Compare commits

..

39 Commits

Author SHA1 Message Date
Andy Lee
bc6c53edf0 site-packages back 2025-10-30 22:00:34 +00:00
Andy Lee
abc12d5069 stash 2025-10-30 22:00:26 +00:00
Andy Lee
9ba0ecac15 feat 2025-10-29 16:22:09 -07:00
Andy Lee
4e9e2f3da0 CI: add build venv scripts path for wheel repair 2025-09-24 01:39:35 -07:00
Andy Lee
ed167f43b0 CI: use temporary uv venv for build deps 2025-09-24 01:23:16 -07:00
Andy Lee
f9746d3fe2 CI: install build deps with uv python interpreter 2025-09-24 01:19:19 -07:00
Andy Lee
a090a3444a CI: rely on setup-uv for Python and tighten group install 2025-09-24 01:14:54 -07:00
Andy Lee
aaaba27a4f CI: use uv group install with local wheel selection 2025-09-24 01:10:16 -07:00
Andy Lee
f40f539456 CI: revert install step to match main 2025-09-24 00:50:27 -07:00
Andy Lee
576a2dcb49 CI: use matrix python venv and set macOS deployment target 2025-09-24 00:48:27 -07:00
Andy Lee
ad8ab84675 CI: handle python tag mismatches for local wheels 2025-09-23 23:24:02 -07:00
Andy Lee
58b96b64d8 CI: pick wheels matching current Python tag 2025-09-23 23:05:32 -07:00
Andy Lee
a76c3cdac4 CI: install local wheels via file paths 2025-09-23 22:53:44 -07:00
Andy Lee
520619deab CI: force local wheels in uv install step 2025-09-23 22:27:31 -07:00
Andy Lee
dea08c95b4 Merge remote-tracking branch 'origin/main' into financebench 2025-09-23 21:52:14 -07:00
Andy Lee
3357d5765e fix: find links to install wheels available 2025-09-15 22:22:38 -07:00
Andy Lee
9dbd0c64cc fix(ci): run with lint only 2025-09-15 21:55:19 -07:00
Andy Lee
9c400acd7e fix(ci): should checkout modules as well since uv sync checks 2025-09-15 21:40:35 -07:00
Andy Lee
ac560964f5 chore: use http url of astchunk; use group for some dev deps 2025-09-15 21:21:09 -07:00
Andy Lee
07e4f176e1 fix(ci): only run pre-commit 2025-09-15 19:57:56 -07:00
Andy Lee
b1daf021e0 Merge remote-tracking branch 'origin/main' into financebench 2025-09-15 19:52:37 -07:00
Andy Lee
3578680cb6 fix: as package 2025-09-15 19:50:45 -07:00
Andy Lee
a0d6857faa docs: data updated 2025-09-15 19:50:02 -07:00
Andy Lee
d7011bbea0 docs: data 2025-08-25 16:25:59 -07:00
Andy Lee
ef4c69d128 chore(ci): remove paru-bin submodule and config to fix checkout --recurse-submodules 2025-08-25 16:08:16 -07:00
Andy Lee
75c8aeee5f style: format 2025-08-25 15:48:04 -07:00
Andy Lee
3d79741f9c experiments for running DiskANN & BM25 on Arch 4090 2025-08-25 15:46:48 -07:00
Andy Lee
df34c84bd3 feat: enron email bench 2025-08-24 23:06:57 -07:00
Andy Lee
8dfd2f015c fix: resolve ruff linting errors
- Remove unused variables in benchmark scripts
- Rename unused loop variables to follow convention
2025-08-22 13:53:30 -07:00
Andy Lee
ed72232bab style: format 2025-08-22 13:51:10 -07:00
Andy Lee
26d961bfc5 style: format 2025-08-22 13:44:26 -07:00
Andy Lee
722bda4ebb Merge remote-tracking branch 'origin/main' into financebench 2025-08-22 13:39:08 -07:00
Andy Lee
a7c7e8801d feat: laion, also required idmaps support 2025-08-22 13:32:33 -07:00
Andy Lee
069bce558b feat: fix financebench 2025-08-22 13:32:23 -07:00
Andy Lee
772894012e Merge branch 'main' into financebench 2025-08-20 20:40:27 -07:00
Andy Lee
5c163737c4 Merge remote-tracking branch 'origin/main' into financebench 2025-08-17 11:58:34 -07:00
Andy Lee
6d1d67ead7 chore: ignroe data README 2025-08-17 11:58:32 -07:00
Andy Lee
ed27ea6990 docs: results 2025-08-16 16:48:01 -07:00
Andy Lee
baf2d76e0e feat: finance bench 2025-08-16 16:22:50 -07:00
52 changed files with 944 additions and 6112 deletions

6
.gitignore vendored
View File

@@ -99,9 +99,3 @@ benchmarks/data/
## multi vector
apps/multimodal/vision-based-pdf-multi-vector/multi-vector-colpali-native-weaviate.py
# Ignore all PDFs (keep data exceptions above) and do not track demo PDFs
# If you need to commit a specific demo PDF, remove this negation locally.
# The following line used to force-add a large demo PDF; remove it to satisfy pre-commit:
# !apps/multimodal/vision-based-pdf-multi-vector/pdfs/2004.12832v2.pdf
!apps/multimodal/vision-based-pdf-multi-vector/fig/*

397
README.md
View File

@@ -8,12 +8,8 @@
<img src="https://img.shields.io/badge/Platform-Ubuntu%20%26%20Arch%20%26%20WSL%20%7C%20macOS%20(ARM64%2FIntel)-lightgrey" alt="Platform">
<img src="https://img.shields.io/badge/License-MIT-green.svg" alt="MIT License">
<img src="https://img.shields.io/badge/MCP-Native%20Integration-blue" alt="MCP Integration">
<a href="https://join.slack.com/t/leann-e2u9779/shared_invite/zt-3ckd2f6w1-OX08~NN4gkWhh10PRVBj1Q">
<img src="https://img.shields.io/badge/Slack-Join-4A154B?logo=slack&logoColor=white" alt="Join Slack">
</a>
<a href="assets/wechat_user_group.JPG" title="Join WeChat group">
<img src="https://img.shields.io/badge/WeChat-Join-2DC100?logo=wechat&logoColor=white" alt="Join WeChat group">
</a>
<a href="https://join.slack.com/t/leann-e2u9779/shared_invite/zt-3ckd2f6w1-OX08~NN4gkWhh10PRVBj1Q"><img src="https://img.shields.io/badge/Slack-Join-4A154B?logo=slack&logoColor=white" alt="Join Slack">
<a href="assets/wechat_user_group.JPG" title="Join WeChat group"><img src="https://img.shields.io/badge/WeChat-Join-2DC100?logo=wechat&logoColor=white" alt="Join WeChat group"></a>
</p>
<h2 align="center" tabindex="-1" class="heading-element" dir="auto">
@@ -24,7 +20,7 @@ LEANN is an innovative vector database that democratizes personal AI. Transform
LEANN achieves this through *graph-based selective recomputation* with *high-degree preserving pruning*, computing embeddings on-demand instead of storing them all. [Illustration Fig →](#-architecture--how-it-works) | [Paper →](https://arxiv.org/abs/2506.08276)
**Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can semantic search your **[file system](#-personal-data-manager-process-any-documents-pdf-txt-md)**, **[emails](#-your-personal-email-secretary-rag-on-apple-mail)**, **[browser history](#-time-machine-for-the-web-rag-your-entire-browser-history)**, **[chat history](#-wechat-detective-unlock-your-golden-memories)** ([WeChat](#-wechat-detective-unlock-your-golden-memories), [iMessage](#-imessage-history-your-personal-conversation-archive)), **[agent memory](#-chatgpt-chat-history-your-personal-ai-conversation-archive)** ([ChatGPT](#-chatgpt-chat-history-your-personal-ai-conversation-archive), [Claude](#-claude-chat-history-your-personal-ai-conversation-archive)), **[live data](#mcp-integration-rag-on-live-data-from-any-platform)** ([Slack](#mcp-integration-rag-on-live-data-from-any-platform), [Twitter](#mcp-integration-rag-on-live-data-from-any-platform)), **[codebase](#-claude-code-integration-transform-your-development-workflow)**\* , or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy.
**Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can semantic search your **[file system](#-personal-data-manager-process-any-documents-pdf-txt-md)**, **[emails](#-your-personal-email-secretary-rag-on-apple-mail)**, **[browser history](#-time-machine-for-the-web-rag-your-entire-browser-history)**, **[chat history](#-wechat-detective-unlock-your-golden-memories)**, **[codebase](#-claude-code-integration-transform-your-development-workflow)**\* , or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy.
\* Claude Code only supports basic `grep`-style keyword search. **LEANN** is a drop-in **semantic search MCP service fully compatible with Claude Code**, unlocking intelligent retrieval without changing your workflow. 🔥 Check out [the easy setup →](packages/leann-mcp/README.md)
@@ -76,9 +72,8 @@ uv venv
source .venv/bin/activate
uv pip install leann
```
<!--
> Low-resource? See "Low-resource setups" in the [Configuration Guide](docs/configuration-guide.md#low-resource-setups). -->
> Low-resource? See Low-resource setups in the [Configuration Guide](docs/configuration-guide.md#low-resource-setups). -->
<details>
<summary>
@@ -181,7 +176,7 @@ response = chat.ask("How much storage does LEANN save?", top_k=1)
## RAG on Everything!
LEANN supports RAG on various data sources including documents (`.pdf`, `.txt`, `.md`), Apple Mail, Google Search History, WeChat, ChatGPT conversations, Claude conversations, iMessage conversations, and **live data from any platform through MCP (Model Context Protocol) servers** - including Slack, Twitter, and more.
LEANN supports RAG on various data sources including documents (`.pdf`, `.txt`, `.md`), Apple Mail, Google Search History, WeChat, and more.
@@ -547,386 +542,10 @@ Once the index is built, you can ask questions like:
</details>
### 🤖 ChatGPT Chat History: Your Personal AI Conversation Archive!
Transform your ChatGPT conversations into a searchable knowledge base! Search through all your ChatGPT discussions about coding, research, brainstorming, and more.
```bash
python -m apps.chatgpt_rag --export-path chatgpt_export.html --query "How do I create a list in Python?"
```
**Unlock your AI conversation history.** Never lose track of valuable insights from your ChatGPT discussions again.
<details>
<summary><strong>📋 Click to expand: How to Export ChatGPT Data</strong></summary>
**Step-by-step export process:**
1. **Sign in to ChatGPT**
2. **Click your profile icon** in the top right corner
3. **Navigate to Settings** → **Data Controls**
4. **Click "Export"** under Export Data
5. **Confirm the export** request
6. **Download the ZIP file** from the email link (expires in 24 hours)
7. **Extract or use directly** with LEANN
**Supported formats:**
- `.html` files from ChatGPT exports
- `.zip` archives from ChatGPT
- Directories with multiple export files
</details>
<details>
<summary><strong>📋 Click to expand: ChatGPT-Specific Arguments</strong></summary>
#### Parameters
```bash
--export-path PATH # Path to ChatGPT export file (.html/.zip) or directory (default: ./chatgpt_export)
--separate-messages # Process each message separately instead of concatenated conversations
--chunk-size N # Text chunk size (default: 512)
--chunk-overlap N # Overlap between chunks (default: 128)
```
#### Example Commands
```bash
# Basic usage with HTML export
python -m apps.chatgpt_rag --export-path conversations.html
# Process ZIP archive from ChatGPT
python -m apps.chatgpt_rag --export-path chatgpt_export.zip
# Search with specific query
python -m apps.chatgpt_rag --export-path chatgpt_data.html --query "Python programming help"
# Process individual messages for fine-grained search
python -m apps.chatgpt_rag --separate-messages --export-path chatgpt_export.html
# Process directory containing multiple exports
python -m apps.chatgpt_rag --export-path ./chatgpt_exports/ --max-items 1000
```
</details>
<details>
<summary><strong>💡 Click to expand: Example queries you can try</strong></summary>
Once your ChatGPT conversations are indexed, you can search with queries like:
- "What did I ask ChatGPT about Python programming?"
- "Show me conversations about machine learning algorithms"
- "Find discussions about web development frameworks"
- "What coding advice did ChatGPT give me?"
- "Search for conversations about debugging techniques"
- "Find ChatGPT's recommendations for learning resources"
</details>
### 🤖 Claude Chat History: Your Personal AI Conversation Archive!
Transform your Claude conversations into a searchable knowledge base! Search through all your Claude discussions about coding, research, brainstorming, and more.
```bash
python -m apps.claude_rag --export-path claude_export.json --query "What did I ask about Python dictionaries?"
```
**Unlock your AI conversation history.** Never lose track of valuable insights from your Claude discussions again.
<details>
<summary><strong>📋 Click to expand: How to Export Claude Data</strong></summary>
**Step-by-step export process:**
1. **Open Claude** in your browser
2. **Navigate to Settings** (look for gear icon or settings menu)
3. **Find Export/Download** options in your account settings
4. **Download conversation data** (usually in JSON format)
5. **Place the file** in your project directory
*Note: Claude export methods may vary depending on the interface you're using. Check Claude's help documentation for the most current export instructions.*
**Supported formats:**
- `.json` files (recommended)
- `.zip` archives containing JSON data
- Directories with multiple export files
</details>
<details>
<summary><strong>📋 Click to expand: Claude-Specific Arguments</strong></summary>
#### Parameters
```bash
--export-path PATH # Path to Claude export file (.json/.zip) or directory (default: ./claude_export)
--separate-messages # Process each message separately instead of concatenated conversations
--chunk-size N # Text chunk size (default: 512)
--chunk-overlap N # Overlap between chunks (default: 128)
```
#### Example Commands
```bash
# Basic usage with JSON export
python -m apps.claude_rag --export-path my_claude_conversations.json
# Process ZIP archive from Claude
python -m apps.claude_rag --export-path claude_export.zip
# Search with specific query
python -m apps.claude_rag --export-path claude_data.json --query "machine learning advice"
# Process individual messages for fine-grained search
python -m apps.claude_rag --separate-messages --export-path claude_export.json
# Process directory containing multiple exports
python -m apps.claude_rag --export-path ./claude_exports/ --max-items 1000
```
</details>
<details>
<summary><strong>💡 Click to expand: Example queries you can try</strong></summary>
Once your Claude conversations are indexed, you can search with queries like:
- "What did I ask Claude about Python programming?"
- "Show me conversations about machine learning algorithms"
- "Find discussions about software architecture patterns"
- "What debugging advice did Claude give me?"
- "Search for conversations about data structures"
- "Find Claude's recommendations for learning resources"
</details>
### 💬 iMessage History: Your Personal Conversation Archive!
Transform your iMessage conversations into a searchable knowledge base! Search through all your text messages, group chats, and conversations with friends, family, and colleagues.
```bash
python -m apps.imessage_rag --query "What did we discuss about the weekend plans?"
```
**Unlock your message history.** Never lose track of important conversations, shared links, or memorable moments from your iMessage history.
<details>
<summary><strong>📋 Click to expand: How to Access iMessage Data</strong></summary>
**iMessage data location:**
iMessage conversations are stored in a SQLite database on your Mac at:
```
~/Library/Messages/chat.db
```
**Important setup requirements:**
1. **Grant Full Disk Access** to your terminal or IDE:
- Open **System Preferences** → **Security & Privacy** → **Privacy**
- Select **Full Disk Access** from the left sidebar
- Click the **+** button and add your terminal app (Terminal, iTerm2) or IDE (VS Code, etc.)
- Restart your terminal/IDE after granting access
2. **Alternative: Use a backup database**
- If you have Time Machine backups or manual copies of the database
- Use `--db-path` to specify a custom location
**Supported formats:**
- Direct access to `~/Library/Messages/chat.db` (default)
- Custom database path with `--db-path`
- Works with backup copies of the database
</details>
<details>
<summary><strong>📋 Click to expand: iMessage-Specific Arguments</strong></summary>
#### Parameters
```bash
--db-path PATH # Path to chat.db file (default: ~/Library/Messages/chat.db)
--concatenate-conversations # Group messages by conversation (default: True)
--no-concatenate-conversations # Process each message individually
--chunk-size N # Text chunk size (default: 1000)
--chunk-overlap N # Overlap between chunks (default: 200)
```
#### Example Commands
```bash
# Basic usage (requires Full Disk Access)
python -m apps.imessage_rag
# Search with specific query
python -m apps.imessage_rag --query "family dinner plans"
# Use custom database path
python -m apps.imessage_rag --db-path /path/to/backup/chat.db
# Process individual messages instead of conversations
python -m apps.imessage_rag --no-concatenate-conversations
# Limit processing for testing
python -m apps.imessage_rag --max-items 100 --query "weekend"
```
</details>
<details>
<summary><strong>💡 Click to expand: Example queries you can try</strong></summary>
Once your iMessage conversations are indexed, you can search with queries like:
- "What did we discuss about vacation plans?"
- "Find messages about restaurant recommendations"
- "Show me conversations with John about the project"
- "Search for shared links about technology"
- "Find group chat discussions about weekend events"
- "What did mom say about the family gathering?"
</details>
### MCP Integration: RAG on Live Data from Any Platform
Connect to live data sources through the Model Context Protocol (MCP). LEANN now supports real-time RAG on platforms like Slack, Twitter, and more through standardized MCP servers.
**Key Benefits:**
- **Live Data Access**: Fetch real-time data without manual exports
- **Standardized Protocol**: Use any MCP-compatible server
- **Easy Extension**: Add new platforms with minimal code
- **Secure Access**: MCP servers handle authentication
#### 💬 Slack Messages: Search Your Team Conversations
Transform your Slack workspace into a searchable knowledge base! Find discussions, decisions, and shared knowledge across all your channels.
```bash
# Test MCP server connection
python -m apps.slack_rag --mcp-server "slack-mcp-server" --test-connection
# Index and search Slack messages
python -m apps.slack_rag \
--mcp-server "slack-mcp-server" \
--workspace-name "my-team" \
--channels general dev-team random \
--query "What did we decide about the product launch?"
```
**📖 Comprehensive Setup Guide**: For detailed setup instructions, troubleshooting common issues (like "users cache is not ready yet"), and advanced configuration options, see our [**Slack Setup Guide**](docs/slack-setup-guide.md).
**Quick Setup:**
1. Install a Slack MCP server (e.g., `npm install -g slack-mcp-server`)
2. Create a Slack App and get API credentials (see detailed guide above)
3. Set environment variables:
```bash
export SLACK_BOT_TOKEN="xoxb-your-bot-token"
export SLACK_APP_TOKEN="xapp-your-app-token" # Optional
```
4. Test connection with `--test-connection` flag
**Arguments:**
- `--mcp-server`: Command to start the Slack MCP server
- `--workspace-name`: Slack workspace name for organization
- `--channels`: Specific channels to index (optional)
- `--concatenate-conversations`: Group messages by channel (default: true)
- `--max-messages-per-channel`: Limit messages per channel (default: 100)
- `--max-retries`: Maximum retries for cache sync issues (default: 5)
- `--retry-delay`: Initial delay between retries in seconds (default: 2.0)
#### 🐦 Twitter Bookmarks: Your Personal Tweet Library
Search through your Twitter bookmarks! Find that perfect article, thread, or insight you saved for later.
```bash
# Test MCP server connection
python -m apps.twitter_rag --mcp-server "twitter-mcp-server" --test-connection
# Index and search Twitter bookmarks
python -m apps.twitter_rag \
--mcp-server "twitter-mcp-server" \
--max-bookmarks 1000 \
--query "What AI articles did I bookmark about machine learning?"
```
**Setup Requirements:**
1. Install a Twitter MCP server (e.g., `npm install -g twitter-mcp-server`)
2. Get Twitter API credentials:
- Apply for a Twitter Developer Account at [developer.twitter.com](https://developer.twitter.com)
- Create a new app in the Twitter Developer Portal
- Generate API keys and access tokens with "Read" permissions
- For bookmarks access, you may need Twitter API v2 with appropriate scopes
```bash
export TWITTER_API_KEY="your-api-key"
export TWITTER_API_SECRET="your-api-secret"
export TWITTER_ACCESS_TOKEN="your-access-token"
export TWITTER_ACCESS_TOKEN_SECRET="your-access-token-secret"
```
3. Test connection with `--test-connection` flag
**Arguments:**
- `--mcp-server`: Command to start the Twitter MCP server
- `--username`: Filter bookmarks by username (optional)
- `--max-bookmarks`: Maximum bookmarks to fetch (default: 1000)
- `--no-tweet-content`: Exclude tweet content, only metadata
- `--no-metadata`: Exclude engagement metadata
</details>
<details>
<summary><strong>💡 Click to expand: Example queries you can try</strong></summary>
**Slack Queries:**
- "What did the team discuss about the project deadline?"
- "Find messages about the new feature launch"
- "Show me conversations about budget planning"
- "What decisions were made in the dev-team channel?"
**Twitter Queries:**
- "What AI articles did I bookmark last month?"
- "Find tweets about machine learning techniques"
- "Show me bookmarked threads about startup advice"
- "What Python tutorials did I save?"
</details>
<summary><strong>🔧 Using MCP with CLI Commands</strong></summary>
**Want to use MCP data with regular LEANN CLI?** You can combine MCP apps with CLI commands:
```bash
# Step 1: Use MCP app to fetch and index data
python -m apps.slack_rag --mcp-server "slack-mcp-server" --workspace-name "my-team"
# Step 2: The data is now indexed and available via CLI
leann search slack_messages "project deadline"
leann ask slack_messages "What decisions were made about the product launch?"
# Same for Twitter bookmarks
python -m apps.twitter_rag --mcp-server "twitter-mcp-server"
leann search twitter_bookmarks "machine learning articles"
```
**MCP vs Manual Export:**
- **MCP**: Live data, automatic updates, requires server setup
- **Manual Export**: One-time setup, works offline, requires manual data export
</details>
<details>
<summary><strong>🔧 Adding New MCP Platforms</strong></summary>
Want to add support for other platforms? LEANN's MCP integration is designed for easy extension:
1. **Find or create an MCP server** for your platform
2. **Create a reader class** following the pattern in `apps/slack_data/slack_mcp_reader.py`
3. **Create a RAG application** following the pattern in `apps/slack_rag.py`
4. **Test and contribute** back to the community!
**Popular MCP servers to explore:**
- GitHub repositories and issues
- Discord messages
- Notion pages
- Google Drive documents
- And many more in the MCP ecosystem!
</details>
### 🚀 Claude Code Integration: Transform Your Development Workflow!
<details>
<summary><strong>ASTAware Code Chunking</strong></summary>
<summary><strong>NEW!! ASTAware Code Chunking</strong></summary>
LEANN features intelligent code chunking that preserves semantic boundaries (functions, classes, methods) for Python, Java, C#, and TypeScript, improving code understanding compared to text-based chunking.
@@ -954,7 +573,7 @@ Try our fully agentic pipeline with auto query rewriting, semantic search planni
**🔥 Ready to supercharge your coding?** [Complete Setup Guide →](packages/leann-mcp/README.md)
## Command Line Interface
## 🖥️ Command Line Interface
LEANN includes a powerful CLI for document processing and search. Perfect for quick document indexing and interactive chat.
@@ -1196,7 +815,7 @@ MIT License - see [LICENSE](LICENSE) for details.
Core Contributors: [Yichuan Wang](https://yichuan-w.github.io/) & [Zhifei Li](https://github.com/andylizf).
Active Contributors: [Gabriel Dehan](https://github.com/gabriel-dehan), [Aakash Suresh](https://github.com/ASuresh0524)
Active Contributors: [Gabriel Dehan](https://github.com/gabriel-dehan)
We welcome more contributors! Feel free to open issues or submit PRs.

View File

@@ -10,39 +10,8 @@ from typing import Any
import dotenv
from leann.api import LeannBuilder, LeannChat
# Optional import: older PyPI builds may not include interactive_utils
try:
from leann.interactive_utils import create_rag_session
except ImportError:
def create_rag_session(app_name: str, data_description: str):
class _SimpleSession:
def run_interactive_loop(self, handler):
print(f"Interactive session for {app_name}: {data_description}")
print("Interactive mode not available in this build")
return _SimpleSession()
from leann.registry import register_project_directory
# Optional import: older PyPI builds may not include settings
try:
from leann.settings import resolve_ollama_host, resolve_openai_api_key, resolve_openai_base_url
except ImportError:
# Minimal fallbacks if settings helpers are unavailable
import os
def resolve_ollama_host(value: str | None) -> str | None:
return value or os.getenv("LEANN_OLLAMA_HOST") or os.getenv("OLLAMA_HOST")
def resolve_openai_api_key(value: str | None) -> str | None:
return value or os.getenv("OPENAI_API_KEY")
def resolve_openai_base_url(value: str | None) -> str | None:
return value or os.getenv("OPENAI_BASE_URL")
from leann.settings import resolve_ollama_host, resolve_openai_api_key, resolve_openai_base_url
dotenv.load_dotenv()
@@ -338,26 +307,37 @@ class BaseRAGExample(ABC):
complexity=args.search_complexity,
)
# Create interactive session
session = create_rag_session(
app_name=self.name.lower().replace(" ", "_"), data_description=self.name
)
print(f"\n[Interactive Mode] Chat with your {self.name} data!")
print("Type 'quit' or 'exit' to stop.\n")
def handle_query(query: str):
# Prepare LLM kwargs with thinking budget if specified
llm_kwargs = {}
if hasattr(args, "thinking_budget") and args.thinking_budget:
llm_kwargs["thinking_budget"] = args.thinking_budget
while True:
try:
query = input("You: ").strip()
if query.lower() in ["quit", "exit", "q"]:
print("Goodbye!")
break
response = chat.ask(
query,
top_k=args.top_k,
complexity=args.search_complexity,
llm_kwargs=llm_kwargs,
)
print(f"\nAssistant: {response}\n")
if not query:
continue
session.run_interactive_loop(handle_query)
# Prepare LLM kwargs with thinking budget if specified
llm_kwargs = {}
if hasattr(args, "thinking_budget") and args.thinking_budget:
llm_kwargs["thinking_budget"] = args.thinking_budget
response = chat.ask(
query,
top_k=args.top_k,
complexity=args.search_complexity,
llm_kwargs=llm_kwargs,
)
print(f"\nAssistant: {response}\n")
except KeyboardInterrupt:
print("\nGoodbye!")
break
except Exception as e:
print(f"Error: {e}")
async def run_single_query(self, args, index_path: str, query: str):
"""Run a single query against the index."""

View File

View File

@@ -1,413 +0,0 @@
"""
ChatGPT export data reader.
Reads and processes ChatGPT export data from chat.html files.
"""
import re
from pathlib import Path
from typing import Any
from zipfile import ZipFile
from bs4 import BeautifulSoup
from llama_index.core import Document
from llama_index.core.readers.base import BaseReader
class ChatGPTReader(BaseReader):
"""
ChatGPT export data reader.
Reads ChatGPT conversation data from exported chat.html files or zip archives.
Processes conversations into structured documents with metadata.
"""
def __init__(self, concatenate_conversations: bool = True) -> None:
"""
Initialize.
Args:
concatenate_conversations: Whether to concatenate messages within conversations for better context
"""
try:
from bs4 import BeautifulSoup # noqa
except ImportError:
raise ImportError("`beautifulsoup4` package not found: `pip install beautifulsoup4`")
self.concatenate_conversations = concatenate_conversations
def _extract_html_from_zip(self, zip_path: Path) -> str | None:
"""
Extract chat.html from ChatGPT export zip file.
Args:
zip_path: Path to the ChatGPT export zip file
Returns:
HTML content as string, or None if not found
"""
try:
with ZipFile(zip_path, "r") as zip_file:
# Look for chat.html or conversations.html
html_files = [
f
for f in zip_file.namelist()
if f.endswith(".html") and ("chat" in f.lower() or "conversation" in f.lower())
]
if not html_files:
print(f"No HTML chat file found in {zip_path}")
return None
# Use the first HTML file found
html_file = html_files[0]
print(f"Found HTML file: {html_file}")
with zip_file.open(html_file) as f:
return f.read().decode("utf-8", errors="ignore")
except Exception as e:
print(f"Error extracting HTML from zip {zip_path}: {e}")
return None
def _parse_chatgpt_html(self, html_content: str) -> list[dict]:
"""
Parse ChatGPT HTML export to extract conversations.
Args:
html_content: HTML content from ChatGPT export
Returns:
List of conversation dictionaries
"""
soup = BeautifulSoup(html_content, "html.parser")
conversations = []
# Try different possible structures for ChatGPT exports
# Structure 1: Look for conversation containers
conversation_containers = soup.find_all(
["div", "section"], class_=re.compile(r"conversation|chat", re.I)
)
if not conversation_containers:
# Structure 2: Look for message containers directly
conversation_containers = [soup] # Use the entire document as one conversation
for container in conversation_containers:
conversation = self._extract_conversation_from_container(container)
if conversation and conversation.get("messages"):
conversations.append(conversation)
# If no structured conversations found, try to extract all text as one conversation
if not conversations:
all_text = soup.get_text(separator="\n", strip=True)
if all_text:
conversations.append(
{
"title": "ChatGPT Conversation",
"messages": [{"role": "mixed", "content": all_text, "timestamp": None}],
"timestamp": None,
}
)
return conversations
def _extract_conversation_from_container(self, container) -> dict | None:
"""
Extract conversation data from a container element.
Args:
container: BeautifulSoup element containing conversation
Returns:
Dictionary with conversation data or None
"""
messages = []
# Look for message elements with various possible structures
message_selectors = ['[class*="message"]', '[class*="chat"]', "[data-message]", "p", "div"]
for selector in message_selectors:
message_elements = container.select(selector)
if message_elements:
break
else:
message_elements = []
# If no structured messages found, treat the entire container as one message
if not message_elements:
text_content = container.get_text(separator="\n", strip=True)
if text_content:
messages.append({"role": "mixed", "content": text_content, "timestamp": None})
else:
for element in message_elements:
message = self._extract_message_from_element(element)
if message:
messages.append(message)
if not messages:
return None
# Try to extract conversation title
title_element = container.find(["h1", "h2", "h3", "title"])
title = title_element.get_text(strip=True) if title_element else "ChatGPT Conversation"
# Try to extract timestamp from various possible locations
timestamp = self._extract_timestamp_from_container(container)
return {"title": title, "messages": messages, "timestamp": timestamp}
def _extract_message_from_element(self, element) -> dict | None:
"""
Extract message data from an element.
Args:
element: BeautifulSoup element containing message
Returns:
Dictionary with message data or None
"""
text_content = element.get_text(separator=" ", strip=True)
# Skip empty or very short messages
if not text_content or len(text_content.strip()) < 3:
return None
# Try to determine role (user/assistant) from class names or content
role = "mixed" # Default role
class_names = " ".join(element.get("class", [])).lower()
if "user" in class_names or "human" in class_names:
role = "user"
elif "assistant" in class_names or "ai" in class_names or "gpt" in class_names:
role = "assistant"
elif text_content.lower().startswith(("you:", "user:", "me:")):
role = "user"
text_content = re.sub(r"^(you|user|me):\s*", "", text_content, flags=re.IGNORECASE)
elif text_content.lower().startswith(("chatgpt:", "assistant:", "ai:")):
role = "assistant"
text_content = re.sub(
r"^(chatgpt|assistant|ai):\s*", "", text_content, flags=re.IGNORECASE
)
# Try to extract timestamp
timestamp = self._extract_timestamp_from_element(element)
return {"role": role, "content": text_content, "timestamp": timestamp}
def _extract_timestamp_from_element(self, element) -> str | None:
"""Extract timestamp from element."""
# Look for timestamp in various attributes and child elements
timestamp_attrs = ["data-timestamp", "timestamp", "datetime"]
for attr in timestamp_attrs:
if element.get(attr):
return element.get(attr)
# Look for time elements
time_element = element.find("time")
if time_element:
return time_element.get("datetime") or time_element.get_text(strip=True)
# Look for date-like text patterns
text = element.get_text()
date_patterns = [r"\d{4}-\d{2}-\d{2}", r"\d{1,2}/\d{1,2}/\d{4}", r"\w+ \d{1,2}, \d{4}"]
for pattern in date_patterns:
match = re.search(pattern, text)
if match:
return match.group()
return None
def _extract_timestamp_from_container(self, container) -> str | None:
"""Extract timestamp from conversation container."""
return self._extract_timestamp_from_element(container)
def _create_concatenated_content(self, conversation: dict) -> str:
"""
Create concatenated content from conversation messages.
Args:
conversation: Dictionary containing conversation data
Returns:
Formatted concatenated content
"""
title = conversation.get("title", "ChatGPT Conversation")
messages = conversation.get("messages", [])
timestamp = conversation.get("timestamp", "Unknown")
# Build message content
message_parts = []
for message in messages:
role = message.get("role", "mixed")
content = message.get("content", "")
msg_timestamp = message.get("timestamp", "")
if role == "user":
prefix = "[You]"
elif role == "assistant":
prefix = "[ChatGPT]"
else:
prefix = "[Message]"
# Add timestamp if available
if msg_timestamp:
prefix += f" ({msg_timestamp})"
message_parts.append(f"{prefix}: {content}")
concatenated_text = "\n\n".join(message_parts)
# Create final document content
doc_content = f"""Conversation: {title}
Date: {timestamp}
Messages ({len(messages)} messages):
{concatenated_text}
"""
return doc_content
def load_data(self, input_dir: str | None = None, **load_kwargs: Any) -> list[Document]:
"""
Load ChatGPT export data.
Args:
input_dir: Directory containing ChatGPT export files or path to specific file
**load_kwargs:
max_count (int): Maximum number of conversations to process
chatgpt_export_path (str): Specific path to ChatGPT export file/directory
include_metadata (bool): Whether to include metadata in documents
"""
docs: list[Document] = []
max_count = load_kwargs.get("max_count", -1)
chatgpt_export_path = load_kwargs.get("chatgpt_export_path", input_dir)
include_metadata = load_kwargs.get("include_metadata", True)
if not chatgpt_export_path:
print("No ChatGPT export path provided")
return docs
export_path = Path(chatgpt_export_path)
if not export_path.exists():
print(f"ChatGPT export path not found: {export_path}")
return docs
html_content = None
# Handle different input types
if export_path.is_file():
if export_path.suffix.lower() == ".zip":
# Extract HTML from zip file
html_content = self._extract_html_from_zip(export_path)
elif export_path.suffix.lower() == ".html":
# Read HTML file directly
try:
with open(export_path, encoding="utf-8", errors="ignore") as f:
html_content = f.read()
except Exception as e:
print(f"Error reading HTML file {export_path}: {e}")
return docs
else:
print(f"Unsupported file type: {export_path.suffix}")
return docs
elif export_path.is_dir():
# Look for HTML files in directory
html_files = list(export_path.glob("*.html"))
zip_files = list(export_path.glob("*.zip"))
if html_files:
# Use first HTML file found
html_file = html_files[0]
print(f"Found HTML file: {html_file}")
try:
with open(html_file, encoding="utf-8", errors="ignore") as f:
html_content = f.read()
except Exception as e:
print(f"Error reading HTML file {html_file}: {e}")
return docs
elif zip_files:
# Use first zip file found
zip_file = zip_files[0]
print(f"Found zip file: {zip_file}")
html_content = self._extract_html_from_zip(zip_file)
else:
print(f"No HTML or zip files found in {export_path}")
return docs
if not html_content:
print("No HTML content found to process")
return docs
# Parse conversations from HTML
print("Parsing ChatGPT conversations from HTML...")
conversations = self._parse_chatgpt_html(html_content)
if not conversations:
print("No conversations found in HTML content")
return docs
print(f"Found {len(conversations)} conversations")
# Process conversations into documents
count = 0
for conversation in conversations:
if max_count > 0 and count >= max_count:
break
if self.concatenate_conversations:
# Create one document per conversation with concatenated messages
doc_content = self._create_concatenated_content(conversation)
metadata = {}
if include_metadata:
metadata = {
"title": conversation.get("title", "ChatGPT Conversation"),
"timestamp": conversation.get("timestamp", "Unknown"),
"message_count": len(conversation.get("messages", [])),
"source": "ChatGPT Export",
}
doc = Document(text=doc_content, metadata=metadata)
docs.append(doc)
count += 1
else:
# Create separate documents for each message
for message in conversation.get("messages", []):
if max_count > 0 and count >= max_count:
break
role = message.get("role", "mixed")
content = message.get("content", "")
msg_timestamp = message.get("timestamp", "")
if not content.strip():
continue
# Create document content with context
doc_content = f"""Conversation: {conversation.get("title", "ChatGPT Conversation")}
Role: {role}
Timestamp: {msg_timestamp or conversation.get("timestamp", "Unknown")}
Message: {content}
"""
metadata = {}
if include_metadata:
metadata = {
"conversation_title": conversation.get("title", "ChatGPT Conversation"),
"role": role,
"timestamp": msg_timestamp or conversation.get("timestamp", "Unknown"),
"source": "ChatGPT Export",
}
doc = Document(text=doc_content, metadata=metadata)
docs.append(doc)
count += 1
print(f"Created {len(docs)} documents from ChatGPT export")
return docs

View File

@@ -1,186 +0,0 @@
"""
ChatGPT RAG example using the unified interface.
Supports ChatGPT export data from chat.html files.
"""
import sys
from pathlib import Path
# Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent))
from base_rag_example import BaseRAGExample
from chunking import create_text_chunks
from .chatgpt_data.chatgpt_reader import ChatGPTReader
class ChatGPTRAG(BaseRAGExample):
"""RAG example for ChatGPT conversation data."""
def __init__(self):
# Set default values BEFORE calling super().__init__
self.max_items_default = -1 # Process all conversations by default
self.embedding_model_default = (
"sentence-transformers/all-MiniLM-L6-v2" # Fast 384-dim model
)
super().__init__(
name="ChatGPT",
description="Process and query ChatGPT conversation exports with LEANN",
default_index_name="chatgpt_conversations_index",
)
def _add_specific_arguments(self, parser):
"""Add ChatGPT-specific arguments."""
chatgpt_group = parser.add_argument_group("ChatGPT Parameters")
chatgpt_group.add_argument(
"--export-path",
type=str,
default="./chatgpt_export",
help="Path to ChatGPT export file (.zip or .html) or directory containing exports (default: ./chatgpt_export)",
)
chatgpt_group.add_argument(
"--concatenate-conversations",
action="store_true",
default=True,
help="Concatenate messages within conversations for better context (default: True)",
)
chatgpt_group.add_argument(
"--separate-messages",
action="store_true",
help="Process each message as a separate document (overrides --concatenate-conversations)",
)
chatgpt_group.add_argument(
"--chunk-size", type=int, default=512, help="Text chunk size (default: 512)"
)
chatgpt_group.add_argument(
"--chunk-overlap", type=int, default=128, help="Text chunk overlap (default: 128)"
)
def _find_chatgpt_exports(self, export_path: Path) -> list[Path]:
"""
Find ChatGPT export files in the given path.
Args:
export_path: Path to search for exports
Returns:
List of paths to ChatGPT export files
"""
export_files = []
if export_path.is_file():
if export_path.suffix.lower() in [".zip", ".html"]:
export_files.append(export_path)
elif export_path.is_dir():
# Look for zip and html files
export_files.extend(export_path.glob("*.zip"))
export_files.extend(export_path.glob("*.html"))
return export_files
async def load_data(self, args) -> list[str]:
"""Load ChatGPT export data and convert to text chunks."""
export_path = Path(args.export_path)
if not export_path.exists():
print(f"ChatGPT export path not found: {export_path}")
print(
"Please ensure you have exported your ChatGPT data and placed it in the correct location."
)
print("\nTo export your ChatGPT data:")
print("1. Sign in to ChatGPT")
print("2. Click on your profile icon → Settings → Data Controls")
print("3. Click 'Export' under Export Data")
print("4. Download the zip file from the email link")
print("5. Extract or place the file/directory at the specified path")
return []
# Find export files
export_files = self._find_chatgpt_exports(export_path)
if not export_files:
print(f"No ChatGPT export files (.zip or .html) found in: {export_path}")
return []
print(f"Found {len(export_files)} ChatGPT export files")
# Create reader with appropriate settings
concatenate = args.concatenate_conversations and not args.separate_messages
reader = ChatGPTReader(concatenate_conversations=concatenate)
# Process each export file
all_documents = []
total_processed = 0
for i, export_file in enumerate(export_files):
print(f"\nProcessing export file {i + 1}/{len(export_files)}: {export_file.name}")
try:
# Apply max_items limit per file
max_per_file = -1
if args.max_items > 0:
remaining = args.max_items - total_processed
if remaining <= 0:
break
max_per_file = remaining
# Load conversations
documents = reader.load_data(
chatgpt_export_path=str(export_file),
max_count=max_per_file,
include_metadata=True,
)
if documents:
all_documents.extend(documents)
total_processed += len(documents)
print(f"Processed {len(documents)} conversations from this file")
else:
print(f"No conversations loaded from {export_file}")
except Exception as e:
print(f"Error processing {export_file}: {e}")
continue
if not all_documents:
print("No conversations found to process!")
print("\nTroubleshooting:")
print("- Ensure the export file is a valid ChatGPT export")
print("- Check that the HTML file contains conversation data")
print("- Try extracting the zip file and pointing to the HTML file directly")
return []
print(f"\nTotal conversations processed: {len(all_documents)}")
print("Now starting to split into text chunks... this may take some time")
# Convert to text chunks
all_texts = create_text_chunks(
all_documents, chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
)
print(f"Created {len(all_texts)} text chunks from {len(all_documents)} conversations")
return all_texts
if __name__ == "__main__":
import asyncio
# Example queries for ChatGPT RAG
print("\n🤖 ChatGPT RAG Example")
print("=" * 50)
print("\nExample queries you can try:")
print("- 'What did I ask about Python programming?'")
print("- 'Show me conversations about machine learning'")
print("- 'Find discussions about travel planning'")
print("- 'What advice did ChatGPT give me about career development?'")
print("- 'Search for conversations about cooking recipes'")
print("\nTo get started:")
print("1. Export your ChatGPT data from Settings → Data Controls → Export")
print("2. Place the downloaded zip file or extracted HTML in ./chatgpt_export/")
print("3. Run this script to build your personal ChatGPT knowledge base!")
print("\nOr run without --query for interactive mode\n")
rag = ChatGPTRAG()
asyncio.run(rag.run())

View File

View File

@@ -1,420 +0,0 @@
"""
Claude export data reader.
