985722 49913791918755.53 dense
37 12 256 1 512 0.000274364799 3072 9663676416 91.72395326121995 105356082.81599998 35221998052308.45 dense
38 12 256 1 256 0.00012488918589482266 3072 4831838208 176.31707535146046 27404255.647778228 38689003962834.75 dense
39 12 256 1 128 8.976711102514506e-05 3072 2415919104 227.78088507574267 10606329.425740216 26913187652026.21 dense
40 12 256 1 64 8.715176287471176e-05 3072 1207959552 225.59268282689945 5354604.31102229 13860414432884.701 dense
41 12 256 1 32 8.523013435114503e-05 3072 603979776 226.06539514085782 2671703.8033338524 7086458100741.991 dense
42 12 256 1 16 7.901561645904116e-05 3072 301989888 241.35704882952732 1251216.3595988373 3821901309300.556 dense
43 12 256 1 8 7.827949114210329e-05 3072 150994944 242.37091635608994 622991.1833900034 1928920867994.581 dense
44 12 256 1 4 7.779445951035782e-05 3072 75497472 243.25022783249054 310369.58391664835 970473636235.5986 dense
45 12 256 1 2 7.758845406626506e-05 3072 37748736 243.57933441822672 154975.11761480253 486525172518.07056 dense
46 3 256 256 2048 0.00507974918466899 768 206158430208 475.59810852303485 433471930.42508715 40584371927298.98 qk_init
47 3 256 256 1024 0.0025616677649325623 768 103079215104 471.5519977009198 218595649.27424532 40239103803811.82 qk_init
48 3 256 256 512 0.0013029336670480549 768 51539607552 463.55374128015677 111183672.92143403 39556585922573.38 qk_init
49 3 256 256 256 0.0006738189029345373 768 25769803776 448.1766342333362 57499213.050413854 38244406121244.69 qk_init
50 3 256 256 128 0.000358254672959467 768 12884901888 421.47375986100144 30571065.425874516 35965760841472.125 qk_init
51 3 256 256 64 0.0002007051105022831 768 6442450944 376.1611839930762 17126836.096194826 32099087700742.5 qk_init
52 3 256 256 32 0.00012189697230142565 768 3221225472 309.6773881032524 10401874.969721656 26425803784810.87 qk_init
53 3 256 256 16 8.453561698040722e-05 768 1610612736 223.2711923587723 7213705.982328083 19052475081281.902 qk_init
54 3 256 256 8 6.407660705009276e-05 768 805306368 147.2797083750448 5467870.468274581 12567868448003.822 qk_init
55 3 256 256 4 5.036328747284576e-05 768 402653184 93.69110391262903 4297667.197682838 7994974200544.344 qk_init
56 3 256 256 2 4.5488761135057476e-05 768 201326592 51.865470527877875 3881707.616858238 4425853485045.578 qk_init
57 12 256 256 2048 0.020202365999999996 3072 824633720832 478.3437947812648 1723935231.9999998 40818670488001.266 qk_init
58 12 256 256 1024 0.010124155888157895 3072 412316860416 477.2583770318811 863927969.1228071 40726048173387.19 qk_init
59 12 256 256 512 0.005085633937062937 3072 206158430208 475.04777848703077 433974095.9627039 40537410430893.29 qk_init
60 12 256 256 256 0.0025654916853281853 3072 103079215104 470.84913933193053 218921957.14800516 40179126556324.74 qk_init
61 12 256 256 128 0.0013045765704467354 3072 51539607552 462.9699702434292 111323867.34478809 39506770794105.96 qk_init
62 12 256 256 64 0.0006742801519939804 3072 25769803776 447.87005387442576 57538572.970153 38218244597284.33 qk_init
63 12 256 256 32 0.00035831976790671853 3072 12884901888 421.3971919051604 30576620.194706645 35959227042573.69 qk_init
64 12 256 256 16 0.0002005369068918302 3072 6442450944 376.4766953382971 17112482.721436176 32126011335534.68 qk_init
65 12 256 256 8 0.00012179187250509165 3072 3221225472 309.94462293386505 10392906.453767821 26448607823689.82 qk_init
66 12 256 256 4 8.452507263643351e-05 3072 1610612736 223.2990450204527 7212806.198308992 19054851841745.297 qk_init
67 12 256 256 2 6.412381767545489e-05 3072 805306368 147.17127491946468 5471899.108305484 12558615459794.32 qk_init
68 3 256 256 2048 0.0016183739398395718 768 805306368 811597824.0 0.9922480620155039 1265467.7325087283 qk_ar
69 3 256 256 1024 0.0008322699728813558 768 402653184 405798912.0 0.9922480620155039 1230369.9921491416 qk_ar
70 3 256 256 512 0.00043886859397590365 768 201326592 202899456.0 0.9922480620155039 1166636.2255762408 qk_ar
71 3 256 256 256 0.00024185948322147648 768 100663296 101449728.0 0.9922480620155039 1058465.8355760013 qk_ar
72 3 256 256 128 0.00014308985100166944 768 50331648 50724864.0 0.9922480620155039 894542.82818777 qk_ar
73 3 256 256 64 9.382939365815932e-05 768 25165824 25362432.0 0.9922480620155039 682089.028872613 qk_ar
74 3 256 256 32 6.856070612244899e-05 768 12582912 12681216.0 0.9922480620155039 466739.6503012703 qk_ar
75 3 256 256 16 5.452260553129549e-05 768 6291456 6340608.0 0.9922480620155039 293456.26174846216 qk_ar
76 3 256 256 8 4.608557533261417e-05 768 3145728 3170304.0 0.9922480620155039 173590.1080166944 qk_ar
77 3 256 256 4 4.386146957766642e-05 768 1572864 1585152.0 0.9922480620155039 91196.21477609445 qk_ar
78 3 256 256 2 4.330941094420601e-05 768 786432 792576.0 0.9922480620155039 46179.33969539622 qk_ar
79 12 256 256 2048 0.006347041645299144 3072 3221225472 3246391296.0 0.9922480620155039 322670.011392918 qk_ar
80 12 256 256 1024 0.0031943104467592586 3072 1610612736 1623195648.0 0.9922480620155039 320569.96872013 qk_ar
81 12 256 256 512 0.0016183416350267381 3072 805306368 811597824.0 0.9922480620155039 316373.2483416833 qk_ar
82 12 256 256 256 0.0008325934893977947 3072 402653184 405798912.0 0.9922480620155039 307472.9784221131 qk_ar
83 12 256 256 128 0.0004389725746987952 3072 201326592 202899456.0 0.9922480620155039 291589.9702568624 qk_ar
84 12 256 256 64 0.00024191767449664432 3072 100663296 101449728.0 0.9922480620155039 264552.8076159138 qk_ar
85 12 256 256 32 0.0001431546143572621 3072 50331648 50724864.0 0.9922480620155039 223534.53392804778 qk_ar
86 12 256 256 16 9.404283597678917e-05 3072 25165824 25362432.0 0.9922480620155039 170135.23501087292 qk_ar
87 12 256 256 8 6.855550037091989e-05 3072 12582912 12681216.0 0.9922480620155039 116693.773026467 qk_ar
88 12 256 256 4 5.4802094978165945e-05 3072 6291456 6340608.0 0.9922480620155039 72989.91036006316 qk_ar
89 12 256 256 2 4.608510707869206e-05 3072 3145728 3170304.0 0.9922480620155039 43397.96795057727 qk_ar

