Commit Graph

73 Commits

Author SHA1 Message Date
Andy Lee
65bbff1d93 fix(py39): replace union type syntax in chat.py
- validate_model_and_suggest: str | None -> Optional[str]
- OpenAIChat.__init__: api_key: str | None -> Optional[str]
- get_llm: dict[str, Any] | None -> Optional[dict[str, Any]]

Ensures Python 3.9 compatibility for CI macOS 3.9.
2025-08-07 15:01:09 -07:00
Andy Lee
677eb0bae3 fix: Python 3.9 compatibility - replace Union type syntax
- Replace 'int | None' with 'Optional[int]' everywhere
- Replace 'subprocess.Popen | None' with 'Optional[subprocess.Popen]'
- Add Optional import to all affected files
- Update ruff target-version from py310 to py39
- The '|' syntax for Union types was introduced in Python 3.10 (PEP 604)

Fixes TypeError: unsupported operand type(s) for |: 'type' and 'NoneType'
2025-08-07 12:54:16 -07:00
Andy Lee
45bdad4fa7 debug: add detailed logging for CI path resolution debugging
- Add logging in DiskANN embedding server to show metadata_file_path
- Add debug logging in PassageManager to trace path resolution
- This will help identify why CI fails to find passage files
2025-08-07 00:00:12 -07:00
Andy Lee
0cb0463929 fix: always use relative path in metadata 2025-08-06 21:27:43 -07:00
Andy Lee
8b22d2b5d3 Merge pull request #19 from yichuan-w/feature/claude-code-research
Feature/claude code research
2025-08-05 23:02:34 -07:00
yichuan520030910320
f94ce63d51 add gpt oss! serve your RAG using ollama 2025-08-05 16:49:52 -07:00
yichuan520030910320
33521d6d00 add logs 2025-08-04 14:15:52 -07:00
Andy Lee
8899734952 refactor: Unify examples interface with BaseRAGExample (#12)
* refactor: Unify examples interface with BaseRAGExample

- Create BaseRAGExample base class for all RAG examples
- Refactor 4 examples to use unified interface:
  - document_rag.py (replaces main_cli_example.py)
  - email_rag.py (replaces mail_reader_leann.py)
  - browser_rag.py (replaces google_history_reader_leann.py)
  - wechat_rag.py (replaces wechat_history_reader_leann.py)
- Maintain 100% parameter compatibility with original files
- Add interactive mode support for all examples
- Unify parameter names (--max-items replaces --max-emails/--max-entries)
- Update README.md with new examples usage
- Add PARAMETER_CONSISTENCY.md documenting all parameter mappings
- Keep main_cli_example.py for backward compatibility with migration notice

All default values, LeannBuilder parameters, and chunking settings
remain identical to ensure full compatibility with existing indexes.

* fix: Update CI tests for new unified examples interface

- Rename test_main_cli.py to test_document_rag.py
- Update all references from main_cli_example.py to document_rag.py
- Update tests/README.md documentation

The tests now properly test the new unified interface while maintaining
the same test coverage and functionality.

* fix: Fix pre-commit issues and update tests

- Fix import sorting and unused imports
- Update type annotations to use built-in types (list, dict) instead of typing.List/Dict
- Fix trailing whitespace and end-of-file issues
- Fix Chinese fullwidth comma to regular comma
- Update test_main_cli.py to test_document_rag.py
- Add backward compatibility test for main_cli_example.py
- Pass all pre-commit hooks (ruff, ruff-format, etc.)