Reads and processes Claude conversation data from exported JSON files.
"""
import json
from pathlib import Path
from typing import Any
from zipfile import ZipFile
from llama_index.core import Document
from llama_index.core.readers.base import BaseReader
class ClaudeReader(BaseReader):
"""
Claude export data reader.
Reads Claude conversation data from exported JSON files or zip archives.
Processes conversations into structured documents with metadata.
"""
def __init__(self, concatenate_conversations: bool = True) -> None:
"""
Initialize.
Args:
concatenate_conversations: Whether to concatenate messages within conversations for better context
"""
self.concatenate_conversations = concatenate_conversations
def _extract_json_from_zip(self, zip_path: Path) -> list[str]:
"""
Extract JSON files from Claude export zip file.
Args:
zip_path: Path to the Claude export zip file
Returns:
List of JSON content strings, or empty list if not found
"""
json_contents = []
try:
with ZipFile(zip_path, "r") as zip_file:
# Look for JSON files
json_files = [f for f in zip_file.namelist() if f.endswith(".json")]
if not json_files:
print(f"No JSON files found in {zip_path}")
return []
print(f"Found {len(json_files)} JSON files in archive")
for json_file in json_files:
with zip_file.open(json_file) as f:
content = f.read().decode("utf-8", errors="ignore")
json_contents.append(content)
except Exception as e:
print(f"Error extracting JSON from zip {zip_path}: {e}")
return json_contents
def _parse_claude_json(self, json_content: str) -> list[dict]:
"""
Parse Claude JSON export to extract conversations.
Args:
json_content: JSON content from Claude export
Returns:
List of conversation dictionaries
"""
try:
data = json.loads(json_content)
except json.JSONDecodeError as e:
print(f"Error parsing JSON: {e}")
return []
conversations = []
# Handle different possible JSON structures
if isinstance(data, list):
# If data is a list of conversations
for item in data:
conversation = self._extract_conversation_from_json(item)
if conversation:
conversations.append(conversation)
elif isinstance(data, dict):
# Check for common structures
if "conversations" in data:
# Structure: {"conversations": [...]}
for item in data["conversations"]:
conversation = self._extract_conversation_from_json(item)
if conversation:
conversations.append(conversation)
elif "messages" in data:
# Single conversation with messages
conversation = self._extract_conversation_from_json(data)
if conversation:
conversations.append(conversation)
else:
# Try to treat the whole object as a conversation
conversation = self._extract_conversation_from_json(data)
if conversation:
conversations.append(conversation)
return conversations
def _extract_conversation_from_json(self, conv_data: dict) -> dict | None:
"""
Extract conversation data from a JSON object.
Args:
conv_data: Dictionary containing conversation data
Returns:
Dictionary with conversation data or None
"""
if not isinstance(conv_data, dict):
return None
messages = []
# Look for messages in various possible structures
message_sources = []
if "messages" in conv_data:
message_sources = conv_data["messages"]
elif "chat" in conv_data:
message_sources = conv_data["chat"]
elif "conversation" in conv_data:
message_sources = conv_data["conversation"]
else:
# If no clear message structure, try to extract from the object itself
if "content" in conv_data and "role" in conv_data:
message_sources = [conv_data]
for msg_data in message_sources:
message = self._extract_message_from_json(msg_data)
if message:
messages.append(message)
if not messages:
return None
# Extract conversation metadata
title = self._extract_title_from_conversation(conv_data, messages)
timestamp = self._extract_timestamp_from_conversation(conv_data)
return {"title": title, "messages": messages, "timestamp": timestamp}
def _extract_message_from_json(self, msg_data: dict) -> dict | None:
"""
Extract message data from a JSON message object.
Args:
msg_data: Dictionary containing message data
Returns:
Dictionary with message data or None
"""
if not isinstance(msg_data, dict):
return None
# Extract content from various possible fields
content = ""
content_fields = ["content", "text", "message", "body"]
for field in content_fields:
if msg_data.get(field):
content = str(msg_data[field])
break
if not content or len(content.strip()) < 3:
return None
# Extract role (user/assistant/human/ai/claude)
role = "mixed" # Default role
role_fields = ["role", "sender", "from", "author", "type"]
for field in role_fields:
if msg_data.get(field):
role_value = str(msg_data[field]).lower()
if role_value in ["user", "human", "person"]:
role = "user"
elif role_value in ["assistant", "ai", "claude", "bot"]:
role = "assistant"
break
# Extract timestamp
timestamp = self._extract_timestamp_from_message(msg_data)
return {"role": role, "content": content, "timestamp": timestamp}
def _extract_timestamp_from_message(self, msg_data: dict) -> str | None:
"""Extract timestamp from message data."""
timestamp_fields = ["timestamp", "created_at", "date", "time"]
for field in timestamp_fields:
if msg_data.get(field):
return str(msg_data[field])
return None
def _extract_timestamp_from_conversation(self, conv_data: dict) -> str | None:
"""Extract timestamp from conversation data."""
timestamp_fields = ["timestamp", "created_at", "date", "updated_at", "last_updated"]
for field in timestamp_fields:
if conv_data.get(field):
return str(conv_data[field])
return None
def _extract_title_from_conversation(self, conv_data: dict, messages: list) -> str:
"""Extract or generate title for conversation."""
# Try to find explicit title
title_fields = ["title", "name", "subject", "topic"]
for field in title_fields:
if conv_data.get(field):
return str(conv_data[field])
# Generate title from first user message
for message in messages:
if message.get("role") == "user":
content = message.get("content", "")
if content:
# Use first 50 characters as title
title = content[:50].strip()
if len(content) > 50:
title += "..."
return title
return "Claude Conversation"
def _create_concatenated_content(self, conversation: dict) -> str:
"""
Create concatenated content from conversation messages.
Args:
conversation: Dictionary containing conversation data
Returns:
Formatted concatenated content
"""
title = conversation.get("title", "Claude Conversation")
messages = conversation.get("messages", [])
timestamp = conversation.get("timestamp", "Unknown")
# Build message content
message_parts = []
for message in messages:
role = message.get("role", "mixed")
content = message.get("content", "")
msg_timestamp = message.get("timestamp", "")
if role == "user":
prefix = "[You]"
elif role == "assistant":
prefix = "[Claude]"
else:
prefix = "[Message]"
# Add timestamp if available
if msg_timestamp:
prefix += f" ({msg_timestamp})"
message_parts.append(f"{prefix}: {content}")
concatenated_text = "\n\n".join(message_parts)
# Create final document content
doc_content = f"""Conversation: {title}
Date: {timestamp}
Messages ({len(messages)} messages):
{concatenated_text}
"""
return doc_content
def load_data(self, input_dir: str | None = None, **load_kwargs: Any) -> list[Document]:
"""
Load Claude export data.
Args:
input_dir: Directory containing Claude export files or path to specific file
**load_kwargs:
max_count (int): Maximum number of conversations to process
claude_export_path (str): Specific path to Claude export file/directory
include_metadata (bool): Whether to include metadata in documents
"""
docs: list[Document] = []
max_count = load_kwargs.get("max_count", -1)
claude_export_path = load_kwargs.get("claude_export_path", input_dir)
include_metadata = load_kwargs.get("include_metadata", True)
if not claude_export_path:
print("No Claude export path provided")
return docs
export_path = Path(claude_export_path)
if not export_path.exists():
print(f"Claude export path not found: {export_path}")
return docs
json_contents = []
# Handle different input types
if export_path.is_file():
if export_path.suffix.lower() == ".zip":
# Extract JSON from zip file
json_contents = self._extract_json_from_zip(export_path)
elif export_path.suffix.lower() == ".json":
# Read JSON file directly
try:
with open(export_path, encoding="utf-8", errors="ignore") as f:
json_contents.append(f.read())
except Exception as e:
print(f"Error reading JSON file {export_path}: {e}")
return docs
else:
print(f"Unsupported file type: {export_path.suffix}")
return docs
elif export_path.is_dir():
# Look for JSON files in directory
json_files = list(export_path.glob("*.json"))
zip_files = list(export_path.glob("*.zip"))
if json_files:
print(f"Found {len(json_files)} JSON files in directory")
for json_file in json_files:
try:
with open(json_file, encoding="utf-8", errors="ignore") as f:
json_contents.append(f.read())
except Exception as e:
print(f"Error reading JSON file {json_file}: {e}")
continue
if zip_files:
print(f"Found {len(zip_files)} ZIP files in directory")
for zip_file in zip_files:
zip_contents = self._extract_json_from_zip(zip_file)
json_contents.extend(zip_contents)
if not json_files and not zip_files:
print(f"No JSON or ZIP files found in {export_path}")
return docs
if not json_contents:
print("No JSON content found to process")
return docs
# Parse conversations from JSON content
print("Parsing Claude conversations from JSON...")
all_conversations = []
for json_content in json_contents:
conversations = self._parse_claude_json(json_content)
all_conversations.extend(conversations)
if not all_conversations:
print("No conversations found in JSON content")
return docs
print(f"Found {len(all_conversations)} conversations")
# Process conversations into documents
count = 0
for conversation in all_conversations:
if max_count > 0 and count >= max_count:
break
if self.concatenate_conversations:
# Create one document per conversation with concatenated messages
doc_content = self._create_concatenated_content(conversation)
metadata = {}
if include_metadata:
metadata = {
"title": conversation.get("title", "Claude Conversation"),
"timestamp": conversation.get("timestamp", "Unknown"),
"message_count": len(conversation.get("messages", [])),
"source": "Claude Export",
}
doc = Document(text=doc_content, metadata=metadata)
docs.append(doc)
count += 1
else:
# Create separate documents for each message
for message in conversation.get("messages", []):
if max_count > 0 and count >= max_count:
break
role = message.get("role", "mixed")
content = message.get("content", "")
msg_timestamp = message.get("timestamp", "")
if not content.strip():
continue
# Create document content with context
doc_content = f"""Conversation: {conversation.get("title", "Claude Conversation")}
Role: {role}
Timestamp: {msg_timestamp or conversation.get("timestamp", "Unknown")}
Message: {content}
"""
metadata = {}
if include_metadata:
metadata = {
"conversation_title": conversation.get("title", "Claude Conversation"),
"role": role,
"timestamp": msg_timestamp or conversation.get("timestamp", "Unknown"),
"source": "Claude Export",
}
doc = Document(text=doc_content, metadata=metadata)
docs.append(doc)
count += 1
print(f"Created {len(docs)} documents from Claude export")
return docs

View File

@@ -1,189 +0,0 @@
"""
Claude RAG example using the unified interface.
Supports Claude export data from JSON files.
"""
import sys
from pathlib import Path
# Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent))
from base_rag_example import BaseRAGExample
from chunking import create_text_chunks
from .claude_data.claude_reader import ClaudeReader
class ClaudeRAG(BaseRAGExample):
"""RAG example for Claude conversation data."""
def __init__(self):
# Set default values BEFORE calling super().__init__
self.max_items_default = -1 # Process all conversations by default
self.embedding_model_default = (
"sentence-transformers/all-MiniLM-L6-v2" # Fast 384-dim model
)
super().__init__(
name="Claude",
description="Process and query Claude conversation exports with LEANN",
default_index_name="claude_conversations_index",
)
def _add_specific_arguments(self, parser):
"""Add Claude-specific arguments."""
claude_group = parser.add_argument_group("Claude Parameters")
claude_group.add_argument(
"--export-path",
type=str,
default="./claude_export",
help="Path to Claude export file (.json or .zip) or directory containing exports (default: ./claude_export)",
)
claude_group.add_argument(
"--concatenate-conversations",
action="store_true",
default=True,
help="Concatenate messages within conversations for better context (default: True)",
)
claude_group.add_argument(
"--separate-messages",
action="store_true",
help="Process each message as a separate document (overrides --concatenate-conversations)",
)
claude_group.add_argument(
"--chunk-size", type=int, default=512, help="Text chunk size (default: 512)"
)
claude_group.add_argument(
"--chunk-overlap", type=int, default=128, help="Text chunk overlap (default: 128)"
)
def _find_claude_exports(self, export_path: Path) -> list[Path]:
"""
Find Claude export files in the given path.
Args:
export_path: Path to search for exports
Returns:
List of paths to Claude export files
"""
export_files = []
if export_path.is_file():
if export_path.suffix.lower() in [".zip", ".json"]:
export_files.append(export_path)
elif export_path.is_dir():
# Look for zip and json files
export_files.extend(export_path.glob("*.zip"))
export_files.extend(export_path.glob("*.json"))
return export_files
async def load_data(self, args) -> list[str]:
"""Load Claude export data and convert to text chunks."""
export_path = Path(args.export_path)
if not export_path.exists():
print(f"Claude export path not found: {export_path}")
print(
"Please ensure you have exported your Claude data and placed it in the correct location."
)
print("\nTo export your Claude data:")
print("1. Open Claude in your browser")
print("2. Look for export/download options in settings or conversation menu")
print("3. Download the conversation data (usually in JSON format)")
print("4. Place the file/directory at the specified path")
print(
"\nNote: Claude export methods may vary. Check Claude's help documentation for current instructions."
)
return []
# Find export files
export_files = self._find_claude_exports(export_path)
if not export_files:
print(f"No Claude export files (.json or .zip) found in: {export_path}")
return []
print(f"Found {len(export_files)} Claude export files")
# Create reader with appropriate settings
concatenate = args.concatenate_conversations and not args.separate_messages
reader = ClaudeReader(concatenate_conversations=concatenate)
# Process each export file
all_documents = []
total_processed = 0
for i, export_file in enumerate(export_files):
print(f"\nProcessing export file {i + 1}/{len(export_files)}: {export_file.name}")
try:
# Apply max_items limit per file
max_per_file = -1
if args.max_items > 0:
remaining = args.max_items - total_processed
if remaining <= 0:
break
max_per_file = remaining
# Load conversations
documents = reader.load_data(
claude_export_path=str(export_file),
max_count=max_per_file,
include_metadata=True,
)
if documents:
all_documents.extend(documents)
total_processed += len(documents)
print(f"Processed {len(documents)} conversations from this file")
else:
print(f"No conversations loaded from {export_file}")
except Exception as e:
print(f"Error processing {export_file}: {e}")
continue
if not all_documents:
print("No conversations found to process!")
print("\nTroubleshooting:")
print("- Ensure the export file is a valid Claude export")
print("- Check that the JSON file contains conversation data")
print("- Try using a different export format or method")
print("- Check Claude's documentation for current export procedures")
return []
print(f"\nTotal conversations processed: {len(all_documents)}")
print("Now starting to split into text chunks... this may take some time")
# Convert to text chunks
all_texts = create_text_chunks(
all_documents, chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
)
print(f"Created {len(all_texts)} text chunks from {len(all_documents)} conversations")
return all_texts
if __name__ == "__main__":
import asyncio
# Example queries for Claude RAG
print("\n🤖 Claude RAG Example")
print("=" * 50)
print("\nExample queries you can try:")
print("- 'What did I ask Claude about Python programming?'")
print("- 'Show me conversations about machine learning'")
print("- 'Find discussions about code optimization'")
print("- 'What advice did Claude give me about software design?'")
print("- 'Search for conversations about debugging techniques'")
print("\nTo get started:")
print("1. Export your Claude conversation data")
print("2. Place the JSON/ZIP file in ./claude_export/")
print("3. Run this script to build your personal Claude knowledge base!")
print("\nOr run without --query for interactive mode\n")
rag = ClaudeRAG()
asyncio.run(rag.run())

View File

@@ -1 +0,0 @@
"""iMessage data processing module."""

View File

@@ -1,342 +0,0 @@
"""
iMessage data reader.
Reads and processes iMessage conversation data from the macOS Messages database.
"""
import sqlite3
from datetime import datetime
from pathlib import Path
from typing import Any
from llama_index.core import Document
from llama_index.core.readers.base import BaseReader
class IMessageReader(BaseReader):
"""
iMessage data reader.
Reads iMessage conversation data from the macOS Messages database (chat.db).
Processes conversations into structured documents with metadata.
"""
def __init__(self, concatenate_conversations: bool = True) -> None:
"""
Initialize.
Args:
concatenate_conversations: Whether to concatenate messages within conversations for better context
"""
self.concatenate_conversations = concatenate_conversations
def _get_default_chat_db_path(self) -> Path:
"""
Get the default path to the iMessage chat database.
Returns:
Path to the chat.db file
"""
home = Path.home()
return home / "Library" / "Messages" / "chat.db"
def _convert_cocoa_timestamp(self, cocoa_timestamp: int) -> str:
"""
Convert Cocoa timestamp to readable format.
Args:
cocoa_timestamp: Timestamp in Cocoa format (nanoseconds since 2001-01-01)
Returns:
Formatted timestamp string
"""
if cocoa_timestamp == 0:
return "Unknown"
try:
# Cocoa timestamp is nanoseconds since 2001-01-01 00:00:00 UTC
# Convert to seconds and add to Unix epoch
cocoa_epoch = datetime(2001, 1, 1)
unix_timestamp = cocoa_timestamp / 1_000_000_000 # Convert nanoseconds to seconds
message_time = cocoa_epoch.timestamp() + unix_timestamp
return datetime.fromtimestamp(message_time).strftime("%Y-%m-%d %H:%M:%S")
except (ValueError, OSError):
return "Unknown"
def _get_contact_name(self, handle_id: str) -> str:
"""
Get a readable contact name from handle ID.
Args:
handle_id: The handle ID (phone number or email)
Returns:
Formatted contact name
"""
if not handle_id:
return "Unknown"
# Clean up phone numbers and emails for display
if "@" in handle_id:
return handle_id # Email address
elif handle_id.startswith("+"):
return handle_id # International phone number
else:
# Try to format as phone number
digits = "".join(filter(str.isdigit, handle_id))
if len(digits) == 10:
return f"({digits[:3]}) {digits[3:6]}-{digits[6:]}"
elif len(digits) == 11 and digits[0] == "1":
return f"+1 ({digits[1:4]}) {digits[4:7]}-{digits[7:]}"
else:
return handle_id
def _read_messages_from_db(self, db_path: Path) -> list[dict]:
"""
Read messages from the iMessage database.
Args:
db_path: Path to the chat.db file
Returns:
List of message dictionaries
"""
if not db_path.exists():
print(f"iMessage database not found at: {db_path}")
return []
try:
# Connect to the database
conn = sqlite3.connect(str(db_path))
cursor = conn.cursor()
# Query to get messages with chat and handle information
query = """
SELECT
m.ROWID as message_id,
m.text,
m.date,
m.is_from_me,
m.service,
c.chat_identifier,
c.display_name as chat_display_name,
h.id as handle_id,
c.ROWID as chat_id
FROM message m
LEFT JOIN chat_message_join cmj ON m.ROWID = cmj.message_id
LEFT JOIN chat c ON cmj.chat_id = c.ROWID
LEFT JOIN handle h ON m.handle_id = h.ROWID
WHERE m.text IS NOT NULL AND m.text != ''
ORDER BY c.ROWID, m.date
"""
cursor.execute(query)
rows = cursor.fetchall()
messages = []
for row in rows:
(
message_id,
text,
date,
is_from_me,
service,
chat_identifier,
chat_display_name,
handle_id,
chat_id,
) = row
message = {
"message_id": message_id,
"text": text,
"timestamp": self._convert_cocoa_timestamp(date),
"is_from_me": bool(is_from_me),
"service": service or "iMessage",
"chat_identifier": chat_identifier or "Unknown",
"chat_display_name": chat_display_name or "Unknown Chat",
"handle_id": handle_id or "Unknown",
"contact_name": self._get_contact_name(handle_id or ""),
"chat_id": chat_id,
}
messages.append(message)
conn.close()
print(f"Found {len(messages)} messages in database")
return messages
except sqlite3.Error as e:
print(f"Error reading iMessage database: {e}")
return []
except Exception as e:
print(f"Unexpected error reading iMessage database: {e}")
return []
def _group_messages_by_chat(self, messages: list[dict]) -> dict[int, list[dict]]:
"""
Group messages by chat ID.
Args:
messages: List of message dictionaries
Returns:
Dictionary mapping chat_id to list of messages
"""
chats = {}
for message in messages:
chat_id = message["chat_id"]
if chat_id not in chats:
chats[chat_id] = []
chats[chat_id].append(message)
return chats
def _create_concatenated_content(self, chat_id: int, messages: list[dict]) -> str:
"""
Create concatenated content from chat messages.
Args:
chat_id: The chat ID
messages: List of messages in the chat
Returns:
Concatenated text content
"""
if not messages:
return ""
# Get chat info from first message
first_msg = messages[0]
chat_name = first_msg["chat_display_name"]
chat_identifier = first_msg["chat_identifier"]
# Build message content
message_parts = []
for message in messages:
timestamp = message["timestamp"]
is_from_me = message["is_from_me"]
text = message["text"]
contact_name = message["contact_name"]
if is_from_me:
prefix = "[You]"
else:
prefix = f"[{contact_name}]"
if timestamp != "Unknown":
prefix += f" ({timestamp})"
message_parts.append(f"{prefix}: {text}")
concatenated_text = "\n\n".join(message_parts)
doc_content = f"""Chat: {chat_name}
Identifier: {chat_identifier}
Messages ({len(messages)} messages):
{concatenated_text}
"""
return doc_content
def _create_individual_content(self, message: dict) -> str:
"""
Create content for individual message.
Args:
message: Message dictionary
Returns:
Formatted message content
"""
timestamp = message["timestamp"]
is_from_me = message["is_from_me"]
text = message["text"]
contact_name = message["contact_name"]
chat_name = message["chat_display_name"]
sender = "You" if is_from_me else contact_name
return f"""Message from {sender} in chat "{chat_name}"
Time: {timestamp}
Content: {text}
"""
def load_data(self, input_dir: str | None = None, **load_kwargs: Any) -> list[Document]:
"""
Load iMessage data and return as documents.
Args:
input_dir: Optional path to directory containing chat.db file.
If not provided, uses default macOS location.
**load_kwargs: Additional arguments (unused)
Returns:
List of Document objects containing iMessage data
"""
docs = []
# Determine database path
if input_dir:
db_path = Path(input_dir) / "chat.db"
else:
db_path = self._get_default_chat_db_path()
print(f"Reading iMessage database from: {db_path}")
# Read messages from database
messages = self._read_messages_from_db(db_path)
if not messages:
return docs
if self.concatenate_conversations:
# Group messages by chat and create concatenated documents
chats = self._group_messages_by_chat(messages)
for chat_id, chat_messages in chats.items():
if not chat_messages:
continue
content = self._create_concatenated_content(chat_id, chat_messages)
# Create metadata
first_msg = chat_messages[0]
last_msg = chat_messages[-1]
metadata = {
"source": "iMessage",
"chat_id": chat_id,
"chat_name": first_msg["chat_display_name"],
"chat_identifier": first_msg["chat_identifier"],
"message_count": len(chat_messages),
"first_message_date": first_msg["timestamp"],
"last_message_date": last_msg["timestamp"],
"participants": list(
{msg["contact_name"] for msg in chat_messages if not msg["is_from_me"]}
),
}
doc = Document(text=content, metadata=metadata)
docs.append(doc)
else:
# Create individual documents for each message
for message in messages:
content = self._create_individual_content(message)
metadata = {
"source": "iMessage",
"message_id": message["message_id"],
"chat_id": message["chat_id"],
"chat_name": message["chat_display_name"],
"chat_identifier": message["chat_identifier"],
"timestamp": message["timestamp"],
"is_from_me": message["is_from_me"],
"contact_name": message["contact_name"],
"service": message["service"],
}
doc = Document(text=content, metadata=metadata)
docs.append(doc)
print(f"Created {len(docs)} documents from iMessage data")
return docs

View File

@@ -1,125 +0,0 @@
"""
iMessage RAG Example.
This example demonstrates how to build a RAG system on your iMessage conversation history.
"""
import asyncio
from pathlib import Path
from leann.chunking_utils import create_text_chunks
from apps.base_rag_example import BaseRAGExample
from apps.imessage_data.imessage_reader import IMessageReader
class IMessageRAG(BaseRAGExample):
"""RAG example for iMessage conversation history."""
def __init__(self):
super().__init__(
name="iMessage",
description="RAG on your iMessage conversation history",
default_index_name="imessage_index",
)
def _add_specific_arguments(self, parser):
"""Add iMessage-specific arguments."""
imessage_group = parser.add_argument_group("iMessage Parameters")
imessage_group.add_argument(
"--db-path",
type=str,
default=None,
help="Path to iMessage chat.db file (default: ~/Library/Messages/chat.db)",
)
imessage_group.add_argument(
"--concatenate-conversations",
action="store_true",
default=True,
help="Concatenate messages within conversations for better context (default: True)",
)
imessage_group.add_argument(
"--no-concatenate-conversations",
action="store_true",
help="Process each message individually instead of concatenating by conversation",
)
imessage_group.add_argument(
"--chunk-size",
type=int,
default=1000,
help="Maximum characters per text chunk (default: 1000)",
)
imessage_group.add_argument(
"--chunk-overlap",
type=int,
default=200,
help="Overlap between text chunks (default: 200)",
)
async def load_data(self, args) -> list[str]:
"""Load iMessage history and convert to text chunks."""
print("Loading iMessage conversation history...")
# Determine concatenation setting
concatenate = args.concatenate_conversations and not args.no_concatenate_conversations
# Initialize iMessage reader
reader = IMessageReader(concatenate_conversations=concatenate)
# Load documents
try:
if args.db_path:
# Use custom database path
db_dir = str(Path(args.db_path).parent)
documents = reader.load_data(input_dir=db_dir)
else:
# Use default macOS location
documents = reader.load_data()
except Exception as e:
print(f"Error loading iMessage data: {e}")
print("\nTroubleshooting tips:")
print("1. Make sure you have granted Full Disk Access to your terminal/IDE")
print("2. Check that the iMessage database exists at ~/Library/Messages/chat.db")
print("3. Try specifying a custom path with --db-path if you have a backup")
return []
if not documents:
print("No iMessage conversations found!")
return []
print(f"Loaded {len(documents)} iMessage documents")
# Show some statistics
total_messages = sum(doc.metadata.get("message_count", 1) for doc in documents)
print(f"Total messages: {total_messages}")
if concatenate:
# Show chat statistics
chat_names = [doc.metadata.get("chat_name", "Unknown") for doc in documents]
unique_chats = len(set(chat_names))
print(f"Unique conversations: {unique_chats}")
# Convert to text chunks
all_texts = create_text_chunks(
documents,
chunk_size=args.chunk_size,
chunk_overlap=args.chunk_overlap,
)
# Apply max_items limit if specified
if args.max_items > 0:
all_texts = all_texts[: args.max_items]
print(f"Limited to {len(all_texts)} text chunks (max_items={args.max_items})")
return all_texts
async def main():
"""Main entry point."""
app = IMessageRAG()
await app.run()
if __name__ == "__main__":
asyncio.run(main())

View File

@@ -1,113 +0,0 @@
## Vision-based PDF Multi-Vector Demos (macOS/MPS)
This folder contains two demos to index PDF pages as images and run multi-vector retrieval with ColPali/ColQwen2, plus optional similarity map visualization and answer generation.
### What youll run
- `multi-vector-leann-paper-example.py`: local PDF → pages → embed → build HNSW index → search.
- `multi-vector-leann-similarity-map.py`: HF dataset (default) or local pages → embed → index → retrieve → similarity maps → optional Qwen-VL answer.
## Prerequisites (macOS)
### 1) Homebrew poppler (for pdf2image)
```bash
brew install poppler
which pdfinfo && pdfinfo -v
```
### 2) Python environment
Use uv (recommended) or pip. Python 3.9+.
Using uv:
```bash
uv pip install \
colpali_engine \
pdf2image \
pillow \
matplotlib qwen_vl_utils \
einops \
seaborn
```
Notes:
- On first run, models download from Hugging Face. Login/config if needed.
- The scripts auto-select device: CUDA > MPS > CPU. Verify MPS:
```bash
python -c "import torch; print('MPS available:', bool(getattr(torch.backends, 'mps', None) and torch.backends.mps.is_available()))"
```
## Run the demos
### A) Local PDF example
Converts a local PDF into page images, embeds them, builds an index, and searches.
```bash
cd apps/multimodal/vision-based-pdf-multi-vector
# If you don't have the sample PDF locally, download it (ignored by Git)
mkdir -p pdfs
curl -L -o pdfs/2004.12832v2.pdf https://arxiv.org/pdf/2004.12832.pdf
ls pdfs/2004.12832v2.pdf
# Ensure output dir exists
mkdir -p pages
python multi-vector-leann-paper-example.py
```
Expected:
- Page images in `pages/`.
- Console prints like `Using device=mps, dtype=...` and retrieved file paths for queries.
To use your own PDF: edit `pdf_path` near the top of the script.
### B) Similarity map + answer demo
Uses HF dataset `weaviate/arXiv-AI-papers-multi-vector` by default; can switch to local pages.
```bash
cd apps/multimodal/vision-based-pdf-multi-vector
python multi-vector-leann-similarity-map.py
```
Artifacts (when enabled):
- Retrieved pages: `./figures/retrieved_page_rank{K}.png`
- Similarity maps: `./figures/similarity_map_rank{K}.png`
Key knobs in the script (top of file):
- `QUERY`: your question
- `MODEL`: `"colqwen2"` or `"colpali"`
- `USE_HF_DATASET`: set `False` to use local pages
- `PDF`, `PAGES_DIR`: for local mode
- `INDEX_PATH`, `TOPK`, `FIRST_STAGE_K`, `REBUILD_INDEX`
- `SIMILARITY_MAP`, `SIM_TOKEN_IDX`, `SIM_OUTPUT`
- `ANSWER`, `MAX_NEW_TOKENS` (Qwen-VL)
## Troubleshooting
- pdf2image errors on macOS: ensure `brew install poppler` and `pdfinfo` works in terminal.
- Slow or OOM on MPS: reduce dataset size (e.g., set `MAX_DOCS`) or switch to CPU.
- NaNs on MPS: keep fp32 on MPS (default in similarity-map script); avoid fp16 there.
- First-run model downloads can be large; ensure network access (HF mirrors if needed).
## Notes
- Index files are under `./indexes/`. Delete or set `REBUILD_INDEX=True` to rebuild.
- For local PDFs, page images go to `./pages/`.
### Retrieval and Visualization Example
Example settings in `multi-vector-leann-similarity-map.py`:
- `QUERY = "How does DeepSeek-V2 compare against the LLaMA family of LLMs?"`
- `SIMILARITY_MAP = True` (to generate heatmaps)
- `TOPK = 1` (save the top retrieved page and its similarity map)
Run:
```bash
cd apps/multimodal/vision-based-pdf-multi-vector
python multi-vector-leann-similarity-map.py
```
Outputs (by default):
- Retrieved page: `./figures/retrieved_page_rank1.png`
- Similarity map: `./figures/similarity_map_rank1.png`
Sample visualization (example result, and the query is "QUERY = "How does Vim model performance and efficiency compared to other models?"
"):
![Similarity map example](fig/image.png)
Notes:
- Set `SIM_TOKEN_IDX` to visualize a specific token index; set `-1` to auto-select the most salient token.
- If you change `SIM_OUTPUT` to a file path (e.g., `./figures/my_map.png`), multiple ranks are saved as `my_map_rank{K}.png`.

View File

Binary file not shown.

Before

Width:  |  Height:  |  Size: 166 KiB

View File

@@ -169,7 +169,7 @@ def _embed_images(model, processor, images: list[Image.Image]) -> list[Any]:
)
doc_vecs: list[Any] = []
for batch_doc in tqdm(dataloader, desc="Embedding images"):
for batch_doc in dataloader:
with torch.no_grad():
batch_doc = {k: v.to(model.device) for k, v in batch_doc.items()}
# autocast on CUDA for bf16/fp16; on CPU/MPS stay in fp32
@@ -200,7 +200,7 @@ def _embed_queries(model, processor, queries: list[str]) -> list[Any]:
)
q_vecs: list[Any] = []
for batch_query in tqdm(dataloader, desc="Embedding queries"):
for batch_query in dataloader:
with torch.no_grad():
batch_query = {k: v.to(model.device) for k, v in batch_query.items()}
if model.device.type == "cuda":
@@ -362,7 +362,7 @@ if USE_HF_DATASET:
N = len(dataset) if MAX_DOCS is None else min(MAX_DOCS, len(dataset))
filepaths: list[str] = []
images: list[Image.Image] = []
for i in tqdm(range(N), desc="Loading dataset", total=N ):
for i in tqdm(range(N), desc="Loading dataset"):
p = dataset[i]
# Compose a descriptive identifier for printing later
identifier = f"arXiv:{p['paper_arxiv_id']}|title:{p['paper_title']}|page:{int(p['page_number'])}|id:{p['page_id']}"

View File

@@ -4,24 +4,39 @@
# pip install tqdm
# pip install pillow
# %%
from pdf2image import convert_from_path
pdf_path = "pdfs/2004.12832v2.pdf"
images = convert_from_path(pdf_path)
for i, image in enumerate(images):
image.save(f"pages/page_{i + 1}.png", "PNG")
# %%
import os
import re
import sys
from pathlib import Path
from typing import cast
from PIL import Image
from tqdm import tqdm
# Ensure local leann packages are importable before importing them
# Make local leann packages importable without installing
_repo_root = Path(__file__).resolve().parents[3]
_leann_core_src = _repo_root / "packages" / "leann-core" / "src"
_leann_hnsw_pkg = _repo_root / "packages" / "leann-backend-hnsw"
import sys
if str(_leann_core_src) not in sys.path:
sys.path.append(str(_leann_core_src))
if str(_leann_hnsw_pkg) not in sys.path:
sys.path.append(str(_leann_hnsw_pkg))
from leann_multi_vector import LeannMultiVector
class LeannRetriever(LeannMultiVector):
pass
# %%
from typing import cast
import torch
from colpali_engine.models import ColPali
@@ -73,6 +88,13 @@ for batch_query in dataloader:
qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
print(qs[0].shape)
# %%
import re
from PIL import Image
from tqdm import tqdm
page_filenames = sorted(os.listdir("./pages"), key=lambda n: int(re.search(r"\d+", n).group()))
images = [Image.open(os.path.join("./pages", name)) for name in page_filenames]

View File

@@ -1,183 +0,0 @@
#!/usr/bin/env python3
import re
import sys
from datetime import datetime, timedelta
from pathlib import Path
from leann import LeannSearcher
INDEX_PATH = str(Path("./").resolve() / "demo.leann")
class TimeParser:
def __init__(self):
# Main pattern: captures optional fuzzy modifier, number, unit, and optional "ago"
self.pattern = r"(?:(around|about|roughly|approximately)\s+)?(\d+)\s+(hour|day|week|month|year)s?(?:\s+ago)?"
# Compile for performance
self.regex = re.compile(self.pattern, re.IGNORECASE)
# Stop words to remove before regex parsing
self.stop_words = {
"in",
"at",
"of",
"by",
"as",
"me",
"the",
"a",
"an",
"and",
"any",
"find",
"search",
"list",
"ago",
"back",
"past",
"earlier",
}
def clean_text(self, text):
"""Remove stop words from text"""
words = text.split()
cleaned = " ".join(word for word in words if word.lower() not in self.stop_words)
return cleaned
def parse(self, text):
"""Extract all time expressions from text"""
# Clean text first
cleaned_text = self.clean_text(text)
matches = []
for match in self.regex.finditer(cleaned_text):
fuzzy = match.group(1) # "around", "about", etc.
number = int(match.group(2))
unit = match.group(3).lower()
matches.append(
{
"full_match": match.group(0),
"fuzzy": bool(fuzzy),
"number": number,
"unit": unit,
"range": self.calculate_range(number, unit, bool(fuzzy)),
}
)
return matches
def calculate_range(self, number, unit, is_fuzzy):
"""Convert to actual datetime range and return ISO format strings"""
units = {
"hour": timedelta(hours=number),
"day": timedelta(days=number),
"week": timedelta(weeks=number),
"month": timedelta(days=number * 30),
"year": timedelta(days=number * 365),
}
delta = units[unit]
now = datetime.now()
target = now - delta
if is_fuzzy:
buffer = delta * 0.2 # 20% buffer for fuzzy
start = (target - buffer).isoformat()
end = (target + buffer).isoformat()
else:
start = target.isoformat()
end = now.isoformat()
return (start, end)
def search_files(query, top_k=15):
"""Search the index and return results"""
# Parse time expressions
parser = TimeParser()
time_matches = parser.parse(query)
# Remove time expressions from query for semantic search
clean_query = query
if time_matches:
for match in time_matches:
clean_query = clean_query.replace(match["full_match"], "").strip()
# Check if clean_query is less than 4 characters
if len(clean_query) < 4:
print("Error: add more input for accurate results.")
return
# Single query to vector DB
searcher = LeannSearcher(INDEX_PATH)
results = searcher.search(
clean_query if clean_query else query, top_k=top_k, recompute_embeddings=False
)
# Filter by time if time expression found
if time_matches:
time_range = time_matches[0]["range"] # Use first time expression
start_time, end_time = time_range
filtered_results = []
for result in results:
# Access metadata attribute directly (not .get())
metadata = result.metadata if hasattr(result, "metadata") else {}
if metadata:
# Check modification date first, fall back to creation date
date_str = metadata.get("modification_date") or metadata.get("creation_date")
if date_str:
# Convert strings to datetime objects for proper comparison
try:
file_date = datetime.fromisoformat(date_str)
start_dt = datetime.fromisoformat(start_time)
end_dt = datetime.fromisoformat(end_time)
# Compare dates properly
if start_dt <= file_date <= end_dt:
filtered_results.append(result)
except (ValueError, TypeError):
# Handle invalid date formats
print(f"Warning: Invalid date format in metadata: {date_str}")
continue
results = filtered_results
# Print results
print(f"\nSearch results for: '{query}'")
if time_matches:
print(
f"Time filter: {time_matches[0]['number']} {time_matches[0]['unit']}(s) {'(fuzzy)' if time_matches[0]['fuzzy'] else ''}"
)
print(
f"Date range: {time_matches[0]['range'][0][:10]} to {time_matches[0]['range'][1][:10]}"
)
print("-" * 80)
for i, result in enumerate(results, 1):
print(f"\n[{i}] Score: {result.score:.4f}")
print(f"Content: {result.text}")
# Show metadata if present
metadata = result.metadata if hasattr(result, "metadata") else None
if metadata:
if "creation_date" in metadata:
print(f"Created: {metadata['creation_date']}")
if "modification_date" in metadata:
print(f"Modified: {metadata['modification_date']}")
print("-" * 80)
if __name__ == "__main__":
if len(sys.argv) < 2:
print('Usage: python search_index.py "<search query>" [top_k]')
sys.exit(1)
query = sys.argv[1]
top_k = int(sys.argv[2]) if len(sys.argv) > 2 else 15
search_files(query, top_k)

View File

@@ -1,82 +0,0 @@
#!/usr/bin/env python3
import json
import sys
from pathlib import Path
from leann import LeannBuilder
def process_json_items(json_file_path):
"""Load and process JSON file with metadata items"""
with open(json_file_path, encoding="utf-8") as f:
items = json.load(f)
# Guard against empty JSON
if not items:
print("⚠️ No items found in the JSON file. Exiting gracefully.")
return
INDEX_PATH = str(Path("./").resolve() / "demo.leann")
builder = LeannBuilder(backend_name="hnsw", is_recompute=False)
total_items = len(items)
items_added = 0
print(f"Processing {total_items} items...")
for idx, item in enumerate(items):
try:
# Create embedding text sentence
embedding_text = f"{item.get('Name', 'unknown')} located at {item.get('Path', 'unknown')} and size {item.get('Size', 'unknown')} bytes with content type {item.get('ContentType', 'unknown')} and kind {item.get('Kind', 'unknown')}"
# Prepare metadata with dates
metadata = {}
if "CreationDate" in item:
metadata["creation_date"] = item["CreationDate"]
if "ContentChangeDate" in item:
metadata["modification_date"] = item["ContentChangeDate"]
# Add to builder
builder.add_text(embedding_text, metadata=metadata)
items_added += 1
except Exception as e:
print(f"\n⚠️ Warning: Failed to process item {idx}: {e}")
continue
# Show progress
progress = (idx + 1) / total_items * 100
sys.stdout.write(f"\rProgress: {idx + 1}/{total_items} ({progress:.1f}%)")
sys.stdout.flush()
print() # New line after progress
# Guard against no successfully added items
if items_added == 0:
print("⚠️ No items were successfully added to the index. Exiting gracefully.")
return
print(f"\n✅ Successfully processed {items_added}/{total_items} items")
print("Building index...")
try:
builder.build_index(INDEX_PATH)
print(f"✓ Index saved to {INDEX_PATH}")
except ValueError as e:
if "No chunks added" in str(e):
print("⚠️ No chunks were added to the builder. Index not created.")
else:
raise
if __name__ == "__main__":
if len(sys.argv) != 2:
print("Usage: python build_index.py <json_file>")
sys.exit(1)
json_file = sys.argv[1]
if not Path(json_file).exists():
print(f"Error: File {json_file} not found")
sys.exit(1)
process_json_items(json_file)

View File

@@ -1,265 +0,0 @@
#!/usr/bin/env python3
"""
Spotlight Metadata Dumper for Vector DB
Extracts only essential metadata for semantic search embeddings
Output is optimized for vector database storage with minimal fields
"""
import json
import sys
from datetime import datetime
# Check platform before importing macOS-specific modules
if sys.platform != "darwin":
print("This script requires macOS (uses Spotlight)")
sys.exit(1)
from Foundation import NSDate, NSMetadataQuery, NSPredicate, NSRunLoop
# EDIT THIS LIST: Add or remove folders to search
# Can be either:
# - Folder names relative to home directory (e.g., "Desktop", "Downloads")
# - Absolute paths (e.g., "/Applications", "/System/Library")
SEARCH_FOLDERS = [
"Desktop",
"Downloads",
"Documents",
"Music",
"Pictures",
"Movies",
# "Library", # Uncomment to include
# "/Applications", # Absolute path example
# "Code/Projects", # Subfolder example
# Add any other folders here
]
def convert_to_serializable(obj):
"""Convert NS objects to Python serializable types"""
if obj is None:
return None
# Handle NSDate
if hasattr(obj, "timeIntervalSince1970"):
return datetime.fromtimestamp(obj.timeIntervalSince1970()).isoformat()
# Handle NSArray
if hasattr(obj, "count") and hasattr(obj, "objectAtIndex_"):
return [convert_to_serializable(obj.objectAtIndex_(i)) for i in range(obj.count())]
# Convert to string
try:
return str(obj)
except Exception:
return repr(obj)
def dump_spotlight_data(max_items=10, output_file="spotlight_dump.json"):
"""
Dump Spotlight data using public.item predicate
"""
# Build full paths from SEARCH_FOLDERS
import os
home_dir = os.path.expanduser("~")
search_paths = []
print("Search locations:")
for folder in SEARCH_FOLDERS:
# Check if it's an absolute path or relative
if folder.startswith("/"):
full_path = folder
else:
full_path = os.path.join(home_dir, folder)
if os.path.exists(full_path):
search_paths.append(full_path)
print(f"{full_path}")
else:
print(f"{full_path} (not found)")
if not search_paths:
print("No valid search paths found!")
return []
print(f"\nDumping {max_items} items from Spotlight (public.item)...")