View File

Binary file not shown.

Before

Width:  |  Height:  |  Size: 45 KiB

View File

@@ -1,594 +0,0 @@
# python embedd_micro.py --use_int8 Fastest
import argparse
import time
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple
import numpy as np
import torch
from torch import nn
from torchao import quantize_
from transformers import AutoModel, BitsAndBytesConfig
from tqdm import tqdm
from contextlib import contextmanager
@dataclass
class BenchmarkConfig:
model_path: str
batch_sizes: List[int]
seq_length: int
num_runs: int
use_fp16: bool = True
use_int4: bool = False
use_int8: bool = False # Add this parameter
use_cuda_graphs: bool = False
use_flash_attention: bool = False
use_linear8bitlt: bool = False
class CUDAGraphContainer:
"""Container for managing CUDA graphs for different batch sizes."""
def __init__(self, model: nn.Module, seq_length: int):
self.model = model
self.seq_length = seq_length
self.graphs: Dict[int, CUDAGraphWrapper] = {}
def get_or_create(self, batch_size: int) -> 'CUDAGraphWrapper':
if batch_size not in self.graphs:
self.graphs[batch_size] = CUDAGraphWrapper(
self.model, batch_size, self.seq_length
)
return self.graphs[batch_size]
class CUDAGraphWrapper:
"""Wrapper for CUDA graph capture and replay."""
def __init__(self, model: nn.Module, batch_size: int, seq_length: int):
self.model = model
self.static_input = self._create_random_batch(batch_size, seq_length)
self.static_attention_mask = torch.ones_like(self.static_input)
# Warm up
self._warmup()
# Capture graph
self.graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(self.graph):
self.static_output = self.model(
input_ids=self.static_input,
attention_mask=self.static_attention_mask
)
def _create_random_batch(self, batch_size: int, seq_length: int) -> torch.Tensor:
return torch.randint(
0, 1000, (batch_size, seq_length),
device="cuda",
dtype=torch.long
)
def _warmup(self, num_warmup: int = 3):
with torch.no_grad():
for _ in range(num_warmup):
self.model(
input_ids=self.static_input,
attention_mask=self.static_attention_mask
)
def __call__(self, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
self.static_input.copy_(input_ids)
self.static_attention_mask.copy_(attention_mask)
self.graph.replay()
return self.static_output
class ModelOptimizer:
"""Applies various optimizations to the model."""
@staticmethod
def optimize(model: nn.Module, config: BenchmarkConfig) -> nn.Module:
print("\nApplying model optimizations:")
if model is None:
raise ValueError("Cannot optimize None model")
# Move to GPU
model = model.cuda()
print("- Model moved to GPU")
# FP16
if config.use_fp16 and not config.use_int4:
model = model.half()
# use torch compile
model = torch.compile(model)
print("- Using FP16 precision")
# Check if using SDPA
if torch.version.cuda and float(torch.version.cuda[:3]) >= 11.6:
if hasattr(torch.nn.functional, 'scaled_dot_product_attention'):
print("- Using PyTorch SDPA (scaled_dot_product_attention)")
else:
print("- PyTorch SDPA not available")
# Flash Attention
if config.use_flash_attention:
try:
from flash_attn.flash_attention import FlashAttention
print("- Flash Attention 2 available")
if hasattr(model.config, "attention_mode"):
model.config.attention_mode = "flash_attention_2"
print(" - Enabled Flash Attention 2 mode")
except ImportError:
print("- Flash Attention not available")
# Memory efficient attention
try:
from xformers.ops import memory_efficient_attention
if hasattr(model, 'enable_xformers_memory_efficient_attention'):
model.enable_xformers_memory_efficient_attention()
print("- Enabled xformers memory efficient attention")
else:
print("- Model doesn't support xformers")
except (ImportError, AttributeError):
print("- Xformers not available")
model.eval()
print("- Model set to eval mode")
return model
class Timer:
"""Handles accurate GPU timing using CUDA events."""
def __init__(self):
self.start_event = torch.cuda.Event(enable_timing=True)
self.end_event = torch.cuda.Event(enable_timing=True)
@contextmanager
def timing(self):
self.start_event.record()
yield
self.end_event.record()
self.end_event.synchronize()
def elapsed_time(self) -> float:
return self.start_event.elapsed_time(self.end_event) / 1000 # ms to seconds
class Benchmark:
"""Main benchmark runner."""
def __init__(self, config: BenchmarkConfig):
self.config = config
try:
self.model = self._load_model()
if self.model is None:
raise ValueError("Model initialization failed - model is None")
self.cuda_graphs = (
CUDAGraphContainer(self.model, config.seq_length)
if config.use_cuda_graphs
else None
)
self.timer = Timer()
except Exception as e:
print(f"ERROR in benchmark initialization: {str(e)}")
raise
def _load_model(self) -> nn.Module:
print(f"Loading model from {self.config.model_path}...")
try:
# Int4 quantization using HuggingFace integration
if self.config.use_int4:
import bitsandbytes as bnb
print(f"- bitsandbytes version: {bnb.__version__}")
# 检查是否使用自定义的8bit量化
if hasattr(self.config, 'use_linear8bitlt') and self.config.use_linear8bitlt:
print("- Using custom Linear8bitLt replacement for all linear layers")
# 加载原始模型(不使用量化配置)
import bitsandbytes as bnb
import torch
# set default to half
torch.set_default_dtype(torch.float16)
compute_dtype = torch.float16 if self.config.use_fp16 else torch.float32
