Compare commits
80 Commits
feature/sk
...
financeben
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
4e9e2f3da0 | ||
|
|
ed167f43b0 | ||
|
|
f9746d3fe2 | ||
|
|
a090a3444a | ||
|
|
aaaba27a4f | ||
|
|
f40f539456 | ||
|
|
576a2dcb49 | ||
|
|
ad8ab84675 | ||
|
|
58b96b64d8 | ||
|
|
a76c3cdac4 | ||
|
|
520619deab | ||
|
|
dea08c95b4 | ||
|
|
ec889f7ef4 | ||
|
|
322e5c162d | ||
|
|
edde0cdeb2 | ||
|
|
db7ba27ff6 | ||
|
|
5f7806e16f | ||
|
|
d034e2195b | ||
|
|
43894ff605 | ||
|
|
10311cc611 | ||
|
|
ad0d2faabc | ||
|
|
e93c0dec6f | ||
|
|
c5a29f849a | ||
|
|
3357d5765e | ||
|
|
9dbd0c64cc | ||
|
|
9c400acd7e | ||
|
|
ac560964f5 | ||
|
|
07e4f176e1 | ||
|
|
b1daf021e0 | ||
|
|
3578680cb6 | ||
|
|
a0d6857faa | ||
|
|
3b8dc6368e | ||
|
|
e309f292de | ||
|
|
0d9f92ea0f | ||
|
|
b0b353d279 | ||
|
|
4dffdfedbe | ||
|
|
d41e467df9 | ||
|
|
4ca0489cb1 | ||
|
|
e83a671918 | ||
|
|
d7011bbea0 | ||
|
|
ef4c69d128 | ||
|
|
75c8aeee5f | ||
|
|
3d79741f9c | ||
|
|
df34c84bd3 | ||
|
|
8dfd2f015c | ||
|
|
ed72232bab | ||
|
|
26d961bfc5 | ||
|
|
722bda4ebb | ||
|
|
a7c7e8801d | ||
|
|
069bce558b | ||
|
|
4e5b73ce7b | ||
|
|
772894012e | ||
|
|
31b4973141 | ||
|
|
dde2221513 | ||
|
|
6d11e86e71 | ||
|
|
13bb561aad | ||
|
|
0174ba5571 | ||
|
|
03af82d695 | ||
|
|
738f1dbab8 | ||
|
|
37d990d51c | ||
|
|
5c163737c4 | ||
|
|
6d1d67ead7 | ||
|
|
a6f07a54f1 | ||
|
|
ed27ea6990 | ||
|
|
baf2d76e0e | ||
|
|
46905e0687 | ||
|
|
838ade231e | ||
|
|
da6540decd | ||
|
|
39e18a7c11 | ||
|
|
6bde28584b | ||
|
|
f62632c41f | ||
|
|
27708243ca | ||
|
|
9a1e4652ca | ||
|
|
14e84d9e2d | ||
|
|
2dcfca19ff | ||
|
|
bee2167ee3 | ||
|
|
ef980d70b3 | ||
|
|
db3c63c441 | ||
|
|
00eeadb9dd | ||
|
|
42c8370709 |
1
.gitattributes
vendored
1
.gitattributes
vendored
@@ -1 +0,0 @@
|
|||||||
paper_plot/data/big_graph_degree_data.npz filter=lfs diff=lfs merge=lfs -text
|
|
||||||
50
.github/ISSUE_TEMPLATE/bug_report.yml
vendored
Normal file
50
.github/ISSUE_TEMPLATE/bug_report.yml
vendored
Normal file
@@ -0,0 +1,50 @@
|
|||||||
|
name: Bug Report
|
||||||
|
description: Report a bug in LEANN
|
||||||
|
labels: ["bug"]
|
||||||
|
|
||||||
|
body:
|
||||||
|
- type: textarea
|
||||||
|
id: description
|
||||||
|
attributes:
|
||||||
|
label: What happened?
|
||||||
|
description: A clear description of the bug
|
||||||
|
validations:
|
||||||
|
required: true
|
||||||
|
|
||||||
|
- type: textarea
|
||||||
|
id: reproduce
|
||||||
|
attributes:
|
||||||
|
label: How to reproduce
|
||||||
|
placeholder: |
|
||||||
|
1. Install with...
|
||||||
|
2. Run command...
|
||||||
|
3. See error
|
||||||
|
validations:
|
||||||
|
required: true
|
||||||
|
|
||||||
|
- type: textarea
|
||||||
|
id: error
|
||||||
|
attributes:
|
||||||
|
label: Error message
|
||||||
|
description: Paste any error messages
|
||||||
|
render: shell
|
||||||
|
|
||||||
|
- type: input
|
||||||
|
id: version
|
||||||
|
attributes:
|
||||||
|
label: LEANN Version
|
||||||
|
placeholder: "0.1.0"
|
||||||
|
validations:
|
||||||
|
required: true
|
||||||
|
|
||||||
|
- type: dropdown
|
||||||
|
id: os
|
||||||
|
attributes:
|
||||||
|
label: Operating System
|
||||||
|
options:
|
||||||
|
- macOS
|
||||||
|
- Linux
|
||||||
|
- Windows
|
||||||
|
- Docker
|
||||||
|
validations:
|
||||||
|
required: true
|
||||||
8
.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
8
.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
@@ -0,0 +1,8 @@
|
|||||||
|
blank_issues_enabled: true
|
||||||
|
contact_links:
|
||||||
|
- name: Documentation
|
||||||
|
url: https://github.com/LEANN-RAG/LEANN-RAG/tree/main/docs
|
||||||
|
about: Read the docs first
|
||||||
|
- name: Discussions
|
||||||
|
url: https://github.com/LEANN-RAG/LEANN-RAG/discussions
|
||||||
|
about: Ask questions and share ideas
|
||||||
27
.github/ISSUE_TEMPLATE/feature_request.yml
vendored
Normal file
27
.github/ISSUE_TEMPLATE/feature_request.yml
vendored
Normal file
@@ -0,0 +1,27 @@
|
|||||||
|
name: Feature Request
|
||||||
|
description: Suggest a new feature for LEANN
|
||||||
|
labels: ["enhancement"]
|
||||||
|
|
||||||
|
body:
|
||||||
|
- type: textarea
|
||||||
|
id: problem
|
||||||
|
attributes:
|
||||||
|
label: What problem does this solve?
|
||||||
|
description: Describe the problem or need
|
||||||
|
validations:
|
||||||
|
required: true
|
||||||
|
|
||||||
|
- type: textarea
|
||||||
|
id: solution
|
||||||
|
attributes:
|
||||||
|
label: Proposed solution
|
||||||
|
description: How would you like this to work?
|
||||||
|
validations:
|
||||||
|
required: true
|
||||||
|
|
||||||
|
- type: textarea
|
||||||
|
id: example
|
||||||
|
attributes:
|
||||||
|
label: Example usage
|
||||||
|
description: Show how the API might look
|
||||||
|
render: python
|
||||||
13
.github/pull_request_template.md
vendored
Normal file
13
.github/pull_request_template.md
vendored
Normal file
@@ -0,0 +1,13 @@
|
|||||||
|
## What does this PR do?
|
||||||
|
|
||||||
|
<!-- Brief description of your changes -->
|
||||||
|
|
||||||
|
## Related Issues
|
||||||
|
|
||||||
|
Fixes #
|
||||||
|
|
||||||
|
## Checklist
|
||||||
|
|
||||||
|
- [ ] Tests pass (`uv run pytest`)
|
||||||
|
- [ ] Code formatted (`ruff format` and `ruff check`)
|
||||||
|
- [ ] Pre-commit hooks pass (`pre-commit run --all-files`)
|
||||||
223
.github/workflows/build-reusable.yml
vendored
223
.github/workflows/build-reusable.yml
vendored
@@ -17,26 +17,17 @@ jobs:
|
|||||||
- uses: actions/checkout@v4
|
- uses: actions/checkout@v4
|
||||||
with:
|
with:
|
||||||
ref: ${{ inputs.ref }}
|
ref: ${{ inputs.ref }}
|
||||||
|
submodules: recursive
|
||||||
|
|
||||||
- name: Setup Python
|
- name: Install uv and Python
|
||||||
uses: actions/setup-python@v5
|
uses: astral-sh/setup-uv@v6
|
||||||
with:
|
with:
|
||||||
python-version: '3.11'
|
python-version: '3.11'
|
||||||
|
|
||||||
- name: Install uv
|
- name: Run pre-commit with only lint group (no project deps)
|
||||||
uses: astral-sh/setup-uv@v4
|
|
||||||
|
|
||||||
- name: Install ruff
|
|
||||||
run: |
|
run: |
|
||||||
uv tool install ruff
|
uv run --only-group lint pre-commit run --all-files --show-diff-on-failure
|
||||||
|
|
||||||
- name: Run ruff check
|
|
||||||
run: |
|
|
||||||
ruff check .
|
|
||||||
|
|
||||||
- name: Run ruff format check
|
|
||||||
run: |
|
|
||||||
ruff format --check .
|
|
||||||
|
|
||||||
build:
|
build:
|
||||||
needs: lint
|
needs: lint
|
||||||
@@ -54,6 +45,17 @@ jobs:
|
|||||||
python: '3.12'
|
python: '3.12'
|
||||||
- os: ubuntu-22.04
|
- os: ubuntu-22.04
|
||||||
python: '3.13'
|
python: '3.13'
|
||||||
|
# ARM64 Linux builds
|
||||||
|
- os: ubuntu-24.04-arm
|
||||||
|
python: '3.9'
|
||||||
|
- os: ubuntu-24.04-arm
|
||||||
|
python: '3.10'
|
||||||
|
- os: ubuntu-24.04-arm
|
||||||
|
python: '3.11'
|
||||||
|
- os: ubuntu-24.04-arm
|
||||||
|
python: '3.12'
|
||||||
|
- os: ubuntu-24.04-arm
|
||||||
|
python: '3.13'
|
||||||
- os: macos-14
|
- os: macos-14
|
||||||
python: '3.9'
|
python: '3.9'
|
||||||
- os: macos-14
|
- os: macos-14
|
||||||
@@ -87,32 +89,64 @@ jobs:
|
|||||||
runs-on: ${{ matrix.os }}
|
runs-on: ${{ matrix.os }}
|
||||||
|
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v4
|
- uses: actions/checkout@v5
|
||||||
with:
|
with:
|
||||||
ref: ${{ inputs.ref }}
|
ref: ${{ inputs.ref }}
|
||||||
submodules: recursive
|
submodules: recursive
|
||||||
|
|
||||||
- name: Setup Python
|
- name: Install uv and Python
|
||||||
uses: actions/setup-python@v5
|
uses: astral-sh/setup-uv@v6
|
||||||
with:
|
with:
|
||||||
python-version: ${{ matrix.python }}
|
python-version: ${{ matrix.python }}
|
||||||
|
|
||||||
- name: Install uv
|
|
||||||
uses: astral-sh/setup-uv@v4
|
|
||||||
|
|
||||||
- name: Install system dependencies (Ubuntu)
|
- name: Install system dependencies (Ubuntu)
|
||||||
if: runner.os == 'Linux'
|
if: runner.os == 'Linux'
|
||||||
run: |
|
run: |
|
||||||
sudo apt-get update
|
sudo apt-get update
|
||||||
sudo apt-get install -y libomp-dev libboost-all-dev protobuf-compiler libzmq3-dev \
|
sudo apt-get install -y libomp-dev libboost-all-dev protobuf-compiler libzmq3-dev \
|
||||||
pkg-config libopenblas-dev patchelf libabsl-dev libaio-dev libprotobuf-dev
|
pkg-config libabsl-dev libaio-dev libprotobuf-dev \
|
||||||
|
patchelf
|
||||||
|
|
||||||
# Install Intel MKL for DiskANN
|
# Debug: Show system information
|
||||||
wget -q https://registrationcenter-download.intel.com/akdlm/IRC_NAS/79153e0f-74d7-45af-b8c2-258941adf58a/intel-onemkl-2025.0.0.940.sh
|
echo "🔍 System Information:"
|
||||||
sudo sh intel-onemkl-2025.0.0.940.sh -a --components intel.oneapi.lin.mkl.devel --action install --eula accept -s
|
echo "Architecture: $(uname -m)"
|
||||||
source /opt/intel/oneapi/setvars.sh
|
echo "OS: $(uname -a)"
|
||||||
echo "MKLROOT=/opt/intel/oneapi/mkl/latest" >> $GITHUB_ENV
|
echo "CPU info: $(lscpu | head -5)"
|
||||||
echo "LD_LIBRARY_PATH=/opt/intel/oneapi/mkl/latest/lib/intel64:$LD_LIBRARY_PATH" >> $GITHUB_ENV
|
|
||||||
|
# Install math library based on architecture
|
||||||
|
ARCH=$(uname -m)
|
||||||
|
echo "🔍 Setting up math library for architecture: $ARCH"
|
||||||
|
|
||||||
|
if [[ "$ARCH" == "x86_64" ]]; then
|
||||||
|
# Install Intel MKL for DiskANN on x86_64
|
||||||
|
echo "📦 Installing Intel MKL for x86_64..."
|
||||||
|
wget -q https://registrationcenter-download.intel.com/akdlm/IRC_NAS/79153e0f-74d7-45af-b8c2-258941adf58a/intel-onemkl-2025.0.0.940.sh
|
||||||
|
sudo sh intel-onemkl-2025.0.0.940.sh -a --components intel.oneapi.lin.mkl.devel --action install --eula accept -s
|
||||||
|
source /opt/intel/oneapi/setvars.sh
|
||||||
|
echo "MKLROOT=/opt/intel/oneapi/mkl/latest" >> $GITHUB_ENV
|
||||||
|
echo "LD_LIBRARY_PATH=/opt/intel/oneapi/compiler/latest/linux/compiler/lib/intel64_lin" >> $GITHUB_ENV
|
||||||
|
echo "LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/intel/oneapi/mkl/latest/lib/intel64" >> $GITHUB_ENV
|
||||||
|
echo "✅ Intel MKL installed for x86_64"
|
||||||
|
|
||||||
|
# Debug: Check MKL installation
|
||||||
|
echo "🔍 MKL Installation Check:"
|
||||||
|
ls -la /opt/intel/oneapi/mkl/latest/ || echo "MKL directory not found"
|
||||||
|
ls -la /opt/intel/oneapi/mkl/latest/lib/ || echo "MKL lib directory not found"
|
||||||
|
|
||||||
|
elif [[ "$ARCH" == "aarch64" ]]; then
|
||||||
|
# Use OpenBLAS for ARM64 (MKL installer not compatible with ARM64)
|
||||||
|
echo "📦 Installing OpenBLAS for ARM64..."
|
||||||
|
sudo apt-get install -y libopenblas-dev liblapack-dev liblapacke-dev
|
||||||
|
echo "✅ OpenBLAS installed for ARM64"
|
||||||
|
|
||||||
|
# Debug: Check OpenBLAS installation
|
||||||
|
echo "🔍 OpenBLAS Installation Check:"
|
||||||
|
dpkg -l | grep openblas || echo "OpenBLAS package not found"
|
||||||
|
ls -la /usr/lib/aarch64-linux-gnu/openblas/ || echo "OpenBLAS directory not found"
|
||||||
|
fi
|
||||||
|
|
||||||
|
# Debug: Show final library paths
|
||||||
|
echo "🔍 Final LD_LIBRARY_PATH: $LD_LIBRARY_PATH"
|
||||||
|
|
||||||
- name: Install system dependencies (macOS)
|
- name: Install system dependencies (macOS)
|
||||||
if: runner.os == 'macOS'
|
if: runner.os == 'macOS'
|
||||||
@@ -122,11 +156,24 @@ jobs:
|
|||||||
|
|
||||||
- name: Install build dependencies
|
- name: Install build dependencies
|
||||||
run: |
|
run: |
|
||||||
uv pip install --system scikit-build-core numpy swig Cython pybind11
|
uv python install ${{ matrix.python }}
|
||||||
if [[ "$RUNNER_OS" == "Linux" ]]; then
|
uv venv --python ${{ matrix.python }} .uv-build
|
||||||
uv pip install --system auditwheel
|
if [[ "$RUNNER_OS" == "Windows" ]]; then
|
||||||
|
BUILD_PY=".uv-build\\Scripts\\python.exe"
|
||||||
else
|
else
|
||||||
uv pip install --system delocate
|
BUILD_PY=".uv-build/bin/python"
|
||||||
|
fi
|
||||||
|
uv pip install --python "$BUILD_PY" scikit-build-core numpy swig Cython pybind11
|
||||||
|
if [[ "$RUNNER_OS" == "Linux" ]]; then
|
||||||
|
uv pip install --python "$BUILD_PY" auditwheel
|
||||||
|
else
|
||||||
|
uv pip install --python "$BUILD_PY" delocate
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [[ "$RUNNER_OS" == "Windows" ]]; then
|
||||||
|
echo "$(pwd)\\.uv-build\\Scripts" >> $GITHUB_PATH
|
||||||
|
else
|
||||||
|
echo "$(pwd)/.uv-build/bin" >> $GITHUB_PATH
|
||||||
fi
|
fi
|
||||||
|
|
||||||
- name: Set macOS environment variables
|
- name: Set macOS environment variables
|
||||||
@@ -262,18 +309,66 @@ jobs:
|
|||||||
|
|
||||||
- name: Install built packages for testing
|
- name: Install built packages for testing
|
||||||
run: |
|
run: |
|
||||||
# Create a virtual environment with the correct Python version
|
# Create uv-managed virtual environment with the requested interpreter
|
||||||
|
uv python install ${{ matrix.python }}
|
||||||
uv venv --python ${{ matrix.python }}
|
uv venv --python ${{ matrix.python }}
|
||||||
source .venv/bin/activate || source .venv/Scripts/activate
|
source .venv/bin/activate || source .venv/Scripts/activate
|
||||||
|
|
||||||
# Install packages using --find-links to prioritize local builds
|
if [[ "$RUNNER_OS" == "Windows" ]]; then
|
||||||
uv pip install --find-links packages/leann-core/dist --find-links packages/leann-backend-hnsw/dist --find-links packages/leann-backend-diskann/dist packages/leann-core/dist/*.whl || uv pip install --find-links packages/leann-core/dist packages/leann-core/dist/*.tar.gz
|
UV_PY=".venv\\Scripts\\python.exe"
|
||||||
uv pip install --find-links packages/leann-core/dist packages/leann-backend-hnsw/dist/*.whl
|
else
|
||||||
uv pip install --find-links packages/leann-core/dist packages/leann-backend-diskann/dist/*.whl
|
UV_PY=".venv/bin/python"
|
||||||
uv pip install packages/leann/dist/*.whl || uv pip install packages/leann/dist/*.tar.gz
|
fi
|
||||||
|
|
||||||
# Install test dependencies using extras
|
# Install test dependency group only (avoids reinstalling project package)
|
||||||
uv pip install -e ".[test]"
|
uv pip install --python "$UV_PY" --group test
|
||||||
|
|
||||||
|
# Install core wheel built in this job
|
||||||
|
CORE_WHL=$(find packages/leann-core/dist -maxdepth 1 -name "*.whl" -print -quit)
|
||||||
|
if [[ -n "$CORE_WHL" ]]; then
|
||||||
|
uv pip install --python "$UV_PY" "$CORE_WHL"
|
||||||
|
else
|
||||||
|
uv pip install --python "$UV_PY" packages/leann-core/dist/*.tar.gz
|
||||||
|
fi
|
||||||
|
|
||||||
|
PY_TAG=$($UV_PY -c "import sys; print(f'cp{sys.version_info[0]}{sys.version_info[1]}')")
|
||||||
|
|
||||||
|
if [[ "$RUNNER_OS" == "macOS" ]]; then
|
||||||
|
if [[ "${{ matrix.os }}" == "macos-13" ]]; then
|
||||||
|
export MACOSX_DEPLOYMENT_TARGET=13.3
|
||||||
|
elif [[ "${{ matrix.os }}" == "macos-14" ]]; then
|
||||||
|
export MACOSX_DEPLOYMENT_TARGET=14.0
|
||||||
|
elif [[ "${{ matrix.os }}" == "macos-15" ]]; then
|
||||||
|
export MACOSX_DEPLOYMENT_TARGET=15.0
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
HNSW_WHL=$(find packages/leann-backend-hnsw/dist -maxdepth 1 -name "*-${PY_TAG}-*.whl" -print -quit)
|
||||||
|
if [[ -z "$HNSW_WHL" ]]; then
|
||||||
|
HNSW_WHL=$(find packages/leann-backend-hnsw/dist -maxdepth 1 -name "*-py3-*.whl" -print -quit)
|
||||||
|
fi
|
||||||
|
if [[ -n "$HNSW_WHL" ]]; then
|
||||||
|
uv pip install --python "$UV_PY" "$HNSW_WHL"
|
||||||
|
else
|
||||||
|
uv pip install --python "$UV_PY" ./packages/leann-backend-hnsw
|
||||||
|
fi
|
||||||
|
|
||||||
|
DISKANN_WHL=$(find packages/leann-backend-diskann/dist -maxdepth 1 -name "*-${PY_TAG}-*.whl" -print -quit)
|
||||||
|
if [[ -z "$DISKANN_WHL" ]]; then
|
||||||
|
DISKANN_WHL=$(find packages/leann-backend-diskann/dist -maxdepth 1 -name "*-py3-*.whl" -print -quit)
|
||||||
|
fi
|
||||||
|
if [[ -n "$DISKANN_WHL" ]]; then
|
||||||
|
uv pip install --python "$UV_PY" "$DISKANN_WHL"
|
||||||
|
else
|
||||||
|
uv pip install --python "$UV_PY" ./packages/leann-backend-diskann
|
||||||
|
fi
|
||||||
|
|
||||||
|
LEANN_WHL=$(find packages/leann/dist -maxdepth 1 -name "*.whl" -print -quit)
|
||||||
|
if [[ -n "$LEANN_WHL" ]]; then
|
||||||
|
uv pip install --python "$UV_PY" "$LEANN_WHL"
|
||||||
|
else
|
||||||
|
uv pip install --python "$UV_PY" packages/leann/dist/*.tar.gz
|
||||||
|
fi
|
||||||
|
|
||||||
- name: Run tests with pytest
|
- name: Run tests with pytest
|
||||||
env:
|
env:
|
||||||
@@ -304,3 +399,53 @@ jobs:
|
|||||||
with:
|
with:
|
||||||
name: packages-${{ matrix.os }}-py${{ matrix.python }}
|
name: packages-${{ matrix.os }}-py${{ matrix.python }}
|
||||||
path: packages/*/dist/
|
path: packages/*/dist/
|
||||||
|
|
||||||
|
|
||||||
|
arch-smoke:
|
||||||
|
name: Arch Linux smoke test (install & import)
|
||||||
|
needs: build
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
container:
|
||||||
|
image: archlinux:latest
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- name: Prepare system
|
||||||
|
run: |
|
||||||
|
pacman -Syu --noconfirm
|
||||||
|
pacman -S --noconfirm python python-pip gcc git zlib openssl
|
||||||
|
|
||||||
|
- name: Download ALL wheel artifacts from this run
|
||||||
|
uses: actions/download-artifact@v5
|
||||||
|
with:
|
||||||
|
# Don't specify name, download all artifacts
|
||||||
|
path: ./wheels
|
||||||
|
|
||||||
|
- name: Install uv
|
||||||
|
uses: astral-sh/setup-uv@v6
|
||||||
|
|
||||||
|
- name: Create virtual environment and install wheels
|
||||||
|
run: |
|
||||||
|
uv venv
|
||||||
|
source .venv/bin/activate || source .venv/Scripts/activate
|
||||||
|
uv pip install --find-links wheels leann-core
|
||||||
|
uv pip install --find-links wheels leann-backend-hnsw
|
||||||
|
uv pip install --find-links wheels leann-backend-diskann
|
||||||
|
uv pip install --find-links wheels leann
|
||||||
|
|
||||||
|
- name: Import & tiny runtime check
|
||||||
|
env:
|
||||||
|
OMP_NUM_THREADS: 1
|
||||||
|
MKL_NUM_THREADS: 1
|
||||||
|
run: |
|
||||||
|
source .venv/bin/activate || source .venv/Scripts/activate
|
||||||
|
python - <<'PY'
|
||||||
|
import leann
|
||||||
|
import leann_backend_hnsw as h
|
||||||
|
import leann_backend_diskann as d
|
||||||
|
from leann import LeannBuilder, LeannSearcher
|
||||||
|
b = LeannBuilder(backend_name="hnsw")
|
||||||
|
b.add_text("hello arch")
|
||||||
|
b.build_index("arch_demo.leann")
|
||||||
|
s = LeannSearcher("arch_demo.leann")
|
||||||
|
print("search:", s.search("hello", top_k=1))
|
||||||
|
PY
|
||||||
|
|||||||
2
.github/workflows/link-check.yml
vendored
2
.github/workflows/link-check.yml
vendored
@@ -14,6 +14,6 @@ jobs:
|
|||||||
- uses: actions/checkout@v4
|
- uses: actions/checkout@v4
|
||||||
- uses: lycheeverse/lychee-action@v2
|
- uses: lycheeverse/lychee-action@v2
|
||||||
with:
|
with:
|
||||||
args: --no-progress --insecure README.md docs/ apps/ examples/ benchmarks/
|
args: --no-progress --insecure --user-agent 'curl/7.68.0' README.md docs/ apps/ examples/ benchmarks/
|
||||||
env:
|
env:
|
||||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||||
|
|||||||
7
.gitignore
vendored
7
.gitignore
vendored
@@ -18,9 +18,12 @@ demo/experiment_results/**/*.json
|
|||||||
*.eml
|
*.eml
|
||||||
*.emlx
|
*.emlx
|
||||||
*.json
|
*.json
|
||||||
|
*.png
|
||||||
|
!.vscode/*.json
|
||||||
*.sh
|
*.sh
|
||||||
*.txt
|
*.txt
|
||||||
!CMakeLists.txt
|
!CMakeLists.txt
|
||||||
|
!llms.txt
|
||||||
latency_breakdown*.json
|
latency_breakdown*.json
|
||||||
experiment_results/eval_results/diskann/*.json
|
experiment_results/eval_results/diskann/*.json
|
||||||
aws/
|
aws/
|
||||||
@@ -92,3 +95,7 @@ packages/leann-backend-diskann/third_party/DiskANN/_deps/
|
|||||||
batchtest.py
|
batchtest.py
|
||||||
tests/__pytest_cache__/
|
tests/__pytest_cache__/
|
||||||
tests/__pycache__/
|
tests/__pycache__/
|
||||||
|
benchmarks/data/
|
||||||
|
|
||||||
|
## multi vector
|
||||||
|
apps/multimodal/vision-based-pdf-multi-vector/multi-vector-colpali-native-weaviate.py
|
||||||
|
|||||||
3
.gitmodules
vendored
3
.gitmodules
vendored
@@ -14,3 +14,6 @@
|
|||||||
[submodule "packages/leann-backend-hnsw/third_party/libzmq"]
|
[submodule "packages/leann-backend-hnsw/third_party/libzmq"]
|
||||||
path = packages/leann-backend-hnsw/third_party/libzmq
|
path = packages/leann-backend-hnsw/third_party/libzmq
|
||||||
url = https://github.com/zeromq/libzmq.git
|
url = https://github.com/zeromq/libzmq.git
|
||||||
|
[submodule "packages/astchunk-leann"]
|
||||||
|
path = packages/astchunk-leann
|
||||||
|
url = https://github.com/yichuan-w/astchunk-leann.git
|
||||||
|
|||||||
@@ -13,4 +13,5 @@ repos:
|
|||||||
rev: v0.12.7 # Fixed version to match pyproject.toml
|
rev: v0.12.7 # Fixed version to match pyproject.toml
|
||||||
hooks:
|
hooks:
|
||||||
- id: ruff
|
- id: ruff
|
||||||
|
args: [--fix, --exit-non-zero-on-fix]
|
||||||
- id: ruff-format
|
- id: ruff-format
|
||||||
|
|||||||
5
.vscode/extensions.json
vendored
Normal file
5
.vscode/extensions.json
vendored
Normal file
@@ -0,0 +1,5 @@
|
|||||||
|
{
|
||||||
|
"recommendations": [
|
||||||
|
"charliermarsh.ruff",
|
||||||
|
]
|
||||||
|
}
|
||||||
22
.vscode/settings.json
vendored
Normal file
22
.vscode/settings.json
vendored
Normal file
@@ -0,0 +1,22 @@
|
|||||||
|
{
|
||||||
|
"python.defaultInterpreterPath": ".venv/bin/python",
|
||||||
|
"python.terminal.activateEnvironment": true,
|
||||||
|
"[python]": {
|
||||||
|
"editor.defaultFormatter": "charliermarsh.ruff",
|
||||||
|
"editor.formatOnSave": true,
|
||||||
|
"editor.codeActionsOnSave": {
|
||||||
|
"source.organizeImports": "explicit",
|
||||||
|
"source.fixAll": "explicit"
|
||||||
|
},
|
||||||
|
"editor.insertSpaces": true,
|
||||||
|
"editor.tabSize": 4
|
||||||
|
},
|
||||||
|
"ruff.enable": true,
|
||||||
|
"files.watcherExclude": {
|
||||||
|
"**/.venv/**": true,
|
||||||
|
"**/__pycache__/**": true,
|
||||||
|
"**/*.egg-info/**": true,
|
||||||
|
"**/build/**": true,
|
||||||
|
"**/dist/**": true
|
||||||
|
}
|
||||||
|
}
|
||||||
247
README.md
247
README.md
@@ -5,9 +5,11 @@
|
|||||||
<p align="center">
|
<p align="center">
|
||||||
<img src="https://img.shields.io/badge/Python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12%20%7C%203.13-blue.svg" alt="Python Versions">
|
<img src="https://img.shields.io/badge/Python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12%20%7C%203.13-blue.svg" alt="Python Versions">
|
||||||
<img src="https://github.com/yichuan-w/LEANN/actions/workflows/build-and-publish.yml/badge.svg" alt="CI Status">
|
<img src="https://github.com/yichuan-w/LEANN/actions/workflows/build-and-publish.yml/badge.svg" alt="CI Status">
|
||||||
<img src="https://img.shields.io/badge/Platform-Ubuntu%20%7C%20macOS%20(ARM64%2FIntel)-lightgrey" alt="Platform">
|
<img src="https://img.shields.io/badge/Platform-Ubuntu%20%26%20Arch%20%26%20WSL%20%7C%20macOS%20(ARM64%2FIntel)-lightgrey" alt="Platform">
|
||||||
<img src="https://img.shields.io/badge/License-MIT-green.svg" alt="MIT License">
|
<img src="https://img.shields.io/badge/License-MIT-green.svg" alt="MIT License">
|
||||||
<img src="https://img.shields.io/badge/MCP-Native%20Integration-blue" alt="MCP Integration">
|
<img src="https://img.shields.io/badge/MCP-Native%20Integration-blue" alt="MCP Integration">
|
||||||
|
<a href="https://join.slack.com/t/leann-e2u9779/shared_invite/zt-3ckd2f6w1-OX08~NN4gkWhh10PRVBj1Q"><img src="https://img.shields.io/badge/Slack-Join-4A154B?logo=slack&logoColor=white" alt="Join Slack">
|
||||||
|
<a href="assets/wechat_user_group.JPG" title="Join WeChat group"><img src="https://img.shields.io/badge/WeChat-Join-2DC100?logo=wechat&logoColor=white" alt="Join WeChat group"></a>
|
||||||
</p>
|
</p>
|
||||||
|
|
||||||
<h2 align="center" tabindex="-1" class="heading-element" dir="auto">
|
<h2 align="center" tabindex="-1" class="heading-element" dir="auto">
|
||||||
@@ -31,7 +33,7 @@ LEANN achieves this through *graph-based selective recomputation* with *high-deg
|
|||||||
<img src="assets/effects.png" alt="LEANN vs Traditional Vector DB Storage Comparison" width="70%">
|
<img src="assets/effects.png" alt="LEANN vs Traditional Vector DB Storage Comparison" width="70%">
|
||||||
</p>
|
</p>
|
||||||
|
|
||||||
> **The numbers speak for themselves:** Index 60 million text chunks in just 6GB instead of 201GB. From emails to browser history, everything fits on your laptop. [See detailed benchmarks for different applications below ↓](#storage-comparison)
|
> **The numbers speak for themselves:** Index 60 million text chunks in just 6GB instead of 201GB. From emails to browser history, everything fits on your laptop. [See detailed benchmarks for different applications below ↓](#-storage-comparison)
|
||||||
|
|
||||||
|
|
||||||
🔒 **Privacy:** Your data never leaves your laptop. No OpenAI, no cloud, no "terms of service".
|
🔒 **Privacy:** Your data never leaves your laptop. No OpenAI, no cloud, no "terms of service".
|
||||||
@@ -70,8 +72,8 @@ uv venv
|
|||||||
source .venv/bin/activate
|
source .venv/bin/activate
|
||||||
uv pip install leann
|
uv pip install leann
|
||||||
```
|
```
|
||||||
|
<!--
|
||||||
> Low-resource? See “Low-resource setups” in the [Configuration Guide](docs/configuration-guide.md#low-resource-setups).
|
> Low-resource? See “Low-resource setups” in the [Configuration Guide](docs/configuration-guide.md#low-resource-setups). -->
|
||||||
|
|
||||||
<details>
|
<details>
|
||||||
<summary>
|
<summary>
|
||||||
@@ -87,15 +89,60 @@ git submodule update --init --recursive
|
|||||||
```
|
```
|
||||||
|
|
||||||
**macOS:**
|
**macOS:**
|
||||||
|
|
||||||
|
Note: DiskANN requires MacOS 13.3 or later.
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
brew install llvm libomp boost protobuf zeromq pkgconf
|
brew install libomp boost protobuf zeromq pkgconf
|
||||||
CC=$(brew --prefix llvm)/bin/clang CXX=$(brew --prefix llvm)/bin/clang++ uv sync
|
uv sync --extra diskann
|
||||||
```
|
```
|
||||||
|
|
||||||
**Linux:**
|
**Linux (Ubuntu/Debian):**
|
||||||
|
|
||||||
|
Note: On Ubuntu 20.04, you may need to build a newer Abseil and pin Protobuf (e.g., v3.20.x) for building DiskANN. See [Issue #30](https://github.com/yichuan-w/LEANN/issues/30) for a step-by-step note.
|
||||||
|
|
||||||
|
You can manually install [Intel oneAPI MKL](https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html) instead of `libmkl-full-dev` for DiskANN. You can also use `libopenblas-dev` for building HNSW only, by removing `--extra diskann` in the command below.
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
sudo apt-get install libomp-dev libboost-all-dev protobuf-compiler libabsl-dev libmkl-full-dev libaio-dev libzmq3-dev
|
sudo apt-get update && sudo apt-get install -y \
|
||||||
uv sync
|
libomp-dev libboost-all-dev protobuf-compiler libzmq3-dev \
|
||||||
|
pkg-config libabsl-dev libaio-dev libprotobuf-dev \
|
||||||
|
libmkl-full-dev
|
||||||
|
|
||||||
|
uv sync --extra diskann
|
||||||
|
```
|
||||||
|
|
||||||
|
**Linux (Arch Linux):**
|
||||||
|
|
||||||
|
```bash
|
||||||
|
sudo pacman -Syu && sudo pacman -S --needed base-devel cmake pkgconf git gcc \
|
||||||
|
boost boost-libs protobuf abseil-cpp libaio zeromq
|
||||||
|
|
||||||
|
# For MKL in DiskANN
|
||||||
|
sudo pacman -S --needed base-devel git
|
||||||
|
git clone https://aur.archlinux.org/paru-bin.git
|
||||||
|
cd paru-bin && makepkg -si
|
||||||
|
paru -S intel-oneapi-mkl intel-oneapi-compiler
|
||||||
|
source /opt/intel/oneapi/setvars.sh
|
||||||
|
|
||||||
|
uv sync --extra diskann
|
||||||
|
```
|
||||||
|
|
||||||
|
**Linux (RHEL / CentOS Stream / Oracle / Rocky / AlmaLinux):**
|
||||||
|
|
||||||
|
See [Issue #50](https://github.com/yichuan-w/LEANN/issues/50) for more details.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
sudo dnf groupinstall -y "Development Tools"
|
||||||
|
sudo dnf install -y libomp-devel boost-devel protobuf-compiler protobuf-devel \
|
||||||
|
abseil-cpp-devel libaio-devel zeromq-devel pkgconf-pkg-config
|
||||||
|
|
||||||
|
# For MKL in DiskANN
|
||||||
|
sudo dnf install -y intel-oneapi-mkl intel-oneapi-mkl-devel \
|
||||||
|
intel-oneapi-openmp || sudo dnf install -y intel-oneapi-compiler
|
||||||
|
source /opt/intel/oneapi/setvars.sh
|
||||||
|
|
||||||
|
uv sync --extra diskann
|
||||||
```
|
```
|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
@@ -131,9 +178,14 @@ response = chat.ask("How much storage does LEANN save?", top_k=1)
|
|||||||
|
|
||||||
LEANN supports RAG on various data sources including documents (`.pdf`, `.txt`, `.md`), Apple Mail, Google Search History, WeChat, and more.
|
LEANN supports RAG on various data sources including documents (`.pdf`, `.txt`, `.md`), Apple Mail, Google Search History, WeChat, and more.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
### Generation Model Setup
|
### Generation Model Setup
|
||||||
|
|
||||||
LEANN supports multiple LLM providers for text generation (OpenAI API, HuggingFace, Ollama).
|
#### LLM Backend
|
||||||
|
|
||||||
|
LEANN supports many LLM providers for text generation (HuggingFace, Ollama, and Any OpenAI compatible API).
|
||||||
|
|
||||||
|
|
||||||
<details>
|
<details>
|
||||||
<summary><strong>🔑 OpenAI API Setup (Default)</strong></summary>
|
<summary><strong>🔑 OpenAI API Setup (Default)</strong></summary>
|
||||||
@@ -144,6 +196,68 @@ Set your OpenAI API key as an environment variable:
|
|||||||
export OPENAI_API_KEY="your-api-key-here"
|
export OPENAI_API_KEY="your-api-key-here"
|
||||||
```
|
```
|
||||||
|
|
||||||
|
Make sure to use `--llm openai` flag when using the CLI.
|
||||||
|
You can also specify the model name with `--llm-model <model-name>` flag.
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary><strong>🛠️ Supported LLM & Embedding Providers (via OpenAI Compatibility)</strong></summary>
|
||||||
|
|
||||||
|
Thanks to the widespread adoption of the OpenAI API format, LEANN is compatible out-of-the-box with a vast array of LLM and embedding providers. Simply set the `OPENAI_BASE_URL` and `OPENAI_API_KEY` environment variables to connect to your preferred service.
|
||||||
|
|
||||||
|
```sh
|
||||||
|
export OPENAI_API_KEY="xxx"
|
||||||
|
export OPENAI_BASE_URL="http://localhost:1234/v1" # base url of the provider
|
||||||
|
```
|
||||||
|
|
||||||
|
To use OpenAI compatible endpoint with the CLI interface:
|
||||||
|
|
||||||
|
If you are using it for text generation, make sure to use `--llm openai` flag and specify the model name with `--llm-model <model-name>` flag.
|
||||||
|
|
||||||
|
If you are using it for embedding, set the `--embedding-mode openai` flag and specify the model name with `--embedding-model <MODEL>`.
|
||||||
|
|
||||||
|
-----
|
||||||
|
|
||||||
|
|
||||||
|
Below is a list of base URLs for common providers to get you started.
|
||||||
|
|
||||||
|
|
||||||
|
### 🖥️ Local Inference Engines (Recommended for full privacy)
|
||||||
|
|
||||||
|
| Provider | Sample Base URL |
|
||||||
|
| ---------------- | --------------------------- |
|
||||||
|
| **Ollama** | `http://localhost:11434/v1` |
|
||||||
|
| **LM Studio** | `http://localhost:1234/v1` |
|
||||||
|
| **vLLM** | `http://localhost:8000/v1` |
|
||||||
|
| **llama.cpp** | `http://localhost:8080/v1` |
|
||||||
|
| **SGLang** | `http://localhost:30000/v1` |
|
||||||
|
| **LiteLLM** | `http://localhost:4000` |
|
||||||
|
|
||||||
|
-----
|
||||||
|
|
||||||
|
### ☁️ Cloud Providers
|
||||||
|
|
||||||
|
> **🚨 A Note on Privacy:** Before choosing a cloud provider, carefully review their privacy and data retention policies. Depending on their terms, your data may be used for their own purposes, including but not limited to human reviews and model training, which can lead to serious consequences if not handled properly.
|
||||||
|
|
||||||
|
|
||||||
|
| Provider | Base URL |
|
||||||
|
| ---------------- | ---------------------------------------------------------- |
|
||||||
|
| **OpenAI** | `https://api.openai.com/v1` |
|
||||||
|
| **OpenRouter** | `https://openrouter.ai/api/v1` |
|
||||||
|
| **Gemini** | `https://generativelanguage.googleapis.com/v1beta/openai/` |
|
||||||
|
| **x.AI (Grok)** | `https://api.x.ai/v1` |
|
||||||
|
| **Groq AI** | `https://api.groq.com/openai/v1` |
|
||||||
|
| **DeepSeek** | `https://api.deepseek.com/v1` |
|
||||||
|
| **SiliconFlow** | `https://api.siliconflow.cn/v1` |
|
||||||
|
| **Zhipu (BigModel)** | `https://open.bigmodel.cn/api/paas/v4/` |
|
||||||
|
| **Mistral AI** | `https://api.mistral.ai/v1` |
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
If your provider isn't on this list, don't worry! Check their documentation for an OpenAI-compatible endpoint—chances are, it's OpenAI Compatible too!
|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
<details>
|
<details>
|
||||||
@@ -173,7 +287,8 @@ ollama pull llama3.2:1b
|
|||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
### ⭐ Flexible Configuration
|
|
||||||
|
## ⭐ Flexible Configuration
|
||||||
|
|
||||||
LEANN provides flexible parameters for embedding models, search strategies, and data processing to fit your specific needs.
|
LEANN provides flexible parameters for embedding models, search strategies, and data processing to fit your specific needs.
|
||||||
|
|
||||||
@@ -249,6 +364,12 @@ python -m apps.document_rag --data-dir "~/Documents/Papers" --chunk-size 1024
|
|||||||
|
|
||||||
# Filter only markdown and Python files with smaller chunks
|
# Filter only markdown and Python files with smaller chunks
|
||||||
python -m apps.document_rag --data-dir "./docs" --chunk-size 256 --file-types .md .py
|
python -m apps.document_rag --data-dir "./docs" --chunk-size 256 --file-types .md .py
|
||||||
|
|
||||||
|
# Enable AST-aware chunking for code files
|
||||||
|
python -m apps.document_rag --enable-code-chunking --data-dir "./my_project"
|
||||||
|
|
||||||
|
# Or use the specialized code RAG for better code understanding
|
||||||
|
python -m apps.code_rag --repo-dir "./my_codebase" --query "How does authentication work?"
|
||||||
```
|
```
|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
@@ -423,24 +544,34 @@ Once the index is built, you can ask questions like:
|
|||||||
|
|
||||||
### 🚀 Claude Code Integration: Transform Your Development Workflow!
|
### 🚀 Claude Code Integration: Transform Your Development Workflow!
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary><strong>NEW!! AST‑Aware Code Chunking</strong></summary>
|
||||||
|
|
||||||
|
LEANN features intelligent code chunking that preserves semantic boundaries (functions, classes, methods) for Python, Java, C#, and TypeScript, improving code understanding compared to text-based chunking.
|
||||||
|
|
||||||
|
📖 Read the [AST Chunking Guide →](docs/ast_chunking_guide.md)
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
**The future of code assistance is here.** Transform your development workflow with LEANN's native MCP integration for Claude Code. Index your entire codebase and get intelligent code assistance directly in your IDE.
|
**The future of code assistance is here.** Transform your development workflow with LEANN's native MCP integration for Claude Code. Index your entire codebase and get intelligent code assistance directly in your IDE.
|
||||||
|
|
||||||
**Key features:**
|
**Key features:**
|
||||||
- 🔍 **Semantic code search** across your entire project
|
- 🔍 **Semantic code search** across your entire project, fully local index and lightweight
|
||||||
|
- 🧠 **AST-aware chunking** preserves code structure (functions, classes)
|
||||||
- 📚 **Context-aware assistance** for debugging and development
|
- 📚 **Context-aware assistance** for debugging and development
|
||||||
- 🚀 **Zero-config setup** with automatic language detection
|
- 🚀 **Zero-config setup** with automatic language detection
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
# Install LEANN globally for MCP integration
|
# Install LEANN globally for MCP integration
|
||||||
uv tool install leann-core
|
uv tool install leann-core --with leann
|
||||||
|
claude mcp add --scope user leann-server -- leann_mcp
|
||||||
# Setup is automatic - just start using Claude Code!
|
# Setup is automatic - just start using Claude Code!
|
||||||
```
|
```
|
||||||
Try our fully agentic pipeline with auto query rewriting, semantic search planning, and more:
|
Try our fully agentic pipeline with auto query rewriting, semantic search planning, and more:
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
**Ready to supercharge your coding?** [Complete Setup Guide →](packages/leann-mcp/README.md)
|
**🔥 Ready to supercharge your coding?** [Complete Setup Guide →](packages/leann-mcp/README.md)
|
||||||
|
|
||||||
## 🖥️ Command Line Interface
|
## 🖥️ Command Line Interface
|
||||||
|
|
||||||
@@ -457,7 +588,8 @@ leann --help
|
|||||||
**To make it globally available:**
|
**To make it globally available:**
|
||||||
```bash
|
```bash
|
||||||
# Install the LEANN CLI globally using uv tool
|
# Install the LEANN CLI globally using uv tool
|
||||||
uv tool install leann-core
|
uv tool install leann-core --with leann
|
||||||
|
|
||||||
|
|
||||||
# Now you can use leann from anywhere without activating venv
|
# Now you can use leann from anywhere without activating venv
|
||||||
leann --help
|
leann --help
|
||||||
@@ -479,13 +611,20 @@ leann search my-docs "machine learning concepts"
|
|||||||
# Interactive chat with your documents
|
# Interactive chat with your documents
|
||||||
leann ask my-docs --interactive
|
leann ask my-docs --interactive
|
||||||
|
|
||||||
|
# Ask a single question (non-interactive)
|
||||||
|
leann ask my-docs "Where are prompts configured?"
|
||||||
|
|
||||||
# List all your indexes
|
# List all your indexes
|
||||||
leann list
|
leann list
|
||||||
|
|
||||||
|
# Remove an index
|
||||||
|
leann remove my-docs
|
||||||
```
|
```
|
||||||
|
|
||||||
**Key CLI features:**
|
**Key CLI features:**
|
||||||
- Auto-detects document formats (PDF, TXT, MD, DOCX, PPTX + code files)
|
- Auto-detects document formats (PDF, TXT, MD, DOCX, PPTX + code files)
|
||||||
- Smart text chunking with overlap
|
- **🧠 AST-aware chunking** for Python, Java, C#, TypeScript files
|
||||||
|
- Smart text chunking with overlap for all other content
|
||||||
- Multiple LLM providers (Ollama, OpenAI, HuggingFace)
|
- Multiple LLM providers (Ollama, OpenAI, HuggingFace)
|
||||||
- Organized index storage in `.leann/indexes/` (project-local)
|
- Organized index storage in `.leann/indexes/` (project-local)
|
||||||
- Support for advanced search parameters
|
- Support for advanced search parameters
|
||||||
@@ -493,7 +632,7 @@ leann list
|
|||||||
<details>
|
<details>
|
||||||
<summary><strong>📋 Click to expand: Complete CLI Reference</strong></summary>
|
<summary><strong>📋 Click to expand: Complete CLI Reference</strong></summary>
|
||||||
|
|
||||||
You can use `leann --help`, or `leann build --help`, `leann search --help`, `leann ask --help` to get the complete CLI reference.
|
You can use `leann --help`, or `leann build --help`, `leann search --help`, `leann ask --help`, `leann list --help`, `leann remove --help` to get the complete CLI reference.
|
||||||
|
|
||||||
**Build Command:**
|
**Build Command:**
|
||||||
```bash
|
```bash
|
||||||
@@ -531,8 +670,73 @@ Options:
|
|||||||
--top-k N Retrieval count (default: 20)
|
--top-k N Retrieval count (default: 20)
|
||||||
```
|
```
|
||||||
|
|
||||||
|
**List Command:**
|
||||||
|
```bash
|
||||||
|
leann list
|
||||||
|
|
||||||
|
# Lists all indexes across all projects with status indicators:
|
||||||
|
# ✅ - Index is complete and ready to use
|
||||||
|
# ❌ - Index is incomplete or corrupted
|
||||||
|
# 📁 - CLI-created index (in .leann/indexes/)
|
||||||
|
# 📄 - App-created index (*.leann.meta.json files)
|
||||||
|
```
|
||||||
|
|
||||||
|
**Remove Command:**
|
||||||
|
```bash
|
||||||
|
leann remove INDEX_NAME [OPTIONS]
|
||||||
|
|
||||||
|
Options:
|
||||||
|
--force, -f Force removal without confirmation
|
||||||
|
|
||||||
|
# Smart removal: automatically finds and safely removes indexes
|
||||||
|
# - Shows all matching indexes across projects
|
||||||
|
# - Requires confirmation for cross-project removal
|
||||||
|
# - Interactive selection when multiple matches found
|
||||||
|
# - Supports both CLI and app-created indexes
|
||||||
|
```
|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
|
## 🚀 Advanced Features
|
||||||
|
|
||||||
|
### 🎯 Metadata Filtering
|
||||||
|
|
||||||
|
LEANN supports a simple metadata filtering system to enable sophisticated use cases like document filtering by date/type, code search by file extension, and content management based on custom criteria.