# Create query with public.item predicate
query = NSMetadataQuery.alloc().init()
predicate = NSPredicate.predicateWithFormat_("kMDItemContentTypeTree CONTAINS 'public.item'")
query.setPredicate_(predicate)
# Set search scopes to our specific folders
query.setSearchScopes_(search_paths)
print("Starting query...")
query.startQuery()
# Wait for gathering to complete
run_loop = NSRunLoop.currentRunLoop()
print("Gathering results...")
# Let it gather for a few seconds
for i in range(50): # 5 seconds max
run_loop.runMode_beforeDate_(
"NSDefaultRunLoopMode", NSDate.dateWithTimeIntervalSinceNow_(0.1)
)
# Check gathering status periodically
if i % 10 == 0:
current_count = query.resultCount()
if current_count > 0:
print(f" Found {current_count} items so far...")
# Continue while still gathering (up to 2 more seconds)
timeout = NSDate.dateWithTimeIntervalSinceNow_(2.0)
while query.isGathering() and timeout.timeIntervalSinceNow() > 0:
run_loop.runMode_beforeDate_(
"NSDefaultRunLoopMode", NSDate.dateWithTimeIntervalSinceNow_(0.1)
)
query.stopQuery()
total_results = query.resultCount()
print(f"Found {total_results} total items")
if total_results == 0:
print("No results found")
return []
# Process items
items_to_process = min(total_results, max_items)
results = []
# ONLY relevant attributes for vector embeddings
# These provide essential context for semantic search without bloat
attributes = [
"kMDItemPath", # Full path for file retrieval
"kMDItemFSName", # Filename for display & embedding
"kMDItemFSSize", # Size for filtering/ranking
"kMDItemContentType", # File type for categorization
"kMDItemKind", # Human-readable type for embedding
"kMDItemFSCreationDate", # Temporal context
"kMDItemFSContentChangeDate", # Recency for ranking
]
print(f"Processing {items_to_process} items...")
for i in range(items_to_process):
try:
item = query.resultAtIndex_(i)
metadata = {}
# Extract ONLY the relevant attributes
for attr in attributes:
try:
value = item.valueForAttribute_(attr)
if value is not None:
# Keep the attribute name clean (remove kMDItem prefix for cleaner JSON)
clean_key = attr.replace("kMDItem", "").replace("FS", "")
metadata[clean_key] = convert_to_serializable(value)
except (AttributeError, ValueError, TypeError):
continue
# Only add if we have at least a path
if metadata.get("Path"):
results.append(metadata)
except Exception as e:
print(f"Error processing item {i}: {e}")
continue
# Save to JSON
with open(output_file, "w", encoding="utf-8") as f:
json.dump(results, f, indent=2, ensure_ascii=False)
print(f"\n✓ Saved {len(results)} items to {output_file}")
# Show summary
print("\nSample items:")
import os
home_dir = os.path.expanduser("~")
for i, item in enumerate(results[:3]):
print(f"\n[Item {i + 1}]")
print(f" Path: {item.get('Path', 'N/A')}")
print(f" Name: {item.get('Name', 'N/A')}")
print(f" Type: {item.get('ContentType', 'N/A')}")
print(f" Kind: {item.get('Kind', 'N/A')}")
# Handle size properly
size = item.get("Size")
if size:
try:
size_int = int(size)
if size_int > 1024 * 1024:
print(f" Size: {size_int / (1024 * 1024):.2f} MB")
elif size_int > 1024:
print(f" Size: {size_int / 1024:.2f} KB")
else:
print(f" Size: {size_int} bytes")
except (ValueError, TypeError):
print(f" Size: {size}")
# Show dates
if "CreationDate" in item:
print(f" Created: {item['CreationDate']}")
if "ContentChangeDate" in item:
print(f" Modified: {item['ContentChangeDate']}")
# Count by type
type_counts = {}
for item in results:
content_type = item.get("ContentType", "unknown")
type_counts[content_type] = type_counts.get(content_type, 0) + 1
print(f"\nTotal items saved: {len(results)}")
if type_counts:
print("\nTop content types:")
for ct, count in sorted(type_counts.items(), key=lambda x: x[1], reverse=True)[:5]:
print(f" {ct}: {count} items")
# Count by folder
folder_counts = {}
for item in results:
path = item.get("Path", "")
for folder in SEARCH_FOLDERS:
# Build the full folder path
if folder.startswith("/"):
folder_path = folder
else:
folder_path = os.path.join(home_dir, folder)
if path.startswith(folder_path):
folder_counts[folder] = folder_counts.get(folder, 0) + 1
break
if folder_counts:
print("\nItems by location:")
for folder, count in sorted(folder_counts.items(), key=lambda x: x[1], reverse=True):
print(f" {folder}: {count} items")
return results
def main():
# Parse arguments
if len(sys.argv) > 1:
try:
max_items = int(sys.argv[1])
except ValueError:
print("Usage: python spot.py [number_of_items]")
print("Default: 10 items")
sys.exit(1)
else:
max_items = 10
output_file = sys.argv[2] if len(sys.argv) > 2 else "spotlight_dump.json"
# Run dump
dump_spotlight_data(max_items=max_items, output_file=output_file)
if __name__ == "__main__":
main()

View File

@@ -1 +0,0 @@
# Slack MCP data integration for LEANN

View File

@@ -1,510 +0,0 @@
#!/usr/bin/env python3
"""
Slack MCP Reader for LEANN
This module provides functionality to connect to Slack MCP servers and fetch message data
for indexing in LEANN. It supports various Slack MCP server implementations and provides
flexible message processing options.
"""
import asyncio
import json
import logging
from typing import Any, Optional
logger = logging.getLogger(__name__)
class SlackMCPReader:
"""
Reader for Slack data via MCP (Model Context Protocol) servers.
This class connects to Slack MCP servers to fetch message data and convert it
into a format suitable for LEANN indexing.
"""
def __init__(
self,
mcp_server_command: str,
workspace_name: Optional[str] = None,
concatenate_conversations: bool = True,
max_messages_per_conversation: int = 100,
max_retries: int = 5,
retry_delay: float = 2.0,
):
"""
Initialize the Slack MCP Reader.
Args:
mcp_server_command: Command to start the MCP server (e.g., 'slack-mcp-server')
workspace_name: Optional workspace name to filter messages
concatenate_conversations: Whether to group messages by channel/thread
max_messages_per_conversation: Maximum messages to include per conversation
max_retries: Maximum number of retries for failed operations
retry_delay: Initial delay between retries in seconds
"""
self.mcp_server_command = mcp_server_command
self.workspace_name = workspace_name
self.concatenate_conversations = concatenate_conversations
self.max_messages_per_conversation = max_messages_per_conversation
self.max_retries = max_retries
self.retry_delay = retry_delay
self.mcp_process = None
async def start_mcp_server(self):
"""Start the MCP server process."""
try:
self.mcp_process = await asyncio.create_subprocess_exec(
*self.mcp_server_command.split(),
stdin=asyncio.subprocess.PIPE,
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE,
)
logger.info(f"Started MCP server: {self.mcp_server_command}")
except Exception as e:
logger.error(f"Failed to start MCP server: {e}")
raise
async def stop_mcp_server(self):
"""Stop the MCP server process."""
if self.mcp_process:
self.mcp_process.terminate()
await self.mcp_process.wait()
logger.info("Stopped MCP server")
async def send_mcp_request(self, request: dict[str, Any]) -> dict[str, Any]:
"""Send a request to the MCP server and get response."""
if not self.mcp_process:
raise RuntimeError("MCP server not started")
request_json = json.dumps(request) + "\n"
self.mcp_process.stdin.write(request_json.encode())
await self.mcp_process.stdin.drain()
response_line = await self.mcp_process.stdout.readline()
if not response_line:
raise RuntimeError("No response from MCP server")
return json.loads(response_line.decode().strip())
async def initialize_mcp_connection(self):
"""Initialize the MCP connection."""
init_request = {
"jsonrpc": "2.0",
"id": 1,
"method": "initialize",
"params": {
"protocolVersion": "2024-11-05",
"capabilities": {},
"clientInfo": {"name": "leann-slack-reader", "version": "1.0.0"},
},
}
response = await self.send_mcp_request(init_request)
if "error" in response:
raise RuntimeError(f"MCP initialization failed: {response['error']}")
logger.info("MCP connection initialized successfully")
async def list_available_tools(self) -> list[dict[str, Any]]:
"""List available tools from the MCP server."""
list_request = {"jsonrpc": "2.0", "id": 2, "method": "tools/list", "params": {}}
response = await self.send_mcp_request(list_request)
if "error" in response:
raise RuntimeError(f"Failed to list tools: {response['error']}")
return response.get("result", {}).get("tools", [])
def _is_cache_sync_error(self, error: dict) -> bool:
"""Check if the error is related to users cache not being ready."""
if isinstance(error, dict):
message = error.get("message", "").lower()
return (
"users cache is not ready" in message or "sync process is still running" in message
)
return False
async def _retry_with_backoff(self, func, *args, **kwargs):
"""Retry a function with exponential backoff, especially for cache sync issues."""
last_exception = None
for attempt in range(self.max_retries + 1):
try:
return await func(*args, **kwargs)
except Exception as e:
last_exception = e
# Check if this is a cache sync error
error_dict = {}
if hasattr(e, "args") and e.args and isinstance(e.args[0], dict):
error_dict = e.args[0]
elif "Failed to fetch messages" in str(e):
# Try to extract error from the exception message
import re
match = re.search(r"'error':\s*(\{[^}]+\})", str(e))
if match:
try:
error_dict = eval(match.group(1))
except (ValueError, SyntaxError, NameError):
pass
else:
# Try alternative format
match = re.search(r"Failed to fetch messages:\s*(\{[^}]+\})", str(e))
if match:
try:
error_dict = eval(match.group(1))
except (ValueError, SyntaxError, NameError):
pass
if self._is_cache_sync_error(error_dict):
if attempt < self.max_retries:
delay = self.retry_delay * (2**attempt) # Exponential backoff
logger.info(
f"Cache sync not ready, waiting {delay:.1f}s before retry {attempt + 1}/{self.max_retries}"
)
await asyncio.sleep(delay)
continue
else:
logger.warning(
f"Cache sync still not ready after {self.max_retries} retries, giving up"
)
break
else:
# Not a cache sync error, don't retry
break
# If we get here, all retries failed or it's not a retryable error
raise last_exception
async def fetch_slack_messages(
self, channel: Optional[str] = None, limit: int = 100
) -> list[dict[str, Any]]:
"""
Fetch Slack messages using MCP tools with retry logic for cache sync issues.
Args:
channel: Optional channel name to filter messages
limit: Maximum number of messages to fetch
Returns:
List of message dictionaries
"""
return await self._retry_with_backoff(self._fetch_slack_messages_impl, channel, limit)
async def _fetch_slack_messages_impl(
self, channel: Optional[str] = None, limit: int = 100
) -> list[dict[str, Any]]:
"""
Internal implementation of fetch_slack_messages without retry logic.
"""
# This is a generic implementation - specific MCP servers may have different tool names
# Common tool names might be: 'get_messages', 'list_messages', 'fetch_channel_history'
tools = await self.list_available_tools()
logger.info(f"Available tools: {[tool.get('name') for tool in tools]}")
message_tool = None
# Look for a tool that can fetch messages - prioritize conversations_history
message_tool = None
# First, try to find conversations_history specifically
for tool in tools:
tool_name = tool.get("name", "").lower()
if "conversations_history" in tool_name:
message_tool = tool
logger.info(f"Found conversations_history tool: {tool}")
break
# If not found, look for other message-fetching tools
if not message_tool:
for tool in tools:
tool_name = tool.get("name", "").lower()
if any(
keyword in tool_name
for keyword in ["conversations_search", "message", "history"]
):
message_tool = tool
break
if not message_tool:
raise RuntimeError("No message fetching tool found in MCP server")
# Prepare tool call parameters
tool_params = {"limit": "180d"} # Use 180 days to get older messages
if channel:
# For conversations_history, use channel_id parameter
if message_tool["name"] == "conversations_history":
tool_params["channel_id"] = channel
else:
# Try common parameter names for channel specification
for param_name in ["channel", "channel_id", "channel_name"]:
tool_params[param_name] = channel
break
logger.info(f"Tool parameters: {tool_params}")
fetch_request = {
"jsonrpc": "2.0",
"id": 3,
"method": "tools/call",
"params": {"name": message_tool["name"], "arguments": tool_params},
}
response = await self.send_mcp_request(fetch_request)
if "error" in response:
raise RuntimeError(f"Failed to fetch messages: {response['error']}")
# Extract messages from response - format may vary by MCP server
result = response.get("result", {})
if "content" in result and isinstance(result["content"], list):
# Some MCP servers return content as a list
content = result["content"][0] if result["content"] else {}
if "text" in content:
try:
messages = json.loads(content["text"])
except json.JSONDecodeError:
# If not JSON, try to parse as CSV format (Slack MCP server format)
messages = self._parse_csv_messages(content["text"], channel)
else:
messages = result["content"]
else:
# Direct message format
messages = result.get("messages", [result])
return messages if isinstance(messages, list) else [messages]
def _parse_csv_messages(self, csv_text: str, channel: str) -> list[dict[str, Any]]:
"""Parse CSV format messages from Slack MCP server."""
import csv
import io
messages = []
try:
# Split by lines and process each line as a CSV row
lines = csv_text.strip().split("\n")
if not lines:
return messages
# Skip header line if it exists
start_idx = 0
if lines[0].startswith("MsgID,UserID,UserName"):
start_idx = 1
for line in lines[start_idx:]:
if not line.strip():
continue
# Parse CSV line
reader = csv.reader(io.StringIO(line))
try:
row = next(reader)
if len(row) >= 7: # Ensure we have enough columns
message = {
"ts": row[0],
"user": row[1],
"username": row[2],
"real_name": row[3],
"channel": row[4],
"thread_ts": row[5],
"text": row[6],
"time": row[7] if len(row) > 7 else "",
"reactions": row[8] if len(row) > 8 else "",
"cursor": row[9] if len(row) > 9 else "",
}
messages.append(message)
except Exception as e:
logger.warning(f"Failed to parse CSV line: {line[:100]}... Error: {e}")
continue
except Exception as e:
logger.warning(f"Failed to parse CSV messages: {e}")
# Fallback: treat entire text as one message
messages = [{"text": csv_text, "channel": channel or "unknown"}]
return messages
def _format_message(self, message: dict[str, Any]) -> str:
"""Format a single message for indexing."""
text = message.get("text", "")
user = message.get("user", message.get("username", "Unknown"))
channel = message.get("channel", message.get("channel_name", "Unknown"))
timestamp = message.get("ts", message.get("timestamp", ""))
# Format timestamp if available
formatted_time = ""
if timestamp:
try:
import datetime
if isinstance(timestamp, str) and "." in timestamp:
dt = datetime.datetime.fromtimestamp(float(timestamp))
formatted_time = dt.strftime("%Y-%m-%d %H:%M:%S")
elif isinstance(timestamp, (int, float)):
dt = datetime.datetime.fromtimestamp(timestamp)
formatted_time = dt.strftime("%Y-%m-%d %H:%M:%S")
else:
formatted_time = str(timestamp)
except (ValueError, TypeError):
formatted_time = str(timestamp)
# Build formatted message
parts = []
if channel:
parts.append(f"Channel: #{channel}")
if user:
parts.append(f"User: {user}")
if formatted_time:
parts.append(f"Time: {formatted_time}")
if text:
parts.append(f"Message: {text}")
return "\n".join(parts)
def _create_concatenated_content(self, messages: list[dict[str, Any]], channel: str) -> str:
"""Create concatenated content from multiple messages in a channel."""
if not messages:
return ""
# Sort messages by timestamp if available
try:
messages.sort(key=lambda x: float(x.get("ts", x.get("timestamp", 0))))
except (ValueError, TypeError):
pass # Keep original order if timestamps aren't numeric
# Limit messages per conversation
if len(messages) > self.max_messages_per_conversation:
messages = messages[-self.max_messages_per_conversation :]
# Create header
content_parts = [
f"Slack Channel: #{channel}",
f"Message Count: {len(messages)}",
f"Workspace: {self.workspace_name or 'Unknown'}",
"=" * 50,
"",
]
# Add messages
for message in messages:
formatted_msg = self._format_message(message)
if formatted_msg.strip():
content_parts.append(formatted_msg)
content_parts.append("-" * 30)
content_parts.append("")
return "\n".join(content_parts)
async def get_all_channels(self) -> list[str]:
"""Get list of all available channels."""
try:
channels_list_request = {
"jsonrpc": "2.0",
"id": 4,
"method": "tools/call",
"params": {"name": "channels_list", "arguments": {}},
}
channels_response = await self.send_mcp_request(channels_list_request)
if "result" in channels_response:
result = channels_response["result"]
if "content" in result and isinstance(result["content"], list):
content = result["content"][0] if result["content"] else {}
if "text" in content:
# Parse the channels from the response
channels = []
lines = content["text"].split("\n")
for line in lines:
if line.strip() and ("#" in line or "C" in line[:10]):
# Extract channel ID or name
parts = line.split()
for part in parts:
if part.startswith("C") and len(part) > 5:
channels.append(part)
elif part.startswith("#"):
channels.append(part[1:]) # Remove #
logger.info(f"Found {len(channels)} channels: {channels}")
return channels
return []
except Exception as e:
logger.warning(f"Failed to get channels list: {e}")
return []
async def read_slack_data(self, channels: Optional[list[str]] = None) -> list[str]:
"""
Read Slack data and return formatted text chunks.
Args:
channels: Optional list of channel names to fetch. If None, fetches from all available channels.
Returns:
List of formatted text chunks ready for LEANN indexing
"""
try:
await self.start_mcp_server()
await self.initialize_mcp_connection()
all_texts = []
if channels:
# Fetch specific channels
for channel in channels:
try:
messages = await self.fetch_slack_messages(channel=channel, limit=1000)
if messages:
if self.concatenate_conversations:
text_content = self._create_concatenated_content(messages, channel)
if text_content.strip():
all_texts.append(text_content)
else:
# Process individual messages
for message in messages:
formatted_msg = self._format_message(message)
if formatted_msg.strip():
all_texts.append(formatted_msg)
except Exception as e:
logger.warning(f"Failed to fetch messages from channel {channel}: {e}")
continue
else:
# Fetch from all available channels
logger.info("Fetching from all available channels...")
all_channels = await self.get_all_channels()
if not all_channels:
# Fallback to common channel names if we can't get the list
all_channels = ["general", "random", "announcements", "C0GN5BX0F"]
logger.info(f"Using fallback channels: {all_channels}")
for channel in all_channels:
try:
logger.info(f"Searching channel: {channel}")
messages = await self.fetch_slack_messages(channel=channel, limit=1000)
if messages:
if self.concatenate_conversations:
text_content = self._create_concatenated_content(messages, channel)
if text_content.strip():
all_texts.append(text_content)
else:
# Process individual messages
for message in messages:
formatted_msg = self._format_message(message)
if formatted_msg.strip():
all_texts.append(formatted_msg)
except Exception as e:
logger.warning(f"Failed to fetch messages from channel {channel}: {e}")
continue
return all_texts
finally:
await self.stop_mcp_server()
async def __aenter__(self):
"""Async context manager entry."""
await self.start_mcp_server()
await self.initialize_mcp_connection()
return self
async def __aexit__(self, exc_type, exc_val, exc_tb):
"""Async context manager exit."""
await self.stop_mcp_server()

View File

@@ -1,227 +0,0 @@
#!/usr/bin/env python3
"""
Slack RAG Application with MCP Support
This application enables RAG (Retrieval-Augmented Generation) on Slack messages
by connecting to Slack MCP servers to fetch live data and index it in LEANN.
Usage:
python -m apps.slack_rag --mcp-server "slack-mcp-server" --query "What did the team discuss about the project?"
"""
import argparse
import asyncio
from apps.base_rag_example import BaseRAGExample
from apps.slack_data.slack_mcp_reader import SlackMCPReader
class SlackMCPRAG(BaseRAGExample):
"""
RAG application for Slack messages via MCP servers.
This class provides a complete RAG pipeline for Slack data, including
MCP server connection, data fetching, indexing, and interactive chat.
"""
def __init__(self):
super().__init__(
name="Slack MCP RAG",
description="RAG application for Slack messages via MCP servers",
default_index_name="slack_messages",
)
def _add_specific_arguments(self, parser: argparse.ArgumentParser):
"""Add Slack MCP-specific arguments."""
parser.add_argument(
"--mcp-server",
type=str,
required=True,
help="Command to start the Slack MCP server (e.g., 'slack-mcp-server' or 'npx slack-mcp-server')",
)
parser.add_argument(
"--workspace-name",
type=str,
help="Slack workspace name for better organization and filtering",
)
parser.add_argument(
"--channels",
nargs="+",
help="Specific Slack channels to index (e.g., general random). If not specified, fetches from all available channels",
)
parser.add_argument(
"--concatenate-conversations",
action="store_true",
default=True,
help="Group messages by channel/thread for better context (default: True)",
)
parser.add_argument(
"--no-concatenate-conversations",
action="store_true",
help="Process individual messages instead of grouping by channel",
)
parser.add_argument(
"--max-messages-per-channel",
type=int,
default=100,
help="Maximum number of messages to include per channel (default: 100)",
)
parser.add_argument(
"--test-connection",
action="store_true",
help="Test MCP server connection and list available tools without indexing",
)
parser.add_argument(
"--max-retries",
type=int,
default=5,
help="Maximum number of retries for failed operations (default: 5)",
)
parser.add_argument(
"--retry-delay",
type=float,
default=2.0,
help="Initial delay between retries in seconds (default: 2.0)",
)
async def test_mcp_connection(self, args) -> bool:
"""Test the MCP server connection and display available tools."""
print(f"Testing connection to MCP server: {args.mcp_server}")
try:
reader = SlackMCPReader(
mcp_server_command=args.mcp_server,
workspace_name=args.workspace_name,
concatenate_conversations=not args.no_concatenate_conversations,
max_messages_per_conversation=args.max_messages_per_channel,
max_retries=args.max_retries,
retry_delay=args.retry_delay,
)
async with reader:
tools = await reader.list_available_tools()
print("Successfully connected to MCP server!")
print(f"Available tools ({len(tools)}):")
for i, tool in enumerate(tools, 1):
name = tool.get("name", "Unknown")
description = tool.get("description", "No description available")
print(f"\n{i}. {name}")
print(
f" Description: {description[:100]}{'...' if len(description) > 100 else ''}"
)
# Show input schema if available
schema = tool.get("inputSchema", {})
if schema.get("properties"):
props = list(schema["properties"].keys())[:3] # Show first 3 properties
print(
f" Parameters: {', '.join(props)}{'...' if len(schema['properties']) > 3 else ''}"
)
return True
except Exception as e:
print(f"Failed to connect to MCP server: {e}")
print("\nTroubleshooting tips:")
print("1. Make sure the MCP server is installed and accessible")
print("2. Check if the server command is correct")
print("3. Ensure you have proper authentication/credentials configured")
print("4. Try running the MCP server command directly to test it")
return False
async def load_data(self, args) -> list[str]:
"""Load Slack messages via MCP server."""
print(f"Connecting to Slack MCP server: {args.mcp_server}")
if args.workspace_name:
print(f"Workspace: {args.workspace_name}")
# Filter out empty strings from channels
channels = [ch for ch in args.channels if ch.strip()] if args.channels else None
if channels:
print(f"Channels: {', '.join(channels)}")
else:
print("Fetching from all available channels")
concatenate = not args.no_concatenate_conversations
print(
f"Processing mode: {'Concatenated conversations' if concatenate else 'Individual messages'}"
)
try:
reader = SlackMCPReader(
mcp_server_command=args.mcp_server,
workspace_name=args.workspace_name,
concatenate_conversations=concatenate,
max_messages_per_conversation=args.max_messages_per_channel,
max_retries=args.max_retries,
retry_delay=args.retry_delay,
)
texts = await reader.read_slack_data(channels=channels)
if not texts:
print("No messages found! This could mean:")
print("- The MCP server couldn't fetch messages")
print("- The specified channels don't exist or are empty")
print("- Authentication issues with the Slack workspace")
return []
print(f"Successfully loaded {len(texts)} text chunks from Slack")
# Show sample of what was loaded
if texts:
sample_text = texts[0][:200] + "..." if len(texts[0]) > 200 else texts[0]
print("\nSample content:")
print("-" * 40)
print(sample_text)
print("-" * 40)
return texts
except Exception as e:
print(f"Error loading Slack data: {e}")
print("\nThis might be due to:")
print("- MCP server connection issues")
print("- Authentication problems")
print("- Network connectivity issues")
print("- Incorrect channel names")
raise
async def run(self):
"""Main entry point with MCP connection testing."""
args = self.parser.parse_args()
# Test connection if requested
if args.test_connection:
success = await self.test_mcp_connection(args)
if not success:
return
print(
"MCP server is working! You can now run without --test-connection to start indexing."
)
return
# Run the standard RAG pipeline
await super().run()
async def main():
"""Main entry point for the Slack MCP RAG application."""
app = SlackMCPRAG()
await app.run()
if __name__ == "__main__":
asyncio.run(main())

View File

@@ -1 +0,0 @@
# Twitter MCP data integration for LEANN

View File

@@ -1,295 +0,0 @@
#!/usr/bin/env python3
"""
Twitter MCP Reader for LEANN
This module provides functionality to connect to Twitter MCP servers and fetch bookmark data
for indexing in LEANN. It supports various Twitter MCP server implementations and provides
flexible bookmark processing options.
"""
import asyncio
import json
import logging
from typing import Any, Optional
logger = logging.getLogger(__name__)
class TwitterMCPReader:
"""
Reader for Twitter bookmark data via MCP (Model Context Protocol) servers.
This class connects to Twitter MCP servers to fetch bookmark data and convert it
into a format suitable for LEANN indexing.
"""
def __init__(
self,
mcp_server_command: str,
username: Optional[str] = None,
include_tweet_content: bool = True,
include_metadata: bool = True,
max_bookmarks: int = 1000,
):
"""
Initialize the Twitter MCP Reader.
Args:
mcp_server_command: Command to start the MCP server (e.g., 'twitter-mcp-server')
username: Optional Twitter username to filter bookmarks
include_tweet_content: Whether to include full tweet content
include_metadata: Whether to include tweet metadata (likes, retweets, etc.)
max_bookmarks: Maximum number of bookmarks to fetch
"""
self.mcp_server_command = mcp_server_command
self.username = username
self.include_tweet_content = include_tweet_content
self.include_metadata = include_metadata
self.max_bookmarks = max_bookmarks
self.mcp_process = None
async def start_mcp_server(self):
"""Start the MCP server process."""
try:
self.mcp_process = await asyncio.create_subprocess_exec(
*self.mcp_server_command.split(),
stdin=asyncio.subprocess.PIPE,
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE,
)
logger.info(f"Started MCP server: {self.mcp_server_command}")
except Exception as e:
logger.error(f"Failed to start MCP server: {e}")
raise
async def stop_mcp_server(self):
"""Stop the MCP server process."""
if self.mcp_process:
self.mcp_process.terminate()
await self.mcp_process.wait()
logger.info("Stopped MCP server")
async def send_mcp_request(self, request: dict[str, Any]) -> dict[str, Any]:
"""Send a request to the MCP server and get response."""
if not self.mcp_process:
raise RuntimeError("MCP server not started")
request_json = json.dumps(request) + "\n"
self.mcp_process.stdin.write(request_json.encode())
await self.mcp_process.stdin.drain()
response_line = await self.mcp_process.stdout.readline()
if not response_line:
raise RuntimeError("No response from MCP server")
return json.loads(response_line.decode().strip())
async def initialize_mcp_connection(self):
"""Initialize the MCP connection."""
init_request = {
"jsonrpc": "2.0",
"id": 1,
"method": "initialize",
"params": {
"protocolVersion": "2024-11-05",
"capabilities": {},
"clientInfo": {"name": "leann-twitter-reader", "version": "1.0.0"},
},
}
response = await self.send_mcp_request(init_request)
if "error" in response:
raise RuntimeError(f"MCP initialization failed: {response['error']}")
logger.info("MCP connection initialized successfully")
async def list_available_tools(self) -> list[dict[str, Any]]:
"""List available tools from the MCP server."""
list_request = {"jsonrpc": "2.0", "id": 2, "method": "tools/list", "params": {}}
response = await self.send_mcp_request(list_request)
if "error" in response:
raise RuntimeError(f"Failed to list tools: {response['error']}")
return response.get("result", {}).get("tools", [])
async def fetch_twitter_bookmarks(self, limit: Optional[int] = None) -> list[dict[str, Any]]:
"""
Fetch Twitter bookmarks using MCP tools.
Args:
limit: Maximum number of bookmarks to fetch
Returns:
List of bookmark dictionaries
"""
tools = await self.list_available_tools()
bookmark_tool = None
# Look for a tool that can fetch bookmarks
for tool in tools:
tool_name = tool.get("name", "").lower()
if any(keyword in tool_name for keyword in ["bookmark", "saved", "favorite"]):
bookmark_tool = tool
break
if not bookmark_tool:
raise RuntimeError("No bookmark fetching tool found in MCP server")
# Prepare tool call parameters
tool_params = {}
if limit or self.max_bookmarks:
tool_params["limit"] = limit or self.max_bookmarks
if self.username:
tool_params["username"] = self.username
fetch_request = {
"jsonrpc": "2.0",
"id": 3,
"method": "tools/call",
"params": {"name": bookmark_tool["name"], "arguments": tool_params},
}
response = await self.send_mcp_request(fetch_request)
if "error" in response:
raise RuntimeError(f"Failed to fetch bookmarks: {response['error']}")
# Extract bookmarks from response
result = response.get("result", {})
if "content" in result and isinstance(result["content"], list):
content = result["content"][0] if result["content"] else {}
if "text" in content:
try:
bookmarks = json.loads(content["text"])
except json.JSONDecodeError:
# If not JSON, treat as plain text
bookmarks = [{"text": content["text"], "source": "twitter"}]
else:
bookmarks = result["content"]
else:
bookmarks = result.get("bookmarks", result.get("tweets", [result]))
return bookmarks if isinstance(bookmarks, list) else [bookmarks]
def _format_bookmark(self, bookmark: dict[str, Any]) -> str:
"""Format a single bookmark for indexing."""
# Extract tweet information
text = bookmark.get("text", bookmark.get("content", ""))
author = bookmark.get(
"author", bookmark.get("username", bookmark.get("user", {}).get("username", "Unknown"))
)
timestamp = bookmark.get("created_at", bookmark.get("timestamp", ""))
url = bookmark.get("url", bookmark.get("tweet_url", ""))
# Extract metadata if available
likes = bookmark.get("likes", bookmark.get("favorite_count", 0))
retweets = bookmark.get("retweets", bookmark.get("retweet_count", 0))
replies = bookmark.get("replies", bookmark.get("reply_count", 0))
# Build formatted bookmark
parts = []
# Header
parts.append("=== Twitter Bookmark ===")
if author:
parts.append(f"Author: @{author}")
if timestamp:
# Format timestamp if it's a standard format
try:
import datetime
if "T" in str(timestamp): # ISO format
dt = datetime.datetime.fromisoformat(timestamp.replace("Z", "+00:00"))
formatted_time = dt.strftime("%Y-%m-%d %H:%M:%S")
else:
formatted_time = str(timestamp)
parts.append(f"Date: {formatted_time}")
except (ValueError, TypeError):
parts.append(f"Date: {timestamp}")
if url:
parts.append(f"URL: {url}")
# Tweet content
if text and self.include_tweet_content:
parts.append("")
parts.append("Content:")
parts.append(text)
# Metadata
if self.include_metadata and any([likes, retweets, replies]):
parts.append("")
parts.append("Engagement:")
if likes:
parts.append(f" Likes: {likes}")
if retweets:
parts.append(f" Retweets: {retweets}")
if replies:
parts.append(f" Replies: {replies}")
# Extract hashtags and mentions if available
hashtags = bookmark.get("hashtags", [])
mentions = bookmark.get("mentions", [])
if hashtags or mentions:
parts.append("")
if hashtags:
parts.append(f"Hashtags: {', '.join(hashtags)}")
if mentions:
parts.append(f"Mentions: {', '.join(mentions)}")
return "\n".join(parts)
async def read_twitter_bookmarks(self) -> list[str]:
"""
Read Twitter bookmark data and return formatted text chunks.
Returns:
List of formatted text chunks ready for LEANN indexing
"""
try:
await self.start_mcp_server()
await self.initialize_mcp_connection()
print(f"Fetching up to {self.max_bookmarks} bookmarks...")
if self.username:
print(f"Filtering for user: @{self.username}")
bookmarks = await self.fetch_twitter_bookmarks()
if not bookmarks:
print("No bookmarks found")
return []
print(f"Processing {len(bookmarks)} bookmarks...")
all_texts = []
processed_count = 0
for bookmark in bookmarks:
try:
formatted_bookmark = self._format_bookmark(bookmark)
if formatted_bookmark.strip():
all_texts.append(formatted_bookmark)
processed_count += 1
except Exception as e:
logger.warning(f"Failed to format bookmark: {e}")
continue
print(f"Successfully processed {processed_count} bookmarks")
return all_texts
finally:
await self.stop_mcp_server()
async def __aenter__(self):
"""Async context manager entry."""
await self.start_mcp_server()
await self.initialize_mcp_connection()
return self
async def __aexit__(self, exc_type, exc_val, exc_tb):
"""Async context manager exit."""
await self.stop_mcp_server()

View File

@@ -1,195 +0,0 @@
#!/usr/bin/env python3
"""
Twitter RAG Application with MCP Support
This application enables RAG (Retrieval-Augmented Generation) on Twitter bookmarks
by connecting to Twitter MCP servers to fetch live data and index it in LEANN.
Usage:
python -m apps.twitter_rag --mcp-server "twitter-mcp-server" --query "What articles did I bookmark about AI?"
"""
import argparse
import asyncio
from apps.base_rag_example import BaseRAGExample
from apps.twitter_data.twitter_mcp_reader import TwitterMCPReader
class TwitterMCPRAG(BaseRAGExample):
"""
RAG application for Twitter bookmarks via MCP servers.
This class provides a complete RAG pipeline for Twitter bookmark data, including
MCP server connection, data fetching, indexing, and interactive chat.
"""
def __init__(self):
super().__init__(
name="Twitter MCP RAG",
description="RAG application for Twitter bookmarks via MCP servers",
default_index_name="twitter_bookmarks",
)
def _add_specific_arguments(self, parser: argparse.ArgumentParser):
"""Add Twitter MCP-specific arguments."""
parser.add_argument(
"--mcp-server",
type=str,
required=True,
help="Command to start the Twitter MCP server (e.g., 'twitter-mcp-server' or 'npx twitter-mcp-server')",
)
parser.add_argument(
"--username", type=str, help="Twitter username to filter bookmarks (without @)"
)
parser.add_argument(
"--max-bookmarks",
type=int,
default=1000,
help="Maximum number of bookmarks to fetch (default: 1000)",
)
parser.add_argument(
"--no-tweet-content",
action="store_true",
help="Exclude tweet content, only include metadata",
)
parser.add_argument(
"--no-metadata",
action="store_true",
help="Exclude engagement metadata (likes, retweets, etc.)",
)
parser.add_argument(
"--test-connection",
action="store_true",
help="Test MCP server connection and list available tools without indexing",
)
async def test_mcp_connection(self, args) -> bool:
"""Test the MCP server connection and display available tools."""
print(f"Testing connection to MCP server: {args.mcp_server}")
try:
reader = TwitterMCPReader(
mcp_server_command=args.mcp_server,
username=args.username,
include_tweet_content=not args.no_tweet_content,
include_metadata=not args.no_metadata,
max_bookmarks=args.max_bookmarks,
)
async with reader:
tools = await reader.list_available_tools()
print("\n✅ Successfully connected to MCP server!")
print(f"Available tools ({len(tools)}):")
for i, tool in enumerate(tools, 1):
name = tool.get("name", "Unknown")
description = tool.get("description", "No description available")
print(f"\n{i}. {name}")
print(
f" Description: {description[:100]}{'...' if len(description) > 100 else ''}"
)
# Show input schema if available
schema = tool.get("inputSchema", {})
if schema.get("properties"):
props = list(schema["properties"].keys())[:3] # Show first 3 properties
print(
f" Parameters: {', '.join(props)}{'...' if len(schema['properties']) > 3 else ''}"
)
return True
except Exception as e:
print(f"\n❌ Failed to connect to MCP server: {e}")
print("\nTroubleshooting tips:")
print("1. Make sure the Twitter MCP server is installed and accessible")
print("2. Check if the server command is correct")
print("3. Ensure you have proper Twitter API credentials configured")
print("4. Verify your Twitter account has bookmarks to fetch")
print("5. Try running the MCP server command directly to test it")
return False
async def load_data(self, args) -> list[str]:
"""Load Twitter bookmarks via MCP server."""
print(f"Connecting to Twitter MCP server: {args.mcp_server}")
if args.username:
print(f"Username filter: @{args.username}")
print(f"Max bookmarks: {args.max_bookmarks}")
print(f"Include tweet content: {not args.no_tweet_content}")
print(f"Include metadata: {not args.no_metadata}")
try:
reader = TwitterMCPReader(
mcp_server_command=args.mcp_server,
username=args.username,
include_tweet_content=not args.no_tweet_content,
include_metadata=not args.no_metadata,
max_bookmarks=args.max_bookmarks,
)
texts = await reader.read_twitter_bookmarks()
if not texts:
print("❌ No bookmarks found! This could mean:")
print("- You don't have any bookmarks on Twitter")
print("- The MCP server couldn't access your bookmarks")
print("- Authentication issues with Twitter API")
print("- The username filter didn't match any bookmarks")
return []
print(f"✅ Successfully loaded {len(texts)} bookmarks from Twitter")
# Show sample of what was loaded
if texts:
sample_text = texts[0][:300] + "..." if len(texts[0]) > 300 else texts[0]
print("\nSample bookmark:")
print("-" * 50)
print(sample_text)
print("-" * 50)
return texts
except Exception as e:
print(f"❌ Error loading Twitter bookmarks: {e}")
print("\nThis might be due to:")
print("- MCP server connection issues")
print("- Twitter API authentication problems")
print("- Network connectivity issues")
print("- Rate limiting from Twitter API")
raise
async def run(self):
"""Main entry point with MCP connection testing."""
args = self.parser.parse_args()
# Test connection if requested
if args.test_connection:
success = await self.test_mcp_connection(args)
if not success:
return
print(
"\n🎉 MCP server is working! You can now run without --test-connection to start indexing."
)
return
# Run the standard RAG pipeline
await super().run()
async def main():
"""Main entry point for the Twitter MCP RAG application."""
app = TwitterMCPRAG()
await app.run()
if __name__ == "__main__":
asyncio.run(main())

View File

@@ -54,51 +54,29 @@ def extract_thinking_answer(response):
return response.strip()
def load_hf_model(model_name="Qwen/Qwen3-8B", trust_remote_code=False):
"""Load HuggingFace model
Args:
model_name (str): Name of the model to load
trust_remote_code (bool): Whether to allow execution of code from the model repository.
Defaults to False for security. Only enable for trusted models.
"""
def load_hf_model(model_name="Qwen/Qwen3-8B"):
"""Load HuggingFace model"""
if not HF_AVAILABLE:
raise ImportError("transformers not available")
if trust_remote_code:
print(
"⚠️ WARNING: Loading model with trust_remote_code=True. This can execute arbitrary code."