model = AutoModel.from_pretrained(
self.config.model_path,
torch_dtype=compute_dtype,
)
# 定义替换函数
def replace_linear_with_linear8bitlt(model):
"""递归地将模型中的所有nn.Linear层替换为Linear8bitLt"""
for name, module in list(model.named_children()):
if isinstance(module, nn.Linear):
# 获取原始线性层的参数
in_features = module.in_features
out_features = module.out_features
bias = module.bias is not None
# 创建8bit线性层
# print size
print(f"in_features: {in_features}, out_features: {out_features}")
new_module = bnb.nn.Linear8bitLt(
in_features,
out_features,
bias=bias,
has_fp16_weights=False
)
# 复制权重和偏置
new_module.weight.data = module.weight.data
if bias:
new_module.bias.data = module.bias.data
# 替换模块
setattr(model, name, new_module)
else:
# 递归处理子模块
replace_linear_with_linear8bitlt(module)
return model
# 替换所有线性层
model = replace_linear_with_linear8bitlt(model)
# add torch compile
model = torch.compile(model)
# 将模型移到GPU量化发生在这里
device = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(device)
print("- All linear layers replaced with Linear8bitLt")
else:
# 使用原来的Int4量化方法
print("- Using bitsandbytes for Int4 quantization")
# Create quantization config
compute_dtype = torch.float16 if self.config.use_fp16 else torch.float32
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
print("- Quantization config:", quantization_config)
# Load model directly with quantization config
model = AutoModel.from_pretrained(
self.config.model_path,
quantization_config=quantization_config,
torch_dtype=compute_dtype,
device_map="auto" # Let HF decide on device mapping
)
# Check if model loaded successfully
if model is None:
raise ValueError("Model loading returned None")
print(f"- Model type: {type(model)}")
# Apply optimizations directly here
print("\nApplying model optimizations:")
if hasattr(self.config, 'use_linear8bitlt') and self.config.use_linear8bitlt:
print("- Model moved to GPU with Linear8bitLt quantization")
else:
# Skip moving to GPU since device_map="auto" already did that
print("- Model already on GPU due to device_map='auto'")
# Skip FP16 conversion since we specified compute_dtype
print(f"- Using {compute_dtype} for compute dtype")
# Check CUDA and SDPA
if torch.version.cuda and float(torch.version.cuda[:3]) >= 11.6:
if hasattr(torch.nn.functional, 'scaled_dot_product_attention'):
print("- Using PyTorch SDPA (scaled_dot_product_attention)")
else:
print("- PyTorch SDPA not available")
# Try xformers if available
try:
from xformers.ops import memory_efficient_attention
if hasattr(model, 'enable_xformers_memory_efficient_attention'):
model.enable_xformers_memory_efficient_attention()
print("- Enabled xformers memory efficient attention")
else:
print("- Model doesn't support xformers")
except (ImportError, AttributeError):
print("- Xformers not available")
# Set to eval mode
model.eval()
print("- Model set to eval mode")
# Int8 quantization using HuggingFace integration
# Int8 quantization using TorchAO
elif self.config.use_int8:
print("- Using TorchAO for Int8 dynamic activation and Int8 weight quantization")
# Import the quantize_ function and the quantization config
from torchao.quantization import quantize_, int8_dynamic_activation_int8_weight
print("- Successfully imported TorchAO")
# Load model normally first
# set default to half
import torch
torch.set_default_dtype(torch.bfloat16)
model = AutoModel.from_pretrained(
self.config.model_path,
device_map="auto"
)
print("- Model loaded in full precision")
print(f"- Model type: {type(model)}")
# Apply quantization - call the function to get the config, then apply it
# quantize_(model, int8_dynamic_activation_int8_weight())
# from torchao.quantization import quantize_, Int8DynamicActivationInt8WeightConfig,int8_dynamic_activation_int8_semi_sparse_weight,int4_weight_only,Int8DynActInt4WeightGPTQQuantizer,int8_dynamic_activation_int4_weight,Int8DynamicActivationInt4WeightConfig,Int4DynamicActivationInt4WeightConfig
from torchao.quantization import quantize_, Int8DynamicActivationInt8WeightConfig
quantize_(model, Int8DynamicActivationInt8WeightConfig())
print("- Model successfully quantized with int8 weights and int8 activations")
# add torch compile
model = torch.compile(model)
# For older PyTorch versions that have issues with tensor subclasses
from torchao.utils import unwrap_tensor_subclass
import torch
if hasattr(torch, '_version') and not torch.version >= "2.5.0":
print("- Unwrapping tensor subclasses for compatibility with older PyTorch")
unwrap_tensor_subclass(model)
# Apply optimizations
if torch.version.cuda and float(torch.version.cuda[:3]) >= 11.6:
if hasattr(torch.nn.functional, 'scaled_dot_product_attention'):
print("- Using PyTorch SDPA (scaled_dot_product_attention)")
else:
print("- PyTorch SDPA not available")
# Set to eval mode
model.eval()
print("- Model set to eval mode")
# For better performance with int8 dynamic quantization
torch._inductor.config.force_fuse_int_mm_with_mul = True
print("- Enabled fusion of int matmul with mul operations")
else:
# Standard loading for FP16/FP32
model = AutoModel.from_pretrained(self.config.model_path)
print("- Model loaded in standard precision")
print(f"- Model type: {type(model)}")
# Apply standard optimizations
# set default to half
import torch
torch.set_default_dtype(torch.bfloat16)