* refactor: Remove old example scripts and migration references

- Delete old example scripts (mail_reader_leann.py, google_history_reader_leann.py, etc.)
- Remove migration hints and backward compatibility
- Update tests to use new unified examples directly
- Clean up all references to old script names
- Users now only see the new unified interface

* fix: Restore embedding-mode parameter to all examples

- All examples now have --embedding-mode parameter (unified interface benefit)
- Default is 'sentence-transformers' (consistent with original behavior)
- Users can now use OpenAI or MLX embeddings with any data source
- Maintains functional equivalence with original scripts

* docs: Improve parameter categorization in README

- Clearly separate core (shared) vs specific parameters
- Move LLM and embedding examples to 'Example Commands' section
- Add descriptive comments for all specific parameters
- Keep only truly data-source-specific parameters in specific sections

* docs: Make example commands more representative

- Add default values to parameter descriptions
- Replace generic examples with real-world use cases
- Focus on data-source-specific features in examples
- Remove redundant demonstrations of common parameters

* docs: Reorganize parameter documentation structure

- Move common parameters to a dedicated section before all examples
- Rename sections to 'X-Specific Arguments' for clarity
- Remove duplicate common parameters from individual examples
- Better information architecture for users

* docs: polish applications

* docs: Add CLI installation instructions

- Add two installation options: venv and global uv tool
- Clearly explain when to use each option
- Make CLI more accessible for daily use

* docs: Clarify CLI global installation process

- Explain the transition from venv to global installation
- Add upgrade command for global installation
- Make it clear that global install allows usage without venv activation

* docs: Add collapsible section for CLI installation

- Wrap CLI installation instructions in details/summary tags
- Keep consistent with other collapsible sections in README
- Improve document readability and navigation

* style: format

* docs: Fix collapsible sections

- Make Common Parameters collapsible (as it's lengthy reference material)
- Keep CLI Installation visible (important for users to see immediately)
- Better information hierarchy

* docs: Add introduction for Common Parameters section

- Add 'Flexible Configuration' heading with descriptive sentence
- Create parallel structure with 'Generation Model Setup' section
- Improve document flow and readability

* docs: nit

* fix: Fix issues in unified examples

- Add smart path detection for data directory
- Fix add_texts -> add_text method call
- Handle both running from project root and examples directory

* fix: Fix async/await and add_text issues in unified examples

- Remove incorrect await from chat.ask() calls (not async)
- Fix add_texts -> add_text method calls
- Verify search-complexity correctly maps to efSearch parameter
- All examples now run successfully

* feat: Address review comments

- Add complexity parameter to LeannChat initialization (default: search_complexity)
- Fix chunk-size default in README documentation (256, not 2048)
- Add more index building parameters as CLI arguments:
  - --backend-name (hnsw/diskann)
  - --graph-degree (default: 32)
  - --build-complexity (default: 64)
  - --no-compact (disable compact storage)
  - --no-recompute (disable embedding recomputation)
- Update README to document all new parameters

* feat: Add chunk-size parameters and improve file type filtering

- Add --chunk-size and --chunk-overlap parameters to all RAG examples
- Preserve original default values for each data source:
  - Document: 256/128 (optimized for general documents)
  - Email: 256/25 (smaller overlap for email threads)
  - Browser: 256/128 (standard for web content)
  - WeChat: 192/64 (smaller chunks for chat messages)
- Make --file-types optional filter instead of restriction in document_rag
- Update README to clarify interactive mode and parameter usage
- Fix LLM default model documentation (gpt-4o, not gpt-4o-mini)

* feat: Update documentation based on review feedback

- Add MLX embedding example to README
- Clarify examples/data content description (two papers, Pride and Prejudice, Chinese README)
- Move chunk parameters to common parameters section
- Remove duplicate chunk parameters from document-specific section

* docs: Emphasize diverse data sources in examples/data description

* fix: update default embedding models for better performance

- Change WeChat, Browser, and Email RAG examples to use all-MiniLM-L6-v2
- Previous Qwen/Qwen3-Embedding-0.6B was too slow for these use cases
- all-MiniLM-L6-v2 is a fast 384-dim model, ideal for large-scale personal data

* add response highlight

* change rebuild logic

* fix some example

* feat: check if k is larger than #docs

* fix: WeChat history reader bugs and refactor wechat_rag to use unified architecture