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Add metadata during indexing
|
||||||
|
builder.add_text(
|
||||||
|
"def authenticate_user(token): ...",
|
||||||
|
metadata={"file_extension": ".py", "lines_of_code": 25}
|
||||||
|
)
|
||||||
|
|
||||||
|
# Search with filters
|
||||||
|
results = searcher.search(
|
||||||
|
query="authentication function",
|
||||||
|
metadata_filters={
|
||||||
|
"file_extension": {"==": ".py"},
|
||||||
|
"lines_of_code": {"<": 100}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
**Supported operators**: `==`, `!=`, `<`, `<=`, `>`, `>=`, `in`, `not_in`, `contains`, `starts_with`, `ends_with`, `is_true`, `is_false`
|
||||||
|
|
||||||
|
📖 **[Complete Metadata filtering guide →](docs/metadata_filtering.md)**
|
||||||
|
|
||||||
|
### 🔍 Grep Search
|
||||||
|
|
||||||
|
For exact text matching instead of semantic search, use the `use_grep` parameter:
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Exact text search
|
||||||
|
results = searcher.search("banana‑crocodile", use_grep=True, top_k=1)
|
||||||
|
```
|
||||||
|
|
||||||
|
**Use cases**: Finding specific code patterns, error messages, function names, or exact phrases where semantic similarity isn't needed.
|
||||||
|
|
||||||
|
📖 **[Complete grep search guide →](docs/grep_search.md)**
|
||||||
|
|
||||||
## 🏗️ Architecture & How It Works
|
## 🏗️ Architecture & How It Works
|
||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
@@ -570,8 +774,8 @@ Options:
|
|||||||
## Reproduce Our Results
|
## Reproduce Our Results
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
uv pip install -e ".[dev]" # Install dev dependencies
|
uv run benchmarks/run_evaluation.py # Will auto-download evaluation data and run benchmarks
|
||||||
python benchmarks/run_evaluation.py # Will auto-download evaluation data and run benchmarks
|
uv run benchmarks/run_evaluation.py benchmarks/data/indices/rpj_wiki/rpj_wiki --num-queries 2000 # After downloading data, you can run the benchmark with our biggest index
|
||||||
```
|
```
|
||||||
|
|
||||||
The evaluation script downloads data automatically on first run. The last three results were tested with partial personal data, and you can reproduce them with your own data!
|
The evaluation script downloads data automatically on first run. The last three results were tested with partial personal data, and you can reproduce them with your own data!
|
||||||
@@ -611,6 +815,9 @@ MIT License - see [LICENSE](LICENSE) for details.
|
|||||||
|
|
||||||
Core Contributors: [Yichuan Wang](https://yichuan-w.github.io/) & [Zhifei Li](https://github.com/andylizf).
|
Core Contributors: [Yichuan Wang](https://yichuan-w.github.io/) & [Zhifei Li](https://github.com/andylizf).
|
||||||
|
|
||||||
|
Active Contributors: [Gabriel Dehan](https://github.com/gabriel-dehan)
|
||||||
|
|
||||||
|
|
||||||
We welcome more contributors! Feel free to open issues or submit PRs.
|
We welcome more contributors! Feel free to open issues or submit PRs.
|
||||||
|
|
||||||
This work is done at [**Berkeley Sky Computing Lab**](https://sky.cs.berkeley.edu/).
|
This work is done at [**Berkeley Sky Computing Lab**](https://sky.cs.berkeley.edu/).
|
||||||
|
|||||||
@@ -10,7 +10,8 @@ from typing import Any
|
|||||||
|
|
||||||
import dotenv
|
import dotenv
|
||||||
from leann.api import LeannBuilder, LeannChat
|
from leann.api import LeannBuilder, LeannChat
|
||||||
from llama_index.core.node_parser import SentenceSplitter
|
from leann.registry import register_project_directory
|
||||||
|
from leann.settings import resolve_ollama_host, resolve_openai_api_key, resolve_openai_base_url
|
||||||
|
|
||||||
dotenv.load_dotenv()
|
dotenv.load_dotenv()
|
||||||
|
|
||||||
@@ -78,6 +79,24 @@ class BaseRAGExample(ABC):
|
|||||||
choices=["sentence-transformers", "openai", "mlx", "ollama"],
|
choices=["sentence-transformers", "openai", "mlx", "ollama"],
|
||||||
help="Embedding backend mode (default: sentence-transformers), we provide sentence-transformers, openai, mlx, or ollama",
|
help="Embedding backend mode (default: sentence-transformers), we provide sentence-transformers, openai, mlx, or ollama",
|
||||||
)
|
)
|
||||||
|
embedding_group.add_argument(
|
||||||
|
"--embedding-host",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="Override Ollama-compatible embedding host",
|
||||||
|
)
|
||||||
|
embedding_group.add_argument(
|
||||||
|
"--embedding-api-base",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="Base URL for OpenAI-compatible embedding services",
|
||||||
|
)
|
||||||
|
embedding_group.add_argument(
|
||||||
|
"--embedding-api-key",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="API key for embedding service (defaults to OPENAI_API_KEY)",
|
||||||
|
)
|
||||||
|
|
||||||
# LLM parameters
|
# LLM parameters
|
||||||
llm_group = parser.add_argument_group("LLM Parameters")
|
llm_group = parser.add_argument_group("LLM Parameters")
|
||||||
@@ -97,8 +116,8 @@ class BaseRAGExample(ABC):
|
|||||||
llm_group.add_argument(
|
llm_group.add_argument(
|
||||||
"--llm-host",
|
"--llm-host",
|
||||||
type=str,
|
type=str,
|
||||||
default="http://localhost:11434",
|
default=None,
|
||||||
help="Host for Ollama API (default: http://localhost:11434)",
|
help="Host for Ollama-compatible APIs (defaults to LEANN_OLLAMA_HOST/OLLAMA_HOST)",
|
||||||
)
|
)
|
||||||
llm_group.add_argument(
|
llm_group.add_argument(
|
||||||
"--thinking-budget",
|
"--thinking-budget",
|
||||||
@@ -107,6 +126,50 @@ class BaseRAGExample(ABC):
|
|||||||
default=None,
|
default=None,
|
||||||
help="Thinking budget for reasoning models (low/medium/high). Supported by GPT-Oss:20b and other reasoning models.",
|
help="Thinking budget for reasoning models (low/medium/high). Supported by GPT-Oss:20b and other reasoning models.",
|
||||||
)
|
)
|
||||||
|
llm_group.add_argument(
|
||||||
|
"--llm-api-base",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="Base URL for OpenAI-compatible APIs",
|
||||||
|
)
|
||||||
|
llm_group.add_argument(
|
||||||
|
"--llm-api-key",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="API key for OpenAI-compatible APIs (defaults to OPENAI_API_KEY)",
|
||||||
|
)
|
||||||
|
|
||||||
|
# AST Chunking parameters
|
||||||
|
ast_group = parser.add_argument_group("AST Chunking Parameters")
|
||||||
|
ast_group.add_argument(
|
||||||
|
"--use-ast-chunking",
|
||||||
|
action="store_true",
|
||||||
|
help="Enable AST-aware chunking for code files (requires astchunk)",
|
||||||
|
)
|
||||||
|
ast_group.add_argument(
|
||||||
|
"--ast-chunk-size",
|
||||||
|
type=int,
|
||||||
|
default=512,
|
||||||
|
help="Maximum characters per AST chunk (default: 512)",
|
||||||
|
)
|
||||||
|
ast_group.add_argument(
|
||||||
|
"--ast-chunk-overlap",
|
||||||
|
type=int,
|
||||||
|
default=64,
|
||||||
|
help="Overlap between AST chunks (default: 64)",
|
||||||
|
)
|
||||||
|
ast_group.add_argument(
|
||||||
|
"--code-file-extensions",
|
||||||
|
nargs="+",
|
||||||
|
default=None,
|
||||||
|
help="Additional code file extensions to process with AST chunking (e.g., .py .java .cs .ts)",
|
||||||
|
)
|
||||||
|
ast_group.add_argument(
|
||||||
|
"--ast-fallback-traditional",
|
||||||
|
action="store_true",
|
||||||
|
default=True,
|
||||||
|
help="Fall back to traditional chunking if AST chunking fails (default: True)",
|
||||||
|
)
|
||||||
|
|
||||||
# Search parameters
|
# Search parameters
|
||||||
search_group = parser.add_argument_group("Search Parameters")
|
search_group = parser.add_argument_group("Search Parameters")
|
||||||
@@ -173,9 +236,13 @@ class BaseRAGExample(ABC):
|
|||||||
|
|
||||||
if args.llm == "openai":
|
if args.llm == "openai":
|
||||||
config["model"] = args.llm_model or "gpt-4o"
|
config["model"] = args.llm_model or "gpt-4o"
|
||||||
|
config["base_url"] = resolve_openai_base_url(args.llm_api_base)
|
||||||
|
resolved_key = resolve_openai_api_key(args.llm_api_key)
|
||||||
|
if resolved_key:
|
||||||
|
config["api_key"] = resolved_key
|
||||||
elif args.llm == "ollama":
|
elif args.llm == "ollama":
|
||||||
config["model"] = args.llm_model or "llama3.2:1b"
|
config["model"] = args.llm_model or "llama3.2:1b"
|
||||||
config["host"] = args.llm_host
|
config["host"] = resolve_ollama_host(args.llm_host)
|
||||||
elif args.llm == "hf":
|
elif args.llm == "hf":
|
||||||
config["model"] = args.llm_model or "Qwen/Qwen2.5-1.5B-Instruct"
|
config["model"] = args.llm_model or "Qwen/Qwen2.5-1.5B-Instruct"
|
||||||
elif args.llm == "simulated":
|
elif args.llm == "simulated":
|
||||||
@@ -191,10 +258,20 @@ class BaseRAGExample(ABC):
|
|||||||
print(f"\n[Building Index] Creating {self.name} index...")
|
print(f"\n[Building Index] Creating {self.name} index...")
|
||||||
print(f"Total text chunks: {len(texts)}")
|
print(f"Total text chunks: {len(texts)}")
|
||||||
|
|
||||||
|
embedding_options: dict[str, Any] = {}
|
||||||
|
if args.embedding_mode == "ollama":
|
||||||
|
embedding_options["host"] = resolve_ollama_host(args.embedding_host)
|
||||||
|
elif args.embedding_mode == "openai":
|
||||||
|
embedding_options["base_url"] = resolve_openai_base_url(args.embedding_api_base)
|
||||||
|
resolved_embedding_key = resolve_openai_api_key(args.embedding_api_key)
|
||||||
|
if resolved_embedding_key:
|
||||||
|
embedding_options["api_key"] = resolved_embedding_key
|
||||||
|
|
||||||
builder = LeannBuilder(
|
builder = LeannBuilder(
|
||||||
backend_name=args.backend_name,
|
backend_name=args.backend_name,
|
||||||
embedding_model=args.embedding_model,
|
embedding_model=args.embedding_model,
|
||||||
embedding_mode=args.embedding_mode,
|
embedding_mode=args.embedding_mode,
|
||||||
|
embedding_options=embedding_options or None,
|
||||||
graph_degree=args.graph_degree,
|
graph_degree=args.graph_degree,
|
||||||
complexity=args.build_complexity,
|
complexity=args.build_complexity,
|
||||||
is_compact=not args.no_compact,
|
is_compact=not args.no_compact,
|
||||||
@@ -214,6 +291,11 @@ class BaseRAGExample(ABC):
|
|||||||
builder.build_index(index_path)
|
builder.build_index(index_path)
|
||||||
print(f"Index saved to: {index_path}")
|
print(f"Index saved to: {index_path}")
|
||||||
|
|
||||||
|
# Register project directory so leann list can discover this index
|
||||||
|
# The index is saved as args.index_dir/index_name.leann
|
||||||
|
# We want to register the current working directory where the app is run
|
||||||
|
register_project_directory(Path.cwd())
|
||||||
|
|
||||||
return index_path
|
return index_path
|
||||||
|
|
||||||
async def run_interactive_chat(self, args, index_path: str):
|
async def run_interactive_chat(self, args, index_path: str):
|
||||||
@@ -262,7 +344,6 @@ class BaseRAGExample(ABC):
|
|||||||
chat = LeannChat(
|
chat = LeannChat(
|
||||||
index_path,
|
index_path,
|
||||||
llm_config=self.get_llm_config(args),
|
llm_config=self.get_llm_config(args),
|
||||||
system_prompt=f"You are a helpful assistant that answers questions about {self.name} data.",
|
|
||||||
complexity=args.search_complexity,
|
complexity=args.search_complexity,
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -304,21 +385,3 @@ class BaseRAGExample(ABC):
|
|||||||
await self.run_single_query(args, index_path, args.query)
|
await self.run_single_query(args, index_path, args.query)
|
||||||
else:
|
else:
|
||||||
await self.run_interactive_chat(args, index_path)
|
await self.run_interactive_chat(args, index_path)
|
||||||
|
|
||||||
|
|
||||||
def create_text_chunks(documents, chunk_size=256, chunk_overlap=25) -> list[str]:
|
|
||||||
"""Helper function to create text chunks from documents."""
|
|
||||||
node_parser = SentenceSplitter(
|
|
||||||
chunk_size=chunk_size,
|
|
||||||
chunk_overlap=chunk_overlap,
|
|
||||||
separator=" ",
|
|
||||||
paragraph_separator="\n\n",
|
|
||||||
)
|
|
||||||
|
|
||||||
all_texts = []
|
|
||||||
for doc in documents:
|
|
||||||
nodes = node_parser.get_nodes_from_documents([doc])
|
|
||||||
if nodes:
|
|
||||||
all_texts.extend(node.get_content() for node in nodes)
|
|
||||||
|
|
||||||
return all_texts
|
|
||||||
|
|||||||
@@ -10,7 +10,8 @@ from pathlib import Path
|
|||||||
# Add parent directory to path for imports
|
# Add parent directory to path for imports
|
||||||
sys.path.insert(0, str(Path(__file__).parent))
|
sys.path.insert(0, str(Path(__file__).parent))
|
||||||
|
|
||||||
from base_rag_example import BaseRAGExample, create_text_chunks
|
from base_rag_example import BaseRAGExample
|
||||||
|
from chunking import create_text_chunks
|
||||||
|
|
||||||
from .history_data.history import ChromeHistoryReader
|
from .history_data.history import ChromeHistoryReader
|
||||||
|
|
||||||
|
|||||||
44
apps/chunking/__init__.py
Normal file
44
apps/chunking/__init__.py
Normal file
@@ -0,0 +1,44 @@
|
|||||||
|
"""Unified chunking utilities facade.
|
||||||
|
|
||||||
|
This module re-exports the packaged utilities from `leann.chunking_utils` so
|
||||||
|
that both repo apps (importing `chunking`) and installed wheels share one
|
||||||
|
single implementation. When running from the repo without installation, it
|
||||||
|
adds the `packages/leann-core/src` directory to `sys.path` as a fallback.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
try:
|
||||||
|
from leann.chunking_utils import (
|
||||||
|
CODE_EXTENSIONS,
|
||||||
|
create_ast_chunks,
|
||||||
|
create_text_chunks,
|
||||||
|
create_traditional_chunks,
|
||||||
|
detect_code_files,
|
||||||
|
get_language_from_extension,
|
||||||
|
)
|
||||||
|
except Exception: # pragma: no cover - best-effort fallback for dev environment
|
||||||
|
repo_root = Path(__file__).resolve().parents[2]
|
||||||
|
leann_src = repo_root / "packages" / "leann-core" / "src"
|
||||||
|
if leann_src.exists():
|
||||||
|
sys.path.insert(0, str(leann_src))
|
||||||
|
from leann.chunking_utils import (
|
||||||
|
CODE_EXTENSIONS,
|
||||||
|
create_ast_chunks,
|
||||||
|
create_text_chunks,
|
||||||
|
create_traditional_chunks,
|
||||||
|
detect_code_files,
|
||||||
|
get_language_from_extension,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise
|
||||||
|
|
||||||
|
__all__ = [
|
||||||
|
"CODE_EXTENSIONS",
|
||||||
|
"create_ast_chunks",
|
||||||
|
"create_text_chunks",
|
||||||
|
"create_traditional_chunks",
|
||||||
|
"detect_code_files",
|
||||||
|
"get_language_from_extension",
|
||||||
|
]
|
||||||
211
apps/code_rag.py
Normal file
211
apps/code_rag.py
Normal file
@@ -0,0 +1,211 @@
|
|||||||
|
"""
|
||||||
|
Code RAG example using AST-aware chunking for optimal code understanding.
|
||||||
|
Specialized for code repositories with automatic language detection and
|
||||||
|
optimized chunking parameters.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
# Add parent directory to path for imports
|
||||||
|
sys.path.insert(0, str(Path(__file__).parent))
|
||||||
|
|
||||||
|
from base_rag_example import BaseRAGExample
|
||||||
|
from chunking import CODE_EXTENSIONS, create_text_chunks
|
||||||
|
from llama_index.core import SimpleDirectoryReader
|
||||||
|
|
||||||
|
|
||||||
|
class CodeRAG(BaseRAGExample):
|
||||||
|
"""Specialized RAG example for code repositories with AST-aware chunking."""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__(
|
||||||
|
name="Code",
|
||||||
|
description="Process and query code repositories with AST-aware chunking",
|
||||||
|
default_index_name="code_index",
|
||||||
|
)
|
||||||
|
# Override defaults for code-specific usage
|
||||||
|
self.embedding_model_default = "facebook/contriever" # Good for code
|
||||||
|
self.max_items_default = -1 # Process all code files by default
|
||||||
|
|
||||||
|
def _add_specific_arguments(self, parser):
|
||||||
|
"""Add code-specific arguments."""
|
||||||
|
code_group = parser.add_argument_group("Code Repository Parameters")
|
||||||
|
|
||||||
|
code_group.add_argument(
|
||||||
|
"--repo-dir",
|
||||||
|
type=str,
|
||||||
|
default=".",
|
||||||
|
help="Code repository directory to index (default: current directory)",
|
||||||
|
)
|
||||||
|
code_group.add_argument(
|
||||||
|
"--include-extensions",
|
||||||
|
nargs="+",
|
||||||
|
default=list(CODE_EXTENSIONS.keys()),
|
||||||
|
help="File extensions to include (default: supported code extensions)",
|
||||||
|
)
|
||||||
|
code_group.add_argument(
|
||||||
|
"--exclude-dirs",
|
||||||
|
nargs="+",
|
||||||
|
default=[
|
||||||
|
".git",
|
||||||
|
"__pycache__",
|
||||||
|
"node_modules",
|
||||||
|
"venv",
|
||||||
|
".venv",
|
||||||
|
"build",
|
||||||
|
"dist",
|
||||||
|
"target",
|
||||||
|
],
|
||||||
|
help="Directories to exclude from indexing",
|
||||||
|
)
|
||||||
|
code_group.add_argument(
|
||||||
|
"--max-file-size",
|
||||||
|
type=int,
|
||||||
|
default=1000000, # 1MB
|
||||||
|
help="Maximum file size in bytes to process (default: 1MB)",
|
||||||
|
)
|
||||||
|
code_group.add_argument(
|
||||||
|
"--include-comments",
|
||||||
|
action="store_true",
|
||||||
|
help="Include comments in chunking (useful for documentation)",
|
||||||
|
)
|
||||||
|
code_group.add_argument(
|
||||||
|
"--preserve-imports",
|
||||||
|
action="store_true",
|
||||||
|
default=True,
|
||||||
|
help="Try to preserve import statements in chunks (default: True)",
|
||||||
|
)
|
||||||
|
|
||||||
|
async def load_data(self, args) -> list[str]:
|
||||||
|
"""Load code files and convert to AST-aware chunks."""
|
||||||
|
print(f"🔍 Scanning code repository: {args.repo_dir}")
|
||||||
|
print(f"📁 Including extensions: {args.include_extensions}")
|
||||||
|
print(f"🚫 Excluding directories: {args.exclude_dirs}")
|
||||||
|
|
||||||
|
# Check if repository directory exists
|
||||||
|
repo_path = Path(args.repo_dir)
|
||||||
|
if not repo_path.exists():
|
||||||
|
raise ValueError(f"Repository directory not found: {args.repo_dir}")
|
||||||
|
|
||||||
|
# Load code files with filtering
|
||||||
|
reader_kwargs = {
|
||||||
|
"recursive": True,
|
||||||
|
"encoding": "utf-8",
|
||||||
|
"required_exts": args.include_extensions,
|
||||||
|
"exclude_hidden": True,
|
||||||
|
}
|
||||||
|
|
||||||
|
# Create exclusion filter
|
||||||
|
def file_filter(file_path: str) -> bool:
|
||||||
|
"""Filter out unwanted files and directories."""
|
||||||
|
path = Path(file_path)
|
||||||
|
|
||||||
|
# Check file size
|
||||||
|
try:
|
||||||
|
if path.stat().st_size > args.max_file_size:
|
||||||
|
print(f"⚠️ Skipping large file: {path.name} ({path.stat().st_size} bytes)")
|
||||||
|
return False
|
||||||
|
except Exception:
|
||||||
|
return False
|
||||||
|
|
||||||
|
# Check if in excluded directory
|
||||||
|
for exclude_dir in args.exclude_dirs:
|
||||||
|
if exclude_dir in path.parts:
|
||||||
|
return False
|
||||||
|
|
||||||
|
return True
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Load documents with file filtering
|
||||||
|
documents = SimpleDirectoryReader(
|
||||||
|
args.repo_dir,
|
||||||
|
file_extractor=None, # Use default extractors
|
||||||
|
**reader_kwargs,
|
||||||
|
).load_data(show_progress=True)
|
||||||
|
|
||||||
|
# Apply custom filtering
|
||||||
|
filtered_docs = []
|
||||||
|
for doc in documents:
|
||||||
|
file_path = doc.metadata.get("file_path", "")
|
||||||
|
if file_filter(file_path):
|
||||||
|
filtered_docs.append(doc)
|
||||||
|
|
||||||
|
documents = filtered_docs
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"❌ Error loading code files: {e}")
|
||||||
|
return []
|
||||||
|
|
||||||
|
if not documents:
|
||||||
|
print(
|
||||||
|
f"❌ No code files found in {args.repo_dir} with extensions {args.include_extensions}"
|
||||||
|
)
|
||||||
|
return []
|
||||||
|
|
||||||
|
print(f"✅ Loaded {len(documents)} code files")
|
||||||
|
|
||||||
|
# Show breakdown by language/extension
|
||||||
|
ext_counts = {}
|
||||||
|
for doc in documents:
|
||||||
|
file_path = doc.metadata.get("file_path", "")
|
||||||
|
if file_path:
|
||||||
|
ext = Path(file_path).suffix.lower()
|
||||||
|
ext_counts[ext] = ext_counts.get(ext, 0) + 1
|
||||||
|
|
||||||
|
print("📊 Files by extension:")
|
||||||
|
for ext, count in sorted(ext_counts.items()):
|
||||||
|
print(f" {ext}: {count} files")
|
||||||
|
|
||||||
|
# Use AST-aware chunking by default for code
|
||||||
|
print(
|
||||||
|
f"🧠 Using AST-aware chunking (chunk_size: {args.ast_chunk_size}, overlap: {args.ast_chunk_overlap})"
|
||||||
|
)
|
||||||
|
|
||||||
|
all_texts = create_text_chunks(
|
||||||
|
documents,
|
||||||
|
chunk_size=256, # Fallback for non-code files
|
||||||
|
chunk_overlap=64,
|
||||||
|
use_ast_chunking=True, # Always use AST for code RAG
|
||||||
|
ast_chunk_size=args.ast_chunk_size,
|
||||||
|
ast_chunk_overlap=args.ast_chunk_overlap,
|
||||||
|
code_file_extensions=args.include_extensions,
|
||||||
|
ast_fallback_traditional=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Apply max_items limit if specified
|
||||||
|
if args.max_items > 0 and len(all_texts) > args.max_items:
|
||||||
|
print(f"⏳ Limiting to {args.max_items} chunks (from {len(all_texts)})")
|
||||||
|
all_texts = all_texts[: args.max_items]
|
||||||
|
|
||||||
|
print(f"✅ Generated {len(all_texts)} code chunks")
|
||||||
|
return all_texts
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import asyncio
|
||||||
|
|
||||||
|
# Example queries for code RAG
|
||||||
|
print("\n💻 Code RAG Example")
|
||||||
|
print("=" * 50)
|
||||||
|
print("\nExample queries you can try:")
|
||||||
|
print("- 'How does the embedding computation work?'")
|
||||||
|
print("- 'What are the main classes in this codebase?'")
|
||||||
|
print("- 'Show me the search implementation'")
|
||||||
|
print("- 'How is error handling implemented?'")
|
||||||
|
print("- 'What design patterns are used?'")
|
||||||
|
print("- 'Explain the chunking logic'")
|
||||||
|
print("\n🚀 Features:")
|
||||||
|
print("- ✅ AST-aware chunking preserves code structure")
|
||||||
|
print("- ✅ Automatic language detection")
|
||||||
|
print("- ✅ Smart filtering of large files and common excludes")
|
||||||
|
print("- ✅ Optimized for code understanding")
|
||||||
|
print("\nUsage examples:")
|
||||||
|
print(" python -m apps.code_rag --repo-dir ./my_project")
|
||||||
|
print(
|
||||||
|
" python -m apps.code_rag --include-extensions .py .js --query 'How does authentication work?'"
|
||||||
|
)
|
||||||
|
print("\nOr run without --query for interactive mode\n")
|
||||||
|
|
||||||
|
rag = CodeRAG()
|
||||||
|
asyncio.run(rag.run())
|
||||||
@@ -9,7 +9,8 @@ from pathlib import Path
|
|||||||
# Add parent directory to path for imports
|
# Add parent directory to path for imports
|
||||||
sys.path.insert(0, str(Path(__file__).parent))
|
sys.path.insert(0, str(Path(__file__).parent))
|
||||||
|
|
||||||
from base_rag_example import BaseRAGExample, create_text_chunks
|
from base_rag_example import BaseRAGExample
|
||||||
|
from chunking import create_text_chunks
|
||||||
from llama_index.core import SimpleDirectoryReader
|
from llama_index.core import SimpleDirectoryReader
|
||||||
|
|
||||||
|
|
||||||
@@ -44,6 +45,11 @@ class DocumentRAG(BaseRAGExample):
|
|||||||
doc_group.add_argument(
|
doc_group.add_argument(
|
||||||
"--chunk-overlap", type=int, default=128, help="Text chunk overlap (default: 128)"
|
"--chunk-overlap", type=int, default=128, help="Text chunk overlap (default: 128)"
|
||||||
)
|
)
|
||||||
|
doc_group.add_argument(
|
||||||
|
"--enable-code-chunking",
|
||||||
|
action="store_true",
|
||||||
|
help="Enable AST-aware chunking for code files in the data directory",
|
||||||
|
)
|
||||||
|
|
||||||
async def load_data(self, args) -> list[str]:
|
async def load_data(self, args) -> list[str]:
|
||||||
"""Load documents and convert to text chunks."""
|
"""Load documents and convert to text chunks."""
|
||||||
@@ -76,9 +82,22 @@ class DocumentRAG(BaseRAGExample):
|
|||||||
|
|
||||||
print(f"Loaded {len(documents)} documents")
|
print(f"Loaded {len(documents)} documents")
|
||||||
|
|
||||||
# Convert to text chunks
|
# Determine chunking strategy
|
||||||
|
use_ast = args.enable_code_chunking or getattr(args, "use_ast_chunking", False)
|
||||||
|
|
||||||
|
if use_ast:
|
||||||
|
print("Using AST-aware chunking for code files")
|
||||||
|
|
||||||
|
# Convert to text chunks with optional AST support
|
||||||
all_texts = create_text_chunks(
|
all_texts = create_text_chunks(
|
||||||
documents, chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
|
documents,
|
||||||
|
chunk_size=args.chunk_size,
|
||||||
|
chunk_overlap=args.chunk_overlap,
|
||||||
|
use_ast_chunking=use_ast,
|
||||||
|
ast_chunk_size=getattr(args, "ast_chunk_size", 512),
|
||||||
|
ast_chunk_overlap=getattr(args, "ast_chunk_overlap", 64),
|
||||||
|
code_file_extensions=getattr(args, "code_file_extensions", None),
|
||||||
|
ast_fallback_traditional=getattr(args, "ast_fallback_traditional", True),
|
||||||
)
|
)
|
||||||
|
|
||||||
# Apply max_items limit if specified
|
# Apply max_items limit if specified
|
||||||
@@ -102,6 +121,10 @@ if __name__ == "__main__":
|
|||||||
print(
|
print(
|
||||||
"- 'What is the problem of developing pan gu model Huawei meets? (盘古大模型开发中遇到什么问题?)'"
|
"- 'What is the problem of developing pan gu model Huawei meets? (盘古大模型开发中遇到什么问题?)'"
|
||||||
)
|
)
|
||||||
|
print("\n🚀 NEW: Code-aware chunking available!")
|
||||||
|
print("- Use --enable-code-chunking to enable AST-aware chunking for code files")
|
||||||
|
print("- Supports Python, Java, C#, TypeScript files")
|
||||||
|
print("- Better semantic understanding of code structure")
|
||||||
print("\nOr run without --query for interactive mode\n")
|
print("\nOr run without --query for interactive mode\n")
|
||||||
|
|
||||||
rag = DocumentRAG()
|
rag = DocumentRAG()
|
||||||
|
|||||||
@@ -9,7 +9,8 @@ from pathlib import Path
|
|||||||
# Add parent directory to path for imports
|
# Add parent directory to path for imports
|
||||||
sys.path.insert(0, str(Path(__file__).parent))
|
sys.path.insert(0, str(Path(__file__).parent))
|
||||||
|
|
||||||
from base_rag_example import BaseRAGExample, create_text_chunks
|
from base_rag_example import BaseRAGExample
|
||||||
|
from chunking import create_text_chunks
|
||||||
|
|
||||||
from .email_data.LEANN_email_reader import EmlxReader
|
from .email_data.LEANN_email_reader import EmlxReader
|
||||||
|
|
||||||
|
|||||||
@@ -74,7 +74,7 @@ class ChromeHistoryReader(BaseReader):
|
|||||||
if count >= max_count and max_count > 0:
|
if count >= max_count and max_count > 0:
|
||||||
break
|
break
|
||||||
|
|
||||||
last_visit, url, title, visit_count, typed_count, hidden = row
|
last_visit, url, title, visit_count, typed_count, _hidden = row
|
||||||
|
|
||||||
# Create document content with metadata embedded in text
|
# Create document content with metadata embedded in text
|
||||||
doc_content = f"""
|
doc_content = f"""
|
||||||
|
|||||||
@@ -0,0 +1,182 @@
|
|||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
def _ensure_repo_paths_importable(current_file: str) -> None:
|
||||||
|
_repo_root = Path(current_file).resolve().parents[3]
|
||||||
|
_leann_core_src = _repo_root / "packages" / "leann-core" / "src"
|
||||||
|
_leann_hnsw_pkg = _repo_root / "packages" / "leann-backend-hnsw"
|
||||||
|
if str(_leann_core_src) not in sys.path:
|
||||||
|
sys.path.append(str(_leann_core_src))
|
||||||
|
if str(_leann_hnsw_pkg) not in sys.path:
|
||||||
|
sys.path.append(str(_leann_hnsw_pkg))
|
||||||
|
|
||||||
|
|
||||||
|
_ensure_repo_paths_importable(__file__)
|
||||||
|
|
||||||
|
from leann_backend_hnsw.hnsw_backend import HNSWBuilder, HNSWSearcher # noqa: E402
|
||||||
|
|
||||||
|
|
||||||
|
class LeannMultiVector:
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
index_path: str,
|
||||||
|
dim: int = 128,
|
||||||
|
distance_metric: str = "mips",
|
||||||
|
m: int = 16,
|
||||||
|
ef_construction: int = 500,
|
||||||
|
is_compact: bool = False,
|
||||||
|
is_recompute: bool = False,
|
||||||
|
embedding_model_name: str = "colvision",
|
||||||
|
) -> None:
|
||||||
|
self.index_path = index_path
|
||||||
|
self.dim = dim
|
||||||
|
self.embedding_model_name = embedding_model_name
|
||||||
|
self._pending_items: list[dict] = []
|
||||||
|
self._backend_kwargs = {
|
||||||
|
"distance_metric": distance_metric,
|
||||||
|
"M": m,
|
||||||
|
"efConstruction": ef_construction,
|
||||||
|
"is_compact": is_compact,
|
||||||
|
"is_recompute": is_recompute,
|
||||||
|
}
|
||||||
|
self._labels_meta: list[dict] = []
|
||||||
|
|
||||||
|
def _meta_dict(self) -> dict:
|
||||||
|
return {
|
||||||
|
"version": "1.0",
|
||||||
|
"backend_name": "hnsw",
|
||||||
|
"embedding_model": self.embedding_model_name,
|
||||||
|
"embedding_mode": "custom",
|
||||||
|
"dimensions": self.dim,
|
||||||
|
"backend_kwargs": self._backend_kwargs,
|
||||||
|
"is_compact": self._backend_kwargs.get("is_compact", True),
|
||||||
|
"is_pruned": self._backend_kwargs.get("is_compact", True)
|
||||||
|
and self._backend_kwargs.get("is_recompute", True),
|
||||||
|
}
|
||||||
|
|
||||||
|
def create_collection(self) -> None:
|
||||||
|
path = Path(self.index_path)
|
||||||
|
path.parent.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
def insert(self, data: dict) -> None:
|
||||||
|
self._pending_items.append(
|
||||||
|
{
|
||||||
|
"doc_id": int(data["doc_id"]),
|
||||||
|
"filepath": data.get("filepath", ""),
|
||||||
|
"colbert_vecs": [np.asarray(v, dtype=np.float32) for v in data["colbert_vecs"]],
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
def _labels_path(self) -> Path:
|
||||||
|
index_path_obj = Path(self.index_path)
|
||||||
|
return index_path_obj.parent / f"{index_path_obj.name}.labels.json"
|
||||||
|
|
||||||
|
def _meta_path(self) -> Path:
|
||||||
|
index_path_obj = Path(self.index_path)
|
||||||
|
return index_path_obj.parent / f"{index_path_obj.name}.meta.json"
|
||||||
|
|
||||||
|
def create_index(self) -> None:
|
||||||
|
if not self._pending_items:
|
||||||
|
return
|
||||||
|
|
||||||
|
embeddings: list[np.ndarray] = []
|
||||||
|
labels_meta: list[dict] = []
|
||||||
|
|
||||||
|
for item in self._pending_items:
|
||||||
|
doc_id = int(item["doc_id"])
|
||||||
|
filepath = item.get("filepath", "")
|
||||||
|
colbert_vecs = item["colbert_vecs"]
|
||||||
|
for seq_id, vec in enumerate(colbert_vecs):
|
||||||
|
vec_np = np.asarray(vec, dtype=np.float32)
|
||||||
|
embeddings.append(vec_np)
|
||||||
|
labels_meta.append(
|
||||||
|
{
|
||||||
|
"id": f"{doc_id}:{seq_id}",
|
||||||
|
"doc_id": doc_id,
|
||||||
|
"seq_id": int(seq_id),
|
||||||
|
"filepath": filepath,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
if not embeddings:
|
||||||
|
return
|
||||||
|
|
||||||
|
embeddings_np = np.vstack(embeddings).astype(np.float32)
|
||||||
|
# print shape of embeddings_np
|
||||||
|
print(embeddings_np.shape)
|
||||||
|
|
||||||
|
builder = HNSWBuilder(**{**self._backend_kwargs, "dimensions": self.dim})
|
||||||
|
ids = [str(i) for i in range(embeddings_np.shape[0])]
|
||||||
|
builder.build(embeddings_np, ids, self.index_path)
|
||||||
|
|
||||||
|
import json as _json
|
||||||
|
|
||||||
|
with open(self._meta_path(), "w", encoding="utf-8") as f:
|
||||||
|
_json.dump(self._meta_dict(), f, indent=2)
|
||||||
|
with open(self._labels_path(), "w", encoding="utf-8") as f:
|
||||||
|
_json.dump(labels_meta, f)
|
||||||
|
|
||||||
|
self._labels_meta = labels_meta
|
||||||
|
|
||||||
|
def _load_labels_meta_if_needed(self) -> None:
|
||||||
|
if self._labels_meta:
|
||||||
|
return
|
||||||
|
labels_path = self._labels_path()
|
||||||
|
if labels_path.exists():
|
||||||
|
import json as _json
|
||||||
|
|
||||||
|
with open(labels_path, encoding="utf-8") as f:
|
||||||
|
self._labels_meta = _json.load(f)
|
||||||
|
|
||||||
|
def search(
|
||||||
|
self, data: np.ndarray, topk: int, first_stage_k: int = 50
|
||||||
|
) -> list[tuple[float, int]]:
|
||||||
|
if data.ndim == 1:
|
||||||
|
data = data.reshape(1, -1)
|
||||||
|
if data.dtype != np.float32:
|
||||||
|
data = data.astype(np.float32)
|
||||||
|
|
||||||
|
self._load_labels_meta_if_needed()
|
||||||
|
|
||||||
|
searcher = HNSWSearcher(self.index_path, meta=self._meta_dict())
|
||||||
|
raw = searcher.search(
|
||||||
|
data,
|
||||||
|
first_stage_k,
|
||||||
|
recompute_embeddings=False,
|
||||||
|
complexity=128,
|
||||||
|
beam_width=1,
|
||||||
|
prune_ratio=0.0,
|
||||||
|
batch_size=0,
|
||||||
|
)
|
||||||
|
|
||||||
|
labels = raw.get("labels")
|
||||||
|
distances = raw.get("distances")
|
||||||
|
if labels is None or distances is None:
|
||||||
|
return []
|
||||||
|
|
||||||
|
doc_scores: dict[int, float] = {}
|
||||||
|
B = len(labels)
|
||||||
|
for b in range(B):
|
||||||
|
per_doc_best: dict[int, float] = {}
|
||||||
|
for k, sid in enumerate(labels[b]):
|
||||||
|
try:
|
||||||
|
idx = int(sid)
|
||||||
|
except Exception:
|
||||||
|
continue
|
||||||
|
if 0 <= idx < len(self._labels_meta):
|
||||||
|
doc_id = int(self._labels_meta[idx]["doc_id"]) # type: ignore[index]
|
||||||
|
else:
|
||||||
|
continue
|
||||||
|
score = float(distances[b][k])
|
||||||
|
if (doc_id not in per_doc_best) or (score > per_doc_best[doc_id]):
|
||||||
|
per_doc_best[doc_id] = score
|
||||||
|
for doc_id, best_score in per_doc_best.items():
|
||||||
|
doc_scores[doc_id] = doc_scores.get(doc_id, 0.0) + best_score
|
||||||
|
|
||||||
|
scores = sorted(((v, k) for k, v in doc_scores.items()), key=lambda x: x[0], reverse=True)
|
||||||
|
return scores[:topk] if len(scores) >= topk else scores
|
||||||
@@ -0,0 +1,477 @@
|
|||||||
|
## Jupyter-style notebook script
|
||||||
|
# %%
|
||||||
|
# uv pip install matplotlib qwen_vl_utils
|
||||||
|
import os
|
||||||
|
import re
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any, Optional, cast
|
||||||
|
|
||||||
|
from PIL import Image
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
|
||||||
|
def _ensure_repo_paths_importable(current_file: str) -> None:
|
||||||
|
"""Make local leann packages importable without installing (mirrors multi-vector-leann.py)."""
|
||||||
|
_repo_root = Path(current_file).resolve().parents[3]
|
||||||
|
_leann_core_src = _repo_root / "packages" / "leann-core" / "src"
|
||||||
|
_leann_hnsw_pkg = _repo_root / "packages" / "leann-backend-hnsw"
|
||||||
|
if str(_leann_core_src) not in sys.path:
|
||||||
|
sys.path.append(str(_leann_core_src))
|
||||||
|
if str(_leann_hnsw_pkg) not in sys.path:
|
||||||
|
sys.path.append(str(_leann_hnsw_pkg))
|
||||||
|
|
||||||
|
|
||||||
|
_ensure_repo_paths_importable(__file__)
|
||||||
|
|
||||||
|
from leann_multi_vector import LeannMultiVector # noqa: E402
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# Config
|
||||||
|
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||||
|
QUERY = "How does DeepSeek-V2 compare against the LLaMA family of LLMs?"
|
||||||
|
MODEL: str = "colqwen2" # "colpali" or "colqwen2"
|
||||||
|
|
||||||
|
# Data source: set to True to use the Hugging Face dataset example (recommended)
|
||||||
|
USE_HF_DATASET: bool = True
|
||||||
|
DATASET_NAME: str = "weaviate/arXiv-AI-papers-multi-vector"
|
||||||
|
DATASET_SPLIT: str = "train"
|
||||||
|
MAX_DOCS: Optional[int] = None # limit number of pages to index; None = all
|
||||||
|
|
||||||
|
# Local pages (used when USE_HF_DATASET == False)
|
||||||
|
PDF: Optional[str] = None # e.g., "./pdfs/2004.12832v2.pdf"
|
||||||
|
PAGES_DIR: str = "./pages"
|
||||||
|
|
||||||
|
# Index + retrieval settings
|
||||||
|
INDEX_PATH: str = "./indexes/colvision.leann"
|
||||||
|
TOPK: int = 1
|
||||||
|
FIRST_STAGE_K: int = 500
|
||||||
|
REBUILD_INDEX: bool = False
|
||||||
|
|
||||||
|
# Artifacts
|
||||||
|
SAVE_TOP_IMAGE: Optional[str] = "./figures/retrieved_page.png"
|
||||||
|
SIMILARITY_MAP: bool = True
|
||||||
|
SIM_TOKEN_IDX: int = 13 # -1 means auto-select the most salient token
|
||||||
|
SIM_OUTPUT: str = "./figures/similarity_map.png"
|
||||||
|
ANSWER: bool = True
|
||||||
|
MAX_NEW_TOKENS: int = 128
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# Helpers
|
||||||
|
def _natural_sort_key(name: str) -> int:
|
||||||
|
m = re.search(r"\d+", name)
|
||||||
|
return int(m.group()) if m else 0
|
||||||
|
|
||||||
|
|
||||||
|
def _load_images_from_dir(pages_dir: str) -> tuple[list[str], list[Image.Image]]:
|
||||||
|
filenames = [n for n in os.listdir(pages_dir) if n.lower().endswith((".png", ".jpg", ".jpeg"))]
|
||||||
|
filenames = sorted(filenames, key=_natural_sort_key)
|
||||||
|
filepaths = [os.path.join(pages_dir, n) for n in filenames]
|
||||||
|
images = [Image.open(p) for p in filepaths]
|
||||||
|
return filepaths, images
|
||||||
|
|
||||||
|
|
||||||
|
def _maybe_convert_pdf_to_images(pdf_path: Optional[str], pages_dir: str, dpi: int = 200) -> None:
|
||||||
|
if not pdf_path:
|
||||||
|
return
|
||||||
|
os.makedirs(pages_dir, exist_ok=True)
|
||||||
|
try:
|
||||||
|
from pdf2image import convert_from_path
|
||||||
|
except Exception as e:
|
||||||
|
raise RuntimeError(
|
||||||
|
"pdf2image is required to convert PDF to images. Install via pip install pdf2image"
|
||||||
|
) from e
|
||||||
|
images = convert_from_path(pdf_path, dpi=dpi)
|
||||||
|
for i, image in enumerate(images):
|
||||||
|
image.save(os.path.join(pages_dir, f"page_{i + 1}.png"), "PNG")
|
||||||
|
|
||||||
|
|
||||||
|
def _select_device_and_dtype():
|
||||||
|
import torch
|
||||||
|
from colpali_engine.utils.torch_utils import get_torch_device
|
||||||
|
|
||||||
|
device_str = (
|
||||||
|
"cuda"
|
||||||
|
if torch.cuda.is_available()
|
||||||
|
else (
|
||||||
|
"mps"
|
||||||
|
if getattr(torch.backends, "mps", None) and torch.backends.mps.is_available()
|
||||||
|
else "cpu"
|
||||||
|
)
|
||||||
|
)
|
||||||
|
device = get_torch_device(device_str)
|
||||||
|
# Stable dtype selection to avoid NaNs:
|
||||||
|
# - CUDA: prefer bfloat16 if supported, else float16
|
||||||
|
# - MPS: use float32 (fp16 on MPS can produce NaNs in some ops)
|
||||||
|
# - CPU: float32
|
||||||
|
if device_str == "cuda":
|
||||||
|
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
|
||||||
|
try:
|
||||||
|
torch.backends.cuda.matmul.allow_tf32 = True # Better stability/perf on Ampere+
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
elif device_str == "mps":
|
||||||
|
dtype = torch.float32
|
||||||
|
else:
|
||||||
|
dtype = torch.float32
|
||||||
|
return device_str, device, dtype
|
||||||
|
|
||||||
|
|
||||||
|
def _load_colvision(model_choice: str):
|
||||||
|
import torch
|
||||||
|
from colpali_engine.models import ColPali, ColQwen2, ColQwen2Processor
|
||||||
|
from colpali_engine.models.paligemma.colpali.processing_colpali import ColPaliProcessor
|
||||||
|
from transformers.utils.import_utils import is_flash_attn_2_available
|
||||||
|
|
||||||
|
device_str, device, dtype = _select_device_and_dtype()
|
||||||
|
|
||||||
|
if model_choice == "colqwen2":
|
||||||
|
model_name = "vidore/colqwen2-v1.0"
|
||||||
|
# On CPU/MPS we must avoid flash-attn and stay eager; on CUDA prefer flash-attn if available
|
||||||
|
attn_implementation = (
|
||||||
|
"flash_attention_2"
|
||||||
|
if (device_str == "cuda" and is_flash_attn_2_available())
|
||||||
|
else "eager"
|
||||||
|
)
|
||||||
|
model = ColQwen2.from_pretrained(
|
||||||
|
model_name,
|
||||||
|
torch_dtype=torch.bfloat16,
|
||||||
|
device_map=device,
|
||||||
|
attn_implementation=attn_implementation,
|
||||||
|
).eval()
|
||||||
|
processor = ColQwen2Processor.from_pretrained(model_name)
|
||||||
|
else:
|
||||||
|
model_name = "vidore/colpali-v1.2"
|
||||||
|
model = ColPali.from_pretrained(
|
||||||
|
model_name,
|
||||||
|
torch_dtype=torch.bfloat16,
|
||||||
|
device_map=device,
|
||||||
|
).eval()
|
||||||
|
processor = cast(ColPaliProcessor, ColPaliProcessor.from_pretrained(model_name))
|
||||||
|
|
||||||
|
return model_name, model, processor, device_str, device, dtype
|
||||||
|
|
||||||
|
|
||||||
|
def _embed_images(model, processor, images: list[Image.Image]) -> list[Any]:
|
||||||
|
import torch
|
||||||
|
from colpali_engine.utils.torch_utils import ListDataset
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
|
# Ensure deterministic eval and autocast for stability
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
dataloader = DataLoader(
|
||||||
|
dataset=ListDataset[Image.Image](images),
|
||||||
|
batch_size=1,
|
||||||
|
shuffle=False,
|
||||||
|
collate_fn=lambda x: processor.process_images(x),
|
||||||
|
)
|
||||||
|
|
||||||
|
doc_vecs: list[Any] = []
|
||||||
|
for batch_doc in dataloader:
|
||||||
|
with torch.no_grad():
|
||||||
|
batch_doc = {k: v.to(model.device) for k, v in batch_doc.items()}
|
||||||
|
# autocast on CUDA for bf16/fp16; on CPU/MPS stay in fp32
|
||||||
|
if model.device.type == "cuda":
|
||||||
|
with torch.autocast(
|
||||||
|
device_type="cuda",
|
||||||
|
dtype=model.dtype if model.dtype.is_floating_point else torch.bfloat16,
|
||||||
|
):
|
||||||
|
embeddings_doc = model(**batch_doc)
|
||||||
|
else:
|
||||||
|
embeddings_doc = model(**batch_doc)
|
||||||
|
doc_vecs.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
|
||||||
|
return doc_vecs
|
||||||
|
|
||||||
|
|
||||||
|
def _embed_queries(model, processor, queries: list[str]) -> list[Any]:
|
||||||
|
import torch
|
||||||
|
from colpali_engine.utils.torch_utils import ListDataset
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
dataloader = DataLoader(
|
||||||
|
dataset=ListDataset[str](queries),
|
||||||
|
batch_size=1,
|
||||||
|
shuffle=False,
|
||||||
|
collate_fn=lambda x: processor.process_queries(x),
|
||||||
|
)
|
||||||
|
|
||||||
|
q_vecs: list[Any] = []
|
||||||
|
for batch_query in dataloader:
|
||||||
|
with torch.no_grad():
|
||||||
|
batch_query = {k: v.to(model.device) for k, v in batch_query.items()}
|
||||||
|
if model.device.type == "cuda":
|
||||||
|
with torch.autocast(
|
||||||
|
device_type="cuda",
|
||||||
|
dtype=model.dtype if model.dtype.is_floating_point else torch.bfloat16,
|
||||||
|
):
|
||||||
|
embeddings_query = model(**batch_query)
|
||||||
|
else:
|
||||||
|
embeddings_query = model(**batch_query)
|
||||||
|
q_vecs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
|
||||||
|
return q_vecs
|
||||||
|
|
||||||
|
|
||||||
|
def _build_index(index_path: str, doc_vecs: list[Any], filepaths: list[str]) -> LeannMultiVector:
|
||||||
|
dim = int(doc_vecs[0].shape[-1])
|
||||||
|
retriever = LeannMultiVector(index_path=index_path, dim=dim)
|
||||||
|
retriever.create_collection()
|
||||||
|
for i, vec in enumerate(doc_vecs):
|
||||||
|
data = {
|
||||||
|
"colbert_vecs": vec.float().numpy(),
|
||||||
|
"doc_id": i,
|
||||||
|
"filepath": filepaths[i],
|
||||||
|
}
|
||||||
|
retriever.insert(data)
|
||||||
|
retriever.create_index()
|
||||||
|
return retriever
|
||||||
|
|
||||||
|
|
||||||
|
def _load_retriever_if_index_exists(index_path: str, dim: int) -> Optional[LeannMultiVector]:
|
||||||
|
index_base = Path(index_path)
|
||||||
|
# Rough heuristic: index dir exists AND meta+labels files exist
|
||||||
|
meta = index_base.parent / f"{index_base.name}.meta.json"
|
||||||
|
labels = index_base.parent / f"{index_base.name}.labels.json"
|
||||||
|
if index_base.exists() and meta.exists() and labels.exists():
|
||||||
|
return LeannMultiVector(index_path=index_path, dim=dim)
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
def _generate_similarity_map(
|
||||||
|
model,
|
||||||
|
processor,
|
||||||
|
image: Image.Image,
|
||||||
|
query: str,
|
||||||
|
token_idx: Optional[int] = None,
|
||||||
|
output_path: Optional[str] = None,
|
||||||
|
) -> tuple[int, float]:
|
||||||
|
import torch
|
||||||
|
from colpali_engine.interpretability import (
|
||||||
|
get_similarity_maps_from_embeddings,
|
||||||
|
plot_similarity_map,
|
||||||
|
)
|
||||||
|
|
||||||
|
batch_images = processor.process_images([image]).to(model.device)
|
||||||
|
batch_queries = processor.process_queries([query]).to(model.device)
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
image_embeddings = model.forward(**batch_images)
|
||||||
|
query_embeddings = model.forward(**batch_queries)
|
||||||
|
|
||||||
|
n_patches = processor.get_n_patches(
|
||||||
|
image_size=image.size,
|
||||||
|
spatial_merge_size=getattr(model, "spatial_merge_size", None),
|
||||||
|
)
|
||||||
|
image_mask = processor.get_image_mask(batch_images)
|
||||||
|
|
||||||
|
batched_similarity_maps = get_similarity_maps_from_embeddings(
|
||||||
|
image_embeddings=image_embeddings,
|
||||||
|
query_embeddings=query_embeddings,
|
||||||
|
n_patches=n_patches,
|
||||||
|
image_mask=image_mask,
|
||||||
|
)
|
||||||
|
|
||||||
|
similarity_maps = batched_similarity_maps[0]
|
||||||
|
|
||||||
|
# Determine token index if not provided: choose the token with highest max score
|
||||||
|
if token_idx is None:
|
||||||
|
per_token_max = similarity_maps.view(similarity_maps.shape[0], -1).max(dim=1).values
|
||||||
|
token_idx = int(per_token_max.argmax().item())
|
||||||
|
|
||||||
|
max_sim_score = similarity_maps[token_idx, :, :].max().item()
|
||||||
|
|
||||||
|
if output_path:
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
fig, ax = plot_similarity_map(
|
||||||
|
image=image,
|
||||||
|
similarity_map=similarity_maps[token_idx],
|
||||||
|
figsize=(14, 14),
|
||||||
|
show_colorbar=False,
|
||||||
|
)
|
||||||
|
ax.set_title(f"Token #{token_idx}. MaxSim score: {max_sim_score:.2f}", fontsize=12)
|
||||||
|
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
||||||
|
plt.savefig(output_path, bbox_inches="tight")
|
||||||
|
plt.close(fig)
|
||||||
|
|
||||||
|
return token_idx, float(max_sim_score)
|
||||||
|
|
||||||
|
|
||||||
|
class QwenVL:
|
||||||
|
def __init__(self, device: str):
|
||||||
|
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
|
||||||
|
from transformers.utils.import_utils import is_flash_attn_2_available
|
||||||
|
|
||||||
|
attn_implementation = "flash_attention_2" if is_flash_attn_2_available() else "eager"
|
||||||
|
self.model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
||||||
|
"Qwen/Qwen2.5-VL-3B-Instruct",
|
||||||
|
torch_dtype="auto",
|
||||||
|
device_map=device,
|
||||||
|
attn_implementation=attn_implementation,
|
||||||
|
)
|
||||||
|
|
||||||
|
min_pixels = 256 * 28 * 28
|
||||||
|
max_pixels = 1280 * 28 * 28
|
||||||
|
self.processor = AutoProcessor.from_pretrained(
|
||||||
|
"Qwen/Qwen2.5-VL-3B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels
|
||||||
|
)
|
||||||
|
|
||||||
|
def answer(self, query: str, images: list[Image.Image], max_new_tokens: int = 128) -> str:
|
||||||
|
import base64
|
||||||
|
from io import BytesIO
|
||||||
|
|
||||||
|
from qwen_vl_utils import process_vision_info
|
||||||
|
|
||||||
|
content = []
|
||||||
|
for img in images:
|
||||||
|
buffer = BytesIO()
|
||||||
|
img.save(buffer, format="jpeg")
|
||||||
|
img_base64 = base64.b64encode(buffer.getvalue()).decode("utf-8")
|
||||||
|
content.append({"type": "image", "image": f"data:image;base64,{img_base64}"})
|
||||||
|
content.append({"type": "text", "text": query})
|
||||||
|
messages = [{"role": "user", "content": content}]
|
||||||
|
|
||||||
|
text = self.processor.apply_chat_template(
|
||||||
|
messages, tokenize=False, add_generation_prompt=True
|
||||||
|
)
|
||||||
|
image_inputs, video_inputs = process_vision_info(messages)
|
||||||
|
inputs = self.processor(
|
||||||
|
text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt"
|
||||||
|
)
|
||||||
|
inputs = inputs.to(self.model.device)
|
||||||
|
|
||||||
|
generated_ids = self.model.generate(**inputs, max_new_tokens=max_new_tokens)
|
||||||
|
generated_ids_trimmed = [
|
||||||
|
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
||||||
|
]
|
||||||
|
return self.processor.batch_decode(
|
||||||
|
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
||||||
|
)[0]
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
|
||||||
|
# Step 1: Prepare data
|
||||||
|
if USE_HF_DATASET:
|
||||||
|
from datasets import load_dataset
|
||||||
|
|
||||||
|
dataset = load_dataset(DATASET_NAME, split=DATASET_SPLIT)
|
||||||
|
N = len(dataset) if MAX_DOCS is None else min(MAX_DOCS, len(dataset))
|
||||||
|
filepaths: list[str] = []
|
||||||
|
images: list[Image.Image] = []
|
||||||
|
for i in tqdm(range(N), desc="Loading dataset"):
|
||||||
|
p = dataset[i]
|
||||||
|
# Compose a descriptive identifier for printing later
|
||||||
|
identifier = f"arXiv:{p['paper_arxiv_id']}|title:{p['paper_title']}|page:{int(p['page_number'])}|id:{p['page_id']}"
|
||||||
|
print(identifier)
|
||||||
|
filepaths.append(identifier)
|
||||||
|
images.append(p["page_image"]) # PIL Image
|
||||||
|
else:
|
||||||
|
_maybe_convert_pdf_to_images(PDF, PAGES_DIR)
|
||||||
|
filepaths, images = _load_images_from_dir(PAGES_DIR)
|
||||||
|
if not images:
|
||||||
|
raise RuntimeError(
|
||||||
|
f"No images found in {PAGES_DIR}. Provide PDF path in PDF variable or ensure images exist."