model = ModelOptimizer.optimize(model, self.config)
model = model.half()
# add torch compile
model = torch.compile(model)
# Final check to ensure model is not None
if model is None:
raise ValueError("Model is None after optimization")
print(f"- Final model type: {type(model)}")
return model
except Exception as e:
print(f"ERROR loading model: {str(e)}")
import traceback
traceback.print_exc()
raise
def _create_random_batch(self, batch_size: int) -> torch.Tensor:
return torch.randint(
0, 1000,
(batch_size, self.config.seq_length),
device="cuda",
dtype=torch.long
)
def _run_inference(
self,
input_ids: torch.Tensor,
cuda_graph_wrapper: Optional[CUDAGraphWrapper] = None
) -> Tuple[float, torch.Tensor]:
attention_mask = torch.ones_like(input_ids)
with torch.no_grad(), self.timer.timing():
if cuda_graph_wrapper is not None:
output = cuda_graph_wrapper(input_ids, attention_mask)
else:
output = self.model(input_ids=input_ids, attention_mask=attention_mask)
return self.timer.elapsed_time(), output
def run(self) -> Dict[int, Dict[str, float]]:
results = {}
# Reset peak memory stats
torch.cuda.reset_peak_memory_stats()
for batch_size in self.config.batch_sizes:
print(f"\nTesting batch size: {batch_size}")
times = []
# Get or create CUDA graph for this batch size
cuda_graph_wrapper = (
self.cuda_graphs.get_or_create(batch_size)
if self.cuda_graphs is not None
else None
)
# Pre-allocate input tensor
input_ids = self._create_random_batch(batch_size)
print(f"Input shape: {input_ids.shape}")
# Run benchmark
for i in tqdm(range(self.config.num_runs), desc=f"Batch size {batch_size}"):
try:
elapsed_time, output = self._run_inference(input_ids, cuda_graph_wrapper)
if i == 0: # Only print on first run
print(f"Output shape: {output.last_hidden_state.shape}")
times.append(elapsed_time)
except Exception as e:
print(f"Error during inference: {e}")
break
if not times:
print(f"No successful runs for batch size {batch_size}, skipping")
continue
# Calculate statistics
avg_time = np.mean(times)
std_time = np.std(times)
throughput = batch_size / avg_time
results[batch_size] = {
"avg_time": avg_time,
"std_time": std_time,
"throughput": throughput,
}
print(f"Avg Time: {avg_time:.4f}s ± {std_time:.4f}s")
print(f"Throughput: {throughput:.2f} sequences/second")
# Log memory usage
peak_memory_gb = torch.cuda.max_memory_allocated() / (1024 ** 3)
print(f"\nPeak GPU memory usage: {peak_memory_gb:.2f} GB")
# Add memory info to results
for batch_size in results:
results[batch_size]["peak_memory_gb"] = peak_memory_gb
return results
def main():
parser = argparse.ArgumentParser(description="Model Inference Benchmark")
parser.add_argument(
"--model_path",
type=str,
default="facebook/contriever",
help="Path to the model",
)
parser.add_argument(
"--batch_sizes",
type=str,
default="1,2,4,8,10,16,20,32,40,64,128,256,512,1024,2048,4096,8192",
help="Comma-separated list of batch sizes",
)
parser.add_argument(
"--seq_length",
type=int,
default=256,
help="Sequence length for input",
)
parser.add_argument(
"--num_runs",
type=int,
default=5,
help="Number of runs for each batch size",
)
parser.add_argument(
"--use_fp16",
action="store_true",
help="Enable FP16 inference",
)
parser.add_argument(
"--use_int4",
action="store_true",
help="Enable INT4 quantization using bitsandbytes",
)
parser.add_argument(
"--use_int8",
action="store_true",
help="Enable INT8 quantization for both activations and weights using bitsandbytes",
)
parser.add_argument(
"--use_cuda_graphs",
action="store_true",
help="Enable CUDA Graphs optimization",
)
parser.add_argument(
"--use_flash_attention",
action="store_true",
help="Enable Flash Attention 2 if available",
)
parser.add_argument(
"--use_linear8bitlt",
action="store_true",
help="Enable Linear8bitLt quantization for all linear layers",
)
args = parser.parse_args()
# Print arguments for debugging
print("\nCommand line arguments:")
for arg, value in vars(args).items():
print(f"- {arg}: {value}")
config = BenchmarkConfig(
model_path=args.model_path,
batch_sizes=[int(bs) for bs in args.batch_sizes.split(",")],
seq_length=args.seq_length,
num_runs=args.num_runs,
use_fp16=args.use_fp16,
use_int4=args.use_int4,
use_int8=args.use_int8, # Add this line
use_cuda_graphs=args.use_cuda_graphs,
use_flash_attention=args.use_flash_attention,
use_linear8bitlt=args.use_linear8bitlt,
)
# Print configuration for debugging
print("\nBenchmark configuration:")
for field, value in vars(config).items():
print(f"- {field}: {value}")
try:
benchmark = Benchmark(config)
results = benchmark.run()
# Save results to file
import json
import os
# Create results directory if it doesn't exist
os.makedirs("results", exist_ok=True)
# Generate filename based on configuration
precision_type = "int4" if config.use_int4 else "fp16" if config.use_fp16 else "fp32"
model_name = os.path.basename(config.model_path)
output_file = f"results/benchmark_{model_name}_{precision_type}.json"
# Save results
with open(output_file, "w") as f:
json.dump(
{
"config": {k: str(v) if isinstance(v, list) else v for k, v in vars(config).items()},
"results": {str(k): v for k, v in results.items()}
},
f,
indent=2
)
print(f"Results saved to {output_file}")
except Exception as e:
print(f"Benchmark failed: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
main()