)
print(f"Loading HF: {model_name}")
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=trust_remote_code)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto",
trust_remote_code=trust_remote_code,
trust_remote_code=True,
)
return tokenizer, model
def load_vllm_model(model_name="Qwen/Qwen3-8B", trust_remote_code=False):
"""Load vLLM model
Args:
model_name (str): Name of the model to load
trust_remote_code (bool): Whether to allow execution of code from the model repository.
Defaults to False for security. Only enable for trusted models.
"""
def load_vllm_model(model_name="Qwen/Qwen3-8B"):
"""Load vLLM model"""
if not VLLM_AVAILABLE:
raise ImportError("vllm not available")
if trust_remote_code:
print(
"⚠️ WARNING: Loading model with trust_remote_code=True. This can execute arbitrary code."
)
print(f"Loading vLLM: {model_name}")
llm = LLM(model=model_name, trust_remote_code=trust_remote_code)
llm = LLM(model=model_name, trust_remote_code=True)
# Qwen3 specific config
if is_qwen3_model(model_name):
@@ -200,33 +178,19 @@ def evaluate_rag(searcher, llm_func, queries, domain="default", top_k=3, complex
}
def load_qwen_vl_model(model_name="Qwen/Qwen2.5-VL-7B-Instruct", trust_remote_code=False):
"""Load Qwen2.5-VL multimodal model
Args:
model_name (str): Name of the model to load
trust_remote_code (bool): Whether to allow execution of code from the model repository.
Defaults to False for security. Only enable for trusted models.
"""
def load_qwen_vl_model(model_name="Qwen/Qwen2.5-VL-7B-Instruct"):
"""Load Qwen2.5-VL multimodal model"""
if not HF_AVAILABLE:
raise ImportError("transformers not available")
if trust_remote_code:
print(
"⚠️ WARNING: Loading model with trust_remote_code=True. This can execute arbitrary code."
)
print(f"Loading Qwen2.5-VL: {model_name}")
try:
from transformers import AutoModelForVision2Seq, AutoProcessor
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=trust_remote_code)
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForVision2Seq.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=trust_remote_code,
model_name, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True
)
return processor, model
@@ -238,14 +202,9 @@ def load_qwen_vl_model(model_name="Qwen/Qwen2.5-VL-7B-Instruct", trust_remote_co
try:
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
processor = AutoProcessor.from_pretrained(
model_name, trust_remote_code=trust_remote_code
)
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
model = Qwen2VLForConditionalGeneration.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=trust_remote_code,
model_name, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True
)
return processor, model

View File

@@ -455,5 +455,5 @@ Conclusion:
- [Lessons Learned Developing LEANN](https://yichuan-w.github.io/blog/lessons_learned_in_dev_leann/)
- [LEANN Technical Paper](https://arxiv.org/abs/2506.08276)
- [DiskANN Original Paper](https://suhasjs.github.io/files/diskann_neurips19.pdf)
- [DiskANN Original Paper](https://papers.nips.cc/paper/2019/file/09853c7fb1d3f8ee67a61b6bf4a7f8e6-Paper.pdf)
- [SSD-based Graph Partitioning](https://github.com/SonglinLife/SSD_BASED_PLAN)

View File

@@ -1,395 +0,0 @@
# Slack Integration Setup Guide
This guide provides step-by-step instructions for setting up Slack integration with LEANN.
## Overview
LEANN's Slack integration uses MCP (Model Context Protocol) servers to fetch and index your Slack messages for RAG (Retrieval-Augmented Generation). This allows you to search through your Slack conversations using natural language queries.
## Prerequisites
1. **Slack Workspace Access**: You need admin or owner permissions in your Slack workspace to create apps and configure OAuth tokens.
2. **Slack MCP Server**: Install a Slack MCP server (e.g., `slack-mcp-server` via npm)
3. **LEANN**: Ensure you have LEANN installed and working
## Step 1: Create a Slack App
### 1.1 Go to Slack API Dashboard
1. Visit [https://api.slack.com/apps](https://api.slack.com/apps)
2. Click **"Create New App"**
3. Choose **"From scratch"**
4. Enter your app name (e.g., "LEANN Slack Integration")
5. Select your workspace
6. Click **"Create App"**
### 1.2 Configure App Permissions
#### Token Scopes
1. In your app dashboard, go to **"OAuth & Permissions"** in the left sidebar
2. Scroll down to **"Scopes"** section
3. Under **"Bot Token Scopes & OAuth Scope"**, click **"Add an OAuth Scope"**
4. Add the following scopes:
- `channels:read` - Read public channel information
- `channels:history` - Read messages in public channels
- `groups:read` - Read private channel information
- `groups:history` - Read messages in private channels
- `im:read` - Read direct message information
- `im:history` - Read direct messages
- `mpim:read` - Read group direct message information
- `mpim:history` - Read group direct messages
- `users:read` - Read user information
- `team:read` - Read workspace information
#### App-Level Tokens (Optional)
Some MCP servers may require app-level tokens:
1. Go to **"Basic Information"** in the left sidebar
2. Scroll down to **"App-Level Tokens"**
3. Click **"Generate Token and Scopes"**
4. Enter a name (e.g., "LEANN Integration")
5. Add the `connections:write` scope
6. Click **"Generate"**
7. Copy the token (starts with `xapp-`)
### 1.3 Install App to Workspace
1. Go to **"OAuth & Permissions"** in the left sidebar
2. Click **"Install to Workspace"**
3. Review the permissions and click **"Allow"**
4. Copy the **"Bot User OAuth Token"** (starts with `xoxb-`)
5. Copy the **"User OAuth Token"** (starts with `xoxp-`)
## Step 2: Install Slack MCP Server
### Option A: Using npm (Recommended)
```bash
# Install globally
npm install -g slack-mcp-server
# Or install locally
npm install slack-mcp-server
```
### Option B: Using npx (No installation required)
```bash
# Use directly without installation
npx slack-mcp-server
```
## Step 3: Install and Configure Ollama (for Real LLM Responses)
### 3.1 Install Ollama
```bash
# Install Ollama using Homebrew (macOS)
brew install ollama
# Or download from https://ollama.ai/
```
### 3.2 Start Ollama Service
```bash
# Start Ollama as a service
brew services start ollama
# Or start manually
ollama serve
```
### 3.3 Pull a Model
```bash
# Pull a lightweight model for testing
ollama pull llama3.2:1b
# Verify the model is available
ollama list
```
## Step 4: Configure Environment Variables
Create a `.env` file or set environment variables:
```bash
# Required: User OAuth Token
SLACK_OAUTH_TOKEN=xoxp-your-user-oauth-token-here
# Optional: App-Level Token (if your MCP server requires it)
SLACK_APP_TOKEN=xapp-your-app-token-here
# Optional: Workspace-specific settings
SLACK_WORKSPACE_ID=T1234567890 # Your workspace ID (optional)
```
## Step 5: Test the Setup
### 5.1 Test MCP Server Connection
```bash
python -m apps.slack_rag \
--mcp-server "slack-mcp-server" \
--test-connection \
--workspace-name "Your Workspace Name"
```
This will test the connection and list available tools without indexing any data.
### 5.2 Index a Specific Channel
```bash
python -m apps.slack_rag \
--mcp-server "slack-mcp-server" \
--workspace-name "Your Workspace Name" \
--channels general \
--query "What did we discuss about the project?"
```
### 5.3 Real RAG Query Examples
This section demonstrates successful Slack RAG integration queries against the Sky Lab Computing workspace's "random" channel. The system successfully retrieves actual conversation messages and performs semantic search with high relevance scores, including finding specific research paper announcements and technical discussions.
### Example 1: Advisor Models Query
**Query:** "train black-box models to adopt to your personal data"
This query demonstrates the system's ability to find specific research announcements about training black-box models for personal data adaptation.
![Advisor Models Query - Command Setup](videos/slack_integration_1.1.png)
![Advisor Models Query - Search Results](videos/slack_integration_1.2.png)
![Advisor Models Query - LLM Response](videos/slack_integration_1.3.png)
### Example 2: Barbarians at the Gate Query
**Query:** "AI-driven research systems ADRS"
This query demonstrates the system's ability to find specific research announcements about AI-driven research systems and algorithm discovery.
![Barbarians Query - Command Setup](videos/slack_integration_2.1.png)
![Barbarians Query - Search Results](videos/slack_integration_2.2.png)
![Barbarians Query - LLM Response](videos/slack_integration_2.3.png)
### Prerequisites
- Bot is installed in the Sky Lab Computing workspace and invited to the target channel (run `/invite @YourBotName` in the channel if needed)
- Bot token available and exported in the same terminal session
### Commands
1) Set the workspace token for this shell
```bash
export SLACK_MCP_XOXP_TOKEN="xoxp-***-redacted-***"
```
2) Run queries against the "random" channel by channel ID (C0GN5BX0F)
**Advisor Models Query:**
```bash
python -m apps.slack_rag \
--mcp-server "slack-mcp-server" \
--workspace-name "Sky Lab Computing" \
--channels C0GN5BX0F \
--max-messages-per-channel 100000 \
--query "train black-box models to adopt to your personal data" \
--llm ollama \
--llm-model "llama3.2:1b" \
--llm-host "http://localhost:11434" \
--no-concatenate-conversations
```
**Barbarians at the Gate Query:**
```bash
python -m apps.slack_rag \
--mcp-server "slack-mcp-server" \
--workspace-name "Sky Lab Computing" \
--channels C0GN5BX0F \
--max-messages-per-channel 100000 \
--query "AI-driven research systems ADRS" \
--llm ollama \
--llm-model "llama3.2:1b" \
--llm-host "http://localhost:11434" \
--no-concatenate-conversations
```
These examples demonstrate the system's ability to find and retrieve specific research announcements and technical discussions from the conversation history, showcasing the power of semantic search in Slack data.
3) Optional: Ask a broader question
```bash
python test_channel_by_id_or_name.py \
--channel-id C0GN5BX0F \
--workspace-name "Sky Lab Computing" \
--query "What is LEANN about?"
```
Notes:
- If you see `not_in_channel`, invite the bot to the channel and re-run.
- If you see `channel_not_found`, confirm the channel ID and workspace.
- Deep search via server-side “search” tools may require additional Slack scopes; the example above performs client-side filtering over retrieved history.
## Common Issues and Solutions
### Issue 1: "users cache is not ready yet" Error
**Problem**: You see this warning:
```
WARNING - Failed to fetch messages from channel random: Failed to fetch messages: {'code': -32603, 'message': 'users cache is not ready yet, sync process is still running... please wait'}
```
**Solution**: This is a common timing issue. The LEANN integration now includes automatic retry logic:
1. **Wait and Retry**: The system will automatically retry with exponential backoff (2s, 4s, 8s, etc.)
2. **Increase Retry Parameters**: If needed, you can customize retry behavior:
```bash
python -m apps.slack_rag \
--mcp-server "slack-mcp-server" \
--max-retries 10 \
--retry-delay 3.0 \
--channels general \
--query "Your query here"
```
3. **Keep MCP Server Running**: Start the MCP server separately and keep it running:
```bash
# Terminal 1: Start MCP server
slack-mcp-server
# Terminal 2: Run LEANN (it will connect to the running server)
python -m apps.slack_rag --mcp-server "slack-mcp-server" --channels general --query "test"
```
### Issue 2: "No message fetching tool found"
**Problem**: The MCP server doesn't have the expected tools.
**Solution**:
1. Check if your MCP server is properly installed and configured
2. Verify your Slack tokens are correct
3. Try a different MCP server implementation
4. Check the MCP server documentation for required configuration
### Issue 3: Permission Denied Errors
**Problem**: You get permission errors when trying to access channels.
**Solutions**:
1. **Check Bot Permissions**: Ensure your bot has been added to the channels you want to access
2. **Verify Token Scopes**: Make sure you have all required scopes configured
3. **Channel Access**: For private channels, the bot needs to be explicitly invited
4. **Workspace Permissions**: Ensure your Slack app has the necessary workspace permissions
### Issue 4: Empty Results
**Problem**: No messages are returned even though the channel has messages.
**Solutions**:
1. **Check Channel Names**: Ensure channel names are correct (without the # symbol)
2. **Verify Bot Access**: Make sure the bot can access the channels
3. **Check Date Ranges**: Some MCP servers have limitations on message history
4. **Increase Message Limits**: Try increasing the message limit:
```bash
python -m apps.slack_rag \
--mcp-server "slack-mcp-server" \
--channels general \
--max-messages-per-channel 1000 \
--query "test"
```
## Advanced Configuration
### Custom MCP Server Commands
If you need to pass additional parameters to your MCP server:
```bash
python -m apps.slack_rag \
--mcp-server "slack-mcp-server --token-file /path/to/tokens.json" \
--workspace-name "Your Workspace" \
--channels general \
--query "Your query"
```
### Multiple Workspaces
To work with multiple Slack workspaces, you can:
1. Create separate apps for each workspace
2. Use different environment variables
3. Run separate instances with different configurations
### Performance Optimization
For better performance with large workspaces:
```bash
python -m apps.slack_rag \
--mcp-server "slack-mcp-server" \
--workspace-name "Your Workspace" \
--max-messages-per-channel 500 \
--no-concatenate-conversations \
--query "Your query"
```
---
## Troubleshooting Checklist
- [ ] Slack app created with proper permissions
- [ ] Bot token (xoxb-) copied correctly
- [ ] App-level token (xapp-) created if needed
- [ ] MCP server installed and accessible
- [ ] Ollama installed and running (`brew services start ollama`)
- [ ] Ollama model pulled (`ollama pull llama3.2:1b`)
- [ ] Environment variables set correctly
- [ ] Bot invited to relevant channels
- [ ] Channel names specified without # symbol
- [ ] Sufficient retry attempts configured
- [ ] Network connectivity to Slack APIs
## Getting Help
If you continue to have issues:
1. **Check Logs**: Look for detailed error messages in the console output
2. **Test MCP Server**: Use `--test-connection` to verify the MCP server is working
3. **Verify Tokens**: Double-check that your Slack tokens are valid and have the right scopes
4. **Check Ollama**: Ensure Ollama is running (`ollama serve`) and the model is available (`ollama list`)
5. **Community Support**: Reach out to the LEANN community for help
## Example Commands
### Basic Usage
```bash
# Test connection
python -m apps.slack_rag --mcp-server "slack-mcp-server" --test-connection
# Index specific channels
python -m apps.slack_rag \
--mcp-server "slack-mcp-server" \
--workspace-name "My Company" \
--channels general random \
--query "What did we decide about the project timeline?"
```
### Advanced Usage
```bash
# With custom retry settings
python -m apps.slack_rag \
--mcp-server "slack-mcp-server" \
--workspace-name "My Company" \
--channels general \
--max-retries 10 \
--retry-delay 5.0 \
--max-messages-per-channel 2000 \
--query "Show me all decisions made in the last month"
```

View File

Binary file not shown.

Before

Width:  |  Height:  |  Size: 445 KiB

View File

Binary file not shown.

Before

Width:  |  Height:  |  Size: 508 KiB

View File

Binary file not shown.

Before

Width:  |  Height:  |  Size: 437 KiB

View File

Binary file not shown.

Before

Width:  |  Height:  |  Size: 474 KiB

View File

Binary file not shown.

Before

Width:  |  Height:  |  Size: 501 KiB

View File

Binary file not shown.

Before

Width:  |  Height:  |  Size: 454 KiB

View File

@@ -43,11 +43,7 @@ from apps.chunking import create_text_chunks
REPO_ROOT = Path(__file__).resolve().parents[1]
DEFAULT_QUERY = "What's LEANN?"
DEFAULT_INITIAL_FILES = [
REPO_ROOT / "data" / "2501.14312v1 (1).pdf",
REPO_ROOT / "data" / "huawei_pangu.md",
REPO_ROOT / "data" / "PrideandPrejudice.txt",
]
DEFAULT_INITIAL_FILES = [REPO_ROOT / "data" / "2501.14312v1 (1).pdf"]
DEFAULT_UPDATE_FILES = [REPO_ROOT / "data" / "2506.08276v1.pdf"]
@@ -186,7 +182,6 @@ def run_workflow(
is_recompute: bool,
query: str,
top_k: int,
skip_search: bool,
) -> dict[str, Any]:
prefix = f"[{label}] " if label else ""
@@ -203,15 +198,12 @@ def run_workflow(
)
initial_size = index_file_size(index_path)
if not skip_search:
before_results = run_search(
index_path,
query,
top_k,
recompute_embeddings=is_recompute,
)
else:
before_results = None
before_results = run_search(
index_path,
query,
top_k,
recompute_embeddings=is_recompute,
)
print(f"\n{prefix}Updating index with additional passages...")
update_index(
@@ -223,23 +215,20 @@ def run_workflow(
is_recompute=is_recompute,
)
if not skip_search:
after_results = run_search(
index_path,
query,
top_k,
recompute_embeddings=is_recompute,
)
else:
after_results = None
after_results = run_search(
index_path,
query,
top_k,
recompute_embeddings=is_recompute,
)
updated_size = index_file_size(index_path)
return {
"initial_size": initial_size,
"updated_size": updated_size,
"delta": updated_size - initial_size,
"before_results": before_results if not skip_search else None,
"after_results": after_results if not skip_search else None,
"before_results": before_results,
"after_results": after_results,
"metadata": load_metadata_snapshot(index_path),
}
@@ -325,12 +314,6 @@ def main() -> None:
action="store_false",
help="Skip building the no-recompute baseline.",
)
parser.add_argument(
"--skip-search",
dest="skip_search",
action="store_true",
help="Skip the search step.",
)
parser.set_defaults(compare_no_recompute=True)
args = parser.parse_args()
@@ -367,13 +350,10 @@ def main() -> None:
is_recompute=True,
query=args.query,
top_k=args.top_k,
skip_search=args.skip_search,
)
if not args.skip_search:
print_results("initial search", recompute_stats["before_results"])
if not args.skip_search:
print_results("after update", recompute_stats["after_results"])
print_results("initial search", recompute_stats["before_results"])
print_results("after update", recompute_stats["after_results"])
print(
f"\n[recompute] Index file size change: {recompute_stats['initial_size']} -> {recompute_stats['updated_size']} bytes"
f"{recompute_stats['delta']})"
@@ -398,7 +378,6 @@ def main() -> None:
is_recompute=False,
query=args.query,
top_k=args.top_k,
skip_search=args.skip_search,
)
print(
@@ -406,12 +385,8 @@ def main() -> None:
f"{baseline_stats['delta']})"
)
after_texts = (
[res.text for res in recompute_stats["after_results"]] if not args.skip_search else None
)
baseline_after_texts = (
[res.text for res in baseline_stats["after_results"]] if not args.skip_search else None
)
after_texts = [res.text for res in recompute_stats["after_results"]]
baseline_after_texts = [res.text for res in baseline_stats["after_results"]]
if after_texts == baseline_after_texts:
print(
"[no-recompute] Search results match recompute baseline; see above for the shared output."

View File

@@ -1,178 +0,0 @@
#!/usr/bin/env python3
"""
MCP Integration Examples for LEANN
This script demonstrates how to use LEANN with different MCP servers for
RAG on various platforms like Slack and Twitter.
Examples:
1. Slack message RAG via MCP
2. Twitter bookmark RAG via MCP
3. Testing MCP server connections
"""
import asyncio
import sys
from pathlib import Path
# Add the parent directory to the path so we can import from apps
sys.path.append(str(Path(__file__).parent.parent))
async def demo_slack_mcp():
"""Demonstrate Slack MCP integration."""
print("=" * 60)
print("🔥 Slack MCP RAG Demo")
print("=" * 60)
print("\n1. Testing Slack MCP server connection...")
# This would typically use a real MCP server command
# For demo purposes, we show what the command would look like
# slack_app = SlackMCPRAG() # Would be used for actual testing
# Simulate command line arguments for testing
class MockArgs:
mcp_server = "slack-mcp-server" # This would be the actual MCP server command
workspace_name = "my-workspace"
channels = ["general", "random", "dev-team"]
no_concatenate_conversations = False
max_messages_per_channel = 50
test_connection = True
print(f"MCP Server Command: {MockArgs.mcp_server}")
print(f"Workspace: {MockArgs.workspace_name}")
print(f"Channels: {', '.join(MockArgs.channels)}")
# In a real scenario, you would run:
# success = await slack_app.test_mcp_connection(MockArgs)
print("\n📝 Example usage:")
print("python -m apps.slack_rag \\")
print(" --mcp-server 'slack-mcp-server' \\")
print(" --workspace-name 'my-team' \\")
print(" --channels general dev-team \\")
print(" --test-connection")
print("\n🔍 After indexing, you could query:")
print("- 'What did the team discuss about the project deadline?'")
print("- 'Find messages about the new feature launch'")
print("- 'Show me conversations about budget planning'")
async def demo_twitter_mcp():
"""Demonstrate Twitter MCP integration."""
print("\n" + "=" * 60)
print("🐦 Twitter MCP RAG Demo")
print("=" * 60)
print("\n1. Testing Twitter MCP server connection...")
# twitter_app = TwitterMCPRAG() # Would be used for actual testing
class MockArgs:
mcp_server = "twitter-mcp-server"
username = None # Fetch all bookmarks
max_bookmarks = 500
no_tweet_content = False
no_metadata = False
test_connection = True
print(f"MCP Server Command: {MockArgs.mcp_server}")
print(f"Max Bookmarks: {MockArgs.max_bookmarks}")
print(f"Include Content: {not MockArgs.no_tweet_content}")
print(f"Include Metadata: {not MockArgs.no_metadata}")
print("\n📝 Example usage:")
print("python -m apps.twitter_rag \\")
print(" --mcp-server 'twitter-mcp-server' \\")
print(" --max-bookmarks 1000 \\")
print(" --test-connection")
print("\n🔍 After indexing, you could query:")
print("- 'What AI articles did I bookmark last month?'")
print("- 'Find tweets about machine learning techniques'")
print("- 'Show me bookmarked threads about startup advice'")
async def show_mcp_server_setup():
"""Show how to set up MCP servers."""
print("\n" + "=" * 60)
print("⚙️ MCP Server Setup Guide")
print("=" * 60)
print("\n🔧 Setting up Slack MCP Server:")
print("1. Install a Slack MCP server (example commands):")
print(" npm install -g slack-mcp-server")
print(" # OR")
print(" pip install slack-mcp-server")
print("\n2. Configure Slack credentials:")
print(" export SLACK_BOT_TOKEN='xoxb-your-bot-token'")
print(" export SLACK_APP_TOKEN='xapp-your-app-token'")
print("\n3. Test the server:")
print(" slack-mcp-server --help")
print("\n🔧 Setting up Twitter MCP Server:")
print("1. Install a Twitter MCP server:")
print(" npm install -g twitter-mcp-server")
print(" # OR")
print(" pip install twitter-mcp-server")
print("\n2. Configure Twitter API credentials:")
print(" export TWITTER_API_KEY='your-api-key'")
print(" export TWITTER_API_SECRET='your-api-secret'")
print(" export TWITTER_ACCESS_TOKEN='your-access-token'")
print(" export TWITTER_ACCESS_TOKEN_SECRET='your-access-token-secret'")
print("\n3. Test the server:")
print(" twitter-mcp-server --help")
async def show_integration_benefits():
"""Show the benefits of MCP integration."""
print("\n" + "=" * 60)
print("🌟 Benefits of MCP Integration")
print("=" * 60)
benefits = [
("🔄 Live Data Access", "Fetch real-time data from platforms without manual exports"),
("🔌 Standardized Protocol", "Use any MCP-compatible server with minimal code changes"),
("🚀 Easy Extension", "Add new platforms by implementing MCP readers"),
("🔒 Secure Access", "MCP servers handle authentication and API management"),
("📊 Rich Metadata", "Access full platform metadata (timestamps, engagement, etc.)"),
("⚡ Efficient Processing", "Stream data directly into LEANN without intermediate files"),
]
for title, description in benefits:
print(f"\n{title}")
print(f" {description}")
async def main():
"""Main demo function."""
print("🎯 LEANN MCP Integration Examples")
print("This demo shows how to integrate LEANN with MCP servers for various platforms.")
await demo_slack_mcp()
await demo_twitter_mcp()
await show_mcp_server_setup()
await show_integration_benefits()
print("\n" + "=" * 60)
print("✨ Next Steps")
print("=" * 60)
print("1. Install and configure MCP servers for your platforms")
print("2. Test connections using --test-connection flag")
print("3. Run indexing to build your RAG knowledge base")
print("4. Start querying your personal data!")
print("\n📚 For more information:")
print("- Check the README for detailed setup instructions")
print("- Look at the apps/slack_rag.py and apps/twitter_rag.py for implementation details")
print("- Explore other MCP servers for additional platforms")
if __name__ == "__main__":
asyncio.run(main())

View File

@@ -29,25 +29,12 @@ if(APPLE)
set(CMAKE_OSX_DEPLOYMENT_TARGET "11.0" CACHE STRING "Minimum macOS version")
endif()
# Find ZMQ using pkg-config with IMPORTED_TARGET for automatic target creation
# Use system ZeroMQ instead of building from source
find_package(PkgConfig REQUIRED)
# On ARM64 macOS, ensure pkg-config finds ARM64 Homebrew packages first
if(APPLE AND CMAKE_SYSTEM_PROCESSOR MATCHES "aarch64|arm64")
set(ENV{PKG_CONFIG_PATH} "/opt/homebrew/lib/pkgconfig:/opt/homebrew/share/pkgconfig:$ENV{PKG_CONFIG_PATH}")
endif()
pkg_check_modules(ZMQ REQUIRED IMPORTED_TARGET libzmq)
# This creates PkgConfig::ZMQ target automatically with correct properties
if(TARGET PkgConfig::ZMQ)
message(STATUS "Found and configured ZMQ target: PkgConfig::ZMQ")
else()
message(FATAL_ERROR "pkg_check_modules did not create IMPORTED target for ZMQ.")
endif()
pkg_check_modules(ZMQ REQUIRED libzmq)
# Add cppzmq headers
include_directories(SYSTEM third_party/cppzmq)
include_directories(third_party/cppzmq)
# Configure msgpack-c - disable boost dependency
set(MSGPACK_USE_BOOST OFF CACHE BOOL "" FORCE)

View File

@@ -18,16 +18,14 @@ dependencies = [
"pyzmq>=23.0.0",
"msgpack>=1.0.0",
"torch>=2.0.0",
"sentence-transformers>=3.0.0",
"sentence-transformers>=2.2.0",
"llama-index-core>=0.12.0",
"llama-index-readers-file>=0.4.0", # Essential for document reading
"llama-index-embeddings-huggingface>=0.5.5", # For embeddings
"python-dotenv>=1.0.0",
"openai>=1.0.0",
"huggingface-hub>=0.20.0",
# Keep transformers below 4.46: 4.46.0 adds Python 3.10-only return type syntax and
# breaks Python 3.9 environments.
"transformers>=4.30.0,<4.46",
"transformers>=4.30.0",
"requests>=2.25.0",
"accelerate>=0.20.0",
"PyPDF2>=3.0.0",
@@ -42,7 +40,7 @@ dependencies = [
[project.optional-dependencies]
colab = [
"torch>=2.0.0,<3.0.0", # Limit torch version to avoid conflicts
"transformers>=4.30.0,<4.46", # 4.46.0 switches to PEP 604 typing (int | None), breaks Py3.9
"transformers>=4.30.0,<5.0.0", # Limit transformers version
"accelerate>=0.20.0,<1.0.0", # Limit accelerate version
]

View File

@@ -5,7 +5,6 @@ with the correct, original embedding logic from the user's reference code.
import json
import logging
import os
import pickle
import re
import subprocess
@@ -18,11 +17,9 @@ from typing import Any, Literal, Optional, Union
import numpy as np
from leann_backend_hnsw.convert_to_csr import prune_hnsw_embeddings_inplace
from leann.interactive_utils import create_api_session
from leann.interface import LeannBackendSearcherInterface
from .chat import get_llm
from .embedding_server_manager import EmbeddingServerManager
from .interface import LeannBackendFactoryInterface
from .metadata_filter import MetadataFilterEngine
from .registry import BACKEND_REGISTRY
@@ -731,7 +728,6 @@ class LeannBuilder:
index = faiss.read_index(str(index_file))
if hasattr(index, "is_recompute"):
index.is_recompute = needs_recompute
print(f"index.is_recompute: {index.is_recompute}")
if getattr(index, "storage", None) is None:
if index.metric_type == faiss.METRIC_INNER_PRODUCT:
storage_index = faiss.IndexFlatIP(index.d)
@@ -739,112 +735,37 @@ class LeannBuilder:
storage_index = faiss.IndexFlatL2(index.d)
index.storage = storage_index
index.own_fields = True
# Faiss expects storage.ntotal to reflect the existing graph's
# population (even if the vectors themselves were pruned from disk
# for recompute mode). When we attach a fresh IndexFlat here its
# ntotal starts at zero, which later causes IndexHNSW::add to
# believe new "preset" levels were provided and trips the
# `n0 + n == levels.size()` assertion. Seed the temporary storage
# with the current ntotal so Faiss maintains the proper offset for
# incoming vectors.
try:
storage_index.ntotal = index.ntotal
except AttributeError:
# Older Faiss builds may not expose ntotal as a writable
# attribute; in that case we fall back to the default behaviour.
pass
if index.d != embedding_dim:
raise ValueError(
f"Existing index dimension ({index.d}) does not match new embeddings ({embedding_dim})."
)
passage_meta_mode = meta.get("embedding_mode", self.embedding_mode)
passage_provider_options = meta.get("embedding_options", self.embedding_options)
base_id = index.ntotal
for offset, chunk in enumerate(valid_chunks):
new_id = str(base_id + offset)
chunk.setdefault("metadata", {})["id"] = new_id
chunk["id"] = new_id
# Append passages/offsets before we attempt index.add so the ZMQ server
# can resolve newly assigned IDs during recompute. Keep rollback hooks
# so we can restore files if the update fails mid-way.
rollback_passages_size = passages_file.stat().st_size if passages_file.exists() else 0
offset_map_backup = offset_map.copy()
index.add(embeddings.shape[0], faiss.swig_ptr(embeddings))
faiss.write_index(index, str(index_file))
try:
with open(passages_file, "a", encoding="utf-8") as f:
for chunk in valid_chunks:
offset = f.tell()
json.dump(
{
"id": chunk["id"],
"text": chunk["text"],
"metadata": chunk.get("metadata", {}),
},
f,
ensure_ascii=False,
)
f.write("\n")
offset_map[chunk["id"]] = offset
with open(passages_file, "a", encoding="utf-8") as f:
for chunk in valid_chunks:
offset = f.tell()
json.dump(
{
"id": chunk["id"],
"text": chunk["text"],
"metadata": chunk.get("metadata", {}),
},
f,
ensure_ascii=False,
)
f.write("\n")
offset_map[chunk["id"]] = offset
with open(offset_file, "wb") as f:
pickle.dump(offset_map, f)
server_manager: Optional[EmbeddingServerManager] = None
server_started = False
requested_zmq_port = int(os.getenv("LEANN_UPDATE_ZMQ_PORT", "5557"))
try:
if needs_recompute:
server_manager = EmbeddingServerManager(
backend_module_name="leann_backend_hnsw.hnsw_embedding_server"
)
server_started, actual_port = server_manager.start_server(
port=requested_zmq_port,
model_name=self.embedding_model,
embedding_mode=passage_meta_mode,
passages_file=str(meta_path),
distance_metric=distance_metric,
provider_options=passage_provider_options,
)
if not server_started:
raise RuntimeError(
"Failed to start HNSW embedding server for recompute update."
)
if actual_port != requested_zmq_port:
logger.warning(
"Embedding server started on port %s instead of requested %s. "
"Using reassigned port.",
actual_port,
requested_zmq_port,
)
try:
index.hnsw.zmq_port = actual_port
except AttributeError:
pass
if needs_recompute:
for i in range(embeddings.shape[0]):
print(f"add {i} embeddings")
index.add(1, faiss.swig_ptr(embeddings[i : i + 1]))
else:
index.add(embeddings.shape[0], faiss.swig_ptr(embeddings))
faiss.write_index(index, str(index_file))
finally:
if server_started and server_manager is not None:
server_manager.stop_server()
except Exception:
# Roll back appended passages/offset map to keep files consistent.
if passages_file.exists():
with open(passages_file, "rb+") as f:
f.truncate(rollback_passages_size)
offset_map = offset_map_backup
with open(offset_file, "wb") as f:
pickle.dump(offset_map, f)
raise
with open(offset_file, "wb") as f:
pickle.dump(offset_map, f)
meta["total_passages"] = len(offset_map)
with open(meta_path, "w", encoding="utf-8") as f:
@@ -1236,17 +1157,6 @@ class LeannChat:
"Please provide the best answer you can based on this context and your knowledge."
)
print("The context provided to the LLM is:")
print(f"{'Relevance':<10} | {'Chunk id':<10} | {'Content':<60} | {'Source':<80}")
print("-" * 150)
for r in results:
chunk_relevance = f"{r.score:.3f}"
chunk_id = r.id
chunk_content = r.text[:60]
chunk_source = r.metadata.get("source", "")[:80]
print(
f"{chunk_relevance:<10} | {chunk_id:<10} | {chunk_content:<60} | {chunk_source:<80}"
)
ask_time = time.time()
ans = self.llm.ask(prompt, **llm_kwargs)
ask_time = time.time() - ask_time
@@ -1254,14 +1164,19 @@ class LeannChat:
return ans
def start_interactive(self):
"""Start interactive chat session."""
session = create_api_session()
def handle_query(user_input: str):
response = self.ask(user_input)
print(f"Leann: {response}")
session.run_interactive_loop(handle_query)
print("\nLeann Chat started (type 'quit' to exit)")
while True:
try:
user_input = input("You: ").strip()
if user_input.lower() in ["quit", "exit"]:
break
if not user_input:
continue
response = self.ask(user_input)
print(f"Leann: {response}")
except (KeyboardInterrupt, EOFError):
print("\nGoodbye!")
break
def cleanup(self):
"""Explicitly cleanup embedding server resources.

View File

@@ -12,8 +12,6 @@ from typing import Any, Optional
import torch
from .settings import resolve_ollama_host, resolve_openai_api_key, resolve_openai_base_url
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@@ -312,12 +310,11 @@ def search_hf_models(query: str, limit: int = 10) -> list[str]:
def validate_model_and_suggest(
model_name: str, llm_type: str, host: Optional[str] = None
model_name: str, llm_type: str, host: str = "http://localhost:11434"
) -> Optional[str]:
"""Validate model name and provide suggestions if invalid"""
if llm_type == "ollama":
resolved_host = resolve_ollama_host(host)
available_models = check_ollama_models(resolved_host)
available_models = check_ollama_models(host)
if available_models and model_name not in available_models:
error_msg = f"Model '{model_name}' not found in your local Ollama installation."
@@ -460,19 +457,19 @@ class LLMInterface(ABC):
class OllamaChat(LLMInterface):
"""LLM interface for Ollama models."""
def __init__(self, model: str = "llama3:8b", host: Optional[str] = None):
def __init__(self, model: str = "llama3:8b", host: str = "http://localhost:11434"):
self.model = model
self.host = resolve_ollama_host(host)
logger.info(f"Initializing OllamaChat with model='{model}' and host='{self.host}'")
self.host = host
logger.info(f"Initializing OllamaChat with model='{model}' and host='{host}'")
try:
import requests
# Check if the Ollama server is responsive
if self.host:
requests.get(self.host)
if host:
requests.get(host)
# Pre-check model availability with helpful suggestions
model_error = validate_model_and_suggest(model, "ollama", self.host)
model_error = validate_model_and_suggest(model, "ollama", host)
if model_error:
raise ValueError(model_error)
@@ -481,11 +478,9 @@ class OllamaChat(LLMInterface):
"The 'requests' library is required for Ollama. Please install it with 'pip install requests'."
)
except requests.exceptions.ConnectionError:
logger.error(
f"Could not connect to Ollama at {self.host}. Please ensure Ollama is running."
)
logger.error(f"Could not connect to Ollama at {host}. Please ensure Ollama is running.")
raise ConnectionError(
f"Could not connect to Ollama at {self.host}. Please ensure Ollama is running."
f"Could not connect to Ollama at {host}. Please ensure Ollama is running."
)
def ask(self, prompt: str, **kwargs) -> str:
@@ -546,30 +541,11 @@ class OllamaChat(LLMInterface):
class HFChat(LLMInterface):
"""LLM interface for local Hugging Face Transformers models with proper chat templates.
"""LLM interface for local Hugging Face Transformers models with proper chat templates."""
Args:
model_name (str): Name of the Hugging Face model to load.
trust_remote_code (bool): Whether to allow execution of code from the model repository.
Defaults to False for security. Only enable for trusted models as this can pose
a security risk if the model repository is compromised.
"""
def __init__(
self, model_name: str = "deepseek-ai/deepseek-llm-7b-chat", trust_remote_code: bool = False
):
def __init__(self, model_name: str = "deepseek-ai/deepseek-llm-7b-chat"):
logger.info(f"Initializing HFChat with model='{model_name}'")
# Security warning when trust_remote_code is enabled
if trust_remote_code:
logger.warning(
"SECURITY WARNING: trust_remote_code=True allows execution of arbitrary code from the model repository. "
"Only enable this for models from trusted sources. This creates a potential security risk if the model "
"repository is compromised."
)
self.trust_remote_code = trust_remote_code
# Pre-check model availability with helpful suggestions
model_error = validate_model_and_suggest(model_name, "hf")
if model_error:
@@ -601,22 +577,35 @@ class HFChat(LLMInterface):
def timeout_handler(signum, frame):
raise TimeoutError("Model download/loading timed out")
# Set timeout for model loading (60 seconds)
# Set timeout for model loading (increase to 300s for large models)
old_handler = signal.signal(signal.SIGALRM, timeout_handler)
signal.alarm(60)
signal.alarm(300)
try:
logger.info(f"Loading tokenizer for {model_name}...")
self.tokenizer = AutoTokenizer.from_pretrained(
model_name, trust_remote_code=self.trust_remote_code
)
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
logger.info(f"Loading model {model_name}...")
# Choose a numerically stable dtype per device
if self.device == "cuda":
# Prefer bfloat16 when available; otherwise fall back to float16
try:
bf16_ok = torch.cuda.is_bf16_supported()
except Exception:
bf16_ok = False
load_dtype = torch.bfloat16 if bf16_ok else torch.float16
elif self.device == "mps":
# On Apple MPS, float16 often causes NaNs/INFs during sampling.
# Use float32 for stability, even if it increases memory.
load_dtype = torch.float32
else:
load_dtype = torch.float32
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16 if self.device != "cpu" else torch.float32,
torch_dtype=load_dtype,
device_map="auto" if self.device != "cpu" else None,
trust_remote_code=self.trust_remote_code,
trust_remote_code=True,
)
logger.info(f"Successfully loaded {model_name}")
finally:
@@ -632,8 +621,12 @@ class HFChat(LLMInterface):
logger.error(f"Failed to load model {model_name}: {e}")
raise
# Move model to device if not using device_map
if self.device != "cpu" and "device_map" not in str(self.model):
# Move model to device only if not managed by accelerate (no device_map)
try:
has_device_map = getattr(self.model, "hf_device_map", None) is not None
except Exception:
has_device_map = False
if self.device != "cpu" and not has_device_map:
self.model = self.model.to(self.device)
# Set pad token if not present
@@ -665,13 +658,15 @@ class HFChat(LLMInterface):
# Fallback for models without chat template
formatted_prompt = prompt
# Tokenize input
# Tokenize input (respect model context length when available)
inputs = self.tokenizer(
formatted_prompt,
return_tensors="pt",
padding=True,
truncation=True,
max_length=2048,
max_length=getattr(
getattr(self.model, "config", None), "max_position_embeddings", 2048
),
)
# Move inputs to device
@@ -686,6 +681,8 @@ class HFChat(LLMInterface):
"do_sample": kwargs.get("temperature", 0.7) > 0,
"pad_token_id": self.tokenizer.eos_token_id,
"eos_token_id": self.tokenizer.eos_token_id,
# Helps avoid numerical issues in sampling when logits processors are used
"renormalize_logits": True,
}
# Handle temperature=0 for greedy decoding
@@ -695,11 +692,39 @@ class HFChat(LLMInterface):
logger.info(f"Generating with HuggingFace model, config: {generation_config}")
# Generate
# Streaming support (optional)
stream = bool(kwargs.get("stream", False))
if stream:
try:
from threading import Thread
from transformers import TextIteratorStreamer
streamer = TextIteratorStreamer(
self.tokenizer, skip_prompt=True, skip_special_tokens=True
)
def _gen():
with torch.no_grad():
self.model.generate(**inputs, **generation_config, streamer=streamer)
t = Thread(target=_gen)
t.start()
pieces = []
for new_text in streamer:
print(new_text, end="", flush=True)
pieces.append(new_text)
t.join()
print("") # newline after streaming
return ("".join(pieces)).strip()
except Exception as e:
logger.warning(f"Streaming failed, falling back to non-streaming: {e}")
# Non-streaming path
with torch.no_grad():
outputs = self.model.generate(**inputs, **generation_config)
# Decode response
generated_tokens = outputs[0][inputs["input_ids"].shape[1] :]
response = self.tokenizer.decode(generated_tokens, skip_special_tokens=True)
@@ -763,31 +788,21 @@ class GeminiChat(LLMInterface):
class OpenAIChat(LLMInterface):
"""LLM interface for OpenAI models."""
def __init__(
self,
model: str = "gpt-4o",
api_key: Optional[str] = None,
base_url: Optional[str] = None,
):
def __init__(self, model: str = "gpt-4o", api_key: Optional[str] = None):
self.model = model
self.base_url = resolve_openai_base_url(base_url)
self.api_key = resolve_openai_api_key(api_key)
self.api_key = api_key or os.getenv("OPENAI_API_KEY")
if not self.api_key:
raise ValueError(
"OpenAI API key is required. Set OPENAI_API_KEY environment variable or pass api_key parameter."