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# Step 2: Load model and processor
|
||||||
|
model_name, model, processor, device_str, device, dtype = _load_colvision(MODEL)
|
||||||
|
print(f"Using model={model_name}, device={device_str}, dtype={dtype}")
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# Step 3: Build or load index
|
||||||
|
retriever: Optional[LeannMultiVector] = None
|
||||||
|
if not REBUILD_INDEX:
|
||||||
|
try:
|
||||||
|
one_vec = _embed_images(model, processor, [images[0]])[0]
|
||||||
|
retriever = _load_retriever_if_index_exists(INDEX_PATH, dim=int(one_vec.shape[-1]))
|
||||||
|
except Exception:
|
||||||
|
retriever = None
|
||||||
|
|
||||||
|
if retriever is None:
|
||||||
|
doc_vecs = _embed_images(model, processor, images)
|
||||||
|
retriever = _build_index(INDEX_PATH, doc_vecs, filepaths)
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# Step 4: Embed query and search
|
||||||
|
q_vec = _embed_queries(model, processor, [QUERY])[0]
|
||||||
|
results = retriever.search(q_vec.float().numpy(), topk=TOPK, first_stage_k=FIRST_STAGE_K)
|
||||||
|
if not results:
|
||||||
|
print("No results found.")
|
||||||
|
else:
|
||||||
|
print(f'Top {len(results)} results for query: "{QUERY}"')
|
||||||
|
top_images: list[Image.Image] = []
|
||||||
|
for rank, (score, doc_id) in enumerate(results, start=1):
|
||||||
|
path = filepaths[doc_id]
|
||||||
|
# For HF dataset, path is a descriptive identifier, not a real file path
|
||||||
|
print(f"{rank}) MaxSim: {score:.4f}, Page: {path}")
|
||||||
|
top_images.append(images[doc_id])
|
||||||
|
|
||||||
|
if SAVE_TOP_IMAGE:
|
||||||
|
from pathlib import Path as _Path
|
||||||
|
|
||||||
|
base = _Path(SAVE_TOP_IMAGE)
|
||||||
|
base.parent.mkdir(parents=True, exist_ok=True)
|
||||||
|
for rank, img in enumerate(top_images[:TOPK], start=1):
|
||||||
|
if base.suffix:
|
||||||
|
out_path = base.parent / f"{base.stem}_rank{rank}{base.suffix}"
|
||||||
|
else:
|
||||||
|
out_path = base / f"retrieved_page_rank{rank}.png"
|
||||||
|
img.save(str(out_path))
|
||||||
|
print(f"Saved retrieved page (rank {rank}) to: {out_path}")
|
||||||
|
|
||||||
|
## TODO stange results of second page of DeepSeek-V2 rather than the first page
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# Step 5: Similarity maps for top-K results
|
||||||
|
if results and SIMILARITY_MAP:
|
||||||
|
token_idx = None if SIM_TOKEN_IDX < 0 else int(SIM_TOKEN_IDX)
|
||||||
|
from pathlib import Path as _Path
|
||||||
|
|
||||||
|
output_base = _Path(SIM_OUTPUT) if SIM_OUTPUT else None
|
||||||
|
for rank, img in enumerate(top_images[:TOPK], start=1):
|
||||||
|
if output_base:
|
||||||
|
if output_base.suffix:
|
||||||
|
out_dir = output_base.parent
|
||||||
|
out_name = f"{output_base.stem}_rank{rank}{output_base.suffix}"
|
||||||
|
out_path = str(out_dir / out_name)
|
||||||
|
else:
|
||||||
|
out_dir = output_base
|
||||||
|
out_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
out_path = str(out_dir / f"similarity_map_rank{rank}.png")
|
||||||
|
else:
|
||||||
|
out_path = None
|
||||||
|
chosen_idx, max_sim = _generate_similarity_map(
|
||||||
|
model=model,
|
||||||
|
processor=processor,
|
||||||
|
image=img,
|
||||||
|
query=QUERY,
|
||||||
|
token_idx=token_idx,
|
||||||
|
output_path=out_path,
|
||||||
|
)
|
||||||
|
if out_path:
|
||||||
|
print(
|
||||||
|
f"Saved similarity map for rank {rank}, token #{chosen_idx} (max={max_sim:.2f}) to: {out_path}"
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
print(
|
||||||
|
f"Computed similarity map for rank {rank}, token #{chosen_idx} (max={max_sim:.2f})"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# Step 6: Optional answer generation
|
||||||
|
if results and ANSWER:
|
||||||
|
qwen = QwenVL(device=device_str)
|
||||||
|
response = qwen.answer(QUERY, top_images[:TOPK], max_new_tokens=MAX_NEW_TOKENS)
|
||||||
|
print("\nAnswer:")
|
||||||
|
print(response)
|
||||||
@@ -0,0 +1,134 @@
|
|||||||
|
# pip install pdf2image
|
||||||
|
# pip install pymilvus
|
||||||
|
# pip install colpali_engine
|
||||||
|
# pip install tqdm
|
||||||
|
# pip install pillow
|
||||||
|
|
||||||
|
# %%
|
||||||
|
from pdf2image import convert_from_path
|
||||||
|
|
||||||
|
pdf_path = "pdfs/2004.12832v2.pdf"
|
||||||
|
images = convert_from_path(pdf_path)
|
||||||
|
|
||||||
|
for i, image in enumerate(images):
|
||||||
|
image.save(f"pages/page_{i + 1}.png", "PNG")
|
||||||
|
|
||||||
|
# %%
|
||||||
|
import os
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
# Make local leann packages importable without installing
|
||||||
|
_repo_root = Path(__file__).resolve().parents[3]
|
||||||
|
_leann_core_src = _repo_root / "packages" / "leann-core" / "src"
|
||||||
|
_leann_hnsw_pkg = _repo_root / "packages" / "leann-backend-hnsw"
|
||||||
|
import sys
|
||||||
|
|
||||||
|
if str(_leann_core_src) not in sys.path:
|
||||||
|
sys.path.append(str(_leann_core_src))
|
||||||
|
if str(_leann_hnsw_pkg) not in sys.path:
|
||||||
|
sys.path.append(str(_leann_hnsw_pkg))
|
||||||
|
|
||||||
|
from leann_multi_vector import LeannMultiVector
|
||||||
|
|
||||||
|
|
||||||
|
class LeannRetriever(LeannMultiVector):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
from typing import cast
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from colpali_engine.models import ColPali
|
||||||
|
from colpali_engine.models.paligemma.colpali.processing_colpali import ColPaliProcessor
|
||||||
|
from colpali_engine.utils.torch_utils import ListDataset, get_torch_device
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
|
# Auto-select device: CUDA > MPS (mac) > CPU
|
||||||
|
_device_str = (
|
||||||
|
"cuda"
|
||||||
|
if torch.cuda.is_available()
|
||||||
|
else (
|
||||||
|
"mps"
|
||||||
|
if getattr(torch.backends, "mps", None) and torch.backends.mps.is_available()
|
||||||
|
else "cpu"
|
||||||
|
)
|
||||||
|
)
|
||||||
|
device = get_torch_device(_device_str)
|
||||||
|
# Prefer fp16 on GPU/MPS, bfloat16 on CPU
|
||||||
|
_dtype = torch.float16 if _device_str in ("cuda", "mps") else torch.bfloat16
|
||||||
|
model_name = "vidore/colpali-v1.2"
|
||||||
|
|
||||||
|
model = ColPali.from_pretrained(
|
||||||
|
model_name,
|
||||||
|
torch_dtype=_dtype,
|
||||||
|
device_map=device,
|
||||||
|
).eval()
|
||||||
|
print(f"Using device={_device_str}, dtype={_dtype}")
|
||||||
|
|
||||||
|
queries = [
|
||||||
|
"How to end-to-end retrieval with ColBert",
|
||||||
|
"Where is ColBERT performance Table, including text representation results?",
|
||||||
|
]
|
||||||
|
|
||||||
|
processor = cast(ColPaliProcessor, ColPaliProcessor.from_pretrained(model_name))
|
||||||
|
|
||||||
|
dataloader = DataLoader(
|
||||||
|
dataset=ListDataset[str](queries),
|
||||||
|
batch_size=1,
|
||||||
|
shuffle=False,
|
||||||
|
collate_fn=lambda x: processor.process_queries(x),
|
||||||
|
)
|
||||||
|
|
||||||
|
qs: list[torch.Tensor] = []
|
||||||
|
for batch_query in dataloader:
|
||||||
|
with torch.no_grad():
|
||||||
|
batch_query = {k: v.to(model.device) for k, v in batch_query.items()}
|
||||||
|
embeddings_query = model(**batch_query)
|
||||||
|
qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
|
||||||
|
print(qs[0].shape)
|
||||||
|
# %%
|
||||||
|
|
||||||
|
|
||||||
|
import re
|
||||||
|
|
||||||
|
from PIL import Image
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
page_filenames = sorted(os.listdir("./pages"), key=lambda n: int(re.search(r"\d+", n).group()))
|
||||||
|
images = [Image.open(os.path.join("./pages", name)) for name in page_filenames]
|
||||||
|
|
||||||
|
dataloader = DataLoader(
|
||||||
|
dataset=ListDataset[str](images),
|
||||||
|
batch_size=1,
|
||||||
|
shuffle=False,
|
||||||
|
collate_fn=lambda x: processor.process_images(x),
|
||||||
|
)
|
||||||
|
|
||||||
|
ds: list[torch.Tensor] = []
|
||||||
|
for batch_doc in tqdm(dataloader):
|
||||||
|
with torch.no_grad():
|
||||||
|
batch_doc = {k: v.to(model.device) for k, v in batch_doc.items()}
|
||||||
|
embeddings_doc = model(**batch_doc)
|
||||||
|
ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
|
||||||
|
|
||||||
|
print(ds[0].shape)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# Build HNSW index via LeannRetriever primitives and run search
|
||||||
|
index_path = "./indexes/colpali.leann"
|
||||||
|
retriever = LeannRetriever(index_path=index_path, dim=int(ds[0].shape[-1]))
|
||||||
|
retriever.create_collection()
|
||||||
|
filepaths = [os.path.join("./pages", name) for name in page_filenames]
|
||||||
|
for i in range(len(filepaths)):
|
||||||
|
data = {
|
||||||
|
"colbert_vecs": ds[i].float().numpy(),
|
||||||
|
"doc_id": i,
|
||||||
|
"filepath": filepaths[i],
|
||||||
|
}
|
||||||
|
retriever.insert(data)
|
||||||
|
retriever.create_index()
|
||||||
|
for query in qs:
|
||||||
|
query_np = query.float().numpy()
|
||||||
|
result = retriever.search(query_np, topk=1)
|
||||||
|
print(filepaths[result[0][1]])
|
||||||
BIN
assets/wechat_user_group.JPG
Normal file
BIN
assets/wechat_user_group.JPG
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 152 KiB |
0
benchmarks/__init__.py
Normal file
0
benchmarks/__init__.py
Normal file
23
benchmarks/bm25_diskann_baselines/README.md
Normal file
23
benchmarks/bm25_diskann_baselines/README.md
Normal file
@@ -0,0 +1,23 @@
|
|||||||
|
BM25 vs DiskANN Baselines
|
||||||
|
|
||||||
|
```bash
|
||||||
|
aws s3 sync s3://powerrag-diskann-rpj-wiki-20250824-224037-194d640c/bm25_rpj_wiki/index_en_only/ benchmarks/data/indices/bm25_index/
|
||||||
|
aws s3 sync s3://powerrag-diskann-rpj-wiki-20250824-224037-194d640c/diskann_rpj_wiki/ benchmarks/data/indices/diskann_rpj_wiki/
|
||||||
|
```
|
||||||
|
|
||||||
|
- Dataset: `benchmarks/data/queries/nq_open.jsonl` (Natural Questions)
|
||||||
|
- Machine-specific; results measured locally with the current repo.
|
||||||
|
|
||||||
|
DiskANN (NQ queries, search-only)
|
||||||
|
- Command: `uv run --script benchmarks/bm25_diskann_baselines/run_diskann.py`
|
||||||
|
- Settings: `recompute_embeddings=False`, embeddings precomputed (excluded from timing), batching off, caching off (`cache_mechanism=2`, `num_nodes_to_cache=0`)
|
||||||
|
- Result: avg 0.011093 s/query, QPS 90.15 (p50 0.010731 s, p95 0.015000 s)
|
||||||
|
|
||||||
|
BM25
|
||||||
|
- Command: `uv run --script benchmarks/bm25_diskann_baselines/run_bm25.py`
|
||||||
|
- Settings: `k=10`, `k1=0.9`, `b=0.4`, queries=100
|
||||||
|
- Result: avg 0.028589 s/query, QPS 34.97 (p50 0.026060 s, p90 0.043695 s, p95 0.053260 s, p99 0.055257 s)
|
||||||
|
|
||||||
|
Notes
|
||||||
|
- DiskANN measures search-only latency on real NQ queries (embeddings computed beforehand and excluded from timing).
|
||||||
|
- Use `benchmarks/bm25_diskann_baselines/run_diskann.py` for DiskANN; `benchmarks/bm25_diskann_baselines/run_bm25.py` for BM25.
|
||||||
|
After Width: | Height: | Size: 1.3 KiB |
183
benchmarks/bm25_diskann_baselines/run_bm25.py
Normal file
183
benchmarks/bm25_diskann_baselines/run_bm25.py
Normal file
@@ -0,0 +1,183 @@
|
|||||||
|
# /// script
|
||||||
|
# dependencies = [
|
||||||
|
# "pyserini"
|
||||||
|
# ]
|
||||||
|
# ///
|
||||||
|
# sudo pacman -S jdk21-openjdk
|
||||||
|
# export JAVA_HOME=/usr/lib/jvm/java-21-openjdk
|
||||||
|
# sudo archlinux-java status
|
||||||
|
# sudo archlinux-java set java-21-openjdk
|
||||||
|
# set -Ux JAVA_HOME /usr/lib/jvm/java-21-openjdk
|
||||||
|
# fish_add_path --global $JAVA_HOME/bin
|
||||||
|
# set -Ux LD_LIBRARY_PATH $JAVA_HOME/lib/server $LD_LIBRARY_PATH
|
||||||
|
# which javac # Should be /usr/lib/jvm/java-21-openjdk/bin/javac
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import time
|
||||||
|
from statistics import mean
|
||||||
|
|
||||||
|
|
||||||
|
def load_queries(path: str, limit: int | None) -> list[str]:
|
||||||
|
queries: list[str] = []
|
||||||
|
# Try JSONL with a 'query' or 'text' field; fallback to plain text (one query per line)
|
||||||
|
_, ext = os.path.splitext(path)
|
||||||
|
if ext.lower() in {".jsonl", ".json"}:
|
||||||
|
with open(path, encoding="utf-8") as f:
|
||||||
|
for line in f:
|
||||||
|
line = line.strip()
|
||||||
|
if not line:
|
||||||
|
continue
|
||||||
|
try:
|
||||||
|
obj = json.loads(line)
|
||||||
|
except json.JSONDecodeError:
|
||||||
|
# Not strict JSONL? treat the whole line as the query
|
||||||
|
queries.append(line)
|
||||||
|
continue
|
||||||
|
q = obj.get("query") or obj.get("text") or obj.get("question")
|
||||||
|
if q:
|
||||||
|
queries.append(str(q))
|
||||||
|
else:
|
||||||
|
with open(path, encoding="utf-8") as f:
|
||||||
|
for line in f:
|
||||||
|
s = line.strip()
|
||||||
|
if s:
|
||||||
|
queries.append(s)
|
||||||
|
|
||||||
|
if limit is not None and limit > 0:
|
||||||
|
queries = queries[:limit]
|
||||||
|
return queries
|
||||||
|
|
||||||
|
|
||||||
|
def percentile(values: list[float], p: float) -> float:
|
||||||
|
if not values:
|
||||||
|
return 0.0
|
||||||
|
s = sorted(values)
|
||||||
|
k = (len(s) - 1) * (p / 100.0)
|
||||||
|
f = int(k)
|
||||||
|
c = min(f + 1, len(s) - 1)
|
||||||
|
if f == c:
|
||||||
|
return s[f]
|
||||||
|
return s[f] + (s[c] - s[f]) * (k - f)
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
ap = argparse.ArgumentParser(description="Standalone BM25 latency benchmark (Pyserini)")
|
||||||
|
ap.add_argument(
|
||||||
|
"--bm25-index",
|
||||||
|
default="benchmarks/data/indices/bm25_index",
|
||||||
|
help="Path to Pyserini Lucene index directory",
|
||||||
|
)
|
||||||
|
ap.add_argument(
|
||||||
|
"--queries",
|
||||||
|
default="benchmarks/data/queries/nq_open.jsonl",
|
||||||
|
help="Path to queries file (JSONL with 'query'/'text' or plain txt one-per-line)",
|
||||||
|
)
|
||||||
|
ap.add_argument("--k", type=int, default=10, help="Top-k to retrieve (default: 10)")
|
||||||
|
ap.add_argument("--k1", type=float, default=0.9, help="BM25 k1 (default: 0.9)")
|
||||||
|
ap.add_argument("--b", type=float, default=0.4, help="BM25 b (default: 0.4)")
|
||||||
|
ap.add_argument("--limit", type=int, default=100, help="Max queries to run (default: 100)")
|
||||||
|
ap.add_argument(
|
||||||
|
"--warmup", type=int, default=5, help="Warmup queries not counted in latency (default: 5)"
|
||||||
|
)
|
||||||
|
ap.add_argument(
|
||||||
|
"--fetch-docs", action="store_true", help="Also fetch doc contents (slower; default: off)"
|
||||||
|
)
|
||||||
|
ap.add_argument("--report", type=str, default=None, help="Optional JSON report path")
|
||||||
|
args = ap.parse_args()
|
||||||
|
|
||||||
|
try:
|
||||||
|
from pyserini.search.lucene import LuceneSearcher
|
||||||
|
except Exception:
|
||||||
|
print("Pyserini not found. Install with: pip install pyserini", file=sys.stderr)
|
||||||
|
raise
|
||||||
|
|
||||||
|
if not os.path.isdir(args.bm25_index):
|
||||||
|
print(f"Index directory not found: {args.bm25_index}", file=sys.stderr)
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
|
queries = load_queries(args.queries, args.limit)
|
||||||
|
if not queries:
|
||||||
|
print("No queries loaded.", file=sys.stderr)
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
|
print(f"Loaded {len(queries)} queries from {args.queries}")
|
||||||
|
print(f"Opening BM25 index: {args.bm25_index}")
|
||||||
|
searcher = LuceneSearcher(args.bm25_index)
|
||||||
|
# Some builds of pyserini require explicit set_bm25; others ignore
|
||||||
|
try:
|
||||||
|
searcher.set_bm25(k1=args.k1, b=args.b)
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
|
||||||
|
latencies: list[float] = []
|
||||||
|
total_searches = 0
|
||||||
|
|
||||||
|
# Warmup
|
||||||
|
for i in range(min(args.warmup, len(queries))):
|
||||||
|
_ = searcher.search(queries[i], k=args.k)
|
||||||
|
|
||||||
|
t0 = time.time()
|
||||||
|
for i, q in enumerate(queries):
|
||||||
|
t1 = time.time()
|
||||||
|
hits = searcher.search(q, k=args.k)
|
||||||
|
t2 = time.time()
|
||||||
|
latencies.append(t2 - t1)
|
||||||
|
total_searches += 1
|
||||||
|
|
||||||
|
if args.fetch_docs:
|
||||||
|
# Optional doc fetch to include I/O time
|
||||||
|
for h in hits:
|
||||||
|
try:
|
||||||
|
_ = searcher.doc(h.docid)
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
|
||||||
|
if (i + 1) % 50 == 0:
|
||||||
|
print(f"Processed {i + 1}/{len(queries)} queries")
|
||||||
|
|
||||||
|
t1 = time.time()
|
||||||
|
total_time = t1 - t0
|
||||||
|
|
||||||
|
if latencies:
|
||||||
|
avg = mean(latencies)
|
||||||
|
p50 = percentile(latencies, 50)
|
||||||
|
p90 = percentile(latencies, 90)
|
||||||
|
p95 = percentile(latencies, 95)
|
||||||
|
p99 = percentile(latencies, 99)
|
||||||
|
qps = total_searches / total_time if total_time > 0 else 0.0
|
||||||
|
else:
|
||||||
|
avg = p50 = p90 = p95 = p99 = qps = 0.0
|
||||||
|
|
||||||
|
print("BM25 Latency Report")
|
||||||
|
print(f" queries: {total_searches}")
|
||||||
|
print(f" k: {args.k}, k1: {args.k1}, b: {args.b}")
|
||||||
|
print(f" avg per query: {avg:.6f} s")
|
||||||
|
print(f" p50/p90/p95/p99: {p50:.6f}/{p90:.6f}/{p95:.6f}/{p99:.6f} s")
|
||||||
|
print(f" total time: {total_time:.3f} s, qps: {qps:.2f}")
|
||||||
|
|
||||||
|
if args.report:
|
||||||
|
payload = {
|
||||||
|
"queries": total_searches,
|
||||||
|
"k": args.k,
|
||||||
|
"k1": args.k1,
|
||||||
|
"b": args.b,
|
||||||
|
"avg_s": avg,
|
||||||
|
"p50_s": p50,
|
||||||
|
"p90_s": p90,
|
||||||
|
"p95_s": p95,
|
||||||
|
"p99_s": p99,
|
||||||
|
"total_time_s": total_time,
|
||||||
|
"qps": qps,
|
||||||
|
"index_dir": os.path.abspath(args.bm25_index),
|
||||||
|
"fetch_docs": bool(args.fetch_docs),
|
||||||
|
}
|
||||||
|
with open(args.report, "w", encoding="utf-8") as f:
|
||||||
|
json.dump(payload, f, indent=2)
|
||||||
|
print(f"Saved report to {args.report}")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
124
benchmarks/bm25_diskann_baselines/run_diskann.py
Normal file
124
benchmarks/bm25_diskann_baselines/run_diskann.py
Normal file
@@ -0,0 +1,124 @@
|
|||||||
|
# /// script
|
||||||
|
# dependencies = [
|
||||||
|
# "leann-backend-diskann"
|
||||||
|
# ]
|
||||||
|
# ///
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import json
|
||||||
|
import time
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
def load_queries(path: Path, limit: int | None) -> list[str]:
|
||||||
|
out: list[str] = []
|
||||||
|
with open(path, encoding="utf-8") as f:
|
||||||
|
for line in f:
|
||||||
|
obj = json.loads(line)
|
||||||
|
out.append(obj["query"])
|
||||||
|
if limit and len(out) >= limit:
|
||||||
|
break
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
def main() -> None:
|
||||||
|
ap = argparse.ArgumentParser(
|
||||||
|
description="DiskANN baseline on real NQ queries (search-only timing)"
|
||||||
|
)
|
||||||
|
ap.add_argument(
|
||||||
|
"--index-dir",
|
||||||
|
default="benchmarks/data/indices/diskann_rpj_wiki",
|
||||||
|
help="Directory containing DiskANN files",
|
||||||
|
)
|
||||||
|
ap.add_argument("--index-prefix", default="ann")
|
||||||
|
ap.add_argument("--queries-file", default="benchmarks/data/queries/nq_open.jsonl")
|
||||||
|
ap.add_argument("--num-queries", type=int, default=200)
|
||||||
|
ap.add_argument("--top-k", type=int, default=10)
|
||||||
|
ap.add_argument("--complexity", type=int, default=62)
|
||||||
|
ap.add_argument("--threads", type=int, default=1)
|
||||||
|
ap.add_argument("--beam-width", type=int, default=1)
|
||||||
|
ap.add_argument("--cache-mechanism", type=int, default=2)
|
||||||
|
ap.add_argument("--num-nodes-to-cache", type=int, default=0)
|
||||||
|
args = ap.parse_args()
|
||||||
|
|
||||||
|
index_dir = Path(args.index_dir).resolve()
|
||||||
|
if not index_dir.is_dir():
|
||||||
|
raise SystemExit(f"Index dir not found: {index_dir}")
|
||||||
|
|
||||||
|
qpath = Path(args.queries_file).resolve()
|
||||||
|
if not qpath.exists():
|
||||||
|
raise SystemExit(f"Queries file not found: {qpath}")
|
||||||
|
|
||||||
|
queries = load_queries(qpath, args.num_queries)
|
||||||
|
print(f"Loaded {len(queries)} queries from {qpath}")
|
||||||
|
|
||||||
|
# Compute embeddings once (exclude from timing)
|
||||||
|
from leann.api import compute_embeddings as _compute
|
||||||
|
|
||||||
|
embs = _compute(
|
||||||
|
queries,
|
||||||
|
model_name="facebook/contriever-msmarco",
|
||||||
|
mode="sentence-transformers",
|
||||||
|
use_server=False,
|
||||||
|
).astype(np.float32)
|
||||||
|
if embs.ndim != 2:
|
||||||
|
raise SystemExit("Embedding compute failed or returned wrong shape")
|
||||||
|
|
||||||
|
# Build searcher
|
||||||
|
from leann_backend_diskann.diskann_backend import DiskannSearcher as _DiskannSearcher
|
||||||
|
|
||||||
|
index_prefix_path = str(index_dir / args.index_prefix)
|
||||||
|
searcher = _DiskannSearcher(
|
||||||
|
index_prefix_path,
|
||||||
|
num_threads=int(args.threads),
|
||||||
|
cache_mechanism=int(args.cache_mechanism),
|
||||||
|
num_nodes_to_cache=int(args.num_nodes_to_cache),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Warmup (not timed)
|
||||||
|
_ = searcher.search(
|
||||||
|
embs[0:1],
|
||||||
|
top_k=args.top_k,
|
||||||
|
complexity=args.complexity,
|
||||||
|
beam_width=args.beam_width,
|
||||||
|
prune_ratio=0.0,
|
||||||
|
recompute_embeddings=False,
|
||||||
|
batch_recompute=False,
|
||||||
|
dedup_node_dis=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Timed loop
|
||||||
|
times: list[float] = []
|
||||||
|
for i in range(embs.shape[0]):
|
||||||
|
t0 = time.time()
|
||||||
|
_ = searcher.search(
|
||||||
|
embs[i : i + 1],
|
||||||
|
top_k=args.top_k,
|
||||||
|
complexity=args.complexity,
|
||||||
|
beam_width=args.beam_width,
|
||||||
|
prune_ratio=0.0,
|
||||||
|
recompute_embeddings=False,
|
||||||
|
batch_recompute=False,
|
||||||
|
dedup_node_dis=False,
|
||||||
|
)
|
||||||
|
times.append(time.time() - t0)
|
||||||
|
|
||||||
|
times_sorted = sorted(times)
|
||||||
|
avg = float(sum(times) / len(times))
|
||||||
|
p50 = times_sorted[len(times) // 2]
|
||||||
|
p95 = times_sorted[max(0, int(len(times) * 0.95) - 1)]
|
||||||
|
|
||||||
|
print("\nDiskANN (NQ, search-only) Report")
|
||||||
|
print(f" queries: {len(times)}")
|
||||||
|
print(
|
||||||
|
f" k: {args.top_k}, complexity: {args.complexity}, beam_width: {args.beam_width}, threads: {args.threads}"
|
||||||
|
)
|
||||||
|
print(f" avg per query: {avg:.6f} s")
|
||||||
|
print(f" p50/p95: {p50:.6f}/{p95:.6f} s")
|
||||||
|
print(f" QPS: {1.0 / avg:.2f}")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
82
benchmarks/data/.gitattributes
vendored
82
benchmarks/data/.gitattributes
vendored
@@ -1,82 +0,0 @@
|
|||||||
*.7z filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.arrow filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.bin filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.ftz filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.gz filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.h5 filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.joblib filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.lz4 filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.mds filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.model filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.npy filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.npz filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.onnx filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.ot filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.parquet filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.pb filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.pickle filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.pkl filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.pt filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.pth filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.rar filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
|
||||||
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.tar filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.tflite filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.tgz filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.wasm filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.xz filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.zip filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.zst filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
||||||
# Audio files - uncompressed
|
|
||||||
*.pcm filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.sam filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.raw filter=lfs diff=lfs merge=lfs -text
|
|
||||||
# Audio files - compressed
|
|
||||||
*.aac filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.flac filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.ogg filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.wav filter=lfs diff=lfs merge=lfs -text
|
|
||||||
# Image files - uncompressed
|
|
||||||
*.bmp filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.gif filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.png filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.tiff filter=lfs diff=lfs merge=lfs -text
|
|
||||||
# Image files - compressed
|
|
||||||
*.jpg filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.webp filter=lfs diff=lfs merge=lfs -text
|
|
||||||
# Video files - compressed
|
|
||||||
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
|
||||||
*.webm filter=lfs diff=lfs merge=lfs -text
|
|
||||||
ground_truth/dpr/id_map.json filter=lfs diff=lfs merge=lfs -text
|
|
||||||
indices/dpr/dpr_diskann.passages.idx filter=lfs diff=lfs merge=lfs -text
|
|
||||||
indices/dpr/dpr_diskann.passages.jsonl filter=lfs diff=lfs merge=lfs -text
|
|
||||||
indices/dpr/dpr_diskann_disk.index filter=lfs diff=lfs merge=lfs -text
|
|
||||||
indices/dpr/leann.labels.map filter=lfs diff=lfs merge=lfs -text
|
|
||||||
indices/rpj_wiki/leann.labels.map filter=lfs diff=lfs merge=lfs -text
|
|
||||||
indices/rpj_wiki/rpj_wiki.index filter=lfs diff=lfs merge=lfs -text
|
|
||||||
indices/rpj_wiki/rpj_wiki.passages.0.idx filter=lfs diff=lfs merge=lfs -text
|
|
||||||
indices/rpj_wiki/rpj_wiki.passages.0.jsonl filter=lfs diff=lfs merge=lfs -text
|
|
||||||
indices/rpj_wiki/rpj_wiki.passages.1.idx filter=lfs diff=lfs merge=lfs -text
|
|
||||||
indices/rpj_wiki/rpj_wiki.passages.1.jsonl filter=lfs diff=lfs merge=lfs -text
|
|
||||||
indices/rpj_wiki/rpj_wiki.passages.2.idx filter=lfs diff=lfs merge=lfs -text
|
|
||||||
indices/rpj_wiki/rpj_wiki.passages.2.jsonl filter=lfs diff=lfs merge=lfs -text
|
|
||||||
indices/rpj_wiki/rpj_wiki.passages.3.idx filter=lfs diff=lfs merge=lfs -text
|
|
||||||
indices/rpj_wiki/rpj_wiki.passages.3.jsonl filter=lfs diff=lfs merge=lfs -text
|
|
||||||
indices/rpj_wiki/rpj_wiki.passages.4.idx filter=lfs diff=lfs merge=lfs -text
|
|
||||||
indices/rpj_wiki/rpj_wiki.passages.4.jsonl filter=lfs diff=lfs merge=lfs -text
|
|
||||||
indices/rpj_wiki/rpj_wiki.passages.5.idx filter=lfs diff=lfs merge=lfs -text
|
|
||||||
indices/rpj_wiki/rpj_wiki.passages.5.jsonl filter=lfs diff=lfs merge=lfs -text
|
|
||||||
indices/rpj_wiki/rpj_wiki.passages.6.idx filter=lfs diff=lfs merge=lfs -text
|
|
||||||
indices/rpj_wiki/rpj_wiki.passages.6.jsonl filter=lfs diff=lfs merge=lfs -text
|
|
||||||
indices/rpj_wiki/rpj_wiki.passages.7.idx filter=lfs diff=lfs merge=lfs -text
|
|
||||||
indices/rpj_wiki/rpj_wiki.passages.7.jsonl filter=lfs diff=lfs merge=lfs -text
|
|
||||||
44
benchmarks/data/README.md
Executable file
44
benchmarks/data/README.md
Executable file
@@ -0,0 +1,44 @@
|
|||||||
|
---
|
||||||
|
license: mit
|
||||||
|
---
|
||||||
|
|
||||||
|
# LEANN-RAG Evaluation Data
|
||||||
|
|
||||||
|
This repository contains the necessary data to run the recall evaluation scripts for the [LEANN-RAG](https://huggingface.co/LEANN-RAG) project.
|
||||||
|
|
||||||
|
## Dataset Components
|
||||||
|
|
||||||
|
This dataset is structured into three main parts:
|
||||||
|
|
||||||
|
1. **Pre-built LEANN Indices**:
|
||||||
|
* `dpr/`: A pre-built index for the DPR dataset.
|
||||||
|
* `rpj_wiki/`: A pre-built index for the RPJ-Wiki dataset.
|
||||||
|
These indices were created using the `leann-core` library and are required by the `LeannSearcher`.
|
||||||
|
|
||||||
|
2. **Ground Truth Data**:
|
||||||
|
* `ground_truth/`: Contains the ground truth files (`flat_results_nq_k3.json`) for both the DPR and RPJ-Wiki datasets. These files map queries to the original passage IDs from the Natural Questions benchmark, evaluated using the Contriever model.
|
||||||
|
|
||||||
|
3. **Queries**:
|
||||||
|
* `queries/`: Contains the `nq_open.jsonl` file with the Natural Questions queries used for the evaluation.
|
||||||
|
|
||||||
|
## Usage
|
||||||
|
|
||||||
|
To use this data, you can download it locally using the `huggingface-hub` library. First, install the library:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
pip install huggingface-hub
|
||||||
|
```
|
||||||
|
|
||||||
|
Then, you can download the entire dataset to a local directory (e.g., `data/`) with the following Python script:
|
||||||
|
|
||||||
|
```python
|
||||||
|
from huggingface_hub import snapshot_download
|
||||||
|
|
||||||
|
snapshot_download(
|
||||||
|
repo_id="LEANN-RAG/leann-rag-evaluation-data",
|
||||||
|
repo_type="dataset",
|
||||||
|
local_dir="data"
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
This will download all the necessary files into a local `data` folder, preserving the repository structure. The evaluation scripts in the main [LEANN-RAG Space](https://huggingface.co/LEANN-RAG) are configured to work with this data structure.
|
||||||
141
benchmarks/enron_emails/README.md
Normal file
141
benchmarks/enron_emails/README.md
Normal file
@@ -0,0 +1,141 @@
|
|||||||
|
# Enron Emails Benchmark
|
||||||
|
|
||||||
|
A comprehensive RAG benchmark for evaluating LEANN search and generation on the Enron email corpus. It mirrors the structure and CLI of the existing FinanceBench and LAION benches, using stage-based evaluation with Recall@3 and generation timing.
|
||||||
|
|
||||||
|
- Dataset: Enron email CSV (e.g., Kaggle wcukierski/enron-email-dataset) for passages
|
||||||
|
- Queries: corbt/enron_emails_sample_questions (filtered for realistic questions)
|
||||||
|
- Metrics: Recall@3 vs FAISS Flat baseline + Generation evaluation with Qwen3-8B
|
||||||
|
|
||||||
|
## Layout
|
||||||
|
|
||||||
|
benchmarks/enron_emails/
|
||||||
|
- setup_enron_emails.py: Prepare passages, build LEANN index, build FAISS baseline
|
||||||
|
- evaluate_enron_emails.py: Evaluate retrieval recall (Stages 2-5) + generation with Qwen3-8B
|
||||||
|
- data/: Generated passages, queries, embeddings-related files
|
||||||
|
- baseline/: FAISS Flat baseline files
|
||||||
|
- llm_utils.py: LLM utilities for Qwen3-8B generation (in parent directory)
|
||||||
|
|
||||||
|
## Quickstart
|
||||||
|
|
||||||
|
1) Prepare the data and index
|
||||||
|
|
||||||
|
cd benchmarks/enron_emails
|
||||||
|
python setup_enron_emails.py --data-dir data
|
||||||
|
|
||||||
|
Notes:
|
||||||
|
- If `--emails-csv` is omitted, the script attempts to download from Kaggle dataset `wcukierski/enron-email-dataset` using Kaggle API (requires `KAGGLE_USERNAME` and `KAGGLE_KEY`).
|
||||||
|
Alternatively, pass a local path to `--emails-csv`.
|
||||||
|
|
||||||
|
Notes:
|
||||||
|
- The script parses emails, chunks header/body into passages, builds a compact LEANN index, and then builds a FAISS Flat baseline from the same passages and embedding model.
|
||||||
|
- Optionally, it will also create evaluation queries from HuggingFace dataset `corbt/enron_emails_sample_questions`.
|
||||||
|
|
||||||
|
2) Run recall evaluation (Stage 2)
|
||||||
|
|
||||||
|
python evaluate_enron_emails.py --index data/enron_index_hnsw.leann --stage 2
|
||||||
|
|
||||||
|
3) Complexity sweep (Stage 3)
|
||||||
|
|
||||||
|
python evaluate_enron_emails.py --index data/enron_index_hnsw.leann --stage 3 --target-recall 0.90 --max-queries 200
|
||||||
|
|
||||||
|
Stage 3 uses binary search over complexity to find the minimal value achieving the target Recall@3 (assumes recall is non-decreasing with complexity). The search expands the upper bound as needed and snaps complexity to multiples of 8.
|
||||||
|
|
||||||
|
4) Index comparison (Stage 4)
|
||||||
|
|
||||||
|
python evaluate_enron_emails.py --index data/enron_index_hnsw.leann --stage 4 --complexity 88 --max-queries 100 --output results.json
|
||||||
|
|
||||||
|
5) Generation evaluation (Stage 5)
|
||||||
|
|
||||||
|
python evaluate_enron_emails.py --index data/enron_index_hnsw.leann --stage 5 --complexity 88 --llm-backend hf --model-name Qwen/Qwen3-8B
|
||||||
|
|
||||||
|
6) Combined index + generation evaluation (Stages 4+5, recommended)
|
||||||
|
|
||||||
|
python evaluate_enron_emails.py --index data/enron_index_hnsw.leann --stage 45 --complexity 88 --llm-backend hf
|
||||||
|
|
||||||
|
Notes:
|
||||||
|
- Minimal CLI: you can run from repo root with only `--index`, defaults match financebench/laion patterns:
|
||||||
|
- `--stage` defaults to `all` (runs 2, 3, 4, 5)
|
||||||
|
- `--baseline-dir` defaults to `baseline`
|
||||||
|
- `--queries` defaults to `data/evaluation_queries.jsonl` (or falls back to the index directory)
|
||||||
|
- `--llm-backend` defaults to `hf` (HuggingFace), can use `vllm`
|
||||||
|
- `--model-name` defaults to `Qwen/Qwen3-8B`
|
||||||
|
- Fail-fast behavior: no silent fallbacks. If compact index cannot run with recompute, it errors out.
|
||||||
|
- Stage 5 requires Stage 4 retrieval results. Use `--stage 45` to run both efficiently.
|
||||||
|
|
||||||
|
Optional flags:
|
||||||
|
- --queries data/evaluation_queries.jsonl (custom queries file)
|
||||||
|
- --baseline-dir baseline (where FAISS baseline lives)
|
||||||
|
- --complexity 88 (LEANN complexity parameter, optimal for 90% recall)
|
||||||
|
- --llm-backend hf|vllm (LLM backend for generation)
|
||||||
|
- --model-name Qwen/Qwen3-8B (LLM model for generation)
|
||||||
|
- --max-queries 1000 (limit number of queries for evaluation)
|
||||||
|
|
||||||
|
## Files Produced
|
||||||
|
- data/enron_passages_preview.jsonl: Small preview of passages used (for inspection)
|
||||||
|
- data/enron_index_hnsw.leann.*: LEANN index files
|
||||||
|
- baseline/faiss_flat.index + baseline/metadata.pkl: FAISS baseline with passage IDs
|
||||||
|
- data/evaluation_queries.jsonl: Query file (id + query; includes GT IDs for reference)
|
||||||
|
|
||||||
|
## Notes
|
||||||
|
- Evaluates both retrieval Recall@3 and generation timing with Qwen3-8B thinking model.
|
||||||
|
- The emails CSV must contain a column named "message" (raw RFC822 email) and a column named "file" for source identifier. Message-ID headers are parsed as canonical message IDs when present.
|
||||||
|
- Qwen3-8B requires special handling for thinking models with chat templates and <think></think> tag processing.
|
||||||
|
|
||||||
|
## Stages Summary
|
||||||
|
|
||||||
|
- Stage 2 (Recall@3):
|
||||||
|
- Compares LEANN vs FAISS Flat baseline on Recall@3.
|
||||||
|
- Compact index runs with `recompute_embeddings=True`.
|
||||||
|
|
||||||
|
- Stage 3 (Binary Search for Complexity):
|
||||||
|
- Builds a non-compact index (`<index>_noncompact.leann`) and runs binary search with `recompute_embeddings=False` to find the minimal complexity achieving target Recall@3 (default 90%).
|
||||||
|
|
||||||
|
- Stage 4 (Index Comparison):
|
||||||
|
- Reports .index-only sizes for compact vs non-compact.
|
||||||
|
- Measures timings on queries by default: non-compact (no recompute) vs compact (with recompute).
|
||||||
|
- Stores retrieval results for Stage 5 generation evaluation.
|
||||||
|
- Fails fast if compact recompute cannot run.
|
||||||
|
- If `--complexity` is not provided, the script tries to use the best complexity from Stage 3:
|
||||||
|
- First from the current run (when running `--stage all`), otherwise
|
||||||
|
- From `enron_stage3_results.json` saved next to the index during the last Stage 3 run.
|
||||||
|
- If neither exists, Stage 4 will error and ask you to run Stage 3 or pass `--complexity`.
|
||||||
|
|
||||||
|
- Stage 5 (Generation Evaluation):
|
||||||
|
- Uses Qwen3-8B thinking model for RAG generation on retrieved documents from Stage 4.
|
||||||
|
- Supports HuggingFace (`hf`) and vLLM (`vllm`) backends.
|
||||||
|
- Measures generation timing separately from search timing.
|
||||||
|
- Requires Stage 4 results (no additional searching performed).
|
||||||
|
|
||||||
|
## Example Results
|
||||||
|
|
||||||
|
These are sample results obtained on Enron data using all-mpnet-base-v2 and Qwen3-8B.
|
||||||
|
|
||||||
|
- Stage 3 (Binary Search):
|
||||||
|
- Minimal complexity achieving 90% Recall@3: 88
|
||||||
|
- Sampled points:
|
||||||
|
- C=8 → 59.9% Recall@3
|
||||||
|
- C=72 → 89.4% Recall@3
|
||||||
|
- C=88 → 90.2% Recall@3
|
||||||
|
- C=96 → 90.7% Recall@3
|
||||||
|
- C=112 → 91.1% Recall@3
|
||||||
|
- C=136 → 91.3% Recall@3
|
||||||
|
- C=256 → 92.0% Recall@3
|
||||||
|
|
||||||
|
- Stage 4 (Index Sizes, .index only):
|
||||||
|
- Compact: ~2.2 MB
|
||||||
|
- Non-compact: ~82.0 MB
|
||||||
|
- Storage saving by compact: ~97.3%
|
||||||
|
|
||||||
|
- Stage 4 (Search Timing, 988 queries, complexity=88):
|
||||||
|
- Non-compact (no recompute): ~0.0075 s avg per query
|
||||||
|
- Compact (with recompute): ~1.981 s avg per query
|
||||||
|
- Speed ratio (non-compact/compact): ~0.0038x
|
||||||
|
|
||||||
|
- Stage 5 (RAG Generation, 988 queries, Qwen3-8B):
|
||||||
|
- Average generation time: ~22.302 s per query
|
||||||
|
- Total queries processed: 988
|
||||||
|
- LLM backend: HuggingFace transformers
|
||||||
|
- Model: Qwen/Qwen3-8B (thinking model with <think></think> processing)
|
||||||
|
|
||||||
|
Full JSON output is saved by the script (see `--output`), e.g.:
|
||||||
|
`benchmarks/enron_emails/results_enron_stage45.json`.
|
||||||
1
benchmarks/enron_emails/data/.gitignore
vendored
Normal file
1
benchmarks/enron_emails/data/.gitignore
vendored
Normal file
@@ -0,0 +1 @@
|
|||||||
|
downloads/
|
||||||
614
benchmarks/enron_emails/evaluate_enron_emails.py
Normal file
614
benchmarks/enron_emails/evaluate_enron_emails.py
Normal file
@@ -0,0 +1,614 @@
|
|||||||
|
"""
|
||||||
|
Enron Emails Benchmark Evaluation - Retrieval Recall@3 (Stages 2/3/4)
|
||||||
|
Follows the style of FinanceBench/LAION: Stage 2 recall vs FAISS baseline,
|
||||||
|
Stage 3 complexity sweep to target recall, Stage 4 index comparison.
|
||||||
|
On errors, fail fast without fallbacks.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import json
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import pickle
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from leann import LeannBuilder, LeannSearcher
|
||||||
|
from leann_backend_hnsw import faiss
|
||||||
|
|
||||||
|
from ..llm_utils import generate_hf, generate_vllm, load_hf_model, load_vllm_model
|
||||||
|
|
||||||
|
# Setup logging to reduce verbose output
|
||||||
|
logging.basicConfig(level=logging.WARNING)
|
||||||
|
logging.getLogger("leann.api").setLevel(logging.WARNING)
|
||||||
|
logging.getLogger("leann_backend_hnsw").setLevel(logging.WARNING)
|
||||||
|
|
||||||
|
|
||||||
|
class RecallEvaluator:
|
||||||
|
"""Stage 2: Evaluate Recall@3 (LEANN vs FAISS)"""
|
||||||
|
|
||||||
|
def __init__(self, index_path: str, baseline_dir: str):
|
||||||
|
self.index_path = index_path
|
||||||
|
self.baseline_dir = baseline_dir
|
||||||
|
self.searcher = LeannSearcher(index_path)
|
||||||
|
|
||||||
|
baseline_index_path = os.path.join(baseline_dir, "faiss_flat.index")
|
||||||
|
metadata_path = os.path.join(baseline_dir, "metadata.pkl")
|
||||||
|
|
||||||
|
self.faiss_index = faiss.read_index(baseline_index_path)
|
||||||
|
with open(metadata_path, "rb") as f:
|
||||||
|
self.passage_ids = pickle.load(f)
|
||||||
|
|
||||||
|
print(f"📚 Loaded FAISS flat baseline with {self.faiss_index.ntotal} vectors")
|
||||||
|
|
||||||
|
# No fallbacks here; if embedding server is needed but fails, the caller will see the error.
|
||||||
|
|
||||||
|
def evaluate_recall_at_3(
|
||||||
|
self, queries: list[str], complexity: int = 64, recompute_embeddings: bool = True
|
||||||
|
) -> float:
|
||||||
|
"""Evaluate recall@3 using FAISS Flat as ground truth"""
|
||||||
|
from leann.api import compute_embeddings
|
||||||
|
|
||||||
|
recompute_str = "with recompute" if recompute_embeddings else "no recompute"
|
||||||
|
print(f"🔍 Evaluating recall@3 with complexity={complexity} ({recompute_str})...")
|
||||||
|
|
||||||
|
total_recall = 0.0
|
||||||
|
for i, query in enumerate(queries):
|
||||||
|
# Compute query embedding with the same model/mode as the index
|
||||||
|
q_emb = compute_embeddings(
|
||||||
|
[query],
|
||||||
|
self.searcher.embedding_model,
|
||||||
|
mode=self.searcher.embedding_mode,
|
||||||
|
use_server=False,
|
||||||
|
).astype(np.float32)
|
||||||
|
|
||||||
|
# Search FAISS Flat ground truth
|
||||||
|
n = q_emb.shape[0]
|
||||||
|
k = 3
|
||||||
|
distances = np.zeros((n, k), dtype=np.float32)
|
||||||
|
labels = np.zeros((n, k), dtype=np.int64)
|
||||||
|
self.faiss_index.search(
|
||||||
|
n,
|
||||||
|
faiss.swig_ptr(q_emb),
|
||||||
|
k,
|
||||||
|
faiss.swig_ptr(distances),
|
||||||
|
faiss.swig_ptr(labels),
|
||||||
|
)
|
||||||
|
|
||||||
|
baseline_ids = {self.passage_ids[idx] for idx in labels[0]}
|
||||||
|
|
||||||
|
# Search with LEANN (may require embedding server depending on index configuration)
|
||||||
|
results = self.searcher.search(
|
||||||
|
query,
|
||||||
|
top_k=3,
|
||||||
|
complexity=complexity,
|
||||||
|
recompute_embeddings=recompute_embeddings,
|
||||||
|
)
|
||||||
|
test_ids = {r.id for r in results}
|
||||||
|
|
||||||
|
intersection = test_ids.intersection(baseline_ids)
|
||||||
|
recall = len(intersection) / 3.0
|
||||||
|
total_recall += recall
|
||||||
|
|
||||||
|
if i < 3:
|
||||||
|
print(f" Q{i + 1}: '{query[:60]}...' -> Recall@3: {recall:.3f}")
|
||||||
|
print(f" FAISS: {list(baseline_ids)}")
|
||||||
|
print(f" LEANN: {list(test_ids)}")
|
||||||
|
print(f" ∩: {list(intersection)}")
|
||||||
|
|
||||||
|
avg = total_recall / max(1, len(queries))
|
||||||
|
print(f"📊 Average Recall@3: {avg:.3f} ({avg * 100:.1f}%)")
|
||||||
|
return avg
|
||||||
|
|
||||||
|
def cleanup(self):
|
||||||
|
if hasattr(self, "searcher"):
|
||||||
|
self.searcher.cleanup()
|
||||||
|
|
||||||
|
|
||||||
|
class EnronEvaluator:
|
||||||
|
def __init__(self, index_path: str):
|
||||||
|
self.index_path = index_path
|
||||||
|
self.searcher = LeannSearcher(index_path)
|
||||||
|
|
||||||
|
def load_queries(self, queries_file: str) -> list[str]:
|
||||||
|
queries: list[str] = []
|
||||||
|
with open(queries_file, encoding="utf-8") as f:
|
||||||
|
for line in f:
|
||||||
|
if not line.strip():
|
||||||
|
continue
|
||||||
|
data = json.loads(line)
|
||||||
|
if "query" in data:
|
||||||
|
queries.append(data["query"])
|
||||||
|
print(f"📊 Loaded {len(queries)} queries from {queries_file}")
|
||||||
|
return queries
|
||||||
|
|
||||||
|
def cleanup(self):
|
||||||
|
if self.searcher:
|
||||||
|
self.searcher.cleanup()
|
||||||
|
|
||||||
|
def analyze_index_sizes(self) -> dict:
|
||||||
|
"""Analyze index sizes (.index only), similar to LAION bench."""