* fix email wrong -1 to process all file

* refactor: reorgnize all examples/ and test/

* refactor: reorganize examples and add link checker

* fix: add init.py

* fix: handle certificate errors in link checker

* fix wechat

* merge

* docs: update README to use proper module imports for apps

- Change from 'python apps/xxx.py' to 'python -m apps.xxx'
- More professional and pythonic module calling
- Ensures proper module resolution and imports
- Better separation between apps/ (production tools) and examples/ (demos)

---------

Co-authored-by: yichuan520030910320 <yichuan_wang@berkeley.edu>
2025-08-03 23:06:24 -07:00
Andy Lee
54df6310c5 fix: diskann build and prevent termination from hanging
- Fix OpenMP library linking in DiskANN CMake configuration
- Add timeout protection for HuggingFace model loading to prevent hangs
- Improve embedding server process termination with better timeouts
- Make DiskANN backend default enabled alongside HNSW
- Update documentation to reflect both backends included by default
2025-08-03 21:16:52 -07:00
Andy Lee
4671ed9b36 Fix macos ABI by using system default clang (#11)
* fix: auto-detect normalized embeddings and use cosine distance

- Add automatic detection for normalized embedding models (OpenAI, Voyage AI, Cohere)
- Automatically set distance_metric='cosine' for normalized embeddings
- Add warnings when using non-optimal distance metrics
- Implement manual L2 normalization in HNSW backend (custom Faiss build lacks normalize_L2)
- Fix DiskANN zmq_port compatibility with lazy loading strategy
- Add documentation for normalized embeddings feature

This fixes the low accuracy issue when using OpenAI text-embedding-3-small model with default MIPS metric.

* style: format

* feat: add OpenAI embeddings support to google_history_reader_leann.py

- Add --embedding-model and --embedding-mode arguments
- Support automatic detection of normalized embeddings
- Works correctly with cosine distance for OpenAI embeddings

* feat: add --use-existing-index option to google_history_reader_leann.py

- Allow using existing index without rebuilding
- Useful for testing pre-built indices

* fix: Improve OpenAI embeddings handling in HNSW backend

* fix: improve macOS C++ compatibility and add CI tests

* refactor: improve test structure and fix main_cli example

- Move pytest configuration from pytest.ini to pyproject.toml
- Remove unnecessary run_tests.py script (use test extras instead)
- Fix main_cli_example.py to properly use command line arguments for LLM config
- Add test_readme_examples.py to test code examples from README
- Refactor tests to use pytest fixtures and parametrization
- Update test documentation to reflect new structure
- Set proper environment variables in CI for test execution

* fix: add --distance-metric support to DiskANN embedding server and remove obsolete macOS ABI test markers

- Add --distance-metric parameter to diskann_embedding_server.py for consistency with other backends
- Remove pytest.skip and pytest.xfail markers for macOS C++ ABI issues as they have been fixed
- Fix test assertions to handle SearchResult objects correctly
- All tests now pass on macOS with the C++ ABI compatibility fixes

* chore: update lock file with test dependencies

* docs: remove obsolete C++ ABI compatibility warnings

- Remove outdated macOS C++ compatibility warnings from README
- Simplify CI workflow by removing macOS-specific failure handling
- All tests now pass consistently on macOS after ABI fixes

* fix: update macOS deployment target for DiskANN to 13.3

- DiskANN uses sgesdd_ LAPACK function which is only available on macOS 13.3+
- Update MACOSX_DEPLOYMENT_TARGET from 11.0 to 13.3 for DiskANN builds
- This fixes the compilation error on GitHub Actions macOS runners

* fix: align Python version requirements to 3.9

- Update root project to support Python 3.9, matching subpackages
- Restore macOS Python 3.9 support in CI
- This fixes the CI failure for Python 3.9 environments

* fix: handle MPS memory issues in CI tests

- Use smaller MiniLM-L6-v2 model (384 dimensions) for README tests in CI
- Skip other memory-intensive tests in CI environment
- Add minimal CI tests that don't require model loading
- Set CI environment variable and disable MPS fallback
- Ensure README examples always run correctly in CI