)
logger.info(
"Initializing OpenAI Chat with model='%s' and base_url='%s'",
model,
self.base_url,
)
logger.info(f"Initializing OpenAI Chat with model='{model}'")
try:
import openai
self.client = openai.OpenAI(api_key=self.api_key, base_url=self.base_url)
self.client = openai.OpenAI(api_key=self.api_key)
except ImportError:
raise ImportError(
"The 'openai' library is required for OpenAI models. Please install it with 'pip install openai'."
@@ -834,11 +849,6 @@ class OpenAIChat(LLMInterface):
try:
response = self.client.chat.completions.create(**params)
print(
f"Total tokens = {response.usage.total_tokens}, prompt tokens = {response.usage.prompt_tokens}, completion tokens = {response.usage.completion_tokens}"
)
if response.choices[0].finish_reason == "length":
print("The query is exceeding the maximum allowed number of tokens")
return response.choices[0].message.content.strip()
except Exception as e:
logger.error(f"Error communicating with OpenAI: {e}")
@@ -882,19 +892,12 @@ def get_llm(llm_config: Optional[dict[str, Any]] = None) -> LLMInterface:
if llm_type == "ollama":
return OllamaChat(
model=model or "llama3:8b",
host=llm_config.get("host"),
host=llm_config.get("host", "http://localhost:11434"),
)
elif llm_type == "hf":
return HFChat(
model_name=model or "deepseek-ai/deepseek-llm-7b-chat",
trust_remote_code=llm_config.get("trust_remote_code", False),
)
return HFChat(model_name=model or "deepseek-ai/deepseek-llm-7b-chat")
elif llm_type == "openai":
return OpenAIChat(
model=model or "gpt-4o",
api_key=llm_config.get("api_key"),
base_url=llm_config.get("base_url"),
)
return OpenAIChat(model=model or "gpt-4o", api_key=llm_config.get("api_key"))
elif llm_type == "gemini":
return GeminiChat(model=model or "gemini-2.5-flash", api_key=llm_config.get("api_key"))
elif llm_type == "simulated":

View File

@@ -1,6 +1,5 @@
import argparse
import asyncio
import time
from pathlib import Path
from typing import Any, Optional, Union
@@ -9,7 +8,6 @@ from llama_index.core.node_parser import SentenceSplitter
from tqdm import tqdm
from .api import LeannBuilder, LeannChat, LeannSearcher
from .interactive_utils import create_cli_session
from .registry import register_project_directory
from .settings import resolve_ollama_host, resolve_openai_api_key, resolve_openai_base_url
@@ -107,7 +105,7 @@ Examples:
help="Documents directories and/or files (default: current directory)",
)
build_parser.add_argument(
"--backend-name",
"--backend",
type=str,
default="hnsw",
choices=["hnsw", "diskann"],
@@ -255,11 +253,6 @@ Examples:
action="store_true",
help="Non-interactive mode: automatically select index without prompting",
)
search_parser.add_argument(
"--show-metadata",
action="store_true",
help="Display file paths and metadata in search results",
)
# Ask command
ask_parser = subparsers.add_parser("ask", help="Ask questions")
@@ -1192,7 +1185,6 @@ Examples:
for doc in other_docs:
file_path = doc.metadata.get("file_path", "")
if file_filter(file_path):
doc.metadata["source"] = file_path
filtered_docs.append(doc)
documents.extend(filtered_docs)
@@ -1268,7 +1260,7 @@ Examples:
from .chunking_utils import create_text_chunks
# Use enhanced chunking with AST support
chunk_texts = create_text_chunks(
all_texts = create_text_chunks(
documents,
chunk_size=self.node_parser.chunk_size,
chunk_overlap=self.node_parser.chunk_overlap,
@@ -1279,14 +1271,6 @@ Examples:
ast_fallback_traditional=getattr(args, "ast_fallback_traditional", True),
)
# Note: AST chunking currently returns plain text chunks without metadata
# We preserve basic file info by associating chunks with their source documents
# For better metadata preservation, documents list order should be maintained
for chunk_text in chunk_texts:
# TODO: Enhance create_text_chunks to return metadata alongside text
# For now, we store chunks with empty metadata
all_texts.append({"text": chunk_text, "metadata": {}})
except ImportError as e:
print(
f"⚠️ AST chunking utilities not available in package ({e}), falling back to traditional chunking"
@@ -1298,27 +1282,14 @@ Examples:
for doc in tqdm(documents, desc="Chunking documents", unit="doc"):
# Check if this is a code file based on source path
source_path = doc.metadata.get("source", "")
file_path = doc.metadata.get("file_path", "")
is_code_file = any(source_path.endswith(ext) for ext in code_file_exts)
# Extract metadata to preserve with chunks
chunk_metadata = {
"file_path": file_path or source_path,
"file_name": doc.metadata.get("file_name", ""),
}
# Add optional metadata if available
if "creation_date" in doc.metadata:
chunk_metadata["creation_date"] = doc.metadata["creation_date"]
if "last_modified_date" in doc.metadata:
chunk_metadata["last_modified_date"] = doc.metadata["last_modified_date"]
# Use appropriate parser based on file type
parser = self.code_parser if is_code_file else self.node_parser
nodes = parser.get_nodes_from_documents([doc])
for node in nodes:
all_texts.append({"text": node.get_content(), "metadata": chunk_metadata})
all_texts.append(node.get_content())
print(f"Loaded {len(documents)} documents, {len(all_texts)} chunks")
return all_texts
@@ -1393,7 +1364,7 @@ Examples:
index_dir.mkdir(parents=True, exist_ok=True)
print(f"Building index '{index_name}' with {args.backend_name} backend...")
print(f"Building index '{index_name}' with {args.backend} backend...")
embedding_options: dict[str, Any] = {}
if args.embedding_mode == "ollama":
@@ -1405,7 +1376,7 @@ Examples:
embedding_options["api_key"] = resolved_embedding_key
builder = LeannBuilder(
backend_name=args.backend_name,
backend_name=args.backend,
embedding_model=args.embedding_model,
embedding_mode=args.embedding_mode,
embedding_options=embedding_options or None,
@@ -1416,8 +1387,8 @@ Examples:
num_threads=args.num_threads,
)
for chunk in all_texts:
builder.add_text(chunk["text"], metadata=chunk["metadata"])
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(index_path)
print(f"Index built at {index_path}")
@@ -1538,25 +1509,7 @@ Examples:
print(f"Search results for '{query}' (top {len(results)}):")
for i, result in enumerate(results, 1):
print(f"{i}. Score: {result.score:.3f}")
# Display metadata if flag is set
if args.show_metadata and result.metadata:
file_path = result.metadata.get("file_path", "")
if file_path:
print(f" 📄 File: {file_path}")
file_name = result.metadata.get("file_name", "")
if file_name and file_name != file_path:
print(f" 📝 Name: {file_name}")
# Show timestamps if available
if "creation_date" in result.metadata:
print(f" 🕐 Created: {result.metadata['creation_date']}")
if "last_modified_date" in result.metadata:
print(f" 🕑 Modified: {result.metadata['last_modified_date']}")
print(f" {result.text[:200]}...")
print(f" Source: {result.metadata.get('source', '')}")
print()
async def ask_questions(self, args):
@@ -1588,7 +1541,6 @@ Examples:
llm_kwargs["thinking_budget"] = args.thinking_budget
def _ask_once(prompt: str) -> None:
query_start_time = time.time()
response = chat.ask(
prompt,
top_k=args.top_k,
@@ -1599,20 +1551,27 @@ Examples:
pruning_strategy=args.pruning_strategy,
llm_kwargs=llm_kwargs,
)
query_completion_time = time.time() - query_start_time
print(f"LEANN: {response}")
print(f"The query took {query_completion_time:.3f} seconds to finish")
initial_query = (args.query or "").strip()
if args.interactive:
# Create interactive session
session = create_cli_session(index_name)
if initial_query:
_ask_once(initial_query)
session.run_interactive_loop(_ask_once)
print("LEANN Assistant ready! Type 'quit' to exit")
print("=" * 40)
while True:
user_input = input("\nYou: ").strip()
if user_input.lower() in ["quit", "exit", "q"]:
print("Goodbye!")
break
if not user_input:
continue
_ask_once(user_input)
else:
query = initial_query or input("Enter your question: ").strip()
if not query:

View File

@@ -183,73 +183,32 @@ def compute_embeddings_sentence_transformers(
}
try:
# Try loading with advanced parameters first (newer versions)
local_model_kwargs = model_kwargs.copy()
local_tokenizer_kwargs = tokenizer_kwargs.copy()
local_model_kwargs["local_files_only"] = True
local_tokenizer_kwargs["local_files_only"] = True
# Try local loading first
model_kwargs["local_files_only"] = True
tokenizer_kwargs["local_files_only"] = True
model = SentenceTransformer(
model_name,
device=device,
model_kwargs=local_model_kwargs,
tokenizer_kwargs=local_tokenizer_kwargs,
model_kwargs=model_kwargs,
tokenizer_kwargs=tokenizer_kwargs,
local_files_only=True,
)
logger.info("Model loaded successfully! (local + optimized)")
except TypeError as e:
if "model_kwargs" in str(e) or "tokenizer_kwargs" in str(e):
logger.warning(
f"Advanced parameters not supported ({e}), using basic initialization..."
)
# Fallback to basic initialization for older versions
try:
model = SentenceTransformer(
model_name,
device=device,
local_files_only=True,
)
logger.info("Model loaded successfully! (local + basic)")
except Exception as e2:
logger.warning(f"Local loading failed ({e2}), trying network download...")
model = SentenceTransformer(
model_name,
device=device,
local_files_only=False,
)
logger.info("Model loaded successfully! (network + basic)")
else:
raise
except Exception as e:
logger.warning(f"Local loading failed ({e}), trying network download...")
# Fallback to network loading with advanced parameters
try:
network_model_kwargs = model_kwargs.copy()
network_tokenizer_kwargs = tokenizer_kwargs.copy()
network_model_kwargs["local_files_only"] = False
network_tokenizer_kwargs["local_files_only"] = False
# Fallback to network loading
model_kwargs["local_files_only"] = False
tokenizer_kwargs["local_files_only"] = False
model = SentenceTransformer(
model_name,
device=device,
model_kwargs=network_model_kwargs,
tokenizer_kwargs=network_tokenizer_kwargs,
local_files_only=False,
)
logger.info("Model loaded successfully! (network + optimized)")
except TypeError as e2:
if "model_kwargs" in str(e2) or "tokenizer_kwargs" in str(e2):
logger.warning(
f"Advanced parameters not supported ({e2}), using basic network loading..."
)
model = SentenceTransformer(
model_name,
device=device,
local_files_only=False,
)
logger.info("Model loaded successfully! (network + basic)")
else:
raise
model = SentenceTransformer(
model_name,
device=device,
model_kwargs=model_kwargs,
tokenizer_kwargs=tokenizer_kwargs,
local_files_only=False,
)
logger.info("Model loaded successfully! (network + optimized)")
# Apply additional optimizations based on mode
if use_fp16 and device in ["cuda", "mps"]:
@@ -574,10 +533,9 @@ def compute_embeddings_ollama(
host: Optional[str] = None,
) -> np.ndarray:
"""
Compute embeddings using Ollama API with true batch processing.
Compute embeddings using Ollama API with simplified batch processing.
Uses the /api/embed endpoint which supports batch inputs.
Batch size: 32 for MPS/CPU, 128 for CUDA to optimize performance.
Uses batch size of 32 for MPS/CPU and 128 for CUDA to optimize performance.
Args:
texts: List of texts to compute embeddings for
@@ -682,11 +640,11 @@ def compute_embeddings_ollama(
logger.info(f"Resolved model name '{model_name}' to '{resolved_model_name}'")
model_name = resolved_model_name
# Verify the model supports embeddings by testing it with /api/embed
# Verify the model supports embeddings by testing it
try:
test_response = requests.post(
f"{resolved_host}/api/embed",
json={"model": model_name, "input": "test"},
f"{resolved_host}/api/embeddings",
json={"model": model_name, "prompt": "test"},
timeout=10,
)
if test_response.status_code != 200:
@@ -718,55 +676,56 @@ def compute_embeddings_ollama(
# If torch is not available, use conservative batch size
batch_size = 32
logger.info(f"Using batch size: {batch_size} for true batch processing")
logger.info(f"Using batch size: {batch_size}")
def get_batch_embeddings(batch_texts):
"""Get embeddings for a batch of texts using /api/embed endpoint."""
max_retries = 3
retry_count = 0
"""Get embeddings for a batch of texts."""
all_embeddings = []
failed_indices = []
# Truncate very long texts to avoid API issues
truncated_texts = [text[:8000] if len(text) > 8000 else text for text in batch_texts]
for i, text in enumerate(batch_texts):
max_retries = 3
retry_count = 0
while retry_count < max_retries:
try:
# Use /api/embed endpoint with "input" parameter for batch processing
response = requests.post(
f"{resolved_host}/api/embed",
json={"model": model_name, "input": truncated_texts},
timeout=60, # Increased timeout for batch processing
)
response.raise_for_status()
result = response.json()
batch_embeddings = result.get("embeddings")
if batch_embeddings is None:
raise ValueError("No embeddings returned from API")
if not isinstance(batch_embeddings, list):
raise ValueError(f"Invalid embeddings format: {type(batch_embeddings)}")
if len(batch_embeddings) != len(batch_texts):
raise ValueError(
f"Mismatch: requested {len(batch_texts)} embeddings, got {len(batch_embeddings)}"
# Truncate very long texts to avoid API issues
truncated_text = text[:8000] if len(text) > 8000 else text
while retry_count < max_retries:
try:
response = requests.post(
f"{resolved_host}/api/embeddings",
json={"model": model_name, "prompt": truncated_text},
timeout=30,
)
response.raise_for_status()
return batch_embeddings, []
result = response.json()
embedding = result.get("embedding")
except requests.exceptions.Timeout:
retry_count += 1
if retry_count >= max_retries:
logger.warning(f"Timeout for batch after {max_retries} retries")
return None, list(range(len(batch_texts)))
if embedding is None:
raise ValueError(f"No embedding returned for text {i}")
except Exception as e:
retry_count += 1
if retry_count >= max_retries:
logger.error(f"Failed to get embeddings for batch: {e}")
return None, list(range(len(batch_texts)))
if not isinstance(embedding, list) or len(embedding) == 0:
raise ValueError(f"Invalid embedding format for text {i}")
return None, list(range(len(batch_texts)))
all_embeddings.append(embedding)
break
except requests.exceptions.Timeout:
retry_count += 1
if retry_count >= max_retries:
logger.warning(f"Timeout for text {i} after {max_retries} retries")
failed_indices.append(i)
all_embeddings.append(None)
break
except Exception as e:
retry_count += 1
if retry_count >= max_retries:
logger.error(f"Failed to get embedding for text {i}: {e}")
failed_indices.append(i)
all_embeddings.append(None)
break
return all_embeddings, failed_indices
# Process texts in batches
all_embeddings = []
@@ -784,7 +743,7 @@ def compute_embeddings_ollama(
num_batches = (len(texts) + batch_size - 1) // batch_size
if show_progress:
batch_iterator = tqdm(range(num_batches), desc="Computing Ollama embeddings (batched)")
batch_iterator = tqdm(range(num_batches), desc="Computing Ollama embeddings")
else:
batch_iterator = range(num_batches)
@@ -795,14 +754,10 @@ def compute_embeddings_ollama(
batch_embeddings, batch_failed = get_batch_embeddings(batch_texts)
if batch_embeddings is not None:
all_embeddings.extend(batch_embeddings)
else:
# Entire batch failed, add None placeholders
all_embeddings.extend([None] * len(batch_texts))
# Adjust failed indices to global indices
global_failed = [start_idx + idx for idx in batch_failed]
all_failed_indices.extend(global_failed)
# Adjust failed indices to global indices
global_failed = [start_idx + idx for idx in batch_failed]
all_failed_indices.extend(global_failed)
all_embeddings.extend(batch_embeddings)
# Handle failed embeddings
if all_failed_indices:

View File

@@ -1,5 +1,4 @@
import atexit
import json
import logging
import os
import socket
@@ -49,85 +48,6 @@ def _check_port(port: int) -> bool:
# Note: All cross-process scanning helpers removed for simplicity
def _safe_resolve(path: Path) -> str:
"""Resolve paths safely even if the target does not yet exist."""
try:
return str(path.resolve(strict=False))
except Exception:
return str(path)
def _safe_stat_signature(path: Path) -> dict:
"""Return a lightweight signature describing the current state of a path."""
signature: dict[str, object] = {"path": _safe_resolve(path)}
try:
stat = path.stat()
except FileNotFoundError:
signature["missing"] = True
except Exception as exc: # pragma: no cover - unexpected filesystem errors
signature["error"] = str(exc)
else:
signature["mtime_ns"] = stat.st_mtime_ns
signature["size"] = stat.st_size
return signature
def _build_passages_signature(passages_file: Optional[str]) -> Optional[dict]:
"""Collect modification signatures for metadata and referenced passage files."""
if not passages_file:
return None
meta_path = Path(passages_file)
signature: dict[str, object] = {"meta": _safe_stat_signature(meta_path)}
try:
with meta_path.open(encoding="utf-8") as fh:
meta = json.load(fh)
except FileNotFoundError:
signature["meta_missing"] = True
signature["sources"] = []
return signature
except json.JSONDecodeError as exc:
signature["meta_error"] = f"json_error:{exc}"
signature["sources"] = []
return signature
except Exception as exc: # pragma: no cover - unexpected errors
signature["meta_error"] = str(exc)
signature["sources"] = []
return signature
base_dir = meta_path.parent
seen_paths: set[str] = set()
source_signatures: list[dict[str, object]] = []
for source in meta.get("passage_sources", []):
for key, kind in (
("path", "passages"),
("path_relative", "passages"),
("index_path", "index"),
("index_path_relative", "index"),
):
raw_path = source.get(key)
if not raw_path:
continue
candidate = Path(raw_path)
if not candidate.is_absolute():
candidate = base_dir / candidate
resolved = _safe_resolve(candidate)
if resolved in seen_paths:
continue
seen_paths.add(resolved)
sig = _safe_stat_signature(candidate)
sig["kind"] = kind
source_signatures.append(sig)
signature["sources"] = source_signatures
return signature
# Note: All cross-process scanning helpers removed for simplicity
class EmbeddingServerManager:
"""
A simplified manager for embedding server processes that avoids complex update mechanisms.
@@ -165,14 +85,13 @@ class EmbeddingServerManager:
"""Start the embedding server."""
# passages_file may be present in kwargs for server CLI, but we don't need it here
provider_options = kwargs.pop("provider_options", None)
passages_file = kwargs.get("passages_file", "")
config_signature = self._build_config_signature(
model_name=model_name,
embedding_mode=embedding_mode,
provider_options=provider_options,
passages_file=passages_file,
)
config_signature = {
"model_name": model_name,
"passages_file": kwargs.get("passages_file", ""),
"embedding_mode": embedding_mode,
"provider_options": provider_options or {},
}
# If this manager already has a live server, just reuse it
if (
@@ -196,7 +115,6 @@ class EmbeddingServerManager:
port,
model_name,
embedding_mode,
config_signature=config_signature,
provider_options=provider_options,
**kwargs,
)
@@ -218,30 +136,11 @@ class EmbeddingServerManager:
**kwargs,
)
def _build_config_signature(
self,
*,
model_name: str,
embedding_mode: str,
provider_options: Optional[dict],
passages_file: Optional[str],
) -> dict:
"""Create a signature describing the current server configuration."""
return {
"model_name": model_name,
"passages_file": passages_file or "",
"embedding_mode": embedding_mode,
"provider_options": provider_options or {},
"passages_signature": _build_passages_signature(passages_file),
}
def _start_server_colab(
self,
port: int,
model_name: str,
embedding_mode: str = "sentence-transformers",
*,
config_signature: Optional[dict] = None,
provider_options: Optional[dict] = None,
**kwargs,
) -> tuple[bool, int]:
@@ -264,11 +163,10 @@ class EmbeddingServerManager:
command,
actual_port,
provider_options=provider_options,
config_signature=config_signature,
)
started, ready_port = self._wait_for_server_ready_colab(actual_port)
if started:
self._server_config = config_signature or {
self._server_config = {
"model_name": model_name,
"passages_file": kwargs.get("passages_file", ""),
"embedding_mode": embedding_mode,
@@ -300,7 +198,6 @@ class EmbeddingServerManager:
command,
port,
provider_options=provider_options,
config_signature=config_signature,
)
started, ready_port = self._wait_for_server_ready(port)
if started:
@@ -344,9 +241,7 @@ class EmbeddingServerManager:
self,
command: list,
port: int,
*,
provider_options: Optional[dict] = None,
config_signature: Optional[dict] = None,
) -> None:
"""Launch the server process."""
project_root = Path(__file__).parent.parent.parent.parent.parent
@@ -381,29 +276,26 @@ class EmbeddingServerManager:
)
self.server_port = port
# Record config for in-process reuse (best effort; refined later when ready)
if config_signature is not None:
self._server_config = config_signature
else: # Fallback for unexpected code paths
try:
self._server_config = {
"model_name": command[command.index("--model-name") + 1]
if "--model-name" in command
else "",
"passages_file": command[command.index("--passages-file") + 1]
if "--passages-file" in command
else "",
"embedding_mode": command[command.index("--embedding-mode") + 1]
if "--embedding-mode" in command
else "sentence-transformers",
"provider_options": provider_options or {},
}
except Exception:
self._server_config = {
"model_name": "",
"passages_file": "",
"embedding_mode": "sentence-transformers",
"provider_options": provider_options or {},
}
try:
self._server_config = {
"model_name": command[command.index("--model-name") + 1]
if "--model-name" in command
else "",
"passages_file": command[command.index("--passages-file") + 1]
if "--passages-file" in command
else "",
"embedding_mode": command[command.index("--embedding-mode") + 1]
if "--embedding-mode" in command
else "sentence-transformers",
"provider_options": provider_options or {},
}
except Exception:
self._server_config = {
"model_name": "",
"passages_file": "",
"embedding_mode": "sentence-transformers",
"provider_options": provider_options or {},
}
logger.info(f"Server process started with PID: {self.server_process.pid}")
# Register atexit callback only when we actually start a process
@@ -511,9 +403,7 @@ class EmbeddingServerManager:
self,
command: list,
port: int,
*,
provider_options: Optional[dict] = None,
config_signature: Optional[dict] = None,
) -> None:
"""Launch the server process with Colab-specific settings."""
logger.info(f"Colab Command: {' '.join(command)}")
@@ -539,15 +429,12 @@ class EmbeddingServerManager:
atexit.register(self._finalize_process)
self._atexit_registered = True
# Record config for in-process reuse is best-effort in Colab mode
if config_signature is not None:
self._server_config = config_signature
else:
self._server_config = {
"model_name": "",
"passages_file": "",
"embedding_mode": "sentence-transformers",
"provider_options": provider_options or {},
}
self._server_config = {
"model_name": "",
"passages_file": "",
"embedding_mode": "sentence-transformers",
"provider_options": provider_options or {},
}
def _wait_for_server_ready_colab(self, port: int) -> tuple[bool, int]:
"""Wait for the server to be ready with Colab-specific timeout."""

View File

@@ -1,189 +0,0 @@
"""
Interactive session utilities for LEANN applications.
Provides shared readline functionality and command handling across
CLI, API, and RAG example interactive modes.
"""
import atexit
import os
from pathlib import Path
from typing import Callable, Optional
# Try to import readline with fallback for Windows
try:
import readline
HAS_READLINE = True
except ImportError:
# Windows doesn't have readline by default
HAS_READLINE = False
readline = None
class InteractiveSession:
"""Manages interactive session with optional readline support and common commands."""
def __init__(
self,
history_name: str,
prompt: str = "You: ",
welcome_message: str = "",
):
"""
Initialize interactive session with optional readline support.
Args:
history_name: Name for history file (e.g., "cli", "api_chat")
(ignored if readline not available)
prompt: Input prompt to display
welcome_message: Message to show when starting session
Note:
On systems without readline (e.g., Windows), falls back to basic input()
with limited functionality (no history, no line editing).
"""
self.history_name = history_name
self.prompt = prompt
self.welcome_message = welcome_message
self._setup_complete = False
def setup_readline(self):
"""Setup readline with history support (if available)."""
if self._setup_complete:
return
if not HAS_READLINE:
# Readline not available (likely Windows), skip setup
self._setup_complete = True
return
# History file setup
history_dir = Path.home() / ".leann" / "history"
history_dir.mkdir(parents=True, exist_ok=True)
history_file = history_dir / f"{self.history_name}.history"
# Load history if exists
try:
readline.read_history_file(str(history_file))
readline.set_history_length(1000)
except FileNotFoundError:
pass
# Save history on exit
atexit.register(readline.write_history_file, str(history_file))
# Optional: Enable vi editing mode (commented out by default)
# readline.parse_and_bind("set editing-mode vi")
self._setup_complete = True
def _show_help(self):
"""Show available commands."""
print("Commands:")
print(" quit/exit/q - Exit the chat")
print(" help - Show this help message")
print(" clear - Clear screen")
print(" history - Show command history")
def _show_history(self):
"""Show command history."""
if not HAS_READLINE:
print(" History not available (readline not supported on this system)")
return
history_length = readline.get_current_history_length()
if history_length == 0:
print(" No history available")
return
for i in range(history_length):
item = readline.get_history_item(i + 1)
if item:
print(f" {i + 1}: {item}")
def get_user_input(self) -> Optional[str]:
"""
Get user input with readline support.
Returns:
User input string, or None if EOF (Ctrl+D)
"""
try:
return input(self.prompt).strip()
except KeyboardInterrupt:
print("\n(Use 'quit' to exit)")
return "" # Return empty string to continue
except EOFError:
print("\nGoodbye!")
return None
def run_interactive_loop(self, handler_func: Callable[[str], None]):
"""
Run the interactive loop with a custom handler function.
Args:
handler_func: Function to handle user input that's not a built-in command
Should accept a string and handle the user's query
"""
self.setup_readline()
if self.welcome_message:
print(self.welcome_message)
while True:
user_input = self.get_user_input()
if user_input is None: # EOF (Ctrl+D)
break
if not user_input: # Empty input or KeyboardInterrupt
continue
# Handle built-in commands
command = user_input.lower()
if command in ["quit", "exit", "q"]:
print("Goodbye!")
break
elif command == "help":
self._show_help()
elif command == "clear":
os.system("clear" if os.name != "nt" else "cls")
elif command == "history":
self._show_history()
else:
# Regular user input - pass to handler
try:
handler_func(user_input)
except Exception as e:
print(f"Error: {e}")
def create_cli_session(index_name: str) -> InteractiveSession:
"""Create an interactive session for CLI usage."""
return InteractiveSession(
history_name=index_name,
prompt="\nYou: ",
welcome_message="LEANN Assistant ready! Type 'quit' to exit, 'help' for commands\n"
+ "=" * 40,
)
def create_api_session() -> InteractiveSession:
"""Create an interactive session for API chat."""
return InteractiveSession(
history_name="api_chat",
prompt="You: ",
welcome_message="Leann Chat started (type 'quit' to exit, 'help' for commands)\n"
+ "=" * 40,
)
def create_rag_session(app_name: str, data_description: str) -> InteractiveSession:
"""Create an interactive session for RAG examples."""
return InteractiveSession(
history_name=f"{app_name}_rag",
prompt="You: ",
welcome_message=f"[Interactive Mode] Chat with your {data_description} data!\nType 'quit' or 'exit' to stop, 'help' for commands.\n"
+ "=" * 40,
)

View File

@@ -60,11 +60,6 @@ def handle_request(request):
"maximum": 128,
"description": "Search complexity level. Use 16-32 for fast searches (recommended), 64+ for higher precision when needed.",
},
"show_metadata": {
"type": "boolean",
"default": False,
"description": "Include file paths and metadata in search results. Useful for understanding which files contain the results.",
},
},
"required": ["index_name", "query"],
},
@@ -109,8 +104,6 @@ def handle_request(request):
f"--complexity={args.get('complexity', 32)}",
"--non-interactive",
]
if args.get("show_metadata", False):
cmd.append("--show-metadata")
result = subprocess.run(cmd, capture_output=True, text=True)
elif tool_name == "leann_list":

View File

@@ -22,10 +22,7 @@ dependencies = [
"sglang",
"ollama",
"requests>=2.25.0",
"sentence-transformers>=3.0.0",
# Pin transformers below 4.46: 4.46.0 introduced Python 3.10-only typing (PEP 604) and
# breaks our Python 3.9 test matrix when pulled in by sentence-transformers.
"transformers<4.46",
"sentence-transformers>=2.2.0",
"openai>=1.0.0",
# PDF parsing dependencies - essential for document processing
"PyPDF2>=3.0.0",
@@ -114,7 +111,7 @@ target-version = "py39"
line-length = 100
extend-exclude = [
"third_party",
"apps/multimodal/vision-based-pdf-multi-vector/multi-vector-leann-paper-example.py",
"apps/multimodal/vision-based-pdf-multi-vector/multi-vector-leann.py",
"apps/multimodal/vision-based-pdf-multi-vector/multi-vector-leann-similarity-map.py"
]

View File

@@ -0,0 +1,324 @@
#!/usr/bin/env python3
"""Measure generation latency of a HuggingFace/OpenAI-compatible model over prompt files."""
import argparse
import contextlib
import io
import json
import logging
import time
from pathlib import Path
from leann.chat import get_llm
PROMPT_PREFIX = "PROMPT #"
logging.getLogger("leann.chat").setLevel(logging.ERROR)
def load_prompts(path: Path) -> list[str]:
prompts: list[str] = []
buffer: list[str] = []
collecting = False
with path.open("r", encoding="utf-8") as handle:
for line in handle:
if line.startswith(PROMPT_PREFIX):
if buffer:
prompts.append("".join(buffer).strip())
buffer.clear()
collecting = True
continue
if collecting:
buffer.append(line)
if buffer:
prompts.append("".join(buffer).strip())
return prompts
def measure_generation_times(
prompts: list[str],
llm,
generation_kwargs: dict[str, object],
allow_truncation: bool,
enable_qwen_thinking: bool,
verbose: bool,
per_call_timeout: int | None,
):
timings: list[float] = []
tokenizer = getattr(llm, "tokenizer", None)
max_positions = None
if hasattr(llm, "model") and hasattr(llm.model, "config"):
max_positions = getattr(llm.model.config, "max_position_embeddings", None)
requested_new_tokens = None
if max_positions is not None:
if "max_new_tokens" in generation_kwargs:
requested_new_tokens = generation_kwargs["max_new_tokens"]
elif "max_tokens" in generation_kwargs:
requested_new_tokens = generation_kwargs["max_tokens"]
context_max_length = max_positions
if max_positions is not None and requested_new_tokens is not None:
if requested_new_tokens >= max_positions:
requested_new_tokens = max_positions - 1
context_max_length = max(max_positions - requested_new_tokens, 1)
suppress_buffer = io.StringIO()
# Log base config
if verbose:
device = getattr(llm, "device", None)
try:
dtype = getattr(getattr(llm, "model", None), "dtype", None)
except Exception:
dtype = None
print(
f"[dbg] device={device} dtype={dtype} max_positions={max_positions} requested_new_tokens={requested_new_tokens} context_max_length={context_max_length}"
)
total = len(prompts)
for idx, prompt in enumerate(prompts, start=1):
prompt_for_llm = prompt
if (
enable_qwen_thinking
and "/think" not in prompt_for_llm
and "/no_think" not in prompt_for_llm
):
prompt_for_llm = f"{prompt_for_llm}\n/think"
if allow_truncation and tokenizer is not None and max_positions is not None:
tokenized = tokenizer(
prompt_for_llm,
truncation=True,
max_length=context_max_length,
return_tensors="pt",
)
prompt_for_llm = tokenizer.decode(tokenized["input_ids"][0], skip_special_tokens=True)
per_call_kwargs = dict(generation_kwargs)
if requested_new_tokens is not None:
per_call_kwargs["max_new_tokens"] = requested_new_tokens
# Enable streaming if requested (HF backend will print tokens)
if verbose:
# When verbose (or --stream propagated), enable streaming in HF backend
per_call_kwargs["stream"] = True
# Extra debug info about token lengths
if verbose and tokenizer is not None:
try:
toks = tokenizer(prompt_for_llm, return_tensors=None, truncation=False)
in_len = (
len(toks["input_ids"])
if isinstance(toks["input_ids"], list)
else len(toks["input_ids"][0])
)
except Exception:
in_len = None
print(f"[dbg] prompt {idx}/{total} tokens={in_len}")
print(
f"[dbg] gen_cfg={{max_new_tokens:{per_call_kwargs.get('max_new_tokens')}, temp:{per_call_kwargs.get('temperature')}, top_p:{per_call_kwargs.get('top_p')}}}"
)
start = time.perf_counter()
# Optional per-call timeout using signal alarm
timeout_handler_installed = False
if per_call_timeout is not None:
import signal
def _timeout_handler(signum, frame):
raise TimeoutError("generation timed out")
old_handler = signal.signal(signal.SIGALRM, _timeout_handler)
signal.alarm(int(per_call_timeout))
timeout_handler_installed = True
try:
if verbose:
print("[dbg] generation_start")
llm.ask(prompt_for_llm, **per_call_kwargs)
print("[dbg] generation_done")
else:
with contextlib.redirect_stdout(suppress_buffer):
llm.ask(prompt_for_llm, **per_call_kwargs)
except TimeoutError:
if verbose:
print("[dbg] generation_timeout")
finally:
if timeout_handler_installed:
import signal
signal.alarm(0)
signal.signal(signal.SIGALRM, old_handler)
end = time.perf_counter()
timings.append(end - start)
suppress_buffer.seek(0)
suppress_buffer.truncate(0)
return timings
def parse_args():
parser = argparse.ArgumentParser(description="Measure generation timing for prompt files")
parser.add_argument(
"--max-prompts",
type=int,
default=None,
help="Optional limit on number of prompts to evaluate per file",
)
parser.add_argument(
"--allow-truncation",
action="store_true",
help="Allow truncating prompt context to respect model's max context",
)
parser.add_argument(
"--model",
type=str,
default="sshleifer/tiny-gpt2",
help="LLM model identifier (default: sshleifer/tiny-gpt2)",
)
parser.add_argument(
"--llm-type",
type=str,
default="hf",
choices=["hf", "openai", "ollama", "gemini", "simulated"],
help="LLM backend type (default: hf)",
)
parser.add_argument(
"--device",
type=str,
default="cpu",
choices=["cpu", "auto"],
help="Device override for HF models (default: cpu)",
)
parser.add_argument(
"--max-new-tokens",
type=int,
default=16,
help="Max new tokens per generation (default: 16)",
)
parser.add_argument(
"--temperature",
type=float,
default=0.2,
help="Sampling temperature (default: 0.2)",
)
parser.add_argument(
"--top-p",
type=float,
default=0.8,
help="Nucleus sampling top-p (default: 0.8)",
)
parser.add_argument(
"--qwen-thinking",
action="store_true",
help="Append /think to prompts for Qwen models",
)
parser.add_argument(
"--no-max-new-tokens",
action="store_true",
help="Do not set max_new_tokens in generation kwargs",
)
parser.add_argument(
"--per-call-timeout",
type=int,
default=None,
help="Optional timeout (seconds) per generation call; if hit, moves to next prompt",
)
parser.add_argument(
"--stream",
action="store_true",
help="Stream generated text to stdout during generation",
)
parser.add_argument(
"--datasets",
type=str,
default=None,
help=(
"Comma-separated subset of datasets to run. Options: gpqa_bm25,gpqa_diskann,gpqa_hnsw. "
"Default: all"
),
)
parser.add_argument(
"--verbose",
action="store_true",
help="Enable debug logging and show generation progress",
)
return parser.parse_args()
def main():
args = parse_args()
dataset_map = {
# "gpqa_bm25": Path("prompt_dump_gpqa_bm25.txt"),
# "gpqa_diskann": Path("prompt_dump_gpqa_diskann.txt"),
# "gpqa_hnsw": Path("prompt_dump_gpqa_hnsw.txt"),
# "nq_bm25": Path("prompt_dump_nq_bm25.txt"),
# # "nq_diskann": Path("prompt_dump_nq_diskann.txt"),
# "nq_hnsw": Path("prompt_dump_nq_hnsw.txt"),
"gpqa_bm25": Path("prompt_dump_hotpot_bm25.txt"),
"gpqa_diskann": Path("prompt_dump_hotpot_diskann.txt"),
# "gpqa_hnsw": Path("prompt_dump_hotpot_hnsw.txt"),
# "gpqa_bm25": Path("prompt_dump_trivia_bm25.txt"),
# "gpqa_diskann": Path("prompt_dump_trivia_diskann.txt"),
}
if args.datasets:
selected = [k.strip() for k in args.datasets.split(",") if k.strip()]
invalid = [k for k in selected if k not in dataset_map]
if invalid:
raise SystemExit(f"Invalid dataset names: {invalid}. Valid: {list(dataset_map)}")
dataset_files = [dataset_map[k] for k in selected]
else:
dataset_files = list(dataset_map.values())
generation_kwargs = {
"temperature": args.temperature,
"top_p": args.top_p,
}
if not args.no_max_new_tokens:
generation_kwargs["max_new_tokens"] = args.max_new_tokens
results: dict[str, dict[str, float | int]] = {}
llm_config = {"type": args.llm_type, "model": args.model}
try:
llm = get_llm(llm_config)
except Exception as exc:
print(f"Failed to initialize LLM: {exc}")
raise SystemExit(1) from exc
if args.llm_type == "hf" and hasattr(llm, "model") and args.device == "cpu":
llm.model = llm.model.to("cpu")
if hasattr(llm, "device"):
llm.device = "cpu"
for dataset_path in dataset_files:
print(f"Processing {dataset_path.name}...")
prompts = load_prompts(dataset_path)
if args.max_prompts is not None:
prompts = prompts[: args.max_prompts]
if args.verbose:
print(f"[dbg] loaded_prompts={len(prompts)} (showing up to --max-prompts)")
timings = measure_generation_times(
prompts,
llm,
generation_kwargs,
args.allow_truncation,
args.qwen_thinking,
args.verbose or args.stream,
args.per_call_timeout,
)
total_time = sum(timings)
count = len(timings)
average_time = total_time / count if count else 0.0
results[str(dataset_path.name)] = {
"total_prompts": count,
"total_time_seconds": total_time,
"average_time_seconds": average_time,
}
print(json.dumps(results, indent=2))
if __name__ == "__main__":
main()

View File

@@ -1,137 +0,0 @@
import json
import time
import pytest
from leann.embedding_server_manager import EmbeddingServerManager
class DummyProcess:
def __init__(self):
self.pid = 12345
self._terminated = False
def poll(self):
return 0 if self._terminated else None
def terminate(self):
self._terminated = True
def kill(self):
self._terminated = True
def wait(self, timeout=None):
self._terminated = True
return 0
@pytest.fixture
def embedding_manager(monkeypatch):
manager = EmbeddingServerManager("leann_backend_hnsw.hnsw_embedding_server")
def fake_get_available_port(start_port):
return start_port
monkeypatch.setattr(
"leann.embedding_server_manager._get_available_port",
fake_get_available_port,
)
start_calls = []
def fake_start_new_server(self, port, model_name, embedding_mode, **kwargs):
config_signature = kwargs.get("config_signature")
start_calls.append(config_signature)
self.server_process = DummyProcess()
self.server_port = port
self._server_config = config_signature
return True, port
monkeypatch.setattr(
EmbeddingServerManager,
"_start_new_server",
fake_start_new_server,
)
# Ensure stop_server doesn't try to operate on real subprocesses
def fake_stop_server(self):
self.server_process = None
self.server_port = None
self._server_config = None
monkeypatch.setattr(EmbeddingServerManager, "stop_server", fake_stop_server)
return manager, start_calls
def _write_meta(meta_path, passages_name, index_name, total):
meta_path.write_text(
json.dumps(
{
"backend_name": "hnsw",
"embedding_model": "test-model",
"embedding_mode": "sentence-transformers",
"dimensions": 3,
"backend_kwargs": {},
"passage_sources": [
{
"type": "jsonl",
"path": passages_name,
"index_path": index_name,
}
],
"total_passages": total,
}
),
encoding="utf-8",
)
def test_server_restarts_when_metadata_changes(tmp_path, embedding_manager):
manager, start_calls = embedding_manager
meta_path = tmp_path / "example.meta.json"
passages_path = tmp_path / "example.passages.jsonl"
index_path = tmp_path / "example.passages.idx"
passages_path.write_text("first\n", encoding="utf-8")
index_path.write_bytes(b"index")
_write_meta(meta_path, passages_path.name, index_path.name, total=1)
# Initial start populates signature
ok, port = manager.start_server(
port=6000,
model_name="test-model",
passages_file=str(meta_path),
)
assert ok
assert port == 6000
assert len(start_calls) == 1
initial_signature = start_calls[0]["passages_signature"]
# No metadata change => reuse existing server
ok, port_again = manager.start_server(
port=6000,
model_name="test-model",
passages_file=str(meta_path),
)
assert ok
assert port_again == 6000
assert len(start_calls) == 1
# Modify passage data and metadata to force signature change
time.sleep(0.01) # Ensure filesystem timestamps move forward
passages_path.write_text("second\n", encoding="utf-8")
_write_meta(meta_path, passages_path.name, index_path.name, total=2)
ok, port_third = manager.start_server(
port=6000,
model_name="test-model",
passages_file=str(meta_path),
)
assert ok
assert port_third == 6000
assert len(start_calls) == 2
updated_signature = start_calls[1]["passages_signature"]
assert updated_signature != initial_signature

View File

@@ -1,208 +0,0 @@
#!/usr/bin/env python3
"""
Test script for MCP integration implementations.