|
||||||
|
|
||||||
|
print("📏 Analyzing index sizes (.index only)...")
|
||||||
|
index_path = Path(self.index_path)
|
||||||
|
index_dir = index_path.parent
|
||||||
|
index_name = index_path.stem
|
||||||
|
|
||||||
|
sizes: dict[str, float] = {}
|
||||||
|
index_file = index_dir / f"{index_name}.index"
|
||||||
|
meta_file = index_dir / f"{index_path.name}.meta.json"
|
||||||
|
passages_file = index_dir / f"{index_path.name}.passages.jsonl"
|
||||||
|
passages_idx_file = index_dir / f"{index_path.name}.passages.idx"
|
||||||
|
|
||||||
|
sizes["index_only_mb"] = (
|
||||||
|
index_file.stat().st_size / (1024 * 1024) if index_file.exists() else 0.0
|
||||||
|
)
|
||||||
|
sizes["metadata_mb"] = (
|
||||||
|
meta_file.stat().st_size / (1024 * 1024) if meta_file.exists() else 0.0
|
||||||
|
)
|
||||||
|
sizes["passages_text_mb"] = (
|
||||||
|
passages_file.stat().st_size / (1024 * 1024) if passages_file.exists() else 0.0
|
||||||
|
)
|
||||||
|
sizes["passages_index_mb"] = (
|
||||||
|
passages_idx_file.stat().st_size / (1024 * 1024) if passages_idx_file.exists() else 0.0
|
||||||
|
)
|
||||||
|
|
||||||
|
print(f" 📁 .index size: {sizes['index_only_mb']:.1f} MB")
|
||||||
|
return sizes
|
||||||
|
|
||||||
|
def create_non_compact_index_for_comparison(self, non_compact_index_path: str) -> dict:
|
||||||
|
"""Create a non-compact index for comparison using current passages and embeddings."""
|
||||||
|
|
||||||
|
current_index_path = Path(self.index_path)
|
||||||
|
current_index_dir = current_index_path.parent
|
||||||
|
current_index_name = current_index_path.name
|
||||||
|
|
||||||
|
# Read metadata to get passage source and embedding model
|
||||||
|
meta_path = current_index_dir / f"{current_index_name}.meta.json"
|
||||||
|
with open(meta_path, encoding="utf-8") as f:
|
||||||
|
meta = json.load(f)
|
||||||
|
|
||||||
|
passage_source = meta["passage_sources"][0]
|
||||||
|
passage_file = passage_source["path"]
|
||||||
|
|
||||||
|
# Convert relative path to absolute
|
||||||
|
if not Path(passage_file).is_absolute():
|
||||||
|
passage_file = current_index_dir / Path(passage_file).name
|
||||||
|
|
||||||
|
# Load all passages and ids
|
||||||
|
ids: list[str] = []
|
||||||
|
texts: list[str] = []
|
||||||
|
with open(passage_file, encoding="utf-8") as f:
|
||||||
|
for line in f:
|
||||||
|
if line.strip():
|
||||||
|
data = json.loads(line)
|
||||||
|
ids.append(str(data["id"]))
|
||||||
|
texts.append(data["text"])
|
||||||
|
|
||||||
|
# Compute embeddings using the same method as LEANN
|
||||||
|
from leann.api import compute_embeddings
|
||||||
|
|
||||||
|
embeddings = compute_embeddings(
|
||||||
|
texts,
|
||||||
|
meta["embedding_model"],
|
||||||
|
mode=meta.get("embedding_mode", "sentence-transformers"),
|
||||||
|
use_server=False,
|
||||||
|
).astype(np.float32)
|
||||||
|
|
||||||
|
# Build non-compact index with same passages and embeddings
|
||||||
|
builder = LeannBuilder(
|
||||||
|
backend_name="hnsw",
|
||||||
|
embedding_model=meta["embedding_model"],
|
||||||
|
embedding_mode=meta.get("embedding_mode", "sentence-transformers"),
|
||||||
|
is_recompute=False,
|
||||||
|
is_compact=False,
|
||||||
|
**{
|
||||||
|
k: v
|
||||||
|
for k, v in meta.get("backend_kwargs", {}).items()
|
||||||
|
if k not in ["is_recompute", "is_compact"]
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
# Persist a pickle for build_index_from_embeddings
|
||||||
|
pkl_path = current_index_dir / f"{Path(non_compact_index_path).stem}_embeddings.pkl"
|
||||||
|
with open(pkl_path, "wb") as pf:
|
||||||
|
pickle.dump((ids, embeddings), pf)
|
||||||
|
|
||||||
|
print(
|
||||||
|
f"🔨 Building non-compact index at {non_compact_index_path} from precomputed embeddings..."
|
||||||
|
)
|
||||||
|
builder.build_index_from_embeddings(non_compact_index_path, str(pkl_path))
|
||||||
|
|
||||||
|
# Analyze the non-compact index size
|
||||||
|
temp_evaluator = EnronEvaluator(non_compact_index_path)
|
||||||
|
non_compact_sizes = temp_evaluator.analyze_index_sizes()
|
||||||
|
non_compact_sizes["index_type"] = "non_compact"
|
||||||
|
|
||||||
|
return non_compact_sizes
|
||||||
|
|
||||||
|
def compare_index_performance(
|
||||||
|
self, non_compact_path: str, compact_path: str, test_queries: list[str], complexity: int
|
||||||
|
) -> dict:
|
||||||
|
"""Compare search speed for non-compact vs compact indexes."""
|
||||||
|
import time
|
||||||
|
|
||||||
|
results: dict = {
|
||||||
|
"non_compact": {"search_times": []},
|
||||||
|
"compact": {"search_times": []},
|
||||||
|
"avg_search_times": {},
|
||||||
|
"speed_ratio": 0.0,
|
||||||
|
"retrieval_results": [], # Store retrieval results for Stage 5
|
||||||
|
}
|
||||||
|
|
||||||
|
print("⚡ Comparing search performance between indexes...")
|
||||||
|
# Non-compact (no recompute)
|
||||||
|
print(" 🔍 Testing non-compact index (no recompute)...")
|
||||||
|
non_compact_searcher = LeannSearcher(non_compact_path)
|
||||||
|
for q in test_queries:
|
||||||
|
t0 = time.time()
|
||||||
|
_ = non_compact_searcher.search(
|
||||||
|
q, top_k=3, complexity=complexity, recompute_embeddings=False
|
||||||
|
)
|
||||||
|
results["non_compact"]["search_times"].append(time.time() - t0)
|
||||||
|
|
||||||
|
# Compact (with recompute). Fail fast if it cannot run.
|
||||||
|
print(" 🔍 Testing compact index (with recompute)...")
|
||||||
|
compact_searcher = LeannSearcher(compact_path)
|
||||||
|
for q in test_queries:
|
||||||
|
t0 = time.time()
|
||||||
|
docs = compact_searcher.search(
|
||||||
|
q, top_k=3, complexity=complexity, recompute_embeddings=True
|
||||||
|
)
|
||||||
|
results["compact"]["search_times"].append(time.time() - t0)
|
||||||
|
|
||||||
|
# Store retrieval results for Stage 5
|
||||||
|
results["retrieval_results"].append(
|
||||||
|
{"query": q, "retrieved_docs": [{"id": doc.id, "text": doc.text} for doc in docs]}
|
||||||
|
)
|
||||||
|
compact_searcher.cleanup()
|
||||||
|
|
||||||
|
if results["non_compact"]["search_times"]:
|
||||||
|
results["avg_search_times"]["non_compact"] = sum(
|
||||||
|
results["non_compact"]["search_times"]
|
||||||
|
) / len(results["non_compact"]["search_times"])
|
||||||
|
if results["compact"]["search_times"]:
|
||||||
|
results["avg_search_times"]["compact"] = sum(results["compact"]["search_times"]) / len(
|
||||||
|
results["compact"]["search_times"]
|
||||||
|
)
|
||||||
|
if results["avg_search_times"].get("compact", 0) > 0:
|
||||||
|
results["speed_ratio"] = (
|
||||||
|
results["avg_search_times"]["non_compact"] / results["avg_search_times"]["compact"]
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
results["speed_ratio"] = 0.0
|
||||||
|
|
||||||
|
non_compact_searcher.cleanup()
|
||||||
|
return results
|
||||||
|
|
||||||
|
def evaluate_complexity(
|
||||||
|
self,
|
||||||
|
recall_eval: "RecallEvaluator",
|
||||||
|
queries: list[str],
|
||||||
|
target: float = 0.90,
|
||||||
|
c_min: int = 8,
|
||||||
|
c_max: int = 256,
|
||||||
|
max_iters: int = 10,
|
||||||
|
recompute: bool = False,
|
||||||
|
) -> dict:
|
||||||
|
"""Binary search minimal complexity achieving target recall (monotonic assumption)."""
|
||||||
|
|
||||||
|
def round_c(x: int) -> int:
|
||||||
|
# snap to multiple of 8 like other benches typically do
|
||||||
|
return max(1, int((x + 7) // 8) * 8)
|
||||||
|
|
||||||
|
metrics: list[dict] = []
|
||||||
|
|
||||||
|
lo = round_c(c_min)
|
||||||
|
hi = round_c(c_max)
|
||||||
|
|
||||||
|
print(
|
||||||
|
f"🧪 Binary search complexity in [{lo}, {hi}] for target Recall@3>={int(target * 100)}%..."
|
||||||
|
)
|
||||||
|
|
||||||
|
# Ensure upper bound can reach target; expand if needed (up to a cap)
|
||||||
|
r_lo = recall_eval.evaluate_recall_at_3(
|
||||||
|
queries, complexity=lo, recompute_embeddings=recompute
|
||||||
|
)
|
||||||
|
metrics.append({"complexity": lo, "recall_at_3": r_lo})
|
||||||
|
r_hi = recall_eval.evaluate_recall_at_3(
|
||||||
|
queries, complexity=hi, recompute_embeddings=recompute
|
||||||
|
)
|
||||||
|
metrics.append({"complexity": hi, "recall_at_3": r_hi})
|
||||||
|
|
||||||
|
cap = 1024
|
||||||
|
while r_hi < target and hi < cap:
|
||||||
|
lo = hi
|
||||||
|
r_lo = r_hi
|
||||||
|
hi = round_c(hi * 2)
|
||||||
|
r_hi = recall_eval.evaluate_recall_at_3(
|
||||||
|
queries, complexity=hi, recompute_embeddings=recompute
|
||||||
|
)
|
||||||
|
metrics.append({"complexity": hi, "recall_at_3": r_hi})
|
||||||
|
|
||||||
|
if r_hi < target:
|
||||||
|
print(f"⚠️ Max complexity {hi} did not reach target recall {target:.2f}.")
|
||||||
|
print("📈 Observations:")
|
||||||
|
for m in metrics:
|
||||||
|
print(f" C={m['complexity']:>4} -> Recall@3={m['recall_at_3'] * 100:.1f}%")
|
||||||
|
return {"metrics": metrics, "best_complexity": None, "target_recall": target}
|
||||||
|
|
||||||
|
# Binary search within [lo, hi]
|
||||||
|
best = hi
|
||||||
|
iters = 0
|
||||||
|
while lo < hi and iters < max_iters:
|
||||||
|
mid = round_c((lo + hi) // 2)
|
||||||
|
r_mid = recall_eval.evaluate_recall_at_3(
|
||||||
|
queries, complexity=mid, recompute_embeddings=recompute
|
||||||
|
)
|
||||||
|
metrics.append({"complexity": mid, "recall_at_3": r_mid})
|
||||||
|
if r_mid >= target:
|
||||||
|
best = mid
|
||||||
|
hi = mid
|
||||||
|
else:
|
||||||
|
lo = mid + 8 # move past mid, respecting multiple-of-8 step
|
||||||
|
iters += 1
|
||||||
|
|
||||||
|
print("📈 Binary search results (sampled points):")
|
||||||
|
# Print unique complexity entries ordered by complexity
|
||||||
|
for m in sorted(
|
||||||
|
{m["complexity"]: m for m in metrics}.values(), key=lambda x: x["complexity"]
|
||||||
|
):
|
||||||
|
print(f" C={m['complexity']:>4} -> Recall@3={m['recall_at_3'] * 100:.1f}%")
|
||||||
|
print(f"✅ Minimal complexity achieving {int(target * 100)}% recall: {best}")
|
||||||
|
return {"metrics": metrics, "best_complexity": best, "target_recall": target}
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = argparse.ArgumentParser(description="Enron Emails Benchmark Evaluation")
|
||||||
|
parser.add_argument("--index", required=True, help="Path to LEANN index")
|
||||||
|
parser.add_argument(
|
||||||
|
"--queries", default="data/evaluation_queries.jsonl", help="Path to evaluation queries"
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--stage",
|
||||||
|
choices=["2", "3", "4", "5", "all", "45"],
|
||||||
|
default="all",
|
||||||
|
help="Which stage to run (2=recall, 3=complexity, 4=index comparison, 5=generation)",
|
||||||
|
)
|
||||||
|
parser.add_argument("--complexity", type=int, default=None, help="LEANN search complexity")
|
||||||
|
parser.add_argument("--baseline-dir", default="baseline", help="Baseline output directory")
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-queries", type=int, help="Limit number of queries to evaluate", default=1000
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--target-recall", type=float, default=0.90, help="Target Recall@3 for Stage 3"
|
||||||
|
)
|
||||||
|
parser.add_argument("--output", help="Save results to JSON file")
|
||||||
|
parser.add_argument("--llm-backend", choices=["hf", "vllm"], default="hf", help="LLM backend")
|
||||||
|
parser.add_argument("--model-name", default="Qwen/Qwen3-8B", help="Model name")
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
# Resolve queries file: if default path not found, fall back to index's directory
|
||||||
|
if not os.path.exists(args.queries):
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
idx_dir = Path(args.index).parent
|
||||||
|
fallback_q = idx_dir / "evaluation_queries.jsonl"
|
||||||
|
if fallback_q.exists():
|
||||||
|
args.queries = str(fallback_q)
|
||||||
|
|
||||||
|
baseline_index_path = os.path.join(args.baseline_dir, "faiss_flat.index")
|
||||||
|
if not os.path.exists(baseline_index_path):
|
||||||
|
print(f"❌ FAISS baseline not found at {baseline_index_path}")
|
||||||
|
print("💡 Please run setup_enron_emails.py first to build the baseline")
|
||||||
|
raise SystemExit(1)
|
||||||
|
|
||||||
|
results_out: dict = {}
|
||||||
|
|
||||||
|
if args.stage in ("2", "all"):
|
||||||
|
print("🚀 Starting Stage 2: Recall@3 evaluation")
|
||||||
|
evaluator = RecallEvaluator(args.index, args.baseline_dir)
|
||||||
|
|
||||||
|
enron_eval = EnronEvaluator(args.index)
|
||||||
|
queries = enron_eval.load_queries(args.queries)
|
||||||
|
queries = queries[:10]
|
||||||
|
print(f"🧪 Using first {len(queries)} queries")
|
||||||
|
|
||||||
|
complexity = args.complexity or 64
|
||||||
|
r = evaluator.evaluate_recall_at_3(queries, complexity)
|
||||||
|
results_out["stage2"] = {"complexity": complexity, "recall_at_3": r}
|
||||||
|
evaluator.cleanup()
|
||||||
|
enron_eval.cleanup()
|
||||||
|
print("✅ Stage 2 completed!\n")
|
||||||
|
|
||||||
|
if args.stage in ("3", "all"):
|
||||||
|
print("🚀 Starting Stage 3: Binary search for target recall (no recompute)")
|
||||||
|
enron_eval = EnronEvaluator(args.index)
|
||||||
|
queries = enron_eval.load_queries(args.queries)
|
||||||
|
queries = queries[: args.max_queries]
|
||||||
|
print(f"🧪 Using first {len(queries)} queries")
|
||||||
|
|
||||||
|
# Build non-compact index for fast binary search (recompute_embeddings=False)
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
index_path = Path(args.index)
|
||||||
|
non_compact_index_path = str(index_path.parent / f"{index_path.stem}_noncompact.leann")
|
||||||
|
enron_eval.create_non_compact_index_for_comparison(non_compact_index_path)
|
||||||
|
|
||||||
|
# Use non-compact evaluator for binary search with recompute=False
|
||||||
|
evaluator_nc = RecallEvaluator(non_compact_index_path, args.baseline_dir)
|
||||||
|
sweep = enron_eval.evaluate_complexity(
|
||||||
|
evaluator_nc, queries, target=args.target_recall, recompute=False
|
||||||
|
)
|
||||||
|
results_out["stage3"] = sweep
|
||||||
|
# Persist default stage 3 results near the index for Stage 4 auto-pickup
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
default_stage3_path = Path(args.index).parent / "enron_stage3_results.json"
|
||||||
|
with open(default_stage3_path, "w", encoding="utf-8") as f:
|
||||||
|
json.dump({"stage3": sweep}, f, indent=2)
|
||||||
|
print(f"📝 Saved Stage 3 summary to {default_stage3_path}")
|
||||||
|
evaluator_nc.cleanup()
|
||||||
|
enron_eval.cleanup()
|
||||||
|
print("✅ Stage 3 completed!\n")
|
||||||
|
|
||||||
|
if args.stage in ("4", "all", "45"):
|
||||||
|
print("🚀 Starting Stage 4: Index size + performance comparison")
|
||||||
|
evaluator = RecallEvaluator(args.index, args.baseline_dir)
|
||||||
|
enron_eval = EnronEvaluator(args.index)
|
||||||
|
queries = enron_eval.load_queries(args.queries)
|
||||||
|
test_q = queries[: min(args.max_queries, len(queries))]
|
||||||
|
|
||||||
|
current_sizes = enron_eval.analyze_index_sizes()
|
||||||
|
# Build non-compact index for comparison (no fallback)
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
index_path = Path(args.index)
|
||||||
|
non_compact_path = str(index_path.parent / f"{index_path.stem}_noncompact.leann")
|
||||||
|
non_compact_sizes = enron_eval.create_non_compact_index_for_comparison(non_compact_path)
|
||||||
|
nc_eval = EnronEvaluator(non_compact_path)
|
||||||
|
|
||||||
|
if (
|
||||||
|
current_sizes.get("index_only_mb", 0) > 0
|
||||||
|
and non_compact_sizes.get("index_only_mb", 0) > 0
|
||||||
|
):
|
||||||
|
storage_saving_percent = max(
|
||||||
|
0.0,
|
||||||
|
100.0 * (1.0 - current_sizes["index_only_mb"] / non_compact_sizes["index_only_mb"]),
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
storage_saving_percent = 0.0
|
||||||
|
|
||||||
|
if args.complexity is None:
|
||||||
|
# Prefer in-session Stage 3 result
|
||||||
|
if "stage3" in results_out and results_out["stage3"].get("best_complexity") is not None:
|
||||||
|
complexity = results_out["stage3"]["best_complexity"]
|
||||||
|
print(f"📥 Using best complexity from Stage 3 in-session: {complexity}")
|
||||||
|
else:
|
||||||
|
# Try to load last saved Stage 3 result near index
|
||||||
|
default_stage3_path = Path(args.index).parent / "enron_stage3_results.json"
|
||||||
|
if default_stage3_path.exists():
|
||||||
|
with open(default_stage3_path, encoding="utf-8") as f:
|
||||||
|
prev = json.load(f)
|
||||||
|
complexity = prev.get("stage3", {}).get("best_complexity")
|
||||||
|
if complexity is None:
|
||||||
|
raise SystemExit(
|
||||||
|
"❌ Stage 4: No --complexity and no best_complexity found in saved Stage 3 results"
|
||||||
|
)
|
||||||
|
print(f"📥 Using best complexity from saved Stage 3: {complexity}")
|
||||||
|
else:
|
||||||
|
raise SystemExit(
|
||||||
|
"❌ Stage 4 requires --complexity if Stage 3 hasn't been run. Run stage 3 first or pass --complexity."
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
complexity = args.complexity
|
||||||
|
|
||||||
|
comp = enron_eval.compare_index_performance(
|
||||||
|
non_compact_path, args.index, test_q, complexity=complexity
|
||||||
|
)
|
||||||
|
results_out["stage4"] = {
|
||||||
|
"current_index": current_sizes,
|
||||||
|
"non_compact_index": non_compact_sizes,
|
||||||
|
"storage_saving_percent": storage_saving_percent,
|
||||||
|
"performance_comparison": comp,
|
||||||
|
}
|
||||||
|
nc_eval.cleanup()
|
||||||
|
evaluator.cleanup()
|
||||||
|
enron_eval.cleanup()
|
||||||
|
print("✅ Stage 4 completed!\n")
|
||||||
|
|
||||||
|
if args.stage in ("5", "all"):
|
||||||
|
print("🚀 Starting Stage 5: Generation evaluation with Qwen3-8B")
|
||||||
|
|
||||||
|
# Check if Stage 4 results exist
|
||||||
|
if "stage4" not in results_out or "performance_comparison" not in results_out["stage4"]:
|
||||||
|
print("❌ Stage 5 requires Stage 4 retrieval results")
|
||||||
|
print("💡 Run Stage 4 first or use --stage all")
|
||||||
|
raise SystemExit(1)
|
||||||
|
|
||||||
|
retrieval_results = results_out["stage4"]["performance_comparison"]["retrieval_results"]
|
||||||
|
if not retrieval_results:
|
||||||
|
print("❌ No retrieval results found from Stage 4")
|
||||||
|
raise SystemExit(1)
|
||||||
|
|
||||||
|
print(f"📁 Using {len(retrieval_results)} retrieval results from Stage 4")
|
||||||
|
|
||||||
|
# Load LLM
|
||||||
|
try:
|
||||||
|
if args.llm_backend == "hf":
|
||||||
|
tokenizer, model = load_hf_model(args.model_name)
|
||||||
|
|
||||||
|
def llm_func(prompt):
|
||||||
|
return generate_hf(tokenizer, model, prompt)
|
||||||
|
else: # vllm
|
||||||
|
llm, sampling_params = load_vllm_model(args.model_name)
|
||||||
|
|
||||||
|
def llm_func(prompt):
|
||||||
|
return generate_vllm(llm, sampling_params, prompt)
|
||||||
|
|
||||||
|
# Run generation using stored retrieval results
|
||||||
|
import time
|
||||||
|
|
||||||
|
from llm_utils import create_prompt
|
||||||
|
|
||||||
|
generation_times = []
|
||||||
|
responses = []
|
||||||
|
|
||||||
|
print("🤖 Running generation on pre-retrieved results...")
|
||||||
|
for i, item in enumerate(retrieval_results):
|
||||||
|
query = item["query"]
|
||||||
|
retrieved_docs = item["retrieved_docs"]
|
||||||
|
|
||||||
|
# Prepare context from retrieved docs
|
||||||
|
context = "\n\n".join([doc["text"] for doc in retrieved_docs])
|
||||||
|
prompt = create_prompt(context, query, "emails")
|
||||||
|
|
||||||
|
# Time generation only
|
||||||
|
gen_start = time.time()
|
||||||
|
response = llm_func(prompt)
|
||||||
|
gen_time = time.time() - gen_start
|
||||||
|
|
||||||
|
generation_times.append(gen_time)
|
||||||
|
responses.append(response)
|
||||||
|
|
||||||
|
if i < 3:
|
||||||
|
print(f" Q{i + 1}: Gen={gen_time:.3f}s")
|
||||||
|
|
||||||
|
avg_gen_time = sum(generation_times) / len(generation_times)
|
||||||
|
|
||||||
|
print("\n📊 Generation Results:")
|
||||||
|
print(f" Total Queries: {len(retrieval_results)}")
|
||||||
|
print(f" Avg Generation Time: {avg_gen_time:.3f}s")
|
||||||
|
print(" (Search time from Stage 4)")
|
||||||
|
|
||||||
|
results_out["stage5"] = {
|
||||||
|
"total_queries": len(retrieval_results),
|
||||||
|
"avg_generation_time": avg_gen_time,
|
||||||
|
"generation_times": generation_times,
|
||||||
|
"responses": responses,
|
||||||
|
}
|
||||||
|
|
||||||
|
# Show sample results
|
||||||
|
print("\n📝 Sample Results:")
|
||||||
|
for i in range(min(3, len(retrieval_results))):
|
||||||
|
query = retrieval_results[i]["query"]
|
||||||
|
response = responses[i]
|
||||||
|
print(f" Q{i + 1}: {query[:60]}...")
|
||||||
|
print(f" A{i + 1}: {response[:100]}...")
|
||||||
|
print()
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"❌ Generation evaluation failed: {e}")
|
||||||
|
print("💡 Make sure transformers/vllm is installed and model is available")
|
||||||
|
|
||||||
|
print("✅ Stage 5 completed!\n")
|
||||||
|
|
||||||
|
if args.output and results_out:
|
||||||
|
with open(args.output, "w", encoding="utf-8") as f:
|
||||||
|
json.dump(results_out, f, indent=2)
|
||||||
|
print(f"📝 Saved results to {args.output}")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
359
benchmarks/enron_emails/setup_enron_emails.py
Normal file
359
benchmarks/enron_emails/setup_enron_emails.py
Normal file
@@ -0,0 +1,359 @@
|
|||||||
|
"""
|
||||||
|
Enron Emails Benchmark Setup Script
|
||||||
|
Prepares passages from emails.csv, builds LEANN index, and FAISS Flat baseline
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import csv
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
import re
|
||||||
|
from collections.abc import Iterable
|
||||||
|
from email import message_from_string
|
||||||
|
from email.policy import default
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
from leann import LeannBuilder
|
||||||
|
|
||||||
|
|
||||||
|
class EnronSetup:
|
||||||
|
def __init__(self, data_dir: str = "data"):
|
||||||
|
self.data_dir = Path(data_dir)
|
||||||
|
self.data_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
self.passages_preview = self.data_dir / "enron_passages_preview.jsonl"
|
||||||
|
self.index_path = self.data_dir / "enron_index_hnsw.leann"
|
||||||
|
self.queries_file = self.data_dir / "evaluation_queries.jsonl"
|
||||||
|
self.downloads_dir = self.data_dir / "downloads"
|
||||||
|
self.downloads_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
# ----------------------------
|
||||||
|
# Dataset acquisition
|
||||||
|
# ----------------------------
|
||||||
|
def ensure_emails_csv(self, emails_csv: Optional[str]) -> str:
|
||||||
|
"""Return a path to emails.csv, downloading from Kaggle if needed."""
|
||||||
|
if emails_csv:
|
||||||
|
p = Path(emails_csv)
|
||||||
|
if not p.exists():
|
||||||
|
raise FileNotFoundError(f"emails.csv not found: {emails_csv}")
|
||||||
|
return str(p)
|
||||||
|
|
||||||
|
print(
|
||||||
|
"📥 Trying to download Enron emails.csv from Kaggle (wcukierski/enron-email-dataset)..."
|
||||||
|
)
|
||||||
|
try:
|
||||||
|
from kaggle.api.kaggle_api_extended import KaggleApi
|
||||||
|
|
||||||
|
api = KaggleApi()
|
||||||
|
api.authenticate()
|
||||||
|
api.dataset_download_files(
|
||||||
|
"wcukierski/enron-email-dataset", path=str(self.downloads_dir), unzip=True
|
||||||
|
)
|
||||||
|
candidate = self.downloads_dir / "emails.csv"
|
||||||
|
if candidate.exists():
|
||||||
|
print(f"✅ Downloaded emails.csv: {candidate}")
|
||||||
|
return str(candidate)
|
||||||
|
else:
|
||||||
|
raise FileNotFoundError(
|
||||||
|
f"emails.csv was not found in {self.downloads_dir} after Kaggle download"
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
print(
|
||||||
|
"❌ Could not download via Kaggle automatically. Provide --emails-csv or configure Kaggle API."
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
" Set KAGGLE_USERNAME and KAGGLE_KEY env vars, or place emails.csv locally and pass --emails-csv."
|
||||||
|
)
|
||||||
|
raise e
|
||||||
|
|
||||||
|
# ----------------------------
|
||||||
|
# Data preparation
|
||||||
|
# ----------------------------
|
||||||
|
@staticmethod
|
||||||
|
def _extract_message_id(raw_email: str) -> str:
|
||||||
|
msg = message_from_string(raw_email, policy=default)
|
||||||
|
val = msg.get("Message-ID", "")
|
||||||
|
if val.startswith("<") and val.endswith(">"):
|
||||||
|
val = val[1:-1]
|
||||||
|
return val or ""
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _split_header_body(raw_email: str) -> tuple[str, str]:
|
||||||
|
parts = raw_email.split("\n\n", 1)
|
||||||
|
if len(parts) == 2:
|
||||||
|
return parts[0].strip(), parts[1].strip()
|
||||||
|
# Heuristic fallback
|
||||||
|
first_lines = raw_email.splitlines()
|
||||||
|
if first_lines and ":" in first_lines[0]:
|
||||||
|
return raw_email.strip(), ""
|
||||||
|
return "", raw_email.strip()
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _split_fixed_words(text: str, chunk_words: int, keep_last: bool) -> list[str]:
|
||||||
|
text = (text or "").strip()
|
||||||
|
if not text:
|
||||||
|
return []
|
||||||
|
if chunk_words <= 0:
|
||||||
|
return [text]
|
||||||
|
words = text.split()
|
||||||
|
if not words:
|
||||||
|
return []
|
||||||
|
limit = len(words)
|
||||||
|
if not keep_last:
|
||||||
|
limit = (len(words) // chunk_words) * chunk_words
|
||||||
|
if limit == 0:
|
||||||
|
return []
|
||||||
|
chunks = [" ".join(words[i : i + chunk_words]) for i in range(0, limit, chunk_words)]
|
||||||
|
return [c for c in (s.strip() for s in chunks) if c]
|
||||||
|
|
||||||
|
def _iter_passages_from_csv(
|
||||||
|
self,
|
||||||
|
emails_csv: Path,
|
||||||
|
chunk_words: int = 256,
|
||||||
|
keep_last_header: bool = True,
|
||||||
|
keep_last_body: bool = True,
|
||||||
|
max_emails: int | None = None,
|
||||||
|
) -> Iterable[dict]:
|
||||||
|
with open(emails_csv, encoding="utf-8") as f:
|
||||||
|
reader = csv.DictReader(f)
|
||||||
|
count = 0
|
||||||
|
for i, row in enumerate(reader):
|
||||||
|
if max_emails is not None and count >= max_emails:
|
||||||
|
break
|
||||||
|
|
||||||
|
raw_message = row.get("message", "")
|
||||||
|
email_file_id = row.get("file", "")
|
||||||
|
|
||||||
|
if not raw_message.strip():
|
||||||
|
continue
|
||||||
|
|
||||||
|
message_id = self._extract_message_id(raw_message)
|
||||||
|
if not message_id:
|
||||||
|
# Fallback ID based on CSV position and file path
|
||||||
|
safe_file = re.sub(r"[^A-Za-z0-9_.-]", "_", email_file_id)
|
||||||
|
message_id = f"enron_{i}_{safe_file}"
|
||||||
|
|
||||||
|
header, body = self._split_header_body(raw_message)
|
||||||
|
|
||||||
|
# Header chunks
|
||||||
|
for chunk in self._split_fixed_words(header, chunk_words, keep_last_header):
|
||||||
|
yield {
|
||||||
|
"text": chunk,
|
||||||
|
"metadata": {
|
||||||
|
"message_id": message_id,
|
||||||
|
"is_header": True,
|
||||||
|
"email_file_id": email_file_id,
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
# Body chunks
|
||||||
|
for chunk in self._split_fixed_words(body, chunk_words, keep_last_body):
|
||||||
|
yield {
|
||||||
|
"text": chunk,
|
||||||
|
"metadata": {
|
||||||
|
"message_id": message_id,
|
||||||
|
"is_header": False,
|
||||||
|
"email_file_id": email_file_id,
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
count += 1
|
||||||
|
|
||||||
|
# ----------------------------
|
||||||
|
# Build LEANN index and FAISS baseline
|
||||||
|
# ----------------------------
|
||||||
|
def build_leann_index(
|
||||||
|
self,
|
||||||
|
emails_csv: Optional[str],
|
||||||
|
backend: str = "hnsw",
|
||||||
|
embedding_model: str = "sentence-transformers/all-mpnet-base-v2",
|
||||||
|
chunk_words: int = 256,
|
||||||
|
max_emails: int | None = None,
|
||||||
|
) -> str:
|
||||||
|
emails_csv_path = self.ensure_emails_csv(emails_csv)
|
||||||
|
print(f"🏗️ Building LEANN index from {emails_csv_path}...")
|
||||||
|
|
||||||
|
builder = LeannBuilder(
|
||||||
|
backend_name=backend,
|
||||||
|
embedding_model=embedding_model,
|
||||||
|
embedding_mode="sentence-transformers",
|
||||||
|
graph_degree=32,
|
||||||
|
complexity=64,
|
||||||
|
is_recompute=True,
|
||||||
|
is_compact=True,
|
||||||
|
num_threads=4,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Stream passages and add to builder
|
||||||
|
preview_written = 0
|
||||||
|
with open(self.passages_preview, "w", encoding="utf-8") as preview_out:
|
||||||
|
for p in self._iter_passages_from_csv(
|
||||||
|
Path(emails_csv_path), chunk_words=chunk_words, max_emails=max_emails
|
||||||
|
):
|
||||||
|
builder.add_text(p["text"], metadata=p["metadata"])
|
||||||
|
if preview_written < 200:
|
||||||
|
preview_out.write(json.dumps({"text": p["text"][:200], **p["metadata"]}) + "\n")
|
||||||
|
preview_written += 1
|
||||||
|
|
||||||
|
print(f"🔨 Building index at {self.index_path}...")
|
||||||
|
builder.build_index(str(self.index_path))
|
||||||
|
print("✅ LEANN index built!")
|
||||||
|
return str(self.index_path)
|
||||||
|
|
||||||
|
def build_faiss_flat_baseline(self, index_path: str, output_dir: str = "baseline") -> str:
|
||||||
|
print("🔨 Building FAISS Flat baseline from LEANN passages...")
|
||||||
|
|
||||||
|
import pickle
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from leann.api import compute_embeddings
|
||||||
|
from leann_backend_hnsw import faiss
|
||||||
|
|
||||||
|
os.makedirs(output_dir, exist_ok=True)
|
||||||
|
baseline_path = os.path.join(output_dir, "faiss_flat.index")
|
||||||
|
metadata_path = os.path.join(output_dir, "metadata.pkl")
|
||||||
|
|
||||||
|
if os.path.exists(baseline_path) and os.path.exists(metadata_path):
|
||||||
|
print(f"✅ Baseline already exists at {baseline_path}")
|
||||||
|
return baseline_path
|
||||||
|
|
||||||
|
# Read meta for passage source and embedding model
|
||||||
|
meta_path = f"{index_path}.meta.json"
|
||||||
|
with open(meta_path, encoding="utf-8") as f:
|
||||||
|
meta = json.load(f)
|
||||||
|
|
||||||
|
embedding_model = meta["embedding_model"]
|
||||||
|
passage_source = meta["passage_sources"][0]
|
||||||
|
passage_file = passage_source["path"]
|
||||||
|
|
||||||
|
if not os.path.isabs(passage_file):
|
||||||
|
index_dir = os.path.dirname(index_path)
|
||||||
|
passage_file = os.path.join(index_dir, os.path.basename(passage_file))
|
||||||
|
|
||||||
|
# Load passages from builder output so IDs match LEANN
|
||||||
|
passages: list[str] = []
|
||||||
|
passage_ids: list[str] = []
|
||||||
|
with open(passage_file, encoding="utf-8") as f:
|
||||||
|
for line in f:
|
||||||
|
if not line.strip():
|
||||||
|
continue
|
||||||
|
data = json.loads(line)
|
||||||
|
passages.append(data["text"])
|
||||||
|
passage_ids.append(data["id"]) # builder-assigned ID
|
||||||
|
|
||||||
|
print(f"📄 Loaded {len(passages)} passages for baseline")
|
||||||
|
print(f"🤖 Embedding model: {embedding_model}")
|
||||||
|
|
||||||
|
embeddings = compute_embeddings(
|
||||||
|
passages,
|
||||||
|
embedding_model,
|
||||||
|
mode="sentence-transformers",
|
||||||
|
use_server=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Build FAISS IndexFlatIP
|
||||||
|
dim = embeddings.shape[1]
|
||||||
|
index = faiss.IndexFlatIP(dim)
|
||||||
|
emb_f32 = embeddings.astype(np.float32)
|
||||||
|
index.add(emb_f32.shape[0], faiss.swig_ptr(emb_f32))
|
||||||
|
|
||||||
|
faiss.write_index(index, baseline_path)
|
||||||
|
with open(metadata_path, "wb") as pf:
|
||||||
|
pickle.dump(passage_ids, pf)
|
||||||
|
|
||||||
|
print(f"✅ FAISS baseline saved: {baseline_path}")
|
||||||
|
print(f"✅ Metadata saved: {metadata_path}")
|
||||||
|
print(f"📊 Total vectors: {index.ntotal}")
|
||||||
|
return baseline_path
|
||||||
|
|
||||||
|
# ----------------------------
|
||||||
|
# Queries (optional): prepare evaluation queries file
|
||||||
|
# ----------------------------
|
||||||
|
def prepare_queries(self, min_realism: float = 0.85) -> Path:
|
||||||
|
print(
|
||||||
|
"📝 Preparing evaluation queries from HuggingFace dataset corbt/enron_emails_sample_questions ..."
|
||||||
|
)
|
||||||
|
try:
|
||||||
|
from datasets import load_dataset
|
||||||
|
|
||||||
|
ds = load_dataset("corbt/enron_emails_sample_questions", split="train")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"⚠️ Failed to load dataset: {e}")
|
||||||
|
return self.queries_file
|
||||||
|
|
||||||
|
kept = 0
|
||||||
|
with open(self.queries_file, "w", encoding="utf-8") as out:
|
||||||
|
for i, item in enumerate(ds):
|
||||||
|
how_realistic = float(item.get("how_realistic", 0.0))
|
||||||
|
if how_realistic < min_realism:
|
||||||
|
continue
|
||||||
|
qid = str(item.get("id", f"enron_q_{i}"))
|
||||||
|
query = item.get("question", "")
|
||||||
|
if not query:
|
||||||
|
continue
|
||||||
|
record = {
|
||||||
|
"id": qid,
|
||||||
|
"query": query,
|
||||||
|
# For reference only, not used in recall metric below
|
||||||
|
"gt_message_ids": item.get("message_ids", []),
|
||||||
|
}
|
||||||
|
out.write(json.dumps(record) + "\n")
|
||||||
|
kept += 1
|
||||||
|
print(f"✅ Wrote {kept} queries to {self.queries_file}")
|
||||||
|
return self.queries_file
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = argparse.ArgumentParser(description="Setup Enron Emails Benchmark")
|
||||||
|
parser.add_argument(
|
||||||
|
"--emails-csv",
|
||||||
|
help="Path to emails.csv (Enron dataset). If omitted, attempt Kaggle download.",
|
||||||
|
)
|
||||||
|
parser.add_argument("--data-dir", default="data", help="Data directory")
|
||||||
|
parser.add_argument("--backend", choices=["hnsw", "diskann"], default="hnsw")
|
||||||
|
parser.add_argument(
|
||||||
|
"--embedding-model",
|
||||||
|
default="sentence-transformers/all-mpnet-base-v2",
|
||||||
|
help="Embedding model for LEANN",
|
||||||
|
)
|
||||||
|
parser.add_argument("--chunk-words", type=int, default=256, help="Fixed word chunk size")
|
||||||
|
parser.add_argument("--max-emails", type=int, help="Limit number of emails to process")
|
||||||
|
parser.add_argument("--skip-queries", action="store_true", help="Skip creating queries file")
|
||||||
|
parser.add_argument("--skip-build", action="store_true", help="Skip building LEANN index")
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
setup = EnronSetup(args.data_dir)
|
||||||
|
|
||||||
|
# Build index
|
||||||
|
if not args.skip_build:
|
||||||
|
index_path = setup.build_leann_index(
|
||||||
|
emails_csv=args.emails_csv,
|
||||||
|
backend=args.backend,
|
||||||
|
embedding_model=args.embedding_model,
|
||||||
|
chunk_words=args.chunk_words,
|
||||||
|
max_emails=args.max_emails,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Build FAISS baseline from the same passages & embeddings
|
||||||
|
setup.build_faiss_flat_baseline(index_path)
|
||||||
|
else:
|
||||||
|
print("⏭️ Skipping LEANN index build and baseline")
|
||||||
|
|
||||||
|
# Queries file (optional)
|
||||||
|
if not args.skip_queries:
|
||||||
|
setup.prepare_queries()
|
||||||
|
else:
|
||||||
|
print("⏭️ Skipping query preparation")
|
||||||
|
|
||||||
|
print("\n🎉 Enron Emails setup completed!")
|
||||||
|
print(f"📁 Data directory: {setup.data_dir.absolute()}")
|
||||||
|
print("Next steps:")
|
||||||
|
print(
|
||||||
|
"1) Evaluate recall: python evaluate_enron_emails.py --index data/enron_index_hnsw.leann --stage 2"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
115
benchmarks/financebench/README.md
Normal file
115
benchmarks/financebench/README.md
Normal file
@@ -0,0 +1,115 @@
|
|||||||
|
# FinanceBench Benchmark for LEANN-RAG
|
||||||
|
|
||||||
|
FinanceBench is a benchmark for evaluating retrieval-augmented generation (RAG) systems on financial document question-answering tasks.
|
||||||
|
|
||||||
|
## Dataset
|
||||||
|
|
||||||
|
- **Source**: [PatronusAI/financebench](https://huggingface.co/datasets/PatronusAI/financebench)
|
||||||
|
- **Questions**: 150 financial Q&A examples
|
||||||
|
- **Documents**: 368 PDF files (10-K, 10-Q, 8-K, earnings reports)
|
||||||
|
- **Companies**: Major public companies (3M, Apple, Microsoft, Amazon, etc.)
|
||||||
|
- **Paper**: [FinanceBench: A New Benchmark for Financial Question Answering](https://arxiv.org/abs/2311.11944)
|
||||||
|
|
||||||
|
## Structure
|
||||||
|
|
||||||
|
```
|
||||||
|
benchmarks/financebench/
|
||||||
|
├── setup_financebench.py # Downloads PDFs and builds index
|
||||||
|
├── evaluate_financebench.py # Intelligent evaluation script
|
||||||
|
├── data/
|
||||||
|
│ ├── financebench_merged.jsonl # Q&A dataset
|
||||||
|
│ ├── pdfs/ # Downloaded financial documents
|
||||||
|
│ └── index/ # LEANN indexes
|
||||||
|
│ └── financebench_full_hnsw.leann
|
||||||
|
└── README.md
|
||||||
|
```
|
||||||
|
|
||||||
|
## Usage
|
||||||
|
|
||||||
|
### 1. Setup (Download & Build Index)
|
||||||
|
|
||||||
|
```bash
|
||||||
|
cd benchmarks/financebench
|
||||||
|
python setup_financebench.py
|
||||||
|
```
|
||||||
|
|
||||||
|
This will:
|
||||||
|
- Download the 150 Q&A examples
|
||||||
|
- Download all 368 PDF documents (parallel processing)
|
||||||
|
- Build a LEANN index from 53K+ text chunks
|
||||||
|
- Verify setup with test query
|
||||||
|
|
||||||
|
### 2. Evaluation
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Basic retrieval evaluation
|
||||||
|
python evaluate_financebench.py --index data/index/financebench_full_hnsw.leann
|
||||||
|
|
||||||
|
|
||||||
|
# RAG generation evaluation with Qwen3-8B
|
||||||
|
python evaluate_financebench.py --index data/index/financebench_full_hnsw.leann --stage 4 --complexity 64 --llm-backend hf --model-name Qwen/Qwen3-8B --output results_qwen3.json
|
||||||
|
```
|
||||||
|
|
||||||
|
## Evaluation Methods
|
||||||
|
|
||||||
|
### Retrieval Evaluation
|
||||||
|
Uses intelligent matching with three strategies:
|
||||||
|
1. **Exact text overlap** - Direct substring matches
|
||||||
|
2. **Number matching** - Key financial figures ($1,577, 1.2B, etc.)
|
||||||
|
3. **Semantic similarity** - Word overlap with 20% threshold
|
||||||
|
|
||||||
|
### QA Evaluation
|
||||||
|
LLM-based answer evaluation using GPT-4o:
|
||||||
|
- Handles numerical rounding and equivalent representations
|
||||||
|
- Considers fractions, percentages, and decimal equivalents
|
||||||
|
- Evaluates semantic meaning rather than exact text match
|
||||||
|
|
||||||
|
## Benchmark Results
|
||||||
|
|
||||||
|
### LEANN-RAG Performance (sentence-transformers/all-mpnet-base-v2)
|
||||||
|
|
||||||
|
**Retrieval Metrics:**
|
||||||
|
- **Question Coverage**: 100.0% (all questions retrieve relevant docs)
|
||||||
|
- **Exact Match Rate**: 0.7% (substring overlap with evidence)
|
||||||
|
- **Number Match Rate**: 120.7% (key financial figures matched)*
|
||||||
|
- **Semantic Match Rate**: 4.7% (word overlap ≥20%)
|
||||||
|
- **Average Search Time**: 0.097s
|
||||||
|
|
||||||
|
**QA Metrics:**
|
||||||
|
- **Accuracy**: 42.7% (LLM-evaluated answer correctness)
|
||||||
|
- **Average QA Time**: 4.71s (end-to-end response time)
|
||||||
|
|
||||||
|
**System Performance:**
|
||||||
|
- **Index Size**: 53,985 chunks from 368 PDFs
|
||||||
|
- **Build Time**: ~5-10 minutes with sentence-transformers/all-mpnet-base-v2
|
||||||
|
|
||||||
|
*Note: Number match rate >100% indicates multiple retrieved documents contain the same financial figures, which is expected behavior for financial data appearing across multiple document sections.
|
||||||
|
|
||||||
|
### LEANN-RAG Generation Performance (Qwen3-8B)
|
||||||
|
|
||||||
|
- **Stage 4 (Index Comparison):**
|
||||||
|
- Compact Index: 5.0 MB
|
||||||
|
- Non-compact Index: 172.2 MB
|
||||||
|
- **Storage Saving**: 97.1%
|
||||||
|
- **Search Performance**:
|
||||||
|
- Non-compact (no recompute): 0.009s avg per query
|
||||||
|
- Compact (with recompute): 2.203s avg per query
|
||||||
|
- Speed ratio: 0.004x
|
||||||
|
|
||||||
|
**Generation Evaluation (20 queries, complexity=64):**
|
||||||
|
- **Average Search Time**: 1.638s per query
|
||||||
|
- **Average Generation Time**: 45.957s per query
|
||||||
|
- **LLM Backend**: HuggingFace transformers
|
||||||
|
- **Model**: Qwen/Qwen3-8B (thinking model with <think></think> processing)
|
||||||
|
- **Total Questions Processed**: 20
|
||||||
|
|
||||||
|
## Options
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Use different backends
|
||||||
|
python setup_financebench.py --backend diskann
|
||||||
|
python evaluate_financebench.py --index data/index/financebench_full_diskann.leann
|
||||||
|
|
||||||
|
# Use different embedding models
|
||||||
|
python setup_financebench.py --embedding-model facebook/contriever
|
||||||
|
```
|
||||||
923
benchmarks/financebench/evaluate_financebench.py
Executable file
923
benchmarks/financebench/evaluate_financebench.py
Executable file
@@ -0,0 +1,923 @@
|
|||||||
|
"""
|
||||||
|
FinanceBench Evaluation Script - Modular Recall-based Evaluation
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import json
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import pickle
|
||||||
|
import time
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import openai
|
||||||
|
from leann import LeannChat, LeannSearcher
|
||||||
|
from leann_backend_hnsw import faiss
|
||||||
|
|
||||||
|
from ..llm_utils import evaluate_rag, generate_hf, generate_vllm, load_hf_model, load_vllm_model
|
||||||
|
|
||||||
|
# Setup logging to reduce verbose output
|
||||||
|
logging.basicConfig(level=logging.WARNING)
|
||||||
|
logging.getLogger("leann.api").setLevel(logging.WARNING)
|
||||||
|
logging.getLogger("leann_backend_hnsw").setLevel(logging.WARNING)
|
||||||
|
|
||||||
|
|
||||||
|
class RecallEvaluator:
|
||||||
|
"""Stage 2: Evaluate Recall@3 (searcher vs baseline)"""
|
||||||
|
|
||||||
|
def __init__(self, index_path: str, baseline_dir: str):
|
||||||
|
self.index_path = index_path
|
||||||
|
self.baseline_dir = baseline_dir
|
||||||
|
self.searcher = LeannSearcher(index_path)
|
||||||
|
|
||||||
|
# Load FAISS flat baseline
|
||||||
|
baseline_index_path = os.path.join(baseline_dir, "faiss_flat.index")
|
||||||
|
metadata_path = os.path.join(baseline_dir, "metadata.pkl")
|
||||||
|
|
||||||
|
self.faiss_index = faiss.read_index(baseline_index_path)
|
||||||
|
with open(metadata_path, "rb") as f:
|
||||||
|
self.passage_ids = pickle.load(f)
|
||||||
|
print(f"📚 Loaded FAISS flat baseline with {self.faiss_index.ntotal} vectors")
|
||||||
|
|
||||||
|
def evaluate_recall_at_3(
|
||||||
|
self, queries: list[str], complexity: int = 64, recompute_embeddings: bool = True
|
||||||
|
) -> float:
|
||||||
|
"""Evaluate recall@3 for given queries at specified complexity"""
|
||||||
|
recompute_str = "with recompute" if recompute_embeddings else "no recompute"
|
||||||
|
print(f"🔍 Evaluating recall@3 with complexity={complexity} ({recompute_str})...")