View File

@@ -1,376 +0,0 @@
import argparse
import time
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple
import numpy as np
import torch
from torch import nn
from transformers import AutoModel
from tqdm import tqdm
from contextlib import contextmanager
import math
@dataclass
class BenchmarkConfig:
model_path: str
batch_sizes: List[int]
seq_length: int
num_runs: int
use_fp16: bool = True
use_cuda_graphs: bool = False
use_flash_attention: bool = False
max_batch_size: int = 256 # Maximum batch size before splitting
class CUDAGraphContainer:
"""Container for managing CUDA graphs for different batch sizes."""
def __init__(self, model: nn.Module, seq_length: int, max_batch_size: int):
self.model = model
self.seq_length = seq_length
self.max_batch_size = max_batch_size
self.graphs: Dict[int, CUDAGraphWrapper] = {}
def get_or_create(self, batch_size: int) -> 'CUDAGraphWrapper':
# For CUDA graphs, we always use the actual batch size or max_batch_size
effective_batch_size = min(batch_size, self.max_batch_size)
if effective_batch_size not in self.graphs:
self.graphs[effective_batch_size] = CUDAGraphWrapper(
self.model, effective_batch_size, self.seq_length
)
return self.graphs[effective_batch_size]
class CUDAGraphWrapper:
"""Wrapper for CUDA graph capture and replay."""
def __init__(self, model: nn.Module, batch_size: int, seq_length: int):
self.model = model
self.static_input = self._create_random_batch(batch_size, seq_length)
self.static_attention_mask = torch.ones_like(self.static_input)
# Warm up
self._warmup()
# Capture graph
self.graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(self.graph):
self.static_output = self.model(
input_ids=self.static_input,
attention_mask=self.static_attention_mask
)
def _create_random_batch(self, batch_size: int, seq_length: int) -> torch.Tensor:
return torch.randint(
0, 1000, (batch_size, seq_length),
device="cuda",
dtype=torch.long
)
def _warmup(self, num_warmup: int = 3):
with torch.no_grad():
for _ in range(num_warmup):
self.model(
input_ids=self.static_input,
attention_mask=self.static_attention_mask
)
def __call__(self, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
self.static_input.copy_(input_ids)
self.static_attention_mask.copy_(attention_mask)
self.graph.replay()
return self.static_output
class ModelOptimizer:
"""Applies various optimizations to the model."""
@staticmethod
def optimize(model: nn.Module, config: BenchmarkConfig) -> nn.Module:
print("\nApplying model optimizations:")
# Move to GPU
model = model.cuda()
print("- Model moved to GPU")
# FP16
if config.use_fp16:
model = model.half()
print("- Using FP16 precision")
# Check if using SDPA
if torch.version.cuda and float(torch.version.cuda[:3]) >= 11.6:
if hasattr(torch.nn.functional, 'scaled_dot_product_attention'):
print("- Using PyTorch SDPA (scaled_dot_product_attention)")
# No need to do anything as it's automatically enabled
else:
print("- PyTorch SDPA not available")
# Flash Attention
if config.use_flash_attention:
try:
from flash_attn.flash_attention import FlashAttention
print("- Flash Attention 2 available")
if hasattr(model.config, "attention_mode"):
model.config.attention_mode = "flash_attention_2"
print(" - Enabled Flash Attention 2 mode")
except ImportError:
print("- Flash Attention not available")
# Optimize LayerNorm
try:
num_layernorms = 0
for module in model.modules():
if isinstance(module, torch.nn.LayerNorm):
module.forward = torch.jit.script(module.forward)
num_layernorms += 1
if num_layernorms > 0:
print(f"- Optimized {num_layernorms} LayerNorm modules with TorchScript")
except Exception as e:
print(f"- LayerNorm optimization failed: {e}")
# Memory efficient attention
try:
from xformers.ops import memory_efficient_attention
model.enable_xformers_memory_efficient_attention()
print("- Enabled xformers memory efficient attention")
except (ImportError, AttributeError):
print("- Xformers not available")
model.eval()
print("- Model set to eval mode")
return model
class Timer:
"""Handles accurate GPU timing using CUDA events."""
def __init__(self):
self.start_event = torch.cuda.Event(enable_timing=True)
self.end_event = torch.cuda.Event(enable_timing=True)
@contextmanager
def timing(self):
self.start_event.record()
yield
self.end_event.record()
self.end_event.synchronize()
def elapsed_time(self) -> float:
return self.start_event.elapsed_time(self.end_event) / 1000 # ms to seconds
class Benchmark:
"""Main benchmark runner."""
def __init__(self, config: BenchmarkConfig):
self.config = config
self.model = self._load_model()
self.cuda_graphs = (
CUDAGraphContainer(self.model, config.seq_length, config.max_batch_size)
if config.use_cuda_graphs
else None
)
self.timer = Timer()
def _load_model(self) -> nn.Module:
print(f"Loading model from {self.config.model_path}...")
model = AutoModel.from_pretrained(self.config.model_path)
return ModelOptimizer.optimize(model, self.config)
def _create_random_batch(self, batch_size: int) -> torch.Tensor:
return torch.randint(
0, 1000,
(batch_size, self.config.seq_length),
device="cuda",
dtype=torch.long
)
def _run_inference(
self,