This script tests the basic functionality of the MCP readers and RAG applications
without requiring actual MCP servers to be running.
"""
import sys
from pathlib import Path
# Add the parent directory to the path so we can import from apps
sys.path.append(str(Path(__file__).parent.parent))
from apps.slack_data.slack_mcp_reader import SlackMCPReader
from apps.slack_rag import SlackMCPRAG
from apps.twitter_data.twitter_mcp_reader import TwitterMCPReader
from apps.twitter_rag import TwitterMCPRAG
def test_slack_reader_initialization():
"""Test that SlackMCPReader can be initialized with various parameters."""
print("Testing SlackMCPReader initialization...")
# Test basic initialization
reader = SlackMCPReader("slack-mcp-server")
assert reader.mcp_server_command == "slack-mcp-server"
assert reader.concatenate_conversations
assert reader.max_messages_per_conversation == 100
# Test with custom parameters
reader = SlackMCPReader(
"custom-slack-server",
workspace_name="test-workspace",
concatenate_conversations=False,
max_messages_per_conversation=50,
)
assert reader.workspace_name == "test-workspace"
assert not reader.concatenate_conversations
assert reader.max_messages_per_conversation == 50
print("✅ SlackMCPReader initialization tests passed")
def test_twitter_reader_initialization():
"""Test that TwitterMCPReader can be initialized with various parameters."""
print("Testing TwitterMCPReader initialization...")
# Test basic initialization
reader = TwitterMCPReader("twitter-mcp-server")
assert reader.mcp_server_command == "twitter-mcp-server"
assert reader.include_tweet_content
assert reader.include_metadata
assert reader.max_bookmarks == 1000
# Test with custom parameters
reader = TwitterMCPReader(
"custom-twitter-server",
username="testuser",
include_tweet_content=False,
include_metadata=False,
max_bookmarks=500,
)
assert reader.username == "testuser"
assert not reader.include_tweet_content
assert not reader.include_metadata
assert reader.max_bookmarks == 500
print("✅ TwitterMCPReader initialization tests passed")
def test_slack_message_formatting():
"""Test Slack message formatting functionality."""
print("Testing Slack message formatting...")
reader = SlackMCPReader("slack-mcp-server")
# Test basic message formatting
message = {
"text": "Hello, world!",
"user": "john_doe",
"channel": "general",
"ts": "1234567890.123456",
}
formatted = reader._format_message(message)
assert "Channel: #general" in formatted
assert "User: john_doe" in formatted
assert "Message: Hello, world!" in formatted
assert "Time:" in formatted
# Test with missing fields
message = {"text": "Simple message"}
formatted = reader._format_message(message)
assert "Message: Simple message" in formatted
print("✅ Slack message formatting tests passed")
def test_twitter_bookmark_formatting():
"""Test Twitter bookmark formatting functionality."""
print("Testing Twitter bookmark formatting...")
reader = TwitterMCPReader("twitter-mcp-server")
# Test basic bookmark formatting
bookmark = {
"text": "This is a great article about AI!",
"author": "ai_researcher",
"created_at": "2024-01-01T12:00:00Z",
"url": "https://twitter.com/ai_researcher/status/123456789",
"likes": 42,
"retweets": 15,
}
formatted = reader._format_bookmark(bookmark)
assert "=== Twitter Bookmark ===" in formatted
assert "Author: @ai_researcher" in formatted
assert "Content:" in formatted
assert "This is a great article about AI!" in formatted
assert "URL: https://twitter.com" in formatted
assert "Likes: 42" in formatted
assert "Retweets: 15" in formatted
# Test with minimal data
bookmark = {"text": "Simple tweet"}
formatted = reader._format_bookmark(bookmark)
assert "=== Twitter Bookmark ===" in formatted
assert "Simple tweet" in formatted
print("✅ Twitter bookmark formatting tests passed")
def test_slack_rag_initialization():
"""Test that SlackMCPRAG can be initialized."""
print("Testing SlackMCPRAG initialization...")
app = SlackMCPRAG()
assert app.default_index_name == "slack_messages"
assert hasattr(app, "parser")
print("✅ SlackMCPRAG initialization tests passed")
def test_twitter_rag_initialization():
"""Test that TwitterMCPRAG can be initialized."""
print("Testing TwitterMCPRAG initialization...")
app = TwitterMCPRAG()
assert app.default_index_name == "twitter_bookmarks"
assert hasattr(app, "parser")
print("✅ TwitterMCPRAG initialization tests passed")
def test_concatenated_content_creation():
"""Test creation of concatenated content from multiple messages."""
print("Testing concatenated content creation...")
reader = SlackMCPReader("slack-mcp-server", workspace_name="test-workspace")
messages = [
{"text": "First message", "user": "alice", "ts": "1000"},
{"text": "Second message", "user": "bob", "ts": "2000"},
{"text": "Third message", "user": "charlie", "ts": "3000"},
]
content = reader._create_concatenated_content(messages, "general")
assert "Slack Channel: #general" in content
assert "Message Count: 3" in content
assert "Workspace: test-workspace" in content
assert "First message" in content
assert "Second message" in content
assert "Third message" in content
print("✅ Concatenated content creation tests passed")
def main():
"""Run all tests."""
print("🧪 Running MCP Integration Tests")
print("=" * 50)
try:
test_slack_reader_initialization()
test_twitter_reader_initialization()
test_slack_message_formatting()
test_twitter_bookmark_formatting()
test_slack_rag_initialization()
test_twitter_rag_initialization()
test_concatenated_content_creation()
print("\n" + "=" * 50)
print("🎉 All tests passed! MCP integration is working correctly.")
print("\nNext steps:")
print("1. Install actual MCP servers for Slack and Twitter")
print("2. Configure API credentials")
print("3. Test with --test-connection flag")
print("4. Start indexing your live data!")
except Exception as e:
print(f"\n❌ Test failed: {e}")
sys.exit(1)
if __name__ == "__main__":
main()

View File

@@ -1,221 +0,0 @@
#!/usr/bin/env python3
"""
Standalone test script for MCP integration implementations.
This script tests the basic functionality of the MCP readers
without requiring LEANN core dependencies.
"""
import json
import sys
from pathlib import Path
# Add the parent directory to the path so we can import from apps
sys.path.append(str(Path(__file__).parent.parent))
def test_slack_reader_basic():
"""Test basic SlackMCPReader functionality without async operations."""
print("Testing SlackMCPReader basic functionality...")
# Import and test initialization
from apps.slack_data.slack_mcp_reader import SlackMCPReader
reader = SlackMCPReader("slack-mcp-server")
assert reader.mcp_server_command == "slack-mcp-server"
assert reader.concatenate_conversations
# Test message formatting
message = {
"text": "Hello team! How's the project going?",
"user": "john_doe",
"channel": "general",
"ts": "1234567890.123456",
}
formatted = reader._format_message(message)
assert "Channel: #general" in formatted
assert "User: john_doe" in formatted
assert "Message: Hello team!" in formatted
# Test concatenated content creation
messages = [
{"text": "First message", "user": "alice", "ts": "1000"},
{"text": "Second message", "user": "bob", "ts": "2000"},
]
content = reader._create_concatenated_content(messages, "dev-team")
assert "Slack Channel: #dev-team" in content
assert "Message Count: 2" in content
assert "First message" in content
assert "Second message" in content
print("✅ SlackMCPReader basic tests passed")
def test_twitter_reader_basic():
"""Test basic TwitterMCPReader functionality."""
print("Testing TwitterMCPReader basic functionality...")
from apps.twitter_data.twitter_mcp_reader import TwitterMCPReader
reader = TwitterMCPReader("twitter-mcp-server")
assert reader.mcp_server_command == "twitter-mcp-server"
assert reader.include_tweet_content
assert reader.max_bookmarks == 1000
# Test bookmark formatting
bookmark = {
"text": "Amazing article about the future of AI! Must read for everyone interested in tech.",
"author": "tech_guru",
"created_at": "2024-01-15T14:30:00Z",
"url": "https://twitter.com/tech_guru/status/123456789",
"likes": 156,
"retweets": 42,
"replies": 23,
"hashtags": ["AI", "tech", "future"],
"mentions": ["@openai", "@anthropic"],
}
formatted = reader._format_bookmark(bookmark)
assert "=== Twitter Bookmark ===" in formatted
assert "Author: @tech_guru" in formatted
assert "Amazing article about the future of AI!" in formatted
assert "Likes: 156" in formatted
assert "Retweets: 42" in formatted
assert "Hashtags: AI, tech, future" in formatted
assert "Mentions: @openai, @anthropic" in formatted
# Test with minimal data
simple_bookmark = {"text": "Short tweet", "author": "user123"}
formatted_simple = reader._format_bookmark(simple_bookmark)
assert "=== Twitter Bookmark ===" in formatted_simple
assert "Short tweet" in formatted_simple
assert "Author: @user123" in formatted_simple
print("✅ TwitterMCPReader basic tests passed")
def test_mcp_request_format():
"""Test MCP request formatting."""
print("Testing MCP request formatting...")
# Test initialization request format
init_request = {
"jsonrpc": "2.0",
"id": 1,
"method": "initialize",
"params": {
"protocolVersion": "2024-11-05",
"capabilities": {},
"clientInfo": {"name": "leann-slack-reader", "version": "1.0.0"},
},
}
# Verify it's valid JSON
json_str = json.dumps(init_request)
parsed = json.loads(json_str)
assert parsed["jsonrpc"] == "2.0"
assert parsed["method"] == "initialize"
assert parsed["params"]["protocolVersion"] == "2024-11-05"
# Test tools/list request
list_request = {"jsonrpc": "2.0", "id": 2, "method": "tools/list", "params": {}}
json_str = json.dumps(list_request)
parsed = json.loads(json_str)
assert parsed["method"] == "tools/list"
print("✅ MCP request formatting tests passed")
def test_data_processing():
"""Test data processing capabilities."""
print("Testing data processing capabilities...")
from apps.slack_data.slack_mcp_reader import SlackMCPReader
from apps.twitter_data.twitter_mcp_reader import TwitterMCPReader
# Test Slack message processing with various formats
slack_reader = SlackMCPReader("test-server")
messages_with_timestamps = [
{"text": "Meeting in 5 minutes", "user": "alice", "ts": "1000.123"},
{"text": "On my way!", "user": "bob", "ts": "1001.456"},
{"text": "Starting now", "user": "charlie", "ts": "1002.789"},
]
content = slack_reader._create_concatenated_content(messages_with_timestamps, "meetings")
assert "Meeting in 5 minutes" in content
assert "On my way!" in content
assert "Starting now" in content
# Test Twitter bookmark processing with engagement data
twitter_reader = TwitterMCPReader("test-server", include_metadata=True)
high_engagement_bookmark = {
"text": "Thread about startup lessons learned 🧵",
"author": "startup_founder",
"likes": 1250,
"retweets": 340,
"replies": 89,
}
formatted = twitter_reader._format_bookmark(high_engagement_bookmark)
assert "Thread about startup lessons learned" in formatted
assert "Likes: 1250" in formatted
assert "Retweets: 340" in formatted
assert "Replies: 89" in formatted
# Test with metadata disabled
twitter_reader_no_meta = TwitterMCPReader("test-server", include_metadata=False)
formatted_no_meta = twitter_reader_no_meta._format_bookmark(high_engagement_bookmark)
assert "Thread about startup lessons learned" in formatted_no_meta
assert "Likes:" not in formatted_no_meta
assert "Retweets:" not in formatted_no_meta
print("✅ Data processing tests passed")
def main():
"""Run all standalone tests."""
print("🧪 Running MCP Integration Standalone Tests")
print("=" * 60)
print("Testing core functionality without LEANN dependencies...")
print()
try:
test_slack_reader_basic()
test_twitter_reader_basic()
test_mcp_request_format()
test_data_processing()
print("\n" + "=" * 60)
print("🎉 All standalone tests passed!")
print("\n✨ MCP Integration Summary:")
print("- SlackMCPReader: Ready for Slack message processing")
print("- TwitterMCPReader: Ready for Twitter bookmark processing")
print("- MCP Protocol: Properly formatted JSON-RPC requests")
print("- Data Processing: Handles various message/bookmark formats")
print("\n🚀 Next Steps:")
print("1. Install MCP servers: npm install -g slack-mcp-server twitter-mcp-server")
print("2. Configure API credentials for Slack and Twitter")
print("3. Test connections: python -m apps.slack_rag --test-connection")
print("4. Start indexing live data from your platforms!")
print("\n📖 Documentation:")
print("- Check README.md for detailed setup instructions")
print("- Run examples/mcp_integration_demo.py for usage examples")
print("- Explore apps/slack_rag.py and apps/twitter_rag.py for implementation details")
except Exception as e:
print(f"\n❌ Test failed: {e}")
import traceback
traceback.print_exc()
sys.exit(1)
if __name__ == "__main__":
main()

413
uv.lock generated
View File

@@ -14,7 +14,9 @@ version = "1.10.1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "huggingface-hub" },
{ name = "numpy" },
{ name = "numpy", version = "2.0.2", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" },
{ name = "numpy", version = "2.2.6", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version == '3.10.*'" },
{ name = "numpy", version = "2.3.3", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.11'" },
{ name = "packaging" },
{ name = "psutil" },
{ name = "pyyaml" },
@@ -201,7 +203,9 @@ name = "astchunk"
version = "0.1.0"
source = { editable = "packages/astchunk-leann" }
dependencies = [
{ name = "numpy" },
{ name = "numpy", version = "2.0.2", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" },
{ name = "numpy", version = "2.2.6", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version == '3.10.*'" },
{ name = "numpy", version = "2.3.3", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.11'" },
{ name = "pyrsistent" },
{ name = "tree-sitter", version = "0.23.2", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" },
{ name = "tree-sitter", version = "0.25.1", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.10'" },
@@ -585,7 +589,7 @@ resolution-markers = [
"python_full_version < '3.10'",
]
dependencies = [
{ name = "numpy", marker = "python_full_version < '3.10'" },
{ name = "numpy", version = "2.0.2", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/f5/f6/31a8f28b4a2a4fa0e01085e542f3081ab0588eff8e589d39d775172c9792/contourpy-1.3.0.tar.gz", hash = "sha256:7ffa0db17717a8ffb127efd0c95a4362d996b892c2904db72428d5b52e1938a4", size = 13464370 }
wheels = [
@@ -663,7 +667,7 @@ resolution-markers = [
"python_full_version == '3.10.*'",
]
dependencies = [
{ name = "numpy", marker = "python_full_version == '3.10.*'" },
{ name = "numpy", version = "2.2.6", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version == '3.10.*'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/66/54/eb9bfc647b19f2009dd5c7f5ec51c4e6ca831725f1aea7a993034f483147/contourpy-1.3.2.tar.gz", hash = "sha256:b6945942715a034c671b7fc54f9588126b0b8bf23db2696e3ca8328f3ff0ab54", size = 13466130 }
wheels = [
@@ -734,7 +738,7 @@ resolution-markers = [
"python_full_version == '3.11.*'",
]
dependencies = [
{ name = "numpy", marker = "python_full_version >= '3.11'" },
{ name = "numpy", version = "2.3.3", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.11'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/58/01/1253e6698a07380cd31a736d248a3f2a50a7c88779a1813da27503cadc2a/contourpy-1.3.3.tar.gz", hash = "sha256:083e12155b210502d0bca491432bb04d56dc3432f95a979b429f2848c3dbe880", size = 13466174 }
wheels = [
@@ -1024,7 +1028,9 @@ dependencies = [
{ name = "fsspec", extra = ["http"] },
{ name = "huggingface-hub" },
{ name = "multiprocess" },
{ name = "numpy" },
{ name = "numpy", version = "2.0.2", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" },
{ name = "numpy", version = "2.2.6", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version == '3.10.*'" },
{ name = "numpy", version = "2.3.3", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.11'" },
{ name = "packaging" },
{ name = "pandas" },
{ name = "pyarrow" },
@@ -1165,7 +1171,9 @@ dependencies = [
{ name = "fsspec", extra = ["http"] },
{ name = "huggingface-hub" },
{ name = "multiprocess" },
{ name = "numpy" },
{ name = "numpy", version = "2.0.2", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" },
{ name = "numpy", version = "2.2.6", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version == '3.10.*'" },
{ name = "numpy", version = "2.3.3", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.11'" },
{ name = "packaging" },
{ name = "pandas" },
{ name = "requests" },
@@ -1602,7 +1610,7 @@ name = "importlib-metadata"
version = "8.7.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "zipp", marker = "python_full_version < '3.10'" },
{ name = "zipp" },
]
sdist = { url = "https://files.pythonhosted.org/packages/76/66/650a33bd90f786193e4de4b3ad86ea60b53c89b669a5c7be931fac31cdb0/importlib_metadata-8.7.0.tar.gz", hash = "sha256:d13b81ad223b890aa16c5471f2ac3056cf76c5f10f82d6f9292f0b415f389000", size = 56641 }
wheels = [
@@ -2159,7 +2167,9 @@ version = "0.3.4"
source = { editable = "packages/leann-backend-diskann" }
dependencies = [
{ name = "leann-core" },
{ name = "numpy" },
{ name = "numpy", version = "2.0.2", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" },
{ name = "numpy", version = "2.2.6", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version == '3.10.*'" },
{ name = "numpy", version = "2.3.3", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.11'" },
{ name = "protobuf" },
]
@@ -2177,7 +2187,9 @@ source = { editable = "packages/leann-backend-hnsw" }
dependencies = [
{ name = "leann-core" },
{ name = "msgpack" },
{ name = "numpy" },
{ name = "numpy", version = "2.0.2", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" },
{ name = "numpy", version = "2.2.6", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version == '3.10.*'" },
{ name = "numpy", version = "2.3.3", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.11'" },
{ name = "pyzmq" },
]
@@ -2204,7 +2216,9 @@ dependencies = [
{ name = "mlx-lm", marker = "platform_machine == 'arm64' and sys_platform == 'darwin'" },
{ name = "msgpack" },
{ name = "nbconvert" },
{ name = "numpy" },
{ name = "numpy", version = "2.0.2", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" },
{ name = "numpy", version = "2.2.6", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version == '3.10.*'" },
{ name = "numpy", version = "2.3.3", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.11'" },
{ name = "openai" },
{ name = "pdfplumber" },
{ name = "psutil" },
@@ -2241,12 +2255,12 @@ requires-dist = [
{ name = "python-dotenv", specifier = ">=1.0.0" },
{ name = "pyzmq", specifier = ">=23.0.0" },
{ name = "requests", specifier = ">=2.25.0" },
{ name = "sentence-transformers", specifier = ">=3.0.0" },
{ name = "sentence-transformers", specifier = ">=2.2.0" },
{ name = "torch", specifier = ">=2.0.0" },
{ name = "torch", marker = "extra == 'colab'", specifier = ">=2.0.0,<3.0.0" },
{ name = "tqdm", specifier = ">=4.60.0" },
{ name = "transformers", specifier = ">=4.30.0,<4.46" },
{ name = "transformers", marker = "extra == 'colab'", specifier = ">=4.30.0,<4.46" },
{ name = "transformers", specifier = ">=4.30.0" },
{ name = "transformers", marker = "extra == 'colab'", specifier = ">=4.30.0,<5.0.0" },
]
provides-extras = ["colab"]
@@ -2272,7 +2286,9 @@ dependencies = [
{ name = "mlx-lm", marker = "platform_machine == 'arm64' and sys_platform == 'darwin'" },
{ name = "msgpack" },
{ name = "nbconvert" },
{ name = "numpy" },
{ name = "numpy", version = "2.0.2", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" },
{ name = "numpy", version = "2.2.6", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version == '3.10.*'" },
{ name = "numpy", version = "2.3.3", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.11'" },
{ name = "ollama" },
{ name = "openai" },
{ name = "pathspec" },
@@ -2290,7 +2306,6 @@ dependencies = [
{ name = "torch" },
{ name = "torchvision" },
{ name = "tqdm" },
{ name = "transformers" },
{ name = "tree-sitter", version = "0.23.2", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" },
{ name = "tree-sitter", version = "0.25.1", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.10'" },
{ name = "tree-sitter-c-sharp" },
@@ -2366,12 +2381,11 @@ requires-dist = [
{ name = "pypdfium2", specifier = ">=4.30.0" },
{ name = "python-docx", marker = "extra == 'documents'", specifier = ">=0.8.11" },
{ name = "requests", specifier = ">=2.25.0" },
{ name = "sentence-transformers", specifier = ">=3.0.0" },
{ name = "sentence-transformers", specifier = ">=2.2.0" },
{ name = "sglang" },
{ name = "torch" },
{ name = "torchvision", specifier = ">=0.23.0" },
{ name = "tqdm" },
{ name = "transformers", specifier = "<4.46" },
{ name = "tree-sitter", specifier = ">=0.20.0" },
{ name = "tree-sitter-c-sharp", specifier = ">=0.20.0" },
{ name = "tree-sitter-java", specifier = ">=0.20.0" },
@@ -2486,7 +2500,9 @@ dependencies = [
{ name = "networkx", version = "3.4.2", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version == '3.10.*'" },
{ name = "networkx", version = "3.5", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.11'" },
{ name = "nltk" },
{ name = "numpy" },
{ name = "numpy", version = "2.0.2", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" },
{ name = "numpy", version = "2.2.6", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version == '3.10.*'" },
{ name = "numpy", version = "2.3.3", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.11'" },
{ name = "pillow" },
{ name = "platformdirs" },
{ name = "pydantic" },
@@ -2907,7 +2923,7 @@ dependencies = [
{ name = "fonttools", marker = "python_full_version < '3.10'" },
{ name = "importlib-resources", marker = "python_full_version < '3.10'" },
{ name = "kiwisolver", version = "1.4.7", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" },
{ name = "numpy", marker = "python_full_version < '3.10'" },
{ name = "numpy", version = "2.0.2", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" },
{ name = "packaging", marker = "python_full_version < '3.10'" },
{ name = "pillow", marker = "python_full_version < '3.10'" },
{ name = "pyparsing", marker = "python_full_version < '3.10'" },
@@ -2972,7 +2988,8 @@ dependencies = [
{ name = "cycler", marker = "python_full_version >= '3.10'" },
{ name = "fonttools", marker = "python_full_version >= '3.10'" },
{ name = "kiwisolver", version = "1.4.9", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.10'" },
{ name = "numpy", marker = "python_full_version >= '3.10'" },
{ name = "numpy", version = "2.2.6", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version == '3.10.*'" },
{ name = "numpy", version = "2.3.3", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.11'" },
{ name = "packaging", marker = "python_full_version >= '3.10'" },
{ name = "pillow", marker = "python_full_version >= '3.10'" },
{ name = "pyparsing", marker = "python_full_version >= '3.10'" },
@@ -3101,7 +3118,9 @@ source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "jinja2" },
{ name = "mlx" },
{ name = "numpy" },
{ name = "numpy", version = "2.0.2", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" },
{ name = "numpy", version = "2.2.6", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version == '3.10.*'" },
{ name = "numpy", version = "2.3.3", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.11'" },
{ name = "protobuf" },
{ name = "pyyaml" },
{ name = "transformers" },
@@ -3466,45 +3485,207 @@ wheels = [
[[package]]
name = "numpy"
version = "1.26.4"
version = "2.0.2"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/65/6e/09db70a523a96d25e115e71cc56a6f9031e7b8cd166c1ac8438307c14058/numpy-1.26.4.tar.gz", hash = "sha256:2a02aba9ed12e4ac4eb3ea9421c420301a0c6460d9830d74a9df87efa4912010", size = 15786129 }
resolution-markers = [
"python_full_version < '3.10'",
]
sdist = { url = "https://files.pythonhosted.org/packages/a9/75/10dd1f8116a8b796cb2c737b674e02d02e80454bda953fa7e65d8c12b016/numpy-2.0.2.tar.gz", hash = "sha256:883c987dee1880e2a864ab0dc9892292582510604156762362d9326444636e78", size = 18902015 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/a7/94/ace0fdea5241a27d13543ee117cbc65868e82213fb31a8eb7fe9ff23f313/numpy-1.26.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9ff0f4f29c51e2803569d7a51c2304de5554655a60c5d776e35b4a41413830d0", size = 20631468 },
{ url = "https://files.pythonhosted.org/packages/20/f7/b24208eba89f9d1b58c1668bc6c8c4fd472b20c45573cb767f59d49fb0f6/numpy-1.26.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2e4ee3380d6de9c9ec04745830fd9e2eccb3e6cf790d39d7b98ffd19b0dd754a", size = 13966411 },
{ url = "https://files.pythonhosted.org/packages/fc/a5/4beee6488160798683eed5bdb7eead455892c3b4e1f78d79d8d3f3b084ac/numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d209d8969599b27ad20994c8e41936ee0964e6da07478d6c35016bc386b66ad4", size = 14219016 },
{ url = "https://files.pythonhosted.org/packages/4b/d7/ecf66c1cd12dc28b4040b15ab4d17b773b87fa9d29ca16125de01adb36cd/numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ffa75af20b44f8dba823498024771d5ac50620e6915abac414251bd971b4529f", size = 18240889 },
{ url = "https://files.pythonhosted.org/packages/24/03/6f229fe3187546435c4f6f89f6d26c129d4f5bed40552899fcf1f0bf9e50/numpy-1.26.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:62b8e4b1e28009ef2846b4c7852046736bab361f7aeadeb6a5b89ebec3c7055a", size = 13876746 },
{ url = "https://files.pythonhosted.org/packages/39/fe/39ada9b094f01f5a35486577c848fe274e374bbf8d8f472e1423a0bbd26d/numpy-1.26.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a4abb4f9001ad2858e7ac189089c42178fcce737e4169dc61321660f1a96c7d2", size = 18078620 },
{ url = "https://files.pythonhosted.org/packages/d5/ef/6ad11d51197aad206a9ad2286dc1aac6a378059e06e8cf22cd08ed4f20dc/numpy-1.26.4-cp310-cp310-win32.whl", hash = "sha256:bfe25acf8b437eb2a8b2d49d443800a5f18508cd811fea3181723922a8a82b07", size = 5972659 },
{ url = "https://files.pythonhosted.org/packages/19/77/538f202862b9183f54108557bfda67e17603fc560c384559e769321c9d92/numpy-1.26.4-cp310-cp310-win_amd64.whl", hash = "sha256:b97fe8060236edf3662adfc2c633f56a08ae30560c56310562cb4f95500022d5", size = 15808905 },
{ url = "https://files.pythonhosted.org/packages/11/57/baae43d14fe163fa0e4c47f307b6b2511ab8d7d30177c491960504252053/numpy-1.26.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4c66707fabe114439db9068ee468c26bbdf909cac0fb58686a42a24de1760c71", size = 20630554 },
{ url = "https://files.pythonhosted.org/packages/1a/2e/151484f49fd03944c4a3ad9c418ed193cfd02724e138ac8a9505d056c582/numpy-1.26.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:edd8b5fe47dab091176d21bb6de568acdd906d1887a4584a15a9a96a1dca06ef", size = 13997127 },
{ url = "https://files.pythonhosted.org/packages/79/ae/7e5b85136806f9dadf4878bf73cf223fe5c2636818ba3ab1c585d0403164/numpy-1.26.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7ab55401287bfec946ced39700c053796e7cc0e3acbef09993a9ad2adba6ca6e", size = 14222994 },
{ url = "https://files.pythonhosted.org/packages/3a/d0/edc009c27b406c4f9cbc79274d6e46d634d139075492ad055e3d68445925/numpy-1.26.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:666dbfb6ec68962c033a450943ded891bed2d54e6755e35e5835d63f4f6931d5", size = 18252005 },
{ url = "https://files.pythonhosted.org/packages/09/bf/2b1aaf8f525f2923ff6cfcf134ae5e750e279ac65ebf386c75a0cf6da06a/numpy-1.26.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:96ff0b2ad353d8f990b63294c8986f1ec3cb19d749234014f4e7eb0112ceba5a", size = 13885297 },
{ url = "https://files.pythonhosted.org/packages/df/a0/4e0f14d847cfc2a633a1c8621d00724f3206cfeddeb66d35698c4e2cf3d2/numpy-1.26.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:60dedbb91afcbfdc9bc0b1f3f402804070deed7392c23eb7a7f07fa857868e8a", size = 18093567 },
{ url = "https://files.pythonhosted.org/packages/d2/b7/a734c733286e10a7f1a8ad1ae8c90f2d33bf604a96548e0a4a3a6739b468/numpy-1.26.4-cp311-cp311-win32.whl", hash = "sha256:1af303d6b2210eb850fcf03064d364652b7120803a0b872f5211f5234b399f20", size = 5968812 },
{ url = "https://files.pythonhosted.org/packages/3f/6b/5610004206cf7f8e7ad91c5a85a8c71b2f2f8051a0c0c4d5916b76d6cbb2/numpy-1.26.4-cp311-cp311-win_amd64.whl", hash = "sha256:cd25bcecc4974d09257ffcd1f098ee778f7834c3ad767fe5db785be9a4aa9cb2", size = 15811913 },
{ url = "https://files.pythonhosted.org/packages/95/12/8f2020a8e8b8383ac0177dc9570aad031a3beb12e38847f7129bacd96228/numpy-1.26.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b3ce300f3644fb06443ee2222c2201dd3a89ea6040541412b8fa189341847218", size = 20335901 },
{ url = "https://files.pythonhosted.org/packages/75/5b/ca6c8bd14007e5ca171c7c03102d17b4f4e0ceb53957e8c44343a9546dcc/numpy-1.26.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:03a8c78d01d9781b28a6989f6fa1bb2c4f2d51201cf99d3dd875df6fbd96b23b", size = 13685868 },
{ url = "https://files.pythonhosted.org/packages/79/f8/97f10e6755e2a7d027ca783f63044d5b1bc1ae7acb12afe6a9b4286eac17/numpy-1.26.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9fad7dcb1aac3c7f0584a5a8133e3a43eeb2fe127f47e3632d43d677c66c102b", size = 13925109 },
{ url = "https://files.pythonhosted.org/packages/0f/50/de23fde84e45f5c4fda2488c759b69990fd4512387a8632860f3ac9cd225/numpy-1.26.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:675d61ffbfa78604709862923189bad94014bef562cc35cf61d3a07bba02a7ed", size = 17950613 },
{ url = "https://files.pythonhosted.org/packages/4c/0c/9c603826b6465e82591e05ca230dfc13376da512b25ccd0894709b054ed0/numpy-1.26.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:ab47dbe5cc8210f55aa58e4805fe224dac469cde56b9f731a4c098b91917159a", size = 13572172 },
{ url = "https://files.pythonhosted.org/packages/76/8c/2ba3902e1a0fc1c74962ea9bb33a534bb05984ad7ff9515bf8d07527cadd/numpy-1.26.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:1dda2e7b4ec9dd512f84935c5f126c8bd8b9f2fc001e9f54af255e8c5f16b0e0", size = 17786643 },
{ url = "https://files.pythonhosted.org/packages/28/4a/46d9e65106879492374999e76eb85f87b15328e06bd1550668f79f7b18c6/numpy-1.26.4-cp312-cp312-win32.whl", hash = "sha256:50193e430acfc1346175fcbdaa28ffec49947a06918b7b92130744e81e640110", size = 5677803 },
{ url = "https://files.pythonhosted.org/packages/16/2e/86f24451c2d530c88daf997cb8d6ac622c1d40d19f5a031ed68a4b73a374/numpy-1.26.4-cp312-cp312-win_amd64.whl", hash = "sha256:08beddf13648eb95f8d867350f6a018a4be2e5ad54c8d8caed89ebca558b2818", size = 15517754 },
{ url = "https://files.pythonhosted.org/packages/7d/24/ce71dc08f06534269f66e73c04f5709ee024a1afe92a7b6e1d73f158e1f8/numpy-1.26.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:7349ab0fa0c429c82442a27a9673fc802ffdb7c7775fad780226cb234965e53c", size = 20636301 },
{ url = "https://files.pythonhosted.org/packages/ae/8c/ab03a7c25741f9ebc92684a20125fbc9fc1b8e1e700beb9197d750fdff88/numpy-1.26.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:52b8b60467cd7dd1e9ed082188b4e6bb35aa5cdd01777621a1658910745b90be", size = 13971216 },
{ url = "https://files.pythonhosted.org/packages/6d/64/c3bcdf822269421d85fe0d64ba972003f9bb4aa9a419da64b86856c9961f/numpy-1.26.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d5241e0a80d808d70546c697135da2c613f30e28251ff8307eb72ba696945764", size = 14226281 },
{ url = "https://files.pythonhosted.org/packages/54/30/c2a907b9443cf42b90c17ad10c1e8fa801975f01cb9764f3f8eb8aea638b/numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f870204a840a60da0b12273ef34f7051e98c3b5961b61b0c2c1be6dfd64fbcd3", size = 18249516 },
{ url = "https://files.pythonhosted.org/packages/43/12/01a563fc44c07095996d0129b8899daf89e4742146f7044cdbdb3101c57f/numpy-1.26.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:679b0076f67ecc0138fd2ede3a8fd196dddc2ad3254069bcb9faf9a79b1cebcd", size = 13882132 },
{ url = "https://files.pythonhosted.org/packages/16/ee/9df80b06680aaa23fc6c31211387e0db349e0e36d6a63ba3bd78c5acdf11/numpy-1.26.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:47711010ad8555514b434df65f7d7b076bb8261df1ca9bb78f53d3b2db02e95c", size = 18084181 },
{ url = "https://files.pythonhosted.org/packages/28/7d/4b92e2fe20b214ffca36107f1a3e75ef4c488430e64de2d9af5db3a4637d/numpy-1.26.4-cp39-cp39-win32.whl", hash = "sha256:a354325ee03388678242a4d7ebcd08b5c727033fcff3b2f536aea978e15ee9e6", size = 5976360 },
{ url = "https://files.pythonhosted.org/packages/b5/42/054082bd8220bbf6f297f982f0a8f5479fcbc55c8b511d928df07b965869/numpy-1.26.4-cp39-cp39-win_amd64.whl", hash = "sha256:3373d5d70a5fe74a2c1bb6d2cfd9609ecf686d47a2d7b1d37a8f3b6bf6003aea", size = 15814633 },
{ url = "https://files.pythonhosted.org/packages/3f/72/3df6c1c06fc83d9cfe381cccb4be2532bbd38bf93fbc9fad087b6687f1c0/numpy-1.26.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:afedb719a9dcfc7eaf2287b839d8198e06dcd4cb5d276a3df279231138e83d30", size = 20455961 },
{ url = "https://files.pythonhosted.org/packages/8e/02/570545bac308b58ffb21adda0f4e220ba716fb658a63c151daecc3293350/numpy-1.26.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95a7476c59002f2f6c590b9b7b998306fba6a5aa646b1e22ddfeaf8f78c3a29c", size = 18061071 },
{ url = "https://files.pythonhosted.org/packages/f4/5f/fafd8c51235f60d49f7a88e2275e13971e90555b67da52dd6416caec32fe/numpy-1.26.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:7e50d0a0cc3189f9cb0aeb3a6a6af18c16f59f004b866cd2be1c14b36134a4a0", size = 15709730 },
{ url = "https://files.pythonhosted.org/packages/21/91/3495b3237510f79f5d81f2508f9f13fea78ebfdf07538fc7444badda173d/numpy-2.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:51129a29dbe56f9ca83438b706e2e69a39892b5eda6cedcb6b0c9fdc9b0d3ece", size = 21165245 },
{ url = "https://files.pythonhosted.org/packages/05/33/26178c7d437a87082d11019292dce6d3fe6f0e9026b7b2309cbf3e489b1d/numpy-2.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f15975dfec0cf2239224d80e32c3170b1d168335eaedee69da84fbe9f1f9cd04", size = 13738540 },
{ url = "https://files.pythonhosted.org/packages/ec/31/cc46e13bf07644efc7a4bf68df2df5fb2a1a88d0cd0da9ddc84dc0033e51/numpy-2.0.2-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:8c5713284ce4e282544c68d1c3b2c7161d38c256d2eefc93c1d683cf47683e66", size = 5300623 },
{ url = "https://files.pythonhosted.org/packages/6e/16/7bfcebf27bb4f9d7ec67332ffebee4d1bf085c84246552d52dbb548600e7/numpy-2.0.2-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:becfae3ddd30736fe1889a37f1f580e245ba79a5855bff5f2a29cb3ccc22dd7b", size = 6901774 },
{ url = "https://files.pythonhosted.org/packages/f9/a3/561c531c0e8bf082c5bef509d00d56f82e0ea7e1e3e3a7fc8fa78742a6e5/numpy-2.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2da5960c3cf0df7eafefd806d4e612c5e19358de82cb3c343631188991566ccd", size = 13907081 },
{ url = "https://files.pythonhosted.org/packages/fa/66/f7177ab331876200ac7563a580140643d1179c8b4b6a6b0fc9838de2a9b8/numpy-2.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:496f71341824ed9f3d2fd36cf3ac57ae2e0165c143b55c3a035ee219413f3318", size = 19523451 },
{ url = "https://files.pythonhosted.org/packages/25/7f/0b209498009ad6453e4efc2c65bcdf0ae08a182b2b7877d7ab38a92dc542/numpy-2.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a61ec659f68ae254e4d237816e33171497e978140353c0c2038d46e63282d0c8", size = 19927572 },
{ url = "https://files.pythonhosted.org/packages/3e/df/2619393b1e1b565cd2d4c4403bdd979621e2c4dea1f8532754b2598ed63b/numpy-2.0.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d731a1c6116ba289c1e9ee714b08a8ff882944d4ad631fd411106a30f083c326", size = 14400722 },
{ url = "https://files.pythonhosted.org/packages/22/ad/77e921b9f256d5da36424ffb711ae79ca3f451ff8489eeca544d0701d74a/numpy-2.0.2-cp310-cp310-win32.whl", hash = "sha256:984d96121c9f9616cd33fbd0618b7f08e0cfc9600a7ee1d6fd9b239186d19d97", size = 6472170 },