|
||||||
|
|
||||||
|
total_recall = 0.0
|
||||||
|
num_queries = len(queries)
|
||||||
|
|
||||||
|
for i, query in enumerate(queries):
|
||||||
|
# Get ground truth: search with FAISS flat
|
||||||
|
from leann.api import compute_embeddings
|
||||||
|
|
||||||
|
query_embedding = compute_embeddings(
|
||||||
|
[query],
|
||||||
|
self.searcher.embedding_model,
|
||||||
|
mode=self.searcher.embedding_mode,
|
||||||
|
use_server=False,
|
||||||
|
).astype(np.float32)
|
||||||
|
|
||||||
|
# Search FAISS flat for ground truth using LEANN's modified faiss API
|
||||||
|
n = query_embedding.shape[0] # Number of queries
|
||||||
|
k = 3 # Number of nearest neighbors
|
||||||
|
distances = np.zeros((n, k), dtype=np.float32)
|
||||||
|
labels = np.zeros((n, k), dtype=np.int64)
|
||||||
|
|
||||||
|
self.faiss_index.search(
|
||||||
|
n,
|
||||||
|
faiss.swig_ptr(query_embedding),
|
||||||
|
k,
|
||||||
|
faiss.swig_ptr(distances),
|
||||||
|
faiss.swig_ptr(labels),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Extract the results
|
||||||
|
baseline_ids = {self.passage_ids[idx] for idx in labels[0]}
|
||||||
|
|
||||||
|
# Search with LEANN at specified complexity
|
||||||
|
test_results = self.searcher.search(
|
||||||
|
query,
|
||||||
|
top_k=3,
|
||||||
|
complexity=complexity,
|
||||||
|
recompute_embeddings=recompute_embeddings,
|
||||||
|
)
|
||||||
|
test_ids = {result.id for result in test_results}
|
||||||
|
|
||||||
|
# Calculate recall@3 = |intersection| / |ground_truth|
|
||||||
|
intersection = test_ids.intersection(baseline_ids)
|
||||||
|
recall = len(intersection) / 3.0 # Ground truth size is 3
|
||||||
|
total_recall += recall
|
||||||
|
|
||||||
|
if i < 3: # Show first few examples
|
||||||
|
print(f" Query {i + 1}: '{query[:50]}...' -> Recall@3: {recall:.3f}")
|
||||||
|
print(f" FAISS ground truth: {list(baseline_ids)}")
|
||||||
|
print(f" LEANN results (C={complexity}, {recompute_str}): {list(test_ids)}")
|
||||||
|
print(f" Intersection: {list(intersection)}")
|
||||||
|
|
||||||
|
avg_recall = total_recall / num_queries
|
||||||
|
print(f"📊 Average Recall@3: {avg_recall:.3f} ({avg_recall * 100:.1f}%)")
|
||||||
|
return avg_recall
|
||||||
|
|
||||||
|
def cleanup(self):
|
||||||
|
"""Cleanup resources"""
|
||||||
|
if hasattr(self, "searcher"):
|
||||||
|
self.searcher.cleanup()
|
||||||
|
|
||||||
|
|
||||||
|
class FinanceBenchEvaluator:
|
||||||
|
def __init__(self, index_path: str, openai_api_key: Optional[str] = None):
|
||||||
|
self.index_path = index_path
|
||||||
|
self.openai_client = openai.OpenAI(api_key=openai_api_key) if openai_api_key else None
|
||||||
|
|
||||||
|
self.searcher = LeannSearcher(index_path)
|
||||||
|
self.chat = LeannChat(index_path) if openai_api_key else None
|
||||||
|
|
||||||
|
def load_dataset(self, dataset_path: str = "data/financebench_merged.jsonl"):
|
||||||
|
"""Load FinanceBench dataset"""
|
||||||
|
data = []
|
||||||
|
with open(dataset_path, encoding="utf-8") as f:
|
||||||
|
for line in f:
|
||||||
|
if line.strip():
|
||||||
|
data.append(json.loads(line))
|
||||||
|
|
||||||
|
print(f"📊 Loaded {len(data)} FinanceBench examples")
|
||||||
|
return data
|
||||||
|
|
||||||
|
def analyze_index_sizes(self) -> dict:
|
||||||
|
"""Analyze index sizes with and without embeddings"""
|
||||||
|
|
||||||
|
print("📏 Analyzing index sizes...")
|
||||||
|
|
||||||
|
# Get all index-related files
|
||||||
|
index_path = Path(self.index_path)
|
||||||
|
index_dir = index_path.parent
|
||||||
|
index_name = index_path.stem # Remove .leann extension
|
||||||
|
|
||||||
|
sizes = {}
|
||||||
|
total_with_embeddings = 0
|
||||||
|
|
||||||
|
# Core index files
|
||||||
|
index_file = index_dir / f"{index_name}.index"
|
||||||
|
meta_file = index_dir / f"{index_path.name}.meta.json" # Keep .leann for meta file
|
||||||
|
passages_file = index_dir / f"{index_path.name}.passages.jsonl" # Keep .leann for passages
|
||||||
|
passages_idx_file = index_dir / f"{index_path.name}.passages.idx" # Keep .leann for idx
|
||||||
|
|
||||||
|
for file_path, name in [
|
||||||
|
(index_file, "index"),
|
||||||
|
(meta_file, "metadata"),
|
||||||
|
(passages_file, "passages_text"),
|
||||||
|
(passages_idx_file, "passages_index"),
|
||||||
|
]:
|
||||||
|
if file_path.exists():
|
||||||
|
size_mb = file_path.stat().st_size / (1024 * 1024)
|
||||||
|
sizes[name] = size_mb
|
||||||
|
total_with_embeddings += size_mb
|
||||||
|
|
||||||
|
else:
|
||||||
|
sizes[name] = 0
|
||||||
|
|
||||||
|
sizes["total_with_embeddings"] = total_with_embeddings
|
||||||
|
sizes["index_only_mb"] = sizes["index"] # Just the .index file for fair comparison
|
||||||
|
|
||||||
|
print(f" 📁 Total index size: {total_with_embeddings:.1f} MB")
|
||||||
|
print(f" 📁 Index file only: {sizes['index']:.1f} MB")
|
||||||
|
|
||||||
|
return sizes
|
||||||
|
|
||||||
|
def create_compact_index_for_comparison(self, compact_index_path: str) -> dict:
|
||||||
|
"""Create a compact index for comparison purposes"""
|
||||||
|
print("🏗️ Building compact index from existing passages...")
|
||||||
|
|
||||||
|
# Load existing passages from current index
|
||||||
|
|
||||||
|
from leann import LeannBuilder
|
||||||
|
|
||||||
|
current_index_path = Path(self.index_path)
|
||||||
|
current_index_dir = current_index_path.parent
|
||||||
|
current_index_name = current_index_path.name
|
||||||
|
|
||||||
|
# Read metadata to get passage source
|
||||||
|
meta_path = current_index_dir / f"{current_index_name}.meta.json"
|
||||||
|
with open(meta_path) as f:
|
||||||
|
import json
|
||||||
|
|
||||||
|
meta = json.load(f)
|
||||||
|
|
||||||
|
passage_source = meta["passage_sources"][0]
|
||||||
|
passage_file = passage_source["path"]
|
||||||
|
|
||||||
|
# Convert relative path to absolute
|
||||||
|
if not Path(passage_file).is_absolute():
|
||||||
|
passage_file = current_index_dir / Path(passage_file).name
|
||||||
|
|
||||||
|
print(f"📄 Loading passages from {passage_file}...")
|
||||||
|
|
||||||
|
# Build compact index with same passages
|
||||||
|
builder = LeannBuilder(
|
||||||
|
backend_name="hnsw",
|
||||||
|
embedding_model=meta["embedding_model"],
|
||||||
|
embedding_mode=meta.get("embedding_mode", "sentence-transformers"),
|
||||||
|
is_recompute=True, # Enable recompute (no stored embeddings)
|
||||||
|
is_compact=True, # Enable compact storage
|
||||||
|
**meta.get("backend_kwargs", {}),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Load all passages
|
||||||
|
with open(passage_file, encoding="utf-8") as f:
|
||||||
|
for line in f:
|
||||||
|
if line.strip():
|
||||||
|
data = json.loads(line)
|
||||||
|
builder.add_text(data["text"], metadata=data.get("metadata", {}))
|
||||||
|
|
||||||
|
print(f"🔨 Building compact index at {compact_index_path}...")
|
||||||
|
builder.build_index(compact_index_path)
|
||||||
|
|
||||||
|
# Analyze the compact index size
|
||||||
|
temp_evaluator = FinanceBenchEvaluator(compact_index_path)
|
||||||
|
compact_sizes = temp_evaluator.analyze_index_sizes()
|
||||||
|
compact_sizes["index_type"] = "compact"
|
||||||
|
|
||||||
|
return compact_sizes
|
||||||
|
|
||||||
|
def create_non_compact_index_for_comparison(self, non_compact_index_path: str) -> dict:
|
||||||
|
"""Create a non-compact index for comparison purposes"""
|
||||||
|
print("🏗️ Building non-compact index from existing passages...")
|
||||||
|
|
||||||
|
# Load existing passages from current index
|
||||||
|
|
||||||
|
from leann import LeannBuilder
|
||||||
|
|
||||||
|
current_index_path = Path(self.index_path)
|
||||||
|
current_index_dir = current_index_path.parent
|
||||||
|
current_index_name = current_index_path.name
|
||||||
|
|
||||||
|
# Read metadata to get passage source
|
||||||
|
meta_path = current_index_dir / f"{current_index_name}.meta.json"
|
||||||
|
with open(meta_path) as f:
|
||||||
|
import json
|
||||||
|
|
||||||
|
meta = json.load(f)
|
||||||
|
|
||||||
|
passage_source = meta["passage_sources"][0]
|
||||||
|
passage_file = passage_source["path"]
|
||||||
|
|
||||||
|
# Convert relative path to absolute
|
||||||
|
if not Path(passage_file).is_absolute():
|
||||||
|
passage_file = current_index_dir / Path(passage_file).name
|
||||||
|
|
||||||
|
print(f"📄 Loading passages from {passage_file}...")
|
||||||
|
|
||||||
|
# Build non-compact index with same passages
|
||||||
|
builder = LeannBuilder(
|
||||||
|
backend_name="hnsw",
|
||||||
|
embedding_model=meta["embedding_model"],
|
||||||
|
embedding_mode=meta.get("embedding_mode", "sentence-transformers"),
|
||||||
|
is_recompute=False, # Disable recompute (store embeddings)
|
||||||
|
is_compact=False, # Disable compact storage
|
||||||
|
**{
|
||||||
|
k: v
|
||||||
|
for k, v in meta.get("backend_kwargs", {}).items()
|
||||||
|
if k not in ["is_recompute", "is_compact"]
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
# Load all passages
|
||||||
|
with open(passage_file, encoding="utf-8") as f:
|
||||||
|
for line in f:
|
||||||
|
if line.strip():
|
||||||
|
data = json.loads(line)
|
||||||
|
builder.add_text(data["text"], metadata=data.get("metadata", {}))
|
||||||
|
|
||||||
|
print(f"🔨 Building non-compact index at {non_compact_index_path}...")
|
||||||
|
builder.build_index(non_compact_index_path)
|
||||||
|
|
||||||
|
# Analyze the non-compact index size
|
||||||
|
temp_evaluator = FinanceBenchEvaluator(non_compact_index_path)
|
||||||
|
non_compact_sizes = temp_evaluator.analyze_index_sizes()
|
||||||
|
non_compact_sizes["index_type"] = "non_compact"
|
||||||
|
|
||||||
|
return non_compact_sizes
|
||||||
|
|
||||||
|
def compare_index_performance(
|
||||||
|
self, non_compact_path: str, compact_path: str, test_data: list, complexity: int
|
||||||
|
) -> dict:
|
||||||
|
"""Compare performance between non-compact and compact indexes"""
|
||||||
|
print("⚡ Comparing search performance between indexes...")
|
||||||
|
|
||||||
|
import time
|
||||||
|
|
||||||
|
from leann import LeannSearcher
|
||||||
|
|
||||||
|
# Test queries
|
||||||
|
test_queries = [item["question"] for item in test_data[:5]]
|
||||||
|
|
||||||
|
results = {
|
||||||
|
"non_compact": {"search_times": []},
|
||||||
|
"compact": {"search_times": []},
|
||||||
|
"avg_search_times": {},
|
||||||
|
"speed_ratio": 0.0,
|
||||||
|
}
|
||||||
|
|
||||||
|
# Test non-compact index (no recompute)
|
||||||
|
print(" 🔍 Testing non-compact index (no recompute)...")
|
||||||
|
non_compact_searcher = LeannSearcher(non_compact_path)
|
||||||
|
|
||||||
|
for query in test_queries:
|
||||||
|
start_time = time.time()
|
||||||
|
_ = non_compact_searcher.search(
|
||||||
|
query, top_k=3, complexity=complexity, recompute_embeddings=False
|
||||||
|
)
|
||||||
|
search_time = time.time() - start_time
|
||||||
|
results["non_compact"]["search_times"].append(search_time)
|
||||||
|
|
||||||
|
# Test compact index (with recompute)
|
||||||
|
print(" 🔍 Testing compact index (with recompute)...")
|
||||||
|
compact_searcher = LeannSearcher(compact_path)
|
||||||
|
|
||||||
|
for query in test_queries:
|
||||||
|
start_time = time.time()
|
||||||
|
_ = compact_searcher.search(
|
||||||
|
query, top_k=3, complexity=complexity, recompute_embeddings=True
|
||||||
|
)
|
||||||
|
search_time = time.time() - start_time
|
||||||
|
results["compact"]["search_times"].append(search_time)
|
||||||
|
|
||||||
|
# Calculate averages
|
||||||
|
results["avg_search_times"]["non_compact"] = sum(
|
||||||
|
results["non_compact"]["search_times"]
|
||||||
|
) / len(results["non_compact"]["search_times"])
|
||||||
|
results["avg_search_times"]["compact"] = sum(results["compact"]["search_times"]) / len(
|
||||||
|
results["compact"]["search_times"]
|
||||||
|
)
|
||||||
|
|
||||||
|
# Performance ratio
|
||||||
|
if results["avg_search_times"]["compact"] > 0:
|
||||||
|
results["speed_ratio"] = (
|
||||||
|
results["avg_search_times"]["non_compact"] / results["avg_search_times"]["compact"]
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
results["speed_ratio"] = float("inf")
|
||||||
|
|
||||||
|
print(
|
||||||
|
f" Non-compact (no recompute): {results['avg_search_times']['non_compact']:.3f}s avg"
|
||||||
|
)
|
||||||
|
print(f" Compact (with recompute): {results['avg_search_times']['compact']:.3f}s avg")
|
||||||
|
print(f" Speed ratio: {results['speed_ratio']:.2f}x")
|
||||||
|
|
||||||
|
# Cleanup
|
||||||
|
non_compact_searcher.cleanup()
|
||||||
|
compact_searcher.cleanup()
|
||||||
|
|
||||||
|
return results
|
||||||
|
|
||||||
|
def evaluate_timing_breakdown(
|
||||||
|
self, data: list[dict], max_samples: Optional[int] = None
|
||||||
|
) -> dict:
|
||||||
|
"""Evaluate timing breakdown and accuracy by hacking LeannChat.ask() for separated timing"""
|
||||||
|
if not self.chat or not self.openai_client:
|
||||||
|
print("⚠️ Skipping timing evaluation (no OpenAI API key provided)")
|
||||||
|
return {
|
||||||
|
"total_questions": 0,
|
||||||
|
"avg_search_time": 0.0,
|
||||||
|
"avg_generation_time": 0.0,
|
||||||
|
"avg_total_time": 0.0,
|
||||||
|
"accuracy": 0.0,
|
||||||
|
}
|
||||||
|
|
||||||
|
print("🔍🤖 Evaluating timing breakdown and accuracy (search + generation)...")
|
||||||
|
|
||||||
|
if max_samples:
|
||||||
|
data = data[:max_samples]
|
||||||
|
print(f"📝 Using first {max_samples} samples for timing evaluation")
|
||||||
|
|
||||||
|
search_times = []
|
||||||
|
generation_times = []
|
||||||
|
total_times = []
|
||||||
|
correct_answers = 0
|
||||||
|
|
||||||
|
for i, item in enumerate(data):
|
||||||
|
question = item["question"]
|
||||||
|
ground_truth = item["answer"]
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Hack: Monkey-patch the ask method to capture internal timing
|
||||||
|
original_ask = self.chat.ask
|
||||||
|
captured_search_time = None
|
||||||
|
captured_generation_time = None
|
||||||
|
|
||||||
|
def patched_ask(*args, **kwargs):
|
||||||
|
nonlocal captured_search_time, captured_generation_time
|
||||||
|
|
||||||
|
# Time the search part
|
||||||
|
search_start = time.time()
|
||||||
|
results = self.chat.searcher.search(args[0], top_k=3, complexity=64)
|
||||||
|
captured_search_time = time.time() - search_start
|
||||||
|
|
||||||
|
# Time the generation part
|
||||||
|
context = "\n\n".join([r.text for r in results])
|
||||||
|
prompt = (
|
||||||
|
"Here is some retrieved context that might help answer your question:\n\n"
|
||||||
|
f"{context}\n\n"
|
||||||
|
f"Question: {args[0]}\n\n"
|
||||||
|
"Please provide the best answer you can based on this context and your knowledge."
|
||||||
|
)
|
||||||
|
|
||||||
|
generation_start = time.time()
|
||||||
|
answer = self.chat.llm.ask(prompt)
|
||||||
|
captured_generation_time = time.time() - generation_start
|
||||||
|
|
||||||
|
return answer
|
||||||
|
|
||||||
|
# Apply the patch
|
||||||
|
self.chat.ask = patched_ask
|
||||||
|
|
||||||
|
# Time the total QA
|
||||||
|
total_start = time.time()
|
||||||
|
generated_answer = self.chat.ask(question)
|
||||||
|
total_time = time.time() - total_start
|
||||||
|
|
||||||
|
# Restore original method
|
||||||
|
self.chat.ask = original_ask
|
||||||
|
|
||||||
|
# Store the timings
|
||||||
|
search_times.append(captured_search_time)
|
||||||
|
generation_times.append(captured_generation_time)
|
||||||
|
total_times.append(total_time)
|
||||||
|
|
||||||
|
# Check accuracy using LLM as judge
|
||||||
|
is_correct = self._check_answer_accuracy(generated_answer, ground_truth, question)
|
||||||
|
if is_correct:
|
||||||
|
correct_answers += 1
|
||||||
|
|
||||||
|
status = "✅" if is_correct else "❌"
|
||||||
|
print(
|
||||||
|
f"Question {i + 1}/{len(data)}: {status} Search={captured_search_time:.3f}s, Gen={captured_generation_time:.3f}s, Total={total_time:.3f}s"
|
||||||
|
)
|
||||||
|
print(f" GT: {ground_truth}")
|
||||||
|
print(f" Gen: {generated_answer[:100]}...")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f" ❌ Error: {e}")
|
||||||
|
search_times.append(0.0)
|
||||||
|
generation_times.append(0.0)
|
||||||
|
total_times.append(0.0)
|
||||||
|
|
||||||
|
accuracy = correct_answers / len(data) if data else 0.0
|
||||||
|
|
||||||
|
metrics = {
|
||||||
|
"total_questions": len(data),
|
||||||
|
"avg_search_time": sum(search_times) / len(search_times) if search_times else 0.0,
|
||||||
|
"avg_generation_time": sum(generation_times) / len(generation_times)
|
||||||
|
if generation_times
|
||||||
|
else 0.0,
|
||||||
|
"avg_total_time": sum(total_times) / len(total_times) if total_times else 0.0,
|
||||||
|
"accuracy": accuracy,
|
||||||
|
"correct_answers": correct_answers,
|
||||||
|
"search_times": search_times,
|
||||||
|
"generation_times": generation_times,
|
||||||
|
"total_times": total_times,
|
||||||
|
}
|
||||||
|
|
||||||
|
return metrics
|
||||||
|
|
||||||
|
def _check_answer_accuracy(
|
||||||
|
self, generated_answer: str, ground_truth: str, question: str
|
||||||
|
) -> bool:
|
||||||
|
"""Check if generated answer matches ground truth using LLM as judge"""
|
||||||
|
judge_prompt = f"""You are an expert judge evaluating financial question answering.
|
||||||
|
|
||||||
|
Question: {question}
|
||||||
|
|
||||||
|
Ground Truth Answer: {ground_truth}
|
||||||
|
|
||||||
|
Generated Answer: {generated_answer}
|
||||||
|
|
||||||
|
Task: Determine if the generated answer is factually correct compared to the ground truth. Focus on:
|
||||||
|
1. Numerical accuracy (exact values, units, currency)
|
||||||
|
2. Key financial concepts and terminology
|
||||||
|
3. Overall factual correctness
|
||||||
|
|
||||||
|
For financial data, small formatting differences are OK (e.g., "$1,577" vs "1577 million" vs "$1.577 billion"), but the core numerical value must match.
|
||||||
|
|
||||||
|
Respond with exactly one word: "CORRECT" if the generated answer is factually accurate, or "INCORRECT" if it's wrong or significantly different."""
|
||||||
|
|
||||||
|
try:
|
||||||
|
judge_response = self.openai_client.chat.completions.create(
|
||||||
|
model="gpt-4o-mini",
|
||||||
|
messages=[{"role": "user", "content": judge_prompt}],
|
||||||
|
max_tokens=10,
|
||||||
|
temperature=0,
|
||||||
|
)
|
||||||
|
judgment = judge_response.choices[0].message.content.strip().upper()
|
||||||
|
return judgment == "CORRECT"
|
||||||
|
except Exception as e:
|
||||||
|
print(f" ⚠️ Judge error: {e}, falling back to string matching")
|
||||||
|
# Fallback to simple string matching
|
||||||
|
gen_clean = generated_answer.strip().lower().replace("$", "").replace(",", "")
|
||||||
|
gt_clean = ground_truth.strip().lower().replace("$", "").replace(",", "")
|
||||||
|
return gt_clean in gen_clean
|
||||||
|
|
||||||
|
def _print_results(self, timing_metrics: dict):
|
||||||
|
"""Print evaluation results"""
|
||||||
|
print("\n🎯 EVALUATION RESULTS")
|
||||||
|
print("=" * 50)
|
||||||
|
|
||||||
|
# Index comparison analysis
|
||||||
|
if "current_index" in timing_metrics and "non_compact_index" in timing_metrics:
|
||||||
|
print("\n📏 Index Comparison Analysis:")
|
||||||
|
current = timing_metrics["current_index"]
|
||||||
|
non_compact = timing_metrics["non_compact_index"]
|
||||||
|
|
||||||
|
print(f" Compact index (current): {current.get('total_with_embeddings', 0):.1f} MB")
|
||||||
|
print(
|
||||||
|
f" Non-compact index (with embeddings): {non_compact.get('total_with_embeddings', 0):.1f} MB"
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
f" Storage saving by compact: {timing_metrics.get('storage_saving_percent', 0):.1f}%"
|
||||||
|
)
|
||||||
|
|
||||||
|
print(" Component breakdown (non-compact):")
|
||||||
|
print(f" - Main index: {non_compact.get('index', 0):.1f} MB")
|
||||||
|
print(f" - Passages text: {non_compact.get('passages_text', 0):.1f} MB")
|
||||||
|
print(f" - Passages index: {non_compact.get('passages_index', 0):.1f} MB")
|
||||||
|
print(f" - Metadata: {non_compact.get('metadata', 0):.1f} MB")
|
||||||
|
|
||||||
|
# Performance comparison
|
||||||
|
if "performance_comparison" in timing_metrics:
|
||||||
|
perf = timing_metrics["performance_comparison"]
|
||||||
|
print("\n⚡ Performance Comparison:")
|
||||||
|
print(
|
||||||
|
f" Non-compact (no recompute): {perf.get('avg_search_times', {}).get('non_compact', 0):.3f}s avg"
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
f" Compact (with recompute): {perf.get('avg_search_times', {}).get('compact', 0):.3f}s avg"
|
||||||
|
)
|
||||||
|
print(f" Speed ratio: {perf.get('speed_ratio', 0):.2f}x")
|
||||||
|
|
||||||
|
# Legacy single index analysis (fallback)
|
||||||
|
if "total_with_embeddings" in timing_metrics and "current_index" not in timing_metrics:
|
||||||
|
print("\n📏 Index Size Analysis:")
|
||||||
|
print(f" Total index size: {timing_metrics.get('total_with_embeddings', 0):.1f} MB")
|
||||||
|
|
||||||
|
print("\n📊 Accuracy:")
|
||||||
|
print(f" Accuracy: {timing_metrics.get('accuracy', 0) * 100:.1f}%")
|
||||||
|
print(
|
||||||
|
f" Correct Answers: {timing_metrics.get('correct_answers', 0)}/{timing_metrics.get('total_questions', 0)}"
|
||||||
|
)
|
||||||
|
|
||||||
|
print("\n📊 Timing Breakdown:")
|
||||||
|
print(f" Total Questions: {timing_metrics.get('total_questions', 0)}")
|
||||||
|
print(f" Avg Search Time: {timing_metrics.get('avg_search_time', 0):.3f}s")
|
||||||
|
print(f" Avg Generation Time: {timing_metrics.get('avg_generation_time', 0):.3f}s")
|
||||||
|
print(f" Avg Total Time: {timing_metrics.get('avg_total_time', 0):.3f}s")
|
||||||
|
|
||||||
|
if timing_metrics.get("avg_total_time", 0) > 0:
|
||||||
|
search_pct = (
|
||||||
|
timing_metrics.get("avg_search_time", 0)
|
||||||
|
/ timing_metrics.get("avg_total_time", 1)
|
||||||
|
* 100
|
||||||
|
)
|
||||||
|
gen_pct = (
|
||||||
|
timing_metrics.get("avg_generation_time", 0)
|
||||||
|
/ timing_metrics.get("avg_total_time", 1)
|
||||||
|
* 100
|
||||||
|
)
|
||||||
|
print("\n📈 Time Distribution:")
|
||||||
|
print(f" Search: {search_pct:.1f}%")
|
||||||
|
print(f" Generation: {gen_pct:.1f}%")
|
||||||
|
|
||||||
|
def cleanup(self):
|
||||||
|
"""Cleanup resources"""
|
||||||
|
if self.searcher:
|
||||||
|
self.searcher.cleanup()
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = argparse.ArgumentParser(description="Modular FinanceBench Evaluation")
|
||||||
|
parser.add_argument("--index", required=True, help="Path to LEANN index")
|
||||||
|
parser.add_argument("--dataset", default="data/financebench_merged.jsonl", help="Dataset path")
|
||||||
|
parser.add_argument(
|
||||||
|
"--stage",
|
||||||
|
choices=["2", "3", "4", "all"],
|
||||||
|
default="all",
|
||||||
|
help="Which stage to run (2=recall, 3=complexity, 4=generation)",
|
||||||
|
)
|
||||||
|
parser.add_argument("--complexity", type=int, default=None, help="Complexity for search")
|
||||||
|
parser.add_argument("--baseline-dir", default="baseline", help="Baseline output directory")
|
||||||
|
parser.add_argument("--openai-api-key", help="OpenAI API key for generation evaluation")
|
||||||
|
parser.add_argument("--output", help="Save results to JSON file")
|
||||||
|
parser.add_argument(
|
||||||
|
"--llm-backend", choices=["openai", "hf", "vllm"], default="openai", help="LLM backend"
|
||||||
|
)
|
||||||
|
parser.add_argument("--model-name", default="Qwen3-8B", help="Model name for HF/vLLM")
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Check if baseline exists
|
||||||
|
baseline_index_path = os.path.join(args.baseline_dir, "faiss_flat.index")
|
||||||
|
if not os.path.exists(baseline_index_path):
|
||||||
|
print(f"❌ FAISS baseline not found at {baseline_index_path}")
|
||||||
|
print("💡 Please run setup_financebench.py first to build the baseline")
|
||||||
|
exit(1)
|
||||||
|
|
||||||
|
if args.stage == "2" or args.stage == "all":
|
||||||
|
# Stage 2: Recall@3 evaluation
|
||||||
|
print("🚀 Starting Stage 2: Recall@3 evaluation")
|
||||||
|
|
||||||
|
evaluator = RecallEvaluator(args.index, args.baseline_dir)
|
||||||
|
|
||||||
|
# Load FinanceBench queries for testing
|
||||||
|
print("📖 Loading FinanceBench dataset...")
|
||||||
|
queries = []
|
||||||
|
with open(args.dataset, encoding="utf-8") as f:
|
||||||
|
for line in f:
|
||||||
|
if line.strip():
|
||||||
|
data = json.loads(line)
|
||||||
|
queries.append(data["question"])
|
||||||
|
|
||||||
|
# Test with more queries for robust measurement
|
||||||
|
test_queries = queries[:2000]
|
||||||
|
print(f"🧪 Testing with {len(test_queries)} queries")
|
||||||
|
|
||||||
|
# Test with complexity 64
|
||||||
|
complexity = 64
|
||||||
|
recall = evaluator.evaluate_recall_at_3(test_queries, complexity)
|
||||||
|
print(f"📈 Recall@3 at complexity {complexity}: {recall * 100:.1f}%")
|
||||||
|
|
||||||
|
evaluator.cleanup()
|
||||||
|
print("✅ Stage 2 completed!\n")
|
||||||
|
|
||||||
|
# Shared non-compact index path for Stage 3 and 4
|
||||||
|
non_compact_index_path = args.index.replace(".leann", "_noncompact.leann")
|
||||||
|
complexity = args.complexity
|
||||||
|
|
||||||
|
if args.stage == "3" or args.stage == "all":
|
||||||
|
# Stage 3: Binary search for 90% recall complexity (using non-compact index for speed)
|
||||||
|
print("🚀 Starting Stage 3: Binary search for 90% recall complexity")
|
||||||
|
print(
|
||||||
|
"💡 Creating non-compact index for fast binary search with recompute_embeddings=False"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Create non-compact index for binary search (will be reused in Stage 4)
|
||||||
|
print("🏗️ Creating non-compact index for binary search...")
|
||||||
|
evaluator = FinanceBenchEvaluator(args.index)
|
||||||
|
evaluator.create_non_compact_index_for_comparison(non_compact_index_path)
|
||||||
|
|
||||||
|
# Use non-compact index for binary search
|
||||||
|
binary_search_evaluator = RecallEvaluator(non_compact_index_path, args.baseline_dir)
|
||||||
|
|
||||||
|
# Load queries for testing
|
||||||
|
print("📖 Loading FinanceBench dataset...")
|
||||||
|
queries = []
|
||||||
|
with open(args.dataset, encoding="utf-8") as f:
|
||||||
|
for line in f:
|
||||||
|
if line.strip():
|
||||||
|
data = json.loads(line)
|
||||||
|
queries.append(data["question"])
|
||||||
|
|
||||||
|
# Use more queries for robust measurement
|
||||||
|
test_queries = queries[:200]
|
||||||
|
print(f"🧪 Testing with {len(test_queries)} queries")
|
||||||
|
|
||||||
|
# Binary search for 90% recall complexity (without recompute for speed)
|
||||||
|
target_recall = 0.9
|
||||||
|
min_complexity, max_complexity = 1, 32
|
||||||
|
|
||||||
|
print(f"🔍 Binary search for {target_recall * 100}% recall complexity...")
|
||||||
|
print(f"Search range: {min_complexity} to {max_complexity}")
|
||||||
|
|
||||||
|
best_complexity = None
|
||||||
|
best_recall = 0.0
|
||||||
|
|
||||||
|
while min_complexity <= max_complexity:
|
||||||
|
mid_complexity = (min_complexity + max_complexity) // 2
|
||||||
|
|
||||||
|
print(
|
||||||
|
f"\n🧪 Testing complexity {mid_complexity} (no recompute, non-compact index)..."
|
||||||
|
)
|
||||||
|
# Use recompute_embeddings=False on non-compact index for fast binary search
|
||||||
|
recall = binary_search_evaluator.evaluate_recall_at_3(
|
||||||
|
test_queries, mid_complexity, recompute_embeddings=False
|
||||||
|
)
|
||||||
|
|
||||||
|
print(
|
||||||
|
f" Complexity {mid_complexity}: Recall@3 = {recall:.3f} ({recall * 100:.1f}%)"
|
||||||
|
)
|
||||||
|
|
||||||
|
if recall >= target_recall:
|
||||||
|
best_complexity = mid_complexity
|
||||||
|
best_recall = recall
|
||||||
|
max_complexity = mid_complexity - 1
|
||||||
|
print(" ✅ Target reached! Searching for lower complexity...")
|
||||||
|
else:
|
||||||
|
min_complexity = mid_complexity + 1
|
||||||
|
print(" ❌ Below target. Searching for higher complexity...")
|
||||||
|
|
||||||
|
if best_complexity is not None:
|
||||||
|
print("\n🎯 Optimal complexity found!")
|
||||||
|
print(f" Complexity: {best_complexity}")
|
||||||
|
print(f" Recall@3: {best_recall:.3f} ({best_recall * 100:.1f}%)")
|
||||||
|
|
||||||
|
# Test a few complexities around the optimal one for verification
|
||||||
|
print("\n🔬 Verification test around optimal complexity:")
|
||||||
|
verification_complexities = [
|
||||||
|
max(1, best_complexity - 2),
|
||||||
|
max(1, best_complexity - 1),
|
||||||
|
best_complexity,
|
||||||
|
best_complexity + 1,
|
||||||
|
best_complexity + 2,
|
||||||
|
]
|
||||||
|
|
||||||
|
for complexity in verification_complexities:
|
||||||
|
if complexity <= 512: # reasonable upper bound
|
||||||
|
recall = binary_search_evaluator.evaluate_recall_at_3(
|
||||||
|
test_queries, complexity, recompute_embeddings=False
|
||||||
|
)
|
||||||
|
status = "✅" if recall >= target_recall else "❌"
|
||||||
|
print(f" {status} Complexity {complexity:3d}: {recall * 100:5.1f}%")
|
||||||
|
|
||||||
|
# Now test the optimal complexity with compact index and recompute for comparison
|
||||||
|
print(
|
||||||
|
f"\n🔄 Testing optimal complexity {best_complexity} on compact index WITH recompute..."
|
||||||
|
)
|
||||||
|
compact_evaluator = RecallEvaluator(args.index, args.baseline_dir)
|
||||||
|
recall_with_recompute = compact_evaluator.evaluate_recall_at_3(
|
||||||
|
test_queries[:10], best_complexity, recompute_embeddings=True
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
f" ✅ Complexity {best_complexity} (compact index with recompute): {recall_with_recompute * 100:.1f}%"
|
||||||
|
)
|
||||||
|
complexity = best_complexity
|
||||||
|
print(
|
||||||
|
f" 📊 Recall difference: {abs(best_recall - recall_with_recompute) * 100:.2f}%"
|
||||||
|
)
|
||||||
|
compact_evaluator.cleanup()
|
||||||
|
else:
|
||||||
|
print(f"\n❌ Could not find complexity achieving {target_recall * 100}% recall")
|
||||||
|
print("All tested complexities were below target.")
|
||||||
|
|
||||||
|
# Cleanup evaluators (keep non-compact index for Stage 4)
|
||||||
|
binary_search_evaluator.cleanup()
|
||||||
|
evaluator.cleanup()
|
||||||
|
|
||||||
|
print("✅ Stage 3 completed! Non-compact index saved for Stage 4.\n")
|
||||||
|
|
||||||
|
if args.stage == "4" or args.stage == "all":
|
||||||
|
# Stage 4: Comprehensive evaluation with dual index comparison
|
||||||
|
print("🚀 Starting Stage 4: Comprehensive evaluation with dual index comparison")
|
||||||
|
|
||||||
|
# Use FinanceBench evaluator for QA evaluation
|
||||||
|
evaluator = FinanceBenchEvaluator(
|
||||||
|
args.index, args.openai_api_key if args.llm_backend == "openai" else None
|
||||||
|
)
|
||||||
|
|
||||||
|
print("📖 Loading FinanceBench dataset...")
|
||||||
|
data = evaluator.load_dataset(args.dataset)
|
||||||
|
|
||||||
|
# Step 1: Analyze current (compact) index
|
||||||
|
print("\n📏 Analyzing current index (compact, pruned)...")
|
||||||
|
compact_size_metrics = evaluator.analyze_index_sizes()
|
||||||
|
compact_size_metrics["index_type"] = "compact"
|
||||||
|
|
||||||
|
# Step 2: Use existing non-compact index or create if needed
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
if Path(non_compact_index_path).exists():
|
||||||
|
print(
|
||||||
|
f"\n📁 Using existing non-compact index from Stage 3: {non_compact_index_path}"
|
||||||
|
)
|
||||||
|
temp_evaluator = FinanceBenchEvaluator(non_compact_index_path)
|
||||||
|
non_compact_size_metrics = temp_evaluator.analyze_index_sizes()
|
||||||
|
non_compact_size_metrics["index_type"] = "non_compact"
|
||||||
|
else:
|
||||||
|
print("\n🏗️ Creating non-compact index (with embeddings) for comparison...")
|
||||||
|
non_compact_size_metrics = evaluator.create_non_compact_index_for_comparison(
|
||||||
|
non_compact_index_path
|
||||||
|
)
|
||||||
|
|
||||||
|
# Step 3: Compare index sizes
|
||||||
|
print("\n📊 Index size comparison:")
|
||||||
|
print(
|
||||||
|
f" Compact index (current): {compact_size_metrics['total_with_embeddings']:.1f} MB"
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
f" Non-compact index: {non_compact_size_metrics['total_with_embeddings']:.1f} MB"
|
||||||
|
)
|
||||||
|
print("\n📊 Index-only size comparison (.index file only):")
|
||||||
|
print(f" Compact index: {compact_size_metrics['index_only_mb']:.1f} MB")
|
||||||
|
print(f" Non-compact index: {non_compact_size_metrics['index_only_mb']:.1f} MB")
|
||||||
|
# Use index-only size for fair comparison (same as Enron emails)
|
||||||
|
storage_saving = (
|
||||||
|
(non_compact_size_metrics["index_only_mb"] - compact_size_metrics["index_only_mb"])
|
||||||
|
/ non_compact_size_metrics["index_only_mb"]
|
||||||
|
* 100
|
||||||
|
)
|
||||||
|
print(f" Storage saving by compact: {storage_saving:.1f}%")
|
||||||
|
|
||||||
|
# Step 4: Performance comparison between the two indexes
|
||||||
|
if complexity is None:
|
||||||
|
raise ValueError("Complexity is required for performance comparison")
|
||||||
|
|
||||||
|
print("\n⚡ Performance comparison between indexes...")
|
||||||
|
performance_metrics = evaluator.compare_index_performance(
|
||||||
|
non_compact_index_path, args.index, data[:10], complexity=complexity
|
||||||
|
)
|
||||||
|
|
||||||
|
# Step 5: Generation evaluation
|
||||||
|
test_samples = 20
|
||||||
|
print(f"\n🧪 Testing with first {test_samples} samples for generation analysis")
|
||||||
|
|
||||||
|
if args.llm_backend == "openai" and args.openai_api_key:
|
||||||
|
print("🔍🤖 Running OpenAI-based generation evaluation...")
|
||||||
|
evaluation_start = time.time()
|
||||||
|
timing_metrics = evaluator.evaluate_timing_breakdown(data[:test_samples])
|
||||||
|
evaluation_time = time.time() - evaluation_start
|
||||||
|
else:
|
||||||
|
print(
|
||||||
|
f"🔍🤖 Running {args.llm_backend} generation evaluation with {args.model_name}..."
|
||||||
|
)
|
||||||
|
try:
|
||||||
|
# Load LLM
|
||||||
|
if args.llm_backend == "hf":
|
||||||
|
tokenizer, model = load_hf_model(args.model_name)
|
||||||
|
|
||||||
|
def llm_func(prompt):
|
||||||
|
return generate_hf(tokenizer, model, prompt)
|
||||||
|
else: # vllm
|
||||||
|
llm, sampling_params = load_vllm_model(args.model_name)
|
||||||
|
|
||||||
|
def llm_func(prompt):
|
||||||
|
return generate_vllm(llm, sampling_params, prompt)
|
||||||
|
|
||||||
|
# Simple generation evaluation
|
||||||
|
queries = [item["question"] for item in data[:test_samples]]
|
||||||
|
gen_results = evaluate_rag(
|
||||||
|
evaluator.searcher,
|
||||||
|
llm_func,
|
||||||
|
queries,
|
||||||
|
domain="finance",
|
||||||
|
complexity=complexity,
|
||||||
|
)
|
||||||
|
|
||||||
|
timing_metrics = {
|
||||||
|
"total_questions": len(queries),
|
||||||
|
"avg_search_time": gen_results["avg_search_time"],
|
||||||
|
"avg_generation_time": gen_results["avg_generation_time"],
|
||||||
|
"results": gen_results["results"],
|
||||||
|
}
|
||||||
|
evaluation_time = time.time()
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"❌ Generation evaluation failed: {e}")
|
||||||
|
timing_metrics = {
|
||||||
|
"total_questions": 0,
|
||||||
|
"avg_search_time": 0,
|
||||||
|
"avg_generation_time": 0,
|
||||||
|
}
|
||||||
|
evaluation_time = 0
|
||||||
|
|
||||||
|
# Combine all metrics
|
||||||
|
combined_metrics = {
|
||||||
|
**timing_metrics,
|
||||||
|
"total_evaluation_time": evaluation_time,
|
||||||
|
"current_index": compact_size_metrics,
|
||||||
|
"non_compact_index": non_compact_size_metrics,
|
||||||
|
"performance_comparison": performance_metrics,
|
||||||
|
"storage_saving_percent": storage_saving,
|
||||||
|
}
|
||||||
|
|
||||||
|
# Print results
|
||||||
|
print("\n📊 Generation Results:")
|
||||||
|
print(f" Total Questions: {timing_metrics.get('total_questions', 0)}")
|
||||||
|
print(f" Avg Search Time: {timing_metrics.get('avg_search_time', 0):.3f}s")
|
||||||
|
print(f" Avg Generation Time: {timing_metrics.get('avg_generation_time', 0):.3f}s")
|
||||||
|
|
||||||
|
# Save results if requested
|
||||||
|
if args.output:
|
||||||
|
print(f"\n💾 Saving results to {args.output}...")
|
||||||
|
with open(args.output, "w") as f:
|
||||||
|
json.dump(combined_metrics, f, indent=2, default=str)
|
||||||
|
print(f"✅ Results saved to {args.output}")
|
||||||
|
|
||||||
|
evaluator.cleanup()
|
||||||
|
print("✅ Stage 4 completed!\n")
|
||||||
|
|
||||||
|
if args.stage == "all":
|
||||||
|
print("🎉 All evaluation stages completed successfully!")
|
||||||
|
print("\n📋 Summary:")
|
||||||
|
print(" Stage 2: ✅ Recall@3 evaluation completed")
|
||||||
|
print(" Stage 3: ✅ Optimal complexity found")
|
||||||
|
print(" Stage 4: ✅ Generation accuracy & timing evaluation completed")
|
||||||
|
print("\n🔧 Recommended next steps:")
|
||||||
|
print(" - Use optimal complexity for best speed/accuracy balance")
|
||||||
|
print(" - Review accuracy and timing breakdown for performance optimization")
|
||||||
|
print(" - Run full evaluation on complete dataset if needed")
|
||||||
|
|
||||||
|
# Clean up non-compact index after all stages complete
|
||||||
|
print("\n🧹 Cleaning up temporary non-compact index...")
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
if Path(non_compact_index_path).exists():
|
||||||
|
temp_index_dir = Path(non_compact_index_path).parent
|
||||||
|
temp_index_name = Path(non_compact_index_path).name
|
||||||
|
for temp_file in temp_index_dir.glob(f"{temp_index_name}*"):
|
||||||
|
temp_file.unlink()
|
||||||
|
print(f"✅ Cleaned up {non_compact_index_path}")
|
||||||
|
else:
|
||||||
|
print("📝 No temporary index to clean up")
|
||||||
|
except KeyboardInterrupt:
|
||||||
|
print("\n⚠️ Evaluation interrupted by user")
|
||||||
|
exit(1)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"\n❌ Stage {args.stage} failed: {e}")
|
||||||
|
exit(1)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
462
benchmarks/financebench/setup_financebench.py
Executable file
462
benchmarks/financebench/setup_financebench.py
Executable file
@@ -0,0 +1,462 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
"""
|
||||||
|
FinanceBench Complete Setup Script
|
||||||
|
Downloads all PDFs and builds full LEANN datastore
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
import re
|
||||||
|
import time
|
||||||
|
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||||
|
from pathlib import Path
|
||||||
|
from threading import Lock
|
||||||
|
|
||||||
|
import pymupdf
|
||||||
|
import requests
|
||||||
|
from leann import LeannBuilder, LeannSearcher
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
|
||||||
|
class FinanceBenchSetup:
|
||||||
|
def __init__(self, data_dir: str = "data"):
|
||||||
|
self.base_dir = Path(__file__).parent # benchmarks/financebench/
|
||||||
|
self.data_dir = self.base_dir / data_dir
|
||||||
|
self.pdf_dir = self.data_dir / "pdfs"
|
||||||
|
self.dataset_file = self.data_dir / "financebench_merged.jsonl"
|
||||||
|
self.index_dir = self.data_dir / "index"
|
||||||
|
self.download_lock = Lock()
|
||||||
|
|
||||||
|
def download_dataset(self):
|
||||||
|
"""Download the main FinanceBench dataset"""
|
||||||
|
print("📊 Downloading FinanceBench dataset...")
|
||||||
|
self.data_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
if self.dataset_file.exists():
|
||||||
|
print(f"✅ Dataset already exists: {self.dataset_file}")
|
||||||
|
return
|
||||||
|
|
||||||
|
url = "https://huggingface.co/datasets/PatronusAI/financebench/raw/main/financebench_merged.jsonl"
|
||||||
|
response = requests.get(url, stream=True)
|
||||||
|
response.raise_for_status()
|
||||||
|
|
||||||
|
with open(self.dataset_file, "wb") as f:
|
||||||
|
for chunk in response.iter_content(chunk_size=8192):
|
||||||
|
f.write(chunk)
|
||||||
|
|
||||||
|
print(f"✅ Dataset downloaded: {self.dataset_file}")
|
||||||
|
|
||||||
|
def get_pdf_list(self):
|
||||||
|
"""Get list of all PDF files from GitHub"""
|
||||||
|
print("📋 Fetching PDF list from GitHub...")
|
||||||
|
|
||||||
|
response = requests.get(
|
||||||
|
"https://api.github.com/repos/patronus-ai/financebench/contents/pdfs"
|
||||||
|
)
|
||||||
|
response.raise_for_status()
|
||||||
|
pdf_files = response.json()
|
||||||
|
|
||||||
|
print(f"Found {len(pdf_files)} PDF files")
|
||||||
|
return pdf_files
|
||||||
|
|
||||||
|
def download_single_pdf(self, pdf_info, position):
|
||||||
|
"""Download a single PDF file"""
|
||||||
|
pdf_name = pdf_info["name"]
|
||||||
|
pdf_path = self.pdf_dir / pdf_name
|
||||||
|
|
||||||
|
# Skip if already downloaded
|
||||||
|
if pdf_path.exists() and pdf_path.stat().st_size > 0:
|
||||||
|
return f"✅ {pdf_name} (cached)"
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Download PDF
|
||||||
|
response = requests.get(pdf_info["download_url"], timeout=60)
|
||||||
|
response.raise_for_status()
|
||||||
|
|
||||||
|
# Write to file
|
||||||
|
with self.download_lock:
|
||||||
|
with open(pdf_path, "wb") as f:
|
||||||
|
f.write(response.content)
|
||||||
|
|
||||||
|
return f"✅ {pdf_name} ({len(response.content) // 1024}KB)"
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
return f"❌ {pdf_name}: {e!s}"
|
||||||
|
|
||||||
|
def download_all_pdfs(self, max_workers: int = 5):
|
||||||
|
"""Download all PDF files with parallel processing"""
|
||||||
|
self.pdf_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
pdf_files = self.get_pdf_list()
|
||||||
|
|
||||||
|
print(f"📥 Downloading {len(pdf_files)} PDFs with {max_workers} workers...")
|
||||||
|
|
||||||
|
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
||||||
|
# Submit all download tasks
|
||||||
|
future_to_pdf = {
|
||||||
|
executor.submit(self.download_single_pdf, pdf_info, i): pdf_info["name"]
|
||||||
|
for i, pdf_info in enumerate(pdf_files)
|
||||||
|
}
|
||||||
|
|
||||||
|
# Process completed downloads with progress bar
|
||||||
|
with tqdm(total=len(pdf_files), desc="Downloading PDFs") as pbar:
|
||||||
|
for future in as_completed(future_to_pdf):
|
||||||
|
result = future.result()
|
||||||
|
pbar.set_postfix_str(result.split()[-1] if "✅" in result else "Error")
|
||||||
|
pbar.update(1)
|
||||||
|
|
||||||
|
# Verify downloads
|
||||||
|
downloaded_pdfs = list(self.pdf_dir.glob("*.pdf"))
|
||||||
|
print(f"✅ Successfully downloaded {len(downloaded_pdfs)}/{len(pdf_files)} PDFs")
|
||||||
|
|
||||||
|
# Show any failures
|
||||||
|
missing_pdfs = []
|
||||||
|
for pdf_info in pdf_files:
|
||||||
|
pdf_path = self.pdf_dir / pdf_info["name"]
|
||||||
|
if not pdf_path.exists() or pdf_path.stat().st_size == 0:
|
||||||
|
missing_pdfs.append(pdf_info["name"])
|
||||||
|
|
||||||
|
if missing_pdfs:
|
||||||
|
print(f"⚠️ Failed to download {len(missing_pdfs)} PDFs:")
|
||||||
|
for pdf in missing_pdfs[:5]: # Show first 5
|
||||||
|
print(f" - {pdf}")
|
||||||
|
if len(missing_pdfs) > 5:
|
||||||
|
print(f" ... and {len(missing_pdfs) - 5} more")
|
||||||
|
|
||||||
|
def build_leann_index(
|
||||||
|
self,
|
||||||
|
backend: str = "hnsw",
|
||||||
|
embedding_model: str = "sentence-transformers/all-mpnet-base-v2",
|
||||||
|
):
|
||||||
|
"""Build LEANN index from all PDFs"""
|
||||||
|
print(f"🏗️ Building LEANN index with {backend} backend...")
|
||||||
|
|
||||||
|
# Check if we have PDFs
|
||||||
|
pdf_files = list(self.pdf_dir.glob("*.pdf"))
|
||||||
|
if not pdf_files:
|
||||||
|
raise RuntimeError("No PDF files found! Run download first.")
|
||||||
|
|
||||||
|
print(f"Found {len(pdf_files)} PDF files to process")
|
||||||
|
|
||||||
|
start_time = time.time()
|
||||||
|
|
||||||
|
# Initialize builder with standard compact configuration
|
||||||
|
builder = LeannBuilder(
|
||||||
|
backend_name=backend,
|
||||||
|
embedding_model=embedding_model,
|
||||||
|
embedding_mode="sentence-transformers",
|
||||||
|
graph_degree=32,
|
||||||
|
complexity=64,
|
||||||
|
is_recompute=True, # Enable recompute (no stored embeddings)
|
||||||
|
is_compact=True, # Enable compact storage (pruned)
|
||||||
|
num_threads=4,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Process PDFs and extract text
|
||||||
|
total_chunks = 0
|
||||||
|
failed_pdfs = []
|
||||||
|
|
||||||
|
for pdf_path in tqdm(pdf_files, desc="Processing PDFs"):
|
||||||
|
try:
|
||||||
|
chunks = self.extract_pdf_text(pdf_path)
|
||||||
|
for chunk in chunks:
|
||||||
|
builder.add_text(chunk["text"], metadata=chunk["metadata"])
|
||||||
|
total_chunks += 1
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"❌ Failed to process {pdf_path.name}: {e}")
|
||||||
|
failed_pdfs.append(pdf_path.name)
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Build index in index directory
|
||||||
|
self.index_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
index_path = self.index_dir / f"financebench_full_{backend}.leann"
|
||||||
|
print(f"🔨 Building index: {index_path}")
|
||||||
|
builder.build_index(str(index_path))
|
||||||
|
|
||||||
|
build_time = time.time() - start_time
|
||||||
|
|
||||||
|
print("✅ Index built successfully!")
|
||||||
|
print(f" 📁 Index path: {index_path}")
|
||||||
|
print(f" 📊 Total chunks: {total_chunks:,}")
|
||||||
|
print(f" 📄 Processed PDFs: {len(pdf_files) - len(failed_pdfs)}/{len(pdf_files)}")
|
||||||
|
print(f" ⏱️ Build time: {build_time:.1f}s")
|
||||||
|
|
||||||
|
if failed_pdfs:
|
||||||
|
print(f" ⚠️ Failed PDFs: {failed_pdfs}")
|
||||||
|
|
||||||
|
return str(index_path)
|
||||||
|
|
||||||
|
def build_faiss_flat_baseline(self, index_path: str, output_dir: str = "baseline"):
|
||||||
|
"""Build FAISS flat baseline using the same embeddings as LEANN index"""
|
||||||
|
print("🔨 Building FAISS Flat baseline...")
|
||||||
|
|
||||||
|
import os
|
||||||
|
import pickle
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from leann.api import compute_embeddings
|
||||||
|
from leann_backend_hnsw import faiss
|
||||||
|
|
||||||
|
os.makedirs(output_dir, exist_ok=True)
|
||||||
|
baseline_path = os.path.join(output_dir, "faiss_flat.index")
|
||||||
|
metadata_path = os.path.join(output_dir, "metadata.pkl")
|
||||||
|
|
||||||
|
if os.path.exists(baseline_path) and os.path.exists(metadata_path):
|
||||||
|
print(f"✅ Baseline already exists at {baseline_path}")
|
||||||
|
return baseline_path
|
||||||
|
|
||||||
|
# Read metadata from the built index
|
||||||
|
meta_path = f"{index_path}.meta.json"
|
||||||
|
with open(meta_path) as f:
|
||||||
|
import json
|
||||||
|
|
||||||
|
meta = json.loads(f.read())
|
||||||
|
|
||||||
|
embedding_model = meta["embedding_model"]
|
||||||
|
passage_source = meta["passage_sources"][0]
|
||||||
|
passage_file = passage_source["path"]
|
||||||
|
|
||||||
|
# Convert relative path to absolute
|
||||||
|
if not os.path.isabs(passage_file):
|
||||||
|
index_dir = os.path.dirname(index_path)
|
||||||
|
passage_file = os.path.join(index_dir, os.path.basename(passage_file))
|
||||||
|
|
||||||
|
print(f"📊 Loading passages from {passage_file}...")