input_ids: torch.Tensor,
cuda_graph_wrapper: Optional[CUDAGraphWrapper] = None
) -> Tuple[float, torch.Tensor]:
attention_mask = torch.ones_like(input_ids)
original_batch_size = input_ids.shape[0]
print(f"Original input_ids shape: {input_ids.shape}")
# Split large batches to avoid OOM
max_batch_size = self.config.max_batch_size
if original_batch_size > max_batch_size:
print(f"Splitting batch of size {original_batch_size} into chunks of {max_batch_size}")
total_time = 0
outputs = []
with torch.no_grad():
for i in range(0, original_batch_size, max_batch_size):
end_idx = min(i + max_batch_size, original_batch_size)
batch_slice = input_ids[i:end_idx]
mask_slice = attention_mask[i:end_idx]
print(f"Processing chunk {i//max_batch_size + 1}: shape {batch_slice.shape}")
# Use CUDA graph if available (with the smaller batch size)
chunk_cuda_graph = None
if cuda_graph_wrapper is not None:
chunk_cuda_graph = self.cuda_graphs.get_or_create(batch_slice.shape[0])
with self.timer.timing():
if chunk_cuda_graph is not None:
chunk_output = chunk_cuda_graph(batch_slice, mask_slice)
else:
chunk_output = self.model(input_ids=batch_slice, attention_mask=mask_slice)
total_time += self.timer.elapsed_time()
outputs.append(chunk_output.last_hidden_state)
# Combine outputs
combined_output = torch.cat(outputs, dim=0)
print(f"Combined output shape: {combined_output.shape}")
# Create a wrapper object similar to model output to maintain consistency
class DummyOutput:
def __init__(self, hidden_states):
self.last_hidden_state = hidden_states
output = DummyOutput(combined_output)
return total_time, output
else:
# Process normally for small batches
with torch.no_grad(), self.timer.timing():
if cuda_graph_wrapper is not None:
output = cuda_graph_wrapper(input_ids, attention_mask)
else:
output = self.model(input_ids=input_ids, attention_mask=attention_mask)
print(f"Output shape: {output.last_hidden_state.shape}")
return self.timer.elapsed_time(), output
def run(self) -> Dict[int, Dict[str, float]]:
results = {}
for batch_size in self.config.batch_sizes:
print(f"\nTesting batch size: {batch_size}")
times = []
# Get or create CUDA graph for this batch size
cuda_graph_wrapper = None
if self.cuda_graphs is not None:
if batch_size <= self.config.max_batch_size:
cuda_graph_wrapper = self.cuda_graphs.get_or_create(batch_size)
else:
# For large batches, we'll use the max_batch_size graph in chunks
cuda_graph_wrapper = True # Just a flag to indicate we want to use CUDA graphs
# Pre-allocate input tensor
input_ids = self._create_random_batch(batch_size)
# Run benchmark
for run_idx in tqdm(range(self.config.num_runs), desc=f"Batch size {batch_size}"):
elapsed_time, _ = self._run_inference(input_ids, cuda_graph_wrapper)
times.append(elapsed_time)
print(f"Run {run_idx+1}: {elapsed_time:.4f}s")
# Calculate statistics
avg_time = np.mean(times)
std_time = np.std(times)
throughput = batch_size / avg_time
results[batch_size] = {
"avg_time": avg_time,
"std_time": std_time,
"throughput": throughput,
}
print(f"Avg Time: {avg_time:.4f}s ± {std_time:.4f}s")
print(f"Throughput: {throughput:.2f} sequences/second")
return results
def main():
parser = argparse.ArgumentParser(description="Model Inference Benchmark")
parser.add_argument(
"--model_path",
type=str,
default="facebook/contriever",
help="Path to the model",
)
parser.add_argument(
"--batch_sizes",
type=str,
default="1,2,4,8,16,32,64,128,256,512,1024,2048,4096",
help="Comma-separated list of batch sizes",
)
parser.add_argument(
"--seq_length",
type=int,
default=256,
help="Sequence length for input",
)
parser.add_argument(
"--num_runs",
type=int,
default=5,
help="Number of runs for each batch size",
)
parser.add_argument(
"--no_fp16",
action="store_true",
help="Disable FP16 inference",
)
parser.add_argument(
"--use_cuda_graphs",
action="store_true",
help="Enable CUDA Graphs optimization",
)
parser.add_argument(
"--use_flash_attention",
action="store_true",
help="Enable Flash Attention 2 if available",
)
parser.add_argument(
"--max_batch_size",
type=int,
default=256,
help="Maximum batch size before splitting to prevent OOM",
)
args = parser.parse_args()
config = BenchmarkConfig(
model_path=args.model_path,
batch_sizes=[int(bs) for bs in args.batch_sizes.split(",")],
seq_length=args.seq_length,
num_runs=args.num_runs,
use_fp16=not args.no_fp16,
use_cuda_graphs=args.use_cuda_graphs,
use_flash_attention=args.use_flash_attention,
max_batch_size=args.max_batch_size,
)
benchmark = Benchmark(config)
results = benchmark.run()
# Print overall summary
print("\n===== BENCHMARK SUMMARY =====")
print(f"Model: {config.model_path}")
print(f"Sequence Length: {config.seq_length}")
print(f"FP16: {config.use_fp16}")
print(f"CUDA Graphs: {config.use_cuda_graphs}")
print(f"Flash Attention: {config.use_flash_attention}")
print(f"Max Batch Size: {config.max_batch_size}")
print("\nResults:")
print("\nBatch Size | Avg Time (s) | Throughput (seq/s)")
print("-" * 50)
for bs in sorted(results.keys()):
r = results[bs]
print(f"{bs:^10} | {r['avg_time']:^12.4f} | {r['throughput']:^17.2f}")
if __name__ == "__main__":
main()