{ url = "https://files.pythonhosted.org/packages/10/05/3442317535028bc29cf0c0dd4c191a4481e8376e9f0db6bcf29703cadae6/numpy-2.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:c7b0be4ef08607dd04da4092faee0b86607f111d5ae68036f16cc787e250a131", size = 15905558 },
{ url = "https://files.pythonhosted.org/packages/8b/cf/034500fb83041aa0286e0fb16e7c76e5c8b67c0711bb6e9e9737a717d5fe/numpy-2.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:49ca4decb342d66018b01932139c0961a8f9ddc7589611158cb3c27cbcf76448", size = 21169137 },
{ url = "https://files.pythonhosted.org/packages/4a/d9/32de45561811a4b87fbdee23b5797394e3d1504b4a7cf40c10199848893e/numpy-2.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:11a76c372d1d37437857280aa142086476136a8c0f373b2e648ab2c8f18fb195", size = 13703552 },
{ url = "https://files.pythonhosted.org/packages/c1/ca/2f384720020c7b244d22508cb7ab23d95f179fcfff33c31a6eeba8d6c512/numpy-2.0.2-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:807ec44583fd708a21d4a11d94aedf2f4f3c3719035c76a2bbe1fe8e217bdc57", size = 5298957 },
{ url = "https://files.pythonhosted.org/packages/0e/78/a3e4f9fb6aa4e6fdca0c5428e8ba039408514388cf62d89651aade838269/numpy-2.0.2-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:8cafab480740e22f8d833acefed5cc87ce276f4ece12fdaa2e8903db2f82897a", size = 6905573 },
{ url = "https://files.pythonhosted.org/packages/a0/72/cfc3a1beb2caf4efc9d0b38a15fe34025230da27e1c08cc2eb9bfb1c7231/numpy-2.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a15f476a45e6e5a3a79d8a14e62161d27ad897381fecfa4a09ed5322f2085669", size = 13914330 },
{ url = "https://files.pythonhosted.org/packages/ba/a8/c17acf65a931ce551fee11b72e8de63bf7e8a6f0e21add4c937c83563538/numpy-2.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:13e689d772146140a252c3a28501da66dfecd77490b498b168b501835041f951", size = 19534895 },
{ url = "https://files.pythonhosted.org/packages/ba/86/8767f3d54f6ae0165749f84648da9dcc8cd78ab65d415494962c86fac80f/numpy-2.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9ea91dfb7c3d1c56a0e55657c0afb38cf1eeae4544c208dc465c3c9f3a7c09f9", size = 19937253 },
{ url = "https://files.pythonhosted.org/packages/df/87/f76450e6e1c14e5bb1eae6836478b1028e096fd02e85c1c37674606ab752/numpy-2.0.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:c1c9307701fec8f3f7a1e6711f9089c06e6284b3afbbcd259f7791282d660a15", size = 14414074 },
{ url = "https://files.pythonhosted.org/packages/5c/ca/0f0f328e1e59f73754f06e1adfb909de43726d4f24c6a3f8805f34f2b0fa/numpy-2.0.2-cp311-cp311-win32.whl", hash = "sha256:a392a68bd329eafac5817e5aefeb39038c48b671afd242710b451e76090e81f4", size = 6470640 },
{ url = "https://files.pythonhosted.org/packages/eb/57/3a3f14d3a759dcf9bf6e9eda905794726b758819df4663f217d658a58695/numpy-2.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:286cd40ce2b7d652a6f22efdfc6d1edf879440e53e76a75955bc0c826c7e64dc", size = 15910230 },
{ url = "https://files.pythonhosted.org/packages/45/40/2e117be60ec50d98fa08c2f8c48e09b3edea93cfcabd5a9ff6925d54b1c2/numpy-2.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:df55d490dea7934f330006d0f81e8551ba6010a5bf035a249ef61a94f21c500b", size = 20895803 },
{ url = "https://files.pythonhosted.org/packages/46/92/1b8b8dee833f53cef3e0a3f69b2374467789e0bb7399689582314df02651/numpy-2.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8df823f570d9adf0978347d1f926b2a867d5608f434a7cff7f7908c6570dcf5e", size = 13471835 },
{ url = "https://files.pythonhosted.org/packages/7f/19/e2793bde475f1edaea6945be141aef6c8b4c669b90c90a300a8954d08f0a/numpy-2.0.2-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:9a92ae5c14811e390f3767053ff54eaee3bf84576d99a2456391401323f4ec2c", size = 5038499 },
{ url = "https://files.pythonhosted.org/packages/e3/ff/ddf6dac2ff0dd50a7327bcdba45cb0264d0e96bb44d33324853f781a8f3c/numpy-2.0.2-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:a842d573724391493a97a62ebbb8e731f8a5dcc5d285dfc99141ca15a3302d0c", size = 6633497 },
{ url = "https://files.pythonhosted.org/packages/72/21/67f36eac8e2d2cd652a2e69595a54128297cdcb1ff3931cfc87838874bd4/numpy-2.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c05e238064fc0610c840d1cf6a13bf63d7e391717d247f1bf0318172e759e692", size = 13621158 },
{ url = "https://files.pythonhosted.org/packages/39/68/e9f1126d757653496dbc096cb429014347a36b228f5a991dae2c6b6cfd40/numpy-2.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0123ffdaa88fa4ab64835dcbde75dcdf89c453c922f18dced6e27c90d1d0ec5a", size = 19236173 },
{ url = "https://files.pythonhosted.org/packages/d1/e9/1f5333281e4ebf483ba1c888b1d61ba7e78d7e910fdd8e6499667041cc35/numpy-2.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:96a55f64139912d61de9137f11bf39a55ec8faec288c75a54f93dfd39f7eb40c", size = 19634174 },
{ url = "https://files.pythonhosted.org/packages/71/af/a469674070c8d8408384e3012e064299f7a2de540738a8e414dcfd639996/numpy-2.0.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:ec9852fb39354b5a45a80bdab5ac02dd02b15f44b3804e9f00c556bf24b4bded", size = 14099701 },
{ url = "https://files.pythonhosted.org/packages/d0/3d/08ea9f239d0e0e939b6ca52ad403c84a2bce1bde301a8eb4888c1c1543f1/numpy-2.0.2-cp312-cp312-win32.whl", hash = "sha256:671bec6496f83202ed2d3c8fdc486a8fc86942f2e69ff0e986140339a63bcbe5", size = 6174313 },
{ url = "https://files.pythonhosted.org/packages/b2/b5/4ac39baebf1fdb2e72585c8352c56d063b6126be9fc95bd2bb5ef5770c20/numpy-2.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:cfd41e13fdc257aa5778496b8caa5e856dc4896d4ccf01841daee1d96465467a", size = 15606179 },
{ url = "https://files.pythonhosted.org/packages/43/c1/41c8f6df3162b0c6ffd4437d729115704bd43363de0090c7f913cfbc2d89/numpy-2.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9059e10581ce4093f735ed23f3b9d283b9d517ff46009ddd485f1747eb22653c", size = 21169942 },
{ url = "https://files.pythonhosted.org/packages/39/bc/fd298f308dcd232b56a4031fd6ddf11c43f9917fbc937e53762f7b5a3bb1/numpy-2.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:423e89b23490805d2a5a96fe40ec507407b8ee786d66f7328be214f9679df6dd", size = 13711512 },
{ url = "https://files.pythonhosted.org/packages/96/ff/06d1aa3eeb1c614eda245c1ba4fb88c483bee6520d361641331872ac4b82/numpy-2.0.2-cp39-cp39-macosx_14_0_arm64.whl", hash = "sha256:2b2955fa6f11907cf7a70dab0d0755159bca87755e831e47932367fc8f2f2d0b", size = 5306976 },
{ url = "https://files.pythonhosted.org/packages/2d/98/121996dcfb10a6087a05e54453e28e58694a7db62c5a5a29cee14c6e047b/numpy-2.0.2-cp39-cp39-macosx_14_0_x86_64.whl", hash = "sha256:97032a27bd9d8988b9a97a8c4d2c9f2c15a81f61e2f21404d7e8ef00cb5be729", size = 6906494 },
{ url = "https://files.pythonhosted.org/packages/15/31/9dffc70da6b9bbf7968f6551967fc21156207366272c2a40b4ed6008dc9b/numpy-2.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1e795a8be3ddbac43274f18588329c72939870a16cae810c2b73461c40718ab1", size = 13912596 },
{ url = "https://files.pythonhosted.org/packages/b9/14/78635daab4b07c0930c919d451b8bf8c164774e6a3413aed04a6d95758ce/numpy-2.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f26b258c385842546006213344c50655ff1555a9338e2e5e02a0756dc3e803dd", size = 19526099 },
{ url = "https://files.pythonhosted.org/packages/26/4c/0eeca4614003077f68bfe7aac8b7496f04221865b3a5e7cb230c9d055afd/numpy-2.0.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5fec9451a7789926bcf7c2b8d187292c9f93ea30284802a0ab3f5be8ab36865d", size = 19932823 },
{ url = "https://files.pythonhosted.org/packages/f1/46/ea25b98b13dccaebddf1a803f8c748680d972e00507cd9bc6dcdb5aa2ac1/numpy-2.0.2-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:9189427407d88ff25ecf8f12469d4d39d35bee1db5d39fc5c168c6f088a6956d", size = 14404424 },
{ url = "https://files.pythonhosted.org/packages/c8/a6/177dd88d95ecf07e722d21008b1b40e681a929eb9e329684d449c36586b2/numpy-2.0.2-cp39-cp39-win32.whl", hash = "sha256:905d16e0c60200656500c95b6b8dca5d109e23cb24abc701d41c02d74c6b3afa", size = 6476809 },
{ url = "https://files.pythonhosted.org/packages/ea/2b/7fc9f4e7ae5b507c1a3a21f0f15ed03e794c1242ea8a242ac158beb56034/numpy-2.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:a3f4ab0caa7f053f6797fcd4e1e25caee367db3112ef2b6ef82d749530768c73", size = 15911314 },
{ url = "https://files.pythonhosted.org/packages/8f/3b/df5a870ac6a3be3a86856ce195ef42eec7ae50d2a202be1f5a4b3b340e14/numpy-2.0.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:7f0a0c6f12e07fa94133c8a67404322845220c06a9e80e85999afe727f7438b8", size = 21025288 },
{ url = "https://files.pythonhosted.org/packages/2c/97/51af92f18d6f6f2d9ad8b482a99fb74e142d71372da5d834b3a2747a446e/numpy-2.0.2-pp39-pypy39_pp73-macosx_14_0_x86_64.whl", hash = "sha256:312950fdd060354350ed123c0e25a71327d3711584beaef30cdaa93320c392d4", size = 6762793 },
{ url = "https://files.pythonhosted.org/packages/12/46/de1fbd0c1b5ccaa7f9a005b66761533e2f6a3e560096682683a223631fe9/numpy-2.0.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26df23238872200f63518dd2aa984cfca675d82469535dc7162dc2ee52d9dd5c", size = 19334885 },
{ url = "https://files.pythonhosted.org/packages/cc/dc/d330a6faefd92b446ec0f0dfea4c3207bb1fef3c4771d19cf4543efd2c78/numpy-2.0.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a46288ec55ebbd58947d31d72be2c63cbf839f0a63b49cb755022310792a3385", size = 15828784 },
]
[[package]]
name = "numpy"
version = "2.2.6"
source = { registry = "https://pypi.org/simple" }
resolution-markers = [
"python_full_version == '3.10.*'",
]
sdist = { url = "https://files.pythonhosted.org/packages/76/21/7d2a95e4bba9dc13d043ee156a356c0a8f0c6309dff6b21b4d71a073b8a8/numpy-2.2.6.tar.gz", hash = "sha256:e29554e2bef54a90aa5cc07da6ce955accb83f21ab5de01a62c8478897b264fd", size = 20276440 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/9a/3e/ed6db5be21ce87955c0cbd3009f2803f59fa08df21b5df06862e2d8e2bdd/numpy-2.2.6-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:b412caa66f72040e6d268491a59f2c43bf03eb6c96dd8f0307829feb7fa2b6fb", size = 21165245 },
{ url = "https://files.pythonhosted.org/packages/22/c2/4b9221495b2a132cc9d2eb862e21d42a009f5a60e45fc44b00118c174bff/numpy-2.2.6-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8e41fd67c52b86603a91c1a505ebaef50b3314de0213461c7a6e99c9a3beff90", size = 14360048 },
{ url = "https://files.pythonhosted.org/packages/fd/77/dc2fcfc66943c6410e2bf598062f5959372735ffda175b39906d54f02349/numpy-2.2.6-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:37e990a01ae6ec7fe7fa1c26c55ecb672dd98b19c3d0e1d1f326fa13cb38d163", size = 5340542 },
{ url = "https://files.pythonhosted.org/packages/7a/4f/1cb5fdc353a5f5cc7feb692db9b8ec2c3d6405453f982435efc52561df58/numpy-2.2.6-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:5a6429d4be8ca66d889b7cf70f536a397dc45ba6faeb5f8c5427935d9592e9cf", size = 6878301 },
{ url = "https://files.pythonhosted.org/packages/eb/17/96a3acd228cec142fcb8723bd3cc39c2a474f7dcf0a5d16731980bcafa95/numpy-2.2.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:efd28d4e9cd7d7a8d39074a4d44c63eda73401580c5c76acda2ce969e0a38e83", size = 14297320 },
{ url = "https://files.pythonhosted.org/packages/b4/63/3de6a34ad7ad6646ac7d2f55ebc6ad439dbbf9c4370017c50cf403fb19b5/numpy-2.2.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc7b73d02efb0e18c000e9ad8b83480dfcd5dfd11065997ed4c6747470ae8915", size = 16801050 },
{ url = "https://files.pythonhosted.org/packages/07/b6/89d837eddef52b3d0cec5c6ba0456c1bf1b9ef6a6672fc2b7873c3ec4e2e/numpy-2.2.6-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:74d4531beb257d2c3f4b261bfb0fc09e0f9ebb8842d82a7b4209415896adc680", size = 15807034 },
{ url = "https://files.pythonhosted.org/packages/01/c8/dc6ae86e3c61cfec1f178e5c9f7858584049b6093f843bca541f94120920/numpy-2.2.6-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:8fc377d995680230e83241d8a96def29f204b5782f371c532579b4f20607a289", size = 18614185 },
{ url = "https://files.pythonhosted.org/packages/5b/c5/0064b1b7e7c89137b471ccec1fd2282fceaae0ab3a9550f2568782d80357/numpy-2.2.6-cp310-cp310-win32.whl", hash = "sha256:b093dd74e50a8cba3e873868d9e93a85b78e0daf2e98c6797566ad8044e8363d", size = 6527149 },
{ url = "https://files.pythonhosted.org/packages/a3/dd/4b822569d6b96c39d1215dbae0582fd99954dcbcf0c1a13c61783feaca3f/numpy-2.2.6-cp310-cp310-win_amd64.whl", hash = "sha256:f0fd6321b839904e15c46e0d257fdd101dd7f530fe03fd6359c1ea63738703f3", size = 12904620 },
{ url = "https://files.pythonhosted.org/packages/da/a8/4f83e2aa666a9fbf56d6118faaaf5f1974d456b1823fda0a176eff722839/numpy-2.2.6-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f9f1adb22318e121c5c69a09142811a201ef17ab257a1e66ca3025065b7f53ae", size = 21176963 },
{ url = "https://files.pythonhosted.org/packages/b3/2b/64e1affc7972decb74c9e29e5649fac940514910960ba25cd9af4488b66c/numpy-2.2.6-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c820a93b0255bc360f53eca31a0e676fd1101f673dda8da93454a12e23fc5f7a", size = 14406743 },
{ url = "https://files.pythonhosted.org/packages/4a/9f/0121e375000b5e50ffdd8b25bf78d8e1a5aa4cca3f185d41265198c7b834/numpy-2.2.6-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:3d70692235e759f260c3d837193090014aebdf026dfd167834bcba43e30c2a42", size = 5352616 },
{ url = "https://files.pythonhosted.org/packages/31/0d/b48c405c91693635fbe2dcd7bc84a33a602add5f63286e024d3b6741411c/numpy-2.2.6-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:481b49095335f8eed42e39e8041327c05b0f6f4780488f61286ed3c01368d491", size = 6889579 },
{ url = "https://files.pythonhosted.org/packages/52/b8/7f0554d49b565d0171eab6e99001846882000883998e7b7d9f0d98b1f934/numpy-2.2.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b64d8d4d17135e00c8e346e0a738deb17e754230d7e0810ac5012750bbd85a5a", size = 14312005 },
{ url = "https://files.pythonhosted.org/packages/b3/dd/2238b898e51bd6d389b7389ffb20d7f4c10066d80351187ec8e303a5a475/numpy-2.2.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba10f8411898fc418a521833e014a77d3ca01c15b0c6cdcce6a0d2897e6dbbdf", size = 16821570 },
{ url = "https://files.pythonhosted.org/packages/83/6c/44d0325722cf644f191042bf47eedad61c1e6df2432ed65cbe28509d404e/numpy-2.2.6-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:bd48227a919f1bafbdda0583705e547892342c26fb127219d60a5c36882609d1", size = 15818548 },
{ url = "https://files.pythonhosted.org/packages/ae/9d/81e8216030ce66be25279098789b665d49ff19eef08bfa8cb96d4957f422/numpy-2.2.6-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:9551a499bf125c1d4f9e250377c1ee2eddd02e01eac6644c080162c0c51778ab", size = 18620521 },
{ url = "https://files.pythonhosted.org/packages/6a/fd/e19617b9530b031db51b0926eed5345ce8ddc669bb3bc0044b23e275ebe8/numpy-2.2.6-cp311-cp311-win32.whl", hash = "sha256:0678000bb9ac1475cd454c6b8c799206af8107e310843532b04d49649c717a47", size = 6525866 },
{ url = "https://files.pythonhosted.org/packages/31/0a/f354fb7176b81747d870f7991dc763e157a934c717b67b58456bc63da3df/numpy-2.2.6-cp311-cp311-win_amd64.whl", hash = "sha256:e8213002e427c69c45a52bbd94163084025f533a55a59d6f9c5b820774ef3303", size = 12907455 },
{ url = "https://files.pythonhosted.org/packages/82/5d/c00588b6cf18e1da539b45d3598d3557084990dcc4331960c15ee776ee41/numpy-2.2.6-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:41c5a21f4a04fa86436124d388f6ed60a9343a6f767fced1a8a71c3fbca038ff", size = 20875348 },
{ url = "https://files.pythonhosted.org/packages/66/ee/560deadcdde6c2f90200450d5938f63a34b37e27ebff162810f716f6a230/numpy-2.2.6-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:de749064336d37e340f640b05f24e9e3dd678c57318c7289d222a8a2f543e90c", size = 14119362 },
{ url = "https://files.pythonhosted.org/packages/3c/65/4baa99f1c53b30adf0acd9a5519078871ddde8d2339dc5a7fde80d9d87da/numpy-2.2.6-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:894b3a42502226a1cac872f840030665f33326fc3dac8e57c607905773cdcde3", size = 5084103 },
{ url = "https://files.pythonhosted.org/packages/cc/89/e5a34c071a0570cc40c9a54eb472d113eea6d002e9ae12bb3a8407fb912e/numpy-2.2.6-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:71594f7c51a18e728451bb50cc60a3ce4e6538822731b2933209a1f3614e9282", size = 6625382 },
{ url = "https://files.pythonhosted.org/packages/f8/35/8c80729f1ff76b3921d5c9487c7ac3de9b2a103b1cd05e905b3090513510/numpy-2.2.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f2618db89be1b4e05f7a1a847a9c1c0abd63e63a1607d892dd54668dd92faf87", size = 14018462 },
{ url = "https://files.pythonhosted.org/packages/8c/3d/1e1db36cfd41f895d266b103df00ca5b3cbe965184df824dec5c08c6b803/numpy-2.2.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd83c01228a688733f1ded5201c678f0c53ecc1006ffbc404db9f7a899ac6249", size = 16527618 },
{ url = "https://files.pythonhosted.org/packages/61/c6/03ed30992602c85aa3cd95b9070a514f8b3c33e31124694438d88809ae36/numpy-2.2.6-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:37c0ca431f82cd5fa716eca9506aefcabc247fb27ba69c5062a6d3ade8cf8f49", size = 15505511 },
{ url = "https://files.pythonhosted.org/packages/b7/25/5761d832a81df431e260719ec45de696414266613c9ee268394dd5ad8236/numpy-2.2.6-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:fe27749d33bb772c80dcd84ae7e8df2adc920ae8297400dabec45f0dedb3f6de", size = 18313783 },
{ url = "https://files.pythonhosted.org/packages/57/0a/72d5a3527c5ebffcd47bde9162c39fae1f90138c961e5296491ce778e682/numpy-2.2.6-cp312-cp312-win32.whl", hash = "sha256:4eeaae00d789f66c7a25ac5f34b71a7035bb474e679f410e5e1a94deb24cf2d4", size = 6246506 },
{ url = "https://files.pythonhosted.org/packages/36/fa/8c9210162ca1b88529ab76b41ba02d433fd54fecaf6feb70ef9f124683f1/numpy-2.2.6-cp312-cp312-win_amd64.whl", hash = "sha256:c1f9540be57940698ed329904db803cf7a402f3fc200bfe599334c9bd84a40b2", size = 12614190 },
{ url = "https://files.pythonhosted.org/packages/f9/5c/6657823f4f594f72b5471f1db1ab12e26e890bb2e41897522d134d2a3e81/numpy-2.2.6-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:0811bb762109d9708cca4d0b13c4f67146e3c3b7cf8d34018c722adb2d957c84", size = 20867828 },
{ url = "https://files.pythonhosted.org/packages/dc/9e/14520dc3dadf3c803473bd07e9b2bd1b69bc583cb2497b47000fed2fa92f/numpy-2.2.6-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:287cc3162b6f01463ccd86be154f284d0893d2b3ed7292439ea97eafa8170e0b", size = 14143006 },
{ url = "https://files.pythonhosted.org/packages/4f/06/7e96c57d90bebdce9918412087fc22ca9851cceaf5567a45c1f404480e9e/numpy-2.2.6-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:f1372f041402e37e5e633e586f62aa53de2eac8d98cbfb822806ce4bbefcb74d", size = 5076765 },
{ url = "https://files.pythonhosted.org/packages/73/ed/63d920c23b4289fdac96ddbdd6132e9427790977d5457cd132f18e76eae0/numpy-2.2.6-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:55a4d33fa519660d69614a9fad433be87e5252f4b03850642f88993f7b2ca566", size = 6617736 },
{ url = "https://files.pythonhosted.org/packages/85/c5/e19c8f99d83fd377ec8c7e0cf627a8049746da54afc24ef0a0cb73d5dfb5/numpy-2.2.6-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f92729c95468a2f4f15e9bb94c432a9229d0d50de67304399627a943201baa2f", size = 14010719 },
{ url = "https://files.pythonhosted.org/packages/19/49/4df9123aafa7b539317bf6d342cb6d227e49f7a35b99c287a6109b13dd93/numpy-2.2.6-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1bc23a79bfabc5d056d106f9befb8d50c31ced2fbc70eedb8155aec74a45798f", size = 16526072 },
{ url = "https://files.pythonhosted.org/packages/b2/6c/04b5f47f4f32f7c2b0e7260442a8cbcf8168b0e1a41ff1495da42f42a14f/numpy-2.2.6-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:e3143e4451880bed956e706a3220b4e5cf6172ef05fcc397f6f36a550b1dd868", size = 15503213 },
{ url = "https://files.pythonhosted.org/packages/17/0a/5cd92e352c1307640d5b6fec1b2ffb06cd0dabe7d7b8227f97933d378422/numpy-2.2.6-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:b4f13750ce79751586ae2eb824ba7e1e8dba64784086c98cdbbcc6a42112ce0d", size = 18316632 },
{ url = "https://files.pythonhosted.org/packages/f0/3b/5cba2b1d88760ef86596ad0f3d484b1cbff7c115ae2429678465057c5155/numpy-2.2.6-cp313-cp313-win32.whl", hash = "sha256:5beb72339d9d4fa36522fc63802f469b13cdbe4fdab4a288f0c441b74272ebfd", size = 6244532 },
{ url = "https://files.pythonhosted.org/packages/cb/3b/d58c12eafcb298d4e6d0d40216866ab15f59e55d148a5658bb3132311fcf/numpy-2.2.6-cp313-cp313-win_amd64.whl", hash = "sha256:b0544343a702fa80c95ad5d3d608ea3599dd54d4632df855e4c8d24eb6ecfa1c", size = 12610885 },
{ url = "https://files.pythonhosted.org/packages/6b/9e/4bf918b818e516322db999ac25d00c75788ddfd2d2ade4fa66f1f38097e1/numpy-2.2.6-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:0bca768cd85ae743b2affdc762d617eddf3bcf8724435498a1e80132d04879e6", size = 20963467 },
{ url = "https://files.pythonhosted.org/packages/61/66/d2de6b291507517ff2e438e13ff7b1e2cdbdb7cb40b3ed475377aece69f9/numpy-2.2.6-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:fc0c5673685c508a142ca65209b4e79ed6740a4ed6b2267dbba90f34b0b3cfda", size = 14225144 },
{ url = "https://files.pythonhosted.org/packages/e4/25/480387655407ead912e28ba3a820bc69af9adf13bcbe40b299d454ec011f/numpy-2.2.6-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:5bd4fc3ac8926b3819797a7c0e2631eb889b4118a9898c84f585a54d475b7e40", size = 5200217 },
{ url = "https://files.pythonhosted.org/packages/aa/4a/6e313b5108f53dcbf3aca0c0f3e9c92f4c10ce57a0a721851f9785872895/numpy-2.2.6-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:fee4236c876c4e8369388054d02d0e9bb84821feb1a64dd59e137e6511a551f8", size = 6712014 },
{ url = "https://files.pythonhosted.org/packages/b7/30/172c2d5c4be71fdf476e9de553443cf8e25feddbe185e0bd88b096915bcc/numpy-2.2.6-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e1dda9c7e08dc141e0247a5b8f49cf05984955246a327d4c48bda16821947b2f", size = 14077935 },
{ url = "https://files.pythonhosted.org/packages/12/fb/9e743f8d4e4d3c710902cf87af3512082ae3d43b945d5d16563f26ec251d/numpy-2.2.6-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f447e6acb680fd307f40d3da4852208af94afdfab89cf850986c3ca00562f4fa", size = 16600122 },
{ url = "https://files.pythonhosted.org/packages/12/75/ee20da0e58d3a66f204f38916757e01e33a9737d0b22373b3eb5a27358f9/numpy-2.2.6-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:389d771b1623ec92636b0786bc4ae56abafad4a4c513d36a55dce14bd9ce8571", size = 15586143 },
{ url = "https://files.pythonhosted.org/packages/76/95/bef5b37f29fc5e739947e9ce5179ad402875633308504a52d188302319c8/numpy-2.2.6-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:8e9ace4a37db23421249ed236fdcdd457d671e25146786dfc96835cd951aa7c1", size = 18385260 },
{ url = "https://files.pythonhosted.org/packages/09/04/f2f83279d287407cf36a7a8053a5abe7be3622a4363337338f2585e4afda/numpy-2.2.6-cp313-cp313t-win32.whl", hash = "sha256:038613e9fb8c72b0a41f025a7e4c3f0b7a1b5d768ece4796b674c8f3fe13efff", size = 6377225 },
{ url = "https://files.pythonhosted.org/packages/67/0e/35082d13c09c02c011cf21570543d202ad929d961c02a147493cb0c2bdf5/numpy-2.2.6-cp313-cp313t-win_amd64.whl", hash = "sha256:6031dd6dfecc0cf9f668681a37648373bddd6421fff6c66ec1624eed0180ee06", size = 12771374 },
{ url = "https://files.pythonhosted.org/packages/9e/3b/d94a75f4dbf1ef5d321523ecac21ef23a3cd2ac8b78ae2aac40873590229/numpy-2.2.6-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:0b605b275d7bd0c640cad4e5d30fa701a8d59302e127e5f79138ad62762c3e3d", size = 21040391 },
{ url = "https://files.pythonhosted.org/packages/17/f4/09b2fa1b58f0fb4f7c7963a1649c64c4d315752240377ed74d9cd878f7b5/numpy-2.2.6-pp310-pypy310_pp73-macosx_14_0_x86_64.whl", hash = "sha256:7befc596a7dc9da8a337f79802ee8adb30a552a94f792b9c9d18c840055907db", size = 6786754 },
{ url = "https://files.pythonhosted.org/packages/af/30/feba75f143bdc868a1cc3f44ccfa6c4b9ec522b36458e738cd00f67b573f/numpy-2.2.6-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce47521a4754c8f4593837384bd3424880629f718d87c5d44f8ed763edd63543", size = 16643476 },
{ url = "https://files.pythonhosted.org/packages/37/48/ac2a9584402fb6c0cd5b5d1a91dcf176b15760130dd386bbafdbfe3640bf/numpy-2.2.6-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:d042d24c90c41b54fd506da306759e06e568864df8ec17ccc17e9e884634fd00", size = 12812666 },
]
[[package]]
name = "numpy"
version = "2.3.3"
source = { registry = "https://pypi.org/simple" }
resolution-markers = [
"python_full_version >= '3.12'",
"python_full_version == '3.11.*'",
]
sdist = { url = "https://files.pythonhosted.org/packages/d0/19/95b3d357407220ed24c139018d2518fab0a61a948e68286a25f1a4d049ff/numpy-2.3.3.tar.gz", hash = "sha256:ddc7c39727ba62b80dfdbedf400d1c10ddfa8eefbd7ec8dcb118be8b56d31029", size = 20576648 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/7a/45/e80d203ef6b267aa29b22714fb558930b27960a0c5ce3c19c999232bb3eb/numpy-2.3.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0ffc4f5caba7dfcbe944ed674b7eef683c7e94874046454bb79ed7ee0236f59d", size = 21259253 },
{ url = "https://files.pythonhosted.org/packages/52/18/cf2c648fccf339e59302e00e5f2bc87725a3ce1992f30f3f78c9044d7c43/numpy-2.3.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e7e946c7170858a0295f79a60214424caac2ffdb0063d4d79cb681f9aa0aa569", size = 14450980 },
{ url = "https://files.pythonhosted.org/packages/93/fb/9af1082bec870188c42a1c239839915b74a5099c392389ff04215dcee812/numpy-2.3.3-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:cd4260f64bc794c3390a63bf0728220dd1a68170c169088a1e0dfa2fde1be12f", size = 5379709 },
{ url = "https://files.pythonhosted.org/packages/75/0f/bfd7abca52bcbf9a4a65abc83fe18ef01ccdeb37bfb28bbd6ad613447c79/numpy-2.3.3-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:f0ddb4b96a87b6728df9362135e764eac3cfa674499943ebc44ce96c478ab125", size = 6913923 },
{ url = "https://files.pythonhosted.org/packages/79/55/d69adad255e87ab7afda1caf93ca997859092afeb697703e2f010f7c2e55/numpy-2.3.3-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:afd07d377f478344ec6ca2b8d4ca08ae8bd44706763d1efb56397de606393f48", size = 14589591 },
{ url = "https://files.pythonhosted.org/packages/10/a2/010b0e27ddeacab7839957d7a8f00e91206e0c2c47abbb5f35a2630e5387/numpy-2.3.3-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:bc92a5dedcc53857249ca51ef29f5e5f2f8c513e22cfb90faeb20343b8c6f7a6", size = 16938714 },
{ url = "https://files.pythonhosted.org/packages/1c/6b/12ce8ede632c7126eb2762b9e15e18e204b81725b81f35176eac14dc5b82/numpy-2.3.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:7af05ed4dc19f308e1d9fc759f36f21921eb7bbfc82843eeec6b2a2863a0aefa", size = 16370592 },
{ url = "https://files.pythonhosted.org/packages/b4/35/aba8568b2593067bb6a8fe4c52babb23b4c3b9c80e1b49dff03a09925e4a/numpy-2.3.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:433bf137e338677cebdd5beac0199ac84712ad9d630b74eceeb759eaa45ddf30", size = 18884474 },
{ url = "https://files.pythonhosted.org/packages/45/fa/7f43ba10c77575e8be7b0138d107e4f44ca4a1ef322cd16980ea3e8b8222/numpy-2.3.3-cp311-cp311-win32.whl", hash = "sha256:eb63d443d7b4ffd1e873f8155260d7f58e7e4b095961b01c91062935c2491e57", size = 6599794 },
{ url = "https://files.pythonhosted.org/packages/0a/a2/a4f78cb2241fe5664a22a10332f2be886dcdea8784c9f6a01c272da9b426/numpy-2.3.3-cp311-cp311-win_amd64.whl", hash = "sha256:ec9d249840f6a565f58d8f913bccac2444235025bbb13e9a4681783572ee3caa", size = 13088104 },
{ url = "https://files.pythonhosted.org/packages/79/64/e424e975adbd38282ebcd4891661965b78783de893b381cbc4832fb9beb2/numpy-2.3.3-cp311-cp311-win_arm64.whl", hash = "sha256:74c2a948d02f88c11a3c075d9733f1ae67d97c6bdb97f2bb542f980458b257e7", size = 10460772 },
{ url = "https://files.pythonhosted.org/packages/51/5d/bb7fc075b762c96329147799e1bcc9176ab07ca6375ea976c475482ad5b3/numpy-2.3.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:cfdd09f9c84a1a934cde1eec2267f0a43a7cd44b2cca4ff95b7c0d14d144b0bf", size = 20957014 },
{ url = "https://files.pythonhosted.org/packages/6b/0e/c6211bb92af26517acd52125a237a92afe9c3124c6a68d3b9f81b62a0568/numpy-2.3.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:cb32e3cf0f762aee47ad1ddc6672988f7f27045b0783c887190545baba73aa25", size = 14185220 },
{ url = "https://files.pythonhosted.org/packages/22/f2/07bb754eb2ede9073f4054f7c0286b0d9d2e23982e090a80d478b26d35ca/numpy-2.3.3-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:396b254daeb0a57b1fe0ecb5e3cff6fa79a380fa97c8f7781a6d08cd429418fe", size = 5113918 },
{ url = "https://files.pythonhosted.org/packages/81/0a/afa51697e9fb74642f231ea36aca80fa17c8fb89f7a82abd5174023c3960/numpy-2.3.3-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:067e3d7159a5d8f8a0b46ee11148fc35ca9b21f61e3c49fbd0a027450e65a33b", size = 6647922 },
{ url = "https://files.pythonhosted.org/packages/5d/f5/122d9cdb3f51c520d150fef6e87df9279e33d19a9611a87c0d2cf78a89f4/numpy-2.3.3-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:1c02d0629d25d426585fb2e45a66154081b9fa677bc92a881ff1d216bc9919a8", size = 14281991 },
{ url = "https://files.pythonhosted.org/packages/51/64/7de3c91e821a2debf77c92962ea3fe6ac2bc45d0778c1cbe15d4fce2fd94/numpy-2.3.3-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d9192da52b9745f7f0766531dcfa978b7763916f158bb63bdb8a1eca0068ab20", size = 16641643 },
{ url = "https://files.pythonhosted.org/packages/30/e4/961a5fa681502cd0d68907818b69f67542695b74e3ceaa513918103b7e80/numpy-2.3.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:cd7de500a5b66319db419dc3c345244404a164beae0d0937283b907d8152e6ea", size = 16056787 },
{ url = "https://files.pythonhosted.org/packages/99/26/92c912b966e47fbbdf2ad556cb17e3a3088e2e1292b9833be1dfa5361a1a/numpy-2.3.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:93d4962d8f82af58f0b2eb85daaf1b3ca23fe0a85d0be8f1f2b7bb46034e56d7", size = 18579598 },
{ url = "https://files.pythonhosted.org/packages/17/b6/fc8f82cb3520768718834f310c37d96380d9dc61bfdaf05fe5c0b7653e01/numpy-2.3.3-cp312-cp312-win32.whl", hash = "sha256:5534ed6b92f9b7dca6c0a19d6df12d41c68b991cef051d108f6dbff3babc4ebf", size = 6320800 },
{ url = "https://files.pythonhosted.org/packages/32/ee/de999f2625b80d043d6d2d628c07d0d5555a677a3cf78fdf868d409b8766/numpy-2.3.3-cp312-cp312-win_amd64.whl", hash = "sha256:497d7cad08e7092dba36e3d296fe4c97708c93daf26643a1ae4b03f6294d30eb", size = 12786615 },
{ url = "https://files.pythonhosted.org/packages/49/6e/b479032f8a43559c383acb20816644f5f91c88f633d9271ee84f3b3a996c/numpy-2.3.3-cp312-cp312-win_arm64.whl", hash = "sha256:ca0309a18d4dfea6fc6262a66d06c26cfe4640c3926ceec90e57791a82b6eee5", size = 10195936 },
{ url = "https://files.pythonhosted.org/packages/7d/b9/984c2b1ee61a8b803bf63582b4ac4242cf76e2dbd663efeafcb620cc0ccb/numpy-2.3.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f5415fb78995644253370985342cd03572ef8620b934da27d77377a2285955bf", size = 20949588 },
{ url = "https://files.pythonhosted.org/packages/a6/e4/07970e3bed0b1384d22af1e9912527ecbeb47d3b26e9b6a3bced068b3bea/numpy-2.3.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:d00de139a3324e26ed5b95870ce63be7ec7352171bc69a4cf1f157a48e3eb6b7", size = 14177802 },
{ url = "https://files.pythonhosted.org/packages/35/c7/477a83887f9de61f1203bad89cf208b7c19cc9fef0cebef65d5a1a0619f2/numpy-2.3.3-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:9dc13c6a5829610cc07422bc74d3ac083bd8323f14e2827d992f9e52e22cd6a6", size = 5106537 },
{ url = "https://files.pythonhosted.org/packages/52/47/93b953bd5866a6f6986344d045a207d3f1cfbad99db29f534ea9cee5108c/numpy-2.3.3-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:d79715d95f1894771eb4e60fb23f065663b2298f7d22945d66877aadf33d00c7", size = 6640743 },
{ url = "https://files.pythonhosted.org/packages/23/83/377f84aaeb800b64c0ef4de58b08769e782edcefa4fea712910b6f0afd3c/numpy-2.3.3-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:952cfd0748514ea7c3afc729a0fc639e61655ce4c55ab9acfab14bda4f402b4c", size = 14278881 },
{ url = "https://files.pythonhosted.org/packages/9a/a5/bf3db6e66c4b160d6ea10b534c381a1955dfab34cb1017ea93aa33c70ed3/numpy-2.3.3-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:5b83648633d46f77039c29078751f80da65aa64d5622a3cd62aaef9d835b6c93", size = 16636301 },
{ url = "https://files.pythonhosted.org/packages/a2/59/1287924242eb4fa3f9b3a2c30400f2e17eb2707020d1c5e3086fe7330717/numpy-2.3.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:b001bae8cea1c7dfdb2ae2b017ed0a6f2102d7a70059df1e338e307a4c78a8ae", size = 16053645 },
{ url = "https://files.pythonhosted.org/packages/e6/93/b3d47ed882027c35e94ac2320c37e452a549f582a5e801f2d34b56973c97/numpy-2.3.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:8e9aced64054739037d42fb84c54dd38b81ee238816c948c8f3ed134665dcd86", size = 18578179 },
{ url = "https://files.pythonhosted.org/packages/20/d9/487a2bccbf7cc9d4bfc5f0f197761a5ef27ba870f1e3bbb9afc4bbe3fcc2/numpy-2.3.3-cp313-cp313-win32.whl", hash = "sha256:9591e1221db3f37751e6442850429b3aabf7026d3b05542d102944ca7f00c8a8", size = 6312250 },
{ url = "https://files.pythonhosted.org/packages/1b/b5/263ebbbbcede85028f30047eab3d58028d7ebe389d6493fc95ae66c636ab/numpy-2.3.3-cp313-cp313-win_amd64.whl", hash = "sha256:f0dadeb302887f07431910f67a14d57209ed91130be0adea2f9793f1a4f817cf", size = 12783269 },
{ url = "https://files.pythonhosted.org/packages/fa/75/67b8ca554bbeaaeb3fac2e8bce46967a5a06544c9108ec0cf5cece559b6c/numpy-2.3.3-cp313-cp313-win_arm64.whl", hash = "sha256:3c7cf302ac6e0b76a64c4aecf1a09e51abd9b01fc7feee80f6c43e3ab1b1dbc5", size = 10195314 },
{ url = "https://files.pythonhosted.org/packages/11/d0/0d1ddec56b162042ddfafeeb293bac672de9b0cfd688383590090963720a/numpy-2.3.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:eda59e44957d272846bb407aad19f89dc6f58fecf3504bd144f4c5cf81a7eacc", size = 21048025 },
{ url = "https://files.pythonhosted.org/packages/36/9e/1996ca6b6d00415b6acbdd3c42f7f03ea256e2c3f158f80bd7436a8a19f3/numpy-2.3.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:823d04112bc85ef5c4fda73ba24e6096c8f869931405a80aa8b0e604510a26bc", size = 14301053 },
{ url = "https://files.pythonhosted.org/packages/05/24/43da09aa764c68694b76e84b3d3f0c44cb7c18cdc1ba80e48b0ac1d2cd39/numpy-2.3.3-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:40051003e03db4041aa325da2a0971ba41cf65714e65d296397cc0e32de6018b", size = 5229444 },
{ url = "https://files.pythonhosted.org/packages/bc/14/50ffb0f22f7218ef8af28dd089f79f68289a7a05a208db9a2c5dcbe123c1/numpy-2.3.3-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:6ee9086235dd6ab7ae75aba5662f582a81ced49f0f1c6de4260a78d8f2d91a19", size = 6738039 },
{ url = "https://files.pythonhosted.org/packages/55/52/af46ac0795e09657d45a7f4db961917314377edecf66db0e39fa7ab5c3d3/numpy-2.3.3-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:94fcaa68757c3e2e668ddadeaa86ab05499a70725811e582b6a9858dd472fb30", size = 14352314 },
{ url = "https://files.pythonhosted.org/packages/a7/b1/dc226b4c90eb9f07a3fff95c2f0db3268e2e54e5cce97c4ac91518aee71b/numpy-2.3.3-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:da1a74b90e7483d6ce5244053399a614b1d6b7bc30a60d2f570e5071f8959d3e", size = 16701722 },
{ url = "https://files.pythonhosted.org/packages/9d/9d/9d8d358f2eb5eced14dba99f110d83b5cd9a4460895230f3b396ad19a323/numpy-2.3.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:2990adf06d1ecee3b3dcbb4977dfab6e9f09807598d647f04d385d29e7a3c3d3", size = 16132755 },
{ url = "https://files.pythonhosted.org/packages/b6/27/b3922660c45513f9377b3fb42240bec63f203c71416093476ec9aa0719dc/numpy-2.3.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:ed635ff692483b8e3f0fcaa8e7eb8a75ee71aa6d975388224f70821421800cea", size = 18651560 },
{ url = "https://files.pythonhosted.org/packages/5b/8e/3ab61a730bdbbc201bb245a71102aa609f0008b9ed15255500a99cd7f780/numpy-2.3.3-cp313-cp313t-win32.whl", hash = "sha256:a333b4ed33d8dc2b373cc955ca57babc00cd6f9009991d9edc5ddbc1bac36bcd", size = 6442776 },
{ url = "https://files.pythonhosted.org/packages/1c/3a/e22b766b11f6030dc2decdeff5c2fb1610768055603f9f3be88b6d192fb2/numpy-2.3.3-cp313-cp313t-win_amd64.whl", hash = "sha256:4384a169c4d8f97195980815d6fcad04933a7e1ab3b530921c3fef7a1c63426d", size = 12927281 },