* fix: remove Python 3.10+ dependencies for compatibility

- Comment out llama-index-readers-docling and llama-index-node-parser-docling
- These packages require Python >= 3.10 and were causing CI failures on Python 3.9
- Regenerate uv.lock file to resolve dependency conflicts

* fix: use virtual environment in CI instead of system packages

- uv-managed Python environments don't allow --system installs
- Create and activate virtual environment before installing packages
- Update all CI steps to use the virtual environment

* add some env in ci

* fix: use --find-links to install platform-specific wheels

- Let uv automatically select the correct wheel for the current platform
- Fixes error when trying to install macOS wheels on Linux
- Simplifies the installation logic

* fix: disable OpenMP parallelism in CI to avoid libomp crashes

- Set OMP_NUM_THREADS=1 to avoid OpenMP thread synchronization issues
- Set MKL_NUM_THREADS=1 for single-threaded MKL operations
- This prevents segfaults in LayerNorm on macOS CI runners
- Addresses the libomp compatibility issues with PyTorch on Apple Silicon

* skip several macos test because strange issue on ci

---------

Co-authored-by: yichuan520030910320 <yichuan_wang@berkeley.edu>
2025-07-28 17:14:42 -07:00
Andy Lee
d505dcc5e3 Fix/OpenAI embeddings cosine distance (#10)
* fix: auto-detect normalized embeddings and use cosine distance

- Add automatic detection for normalized embedding models (OpenAI, Voyage AI, Cohere)
- Automatically set distance_metric='cosine' for normalized embeddings
- Add warnings when using non-optimal distance metrics
- Implement manual L2 normalization in HNSW backend (custom Faiss build lacks normalize_L2)
- Fix DiskANN zmq_port compatibility with lazy loading strategy
- Add documentation for normalized embeddings feature

This fixes the low accuracy issue when using OpenAI text-embedding-3-small model with default MIPS metric.

* style: format

* feat: add OpenAI embeddings support to google_history_reader_leann.py

- Add --embedding-model and --embedding-mode arguments
- Support automatic detection of normalized embeddings
- Works correctly with cosine distance for OpenAI embeddings

* feat: add --use-existing-index option to google_history_reader_leann.py

- Allow using existing index without rebuilding
- Useful for testing pre-built indices

* fix: Improve OpenAI embeddings handling in HNSW backend
2025-07-28 14:35:49 -07:00
Andy Lee
5c8921673a fix: auto-detect normalized embeddings and use cosine distance (#8)
* fix: auto-detect normalized embeddings and use cosine distance

- Add automatic detection for normalized embedding models (OpenAI, Voyage AI, Cohere)
- Automatically set distance_metric='cosine' for normalized embeddings
- Add warnings when using non-optimal distance metrics
- Implement manual L2 normalization in HNSW backend (custom Faiss build lacks normalize_L2)
- Fix DiskANN zmq_port compatibility with lazy loading strategy
- Add documentation for normalized embeddings feature

This fixes the low accuracy issue when using OpenAI text-embedding-3-small model with default MIPS metric.