View File

@@ -1,218 +0,0 @@
import torch
import torch.nn as nn
import time
import torch.nn.functional as F
# Import necessary functions from the quantize.py file
def get_group_qparams(w, n_bit=4, groupsize=128):
# needed for GPTQ with padding
if groupsize > w.shape[-1]:
groupsize = w.shape[-1]
assert groupsize > 1
assert w.shape[-1] % groupsize == 0
assert w.dim() == 2
to_quant = w.reshape(-1, groupsize)
assert torch.isnan(to_quant).sum() == 0
max_val = to_quant.amax(dim=1, keepdim=True)
min_val = to_quant.amin(dim=1, keepdim=True)
max_int = 2**n_bit - 1
scales = (max_val - min_val).clamp(min=1e-6) / max_int
zeros = min_val + scales * (2 ** (n_bit - 1))
return scales.to(torch.bfloat16).reshape(w.shape[0], -1), zeros.to(
torch.bfloat16
).reshape(w.shape[0], -1)
def pack_scales_and_zeros(scales, zeros):
assert scales.shape == zeros.shape
assert scales.dtype == torch.bfloat16
assert zeros.dtype == torch.bfloat16
return (
torch.cat(
[
scales.reshape(scales.size(0), scales.size(1), 1),
zeros.reshape(zeros.size(0), zeros.size(1), 1),
],
2,
)
.transpose(0, 1)
.contiguous()
)
def group_quantize_tensor(w, n_bit=4, groupsize=128):
scales, zeros = get_group_qparams(w, n_bit, groupsize)
w_int32 = group_quantize_tensor_from_qparams(w, scales, zeros, n_bit, groupsize)
scales_and_zeros = pack_scales_and_zeros(scales, zeros)
return w_int32, scales_and_zeros
def group_quantize_tensor_from_qparams(w, scales, zeros, n_bit=4, groupsize=128):
assert groupsize > 1
# needed for GPTQ single column quantize
if groupsize > w.shape[-1] and scales.shape[-1] == 1:
groupsize = w.shape[-1]
assert w.shape[-1] % groupsize == 0
assert w.dim() == 2
to_quant = w.reshape(-1, groupsize)
assert torch.isnan(to_quant).sum() == 0
scales = scales.reshape(-1, 1)
zeros = zeros.reshape(-1, 1)
min_val = zeros - scales * (2 ** (n_bit - 1))
max_int = 2**n_bit - 1
min_int = 0
w_int32 = (
to_quant.sub(min_val)
.div(scales)
.round()
.clamp_(min_int, max_int)
.to(torch.int32)
.reshape_as(w)
)
return w_int32
def prepare_int4_weight_and_scales_and_zeros(weight_bf16, groupsize, inner_k_tiles):
weight_int32, scales_and_zeros = group_quantize_tensor(
weight_bf16, n_bit=4, groupsize=groupsize
)
weight_int4pack = torch.ops.aten._convert_weight_to_int4pack(weight_int32, inner_k_tiles)
return weight_int4pack, scales_and_zeros
def linear_forward_int4(x, weight_int4pack, scales_and_zeros, out_features, groupsize):
origin_x_size = x.size()
x = x.reshape(-1, origin_x_size[-1])
c = torch.ops.aten._weight_int4pack_mm(x, weight_int4pack, groupsize, scales_and_zeros)
new_shape = origin_x_size[:-1] + (out_features,)
c = c.reshape(new_shape)
return c
class WeightOnlyInt4Linear(torch.nn.Module):
__constants__ = ['in_features', 'out_features']
in_features: int
out_features: int
weight: torch.Tensor
def __init__(
self, in_features: int, out_features: int,
bias=False, device=None, dtype=None, groupsize: int = 128, inner_k_tiles: int = 8
) -> None:
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.groupsize = groupsize
self.inner_k_tiles = inner_k_tiles
assert out_features % 8 == 0, "require out_features % 8 == 0"
assert in_features % (inner_k_tiles * 16) == 0, "require in_features % (innerKTiles * 16) == 0"
self.register_buffer(
"weight",
torch.empty((out_features // 8, in_features // (inner_k_tiles * 16), 32, inner_k_tiles // 2), dtype=torch.int32)
)
self.register_buffer(
"scales_and_zeros",
torch.empty((in_features // groupsize, out_features, 2), dtype=torch.bfloat16)
)
def forward(self, input: torch.Tensor) -> torch.Tensor:
input = input.to(torch.bfloat16)
return linear_forward_int4(
input,
self.weight, self.scales_and_zeros, self.out_features, self.groupsize
)
# Define dimensions that satisfy the requirements for INT4 quantization
# in_features must be divisible by inner_k_tiles * 16
# out_features must be divisible by 8
in_features = 1024 # Must be divisible by inner_k_tiles * 16
out_features = 2048 # Must be divisible by 8
groupsize = 128
inner_k_tiles = 8
# Create models
fp16_model = nn.Sequential(
nn.Linear(in_features, out_features, bias=False)
)
# Create INT4 model
int4_model = nn.Sequential(
WeightOnlyInt4Linear(in_features, out_features, bias=False,
groupsize=groupsize, inner_k_tiles=inner_k_tiles)
)
# Quantize the weights and set up the INT4 model
with torch.no_grad():
# Convert FP16 weights to INT4
fp16_weight = fp16_model[0].weight.data.to(torch.bfloat16)
weight_int4pack, scales_and_zeros = prepare_int4_weight_and_scales_and_zeros(
fp16_weight, groupsize, inner_k_tiles
)
# Set the quantized weights in the INT4 model
int4_model[0].weight.copy_(weight_int4pack)
int4_model[0].scales_and_zeros.copy_(scales_and_zeros)
# Move models to GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
fp16_model = fp16_model.to(device)
int4_model = int4_model.to(device)
# Create random input tensor
batch_size = 1024
input_tensor = torch.randn(batch_size, in_features, device=device)
input_tensor_bf16 = input_tensor.to(torch.bfloat16)
# Speed test function
def speed_test(model, input_tensor, name, num_iterations=100):
# Warmup
for _ in range(10):
_ = model(input_tensor)
# Actual timing
torch.cuda.synchronize()
start_time = time.time()
for _ in range(num_iterations):
_ = model(input_tensor)
torch.cuda.synchronize()
end_time = time.time()
avg_time = (end_time - start_time) / num_iterations
print(f"{name} model: {avg_time:.6f} seconds per iteration")
return avg_time
# Run speed tests
with torch.no_grad(): # Disable gradient calculation for inference
print(f"Running benchmark with batch_size={batch_size}, in_features={in_features}, out_features={out_features}")
print(f"INT4 parameters: groupsize={groupsize}, inner_k_tiles={inner_k_tiles}")
fp16_time = speed_test(fp16_model, input_tensor_bf16, "FP16")
int4_time = speed_test(int4_model, input_tensor, "INT4")
# Calculate speedup
speedup = fp16_time / int4_time
print(f"INT4 is {speedup:.2f}x faster than FP16")
# Calculate memory savings
fp16_memory = fp16_model[0].weight.nelement() * fp16_model[0].weight.element_size()
int4_memory = (int4_model[0].weight.nelement() * int4_model[0].weight.element_size() +
int4_model[0].scales_and_zeros.nelement() * int4_model[0].scales_and_zeros.element_size())
memory_reduction = fp16_memory / int4_memory
print(f"Memory reduction: {memory_reduction:.2f}x ({fp16_memory/1024/1024:.2f} MB vs {int4_memory/1024/1024:.2f} MB)")
# Check accuracy
with torch.no_grad():
fp16_output = fp16_model(input_tensor_bf16)
int4_output = int4_model(input_tensor)
# Calculate error metrics
abs_error = torch.abs(fp16_output - int4_output)
rel_error = abs_error / (torch.abs(fp16_output) + 1e-7)
print(f"Mean absolute error: {abs_error.mean().item():.6f}")
print(f"Max absolute error: {abs_error.max().item():.6f}")
print(f"Mean relative error: {rel_error.mean().item():.6f}")