|
||||||
|
print(f"🤖 Using embedding model: {embedding_model}")
|
||||||
|
|
||||||
|
# Load all passages for baseline
|
||||||
|
passages = []
|
||||||
|
passage_ids = []
|
||||||
|
with open(passage_file, encoding="utf-8") as f:
|
||||||
|
for line in f:
|
||||||
|
if line.strip():
|
||||||
|
data = json.loads(line)
|
||||||
|
passages.append(data["text"])
|
||||||
|
passage_ids.append(data["id"])
|
||||||
|
|
||||||
|
print(f"📄 Loaded {len(passages)} passages")
|
||||||
|
|
||||||
|
# Compute embeddings using the same method as LEANN
|
||||||
|
print("🧮 Computing embeddings...")
|
||||||
|
embeddings = compute_embeddings(
|
||||||
|
passages,
|
||||||
|
embedding_model,
|
||||||
|
mode="sentence-transformers",
|
||||||
|
use_server=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
print(f"📐 Embedding shape: {embeddings.shape}")
|
||||||
|
|
||||||
|
# Build FAISS flat index
|
||||||
|
print("🏗️ Building FAISS IndexFlatIP...")
|
||||||
|
dimension = embeddings.shape[1]
|
||||||
|
index = faiss.IndexFlatIP(dimension)
|
||||||
|
|
||||||
|
# Add embeddings to flat index
|
||||||
|
embeddings_f32 = embeddings.astype(np.float32)
|
||||||
|
index.add(embeddings_f32.shape[0], faiss.swig_ptr(embeddings_f32))
|
||||||
|
|
||||||
|
# Save index and metadata
|
||||||
|
faiss.write_index(index, baseline_path)
|
||||||
|
with open(metadata_path, "wb") as f:
|
||||||
|
pickle.dump(passage_ids, f)
|
||||||
|
|
||||||
|
print(f"✅ FAISS baseline saved to {baseline_path}")
|
||||||
|
print(f"✅ Metadata saved to {metadata_path}")
|
||||||
|
print(f"📊 Total vectors: {index.ntotal}")
|
||||||
|
|
||||||
|
return baseline_path
|
||||||
|
|
||||||
|
def extract_pdf_text(self, pdf_path: Path) -> list[dict]:
|
||||||
|
"""Extract and chunk text from a PDF file"""
|
||||||
|
chunks = []
|
||||||
|
doc = pymupdf.open(pdf_path)
|
||||||
|
|
||||||
|
for page_num in range(len(doc)):
|
||||||
|
page = doc[page_num]
|
||||||
|
text = page.get_text() # type: ignore
|
||||||
|
|
||||||
|
if not text.strip():
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Create metadata
|
||||||
|
metadata = {
|
||||||
|
"source_file": pdf_path.name,
|
||||||
|
"page_number": page_num + 1,
|
||||||
|
"document_type": "10K" if "10K" in pdf_path.name else "10Q",
|
||||||
|
"company": pdf_path.name.split("_")[0],
|
||||||
|
"doc_period": self.extract_year_from_filename(pdf_path.name),
|
||||||
|
}
|
||||||
|
|
||||||
|
# Use recursive character splitting like LangChain
|
||||||
|
if len(text.split()) > 500:
|
||||||
|
# Split by double newlines (paragraphs)
|
||||||
|
paragraphs = [p.strip() for p in text.split("\n\n") if p.strip()]
|
||||||
|
|
||||||
|
current_chunk = ""
|
||||||
|
for para in paragraphs:
|
||||||
|
# If adding this paragraph would make chunk too long, save current chunk
|
||||||
|
if current_chunk and len((current_chunk + " " + para).split()) > 300:
|
||||||
|
if current_chunk.strip():
|
||||||
|
chunks.append(
|
||||||
|
{
|
||||||
|
"text": current_chunk.strip(),
|
||||||
|
"metadata": {
|
||||||
|
**metadata,
|
||||||
|
"chunk_id": f"page_{page_num + 1}_chunk_{len(chunks)}",
|
||||||
|
},
|
||||||
|
}
|
||||||
|
)
|
||||||
|
current_chunk = para
|
||||||
|
else:
|
||||||
|
current_chunk = (current_chunk + " " + para).strip()
|
||||||
|
|
||||||
|
# Add the last chunk
|
||||||
|
if current_chunk.strip():
|
||||||
|
chunks.append(
|
||||||
|
{
|
||||||
|
"text": current_chunk.strip(),
|
||||||
|
"metadata": {
|
||||||
|
**metadata,
|
||||||
|
"chunk_id": f"page_{page_num + 1}_chunk_{len(chunks)}",
|
||||||
|
},
|
||||||
|
}
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
# Page is short enough, use as single chunk
|
||||||
|
chunks.append(
|
||||||
|
{
|
||||||
|
"text": text.strip(),
|
||||||
|
"metadata": {**metadata, "chunk_id": f"page_{page_num + 1}"},
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
doc.close()
|
||||||
|
return chunks
|
||||||
|
|
||||||
|
def extract_year_from_filename(self, filename: str) -> str:
|
||||||
|
"""Extract year from PDF filename"""
|
||||||
|
# Try to find 4-digit year in filename
|
||||||
|
|
||||||
|
match = re.search(r"(\d{4})", filename)
|
||||||
|
return match.group(1) if match else "unknown"
|
||||||
|
|
||||||
|
def verify_setup(self, index_path: str):
|
||||||
|
"""Verify the setup by testing a simple query"""
|
||||||
|
print("🧪 Verifying setup with test query...")
|
||||||
|
|
||||||
|
try:
|
||||||
|
searcher = LeannSearcher(index_path)
|
||||||
|
|
||||||
|
# Test query
|
||||||
|
test_query = "What is the capital expenditure for 3M in 2018?"
|
||||||
|
results = searcher.search(test_query, top_k=3)
|
||||||
|
|
||||||
|
print(f"✅ Test query successful! Found {len(results)} results:")
|
||||||
|
for i, result in enumerate(results, 1):
|
||||||
|
company = result.metadata.get("company", "Unknown")
|
||||||
|
year = result.metadata.get("doc_period", "Unknown")
|
||||||
|
page = result.metadata.get("page_number", "Unknown")
|
||||||
|
print(f" {i}. {company} {year} (page {page}) - Score: {result.score:.3f}")
|
||||||
|
print(f" {result.text[:100]}...")
|
||||||
|
|
||||||
|
searcher.cleanup()
|
||||||
|
print("✅ Setup verification completed successfully!")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"❌ Setup verification failed: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = argparse.ArgumentParser(description="Setup FinanceBench with full PDF datastore")
|
||||||
|
parser.add_argument("--data-dir", default="data", help="Data directory")
|
||||||
|
parser.add_argument(
|
||||||
|
"--backend", choices=["hnsw", "diskann"], default="hnsw", help="LEANN backend"
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--embedding-model",
|
||||||
|
default="sentence-transformers/all-mpnet-base-v2",
|
||||||
|
help="Embedding model",
|
||||||
|
)
|
||||||
|
parser.add_argument("--max-workers", type=int, default=5, help="Parallel download workers")
|
||||||
|
parser.add_argument("--skip-download", action="store_true", help="Skip PDF download")
|
||||||
|
parser.add_argument("--skip-build", action="store_true", help="Skip index building")
|
||||||
|
parser.add_argument(
|
||||||
|
"--build-baseline-only",
|
||||||
|
action="store_true",
|
||||||
|
help="Only build FAISS baseline from existing index",
|
||||||
|
)
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
print("🏦 FinanceBench Complete Setup")
|
||||||
|
print("=" * 50)
|
||||||
|
|
||||||
|
setup = FinanceBenchSetup(args.data_dir)
|
||||||
|
|
||||||
|
try:
|
||||||
|
if args.build_baseline_only:
|
||||||
|
# Only build baseline from existing index
|
||||||
|
index_path = setup.index_dir / f"financebench_full_{args.backend}"
|
||||||
|
index_file = f"{index_path}.index"
|
||||||
|
meta_file = f"{index_path}.leann.meta.json"
|
||||||
|
|
||||||
|
if not os.path.exists(index_file) or not os.path.exists(meta_file):
|
||||||
|
print("❌ Index files not found:")
|
||||||
|
print(f" Index: {index_file}")
|
||||||
|
print(f" Meta: {meta_file}")
|
||||||
|
print("💡 Run without --build-baseline-only to build the index first")
|
||||||
|
exit(1)
|
||||||
|
|
||||||
|
print(f"🔨 Building baseline from existing index: {index_path}")
|
||||||
|
baseline_path = setup.build_faiss_flat_baseline(str(index_path))
|
||||||
|
print(f"✅ Baseline built at {baseline_path}")
|
||||||
|
return
|
||||||
|
|
||||||
|
# Step 1: Download dataset
|
||||||
|
setup.download_dataset()
|
||||||
|
|
||||||
|
# Step 2: Download PDFs
|
||||||
|
if not args.skip_download:
|
||||||
|
setup.download_all_pdfs(max_workers=args.max_workers)
|
||||||
|
else:
|
||||||
|
print("⏭️ Skipping PDF download")
|
||||||
|
|
||||||
|
# Step 3: Build LEANN index
|
||||||
|
if not args.skip_build:
|
||||||
|
index_path = setup.build_leann_index(
|
||||||
|
backend=args.backend, embedding_model=args.embedding_model
|
||||||
|
)
|
||||||
|
|
||||||
|
# Step 4: Build FAISS flat baseline
|
||||||
|
print("\n🔨 Building FAISS flat baseline...")
|
||||||
|
baseline_path = setup.build_faiss_flat_baseline(index_path)
|
||||||
|
print(f"✅ Baseline built at {baseline_path}")
|
||||||
|
|
||||||
|
# Step 5: Verify setup
|
||||||
|
setup.verify_setup(index_path)
|
||||||
|
else:
|
||||||
|
print("⏭️ Skipping index building")
|
||||||
|
|
||||||
|
print("\n🎉 FinanceBench setup completed!")
|
||||||
|
print(f"📁 Data directory: {setup.data_dir.absolute()}")
|
||||||
|
print("\nNext steps:")
|
||||||
|
print(
|
||||||
|
"1. Run evaluation: python evaluate_financebench.py --index data/index/financebench_full_hnsw.leann"
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
"2. Or test manually: python -c \"from leann import LeannSearcher; s = LeannSearcher('data/index/financebench_full_hnsw.leann'); print(s.search('3M capital expenditure 2018'))\""
|
||||||
|
)
|
||||||
|
|
||||||
|
except KeyboardInterrupt:
|
||||||
|
print("\n⚠️ Setup interrupted by user")
|
||||||
|
exit(1)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"\n❌ Setup failed: {e}")
|
||||||
|
exit(1)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
214
benchmarks/financebench/verify_recall.py
Normal file
214
benchmarks/financebench/verify_recall.py
Normal file
@@ -0,0 +1,214 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# /// script
|
||||||
|
# requires-python = ">=3.9"
|
||||||
|
# dependencies = [
|
||||||
|
# "faiss-cpu",
|
||||||
|
# "numpy",
|
||||||
|
# "sentence-transformers",
|
||||||
|
# "torch",
|
||||||
|
# "tqdm",
|
||||||
|
# ]
|
||||||
|
# ///
|
||||||
|
|
||||||
|
"""
|
||||||
|
Independent recall verification script using standard FAISS.
|
||||||
|
Creates two indexes (HNSW and Flat) and compares recall@3 at different complexities.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import json
|
||||||
|
import time
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import faiss
|
||||||
|
import numpy as np
|
||||||
|
from sentence_transformers import SentenceTransformer
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
|
||||||
|
def compute_embeddings_direct(chunks: list[str], model_name: str) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Direct embedding computation using sentence-transformers.
|
||||||
|
Copied logic to avoid dependency issues.
|
||||||
|
"""
|
||||||
|
print(f"Loading model: {model_name}")
|
||||||
|
model = SentenceTransformer(model_name)
|
||||||
|
|
||||||
|
print(f"Computing embeddings for {len(chunks)} chunks...")
|
||||||
|
embeddings = model.encode(
|
||||||
|
chunks,
|
||||||
|
show_progress_bar=True,
|
||||||
|
batch_size=32,
|
||||||
|
convert_to_numpy=True,
|
||||||
|
normalize_embeddings=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
return embeddings.astype(np.float32)
|
||||||
|
|
||||||
|
|
||||||
|
def load_financebench_queries(dataset_path: str, max_queries: int = 200) -> list[str]:
|
||||||
|
"""Load FinanceBench queries from dataset"""
|
||||||
|
queries = []
|
||||||
|
with open(dataset_path, encoding="utf-8") as f:
|
||||||
|
for line in f:
|
||||||
|
if line.strip():
|
||||||
|
data = json.loads(line)
|
||||||
|
queries.append(data["question"])
|
||||||
|
if len(queries) >= max_queries:
|
||||||
|
break
|
||||||
|
return queries
|
||||||
|
|
||||||
|
|
||||||
|
def load_passages_from_leann_index(index_path: str) -> tuple[list[str], list[str]]:
|
||||||
|
"""Load passages from LEANN index structure"""
|
||||||
|
meta_path = f"{index_path}.meta.json"
|
||||||
|
with open(meta_path) as f:
|
||||||
|
meta = json.load(f)
|
||||||
|
|
||||||
|
passage_source = meta["passage_sources"][0]
|
||||||
|
passage_file = passage_source["path"]
|
||||||
|
|
||||||
|
# Convert relative path to absolute
|
||||||
|
if not Path(passage_file).is_absolute():
|
||||||
|
index_dir = Path(index_path).parent
|
||||||
|
passage_file = index_dir / Path(passage_file).name
|
||||||
|
|
||||||
|
print(f"Loading passages from {passage_file}")
|
||||||
|
|
||||||
|
passages = []
|
||||||
|
passage_ids = []
|
||||||
|
with open(passage_file, encoding="utf-8") as f:
|
||||||
|
for line in tqdm(f, desc="Loading passages"):
|
||||||
|
if line.strip():
|
||||||
|
data = json.loads(line)
|
||||||
|
passages.append(data["text"])
|
||||||
|
passage_ids.append(data["id"])
|
||||||
|
|
||||||
|
print(f"Loaded {len(passages)} passages")
|
||||||
|
return passages, passage_ids
|
||||||
|
|
||||||
|
|
||||||
|
def build_faiss_indexes(embeddings: np.ndarray) -> tuple[faiss.Index, faiss.Index]:
|
||||||
|
"""Build FAISS indexes: Flat (ground truth) and HNSW"""
|
||||||
|
dimension = embeddings.shape[1]
|
||||||
|
|
||||||
|
# Build Flat index (ground truth)
|
||||||
|
print("Building FAISS IndexFlatIP (ground truth)...")
|
||||||
|
flat_index = faiss.IndexFlatIP(dimension)
|
||||||
|
flat_index.add(embeddings)
|
||||||
|
|
||||||
|
# Build HNSW index
|
||||||
|
print("Building FAISS IndexHNSWFlat...")
|
||||||
|
M = 32 # Same as LEANN default
|
||||||
|
hnsw_index = faiss.IndexHNSWFlat(dimension, M, faiss.METRIC_INNER_PRODUCT)
|
||||||
|
hnsw_index.hnsw.efConstruction = 200 # Same as LEANN default
|
||||||
|
hnsw_index.add(embeddings)
|
||||||
|
|
||||||
|
print(f"Built indexes with {flat_index.ntotal} vectors, dimension {dimension}")
|
||||||
|
return flat_index, hnsw_index
|
||||||
|
|
||||||
|
|
||||||
|
def evaluate_recall_at_k(
|
||||||
|
query_embeddings: np.ndarray,
|
||||||
|
flat_index: faiss.Index,
|
||||||
|
hnsw_index: faiss.Index,
|
||||||
|
passage_ids: list[str],
|
||||||
|
k: int = 3,
|
||||||
|
ef_search: int = 64,
|
||||||
|
) -> float:
|
||||||
|
"""Evaluate recall@k comparing HNSW vs Flat"""
|
||||||
|
|
||||||
|
# Set search parameters for HNSW
|
||||||
|
hnsw_index.hnsw.efSearch = ef_search
|
||||||
|
|
||||||
|
total_recall = 0.0
|
||||||
|
num_queries = query_embeddings.shape[0]
|
||||||
|
|
||||||
|
for i in range(num_queries):
|
||||||
|
query = query_embeddings[i : i + 1] # Keep 2D shape
|
||||||
|
|
||||||
|
# Get ground truth from Flat index (standard FAISS API)
|
||||||
|
flat_distances, flat_indices = flat_index.search(query, k)
|
||||||
|
ground_truth_ids = {passage_ids[idx] for idx in flat_indices[0]}
|
||||||
|
|
||||||
|
# Get results from HNSW index (standard FAISS API)
|
||||||
|
hnsw_distances, hnsw_indices = hnsw_index.search(query, k)
|
||||||
|
hnsw_ids = {passage_ids[idx] for idx in hnsw_indices[0]}
|
||||||
|
|
||||||
|
# Calculate recall
|
||||||
|
intersection = ground_truth_ids.intersection(hnsw_ids)
|
||||||
|
recall = len(intersection) / k
|
||||||
|
total_recall += recall
|
||||||
|
|
||||||
|
if i < 3: # Show first few examples
|
||||||
|
print(f" Query {i + 1}: Recall@{k} = {recall:.3f}")
|
||||||
|
print(f" Flat: {list(ground_truth_ids)}")
|
||||||
|
print(f" HNSW: {list(hnsw_ids)}")
|
||||||
|
print(f" Intersection: {list(intersection)}")
|
||||||
|
|
||||||
|
avg_recall = total_recall / num_queries
|
||||||
|
return avg_recall
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
# Configuration
|
||||||
|
dataset_path = "data/financebench_merged.jsonl"
|
||||||
|
index_path = "data/index/financebench_full_hnsw.leann"
|
||||||
|
embedding_model = "sentence-transformers/all-mpnet-base-v2"
|
||||||
|
|
||||||
|
print("🔍 FAISS Recall Verification")
|
||||||
|
print("=" * 50)
|
||||||
|
|
||||||
|
# Check if files exist
|
||||||
|
if not Path(dataset_path).exists():
|
||||||
|
print(f"❌ Dataset not found: {dataset_path}")
|
||||||
|
return
|
||||||
|
if not Path(f"{index_path}.meta.json").exists():
|
||||||
|
print(f"❌ Index metadata not found: {index_path}.meta.json")
|
||||||
|
return
|
||||||
|
|
||||||
|
# Load data
|
||||||
|
print("📖 Loading FinanceBench queries...")
|
||||||
|
queries = load_financebench_queries(dataset_path, max_queries=50)
|
||||||
|
print(f"Loaded {len(queries)} queries")
|
||||||
|
|
||||||
|
print("📄 Loading passages from LEANN index...")
|
||||||
|
passages, passage_ids = load_passages_from_leann_index(index_path)
|
||||||
|
|
||||||
|
# Compute embeddings
|
||||||
|
print("🧮 Computing passage embeddings...")
|
||||||
|
passage_embeddings = compute_embeddings_direct(passages, embedding_model)
|
||||||
|
|
||||||
|
print("🧮 Computing query embeddings...")
|
||||||
|
query_embeddings = compute_embeddings_direct(queries, embedding_model)
|
||||||
|
|
||||||
|
# Build FAISS indexes
|
||||||
|
print("🏗️ Building FAISS indexes...")
|
||||||
|
flat_index, hnsw_index = build_faiss_indexes(passage_embeddings)
|
||||||
|
|
||||||
|
# Test different efSearch values (equivalent to LEANN complexity)
|
||||||
|
print("\n📊 Evaluating Recall@3 at different efSearch values...")
|
||||||
|
ef_search_values = [16, 32, 64, 128, 256]
|
||||||
|
|
||||||
|
for ef_search in ef_search_values:
|
||||||
|
print(f"\n🧪 Testing efSearch = {ef_search}")
|
||||||
|
start_time = time.time()
|
||||||
|
|
||||||
|
recall = evaluate_recall_at_k(
|
||||||
|
query_embeddings, flat_index, hnsw_index, passage_ids, k=3, ef_search=ef_search
|
||||||
|
)
|
||||||
|
|
||||||
|
elapsed = time.time() - start_time
|
||||||
|
print(
|
||||||
|
f"📈 efSearch {ef_search}: Recall@3 = {recall:.3f} ({recall * 100:.1f}%) in {elapsed:.2f}s"
|
||||||
|
)
|
||||||
|
|
||||||
|
print("\n✅ Verification completed!")
|
||||||
|
print("\n📋 Summary:")
|
||||||
|
print(" - Built independent FAISS Flat and HNSW indexes")
|
||||||
|
print(" - Compared recall@3 at different efSearch values")
|
||||||
|
print(" - Used same embedding model as LEANN")
|
||||||
|
print(" - This validates LEANN's recall measurements")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
1
benchmarks/laion/.gitignore
vendored
Normal file
1
benchmarks/laion/.gitignore
vendored
Normal file
@@ -0,0 +1 @@
|
|||||||
|
data/
|
||||||
199
benchmarks/laion/README.md
Normal file
199
benchmarks/laion/README.md
Normal file
@@ -0,0 +1,199 @@
|
|||||||
|
# LAION Multimodal Benchmark
|
||||||
|
|
||||||
|
A multimodal benchmark for evaluating image retrieval and generation performance using LEANN with CLIP embeddings and Qwen2.5-VL for multimodal generation on LAION dataset subset.
|
||||||
|
|
||||||
|
## Overview
|
||||||
|
|
||||||
|
This benchmark evaluates:
|
||||||
|
- **Image retrieval timing** using caption-based queries
|
||||||
|
- **Recall@K performance** for image search
|
||||||
|
- **Complexity analysis** across different search parameters
|
||||||
|
- **Index size and storage efficiency**
|
||||||
|
- **Multimodal generation** with Qwen2.5-VL for image understanding and description
|
||||||
|
|
||||||
|
## Dataset Configuration
|
||||||
|
|
||||||
|
- **Dataset**: LAION-400M subset (10,000 images)
|
||||||
|
- **Embeddings**: Pre-computed CLIP ViT-B/32 (512 dimensions)
|
||||||
|
- **Queries**: 200 random captions from the dataset
|
||||||
|
- **Ground Truth**: Self-recall (query caption → original image)
|
||||||
|
|
||||||
|
## Quick Start
|
||||||
|
|
||||||
|
### 1. Setup the benchmark
|
||||||
|
|
||||||
|
```bash
|
||||||
|
cd benchmarks/laion
|
||||||
|
python setup_laion.py --num-samples 10000 --num-queries 200
|
||||||
|
```
|
||||||
|
|
||||||
|
This will:
|
||||||
|
- Create dummy LAION data (10K samples)
|
||||||
|
- Generate CLIP embeddings (512-dim)
|
||||||
|
- Build LEANN index with HNSW backend
|
||||||
|
- Create 200 evaluation queries
|
||||||
|
|
||||||
|
### 2. Run evaluation
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Run all evaluation stages
|
||||||
|
python evaluate_laion.py --index data/laion_index.leann
|
||||||
|
|
||||||
|
# Run specific stages
|
||||||
|
python evaluate_laion.py --index data/laion_index.leann --stage 2 # Recall evaluation
|
||||||
|
python evaluate_laion.py --index data/laion_index.leann --stage 3 # Complexity analysis
|
||||||
|
python evaluate_laion.py --index data/laion_index.leann --stage 4 # Index comparison
|
||||||
|
python evaluate_laion.py --index data/laion_index.leann --stage 5 # Multimodal generation
|
||||||
|
|
||||||
|
# Multimodal generation with Qwen2.5-VL
|
||||||
|
python evaluate_laion.py --index data/laion_index.leann --stage 5 --model-name Qwen/Qwen2.5-VL-7B-Instruct
|
||||||
|
```
|
||||||
|
|
||||||
|
### 3. Save results
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python evaluate_laion.py --index data/laion_index.leann --output results.json
|
||||||
|
```
|
||||||
|
|
||||||
|
## Configuration Options
|
||||||
|
|
||||||
|
### Setup Options
|
||||||
|
```bash
|
||||||
|
python setup_laion.py \
|
||||||
|
--num-samples 10000 \
|
||||||
|
--num-queries 200 \
|
||||||
|
--index-path data/laion_index.leann \
|
||||||
|
--backend hnsw
|
||||||
|
```
|
||||||
|
|
||||||
|
### Evaluation Options
|
||||||
|
```bash
|
||||||
|
python evaluate_laion.py \
|
||||||
|
--index data/laion_index.leann \
|
||||||
|
--queries data/evaluation_queries.jsonl \
|
||||||
|
--complexity 64 \
|
||||||
|
--top-k 3 \
|
||||||
|
--num-samples 100 \
|
||||||
|
--stage all
|
||||||
|
```
|
||||||
|
|
||||||
|
## Evaluation Stages
|
||||||
|
|
||||||
|
### Stage 2: Recall Evaluation
|
||||||
|
- Evaluates Recall@3 for multimodal retrieval
|
||||||
|
- Compares LEANN vs FAISS baseline performance
|
||||||
|
- Self-recall: query caption should retrieve original image
|
||||||
|
|
||||||
|
### Stage 3: Complexity Analysis
|
||||||
|
- Binary search for optimal complexity (90% recall target)
|
||||||
|
- Tests performance across different complexity levels
|
||||||
|
- Analyzes speed vs. accuracy tradeoffs
|
||||||
|
|
||||||
|
### Stage 4: Index Comparison
|
||||||
|
- Compares compact vs non-compact index sizes
|
||||||
|
- Measures search performance differences
|
||||||
|
- Reports storage efficiency and speed ratios
|
||||||
|
|
||||||
|
### Stage 5: Multimodal Generation
|
||||||
|
- Uses Qwen2.5-VL for image understanding and description
|
||||||
|
- Retrieval-Augmented Generation (RAG) with multimodal context
|
||||||
|
- Measures both search and generation timing
|
||||||
|
|
||||||
|
## Output Metrics
|
||||||
|
|
||||||
|
### Timing Metrics
|
||||||
|
- Average/median/min/max search time
|
||||||
|
- Standard deviation
|
||||||
|
- Searches per second
|
||||||
|
- Latency in milliseconds
|
||||||
|
|
||||||
|
### Recall Metrics
|
||||||
|
- Recall@3 percentage for image retrieval
|
||||||
|
- Number of queries with ground truth
|
||||||
|
|
||||||
|
### Index Metrics
|
||||||
|
- Total index size (MB)
|
||||||
|
- Component breakdown (index, passages, metadata)
|
||||||
|
- Storage savings (compact vs non-compact)
|
||||||
|
- Backend and embedding model info
|
||||||
|
|
||||||
|
### Generation Metrics (Stage 5)
|
||||||
|
- Average search time per query
|
||||||
|
- Average generation time per query
|
||||||
|
- Time distribution (search vs generation)
|
||||||
|
- Sample multimodal responses
|
||||||
|
- Model: Qwen2.5-VL performance
|
||||||
|
|
||||||
|
## Benchmark Results
|
||||||
|
|
||||||
|
### LEANN-RAG Performance (CLIP ViT-L/14 + Qwen2.5-VL)
|
||||||
|
|
||||||
|
**Stage 3: Optimal Complexity Analysis**
|
||||||
|
- **Optimal Complexity**: 85 (achieving 90% Recall@3)
|
||||||
|
- **Binary Search Range**: 1-128
|
||||||
|
- **Target Recall**: 90%
|
||||||
|
- **Index Type**: Non-compact (for fast binary search)
|
||||||
|
|
||||||
|
**Stage 5: Multimodal Generation Performance (Qwen2.5-VL)**
|
||||||
|
- **Total Queries**: 20
|
||||||
|
- **Average Search Time**: 1.200s per query
|
||||||
|
- **Average Generation Time**: 6.558s per query
|
||||||
|
- **Time Distribution**: Search 15.5%, Generation 84.5%
|
||||||
|
- **LLM Backend**: HuggingFace transformers
|
||||||
|
- **Model**: Qwen/Qwen2.5-VL-7B-Instruct
|
||||||
|
- **Optimal Complexity**: 85
|
||||||
|
|
||||||
|
**System Performance:**
|
||||||
|
- **Index Size**: ~10,000 image embeddings from LAION subset
|
||||||
|
- **Embedding Model**: CLIP ViT-L/14 (768 dimensions)
|
||||||
|
- **Backend**: HNSW with cosine distance
|
||||||
|
|
||||||
|
### Example Results
|
||||||
|
|
||||||
|
```
|
||||||
|
🎯 LAION MULTIMODAL BENCHMARK RESULTS
|
||||||
|
============================================================
|
||||||
|
|
||||||
|
📊 Multimodal Generation Results:
|
||||||
|
Total Queries: 20
|
||||||
|
Avg Search Time: 1.200s
|
||||||
|
Avg Generation Time: 6.558s
|
||||||
|
Time Distribution: Search 15.5%, Generation 84.5%
|
||||||
|
LLM Backend: HuggingFace transformers
|
||||||
|
Model: Qwen/Qwen2.5-VL-7B-Instruct
|
||||||
|
|
||||||
|
⚙️ Optimal Complexity Analysis:
|
||||||
|
Target Recall: 90%
|
||||||
|
Optimal Complexity: 85
|
||||||
|
Binary Search Range: 1-128
|
||||||
|
Non-compact Index (fast search, no recompute)
|
||||||
|
|
||||||
|
🚀 Performance Summary:
|
||||||
|
Multimodal RAG: 7.758s total per query
|
||||||
|
Search: 15.5% of total time
|
||||||
|
Generation: 84.5% of total time
|
||||||
|
```
|
||||||
|
|
||||||
|
## Directory Structure
|
||||||
|
|
||||||
|
```
|
||||||
|
benchmarks/laion/
|
||||||
|
├── setup_laion.py # Setup script
|
||||||
|
├── evaluate_laion.py # Evaluation script
|
||||||
|
├── README.md # This file
|
||||||
|
└── data/ # Generated data
|
||||||
|
├── laion_images/ # Image files (placeholder)
|
||||||
|
├── laion_metadata.jsonl # Image metadata
|
||||||
|
├── laion_passages.jsonl # LEANN passages
|
||||||
|
├── laion_embeddings.npy # CLIP embeddings
|
||||||
|
├── evaluation_queries.jsonl # Evaluation queries
|
||||||
|
└── laion_index.leann/ # LEANN index files
|
||||||
|
```
|
||||||
|
|
||||||
|
## Notes
|
||||||
|
|
||||||
|
- Current implementation uses dummy data for demonstration
|
||||||
|
- For real LAION data, implement actual download logic in `setup_laion.py`
|
||||||
|
- CLIP embeddings are randomly generated - replace with real CLIP model for production
|
||||||
|
- Adjust `num_samples` and `num_queries` based on available resources
|
||||||
|
- Consider using `--num-samples` during evaluation for faster testing
|
||||||
725
benchmarks/laion/evaluate_laion.py
Normal file
725
benchmarks/laion/evaluate_laion.py
Normal file
@@ -0,0 +1,725 @@
|
|||||||
|
"""
|
||||||
|
LAION Multimodal Benchmark Evaluation Script - Modular Recall-based Evaluation
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import json
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import pickle
|
||||||
|
import time
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from leann import LeannSearcher
|
||||||
|
from leann_backend_hnsw import faiss
|
||||||
|
from sentence_transformers import SentenceTransformer
|
||||||
|
|
||||||
|
from ..llm_utils import evaluate_multimodal_rag, load_qwen_vl_model
|
||||||
|
|
||||||
|
# Setup logging to reduce verbose output
|
||||||
|
logging.basicConfig(level=logging.WARNING)
|
||||||
|
logging.getLogger("leann.api").setLevel(logging.WARNING)
|
||||||
|
logging.getLogger("leann_backend_hnsw").setLevel(logging.WARNING)
|
||||||
|
|
||||||
|
|
||||||
|
class RecallEvaluator:
|
||||||
|
"""Stage 2: Evaluate Recall@3 (LEANN vs FAISS baseline for multimodal retrieval)"""
|
||||||
|
|
||||||
|
def __init__(self, index_path: str, baseline_dir: str):
|
||||||
|
self.index_path = index_path
|
||||||
|
self.baseline_dir = baseline_dir
|
||||||
|
self.searcher = LeannSearcher(index_path)
|
||||||
|
|
||||||
|
# Load FAISS flat baseline (image embeddings)
|
||||||
|
baseline_index_path = os.path.join(baseline_dir, "faiss_flat.index")
|
||||||
|
metadata_path = os.path.join(baseline_dir, "metadata.pkl")
|
||||||
|
|
||||||
|
self.faiss_index = faiss.read_index(baseline_index_path)
|
||||||
|
with open(metadata_path, "rb") as f:
|
||||||
|
self.image_ids = pickle.load(f)
|
||||||
|
print(f"📚 Loaded FAISS flat baseline with {self.faiss_index.ntotal} image vectors")
|
||||||
|
|
||||||
|
# Load sentence-transformers CLIP for text embedding (ViT-L/14)
|
||||||
|
self.st_clip = SentenceTransformer("clip-ViT-L-14")
|
||||||
|
|
||||||
|
def evaluate_recall_at_3(
|
||||||
|
self, captions: list[str], complexity: int = 64, recompute_embeddings: bool = True
|
||||||
|
) -> float:
|
||||||
|
"""Evaluate recall@3 for multimodal retrieval: caption queries -> image results"""
|
||||||
|
recompute_str = "with recompute" if recompute_embeddings else "no recompute"
|
||||||
|
print(f"🔍 Evaluating recall@3 with complexity={complexity} ({recompute_str})...")
|
||||||
|
|
||||||
|
total_recall = 0.0
|
||||||
|
num_queries = len(captions)
|
||||||
|
|
||||||
|
for i, caption in enumerate(captions):
|
||||||
|
# Get ground truth: search with FAISS flat using caption text embedding
|
||||||
|
# Generate CLIP text embedding for caption via sentence-transformers (normalized)
|
||||||
|
query_embedding = self.st_clip.encode(
|
||||||
|
[caption], convert_to_numpy=True, normalize_embeddings=True, show_progress_bar=False
|
||||||
|
).astype(np.float32)
|
||||||
|
|
||||||
|
# Search FAISS flat for ground truth using LEANN's modified faiss API
|
||||||
|
n = query_embedding.shape[0] # Number of queries
|
||||||
|
k = 3 # Number of nearest neighbors
|
||||||
|
distances = np.zeros((n, k), dtype=np.float32)
|
||||||
|
labels = np.zeros((n, k), dtype=np.int64)
|
||||||
|
|
||||||
|
self.faiss_index.search(
|
||||||
|
n,
|
||||||
|
faiss.swig_ptr(query_embedding),
|
||||||
|
k,
|
||||||
|
faiss.swig_ptr(distances),
|
||||||
|
faiss.swig_ptr(labels),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Extract the results (image IDs from FAISS)
|
||||||
|
baseline_ids = {self.image_ids[idx] for idx in labels[0]}
|
||||||
|
|
||||||
|
# Search with LEANN at specified complexity (using caption as text query)
|
||||||
|
test_results = self.searcher.search(
|
||||||
|
caption,
|
||||||
|
top_k=3,
|
||||||
|
complexity=complexity,
|
||||||
|
recompute_embeddings=recompute_embeddings,
|
||||||
|
)
|
||||||
|
test_ids = {result.id for result in test_results}
|
||||||
|
|
||||||
|
# Calculate recall@3 = |intersection| / |ground_truth|
|
||||||
|
intersection = test_ids.intersection(baseline_ids)
|
||||||
|
recall = len(intersection) / 3.0 # Ground truth size is 3
|
||||||
|
total_recall += recall
|
||||||
|
|
||||||
|
if i < 3: # Show first few examples
|
||||||
|
print(f" Query {i + 1}: '{caption[:50]}...' -> Recall@3: {recall:.3f}")
|
||||||
|
print(f" FAISS ground truth: {list(baseline_ids)}")
|
||||||
|
print(f" LEANN results (C={complexity}, {recompute_str}): {list(test_ids)}")
|
||||||
|
print(f" Intersection: {list(intersection)}")
|
||||||
|
|
||||||
|
avg_recall = total_recall / num_queries
|
||||||
|
print(f"📊 Average Recall@3: {avg_recall:.3f} ({avg_recall * 100:.1f}%)")
|
||||||
|
return avg_recall
|
||||||
|
|
||||||
|
def cleanup(self):
|
||||||
|
"""Cleanup resources"""
|
||||||
|
if hasattr(self, "searcher"):
|
||||||
|
self.searcher.cleanup()
|
||||||
|
|
||||||
|
|
||||||
|
class LAIONEvaluator:
|
||||||
|
def __init__(self, index_path: str):
|
||||||
|
self.index_path = index_path
|
||||||
|
self.searcher = LeannSearcher(index_path)
|
||||||
|
|
||||||
|
def load_queries(self, queries_file: str) -> list[str]:
|
||||||
|
"""Load caption queries from evaluation file"""
|
||||||
|
captions = []
|
||||||
|
with open(queries_file, encoding="utf-8") as f:
|
||||||
|
for line in f:
|
||||||
|
if line.strip():
|
||||||
|
query_data = json.loads(line)
|
||||||
|
captions.append(query_data["query"])
|
||||||
|
|
||||||
|
print(f"📊 Loaded {len(captions)} caption queries")
|
||||||
|
return captions
|
||||||
|
|
||||||
|
def analyze_index_sizes(self) -> dict:
|
||||||
|
"""Analyze index sizes, emphasizing .index only (exclude passages)."""
|
||||||
|
print("📏 Analyzing index sizes (.index only)...")
|
||||||
|
|
||||||
|
# Get all index-related files
|
||||||
|
index_path = Path(self.index_path)
|
||||||
|
index_dir = index_path.parent
|
||||||
|
index_name = index_path.stem # Remove .leann extension
|
||||||
|
|
||||||
|
sizes: dict[str, float] = {}
|
||||||
|
|
||||||
|
# Core index files
|
||||||
|
index_file = index_dir / f"{index_name}.index"
|
||||||
|
meta_file = index_dir / f"{index_path.name}.meta.json" # Keep .leann for meta file
|
||||||
|
passages_file = index_dir / f"{index_path.name}.passages.jsonl" # Keep .leann for passages
|
||||||
|
passages_idx_file = index_dir / f"{index_path.name}.passages.idx" # Keep .leann for idx
|
||||||
|
|
||||||
|
# Core index size (.index only)
|
||||||
|
index_mb = index_file.stat().st_size / (1024 * 1024) if index_file.exists() else 0.0
|
||||||
|
sizes["index_only_mb"] = index_mb
|
||||||
|
|
||||||
|
# Other files for reference (not counted in index_only_mb)
|
||||||
|
sizes["metadata_mb"] = (
|
||||||
|
meta_file.stat().st_size / (1024 * 1024) if meta_file.exists() else 0.0
|
||||||
|
)
|
||||||
|
sizes["passages_text_mb"] = (
|
||||||
|
passages_file.stat().st_size / (1024 * 1024) if passages_file.exists() else 0.0
|
||||||
|
)
|
||||||
|
sizes["passages_index_mb"] = (
|
||||||
|
passages_idx_file.stat().st_size / (1024 * 1024) if passages_idx_file.exists() else 0.0
|
||||||
|
)
|
||||||
|
|
||||||
|
print(f" 📁 .index size: {index_mb:.1f} MB")
|
||||||
|
if sizes["metadata_mb"]:
|
||||||
|
print(f" 🧾 metadata: {sizes['metadata_mb']:.3f} MB")
|
||||||
|
if sizes["passages_text_mb"] or sizes["passages_index_mb"]:
|
||||||
|
print(
|
||||||
|
f" (passages excluded) text: {sizes['passages_text_mb']:.1f} MB, idx: {sizes['passages_index_mb']:.1f} MB"
|
||||||
|
)
|
||||||
|
|
||||||
|
return sizes
|
||||||
|
|
||||||
|
def create_non_compact_index_for_comparison(self, non_compact_index_path: str) -> dict:
|
||||||
|
"""Create a non-compact index for comparison purposes"""
|
||||||
|
print("🏗️ Building non-compact index from existing passages...")
|
||||||
|
|
||||||
|
# Load existing passages from current index
|
||||||
|
from leann import LeannBuilder
|
||||||
|
|
||||||
|
current_index_path = Path(self.index_path)
|
||||||
|
current_index_dir = current_index_path.parent
|
||||||
|
current_index_name = current_index_path.name
|
||||||
|
|
||||||
|
# Read metadata to get passage source
|
||||||
|
meta_path = current_index_dir / f"{current_index_name}.meta.json"
|
||||||
|
with open(meta_path) as f:
|
||||||
|
meta = json.load(f)
|
||||||
|
|
||||||
|
passage_source = meta["passage_sources"][0]
|
||||||
|
passage_file = passage_source["path"]
|
||||||
|
|
||||||
|
# Convert relative path to absolute
|
||||||
|
if not Path(passage_file).is_absolute():
|
||||||
|
passage_file = current_index_dir / Path(passage_file).name
|
||||||
|
|
||||||
|
print(f"📄 Loading passages from {passage_file}...")
|
||||||
|
|
||||||
|
# Load CLIP embeddings
|
||||||
|
embeddings_file = current_index_dir / "clip_image_embeddings.npy"
|
||||||
|
embeddings = np.load(embeddings_file)
|
||||||
|
print(f"📐 Loaded embeddings shape: {embeddings.shape}")
|
||||||
|
|
||||||
|
# Build non-compact index with same passages and embeddings
|
||||||
|
builder = LeannBuilder(
|
||||||
|
backend_name="hnsw",
|
||||||
|
# Use CLIP text encoder (ViT-L/14) to match image embeddings (768-dim)
|
||||||
|
embedding_model="clip-ViT-L-14",
|
||||||
|
embedding_mode="sentence-transformers",
|
||||||
|
is_recompute=False, # Disable recompute (store embeddings)
|
||||||
|
is_compact=False, # Disable compact storage
|
||||||
|
distance_metric="cosine",
|
||||||
|
**{
|
||||||
|
k: v
|
||||||
|
for k, v in meta.get("backend_kwargs", {}).items()
|
||||||
|
if k not in ["is_recompute", "is_compact", "distance_metric"]
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
# Prepare ids and add passages
|
||||||
|
ids: list[str] = []
|
||||||
|
with open(passage_file, encoding="utf-8") as f:
|
||||||
|
for line in f:
|
||||||
|
if line.strip():
|
||||||
|
data = json.loads(line)
|
||||||
|
ids.append(str(data["id"]))
|
||||||
|
# Ensure metadata contains the id used by the vector index
|
||||||
|
metadata = {**data.get("metadata", {}), "id": data["id"]}
|
||||||
|
builder.add_text(text=data["text"], metadata=metadata)
|
||||||
|
|
||||||
|
if len(ids) != embeddings.shape[0]:
|
||||||
|
raise ValueError(
|
||||||
|
f"IDs count ({len(ids)}) does not match embeddings ({embeddings.shape[0]})."
|
||||||
|
)
|
||||||
|
|
||||||
|
# Persist a pickle for build_index_from_embeddings
|
||||||
|
pkl_path = current_index_dir / "clip_image_embeddings.pkl"
|
||||||
|
with open(pkl_path, "wb") as pf:
|
||||||
|
pickle.dump((ids, embeddings.astype(np.float32)), pf)
|
||||||
|
|
||||||
|
print(
|
||||||
|
f"🔨 Building non-compact index at {non_compact_index_path} from precomputed embeddings..."
|
||||||
|
)
|
||||||
|
builder.build_index_from_embeddings(non_compact_index_path, str(pkl_path))
|
||||||
|
|
||||||
|
# Analyze the non-compact index size
|
||||||
|
temp_evaluator = LAIONEvaluator(non_compact_index_path)
|
||||||
|
non_compact_sizes = temp_evaluator.analyze_index_sizes()
|
||||||
|
non_compact_sizes["index_type"] = "non_compact"
|
||||||
|
|
||||||
|
return non_compact_sizes
|
||||||
|
|
||||||
|
def compare_index_performance(
|
||||||
|
self, non_compact_path: str, compact_path: str, test_captions: list, complexity: int
|
||||||
|
) -> dict:
|
||||||
|
"""Compare performance between non-compact and compact indexes"""
|
||||||
|
print("⚡ Comparing search performance between indexes...")
|
||||||
|
|
||||||
|
# Test queries
|
||||||
|
test_queries = test_captions[:5]
|
||||||
|
|
||||||
|
results = {
|
||||||
|
"non_compact": {"search_times": []},
|
||||||
|
"compact": {"search_times": []},
|
||||||
|
"avg_search_times": {},
|
||||||
|
"speed_ratio": 0.0,
|
||||||
|
}
|
||||||
|
|
||||||
|
# Test non-compact index (no recompute)
|
||||||
|
print(" 🔍 Testing non-compact index (no recompute)...")
|
||||||
|
non_compact_searcher = LeannSearcher(non_compact_path)
|
||||||
|
|
||||||
|
for caption in test_queries:
|
||||||
|
start_time = time.time()
|
||||||
|
_ = non_compact_searcher.search(
|
||||||
|
caption, top_k=3, complexity=complexity, recompute_embeddings=False
|
||||||
|
)
|
||||||
|
search_time = time.time() - start_time
|
||||||
|
results["non_compact"]["search_times"].append(search_time)
|
||||||
|
|
||||||
|
# Test compact index (with recompute)
|
||||||
|
print(" 🔍 Testing compact index (with recompute)...")
|
||||||
|
compact_searcher = LeannSearcher(compact_path)
|
||||||
|
|
||||||
|
for caption in test_queries:
|
||||||
|
start_time = time.time()
|
||||||
|
_ = compact_searcher.search(
|
||||||
|
caption, top_k=3, complexity=complexity, recompute_embeddings=True
|
||||||
|
)
|
||||||
|
search_time = time.time() - start_time
|
||||||
|
results["compact"]["search_times"].append(search_time)
|
||||||
|
|
||||||
|
# Calculate averages
|
||||||
|
results["avg_search_times"]["non_compact"] = sum(
|
||||||
|
results["non_compact"]["search_times"]
|
||||||
|
) / len(results["non_compact"]["search_times"])
|
||||||
|
results["avg_search_times"]["compact"] = sum(results["compact"]["search_times"]) / len(
|
||||||
|
results["compact"]["search_times"]
|
||||||
|
)
|
||||||
|
|
||||||
|
# Performance ratio
|
||||||
|
if results["avg_search_times"]["compact"] > 0:
|
||||||
|
results["speed_ratio"] = (
|
||||||
|
results["avg_search_times"]["non_compact"] / results["avg_search_times"]["compact"]
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
results["speed_ratio"] = float("inf")
|
||||||
|
|
||||||
|
print(
|
||||||
|
f" Non-compact (no recompute): {results['avg_search_times']['non_compact']:.3f}s avg"
|
||||||
|
)
|
||||||
|
print(f" Compact (with recompute): {results['avg_search_times']['compact']:.3f}s avg")
|
||||||
|
print(f" Speed ratio: {results['speed_ratio']:.2f}x")
|
||||||
|
|
||||||
|
# Cleanup
|
||||||
|
non_compact_searcher.cleanup()
|
||||||
|
compact_searcher.cleanup()
|
||||||
|
|
||||||
|
return results
|
||||||
|
|
||||||
|
def _print_results(self, timing_metrics: dict):
|
||||||
|
"""Print evaluation results"""
|
||||||
|
print("\n🎯 LAION MULTIMODAL BENCHMARK RESULTS")
|
||||||
|
print("=" * 60)
|
||||||
|
|
||||||
|
# Index comparison analysis (prefer .index-only view if present)
|
||||||
|
if "current_index" in timing_metrics and "non_compact_index" in timing_metrics:
|
||||||
|
current = timing_metrics["current_index"]
|
||||||
|
non_compact = timing_metrics["non_compact_index"]
|
||||||
|
|
||||||
|
if "index_only_mb" in current and "index_only_mb" in non_compact:
|
||||||
|
print("\n📏 Index Comparison Analysis (.index only):")
|
||||||
|
print(f" Compact index (current): {current.get('index_only_mb', 0):.1f} MB")
|
||||||
|
print(f" Non-compact index: {non_compact.get('index_only_mb', 0):.1f} MB")
|
||||||
|
print(
|
||||||
|
f" Storage saving by compact: {timing_metrics.get('storage_saving_percent', 0):.1f}%"
|
||||||
|
)
|
||||||
|
# Show excluded components for reference if available
|
||||||
|
if any(
|
||||||
|
k in non_compact
|
||||||
|
for k in ("passages_text_mb", "passages_index_mb", "metadata_mb")
|
||||||
|
):
|
||||||
|
print(" (passages excluded in totals, shown for reference):")
|
||||||
|
print(
|
||||||
|
f" - Passages text: {non_compact.get('passages_text_mb', 0):.1f} MB, "
|
||||||
|
f"Passages index: {non_compact.get('passages_index_mb', 0):.1f} MB, "
|
||||||
|
f"Metadata: {non_compact.get('metadata_mb', 0):.3f} MB"
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
# Fallback to legacy totals if running with older metrics
|
||||||
|
print("\n📏 Index Comparison Analysis:")
|
||||||
|
print(
|
||||||
|
f" Compact index (current): {current.get('total_with_embeddings', 0):.1f} MB"
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
f" Non-compact index (with embeddings): {non_compact.get('total_with_embeddings', 0):.1f} MB"
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
f" Storage saving by compact: {timing_metrics.get('storage_saving_percent', 0):.1f}%"
|
||||||
|
)
|
||||||
|
print(" Component breakdown (non-compact):")
|
||||||
|
print(f" - Main index: {non_compact.get('index', 0):.1f} MB")
|
||||||
|
print(f" - Passages text: {non_compact.get('passages_text', 0):.1f} MB")
|
||||||
|
print(f" - Passages index: {non_compact.get('passages_index', 0):.1f} MB")
|
||||||
|
print(f" - Metadata: {non_compact.get('metadata', 0):.1f} MB")
|
||||||
|
|
||||||
|
# Performance comparison
|
||||||
|
if "performance_comparison" in timing_metrics:
|
||||||
|
perf = timing_metrics["performance_comparison"]
|
||||||
|
print("\n⚡ Performance Comparison:")
|
||||||
|
print(
|
||||||
|
f" Non-compact (no recompute): {perf.get('avg_search_times', {}).get('non_compact', 0):.3f}s avg"
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
f" Compact (with recompute): {perf.get('avg_search_times', {}).get('compact', 0):.3f}s avg"
|
||||||
|
)
|
||||||
|
print(f" Speed ratio: {perf.get('speed_ratio', 0):.2f}x")
|
||||||
|
|
||||||
|
# Legacy single index analysis (fallback)
|
||||||
|
if "total_with_embeddings" in timing_metrics and "current_index" not in timing_metrics:
|
||||||
|
print("\n📏 Index Size Analysis:")
|
||||||
|
print(
|
||||||
|
f" Index with embeddings: {timing_metrics.get('total_with_embeddings', 0):.1f} MB"
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
f" Estimated pruned index: {timing_metrics.get('total_without_embeddings', 0):.1f} MB"
|
||||||
|
)
|
||||||
|
print(f" Compression ratio: {timing_metrics.get('compression_ratio', 0):.2f}x")
|
||||||
|
|
||||||
|
def cleanup(self):
|
||||||
|
"""Cleanup resources"""
|
||||||
|
if self.searcher:
|
||||||
|
self.searcher.cleanup()
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = argparse.ArgumentParser(description="LAION Multimodal Benchmark Evaluation")
|
||||||
|
parser.add_argument("--index", required=True, help="Path to LEANN index")
|
||||||
|
parser.add_argument(
|
||||||
|
"--queries", default="data/evaluation_queries.jsonl", help="Path to evaluation queries"
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--stage",
|
||||||
|
choices=["2", "3", "4", "5", "all"],
|
||||||
|
default="all",
|
||||||
|
help="Which stage to run (2=recall, 3=complexity, 4=index comparison, 5=generation)",
|
||||||
|
)
|
||||||
|
parser.add_argument("--complexity", type=int, default=None, help="Complexity for search")
|
||||||
|
parser.add_argument("--baseline-dir", default="baseline", help="Baseline output directory")
|
||||||
|
parser.add_argument("--output", help="Save results to JSON file")
|
||||||
|
parser.add_argument(
|
||||||
|
"--llm-backend",
|
||||||
|
choices=["hf"],
|
||||||
|
default="hf",
|
||||||
|
help="LLM backend (Qwen2.5-VL only supports HF)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--model-name", default="Qwen/Qwen2.5-VL-7B-Instruct", help="Multimodal model name"
|
||||||
|
)
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Check if baseline exists
|
||||||
|
baseline_index_path = os.path.join(args.baseline_dir, "faiss_flat.index")
|
||||||
|
if not os.path.exists(baseline_index_path):
|
||||||
|
print(f"❌ FAISS baseline not found at {baseline_index_path}")
|
||||||
|
print("💡 Please run setup_laion.py first to build the baseline")
|
||||||
|
exit(1)
|
||||||
|
|
||||||
|
if args.stage == "2" or args.stage == "all":
|
||||||
|
# Stage 2: Recall@3 evaluation
|
||||||
|
print("🚀 Starting Stage 2: Recall@3 evaluation for multimodal retrieval")
|
||||||
|
|
||||||
|
evaluator = RecallEvaluator(args.index, args.baseline_dir)
|
||||||
|
|
||||||
|
# Load caption queries for testing
|
||||||
|
laion_evaluator = LAIONEvaluator(args.index)
|
||||||
|
captions = laion_evaluator.load_queries(args.queries)
|
||||||
|
|
||||||
|
# Test with queries for robust measurement
|
||||||
|
test_captions = captions[:100] # Use subset for speed
|
||||||
|
print(f"🧪 Testing with {len(test_captions)} caption queries")
|
||||||
|
|
||||||
|
# Test with complexity 64
|
||||||
|
complexity = 64
|
||||||
|
recall = evaluator.evaluate_recall_at_3(test_captions, complexity)
|
||||||
|
print(f"📈 Recall@3 at complexity {complexity}: {recall * 100:.1f}%")
|
||||||
|
|
||||||
|
evaluator.cleanup()
|
||||||
|
print("✅ Stage 2 completed!\n")
|
||||||
|
|
||||||
|
# Shared non-compact index path for Stage 3 and 4
|
||||||
|
non_compact_index_path = args.index.replace(".leann", "_noncompact.leann")
|
||||||
|
complexity = args.complexity
|
||||||
|
|
||||||
|
if args.stage == "3" or args.stage == "all":
|
||||||
|
# Stage 3: Binary search for 90% recall complexity
|
||||||
|
print("🚀 Starting Stage 3: Binary search for 90% recall complexity")
|
||||||
|
print(
|
||||||
|
"💡 Creating non-compact index for fast binary search with recompute_embeddings=False"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Create non-compact index for binary search
|
||||||
|
print("🏗️ Creating non-compact index for binary search...")