* style: format
2025-07-27 21:19:29 -07:00
yichuan520030910320
af1790395a fix ruff errors and formatting 2025-07-27 02:22:54 -07:00
Andy Lee
b3e9ee96fa fix: resolve all ruff linting errors and add lint CI check
- Fix ambiguous fullwidth characters (commas, parentheses) in strings and comments
- Replace Chinese comments with English equivalents
- Fix unused imports with proper noqa annotations for intentional imports
- Fix bare except clauses with specific exception types
- Fix redefined variables and undefined names
- Add ruff noqa annotations for generated protobuf files
- Add lint and format check to GitHub Actions CI pipeline
2025-07-26 22:38:13 -07:00
yichuan520030910320
c87c0fe662 update colab install & fix colab path 2025-07-26 18:07:31 -07:00
yichuan520030910320
cdb92f7cf4 update pytoml version && fix colab env && fix pdf extract in pip 2025-07-26 16:33:13 -07:00
Andy Lee
2a4df11f5c fix: absolute path for passages 2025-07-25 11:59:30 -07:00
yichuan520030910320
cd8b970eff Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-25 01:45:57 -07:00
Andy Lee
48c5e12ac1 fix: use absolute path for passages_file to prevent FileNotFoundError
When embedding server is launched as a subprocess, it may run in a different
working directory. Using absolute paths ensures the server can always find
the metadata file regardless of where it's launched from.
2025-07-25 01:23:47 -07:00
yichuan520030910320
b6d43f5fd9 add gif 2025-07-25 00:12:35 -07:00
yichuan520030910320
de252fef31 [chat] update 30s example 2025-07-24 14:40:33 -07:00
yichuan520030910320
efd6373b32 [chat] update huggingface chat and make qwen no thinking 2025-07-24 00:11:42 -07:00
yichuan520030910320
42de27e16a Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-23 18:17:19 -07:00
yichuan520030910320
c083bda5b7 fix several bug 2025-07-23 18:17:11 -07:00
Andy Lee
e86da38726 fix: ollama hint for similar models 2025-07-23 15:45:10 -07:00
yichuan520030910320
851f0f04c3 fix some para 2025-07-23 01:46:34 -07:00
Andy Lee
43155d2811 fix: supress resources leak logs 2025-07-22 19:53:45 -07:00
Andy Lee
d3f85678ec perf: much faster loading and embedding serving 2025-07-22 19:38:22 -07:00
Andy Lee
8513471573 feat: make diskann runnable 2025-07-22 14:26:03 -07:00
Andy Lee
71e5f1774c docs: cli 2025-07-21 23:48:40 -07:00
Andy Lee
ab72a2ab9d fix: more logs 2025-07-21 23:08:53 -07:00
yichuan520030910320
046d457d22 Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-21 23:04:00 -07:00
yichuan520030910320
7fd0a30fee upd log 2025-07-21 23:03:52 -07:00
Andy Lee
c2f35c8e73 fix: logs 2025-07-21 23:02:13 -07:00
Andy Lee
573313f0b6 refactor: logs 2025-07-21 22:45:24 -07:00
Andy Lee
c112956d2d fix: mlx 2025-07-21 21:29:15 -07:00
Andy Lee
b3970793cf fix: cache the loaded model 2025-07-21 21:20:53 -07:00
yichuan520030910320
727724990e add todo 2025-07-21 20:59:09 -07:00
yichuan520030910320
530f6e4af5 add progress bar in build 2025-07-21 20:55:18 -07:00
Andy Lee
2f224f5793 fix: use server to emb query only when recompute 2025-07-21 20:40:21 -07:00
Andy Lee
1b6272ce0e Building, CLI tool & Embedding Server Fixed (#5)
* chore: shorter build time

* chore: update faiss

* fix: no longger do embedding server reuse

* fix: do not reuse emb_server and close it properly

* feat: cli tool

* feat: cli more args

* fix: same embedding logic
2025-07-21 20:17:25 -07:00
yichuan520030910320
83b7ea5a59 change wecaht app split logic& merge 2025-07-19 19:44:33 -07:00
yichuan520030910320
0796a52df1 change wecaht app split logic 2025-07-19 19:43:30 -07:00
Andy Lee
85b7ba0168 feat: allow build from existed embeddings 2025-07-19 01:27:37 -07:00
yichuan520030910320
e117743d24 Merge branch 'main' of github.com:yichuan520030910320/LEANN-RAG 2025-07-17 22:29:39 -07:00
yichuan520030910320
aec2291f04 add embedding api 2025-07-17 22:29:31 -07:00
Andy Lee
71c7de9c84 fix: build with direct embedding 2025-07-17 21:49:36 -07:00
Andy Lee
1c5fec5565 perf: make embedder loading faster by 6x, and embed queries through the server 2025-07-17 20:08:06 -07:00
Andy Lee
a13c527e39 feat: openai embeddings 2025-07-17 17:02:47 -07:00
yichuan520030910320
51255bdffa update readme and add timer 2025-07-16 17:15:51 -07:00