View File

@@ -1,83 +0,0 @@
import torch
import nvmath.bindings.cublas
import ctypes
# 创建 CUBLAS 句柄
handle = nvmath.bindings.cublas.create()
# 准备数据 - 使用 uint8 类型,并确保内存连续
m, n, k = 64, 32, 48
a = (torch.rand(m, k, device="cuda") * 255).to(torch.uint8).contiguous()
b = (torch.rand(k, n, device="cuda") * 255).to(torch.uint8).contiguous()
c = torch.zeros(m, n, device="cuda", dtype=torch.uint8).contiguous()
# 确保张量在 CUDA 上
assert a.is_cuda and b.is_cuda and c.is_cuda
# 确保张量是连续的
assert a.is_contiguous() and b.is_contiguous() and c.is_contiguous()
# 获取指针
a_ptr = a.data_ptr()
b_ptr = b.data_ptr()
c_ptr = c.data_ptr()
# 设置参数
transa = 0 # CUBLAS_OP_N (不转置)
transb = 0 # CUBLAS_OP_N (不转置)
transc = 0 # CUBLAS_OP_N (不转置)
# 设置偏置值
a_bias = 0
b_bias = 0
c_bias = 0
# 设置正确的 leading dimensions
lda = k # A 的 leading dimension
ldb = n # B 的 leading dimension
ldc = n # C 的 leading dimension
c_mult = 1
c_shift = 0
# 打印调试信息
print(f"a shape: {a.shape}, a_ptr: {a_ptr}")
print(f"b shape: {b.shape}, b_ptr: {b_ptr}")
print(f"c shape: {c.shape}, c_ptr: {c_ptr}")
try:
# 调用 uint8gemm_bias
nvmath.bindings.cublas.uint8gemm_bias(
handle,
transa, transb, transc,
m, n, k,
a_ptr, a_bias, lda,
b_ptr, b_bias, ldb,
c_ptr, c_bias, ldc,
c_mult, c_shift
)
except Exception as e:
print(f"Error: {e}")
# 尝试使用 ctypes 转换指针
a_ptr_c = ctypes.c_void_p(a_ptr).value
b_ptr_c = ctypes.c_void_p(b_ptr).value
c_ptr_c = ctypes.c_void_p(c_ptr).value
print(f"Using ctypes: a_ptr: {a_ptr_c}, b_ptr: {b_ptr_c}, c_ptr: {c_ptr_c}")
# 再次尝试调用
nvmath.bindings.cublas.uint8gemm_bias(
handle,
transa, transb, transc,
m, n, k,
a_ptr_c, a_bias, lda,
b_ptr_c, b_bias, ldb,
c_ptr_c, c_bias, ldc,
c_mult, c_shift
)
# 销毁 CUBLAS 句柄
nvmath.bindings.cublas.destroy(handle)
# 打印结果
print("Result:")
print(c)

View File

@@ -1,23 +0,0 @@
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor import oneshot
# Select quantization algorithm. In this case, we:
# * apply SmoothQuant to make the activations easier to quantize
# * quantize the weights to int8 with GPTQ (static per channel)
# * quantize the activations to int8 (dynamic per token)
recipe = [
SmoothQuantModifier(smoothing_strength=0.8),
GPTQModifier(scheme="W8A8", targets="Linear", ignore=["lm_head"]),
]
# Apply quantization using the built in open_platypus dataset.
# * See examples for demos showing how to pass a custom calibration set
oneshot(
model="facebook/contriever",
dataset="open_platypus",
recipe=recipe,
output_dir="contriever-INT4",
max_seq_length=2048,
num_calibration_samples=512,
)

Some files were not shown because too many files have changed in this diff Show More