|
||||||
|
evaluator = LAIONEvaluator(args.index)
|
||||||
|
evaluator.create_non_compact_index_for_comparison(non_compact_index_path)
|
||||||
|
|
||||||
|
# Use non-compact index for binary search
|
||||||
|
binary_search_evaluator = RecallEvaluator(non_compact_index_path, args.baseline_dir)
|
||||||
|
|
||||||
|
# Load caption queries for testing
|
||||||
|
captions = evaluator.load_queries(args.queries)
|
||||||
|
|
||||||
|
# Use subset for robust measurement
|
||||||
|
test_captions = captions[:50] # Smaller subset for binary search speed
|
||||||
|
print(f"🧪 Testing with {len(test_captions)} caption queries")
|
||||||
|
|
||||||
|
# Binary search for 90% recall complexity
|
||||||
|
target_recall = 0.9
|
||||||
|
min_complexity, max_complexity = 1, 128
|
||||||
|
|
||||||
|
print(f"🔍 Binary search for {target_recall * 100}% recall complexity...")
|
||||||
|
print(f"Search range: {min_complexity} to {max_complexity}")
|
||||||
|
|
||||||
|
best_complexity = None
|
||||||
|
best_recall = 0.0
|
||||||
|
|
||||||
|
while min_complexity <= max_complexity:
|
||||||
|
mid_complexity = (min_complexity + max_complexity) // 2
|
||||||
|
|
||||||
|
print(
|
||||||
|
f"\n🧪 Testing complexity {mid_complexity} (no recompute, non-compact index)..."
|
||||||
|
)
|
||||||
|
# Use recompute_embeddings=False on non-compact index for fast binary search
|
||||||
|
recall = binary_search_evaluator.evaluate_recall_at_3(
|
||||||
|
test_captions, mid_complexity, recompute_embeddings=False
|
||||||
|
)
|
||||||
|
|
||||||
|
print(
|
||||||
|
f" Complexity {mid_complexity}: Recall@3 = {recall:.3f} ({recall * 100:.1f}%)"
|
||||||
|
)
|
||||||
|
|
||||||
|
if recall >= target_recall:
|
||||||
|
best_complexity = mid_complexity
|
||||||
|
best_recall = recall
|
||||||
|
max_complexity = mid_complexity - 1
|
||||||
|
print(" ✅ Target reached! Searching for lower complexity...")
|
||||||
|
else:
|
||||||
|
min_complexity = mid_complexity + 1
|
||||||
|
print(" ❌ Below target. Searching for higher complexity...")
|
||||||
|
|
||||||
|
if best_complexity is not None:
|
||||||
|
print("\n🎯 Optimal complexity found!")
|
||||||
|
print(f" Complexity: {best_complexity}")
|
||||||
|
print(f" Recall@3: {best_recall:.3f} ({best_recall * 100:.1f}%)")
|
||||||
|
|
||||||
|
# Test a few complexities around the optimal one for verification
|
||||||
|
print("\n🔬 Verification test around optimal complexity:")
|
||||||
|
verification_complexities = [
|
||||||
|
max(1, best_complexity - 2),
|
||||||
|
max(1, best_complexity - 1),
|
||||||
|
best_complexity,
|
||||||
|
best_complexity + 1,
|
||||||
|
best_complexity + 2,
|
||||||
|
]
|
||||||
|
|
||||||
|
for complexity in verification_complexities:
|
||||||
|
if complexity <= 512: # reasonable upper bound
|
||||||
|
recall = binary_search_evaluator.evaluate_recall_at_3(
|
||||||
|
test_captions, complexity, recompute_embeddings=False
|
||||||
|
)
|
||||||
|
status = "✅" if recall >= target_recall else "❌"
|
||||||
|
print(f" {status} Complexity {complexity:3d}: {recall * 100:5.1f}%")
|
||||||
|
|
||||||
|
# Now test the optimal complexity with compact index and recompute for comparison
|
||||||
|
print(
|
||||||
|
f"\n🔄 Testing optimal complexity {best_complexity} on compact index WITH recompute..."
|
||||||
|
)
|
||||||
|
compact_evaluator = RecallEvaluator(args.index, args.baseline_dir)
|
||||||
|
recall_with_recompute = compact_evaluator.evaluate_recall_at_3(
|
||||||
|
test_captions[:10], best_complexity, recompute_embeddings=True
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
f" ✅ Complexity {best_complexity} (compact index with recompute): {recall_with_recompute * 100:.1f}%"
|
||||||
|
)
|
||||||
|
complexity = best_complexity
|
||||||
|
print(
|
||||||
|
f" 📊 Recall difference: {abs(best_recall - recall_with_recompute) * 100:.2f}%"
|
||||||
|
)
|
||||||
|
compact_evaluator.cleanup()
|
||||||
|
else:
|
||||||
|
print(f"\n❌ Could not find complexity achieving {target_recall * 100}% recall")
|
||||||
|
print("All tested complexities were below target.")
|
||||||
|
|
||||||
|
# Cleanup evaluators (keep non-compact index for Stage 4)
|
||||||
|
binary_search_evaluator.cleanup()
|
||||||
|
evaluator.cleanup()
|
||||||
|
|
||||||
|
print("✅ Stage 3 completed! Non-compact index saved for Stage 4.\n")
|
||||||
|
|
||||||
|
if args.stage == "4" or args.stage == "all":
|
||||||
|
# Stage 4: Index comparison (without LLM generation)
|
||||||
|
print("🚀 Starting Stage 4: Index comparison analysis")
|
||||||
|
|
||||||
|
# Use LAION evaluator for index comparison
|
||||||
|
evaluator = LAIONEvaluator(args.index)
|
||||||
|
|
||||||
|
# Load caption queries
|
||||||
|
captions = evaluator.load_queries(args.queries)
|
||||||
|
|
||||||
|
# Step 1: Analyze current (compact) index
|
||||||
|
print("\n📏 Analyzing current index (compact, pruned)...")
|
||||||
|
compact_size_metrics = evaluator.analyze_index_sizes()
|
||||||
|
compact_size_metrics["index_type"] = "compact"
|
||||||
|
|
||||||
|
# Step 2: Use existing non-compact index or create if needed
|
||||||
|
if Path(non_compact_index_path).exists():
|
||||||
|
print(
|
||||||
|
f"\n📁 Using existing non-compact index from Stage 3: {non_compact_index_path}"
|
||||||
|
)
|
||||||
|
temp_evaluator = LAIONEvaluator(non_compact_index_path)
|
||||||
|
non_compact_size_metrics = temp_evaluator.analyze_index_sizes()
|
||||||
|
non_compact_size_metrics["index_type"] = "non_compact"
|
||||||
|
else:
|
||||||
|
print("\n🏗️ Creating non-compact index (with embeddings) for comparison...")
|
||||||
|
non_compact_size_metrics = evaluator.create_non_compact_index_for_comparison(
|
||||||
|
non_compact_index_path
|
||||||
|
)
|
||||||
|
|
||||||
|
# Step 3: Compare index sizes (.index only)
|
||||||
|
print("\n📊 Index size comparison (.index only):")
|
||||||
|
print(
|
||||||
|
f" Compact index (current): {compact_size_metrics.get('index_only_mb', 0):.1f} MB"
|
||||||
|
)
|
||||||
|
print(f" Non-compact index: {non_compact_size_metrics.get('index_only_mb', 0):.1f} MB")
|
||||||
|
|
||||||
|
storage_saving = 0.0
|
||||||
|
if non_compact_size_metrics.get("index_only_mb", 0) > 0:
|
||||||
|
storage_saving = (
|
||||||
|
(
|
||||||
|
non_compact_size_metrics.get("index_only_mb", 0)
|
||||||
|
- compact_size_metrics.get("index_only_mb", 0)
|
||||||
|
)
|
||||||
|
/ non_compact_size_metrics.get("index_only_mb", 1)
|
||||||
|
* 100
|
||||||
|
)
|
||||||
|
print(f" Storage saving by compact: {storage_saving:.1f}%")
|
||||||
|
|
||||||
|
# Step 4: Performance comparison between the two indexes
|
||||||
|
if complexity is None:
|
||||||
|
raise ValueError("Complexity is required for index comparison")
|
||||||
|
|
||||||
|
print("\n⚡ Performance comparison between indexes...")
|
||||||
|
performance_metrics = evaluator.compare_index_performance(
|
||||||
|
non_compact_index_path, args.index, captions[:10], complexity=complexity
|
||||||
|
)
|
||||||
|
|
||||||
|
# Combine all metrics
|
||||||
|
combined_metrics = {
|
||||||
|
"current_index": compact_size_metrics,
|
||||||
|
"non_compact_index": non_compact_size_metrics,
|
||||||
|
"performance_comparison": performance_metrics,
|
||||||
|
"storage_saving_percent": storage_saving,
|
||||||
|
}
|
||||||
|
|
||||||
|
# Print comprehensive results
|
||||||
|
evaluator._print_results(combined_metrics)
|
||||||
|
|
||||||
|
# Save results if requested
|
||||||
|
if args.output:
|
||||||
|
print(f"\n💾 Saving results to {args.output}...")
|
||||||
|
with open(args.output, "w") as f:
|
||||||
|
json.dump(combined_metrics, f, indent=2, default=str)
|
||||||
|
print(f"✅ Results saved to {args.output}")
|
||||||
|
|
||||||
|
evaluator.cleanup()
|
||||||
|
print("✅ Stage 4 completed!\n")
|
||||||
|
|
||||||
|
if args.stage in ("5", "all"):
|
||||||
|
print("🚀 Starting Stage 5: Multimodal generation with Qwen2.5-VL")
|
||||||
|
evaluator = LAIONEvaluator(args.index)
|
||||||
|
captions = evaluator.load_queries(args.queries)
|
||||||
|
test_captions = captions[: min(20, len(captions))] # Use subset for generation
|
||||||
|
|
||||||
|
print(f"🧪 Testing multimodal generation with {len(test_captions)} queries")
|
||||||
|
|
||||||
|
# Load Qwen2.5-VL model
|
||||||
|
try:
|
||||||
|
print("Loading Qwen2.5-VL model...")
|
||||||
|
processor, model = load_qwen_vl_model(args.model_name)
|
||||||
|
|
||||||
|
# Run multimodal generation evaluation
|
||||||
|
complexity = args.complexity or 64
|
||||||
|
gen_results = evaluate_multimodal_rag(
|
||||||
|
evaluator.searcher,
|
||||||
|
test_captions,
|
||||||
|
processor=processor,
|
||||||
|
model=model,
|
||||||
|
complexity=complexity,
|
||||||
|
)
|
||||||
|
|
||||||
|
print("\n📊 Multimodal Generation Results:")
|
||||||
|
print(f" Total Queries: {len(test_captions)}")
|
||||||
|
print(f" Avg Search Time: {gen_results['avg_search_time']:.3f}s")
|
||||||
|
print(f" Avg Generation Time: {gen_results['avg_generation_time']:.3f}s")
|
||||||
|
total_time = gen_results["avg_search_time"] + gen_results["avg_generation_time"]
|
||||||
|
search_pct = (gen_results["avg_search_time"] / total_time) * 100
|
||||||
|
gen_pct = (gen_results["avg_generation_time"] / total_time) * 100
|
||||||
|
print(f" Time Distribution: Search {search_pct:.1f}%, Generation {gen_pct:.1f}%")
|
||||||
|
print(" LLM Backend: HuggingFace transformers")
|
||||||
|
print(f" Model: {args.model_name}")
|
||||||
|
|
||||||
|
# Show sample results
|
||||||
|
print("\n📝 Sample Multimodal Generations:")
|
||||||
|
for i, response in enumerate(gen_results["results"][:3]):
|
||||||
|
# Handle both string and dict formats for captions
|
||||||
|
if isinstance(test_captions[i], dict):
|
||||||
|
caption_text = test_captions[i].get("query", str(test_captions[i]))
|
||||||
|
else:
|
||||||
|
caption_text = str(test_captions[i])
|
||||||
|
print(f" Query {i + 1}: {caption_text[:60]}...")
|
||||||
|
print(f" Response {i + 1}: {response[:100]}...")
|
||||||
|
print()
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"❌ Multimodal generation evaluation failed: {e}")
|
||||||
|
print("💡 Make sure transformers and Qwen2.5-VL are installed")
|
||||||
|
import traceback
|
||||||
|
|
||||||
|
traceback.print_exc()
|
||||||
|
|
||||||
|
evaluator.cleanup()
|
||||||
|
print("✅ Stage 5 completed!\n")
|
||||||
|
|
||||||
|
if args.stage == "all":
|
||||||
|
print("🎉 All evaluation stages completed successfully!")
|
||||||
|
print("\n📋 Summary:")
|
||||||
|
print(" Stage 2: ✅ Multimodal Recall@3 evaluation completed")
|
||||||
|
print(" Stage 3: ✅ Optimal complexity found")
|
||||||
|
print(" Stage 4: ✅ Index comparison analysis completed")
|
||||||
|
print(" Stage 5: ✅ Multimodal generation evaluation completed")
|
||||||
|
print("\n🔧 Recommended next steps:")
|
||||||
|
print(" - Use optimal complexity for best speed/accuracy balance")
|
||||||
|
print(" - Review index comparison for storage vs performance tradeoffs")
|
||||||
|
|
||||||
|
# Clean up non-compact index after all stages complete
|
||||||
|
print("\n🧹 Cleaning up temporary non-compact index...")
|
||||||
|
if Path(non_compact_index_path).exists():
|
||||||
|
temp_index_dir = Path(non_compact_index_path).parent
|
||||||
|
temp_index_name = Path(non_compact_index_path).name
|
||||||
|
for temp_file in temp_index_dir.glob(f"{temp_index_name}*"):
|
||||||
|
temp_file.unlink()
|
||||||
|
print(f"✅ Cleaned up {non_compact_index_path}")
|
||||||
|
else:
|
||||||
|
print("📝 No temporary index to clean up")
|
||||||
|
|
||||||
|
except KeyboardInterrupt:
|
||||||
|
print("\n⚠️ Evaluation interrupted by user")
|
||||||
|
exit(1)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"\n❌ Stage {args.stage} failed: {e}")
|
||||||
|
import traceback
|
||||||
|
|
||||||
|
traceback.print_exc()
|
||||||
|
exit(1)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
576
benchmarks/laion/setup_laion.py
Normal file
576
benchmarks/laion/setup_laion.py
Normal file
@@ -0,0 +1,576 @@
|
|||||||
|
"""
|
||||||
|
LAION Multimodal Benchmark Setup Script
|
||||||
|
Downloads LAION subset and builds LEANN index with sentence embeddings
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import asyncio
|
||||||
|
import io
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
import pickle
|
||||||
|
import time
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import aiohttp
|
||||||
|
import numpy as np
|
||||||
|
from datasets import load_dataset
|
||||||
|
from leann import LeannBuilder
|
||||||
|
from PIL import Image
|
||||||
|
from sentence_transformers import SentenceTransformer
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
|
||||||
|
class LAIONSetup:
|
||||||
|
def __init__(self, data_dir: str = "data"):
|
||||||
|
self.data_dir = Path(data_dir)
|
||||||
|
self.images_dir = self.data_dir / "laion_images"
|
||||||
|
self.metadata_file = self.data_dir / "laion_metadata.jsonl"
|
||||||
|
|
||||||
|
# Create directories
|
||||||
|
self.data_dir.mkdir(exist_ok=True)
|
||||||
|
self.images_dir.mkdir(exist_ok=True)
|
||||||
|
|
||||||
|
async def download_single_image(self, session, sample_data, semaphore, progress_bar):
|
||||||
|
"""Download a single image asynchronously"""
|
||||||
|
async with semaphore: # Limit concurrent downloads
|
||||||
|
try:
|
||||||
|
image_url = sample_data["url"]
|
||||||
|
image_path = sample_data["image_path"]
|
||||||
|
|
||||||
|
# Skip if already exists
|
||||||
|
if os.path.exists(image_path):
|
||||||
|
progress_bar.update(1)
|
||||||
|
return sample_data
|
||||||
|
|
||||||
|
async with session.get(image_url, timeout=10) as response:
|
||||||
|
if response.status == 200:
|
||||||
|
content = await response.read()
|
||||||
|
|
||||||
|
# Verify it's a valid image
|
||||||
|
try:
|
||||||
|
img = Image.open(io.BytesIO(content))
|
||||||
|
img = img.convert("RGB")
|
||||||
|
img.save(image_path, "JPEG")
|
||||||
|
progress_bar.update(1)
|
||||||
|
return sample_data
|
||||||
|
except Exception:
|
||||||
|
progress_bar.update(1)
|
||||||
|
return None # Skip invalid images
|
||||||
|
else:
|
||||||
|
progress_bar.update(1)
|
||||||
|
return None
|
||||||
|
|
||||||
|
except Exception:
|
||||||
|
progress_bar.update(1)
|
||||||
|
return None
|
||||||
|
|
||||||
|
def download_laion_subset(self, num_samples: int = 1000):
|
||||||
|
"""Download LAION subset from HuggingFace datasets with async parallel downloading"""
|
||||||
|
print(f"📥 Downloading LAION subset ({num_samples} samples)...")
|
||||||
|
|
||||||
|
# Load LAION-400M subset from HuggingFace
|
||||||
|
print("🤗 Loading from HuggingFace datasets...")
|
||||||
|
dataset = load_dataset("laion/laion400m", split="train", streaming=True)
|
||||||
|
|
||||||
|
# Collect sample metadata first (fast)
|
||||||
|
print("📋 Collecting sample metadata...")
|
||||||
|
candidates = []
|
||||||
|
for sample in dataset:
|
||||||
|
if len(candidates) >= num_samples * 3: # Get 3x more candidates in case some fail
|
||||||
|
break
|
||||||
|
|
||||||
|
image_url = sample.get("url", "")
|
||||||
|
caption = sample.get("caption", "")
|
||||||
|
|
||||||
|
if not image_url or not caption:
|
||||||
|
continue
|
||||||
|
|
||||||
|
image_filename = f"laion_{len(candidates):06d}.jpg"
|
||||||
|
image_path = self.images_dir / image_filename
|
||||||
|
|
||||||
|
candidate = {
|
||||||
|
"id": f"laion_{len(candidates):06d}",
|
||||||
|
"url": image_url,
|
||||||
|
"caption": caption,
|
||||||
|
"image_path": str(image_path),
|
||||||
|
"width": sample.get("original_width", 512),
|
||||||
|
"height": sample.get("original_height", 512),
|
||||||
|
"similarity": sample.get("similarity", 0.0),
|
||||||
|
}
|
||||||
|
candidates.append(candidate)
|
||||||
|
|
||||||
|
print(
|
||||||
|
f"📊 Collected {len(candidates)} candidates, downloading {num_samples} in parallel..."
|
||||||
|
)
|
||||||
|
|
||||||
|
# Download images in parallel
|
||||||
|
async def download_batch():
|
||||||
|
semaphore = asyncio.Semaphore(20) # Limit to 20 concurrent downloads
|
||||||
|
connector = aiohttp.TCPConnector(limit=100, limit_per_host=20)
|
||||||
|
timeout = aiohttp.ClientTimeout(total=30)
|
||||||
|
|
||||||
|
progress_bar = tqdm(total=len(candidates[: num_samples * 2]), desc="Downloading images")
|
||||||
|
|
||||||
|
async with aiohttp.ClientSession(connector=connector, timeout=timeout) as session:
|
||||||
|
tasks = []
|
||||||
|
for candidate in candidates[: num_samples * 2]: # Try 2x more than needed
|
||||||
|
task = self.download_single_image(session, candidate, semaphore, progress_bar)
|
||||||
|
tasks.append(task)
|
||||||
|
|
||||||
|
# Wait for all downloads
|
||||||
|
results = await asyncio.gather(*tasks, return_exceptions=True)
|
||||||
|
progress_bar.close()
|
||||||
|
|
||||||
|
# Filter successful downloads
|
||||||
|
successful = [r for r in results if r is not None and not isinstance(r, Exception)]
|
||||||
|
return successful[:num_samples]
|
||||||
|
|
||||||
|
# Run async download
|
||||||
|
loop = asyncio.new_event_loop()
|
||||||
|
asyncio.set_event_loop(loop)
|
||||||
|
try:
|
||||||
|
samples = loop.run_until_complete(download_batch())
|
||||||
|
finally:
|
||||||
|
loop.close()
|
||||||
|
|
||||||
|
# Save metadata
|
||||||
|
with open(self.metadata_file, "w", encoding="utf-8") as f:
|
||||||
|
for sample in samples:
|
||||||
|
f.write(json.dumps(sample) + "\n")
|
||||||
|
|
||||||
|
print(f"✅ Downloaded {len(samples)} real LAION samples with async parallel downloading")
|
||||||
|
return samples
|
||||||
|
|
||||||
|
def generate_clip_image_embeddings(self, samples: list[dict]):
|
||||||
|
"""Generate CLIP image embeddings for downloaded images"""
|
||||||
|
print("🔍 Generating CLIP image embeddings...")
|
||||||
|
|
||||||
|
# Load sentence-transformers CLIP (ViT-L/14, 768-dim) for image embeddings
|
||||||
|
# This single model can encode both images and text.
|
||||||
|
model = SentenceTransformer("clip-ViT-L-14")
|
||||||
|
|
||||||
|
embeddings = []
|
||||||
|
valid_samples = []
|
||||||
|
|
||||||
|
for sample in tqdm(samples, desc="Processing images"):
|
||||||
|
try:
|
||||||
|
# Load image
|
||||||
|
image_path = sample["image_path"]
|
||||||
|
image = Image.open(image_path).convert("RGB")
|
||||||
|
|
||||||
|
# Encode image to 768-dim embedding via sentence-transformers (normalized)
|
||||||
|
vec = model.encode(
|
||||||
|
[image],
|
||||||
|
convert_to_numpy=True,
|
||||||
|
normalize_embeddings=True,
|
||||||
|
batch_size=1,
|
||||||
|
show_progress_bar=False,
|
||||||
|
)[0]
|
||||||
|
embeddings.append(vec.astype(np.float32))
|
||||||
|
valid_samples.append(sample)
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f" ⚠️ Failed to process {sample['id']}: {e}")
|
||||||
|
# Skip invalid images
|
||||||
|
|
||||||
|
embeddings = np.array(embeddings, dtype=np.float32)
|
||||||
|
|
||||||
|
# Save embeddings
|
||||||
|
embeddings_file = self.data_dir / "clip_image_embeddings.npy"
|
||||||
|
np.save(embeddings_file, embeddings)
|
||||||
|
print(f"✅ Generated {len(embeddings)} image embeddings, shape: {embeddings.shape}")
|
||||||
|
|
||||||
|
return embeddings, valid_samples
|
||||||
|
|
||||||
|
def build_faiss_baseline(
|
||||||
|
self, embeddings: np.ndarray, samples: list[dict], output_dir: str = "baseline"
|
||||||
|
):
|
||||||
|
"""Build FAISS flat baseline using CLIP image embeddings"""
|
||||||
|
print("🔨 Building FAISS Flat baseline...")
|
||||||
|
|
||||||
|
from leann_backend_hnsw import faiss
|
||||||
|
|
||||||
|
os.makedirs(output_dir, exist_ok=True)
|
||||||
|
baseline_path = os.path.join(output_dir, "faiss_flat.index")
|
||||||
|
metadata_path = os.path.join(output_dir, "metadata.pkl")
|
||||||
|
|
||||||
|
if os.path.exists(baseline_path) and os.path.exists(metadata_path):
|
||||||
|
print(f"✅ Baseline already exists at {baseline_path}")
|
||||||
|
return baseline_path
|
||||||
|
|
||||||
|
# Extract image IDs (must be present)
|
||||||
|
if not samples or "id" not in samples[0]:
|
||||||
|
raise KeyError("samples missing 'id' field for FAISS baseline")
|
||||||
|
image_ids: list[str] = [str(sample["id"]) for sample in samples]
|
||||||
|
|
||||||
|
print(f"📐 Embedding shape: {embeddings.shape}")
|
||||||
|
print(f"📄 Processing {len(image_ids)} images")
|
||||||
|
|
||||||
|
# Build FAISS flat index
|
||||||
|
print("🏗️ Building FAISS IndexFlatIP...")
|
||||||
|
dimension = embeddings.shape[1]
|
||||||
|
index = faiss.IndexFlatIP(dimension)
|
||||||
|
|
||||||
|
# Add embeddings to flat index
|
||||||
|
embeddings_f32 = embeddings.astype(np.float32)
|
||||||
|
index.add(embeddings_f32.shape[0], faiss.swig_ptr(embeddings_f32))
|
||||||
|
|
||||||
|
# Save index and metadata
|
||||||
|
faiss.write_index(index, baseline_path)
|
||||||
|
with open(metadata_path, "wb") as f:
|
||||||
|
pickle.dump(image_ids, f)
|
||||||
|
|
||||||
|
print(f"✅ FAISS baseline saved to {baseline_path}")
|
||||||
|
print(f"✅ Metadata saved to {metadata_path}")
|
||||||
|
print(f"📊 Total vectors: {index.ntotal}")
|
||||||
|
|
||||||
|
return baseline_path
|
||||||
|
|
||||||
|
def create_leann_passages(self, samples: list[dict]):
|
||||||
|
"""Create LEANN-compatible passages from LAION data"""
|
||||||
|
print("📝 Creating LEANN passages...")
|
||||||
|
|
||||||
|
passages_file = self.data_dir / "laion_passages.jsonl"
|
||||||
|
|
||||||
|
with open(passages_file, "w", encoding="utf-8") as f:
|
||||||
|
for i, sample in enumerate(samples):
|
||||||
|
passage = {
|
||||||
|
"id": sample["id"],
|
||||||
|
"text": sample["caption"], # Use caption as searchable text
|
||||||
|
"metadata": {
|
||||||
|
"image_url": sample["url"],
|
||||||
|
"image_path": sample.get("image_path", ""),
|
||||||
|
"width": sample["width"],
|
||||||
|
"height": sample["height"],
|
||||||
|
"similarity": sample["similarity"],
|
||||||
|
"image_index": i, # Index for embedding lookup
|
||||||
|
},
|
||||||
|
}
|
||||||
|
f.write(json.dumps(passage) + "\n")
|
||||||
|
|
||||||
|
print(f"✅ Created {len(samples)} passages")
|
||||||
|
return passages_file
|
||||||
|
|
||||||
|
def build_compact_index(
|
||||||
|
self, passages_file: Path, embeddings: np.ndarray, index_path: str, backend: str = "hnsw"
|
||||||
|
):
|
||||||
|
"""Build compact LEANN index with CLIP embeddings (recompute=True, compact=True)"""
|
||||||
|
print(f"🏗️ Building compact LEANN index with {backend} backend...")
|
||||||
|
|
||||||
|
start_time = time.time()
|
||||||
|
|
||||||
|
# Save CLIP embeddings (npy) and also a pickle with (ids, embeddings)
|
||||||
|
npy_path = self.data_dir / "clip_image_embeddings.npy"
|
||||||
|
np.save(npy_path, embeddings)
|
||||||
|
print(f"💾 Saved CLIP embeddings to {npy_path}")
|
||||||
|
|
||||||
|
# Prepare ids in the same order as passages_file (matches embeddings order)
|
||||||
|
ids: list[str] = []
|
||||||
|
with open(passages_file, encoding="utf-8") as f:
|
||||||
|
for line in f:
|
||||||
|
if line.strip():
|
||||||
|
rec = json.loads(line)
|
||||||
|
ids.append(str(rec["id"]))
|
||||||
|
|
||||||
|
if len(ids) != embeddings.shape[0]:
|
||||||
|
raise ValueError(
|
||||||
|
f"IDs count ({len(ids)}) does not match embeddings ({embeddings.shape[0]})."
|
||||||
|
)
|
||||||
|
|
||||||
|
pkl_path = self.data_dir / "clip_image_embeddings.pkl"
|
||||||
|
with open(pkl_path, "wb") as pf:
|
||||||
|
pickle.dump((ids, embeddings.astype(np.float32)), pf)
|
||||||
|
print(f"💾 Saved (ids, embeddings) pickle to {pkl_path}")
|
||||||
|
|
||||||
|
# Initialize builder - compact with recompute
|
||||||
|
# Note: For multimodal case, we need to handle embeddings differently
|
||||||
|
# Let's try using sentence-transformers mode but with custom embeddings
|
||||||
|
builder = LeannBuilder(
|
||||||
|
backend_name=backend,
|
||||||
|
# Use CLIP text encoder (ViT-L/14) to match image space (768-dim)
|
||||||
|
embedding_model="clip-ViT-L-14",
|
||||||
|
embedding_mode="sentence-transformers",
|
||||||
|
# HNSW params (or forwarded to chosen backend)
|
||||||
|
graph_degree=32,
|
||||||
|
complexity=64,
|
||||||
|
# Compact/pruned with recompute at query time
|
||||||
|
is_recompute=True,
|
||||||
|
is_compact=True,
|
||||||
|
distance_metric="cosine", # CLIP uses normalized vectors; cosine is appropriate
|
||||||
|
num_threads=4,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Add passages (text + metadata)
|
||||||
|
print("📚 Adding passages...")
|
||||||
|
self._add_passages_with_embeddings(builder, passages_file, embeddings)
|
||||||
|
|
||||||
|
print(f"🔨 Building compact index at {index_path} from precomputed embeddings...")
|
||||||
|
builder.build_index_from_embeddings(index_path, str(pkl_path))
|
||||||
|
|
||||||
|
build_time = time.time() - start_time
|
||||||
|
print(f"✅ Compact index built in {build_time:.2f}s")
|
||||||
|
|
||||||
|
# Analyze index size
|
||||||
|
self._analyze_index_size(index_path)
|
||||||
|
|
||||||
|
return index_path
|
||||||
|
|
||||||
|
def build_non_compact_index(
|
||||||
|
self, passages_file: Path, embeddings: np.ndarray, index_path: str, backend: str = "hnsw"
|
||||||
|
):
|
||||||
|
"""Build non-compact LEANN index with CLIP embeddings (recompute=False, compact=False)"""
|
||||||
|
print(f"🏗️ Building non-compact LEANN index with {backend} backend...")
|
||||||
|
|
||||||
|
start_time = time.time()
|
||||||
|
|
||||||
|
# Ensure embeddings are saved (npy + pickle)
|
||||||
|
npy_path = self.data_dir / "clip_image_embeddings.npy"
|
||||||
|
if not npy_path.exists():
|
||||||
|
np.save(npy_path, embeddings)
|
||||||
|
print(f"💾 Saved CLIP embeddings to {npy_path}")
|
||||||
|
# Prepare ids in same order as passages_file
|
||||||
|
ids: list[str] = []
|
||||||
|
with open(passages_file, encoding="utf-8") as f:
|
||||||
|
for line in f:
|
||||||
|
if line.strip():
|
||||||
|
rec = json.loads(line)
|
||||||
|
ids.append(str(rec["id"]))
|
||||||
|
if len(ids) != embeddings.shape[0]:
|
||||||
|
raise ValueError(
|
||||||
|
f"IDs count ({len(ids)}) does not match embeddings ({embeddings.shape[0]})."
|
||||||
|
)
|
||||||
|
pkl_path = self.data_dir / "clip_image_embeddings.pkl"
|
||||||
|
if not pkl_path.exists():
|
||||||
|
with open(pkl_path, "wb") as pf:
|
||||||
|
pickle.dump((ids, embeddings.astype(np.float32)), pf)
|
||||||
|
print(f"💾 Saved (ids, embeddings) pickle to {pkl_path}")
|
||||||
|
|
||||||
|
# Initialize builder - non-compact without recompute
|
||||||
|
builder = LeannBuilder(
|
||||||
|
backend_name=backend,
|
||||||
|
embedding_model="clip-ViT-L-14",
|
||||||
|
embedding_mode="sentence-transformers",
|
||||||
|
graph_degree=32,
|
||||||
|
complexity=64,
|
||||||
|
is_recompute=False, # Store embeddings (no recompute needed)
|
||||||
|
is_compact=False, # Store full index (not pruned)
|
||||||
|
distance_metric="cosine",
|
||||||
|
num_threads=4,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Add passages - embeddings will be loaded from file
|
||||||
|
print("📚 Adding passages...")
|
||||||
|
self._add_passages_with_embeddings(builder, passages_file, embeddings)
|
||||||
|
|
||||||
|
print(f"🔨 Building non-compact index at {index_path} from precomputed embeddings...")
|
||||||
|
builder.build_index_from_embeddings(index_path, str(pkl_path))
|
||||||
|
|
||||||
|
build_time = time.time() - start_time
|
||||||
|
print(f"✅ Non-compact index built in {build_time:.2f}s")
|
||||||
|
|
||||||
|
# Analyze index size
|
||||||
|
self._analyze_index_size(index_path)
|
||||||
|
|
||||||
|
return index_path
|
||||||
|
|
||||||
|
def _add_passages_with_embeddings(self, builder, passages_file: Path, embeddings: np.ndarray):
|
||||||
|
"""Helper to add passages with pre-computed CLIP embeddings"""
|
||||||
|
with open(passages_file, encoding="utf-8") as f:
|
||||||
|
for line in tqdm(f, desc="Adding passages"):
|
||||||
|
if line.strip():
|
||||||
|
passage = json.loads(line)
|
||||||
|
|
||||||
|
# Add image metadata - LEANN will handle embeddings separately
|
||||||
|
# Note: We store image metadata and caption text for searchability
|
||||||
|
# Important: ensure passage ID in metadata matches vector ID
|
||||||
|
builder.add_text(
|
||||||
|
text=passage["text"], # Image caption for searchability
|
||||||
|
metadata={**passage["metadata"], "id": passage["id"]},
|
||||||
|
)
|
||||||
|
|
||||||
|
def _analyze_index_size(self, index_path: str):
|
||||||
|
"""Analyze index file sizes"""
|
||||||
|
print("📏 Analyzing index sizes...")
|
||||||
|
|
||||||
|
index_path = Path(index_path)
|
||||||
|
index_dir = index_path.parent
|
||||||
|
index_name = index_path.name # e.g., laion_index.leann
|
||||||
|
index_prefix = index_path.stem # e.g., laion_index
|
||||||
|
|
||||||
|
files = [
|
||||||
|
(f"{index_prefix}.index", ".index", "core"),
|
||||||
|
(f"{index_name}.meta.json", ".meta.json", "core"),
|
||||||
|
(f"{index_name}.ids.txt", ".ids.txt", "core"),
|
||||||
|
(f"{index_name}.passages.jsonl", ".passages.jsonl", "passages"),
|
||||||
|
(f"{index_name}.passages.idx", ".passages.idx", "passages"),
|
||||||
|
]
|
||||||
|
|
||||||
|
def _fmt_size(bytes_val: int) -> str:
|
||||||
|
if bytes_val < 1024:
|
||||||
|
return f"{bytes_val} B"
|
||||||
|
kb = bytes_val / 1024
|
||||||
|
if kb < 1024:
|
||||||
|
return f"{kb:.1f} KB"
|
||||||
|
mb = kb / 1024
|
||||||
|
if mb < 1024:
|
||||||
|
return f"{mb:.2f} MB"
|
||||||
|
gb = mb / 1024
|
||||||
|
return f"{gb:.2f} GB"
|
||||||
|
|
||||||
|
total_index_only_mb = 0.0
|
||||||
|
total_all_mb = 0.0
|
||||||
|
for filename, label, group in files:
|
||||||
|
file_path = index_dir / filename
|
||||||
|
if file_path.exists():
|
||||||
|
size_bytes = file_path.stat().st_size
|
||||||
|
print(f" {label}: {_fmt_size(size_bytes)}")
|
||||||
|
size_mb = size_bytes / (1024 * 1024)
|
||||||
|
total_all_mb += size_mb
|
||||||
|
if group == "core":
|
||||||
|
total_index_only_mb += size_mb
|
||||||
|
else:
|
||||||
|
print(f" {label}: (missing)")
|
||||||
|
print(f" Total (index only, exclude passages): {total_index_only_mb:.2f} MB")
|
||||||
|
print(f" Total (including passages): {total_all_mb:.2f} MB")
|
||||||
|
|
||||||
|
def create_evaluation_queries(self, samples: list[dict], num_queries: int = 200):
|
||||||
|
"""Create evaluation queries from captions"""
|
||||||
|
print(f"📝 Creating {num_queries} evaluation queries...")
|
||||||
|
|
||||||
|
# Sample random captions as queries
|
||||||
|
import random
|
||||||
|
|
||||||
|
random.seed(42) # For reproducibility
|
||||||
|
|
||||||
|
query_samples = random.sample(samples, min(num_queries, len(samples)))
|
||||||
|
|
||||||
|
queries_file = self.data_dir / "evaluation_queries.jsonl"
|
||||||
|
with open(queries_file, "w", encoding="utf-8") as f:
|
||||||
|
for sample in query_samples:
|
||||||
|
query = {
|
||||||
|
"id": sample["id"],
|
||||||
|
"query": sample["caption"],
|
||||||
|
"ground_truth_id": sample["id"], # For potential recall evaluation
|
||||||
|
}
|
||||||
|
f.write(json.dumps(query) + "\n")
|
||||||
|
|
||||||
|
print(f"✅ Created {len(query_samples)} evaluation queries")
|
||||||
|
return queries_file
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = argparse.ArgumentParser(description="Setup LAION Multimodal Benchmark")
|
||||||
|
parser.add_argument("--data-dir", default="data", help="Data directory")
|
||||||
|
parser.add_argument("--num-samples", type=int, default=1000, help="Number of LAION samples")
|
||||||
|
parser.add_argument("--num-queries", type=int, default=50, help="Number of evaluation queries")
|
||||||
|
parser.add_argument("--index-path", default="data/laion_index.leann", help="Output index path")
|
||||||
|
parser.add_argument(
|
||||||
|
"--backend", default="hnsw", choices=["hnsw", "diskann"], help="LEANN backend"
|
||||||
|
)
|
||||||
|
parser.add_argument("--skip-download", action="store_true", help="Skip LAION dataset download")
|
||||||
|
parser.add_argument("--skip-build", action="store_true", help="Skip index building")
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
print("🚀 Setting up LAION Multimodal Benchmark")
|
||||||
|
print("=" * 50)
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Initialize setup
|
||||||
|
setup = LAIONSetup(args.data_dir)
|
||||||
|
|
||||||
|
# Step 1: Download LAION subset
|
||||||
|
if not args.skip_download:
|
||||||
|
print("\n📦 Step 1: Download LAION subset")
|
||||||
|
samples = setup.download_laion_subset(args.num_samples)
|
||||||
|
|
||||||
|
# Step 2: Generate CLIP image embeddings
|
||||||
|
print("\n🔍 Step 2: Generate CLIP image embeddings")
|
||||||
|
embeddings, valid_samples = setup.generate_clip_image_embeddings(samples)
|
||||||
|
|
||||||
|
# Step 3: Create LEANN passages (image metadata with embeddings)
|
||||||
|
print("\n📝 Step 3: Create LEANN passages")
|
||||||
|
passages_file = setup.create_leann_passages(valid_samples)
|
||||||
|
else:
|
||||||
|
print("⏭️ Skipping LAION dataset download")
|
||||||
|
# Load existing data
|
||||||
|
passages_file = setup.data_dir / "laion_passages.jsonl"
|
||||||
|
embeddings_file = setup.data_dir / "clip_image_embeddings.npy"
|
||||||
|
|
||||||
|
if not passages_file.exists() or not embeddings_file.exists():
|
||||||
|
raise FileNotFoundError(
|
||||||
|
"Passages or embeddings file not found. Run without --skip-download first."
|
||||||
|
)
|
||||||
|
|
||||||
|
embeddings = np.load(embeddings_file)
|
||||||
|
print(f"📊 Loaded {len(embeddings)} embeddings from {embeddings_file}")
|
||||||
|
|
||||||
|
# Step 4: Build LEANN indexes (both compact and non-compact)
|
||||||
|
if not args.skip_build:
|
||||||
|
print("\n🏗️ Step 4: Build LEANN indexes with CLIP image embeddings")
|
||||||
|
|
||||||
|
# Build compact index (production mode - small, recompute required)
|
||||||
|
compact_index_path = args.index_path
|
||||||
|
print(f"Building compact index: {compact_index_path}")
|
||||||
|
setup.build_compact_index(passages_file, embeddings, compact_index_path, args.backend)
|
||||||
|
|
||||||
|
# Build non-compact index (comparison mode - large, fast search)
|
||||||
|
non_compact_index_path = args.index_path.replace(".leann", "_noncompact.leann")
|
||||||
|
print(f"Building non-compact index: {non_compact_index_path}")
|
||||||
|
setup.build_non_compact_index(
|
||||||
|
passages_file, embeddings, non_compact_index_path, args.backend
|
||||||
|
)
|
||||||
|
|
||||||
|
# Step 5: Build FAISS flat baseline
|
||||||
|
print("\n🔨 Step 5: Build FAISS flat baseline")
|
||||||
|
if not args.skip_download:
|
||||||
|
baseline_path = setup.build_faiss_baseline(embeddings, valid_samples)
|
||||||
|
else:
|
||||||
|
# Load valid_samples from passages file for FAISS baseline
|
||||||
|
valid_samples = []
|
||||||
|
with open(passages_file, encoding="utf-8") as f:
|
||||||
|
for line in f:
|
||||||
|
if line.strip():
|
||||||
|
passage = json.loads(line)
|
||||||
|
valid_samples.append({"id": passage["id"], "caption": passage["text"]})
|
||||||
|
baseline_path = setup.build_faiss_baseline(embeddings, valid_samples)
|
||||||
|
|
||||||
|
# Step 6: Create evaluation queries
|
||||||
|
print("\n📝 Step 6: Create evaluation queries")
|
||||||
|
queries_file = setup.create_evaluation_queries(valid_samples, args.num_queries)
|
||||||
|
else:
|
||||||
|
print("⏭️ Skipping index building")
|
||||||
|
baseline_path = "data/baseline/faiss_index.bin"
|
||||||
|
queries_file = setup.data_dir / "evaluation_queries.jsonl"
|
||||||
|
|
||||||
|
print("\n🎉 Setup completed successfully!")
|
||||||
|
print("📊 Summary:")
|
||||||
|
if not args.skip_download:
|
||||||
|
print(f" Downloaded samples: {len(samples)}")
|
||||||
|
print(f" Valid samples with embeddings: {len(valid_samples)}")
|
||||||
|
else:
|
||||||
|
print(f" Loaded {len(embeddings)} embeddings")
|
||||||
|
|
||||||
|
if not args.skip_build:
|
||||||
|
print(f" Compact index: {compact_index_path}")
|
||||||
|
print(f" Non-compact index: {non_compact_index_path}")
|
||||||
|
print(f" FAISS baseline: {baseline_path}")
|
||||||
|
print(f" Queries: {queries_file}")
|
||||||
|
|
||||||
|
print("\n🔧 Next steps:")
|
||||||
|
print(f" Run evaluation: python evaluate_laion.py --index {compact_index_path}")
|
||||||
|
print(f" Or compare with: python evaluate_laion.py --index {non_compact_index_path}")
|
||||||
|
else:
|
||||||
|
print(" Skipped building indexes")
|
||||||
|
|
||||||
|
except KeyboardInterrupt:
|
||||||
|
print("\n⚠️ Setup interrupted by user")
|
||||||
|
exit(1)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"\n❌ Setup failed: {e}")
|
||||||
|
exit(1)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
301
benchmarks/llm_utils.py
Normal file
301
benchmarks/llm_utils.py
Normal file
@@ -0,0 +1,301 @@
|
|||||||
|
"""
|
||||||
|
LLM utils for RAG benchmarks with Qwen3-8B and Qwen2.5-VL (multimodal)
|
||||||
|
"""
|
||||||
|
|
||||||
|
import time
|
||||||
|
|
||||||
|
try:
|
||||||
|
import torch
|
||||||
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||||
|
|
||||||
|
HF_AVAILABLE = True
|
||||||
|
except ImportError:
|
||||||
|
HF_AVAILABLE = False
|
||||||
|
|
||||||
|
try:
|
||||||
|
from vllm import LLM, SamplingParams
|
||||||
|
|
||||||
|
VLLM_AVAILABLE = True
|
||||||
|
except ImportError:
|
||||||
|
VLLM_AVAILABLE = False
|
||||||
|
|
||||||
|
|
||||||
|
def is_qwen3_model(model_name):
|
||||||
|
"""Check if model is Qwen3"""
|
||||||
|
return "Qwen3" in model_name or "qwen3" in model_name.lower()
|
||||||
|
|
||||||
|
|
||||||
|
def is_qwen_vl_model(model_name):
|
||||||
|
"""Check if model is Qwen2.5-VL"""
|
||||||
|
return "Qwen2.5-VL" in model_name or "qwen2.5-vl" in model_name.lower()
|
||||||
|
|
||||||
|
|
||||||
|
def apply_qwen3_chat_template(tokenizer, prompt):
|
||||||
|
"""Apply Qwen3 chat template with thinking enabled"""
|
||||||
|
messages = [{"role": "user", "content": prompt}]
|
||||||
|
return tokenizer.apply_chat_template(
|
||||||
|
messages,
|
||||||
|
tokenize=False,
|
||||||
|
add_generation_prompt=True,
|
||||||
|
enable_thinking=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def extract_thinking_answer(response):
|
||||||
|
"""Extract final answer from Qwen3 thinking model response"""
|
||||||
|
if "<think>" in response and "</think>" in response:
|
||||||
|
try:
|
||||||
|
think_end = response.index("</think>") + len("</think>")
|
||||||
|
final_answer = response[think_end:].strip()
|
||||||
|
return final_answer
|
||||||
|
except (ValueError, IndexError):
|
||||||
|
pass
|
||||||
|
|
||||||
|
return response.strip()
|
||||||
|
|
||||||
|
|
||||||
|
def load_hf_model(model_name="Qwen/Qwen3-8B"):
|
||||||
|
"""Load HuggingFace model"""
|
||||||
|
if not HF_AVAILABLE:
|
||||||
|
raise ImportError("transformers not available")
|
||||||
|
|
||||||
|
print(f"Loading HF: {model_name}")
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(
|
||||||
|
model_name,
|
||||||
|
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
||||||
|
device_map="auto",
|
||||||
|
trust_remote_code=True,
|
||||||
|
)
|
||||||
|
return tokenizer, model
|
||||||
|
|
||||||
|
|
||||||
|
def load_vllm_model(model_name="Qwen/Qwen3-8B"):
|
||||||
|
"""Load vLLM model"""
|
||||||
|
if not VLLM_AVAILABLE:
|
||||||
|
raise ImportError("vllm not available")
|
||||||
|
|
||||||
|
print(f"Loading vLLM: {model_name}")
|
||||||
|
llm = LLM(model=model_name, trust_remote_code=True)
|
||||||
|
|
||||||
|
# Qwen3 specific config
|
||||||
|
if is_qwen3_model(model_name):
|
||||||
|
stop_tokens = ["<|im_end|>", "<|end_of_text|>"]
|
||||||
|
max_tokens = 2048
|
||||||
|
else:
|
||||||
|
stop_tokens = None
|
||||||
|
max_tokens = 1024
|
||||||
|
|
||||||
|
sampling_params = SamplingParams(temperature=0.7, max_tokens=max_tokens, stop=stop_tokens)
|
||||||
|
return llm, sampling_params
|
||||||
|
|
||||||
|
|
||||||
|
def generate_hf(tokenizer, model, prompt, max_tokens=None):
|
||||||
|
"""Generate with HF - supports Qwen3 thinking models"""
|
||||||
|
model_name = getattr(model, "name_or_path", "unknown")
|
||||||
|
is_qwen3 = is_qwen3_model(model_name)
|
||||||
|
|
||||||
|
# Apply chat template for Qwen3
|
||||||
|
if is_qwen3:
|
||||||
|
prompt = apply_qwen3_chat_template(tokenizer, prompt)
|
||||||
|
max_tokens = max_tokens or 2048
|
||||||
|
else:
|
||||||
|
max_tokens = max_tokens or 1024
|
||||||
|
|
||||||
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
||||||
|
with torch.no_grad():
|
||||||
|
outputs = model.generate(
|
||||||
|
**inputs,
|
||||||
|
max_new_tokens=max_tokens,
|
||||||
|
temperature=0.7,
|
||||||
|
do_sample=True,
|
||||||
|
pad_token_id=tokenizer.eos_token_id,
|
||||||
|
)
|
||||||
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||||
|
response = response[len(prompt) :].strip()
|
||||||
|
|
||||||
|
# Extract final answer for thinking models
|
||||||
|
if is_qwen3:
|
||||||
|
return extract_thinking_answer(response)
|
||||||
|
return response
|
||||||
|
|
||||||
|
|
||||||
|
def generate_vllm(llm, sampling_params, prompt):
|
||||||
|
"""Generate with vLLM - supports Qwen3 thinking models"""
|
||||||
|
outputs = llm.generate([prompt], sampling_params)
|
||||||
|
response = outputs[0].outputs[0].text.strip()
|
||||||
|
|
||||||
|
# Extract final answer for Qwen3 thinking models
|
||||||
|
model_name = str(llm.llm_engine.model_config.model)
|
||||||
|
if is_qwen3_model(model_name):
|
||||||
|
return extract_thinking_answer(response)
|
||||||
|
return response
|
||||||
|
|
||||||
|
|
||||||
|
def create_prompt(context, query, domain="default"):
|
||||||
|
"""Create RAG prompt"""
|
||||||
|
if domain == "emails":
|
||||||
|
return f"Email content:\n{context}\n\nQuestion: {query}\n\nAnswer:"
|
||||||
|
elif domain == "finance":
|
||||||
|
return f"Financial content:\n{context}\n\nQuestion: {query}\n\nAnswer:"
|
||||||
|
elif domain == "multimodal":
|
||||||
|
return f"Image context:\n{context}\n\nQuestion: {query}\n\nAnswer:"
|
||||||
|
else:
|
||||||
|
return f"Context: {context}\n\nQuestion: {query}\n\nAnswer:"
|
||||||
|
|
||||||
|
|
||||||
|
def evaluate_rag(searcher, llm_func, queries, domain="default", top_k=3, complexity=64):
|
||||||
|
"""Simple RAG evaluation with timing"""
|
||||||
|
search_times = []
|
||||||
|
gen_times = []
|
||||||
|
results = []
|
||||||
|
|
||||||
|
for i, query in enumerate(queries):
|
||||||
|
# Search
|
||||||
|
start = time.time()
|
||||||
|
docs = searcher.search(query, top_k=top_k, complexity=complexity)
|
||||||
|
search_time = time.time() - start
|
||||||
|
|
||||||
|
# Generate
|
||||||
|
context = "\n\n".join([doc.text for doc in docs])
|
||||||
|
prompt = create_prompt(context, query, domain)
|
||||||
|
|
||||||
|
start = time.time()
|
||||||
|
response = llm_func(prompt)
|
||||||
|
gen_time = time.time() - start
|
||||||
|
|
||||||
|
search_times.append(search_time)
|
||||||
|
gen_times.append(gen_time)
|
||||||
|
results.append(response)
|
||||||
|
|
||||||
|
if i < 3:
|
||||||
|
print(f"Q{i + 1}: Search={search_time:.3f}s, Gen={gen_time:.3f}s")
|
||||||
|
|
||||||
|
return {
|
||||||
|
"avg_search_time": sum(search_times) / len(search_times),
|
||||||
|
"avg_generation_time": sum(gen_times) / len(gen_times),
|
||||||
|
"results": results,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def load_qwen_vl_model(model_name="Qwen/Qwen2.5-VL-7B-Instruct"):
|
||||||
|
"""Load Qwen2.5-VL multimodal model"""
|
||||||
|
if not HF_AVAILABLE:
|
||||||
|
raise ImportError("transformers not available")
|
||||||
|
|
||||||
|
print(f"Loading Qwen2.5-VL: {model_name}")
|
||||||
|
|
||||||
|
try:
|
||||||
|
from transformers import AutoModelForVision2Seq, AutoProcessor
|
||||||
|
|
||||||
|
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
|
||||||
|
model = AutoModelForVision2Seq.from_pretrained(
|
||||||
|
model_name, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True
|
||||||
|
)
|
||||||
|
|
||||||
|
return processor, model
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Failed to load with AutoModelForVision2Seq, trying specific class: {e}")
|
||||||
|
|
||||||
|
# Fallback to specific class
|
||||||
|
try:
|
||||||
|
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
||||||
|
|
||||||
|
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
|
||||||
|
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
||||||
|
model_name, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True
|
||||||
|
)
|
||||||
|
|
||||||
|
return processor, model
|
||||||
|
|
||||||
|
except Exception as e2:
|
||||||
|
raise ImportError(f"Failed to load Qwen2.5-VL model: {e2}")
|
||||||
|
|
||||||
|
|
||||||
|
def generate_qwen_vl(processor, model, prompt, image_path=None, max_tokens=512):
|
||||||
|
"""Generate with Qwen2.5-VL multimodal model"""
|
||||||
|
from PIL import Image
|
||||||
|
|
||||||
|
# Prepare inputs
|
||||||
|
if image_path:
|
||||||
|
image = Image.open(image_path)
|
||||||
|
inputs = processor(text=prompt, images=image, return_tensors="pt").to(model.device)
|
||||||
|
else:
|
||||||
|
inputs = processor(text=prompt, return_tensors="pt").to(model.device)
|
||||||
|
|
||||||
|
# Generate
|
||||||
|
with torch.no_grad():
|
||||||
|
generated_ids = model.generate(
|
||||||
|
**inputs, max_new_tokens=max_tokens, do_sample=False, temperature=0.1
|
||||||
|
)
|
||||||
|
|
||||||
|
# Decode response
|
||||||
|
generated_ids = generated_ids[:, inputs["input_ids"].shape[1] :]
|
||||||
|
response = processor.decode(generated_ids[0], skip_special_tokens=True)
|
||||||
|
|
||||||
|
return response
|
||||||
|
|
||||||
|
|
||||||
|
def create_multimodal_prompt(context, query, image_descriptions, task_type="images"):
|
||||||
|
"""Create prompt for multimodal RAG"""
|
||||||
|
if task_type == "images":
|
||||||
|
return f"""Based on the retrieved images and their descriptions, answer the following question.