{ url = "https://files.pythonhosted.org/packages/7b/42/c2e2bc48c5e9b2a83423f99733950fbefd86f165b468a3d85d52b30bf782/numpy-2.3.3-cp313-cp313t-win_arm64.whl", hash = "sha256:75370986cc0bc66f4ce5110ad35aae6d182cc4ce6433c40ad151f53690130bf1", size = 10265275 },
{ url = "https://files.pythonhosted.org/packages/6b/01/342ad585ad82419b99bcf7cebe99e61da6bedb89e213c5fd71acc467faee/numpy-2.3.3-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:cd052f1fa6a78dee696b58a914b7229ecfa41f0a6d96dc663c1220a55e137593", size = 20951527 },
{ url = "https://files.pythonhosted.org/packages/ef/d8/204e0d73fc1b7a9ee80ab1fe1983dd33a4d64a4e30a05364b0208e9a241a/numpy-2.3.3-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:414a97499480067d305fcac9716c29cf4d0d76db6ebf0bf3cbce666677f12652", size = 14186159 },
{ url = "https://files.pythonhosted.org/packages/22/af/f11c916d08f3a18fb8ba81ab72b5b74a6e42ead4c2846d270eb19845bf74/numpy-2.3.3-cp314-cp314-macosx_14_0_arm64.whl", hash = "sha256:50a5fe69f135f88a2be9b6ca0481a68a136f6febe1916e4920e12f1a34e708a7", size = 5114624 },
{ url = "https://files.pythonhosted.org/packages/fb/11/0ed919c8381ac9d2ffacd63fd1f0c34d27e99cab650f0eb6f110e6ae4858/numpy-2.3.3-cp314-cp314-macosx_14_0_x86_64.whl", hash = "sha256:b912f2ed2b67a129e6a601e9d93d4fa37bef67e54cac442a2f588a54afe5c67a", size = 6642627 },
{ url = "https://files.pythonhosted.org/packages/ee/83/deb5f77cb0f7ba6cb52b91ed388b47f8f3c2e9930d4665c600408d9b90b9/numpy-2.3.3-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:9e318ee0596d76d4cb3d78535dc005fa60e5ea348cd131a51e99d0bdbe0b54fe", size = 14296926 },
{ url = "https://files.pythonhosted.org/packages/77/cc/70e59dcb84f2b005d4f306310ff0a892518cc0c8000a33d0e6faf7ca8d80/numpy-2.3.3-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:ce020080e4a52426202bdb6f7691c65bb55e49f261f31a8f506c9f6bc7450421", size = 16638958 },
{ url = "https://files.pythonhosted.org/packages/b6/5a/b2ab6c18b4257e099587d5b7f903317bd7115333ad8d4ec4874278eafa61/numpy-2.3.3-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:e6687dc183aa55dae4a705b35f9c0f8cb178bcaa2f029b241ac5356221d5c021", size = 16071920 },
{ url = "https://files.pythonhosted.org/packages/b8/f1/8b3fdc44324a259298520dd82147ff648979bed085feeacc1250ef1656c0/numpy-2.3.3-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:d8f3b1080782469fdc1718c4ed1d22549b5fb12af0d57d35e992158a772a37cf", size = 18577076 },
{ url = "https://files.pythonhosted.org/packages/f0/a1/b87a284fb15a42e9274e7fcea0dad259d12ddbf07c1595b26883151ca3b4/numpy-2.3.3-cp314-cp314-win32.whl", hash = "sha256:cb248499b0bc3be66ebd6578b83e5acacf1d6cb2a77f2248ce0e40fbec5a76d0", size = 6366952 },
{ url = "https://files.pythonhosted.org/packages/70/5f/1816f4d08f3b8f66576d8433a66f8fa35a5acfb3bbd0bf6c31183b003f3d/numpy-2.3.3-cp314-cp314-win_amd64.whl", hash = "sha256:691808c2b26b0f002a032c73255d0bd89751425f379f7bcd22d140db593a96e8", size = 12919322 },
{ url = "https://files.pythonhosted.org/packages/8c/de/072420342e46a8ea41c324a555fa90fcc11637583fb8df722936aed1736d/numpy-2.3.3-cp314-cp314-win_arm64.whl", hash = "sha256:9ad12e976ca7b10f1774b03615a2a4bab8addce37ecc77394d8e986927dc0dfe", size = 10478630 },
{ url = "https://files.pythonhosted.org/packages/d5/df/ee2f1c0a9de7347f14da5dd3cd3c3b034d1b8607ccb6883d7dd5c035d631/numpy-2.3.3-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:9cc48e09feb11e1db00b320e9d30a4151f7369afb96bd0e48d942d09da3a0d00", size = 21047987 },
{ url = "https://files.pythonhosted.org/packages/d6/92/9453bdc5a4e9e69cf4358463f25e8260e2ffc126d52e10038b9077815989/numpy-2.3.3-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:901bf6123879b7f251d3631967fd574690734236075082078e0571977c6a8e6a", size = 14301076 },
{ url = "https://files.pythonhosted.org/packages/13/77/1447b9eb500f028bb44253105bd67534af60499588a5149a94f18f2ca917/numpy-2.3.3-cp314-cp314t-macosx_14_0_arm64.whl", hash = "sha256:7f025652034199c301049296b59fa7d52c7e625017cae4c75d8662e377bf487d", size = 5229491 },
{ url = "https://files.pythonhosted.org/packages/3d/f9/d72221b6ca205f9736cb4b2ce3b002f6e45cd67cd6a6d1c8af11a2f0b649/numpy-2.3.3-cp314-cp314t-macosx_14_0_x86_64.whl", hash = "sha256:533ca5f6d325c80b6007d4d7fb1984c303553534191024ec6a524a4c92a5935a", size = 6737913 },
{ url = "https://files.pythonhosted.org/packages/3c/5f/d12834711962ad9c46af72f79bb31e73e416ee49d17f4c797f72c96b6ca5/numpy-2.3.3-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:0edd58682a399824633b66885d699d7de982800053acf20be1eaa46d92009c54", size = 14352811 },
{ url = "https://files.pythonhosted.org/packages/a1/0d/fdbec6629d97fd1bebed56cd742884e4eead593611bbe1abc3eb40d304b2/numpy-2.3.3-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:367ad5d8fbec5d9296d18478804a530f1191e24ab4d75ab408346ae88045d25e", size = 16702689 },
{ url = "https://files.pythonhosted.org/packages/9b/09/0a35196dc5575adde1eb97ddfbc3e1687a814f905377621d18ca9bc2b7dd/numpy-2.3.3-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:8f6ac61a217437946a1fa48d24c47c91a0c4f725237871117dea264982128097", size = 16133855 },
{ url = "https://files.pythonhosted.org/packages/7a/ca/c9de3ea397d576f1b6753eaa906d4cdef1bf97589a6d9825a349b4729cc2/numpy-2.3.3-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:179a42101b845a816d464b6fe9a845dfaf308fdfc7925387195570789bb2c970", size = 18652520 },
{ url = "https://files.pythonhosted.org/packages/fd/c2/e5ed830e08cd0196351db55db82f65bc0ab05da6ef2b72a836dcf1936d2f/numpy-2.3.3-cp314-cp314t-win32.whl", hash = "sha256:1250c5d3d2562ec4174bce2e3a1523041595f9b651065e4a4473f5f48a6bc8a5", size = 6515371 },
{ url = "https://files.pythonhosted.org/packages/47/c7/b0f6b5b67f6788a0725f744496badbb604d226bf233ba716683ebb47b570/numpy-2.3.3-cp314-cp314t-win_amd64.whl", hash = "sha256:b37a0b2e5935409daebe82c1e42274d30d9dd355852529eab91dab8dcca7419f", size = 13112576 },
{ url = "https://files.pythonhosted.org/packages/06/b9/33bba5ff6fb679aa0b1f8a07e853f002a6b04b9394db3069a1270a7784ca/numpy-2.3.3-cp314-cp314t-win_arm64.whl", hash = "sha256:78c9f6560dc7e6b3990e32df7ea1a50bbd0e2a111e05209963f5ddcab7073b0b", size = 10545953 },
{ url = "https://files.pythonhosted.org/packages/b8/f2/7e0a37cfced2644c9563c529f29fa28acbd0960dde32ece683aafa6f4949/numpy-2.3.3-pp311-pypy311_pp73-macosx_10_15_x86_64.whl", hash = "sha256:1e02c7159791cd481e1e6d5ddd766b62a4d5acf8df4d4d1afe35ee9c5c33a41e", size = 21131019 },
{ url = "https://files.pythonhosted.org/packages/1a/7e/3291f505297ed63831135a6cc0f474da0c868a1f31b0dd9a9f03a7a0d2ed/numpy-2.3.3-pp311-pypy311_pp73-macosx_11_0_arm64.whl", hash = "sha256:dca2d0fc80b3893ae72197b39f69d55a3cd8b17ea1b50aa4c62de82419936150", size = 14376288 },
{ url = "https://files.pythonhosted.org/packages/bf/4b/ae02e985bdeee73d7b5abdefeb98aef1207e96d4c0621ee0cf228ddfac3c/numpy-2.3.3-pp311-pypy311_pp73-macosx_14_0_arm64.whl", hash = "sha256:99683cbe0658f8271b333a1b1b4bb3173750ad59c0c61f5bbdc5b318918fffe3", size = 5305425 },
{ url = "https://files.pythonhosted.org/packages/8b/eb/9df215d6d7250db32007941500dc51c48190be25f2401d5b2b564e467247/numpy-2.3.3-pp311-pypy311_pp73-macosx_14_0_x86_64.whl", hash = "sha256:d9d537a39cc9de668e5cd0e25affb17aec17b577c6b3ae8a3d866b479fbe88d0", size = 6819053 },
{ url = "https://files.pythonhosted.org/packages/57/62/208293d7d6b2a8998a4a1f23ac758648c3c32182d4ce4346062018362e29/numpy-2.3.3-pp311-pypy311_pp73-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:8596ba2f8af5f93b01d97563832686d20206d303024777f6dfc2e7c7c3f1850e", size = 14420354 },
{ url = "https://files.pythonhosted.org/packages/ed/0c/8e86e0ff7072e14a71b4c6af63175e40d1e7e933ce9b9e9f765a95b4e0c3/numpy-2.3.3-pp311-pypy311_pp73-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:e1ec5615b05369925bd1125f27df33f3b6c8bc10d788d5999ecd8769a1fa04db", size = 16760413 },
{ url = "https://files.pythonhosted.org/packages/af/11/0cc63f9f321ccf63886ac203336777140011fb669e739da36d8db3c53b98/numpy-2.3.3-pp311-pypy311_pp73-win_amd64.whl", hash = "sha256:2e267c7da5bf7309670523896df97f93f6e469fb931161f483cd6882b3b1a5dc", size = 12971844 },
]
[[package]]
@@ -3691,7 +3872,9 @@ name = "pandas"
version = "2.2.3"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "numpy" },
{ name = "numpy", version = "2.0.2", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" },
{ name = "numpy", version = "2.2.6", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version == '3.10.*'" },
{ name = "numpy", version = "2.3.3", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.11'" },
{ name = "python-dateutil" },
{ name = "pytz" },
{ name = "tzdata" },
@@ -5085,7 +5268,7 @@ resolution-markers = [
]
dependencies = [
{ name = "joblib", marker = "python_full_version < '3.10'" },
{ name = "numpy", marker = "python_full_version < '3.10'" },
{ name = "numpy", version = "2.0.2", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" },
{ name = "scipy", version = "1.13.1", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" },
{ name = "threadpoolctl", marker = "python_full_version < '3.10'" },
]
@@ -5133,7 +5316,8 @@ resolution-markers = [
]
dependencies = [
{ name = "joblib", marker = "python_full_version >= '3.10'" },
{ name = "numpy", marker = "python_full_version >= '3.10'" },
{ name = "numpy", version = "2.2.6", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version == '3.10.*'" },
{ name = "numpy", version = "2.3.3", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.11'" },
{ name = "scipy", version = "1.15.3", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version == '3.10.*'" },
{ name = "scipy", version = "1.16.2", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.11'" },
{ name = "threadpoolctl", marker = "python_full_version >= '3.10'" },
@@ -5180,7 +5364,7 @@ resolution-markers = [
"python_full_version < '3.10'",
]
dependencies = [
{ name = "numpy", marker = "python_full_version < '3.10'" },
{ name = "numpy", version = "2.0.2", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/ae/00/48c2f661e2816ccf2ecd77982f6605b2950afe60f60a52b4cbbc2504aa8f/scipy-1.13.1.tar.gz", hash = "sha256:095a87a0312b08dfd6a6155cbbd310a8c51800fc931b8c0b84003014b874ed3c", size = 57210720 }
wheels = [
@@ -5218,7 +5402,7 @@ resolution-markers = [
"python_full_version == '3.10.*'",
]
dependencies = [
{ name = "numpy", marker = "python_full_version == '3.10.*'" },
{ name = "numpy", version = "2.2.6", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version == '3.10.*'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/0f/37/6964b830433e654ec7485e45a00fc9a27cf868d622838f6b6d9c5ec0d532/scipy-1.15.3.tar.gz", hash = "sha256:eae3cf522bc7df64b42cad3925c876e1b0b6c35c1337c93e12c0f366f55b0eaf", size = 59419214 }
wheels = [
@@ -5278,7 +5462,7 @@ resolution-markers = [
"python_full_version == '3.11.*'",
]
dependencies = [
{ name = "numpy", marker = "python_full_version >= '3.11'" },
{ name = "numpy", version = "2.3.3", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.11'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/4c/3b/546a6f0bfe791bbb7f8d591613454d15097e53f906308ec6f7c1ce588e8e/scipy-1.16.2.tar.gz", hash = "sha256:af029b153d243a80afb6eabe40b0a07f8e35c9adc269c019f364ad747f826a6b", size = 30580599 }
wheels = [
@@ -5479,7 +5663,7 @@ resolution-markers = [
dependencies = [
{ name = "aiohttp", marker = "python_full_version < '3.10'" },
{ name = "ipython", version = "8.18.1", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" },
{ name = "numpy", marker = "python_full_version < '3.10'" },
{ name = "numpy", version = "2.0.2", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" },
{ name = "requests", marker = "python_full_version < '3.10'" },
{ name = "setproctitle", marker = "python_full_version < '3.10'" },
{ name = "tqdm", marker = "python_full_version < '3.10'" },
@@ -5502,7 +5686,8 @@ dependencies = [
{ name = "aiohttp", marker = "python_full_version >= '3.10'" },
{ name = "ipython", version = "8.37.0", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version == '3.10.*'" },
{ name = "ipython", version = "9.5.0", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.11'" },
{ name = "numpy", marker = "python_full_version >= '3.10'" },
{ name = "numpy", version = "2.2.6", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version == '3.10.*'" },
{ name = "numpy", version = "2.3.3", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.11'" },
{ name = "requests", marker = "python_full_version >= '3.10'" },
{ name = "setproctitle", marker = "python_full_version >= '3.10'" },
{ name = "tqdm", marker = "python_full_version >= '3.10'" },
@@ -5715,75 +5900,27 @@ wheels = [
[[package]]
name = "tokenizers"
version = "0.19.1"
version = "0.22.1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "huggingface-hub" },
]
sdist = { url = "https://files.pythonhosted.org/packages/48/04/2071c150f374aab6d5e92aaec38d0f3c368d227dd9e0469a1f0966ac68d1/tokenizers-0.19.1.tar.gz", hash = "sha256:ee59e6680ed0fdbe6b724cf38bd70400a0c1dd623b07ac729087270caeac88e3", size = 321039 }
sdist = { url = "https://files.pythonhosted.org/packages/1c/46/fb6854cec3278fbfa4a75b50232c77622bc517ac886156e6afbfa4d8fc6e/tokenizers-0.22.1.tar.gz", hash = "sha256:61de6522785310a309b3407bac22d99c4db5dba349935e99e4d15ea2226af2d9", size = 363123 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/c1/60/91cac8d496b304ec5a22f07606893cad35ea8e1a8406dc8909e365f97a80/tokenizers-0.19.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:952078130b3d101e05ecfc7fc3640282d74ed26bcf691400f872563fca15ac97", size = 2533301 },
{ url = "https://files.pythonhosted.org/packages/4c/12/9cb68762ff5fee1efd51aefe2f62cb225f26f060a68a3779e1060bbc7a59/tokenizers-0.19.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:82c8b8063de6c0468f08e82c4e198763e7b97aabfe573fd4cf7b33930ca4df77", size = 2440223 },
{ url = "https://files.pythonhosted.org/packages/e4/03/b2020e6a78fb994cff1ec962adc157c23109172a46b4fe451d6d0dd33fdb/tokenizers-0.19.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:f03727225feaf340ceeb7e00604825addef622d551cbd46b7b775ac834c1e1c4", size = 3683779 },
{ url = "https://files.pythonhosted.org/packages/50/4e/2e5549a26dc6f9e434f83bebf16c2d7dc9dc3477cc0ec8b23ede4d465b90/tokenizers-0.19.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:453e4422efdfc9c6b6bf2eae00d5e323f263fff62b29a8c9cd526c5003f3f642", size = 3569431 },
{ url = "https://files.pythonhosted.org/packages/75/79/158626bd794e75551e0c6bb93f1cd3c9ba08ba14b181b98f09e95994f609/tokenizers-0.19.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:02e81bf089ebf0e7f4df34fa0207519f07e66d8491d963618252f2e0729e0b46", size = 3424739 },
{ url = "https://files.pythonhosted.org/packages/65/8e/5f4316976c26009f1ae0b6543f3d97af29afa5ba5dc145251e6a07314618/tokenizers-0.19.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b07c538ba956843833fee1190cf769c60dc62e1cf934ed50d77d5502194d63b1", size = 3965791 },
{ url = "https://files.pythonhosted.org/packages/6a/e1/5dbac9618709972434eea072670cd69fba1aa988e6200f16057722b4bf96/tokenizers-0.19.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e28cab1582e0eec38b1f38c1c1fb2e56bce5dc180acb1724574fc5f47da2a4fe", size = 4049879 },
{ url = "https://files.pythonhosted.org/packages/40/4f/eb78de4af3b17b589f43a369cbf0c3a7173f25c3d2cd93068852c07689aa/tokenizers-0.19.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8b01afb7193d47439f091cd8f070a1ced347ad0f9144952a30a41836902fe09e", size = 3607049 },
{ url = "https://files.pythonhosted.org/packages/f5/f8/141dcb0f88e9452af8d20d14dd53aab5937222a2bb4f2c04bfed6829263c/tokenizers-0.19.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:7fb297edec6c6841ab2e4e8f357209519188e4a59b557ea4fafcf4691d1b4c98", size = 9634084 },
{ url = "https://files.pythonhosted.org/packages/2e/be/debb7caa3f88ed54015170db16e07aa3a5fea2d3983d0dde92f98d888dc8/tokenizers-0.19.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:2e8a3dd055e515df7054378dc9d6fa8c8c34e1f32777fb9a01fea81496b3f9d3", size = 9949480 },
{ url = "https://files.pythonhosted.org/packages/7a/e7/26bedf5d270d293d572a90bd66b0b030012aedb95d8ee87e8bcd446b76fb/tokenizers-0.19.1-cp310-none-win32.whl", hash = "sha256:7ff898780a155ea053f5d934925f3902be2ed1f4d916461e1a93019cc7250837", size = 2041462 },
{ url = "https://files.pythonhosted.org/packages/f4/85/d999b9a05fd101d48f1a365d68be0b109277bb25c89fb37a389d669f9185/tokenizers-0.19.1-cp310-none-win_amd64.whl", hash = "sha256:bea6f9947e9419c2fda21ae6c32871e3d398cba549b93f4a65a2d369662d9403", size = 2220036 },
{ url = "https://files.pythonhosted.org/packages/c8/d6/6e1d728d765eb4102767f071bf7f6439ab10d7f4a975c9217db65715207a/tokenizers-0.19.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:5c88d1481f1882c2e53e6bb06491e474e420d9ac7bdff172610c4f9ad3898059", size = 2533448 },
{ url = "https://files.pythonhosted.org/packages/90/79/d17a0f491d10817cd30f1121a07aa09c8e97a81114b116e473baf1577f09/tokenizers-0.19.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ddf672ed719b4ed82b51499100f5417d7d9f6fb05a65e232249268f35de5ed14", size = 2440254 },
{ url = "https://files.pythonhosted.org/packages/c7/28/2d11c3ff94f9d42eceb2ea549a06e3f166fe391c5a025e5d96fac898a3ac/tokenizers-0.19.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:dadc509cc8a9fe460bd274c0e16ac4184d0958117cf026e0ea8b32b438171594", size = 3684971 },
{ url = "https://files.pythonhosted.org/packages/36/c6/537f22b57e6003904d35d07962dbde2f2e9bdd791d0241da976a4c7f8194/tokenizers-0.19.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dfedf31824ca4915b511b03441784ff640378191918264268e6923da48104acc", size = 3568894 },
{ url = "https://files.pythonhosted.org/packages/af/ef/3c1deed14ec59b2c8e7e2fa27b2a53f7d101181277a43b89ab17d891ef2e/tokenizers-0.19.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ac11016d0a04aa6487b1513a3a36e7bee7eec0e5d30057c9c0408067345c48d2", size = 3426873 },
{ url = "https://files.pythonhosted.org/packages/06/db/c0320c4798ac6bd12d2ef895bec9d10d216a3b4d6fff10e9d68883ea7edc/tokenizers-0.19.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:76951121890fea8330d3a0df9a954b3f2a37e3ec20e5b0530e9a0044ca2e11fe", size = 3965050 },
{ url = "https://files.pythonhosted.org/packages/4c/8a/a166888d6cb14db55f5eb7ce0b1d4777d145aa27cbf4f945712cf6c29935/tokenizers-0.19.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b342d2ce8fc8d00f376af068e3274e2e8649562e3bc6ae4a67784ded6b99428d", size = 4047855 },
{ url = "https://files.pythonhosted.org/packages/a7/03/fb50fc03f86016b227a967c8d474f90230c885c0d18f78acdfda7a96ce56/tokenizers-0.19.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d16ff18907f4909dca9b076b9c2d899114dd6abceeb074eca0c93e2353f943aa", size = 3608228 },
{ url = "https://files.pythonhosted.org/packages/5b/cd/0385e1026e1e03732fd398e964792a3a8433918b166748c82507e014d748/tokenizers-0.19.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:706a37cc5332f85f26efbe2bdc9ef8a9b372b77e4645331a405073e4b3a8c1c6", size = 9633115 },
{ url = "https://files.pythonhosted.org/packages/25/50/8f8ad0bbdaf09d04b15e6502d1fa1c653754ed7e016e4ae009726aa1a4e4/tokenizers-0.19.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:16baac68651701364b0289979ecec728546133e8e8fe38f66fe48ad07996b88b", size = 9949062 },
{ url = "https://files.pythonhosted.org/packages/db/11/31be66710f1d14526f3588a441efadeb184e1e68458067007b20ead03c59/tokenizers-0.19.1-cp311-none-win32.whl", hash = "sha256:9ed240c56b4403e22b9584ee37d87b8bfa14865134e3e1c3fb4b2c42fafd3256", size = 2041039 },
{ url = "https://files.pythonhosted.org/packages/65/8e/6d7d72b28f22c422cff8beae10ac3c2e4376b9be721ef8167b7eecd1da62/tokenizers-0.19.1-cp311-none-win_amd64.whl", hash = "sha256:ad57d59341710b94a7d9dbea13f5c1e7d76fd8d9bcd944a7a6ab0b0da6e0cc66", size = 2220386 },
{ url = "https://files.pythonhosted.org/packages/63/90/2890cd096898dcdb596ee172cde40c0f54a9cf43b0736aa260a5501252af/tokenizers-0.19.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:621d670e1b1c281a1c9698ed89451395d318802ff88d1fc1accff0867a06f153", size = 2530580 },
{ url = "https://files.pythonhosted.org/packages/74/d1/f4e1e950adb36675dfd8f9d0f4be644f3f3aaf22a5677a4f5c81282b662e/tokenizers-0.19.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d924204a3dbe50b75630bd16f821ebda6a5f729928df30f582fb5aade90c818a", size = 2436682 },
{ url = "https://files.pythonhosted.org/packages/ed/30/89b321a16c58d233e301ec15072c0d3ed5014825e72da98604cd3ab2fba1/tokenizers-0.19.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:4f3fefdc0446b1a1e6d81cd4c07088ac015665d2e812f6dbba4a06267d1a2c95", size = 3693494 },
{ url = "https://files.pythonhosted.org/packages/05/40/fa899f32de483500fbc78befd378fd7afba4270f17db707d1a78c0a4ddc3/tokenizers-0.19.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9620b78e0b2d52ef07b0d428323fb34e8ea1219c5eac98c2596311f20f1f9266", size = 3566541 },
{ url = "https://files.pythonhosted.org/packages/67/14/e7da32ae5fb4971830f1ef335932fae3fa57e76b537e852f146c850aefdf/tokenizers-0.19.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:04ce49e82d100594715ac1b2ce87d1a36e61891a91de774755f743babcd0dd52", size = 3430792 },
{ url = "https://files.pythonhosted.org/packages/f2/4b/aae61bdb6ab584d2612170801703982ee0e35f8b6adacbeefe5a3b277621/tokenizers-0.19.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c5c2ff13d157afe413bf7e25789879dd463e5a4abfb529a2d8f8473d8042e28f", size = 3962812 },
{ url = "https://files.pythonhosted.org/packages/0a/b6/f7b7ef89c4da7b20256e6eab23d3835f05d1ca8f451d31c16cbfe3cd9eb6/tokenizers-0.19.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3174c76efd9d08f836bfccaca7cfec3f4d1c0a4cf3acbc7236ad577cc423c840", size = 4024688 },
{ url = "https://files.pythonhosted.org/packages/80/54/12047a69f5b382d7ee72044dc89151a2dd0d13b2c9bdcc22654883704d31/tokenizers-0.19.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7c9d5b6c0e7a1e979bec10ff960fae925e947aab95619a6fdb4c1d8ff3708ce3", size = 3610961 },
{ url = "https://files.pythonhosted.org/packages/52/b7/1e8a913d18ac28feeda42d4d2d51781874398fb59cd1c1e2653a4b5742ed/tokenizers-0.19.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:a179856d1caee06577220ebcfa332af046d576fb73454b8f4d4b0ba8324423ea", size = 9631367 },
{ url = "https://files.pythonhosted.org/packages/ac/3d/2284f6d99f8f21d09352b88b8cfefa24ab88468d962aeb0aa15c20d76b32/tokenizers-0.19.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:952b80dac1a6492170f8c2429bd11fcaa14377e097d12a1dbe0ef2fb2241e16c", size = 9950121 },
{ url = "https://files.pythonhosted.org/packages/2a/94/ec3369dbc9b7200c14c8c7a1a04c78b7a7398d0c001e1b7d1ffe30eb93a0/tokenizers-0.19.1-cp312-none-win32.whl", hash = "sha256:01d62812454c188306755c94755465505836fd616f75067abcae529c35edeb57", size = 2044069 },
{ url = "https://files.pythonhosted.org/packages/0c/97/80bff6937e0c67d30c0facacd4f0bcf4254e581aa4995c73cef8c8640e56/tokenizers-0.19.1-cp312-none-win_amd64.whl", hash = "sha256:b70bfbe3a82d3e3fb2a5e9b22a39f8d1740c96c68b6ace0086b39074f08ab89a", size = 2214527 },
{ url = "https://files.pythonhosted.org/packages/1a/ed/42801618bab16c79d6bd222977c212dba5770e6c935ba53728b731653a3d/tokenizers-0.19.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:0b9394bd204842a2a1fd37fe29935353742be4a3460b6ccbaefa93f58a8df43d", size = 2533937 },
{ url = "https://files.pythonhosted.org/packages/0a/2b/4e5718e806ff23e5e758e02bd4b34967b5218f085b0c189335fd27c14dc1/tokenizers-0.19.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4692ab92f91b87769d950ca14dbb61f8a9ef36a62f94bad6c82cc84a51f76f6a", size = 2440312 },
{ url = "https://files.pythonhosted.org/packages/c5/28/ac2a277bd23b631e1ff986182c4fcb9028ccc7ff7c07743ef906fa5389e7/tokenizers-0.19.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:6258c2ef6f06259f70a682491c78561d492e885adeaf9f64f5389f78aa49a051", size = 3686532 },
{ url = "https://files.pythonhosted.org/packages/ba/26/139bd2371228a0e203da7b3e3eddcb02f45b2b7edd91df00e342e4b55e13/tokenizers-0.19.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c85cf76561fbd01e0d9ea2d1cbe711a65400092bc52b5242b16cfd22e51f0c58", size = 3570575 },
{ url = "https://files.pythonhosted.org/packages/3b/6b/98383dff29416127c73dc196844ed23e29d790f1ad4b4ecf69d45e03841d/tokenizers-0.19.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:670b802d4d82bbbb832ddb0d41df7015b3e549714c0e77f9bed3e74d42400fbe", size = 3425806 },
{ url = "https://files.pythonhosted.org/packages/33/74/fa1f86d161db482e10c92d83e924600b691210c5d676fa323738c91d8dba/tokenizers-0.19.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:85aa3ab4b03d5e99fdd31660872249df5e855334b6c333e0bc13032ff4469c4a", size = 3965120 },
{ url = "https://files.pythonhosted.org/packages/e0/4a/59a0aa37b8bfe1888a72f75bbf24b94c888a1aa333aab2910ae22c369e23/tokenizers-0.19.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cbf001afbbed111a79ca47d75941e9e5361297a87d186cbfc11ed45e30b5daba", size = 4048157 },
{ url = "https://files.pythonhosted.org/packages/0f/cb/8fc733c8f251bac1e5c4ae52458c353b3faa98f41d734c226cad3783da03/tokenizers-0.19.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b4c89aa46c269e4e70c4d4f9d6bc644fcc39bb409cb2a81227923404dd6f5227", size = 3608229 },
{ url = "https://files.pythonhosted.org/packages/76/05/badd3a66571ad257270b38c33b9a7470afd2ae12e409c7c74baedf16f2ef/tokenizers-0.19.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:39c1ec76ea1027438fafe16ecb0fb84795e62e9d643444c1090179e63808c69d", size = 9634933 },
{ url = "https://files.pythonhosted.org/packages/d9/46/97f8e84ba6a9133e34b148631d2933fda2a6ad8e0767b6e07ad0af9d83c2/tokenizers-0.19.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c2a0d47a89b48d7daa241e004e71fb5a50533718897a4cd6235cb846d511a478", size = 9950957 },
{ url = "https://files.pythonhosted.org/packages/81/b2/bf9a0f9136964df5e94dd9854ba071480c5425ff0db6d1ad9a6a8e683d55/tokenizers-0.19.1-cp39-none-win32.whl", hash = "sha256:61b7fe8886f2e104d4caf9218b157b106207e0f2a4905c9c7ac98890688aabeb", size = 2040628 },
{ url = "https://files.pythonhosted.org/packages/25/aa/c6992cdc0a74bcbb666e7c00ada6826f5b49fc4cbdafc50db0d1369503fe/tokenizers-0.19.1-cp39-none-win_amd64.whl", hash = "sha256:f97660f6c43efd3e0bfd3f2e3e5615bf215680bad6ee3d469df6454b8c6e8256", size = 2220919 },
{ url = "https://files.pythonhosted.org/packages/cf/7b/38fb7207cde3d1dc5272411cd18178e6437cdc1ef08cac5d0e8cfd57f38c/tokenizers-0.19.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:3b11853f17b54c2fe47742c56d8a33bf49ce31caf531e87ac0d7d13d327c9334", size = 2532668 },
{ url = "https://files.pythonhosted.org/packages/1d/0d/2c452fe17fc17f0cdb713acb811eebb1f714b8c21d497c4672af4f491229/tokenizers-0.19.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d26194ef6c13302f446d39972aaa36a1dda6450bc8949f5eb4c27f51191375bd", size = 2438321 },
{ url = "https://files.pythonhosted.org/packages/19/e0/f9e915d028b45798723eab59c253da28040aa66b9f31dcb7cfc3be88fa37/tokenizers-0.19.1-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:e8d1ed93beda54bbd6131a2cb363a576eac746d5c26ba5b7556bc6f964425594", size = 3682304 },
{ url = "https://files.pythonhosted.org/packages/ce/2b/db8a94608c392752681c2ca312487b7cd5bcc4f77e24a90daa4916138271/tokenizers-0.19.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca407133536f19bdec44b3da117ef0d12e43f6d4b56ac4c765f37eca501c7bda", size = 3566208 },
{ url = "https://files.pythonhosted.org/packages/d8/58/2e998462677c4c0eb5123ce386bcb488a155664d273d0283122866515f09/tokenizers-0.19.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce05fde79d2bc2e46ac08aacbc142bead21614d937aac950be88dc79f9db9022", size = 3605791 },
{ url = "https://files.pythonhosted.org/packages/83/ac/26bc2e2bb2a054dc2e51699628936f5474e093b68da6ccdde04b2fc39ab8/tokenizers-0.19.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:35583cd46d16f07c054efd18b5d46af4a2f070a2dd0a47914e66f3ff5efb2b1e", size = 9632867 },
{ url = "https://files.pythonhosted.org/packages/45/b6/36c1bb106bbe96012c9367df89ed01599cada036c0b96d38fbbdbeb75c9f/tokenizers-0.19.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:43350270bfc16b06ad3f6f07eab21f089adb835544417afda0f83256a8bf8b75", size = 9945103 },
{ url = "https://files.pythonhosted.org/packages/aa/9c/deed1e549b767832cc4ee5b386d1660bde3408bbd6d1ab48352fb61c54e2/tokenizers-0.19.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:56ae39d4036b753994476a1b935584071093b55c7a72e3b8288e68c313ca26e7", size = 2533737 },
{ url = "https://files.pythonhosted.org/packages/c8/59/4dbebca9ef6b61d10a94cbf404d3abf509dfedb52cdcf2fe7ed1fb52460d/tokenizers-0.19.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:f9939ca7e58c2758c01b40324a59c034ce0cebad18e0d4563a9b1beab3018243", size = 2439981 },
{ url = "https://files.pythonhosted.org/packages/72/42/e18b67ab9fd31e433171cf447d85bf5dede8009db04a46f3905bff5ca715/tokenizers-0.19.1-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:6c330c0eb815d212893c67a032e9dc1b38a803eccb32f3e8172c19cc69fbb439", size = 3683158 },
{ url = "https://files.pythonhosted.org/packages/08/5c/54419545d61c085d7adcbd54f5711815ffbb1164d6132209172c984320be/tokenizers-0.19.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ec11802450a2487cdf0e634b750a04cbdc1c4d066b97d94ce7dd2cb51ebb325b", size = 3568486 },
{ url = "https://files.pythonhosted.org/packages/6d/61/f8b59cc2580297ca78a7b5b2cefc8996b8417dc6cb9abb6a1d303973156b/tokenizers-0.19.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a2b718f316b596f36e1dae097a7d5b91fc5b85e90bf08b01ff139bd8953b25af", size = 3608836 },
{ url = "https://files.pythonhosted.org/packages/a5/02/4944f51c7248ae78c9758266f4e92d72fe98cf58f3c973949bcdede0313a/tokenizers-0.19.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:ed69af290c2b65169f0ba9034d1dc39a5db9459b32f1dd8b5f3f32a3fcf06eab", size = 9634426 },
{ url = "https://files.pythonhosted.org/packages/f1/2a/5ac32ef70d6f9464155c4c4239139dc5aa9297052180b171f5ae22fd7b7a/tokenizers-0.19.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f8a9c828277133af13f3859d1b6bf1c3cb6e9e1637df0e45312e6b7c2e622b1f", size = 9947379 },
{ url = "https://files.pythonhosted.org/packages/bf/33/f4b2d94ada7ab297328fc671fed209368ddb82f965ec2224eb1892674c3a/tokenizers-0.22.1-cp39-abi3-macosx_10_12_x86_64.whl", hash = "sha256:59fdb013df17455e5f950b4b834a7b3ee2e0271e6378ccb33aa74d178b513c73", size = 3069318 },
{ url = "https://files.pythonhosted.org/packages/1c/58/2aa8c874d02b974990e89ff95826a4852a8b2a273c7d1b4411cdd45a4565/tokenizers-0.22.1-cp39-abi3-macosx_11_0_arm64.whl", hash = "sha256:8d4e484f7b0827021ac5f9f71d4794aaef62b979ab7608593da22b1d2e3c4edc", size = 2926478 },
{ url = "https://files.pythonhosted.org/packages/1e/3b/55e64befa1e7bfea963cf4b787b2cea1011362c4193f5477047532ce127e/tokenizers-0.22.1-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:19d2962dd28bc67c1f205ab180578a78eef89ac60ca7ef7cbe9635a46a56422a", size = 3256994 },
{ url = "https://files.pythonhosted.org/packages/71/0b/fbfecf42f67d9b7b80fde4aabb2b3110a97fac6585c9470b5bff103a80cb/tokenizers-0.22.1-cp39-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:38201f15cdb1f8a6843e6563e6e79f4abd053394992b9bbdf5213ea3469b4ae7", size = 3153141 },
{ url = "https://files.pythonhosted.org/packages/17/a9/b38f4e74e0817af8f8ef925507c63c6ae8171e3c4cb2d5d4624bf58fca69/tokenizers-0.22.1-cp39-abi3-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d1cbe5454c9a15df1b3443c726063d930c16f047a3cc724b9e6e1a91140e5a21", size = 3508049 },
{ url = "https://files.pythonhosted.org/packages/d2/48/dd2b3dac46bb9134a88e35d72e1aa4869579eacc1a27238f1577270773ff/tokenizers-0.22.1-cp39-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e7d094ae6312d69cc2a872b54b91b309f4f6fbce871ef28eb27b52a98e4d0214", size = 3710730 },
{ url = "https://files.pythonhosted.org/packages/93/0e/ccabc8d16ae4ba84a55d41345207c1e2ea88784651a5a487547d80851398/tokenizers-0.22.1-cp39-abi3-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:afd7594a56656ace95cdd6df4cca2e4059d294c5cfb1679c57824b605556cb2f", size = 3412560 },
{ url = "https://files.pythonhosted.org/packages/d0/c6/dc3a0db5a6766416c32c034286d7c2d406da1f498e4de04ab1b8959edd00/tokenizers-0.22.1-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e2ef6063d7a84994129732b47e7915e8710f27f99f3a3260b8a38fc7ccd083f4", size = 3250221 },
{ url = "https://files.pythonhosted.org/packages/d7/a6/2c8486eef79671601ff57b093889a345dd3d576713ef047776015dc66de7/tokenizers-0.22.1-cp39-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:ba0a64f450b9ef412c98f6bcd2a50c6df6e2443b560024a09fa6a03189726879", size = 9345569 },
{ url = "https://files.pythonhosted.org/packages/6b/16/32ce667f14c35537f5f605fe9bea3e415ea1b0a646389d2295ec348d5657/tokenizers-0.22.1-cp39-abi3-musllinux_1_2_armv7l.whl", hash = "sha256:331d6d149fa9c7d632cde4490fb8bbb12337fa3a0232e77892be656464f4b446", size = 9271599 },
{ url = "https://files.pythonhosted.org/packages/51/7c/a5f7898a3f6baa3fc2685c705e04c98c1094c523051c805cdd9306b8f87e/tokenizers-0.22.1-cp39-abi3-musllinux_1_2_i686.whl", hash = "sha256:607989f2ea68a46cb1dfbaf3e3aabdf3f21d8748312dbeb6263d1b3b66c5010a", size = 9533862 },
{ url = "https://files.pythonhosted.org/packages/36/65/7e75caea90bc73c1dd8d40438adf1a7bc26af3b8d0a6705ea190462506e1/tokenizers-0.22.1-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:a0f307d490295717726598ef6fa4f24af9d484809223bbc253b201c740a06390", size = 9681250 },
{ url = "https://files.pythonhosted.org/packages/30/2c/959dddef581b46e6209da82df3b78471e96260e2bc463f89d23b1bf0e52a/tokenizers-0.22.1-cp39-abi3-win32.whl", hash = "sha256:b5120eed1442765cd90b903bb6cfef781fd8fe64e34ccaecbae4c619b7b12a82", size = 2472003 },
{ url = "https://files.pythonhosted.org/packages/b3/46/e33a8c93907b631a99377ef4c5f817ab453d0b34f93529421f42ff559671/tokenizers-0.22.1-cp39-abi3-win_amd64.whl", hash = "sha256:65fd6e3fb11ca1e78a6a93602490f134d1fdeb13bcef99389d5102ea318ed138", size = 2674684 },
]
[[package]]
@@ -5887,7 +6024,9 @@ name = "torchvision"
version = "0.23.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "numpy" },
{ name = "numpy", version = "2.0.2", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" },
{ name = "numpy", version = "2.2.6", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version == '3.10.*'" },
{ name = "numpy", version = "2.3.3", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.11'" },
{ name = "pillow" },
{ name = "torch" },
]
@@ -5960,12 +6099,14 @@ wheels = [
[[package]]
name = "transformers"
version = "4.42.4"
version = "4.56.2"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "filelock" },
{ name = "huggingface-hub" },
{ name = "numpy" },
{ name = "numpy", version = "2.0.2", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" },
{ name = "numpy", version = "2.2.6", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version == '3.10.*'" },
{ name = "numpy", version = "2.3.3", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.11'" },
{ name = "packaging" },
{ name = "pyyaml" },
{ name = "regex" },
@@ -5974,9 +6115,9 @@ dependencies = [
{ name = "tokenizers" },
{ name = "tqdm" },
]
sdist = { url = "https://files.pythonhosted.org/packages/84/eb/259afff0df9ece338dc224007bbe7dd6c9aae8e26957dc4033a3ec857588/transformers-4.42.4.tar.gz", hash = "sha256:f956e25e24df851f650cb2c158b6f4352dfae9d702f04c113ed24fc36ce7ae2d", size = 8054872 }
sdist = { url = "https://files.pythonhosted.org/packages/e5/82/0bcfddd134cdf53440becb5e738257cc3cf34cf229d63b57bfd288e6579f/transformers-4.56.2.tar.gz", hash = "sha256:5e7c623e2d7494105c726dd10f6f90c2c99a55ebe86eef7233765abd0cb1c529", size = 9844296 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/6a/dc/23c26b7b0bce5aaccf2b767db3e9c4f5ae4331bd47688c1f2ef091b23696/transformers-4.42.4-py3-none-any.whl", hash = "sha256:6d59061392d0f1da312af29c962df9017ff3c0108c681a56d1bc981004d16d24", size = 9337817 },
{ url = "https://files.pythonhosted.org/packages/70/26/2591b48412bde75e33bfd292034103ffe41743cacd03120e3242516cd143/transformers-4.56.2-py3-none-any.whl", hash = "sha256:79c03d0e85b26cb573c109ff9eafa96f3c8d4febfd8a0774e8bba32702dd6dde", size = 11608055 },
]
[[package]]