|
||||||
|
|
||||||
|
Retrieved Image Descriptions:
|
||||||
|
{context}
|
||||||
|
|
||||||
|
Question: {query}
|
||||||
|
|
||||||
|
Provide a detailed answer based on the visual content described above."""
|
||||||
|
|
||||||
|
return f"Context: {context}\nQuestion: {query}\nAnswer:"
|
||||||
|
|
||||||
|
|
||||||
|
def evaluate_multimodal_rag(searcher, queries, processor=None, model=None, complexity=64):
|
||||||
|
"""Evaluate multimodal RAG with Qwen2.5-VL"""
|
||||||
|
search_times = []
|
||||||
|
gen_times = []
|
||||||
|
results = []
|
||||||
|
|
||||||
|
for i, query_item in enumerate(queries):
|
||||||
|
# Handle both string and dict formats for queries
|
||||||
|
if isinstance(query_item, dict):
|
||||||
|
query = query_item.get("query", "")
|
||||||
|
image_path = query_item.get("image_path") # Optional reference image
|
||||||
|
else:
|
||||||
|
query = str(query_item)
|
||||||
|
image_path = None
|
||||||
|
|
||||||
|
# Search
|
||||||
|
start_time = time.time()
|
||||||
|
search_results = searcher.search(query, top_k=3, complexity=complexity)
|
||||||
|
search_time = time.time() - start_time
|
||||||
|
search_times.append(search_time)
|
||||||
|
|
||||||
|
# Prepare context from search results
|
||||||
|
context_parts = []
|
||||||
|
for result in search_results:
|
||||||
|
context_parts.append(f"- {result.text}")
|
||||||
|
context = "\n".join(context_parts)
|
||||||
|
|
||||||
|
# Generate with multimodal model
|
||||||
|
start_time = time.time()
|
||||||
|
if processor and model:
|
||||||
|
prompt = create_multimodal_prompt(context, query, context_parts)
|
||||||
|
response = generate_qwen_vl(processor, model, prompt, image_path)
|
||||||
|
else:
|
||||||
|
response = f"Context: {context}"
|
||||||
|
gen_time = time.time() - start_time
|
||||||
|
|
||||||
|
gen_times.append(gen_time)
|
||||||
|
results.append(response)
|
||||||
|
|
||||||
|
if i < 3:
|
||||||
|
print(f"Q{i + 1}: Search={search_time:.3f}s, Gen={gen_time:.3f}s")
|
||||||
|
|
||||||
|
return {
|
||||||
|
"avg_search_time": sum(search_times) / len(search_times),
|
||||||
|
"avg_generation_time": sum(gen_times) / len(gen_times),
|
||||||
|
"results": results,
|
||||||
|
}
|
||||||
@@ -12,7 +12,7 @@ import time
|
|||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from leann.api import LeannBuilder, LeannSearcher
|
from leann.api import LeannBuilder, LeannChat, LeannSearcher
|
||||||
|
|
||||||
|
|
||||||
def download_data_if_needed(data_root: Path, download_embeddings: bool = False):
|
def download_data_if_needed(data_root: Path, download_embeddings: bool = False):
|
||||||
@@ -53,7 +53,7 @@ def download_data_if_needed(data_root: Path, download_embeddings: bool = False):
|
|||||||
print(
|
print(
|
||||||
"Error: huggingface_hub is not installed. Please install it to download the data:"
|
"Error: huggingface_hub is not installed. Please install it to download the data:"
|
||||||
)
|
)
|
||||||
print("uv pip install -e '.[dev]'")
|
print("uv sync --only-group dev")
|
||||||
sys.exit(1)
|
sys.exit(1)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"An error occurred during data download: {e}")
|
print(f"An error occurred during data download: {e}")
|
||||||
@@ -197,6 +197,25 @@ def main():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--ef-search", type=int, default=120, help="The 'efSearch' parameter for HNSW."
|
"--ef-search", type=int, default=120, help="The 'efSearch' parameter for HNSW."
|
||||||
)
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--batch-size",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="Batch size for HNSW batched search (0 disables batching)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--llm-type",
|
||||||
|
type=str,
|
||||||
|
choices=["ollama", "hf", "openai", "gemini", "simulated"],
|
||||||
|
default="ollama",
|
||||||
|
help="LLM backend type to optionally query during evaluation (default: ollama)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--llm-model",
|
||||||
|
type=str,
|
||||||
|
default="qwen3:1.7b",
|
||||||
|
help="LLM model identifier for the chosen backend (default: qwen3:1.7b)",
|
||||||
|
)
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
# --- Path Configuration ---
|
# --- Path Configuration ---
|
||||||
@@ -318,9 +337,24 @@ def main():
|
|||||||
|
|
||||||
for i in range(num_eval_queries):
|
for i in range(num_eval_queries):
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
new_results = searcher.search(queries[i], top_k=args.top_k, ef=args.ef_search)
|
new_results = searcher.search(
|
||||||
|
queries[i],
|
||||||
|
top_k=args.top_k,
|
||||||
|
complexity=args.ef_search,
|
||||||
|
batch_size=args.batch_size,
|
||||||
|
)
|
||||||
search_times.append(time.time() - start_time)
|
search_times.append(time.time() - start_time)
|
||||||
|
|
||||||
|
# Optional: also call the LLM with configurable backend/model (does not affect recall)
|
||||||
|
llm_config = {"type": args.llm_type, "model": args.llm_model}
|
||||||
|
chat = LeannChat(args.index_path, llm_config=llm_config, searcher=searcher)
|
||||||
|
answer = chat.ask(
|
||||||
|
queries[i],
|
||||||
|
top_k=args.top_k,
|
||||||
|
complexity=args.ef_search,
|
||||||
|
batch_size=args.batch_size,
|
||||||
|
)
|
||||||
|
print(f"Answer: {answer}")
|
||||||
# Correct Recall Calculation: Based on TEXT content
|
# Correct Recall Calculation: Based on TEXT content
|
||||||
new_texts = {result.text for result in new_results}
|
new_texts = {result.text for result in new_results}
|
||||||
|
|
||||||
|
|||||||
@@ -20,7 +20,7 @@ except ImportError:
|
|||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class BenchmarkConfig:
|
class BenchmarkConfig:
|
||||||
model_path: str = "facebook/contriever"
|
model_path: str = "facebook/contriever-msmarco"
|
||||||
batch_sizes: list[int] = None
|
batch_sizes: list[int] = None
|
||||||
seq_length: int = 256
|
seq_length: int = 256
|
||||||
num_runs: int = 5
|
num_runs: int = 5
|
||||||
@@ -34,7 +34,7 @@ class BenchmarkConfig:
|
|||||||
|
|
||||||
def __post_init__(self):
|
def __post_init__(self):
|
||||||
if self.batch_sizes is None:
|
if self.batch_sizes is None:
|
||||||
self.batch_sizes = [1, 2, 4, 8, 16, 32, 64]
|
self.batch_sizes = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
|
||||||
|
|
||||||
|
|
||||||
class MLXBenchmark:
|
class MLXBenchmark:
|
||||||
@@ -179,10 +179,16 @@ class Benchmark:
|
|||||||
|
|
||||||
def _run_inference(self, input_ids: torch.Tensor) -> float:
|
def _run_inference(self, input_ids: torch.Tensor) -> float:
|
||||||
attention_mask = torch.ones_like(input_ids)
|
attention_mask = torch.ones_like(input_ids)
|
||||||
|
# print shape of input_ids and attention_mask
|
||||||
|
print(f"input_ids shape: {input_ids.shape}")
|
||||||
|
print(f"attention_mask shape: {attention_mask.shape}")
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
self.model(input_ids=input_ids, attention_mask=attention_mask)
|
self.model(input_ids=input_ids, attention_mask=attention_mask)
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
torch.cuda.synchronize()
|
||||||
|
if torch.backends.mps.is_available():
|
||||||
|
torch.mps.synchronize()
|
||||||
end_time = time.time()
|
end_time = time.time()
|
||||||
|
|
||||||
return end_time - start_time
|
return end_time - start_time
|
||||||
|
|||||||
@@ -53,9 +53,9 @@ We use pre-commit hooks to ensure code quality and consistency. This runs automa
|
|||||||
|
|
||||||
### Setup Pre-commit
|
### Setup Pre-commit
|
||||||
|
|
||||||
1. **Install pre-commit** (already included when you run `uv sync`):
|
1. **Install pre-commit tools**:
|
||||||
```bash
|
```bash
|
||||||
uv pip install pre-commit
|
uv sync lint
|
||||||
```
|
```
|
||||||
|
|
||||||
2. **Install the git hooks**:
|
2. **Install the git hooks**:
|
||||||
@@ -65,7 +65,7 @@ We use pre-commit hooks to ensure code quality and consistency. This runs automa
|
|||||||
|
|
||||||
3. **Run pre-commit manually** (optional):
|
3. **Run pre-commit manually** (optional):
|
||||||
```bash
|
```bash
|
||||||
pre-commit run --all-files
|
uv run pre-commit run --all-files
|
||||||
```
|
```
|
||||||
|
|
||||||
### Pre-commit Checks
|
### Pre-commit Checks
|
||||||
@@ -85,6 +85,9 @@ Our pre-commit configuration includes:
|
|||||||
### Running Tests
|
### Running Tests
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
|
# Install test tools only (no project runtime)
|
||||||
|
uv sync --group test
|
||||||
|
|
||||||
# Run all tests
|
# Run all tests
|
||||||
uv run pytest
|
uv run pytest
|
||||||
|
|
||||||
|
|||||||
143
docs/ast_chunking_guide.md
Normal file
143
docs/ast_chunking_guide.md
Normal file
@@ -0,0 +1,143 @@
|
|||||||
|
# AST-Aware Code chunking guide
|
||||||
|
|
||||||
|
## Overview
|
||||||
|
|
||||||
|
This guide covers best practices for using AST-aware code chunking in LEANN. AST chunking provides better semantic understanding of code structure compared to traditional text-based chunking.
|
||||||
|
|
||||||
|
## Quick Start
|
||||||
|
|
||||||
|
### Basic Usage
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Enable AST chunking for mixed content (code + docs)
|
||||||
|
python -m apps.document_rag --enable-code-chunking --data-dir ./my_project
|
||||||
|
|
||||||
|
# Specialized code repository indexing
|
||||||
|
python -m apps.code_rag --repo-dir ./my_codebase
|
||||||
|
|
||||||
|
# Global CLI with AST support
|
||||||
|
leann build my-code-index --docs ./src --use-ast-chunking
|
||||||
|
```
|
||||||
|
|
||||||
|
### Installation
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Install LEANN with AST chunking support
|
||||||
|
uv pip install -e "."
|
||||||
|
```
|
||||||
|
|
||||||
|
#### For normal users (PyPI install)
|
||||||
|
- Use `pip install leann` or `uv pip install leann`.
|
||||||
|
- `astchunk` is pulled automatically from PyPI as a dependency; no extra steps.
|
||||||
|
|
||||||
|
#### For developers (from source, editable)
|
||||||
|
```bash
|
||||||
|
git clone https://github.com/yichuan-w/LEANN.git leann
|
||||||
|
cd leann
|
||||||
|
git submodule update --init --recursive
|
||||||
|
uv sync
|
||||||
|
```
|
||||||
|
- This repo vendors `astchunk` as a git submodule at `packages/astchunk-leann` (our fork).
|
||||||
|
- `[tool.uv.sources]` maps the `astchunk` package to that path in editable mode.
|
||||||
|
- You can edit code under `packages/astchunk-leann` and Python will use your changes immediately (no separate `pip install astchunk` needed).
|
||||||
|
|
||||||
|
## Best Practices
|
||||||
|
|
||||||
|
### When to Use AST Chunking
|
||||||
|
|
||||||
|
✅ **Recommended for:**
|
||||||
|
- Code repositories with multiple languages
|
||||||
|
- Mixed documentation and code content
|
||||||
|
- Complex codebases with deep function/class hierarchies
|
||||||
|
- When working with Claude Code for code assistance
|
||||||
|
|
||||||
|
❌ **Not recommended for:**
|
||||||
|
- Pure text documents
|
||||||
|
- Very large files (>1MB)
|
||||||
|
- Languages not supported by tree-sitter
|
||||||
|
|
||||||
|
### Optimal Configuration
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Recommended settings for most codebases
|
||||||
|
python -m apps.code_rag \
|
||||||
|
--repo-dir ./src \
|
||||||
|
--ast-chunk-size 768 \
|
||||||
|
--ast-chunk-overlap 96 \
|
||||||
|
--exclude-dirs .git __pycache__ node_modules build dist
|
||||||
|
```
|
||||||
|
|
||||||
|
### Supported Languages
|
||||||
|
|
||||||
|
| Extension | Language | Status |
|
||||||
|
|-----------|----------|--------|
|
||||||
|
| `.py` | Python | ✅ Full support |
|
||||||
|
| `.java` | Java | ✅ Full support |
|
||||||
|
| `.cs` | C# | ✅ Full support |
|
||||||
|
| `.ts`, `.tsx` | TypeScript | ✅ Full support |
|
||||||
|
| `.js`, `.jsx` | JavaScript | ✅ Via TypeScript parser |
|
||||||
|
|
||||||
|
## Integration Examples
|
||||||
|
|
||||||
|
### Document RAG with Code Support
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Enable code chunking in document RAG
|
||||||
|
python -m apps.document_rag \
|
||||||
|
--enable-code-chunking \
|
||||||
|
--data-dir ./project \
|
||||||
|
--query "How does authentication work in the codebase?"
|
||||||
|
```
|
||||||
|
|
||||||
|
### Claude Code Integration
|
||||||
|
|
||||||
|
When using with Claude Code MCP server, AST chunking provides better context for:
|
||||||
|
- Code completion and suggestions
|
||||||
|
- Bug analysis and debugging
|
||||||
|
- Architecture understanding
|
||||||
|
- Refactoring assistance
|
||||||
|
|
||||||
|
## Troubleshooting
|
||||||
|
|
||||||
|
### Common Issues
|
||||||
|
|
||||||
|
1. **Fallback to Traditional Chunking**
|
||||||
|
- Normal behavior for unsupported languages
|
||||||
|
- Check logs for specific language support
|
||||||
|
|
||||||
|
2. **Performance with Large Files**
|
||||||
|
- Adjust `--max-file-size` parameter
|
||||||
|
- Use `--exclude-dirs` to skip unnecessary directories
|
||||||
|
|
||||||
|
3. **Quality Issues**
|
||||||
|
- Try different `--ast-chunk-size` values (512, 768, 1024)
|
||||||
|
- Adjust overlap for better context preservation
|
||||||
|
|
||||||
|
### Debug Mode
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export LEANN_LOG_LEVEL=DEBUG
|
||||||
|
python -m apps.code_rag --repo-dir ./my_code
|
||||||
|
```
|
||||||
|
|
||||||
|
## Migration from Traditional Chunking
|
||||||
|
|
||||||
|
Existing workflows continue to work without changes. To enable AST chunking:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Before
|
||||||
|
python -m apps.document_rag --chunk-size 256
|
||||||
|
|
||||||
|
# After (maintains traditional chunking for non-code files)
|
||||||
|
python -m apps.document_rag --enable-code-chunking --chunk-size 256 --ast-chunk-size 768
|
||||||
|
```
|
||||||
|
|
||||||
|
## References
|
||||||
|
|
||||||
|
- [astchunk GitHub Repository](https://github.com/yilinjz/astchunk)
|
||||||
|
- [LEANN MCP Integration](../packages/leann-mcp/README.md)
|
||||||
|
- [Research Paper](https://arxiv.org/html/2506.15655v1)
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
**Note**: AST chunking maintains full backward compatibility while enhancing code understanding capabilities.
|
||||||
@@ -83,6 +83,81 @@ ollama pull nomic-embed-text
|
|||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
|
## Local & Remote Inference Endpoints
|
||||||
|
|
||||||
|
> Applies to both LLMs (`leann ask`) and embeddings (`leann build`).
|
||||||
|
|
||||||
|
LEANN now treats Ollama, LM Studio, and other OpenAI-compatible runtimes as first-class providers. You can point LEANN at any compatible endpoint – either on the same machine or across the network – with a couple of flags or environment variables.
|
||||||
|
|
||||||
|
### One-Time Environment Setup
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Works for OpenAI-compatible runtimes such as LM Studio, vLLM, SGLang, llamafile, etc.
|
||||||
|
export OPENAI_API_KEY="your-key" # or leave unset for local servers that do not check keys
|
||||||
|
export OPENAI_BASE_URL="http://localhost:1234/v1"
|
||||||
|
|
||||||
|
# Ollama-compatible runtimes (Ollama, Ollama on another host, llamacpp-server, etc.)
|
||||||
|
export LEANN_OLLAMA_HOST="http://localhost:11434" # falls back to OLLAMA_HOST or LOCAL_LLM_ENDPOINT
|
||||||
|
```
|
||||||
|
|
||||||
|
LEANN also recognises `LEANN_LOCAL_LLM_HOST` (highest priority), `LEANN_OPENAI_BASE_URL`, and `LOCAL_OPENAI_BASE_URL`, so existing scripts continue to work.
|
||||||
|
|
||||||
|
### Passing Hosts Per Command
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Build an index with a remote embedding server
|
||||||
|
leann build my-notes \
|
||||||
|
--docs ./notes \
|
||||||
|
--embedding-mode openai \
|
||||||
|
--embedding-model text-embedding-qwen3-embedding-0.6b \
|
||||||
|
--embedding-api-base http://192.168.1.50:1234/v1 \
|
||||||
|
--embedding-api-key local-dev-key
|
||||||
|
|
||||||
|
# Query using a local LM Studio instance via OpenAI-compatible API
|
||||||
|
leann ask my-notes \
|
||||||
|
--llm openai \
|
||||||
|
--llm-model qwen3-8b \
|
||||||
|
--api-base http://localhost:1234/v1 \
|
||||||
|
--api-key local-dev-key
|
||||||
|
|
||||||
|
# Query an Ollama instance running on another box
|
||||||
|
leann ask my-notes \
|
||||||
|
--llm ollama \
|
||||||
|
--llm-model qwen3:14b \
|
||||||
|
--host http://192.168.1.101:11434
|
||||||
|
```
|
||||||
|
|
||||||
|
⚠️ **Make sure the endpoint is reachable**: when your inference server runs on a home/workstation and the index/search job runs in the cloud, the server must be able to reach the host you configured. Typical options include:
|
||||||
|
|
||||||
|
- Expose a public IP (and open the relevant port) on the machine that hosts LM Studio/Ollama.
|
||||||
|
- Configure router or cloud provider port forwarding.
|
||||||
|
- Tunnel traffic through tools like `tailscale`, `cloudflared`, or `ssh -R`.
|
||||||
|
|
||||||
|
When you set these options while building an index, LEANN stores them in `meta.json`. Any subsequent `leann ask` or searcher process automatically reuses the same provider settings – even when we spawn background embedding servers. This makes the “server without GPU talking to my local workstation” workflow from [issue #80](https://github.com/yichuan-w/LEANN/issues/80#issuecomment-2287230548) work out-of-the-box.
|
||||||
|
|
||||||
|
**Tip:** If your runtime does not require an API key (many local stacks don’t), leave `--api-key` unset. LEANN will skip injecting credentials.
|
||||||
|
|
||||||
|
### Python API Usage
|
||||||
|
|
||||||
|
You can pass the same configuration from Python:
|
||||||
|
|
||||||
|
```python
|
||||||
|
from leann.api import LeannBuilder
|
||||||
|
|
||||||
|
builder = LeannBuilder(
|
||||||
|
backend_name="hnsw",
|
||||||
|
embedding_mode="openai",
|
||||||
|
embedding_model="text-embedding-qwen3-embedding-0.6b",
|
||||||
|
embedding_options={
|
||||||
|
"base_url": "http://192.168.1.50:1234/v1",
|
||||||
|
"api_key": "local-dev-key",
|
||||||
|
},
|
||||||
|
)
|
||||||
|
builder.build_index("./indexes/my-notes", chunks)
|
||||||
|
```
|
||||||
|
|
||||||
|
`embedding_options` is persisted to the index `meta.json`, so subsequent `LeannSearcher` or `LeannChat` sessions automatically reuse the same provider settings (the embedding server manager forwards them to the provider for you).
|
||||||
|
|
||||||
## Index Selection: Matching Your Scale
|
## Index Selection: Matching Your Scale
|
||||||
|
|
||||||
### HNSW (Hierarchical Navigable Small World)
|
### HNSW (Hierarchical Navigable Small World)
|
||||||
|
|||||||
@@ -3,6 +3,7 @@
|
|||||||
## 🔥 Core Features
|
## 🔥 Core Features
|
||||||
|
|
||||||
- **🔄 Real-time Embeddings** - Eliminate heavy embedding storage with dynamic computation using optimized ZMQ servers and highly optimized search paradigm (overlapping and batching) with highly optimized embedding engine
|
- **🔄 Real-time Embeddings** - Eliminate heavy embedding storage with dynamic computation using optimized ZMQ servers and highly optimized search paradigm (overlapping and batching) with highly optimized embedding engine
|
||||||
|
- **🧠 AST-Aware Code Chunking** - Intelligent code chunking that preserves semantic boundaries (functions, classes, methods) for Python, Java, C#, and TypeScript files
|
||||||
- **📈 Scalable Architecture** - Handles millions of documents on consumer hardware; the larger your dataset, the more LEANN can save
|
- **📈 Scalable Architecture** - Handles millions of documents on consumer hardware; the larger your dataset, the more LEANN can save
|
||||||
- **🎯 Graph Pruning** - Advanced techniques to minimize the storage overhead of vector search to a limited footprint
|
- **🎯 Graph Pruning** - Advanced techniques to minimize the storage overhead of vector search to a limited footprint
|
||||||
- **🏗️ Pluggable Backends** - HNSW/FAISS (default), with optional DiskANN for large-scale deployments
|
- **🏗️ Pluggable Backends** - HNSW/FAISS (default), with optional DiskANN for large-scale deployments
|
||||||
|
|||||||
149
docs/grep_search.md
Normal file
149
docs/grep_search.md
Normal file
@@ -0,0 +1,149 @@
|
|||||||
|
# LEANN Grep Search Usage Guide
|
||||||
|
|
||||||
|
## Overview
|
||||||
|
|
||||||
|
LEANN's grep search functionality provides exact text matching for finding specific code patterns, error messages, function names, or exact phrases in your indexed documents.
|
||||||
|
|
||||||
|
## Basic Usage
|
||||||
|
|
||||||
|
### Simple Grep Search
|
||||||
|
|
||||||
|
```python
|
||||||
|
from leann.api import LeannSearcher
|
||||||
|
|
||||||
|
searcher = LeannSearcher("your_index_path")
|
||||||
|
|
||||||
|
# Exact text search
|
||||||
|
results = searcher.search("def authenticate_user", use_grep=True, top_k=5)
|
||||||
|
|
||||||
|
for result in results:
|
||||||
|
print(f"Score: {result.score}")
|
||||||
|
print(f"Text: {result.text[:100]}...")
|
||||||
|
print("-" * 40)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Comparison: Semantic vs Grep Search
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Semantic search - finds conceptually similar content
|
||||||
|
semantic_results = searcher.search("machine learning algorithms", top_k=3)
|
||||||
|
|
||||||
|
# Grep search - finds exact text matches
|
||||||
|
grep_results = searcher.search("def train_model", use_grep=True, top_k=3)
|
||||||
|
```
|
||||||
|
|
||||||
|
## When to Use Grep Search
|
||||||
|
|
||||||
|
### Use Cases
|
||||||
|
|
||||||
|
- **Code Search**: Finding specific function definitions, class names, or variable references
|
||||||
|
- **Error Debugging**: Locating exact error messages or stack traces
|
||||||
|
- **Documentation**: Finding specific API endpoints or exact terminology
|
||||||
|
|
||||||
|
### Examples
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Find function definitions
|
||||||
|
functions = searcher.search("def __init__", use_grep=True)
|
||||||
|
|
||||||
|
# Find import statements
|
||||||
|
imports = searcher.search("from sklearn import", use_grep=True)
|
||||||
|
|
||||||
|
# Find specific error types
|
||||||
|
errors = searcher.search("FileNotFoundError", use_grep=True)
|
||||||
|
|
||||||
|
# Find TODO comments
|
||||||
|
todos = searcher.search("TODO:", use_grep=True)
|
||||||
|
|
||||||
|
# Find configuration entries
|
||||||
|
configs = searcher.search("server_port=", use_grep=True)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Technical Details
|
||||||
|
|
||||||
|
### How It Works
|
||||||
|
|
||||||
|
1. **File Location**: Grep search operates on the raw text stored in `.jsonl` files
|
||||||
|
2. **Command Execution**: Uses the system `grep` command with case-insensitive search
|
||||||
|
3. **Result Processing**: Parses JSON lines and extracts text and metadata
|
||||||
|
4. **Scoring**: Simple frequency-based scoring based on query term occurrences
|
||||||
|
|
||||||
|
### Search Process
|
||||||
|
|
||||||
|
```
|
||||||
|
Query: "def train_model"
|
||||||
|
↓
|
||||||
|
grep -i -n "def train_model" documents.leann.passages.jsonl
|
||||||
|
↓
|
||||||
|
Parse matching JSON lines
|
||||||
|
↓
|
||||||
|
Calculate scores based on term frequency
|
||||||
|
↓
|
||||||
|
Return top_k results
|
||||||
|
```
|
||||||
|
|
||||||
|
### Scoring Algorithm
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Term frequency in document
|
||||||
|
score = text.lower().count(query.lower())
|
||||||
|
```
|
||||||
|
|
||||||
|
Results are ranked by score (highest first), with higher scores indicating more occurrences of the search term.
|
||||||
|
|
||||||
|
## Error Handling
|
||||||
|
|
||||||
|
### Common Issues
|
||||||
|
|
||||||
|
#### Grep Command Not Found
|
||||||
|
```
|
||||||
|
RuntimeError: grep command not found. Please install grep or use semantic search.
|
||||||
|
```
|
||||||
|
|
||||||
|
**Solution**: Install grep on your system:
|
||||||
|
- **Ubuntu/Debian**: `sudo apt-get install grep`
|
||||||
|
- **macOS**: grep is pre-installed
|
||||||
|
- **Windows**: Use WSL or install grep via Git Bash/MSYS2
|
||||||
|
|
||||||
|
#### No Results Found
|
||||||
|
```python
|
||||||
|
# Check if your query exists in the raw data
|
||||||
|
results = searcher.search("your_query", use_grep=True)
|
||||||
|
if not results:
|
||||||
|
print("No exact matches found. Try:")
|
||||||
|
print("1. Check spelling and case")
|
||||||
|
print("2. Use partial terms")
|
||||||
|
print("3. Switch to semantic search")
|
||||||
|
```
|
||||||
|
|
||||||
|
## Complete Example
|
||||||
|
|
||||||
|
```python
|
||||||
|
#!/usr/bin/env python3
|
||||||
|
"""
|
||||||
|
Grep Search Example
|
||||||
|
Demonstrates grep search for exact text matching.
|
||||||
|
"""
|
||||||
|
|
||||||
|
from leann.api import LeannSearcher
|
||||||
|
|
||||||
|
def demonstrate_grep_search():
|
||||||
|
# Initialize searcher
|
||||||
|
searcher = LeannSearcher("my_index")
|
||||||
|
|
||||||
|
print("=== Function Search ===")
|
||||||
|
functions = searcher.search("def __init__", use_grep=True, top_k=5)
|
||||||
|
for i, result in enumerate(functions, 1):
|
||||||
|
print(f"{i}. Score: {result.score}")
|
||||||
|
print(f" Preview: {result.text[:60]}...")
|
||||||
|
print()
|
||||||
|
|
||||||
|
print("=== Error Search ===")
|
||||||
|
errors = searcher.search("FileNotFoundError", use_grep=True, top_k=3)
|
||||||
|
for result in errors:
|
||||||
|
print(f"Content: {result.text.strip()}")
|
||||||
|
print("-" * 40)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
demonstrate_grep_search()
|
||||||
|
```
|
||||||
300
docs/metadata_filtering.md
Normal file
300
docs/metadata_filtering.md
Normal file
@@ -0,0 +1,300 @@
|
|||||||
|
# LEANN Metadata Filtering Usage Guide
|
||||||
|
|
||||||
|
## Overview
|
||||||
|
|
||||||
|
Leann possesses metadata filtering capabilities that allow you to filter search results based on arbitrary metadata fields set during chunking. This feature enables use cases like spoiler-free book search, document filtering by date/type, code search by file type, and potentially much more.
|
||||||
|
|
||||||
|
## Basic Usage
|
||||||
|
|
||||||
|
### Adding Metadata to Your Documents
|
||||||
|
|
||||||
|
When building your index, add metadata to each text chunk:
|
||||||
|
|
||||||
|
```python
|
||||||
|
from leann.api import LeannBuilder
|
||||||
|
|
||||||
|
builder = LeannBuilder("hnsw")
|
||||||
|
|
||||||
|
# Add text with metadata
|
||||||
|
builder.add_text(
|
||||||
|
text="Chapter 1: Alice falls down the rabbit hole",
|
||||||
|
metadata={
|
||||||
|
"chapter": 1,
|
||||||
|
"character": "Alice",
|
||||||
|
"themes": ["adventure", "curiosity"],
|
||||||
|
"word_count": 150
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
builder.build_index("alice_in_wonderland_index")
|
||||||
|
```
|
||||||
|
|
||||||
|
### Searching with Metadata Filters
|
||||||
|
|
||||||
|
Use the `metadata_filters` parameter in search calls:
|
||||||
|
|
||||||
|
```python
|
||||||
|
from leann.api import LeannSearcher
|
||||||
|
|
||||||
|
searcher = LeannSearcher("alice_in_wonderland_index")
|
||||||
|
|
||||||
|
# Search with filters
|
||||||
|
results = searcher.search(
|
||||||
|
query="What happens to Alice?",
|
||||||
|
top_k=10,
|
||||||
|
metadata_filters={
|
||||||
|
"chapter": {"<=": 5}, # Only chapters 1-5
|
||||||
|
"spoiler_level": {"!=": "high"} # No high spoilers
|
||||||
|
}
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Filter Syntax
|
||||||
|
|
||||||
|
### Basic Structure
|
||||||
|
|
||||||
|
```python
|
||||||
|
metadata_filters = {
|
||||||
|
"field_name": {"operator": value},
|
||||||
|
"another_field": {"operator": value}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
### Supported Operators
|
||||||
|
|
||||||
|
#### Comparison Operators
|
||||||
|
- `"=="`: Equal to
|
||||||
|
- `"!="`: Not equal to
|
||||||
|
- `"<"`: Less than
|
||||||
|
- `"<="`: Less than or equal
|
||||||
|
- `">"`: Greater than
|
||||||
|
- `">="`: Greater than or equal
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Examples
|
||||||
|
{"chapter": {"==": 1}} # Exactly chapter 1
|
||||||
|
{"page": {">": 100}} # Pages after 100
|
||||||
|
{"rating": {">=": 4.0}} # Rating 4.0 or higher
|
||||||
|
{"word_count": {"<": 500}} # Short passages
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Membership Operators
|
||||||
|
- `"in"`: Value is in list
|
||||||
|
- `"not_in"`: Value is not in list
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Examples
|
||||||
|
{"character": {"in": ["Alice", "Bob"]}} # Alice OR Bob
|
||||||
|
{"genre": {"not_in": ["horror", "thriller"]}} # Exclude genres
|
||||||
|
{"tags": {"in": ["fiction", "adventure"]}} # Any of these tags
|
||||||
|
```
|
||||||
|
|
||||||
|
#### String Operators
|
||||||
|
- `"contains"`: String contains substring
|
||||||
|
- `"starts_with"`: String starts with prefix
|
||||||
|
- `"ends_with"`: String ends with suffix
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Examples
|
||||||
|
{"title": {"contains": "alice"}} # Title contains "alice"
|
||||||
|
{"filename": {"ends_with": ".py"}} # Python files
|
||||||
|
{"author": {"starts_with": "Dr."}} # Authors with "Dr." prefix
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Boolean Operators
|
||||||
|
- `"is_true"`: Field is truthy
|
||||||
|
- `"is_false"`: Field is falsy
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Examples
|
||||||
|
{"is_published": {"is_true": True}} # Published content
|
||||||
|
{"is_draft": {"is_false": False}} # Not drafts
|
||||||
|
```
|
||||||
|
|
||||||
|
### Multiple Operators on Same Field
|
||||||
|
|
||||||
|
You can apply multiple operators to the same field (AND logic):
|
||||||
|
|
||||||
|
```python
|
||||||
|
metadata_filters = {
|
||||||
|
"word_count": {
|
||||||
|
">=": 100, # At least 100 words
|
||||||
|
"<=": 500 # At most 500 words
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
### Compound Filters
|
||||||
|
|
||||||
|
Multiple fields are combined with AND logic:
|
||||||
|
|
||||||
|
```python
|
||||||
|
metadata_filters = {
|
||||||
|
"chapter": {"<=": 10}, # Up to chapter 10
|
||||||
|
"character": {"==": "Alice"}, # About Alice
|
||||||
|
"spoiler_level": {"!=": "high"} # No major spoilers
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
## Use Case Examples
|
||||||
|
|
||||||
|
### 1. Spoiler-Free Book Search
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Reader has only read up to chapter 5
|
||||||
|
def search_spoiler_free(query, max_chapter):
|
||||||
|
return searcher.search(
|
||||||
|
query=query,
|
||||||
|
metadata_filters={
|
||||||
|
"chapter": {"<=": max_chapter},
|
||||||
|
"spoiler_level": {"in": ["none", "low"]}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
results = search_spoiler_free("What happens to Alice?", max_chapter=5)
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. Document Management by Date
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Find recent documents
|
||||||
|
recent_docs = searcher.search(
|
||||||
|
query="project updates",
|
||||||
|
metadata_filters={
|
||||||
|
"date": {">=": "2024-01-01"},
|
||||||
|
"document_type": {"==": "report"}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
### 3. Code Search by File Type
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Search only Python files
|
||||||
|
python_code = searcher.search(
|
||||||
|
query="authentication function",
|
||||||
|
metadata_filters={
|
||||||
|
"file_extension": {"==": ".py"},
|
||||||
|
"lines_of_code": {"<": 100}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
### 4. Content Filtering by Audience
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Age-appropriate content
|
||||||
|
family_content = searcher.search(
|
||||||
|
query="adventure stories",
|
||||||
|
metadata_filters={
|
||||||
|
"age_rating": {"in": ["G", "PG"]},
|
||||||
|
"content_warnings": {"not_in": ["violence", "adult_themes"]}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
### 5. Multi-Book Series Management
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Search across first 3 books only
|
||||||
|
early_series = searcher.search(
|
||||||
|
query="character development",
|
||||||
|
metadata_filters={
|
||||||
|
"series": {"==": "Harry Potter"},
|
||||||
|
"book_number": {"<=": 3}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Running the Example
|
||||||
|
|
||||||
|
You can see metadata filtering in action with our spoiler-free book RAG example:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Don't forget to set up the environment
|
||||||
|
uv venv
|
||||||
|
source .venv/bin/activate
|
||||||
|
|
||||||
|
# Set your OpenAI API key (required for embeddings, but you can update the example locally and use ollama instead)
|
||||||
|
export OPENAI_API_KEY="your-api-key-here"
|
||||||
|
|
||||||
|
# Run the spoiler-free book RAG example
|
||||||
|
uv run examples/spoiler_free_book_rag.py
|
||||||
|
```
|
||||||
|
|
||||||
|
This example demonstrates:
|
||||||
|
- Building an index with metadata (chapter numbers, characters, themes, locations)
|
||||||
|
- Searching with filters to avoid spoilers (e.g., only show results up to chapter 5)
|
||||||
|
- Different scenarios for readers at various points in the book
|
||||||
|
|
||||||
|
The example uses Alice's Adventures in Wonderland as sample data and shows how you can search for information without revealing plot points from later chapters.
|
||||||
|
|
||||||
|
## Advanced Patterns
|
||||||
|
|
||||||
|
### Custom Chunking with metadata
|
||||||
|
|
||||||
|
```python
|
||||||
|
def chunk_book_with_metadata(book_text, book_info):
|
||||||
|
chunks = []
|
||||||
|
|
||||||
|
for chapter_num, chapter_text in parse_chapters(book_text):
|
||||||
|
# Extract entities, themes, etc.
|
||||||
|
characters = extract_characters(chapter_text)
|
||||||
|
themes = classify_themes(chapter_text)
|
||||||
|
spoiler_level = assess_spoiler_level(chapter_text, chapter_num)
|
||||||
|
|
||||||
|
# Create chunks with rich metadata
|
||||||
|
for paragraph in split_paragraphs(chapter_text):
|
||||||
|
chunks.append({
|
||||||
|
"text": paragraph,
|
||||||
|
"metadata": {
|
||||||
|
"book_title": book_info["title"],
|
||||||
|
"chapter": chapter_num,
|
||||||
|
"characters": characters,
|
||||||
|
"themes": themes,
|
||||||
|
"spoiler_level": spoiler_level,
|
||||||
|
"word_count": len(paragraph.split()),
|
||||||
|
"reading_level": calculate_reading_level(paragraph)
|
||||||
|
}
|
||||||
|
})
|
||||||
|
|
||||||
|
return chunks
|
||||||
|
```
|
||||||
|
|
||||||
|
## Performance Considerations
|
||||||
|
|
||||||
|
### Efficient Filtering Strategies
|
||||||
|
|
||||||
|
1. **Post-search filtering**: Applies filters after vector search, which should be efficient for typical result sets (10-100 results).
|
||||||
|
|
||||||
|
2. **Metadata design**: Keep metadata fields simple and avoid deeply nested structures.
|
||||||
|
|
||||||
|
### Best Practices
|
||||||
|
|
||||||
|
1. **Consistent metadata schema**: Use consistent field names and value types across your documents.
|
||||||
|
|
||||||
|
2. **Reasonable metadata size**: Keep metadata reasonably sized to avoid storage overhead.
|
||||||
|
|
||||||
|
3. **Type consistency**: Use consistent data types for the same fields (e.g., always integers for chapter numbers).
|
||||||
|
|
||||||
|
4. **Index multiple granularities**: Consider chunking at different levels (paragraph, section, chapter) with appropriate metadata.
|
||||||
|
|
||||||
|
### Adding Metadata to Existing Indices
|
||||||
|
|
||||||
|
To add metadata filtering to existing indices, you'll need to rebuild them with metadata:
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Read existing passages and add metadata
|
||||||
|
def add_metadata_to_existing_chunks(chunks):
|
||||||
|
for chunk in chunks:
|
||||||
|
# Extract or assign metadata based on content
|
||||||
|
chunk["metadata"] = extract_metadata(chunk["text"])
|
||||||
|
return chunks
|
||||||
|
|
||||||
|
# Rebuild index with metadata
|
||||||
|
enhanced_chunks = add_metadata_to_existing_chunks(existing_chunks)
|
||||||
|
builder = LeannBuilder("hnsw")
|
||||||
|
for chunk in enhanced_chunks:
|
||||||
|
builder.add_text(chunk["text"], chunk["metadata"])
|
||||||
|
builder.build_index("enhanced_index")
|
||||||
|
```
|
||||||
0
examples/__init__.py
Normal file
0
examples/__init__.py
Normal file
404
examples/dynamic_update_no_recompute.py
Normal file
404
examples/dynamic_update_no_recompute.py
Normal file
@@ -0,0 +1,404 @@
|
|||||||
|
"""Dynamic HNSW update demo without compact storage.
|
||||||
|
|
||||||
|
This script reproduces the minimal scenario we used while debugging on-the-fly
|
||||||
|
recompute:
|
||||||
|
|
||||||
|
1. Build a non-compact HNSW index from the first few paragraphs of a text file.
|
||||||
|
2. Print the top results with `recompute_embeddings=True`.
|
||||||
|
3. Append additional paragraphs with :meth:`LeannBuilder.update_index`.
|
||||||
|
4. Run the same query again to show the newly inserted passages.
|
||||||
|
|
||||||
|
Run it with ``uv`` (optionally pointing LEANN_HNSW_LOG_PATH at a file to inspect
|
||||||
|
ZMQ activity)::
|
||||||
|
|
||||||
|
LEANN_HNSW_LOG_PATH=embedding_fetch.log \
|
||||||
|
uv run -m examples.dynamic_update_no_recompute \
|
||||||
|
--index-path .leann/examples/leann-demo.leann
|
||||||
|
|
||||||
|
By default the script builds an index from ``data/2501.14312v1 (1).pdf`` and
|
||||||
|
then updates it with LEANN-related material from ``data/2506.08276v1.pdf``.
|
||||||
|
It issues the query "What's LEANN?" before and after the update to show how the
|
||||||
|
new passages become immediately searchable. The script uses the
|
||||||
|
``sentence-transformers/all-MiniLM-L6-v2`` model with ``is_recompute=True`` so
|
||||||
|
Faiss pulls existing vectors on demand via the ZMQ embedding server, while
|
||||||
|
freshly added passages are embedded locally just like the initial build.
|
||||||
|
|
||||||
|
To make storage comparisons easy, the script can also build a matching
|
||||||
|
``is_recompute=False`` baseline (enabled by default) and report the index size
|
||||||
|
delta after the update. Disable the baseline run with
|
||||||
|
``--skip-compare-no-recompute`` if you only need the recompute flow.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import json
|
||||||
|
from collections.abc import Iterable
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
|
from leann.api import LeannBuilder, LeannSearcher
|
||||||
|
from leann.registry import register_project_directory
|
||||||
|
|
||||||
|
from apps.chunking import create_text_chunks
|
||||||
|
|
||||||
|
REPO_ROOT = Path(__file__).resolve().parents[1]
|
||||||
|
|
||||||
|
DEFAULT_QUERY = "What's LEANN?"
|
||||||
|
DEFAULT_INITIAL_FILES = [REPO_ROOT / "data" / "2501.14312v1 (1).pdf"]
|
||||||
|
DEFAULT_UPDATE_FILES = [REPO_ROOT / "data" / "2506.08276v1.pdf"]
|
||||||
|
|
||||||
|
|
||||||
|
def load_chunks_from_files(paths: list[Path]) -> list[str]:
|
||||||
|
from llama_index.core import SimpleDirectoryReader
|
||||||
|
|
||||||
|
documents = []
|
||||||
|
for path in paths:
|
||||||
|
p = path.expanduser().resolve()
|
||||||
|
if not p.exists():
|
||||||
|
raise FileNotFoundError(f"Input path not found: {p}")
|
||||||
|
if p.is_dir():
|
||||||
|
reader = SimpleDirectoryReader(str(p), recursive=False)
|
||||||
|
documents.extend(reader.load_data(show_progress=True))
|
||||||
|
else:
|
||||||
|
reader = SimpleDirectoryReader(input_files=[str(p)])
|
||||||
|
documents.extend(reader.load_data(show_progress=True))
|
||||||
|
|
||||||
|
if not documents:
|
||||||
|
return []
|
||||||
|
|
||||||
|
chunks = create_text_chunks(
|
||||||
|
documents,
|
||||||
|
chunk_size=512,
|
||||||
|
chunk_overlap=128,
|
||||||
|
use_ast_chunking=False,
|
||||||
|
)
|
||||||
|
return [c for c in chunks if isinstance(c, str) and c.strip()]
|
||||||
|
|
||||||
|
|
||||||
|
def run_search(index_path: Path, query: str, top_k: int, *, recompute_embeddings: bool) -> list:
|
||||||
|
searcher = LeannSearcher(str(index_path))
|
||||||
|
try:
|
||||||
|
return searcher.search(
|
||||||
|
query=query,
|
||||||
|
top_k=top_k,
|
||||||
|
recompute_embeddings=recompute_embeddings,
|
||||||
|
batch_size=16,
|
||||||
|
)
|
||||||
|
finally:
|
||||||
|
searcher.cleanup()
|
||||||
|
|
||||||
|
|
||||||
|
def print_results(title: str, results: Iterable) -> None:
|
||||||
|
print(f"\n=== {title} ===")
|
||||||
|
res_list = list(results)
|
||||||
|
print(f"results count: {len(res_list)}")
|
||||||
|
print("passages:")
|
||||||
|
if not res_list:
|
||||||
|
print(" (no passages returned)")
|
||||||
|
for res in res_list:
|
||||||
|
snippet = res.text.replace("\n", " ")[:120]
|
||||||
|
print(f" - {res.id}: {snippet}... (score={res.score:.4f})")
|
||||||
|
|
||||||
|
|
||||||
|
def build_initial_index(
|
||||||
|
index_path: Path,
|
||||||
|
paragraphs: list[str],
|
||||||
|
model_name: str,
|
||||||
|
embedding_mode: str,
|
||||||
|
is_recompute: bool,
|
||||||
|
) -> None:
|
||||||
|
builder = LeannBuilder(
|
||||||
|
backend_name="hnsw",
|
||||||
|
embedding_model=model_name,
|
||||||
|
embedding_mode=embedding_mode,
|
||||||
|
is_compact=False,
|
||||||
|
is_recompute=is_recompute,
|
||||||
|
)
|
||||||
|
for idx, passage in enumerate(paragraphs):
|
||||||
|
builder.add_text(passage, metadata={"id": str(idx)})
|
||||||
|
builder.build_index(str(index_path))
|
||||||
|
|
||||||
|
|
||||||
|
def update_index(
|
||||||
|
index_path: Path,
|
||||||
|
start_id: int,
|
||||||
|
paragraphs: list[str],
|
||||||
|
model_name: str,
|
||||||
|
embedding_mode: str,
|
||||||
|
is_recompute: bool,
|
||||||
|
) -> None:
|
||||||
|
updater = LeannBuilder(
|
||||||
|
backend_name="hnsw",
|
||||||
|
embedding_model=model_name,
|
||||||
|
embedding_mode=embedding_mode,
|
||||||
|
is_compact=False,
|
||||||
|
is_recompute=is_recompute,
|
||||||
|
)
|
||||||
|
for offset, passage in enumerate(paragraphs, start=start_id):
|
||||||
|
updater.add_text(passage, metadata={"id": str(offset)})
|
||||||
|
updater.update_index(str(index_path))
|
||||||
|
|
||||||
|
|
||||||
|
def ensure_index_dir(index_path: Path) -> None:
|
||||||
|
index_path.parent.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
|
||||||
|
def cleanup_index_files(index_path: Path) -> None:
|
||||||
|
"""Remove leftover index artifacts for a clean rebuild."""
|
||||||
|
|
||||||
|
parent = index_path.parent
|
||||||
|
if not parent.exists():
|
||||||
|
return
|
||||||
|
stem = index_path.stem
|
||||||
|
for file in parent.glob(f"{stem}*"):
|
||||||
|
if file.is_file():
|
||||||
|
file.unlink()
|
||||||
|
|
||||||
|
|
||||||
|
def index_file_size(index_path: Path) -> int:
|
||||||
|
"""Return the size of the primary .index file for the given index path."""
|
||||||
|
|
||||||
|
index_file = index_path.parent / f"{index_path.stem}.index"
|
||||||
|
return index_file.stat().st_size if index_file.exists() else 0
|
||||||
|
|
||||||
|
|
||||||
|
def load_metadata_snapshot(index_path: Path) -> dict[str, Any] | None:
|
||||||
|
meta_path = index_path.parent / f"{index_path.name}.meta.json"
|
||||||
|
if not meta_path.exists():
|
||||||
|
return None
|
||||||
|
try:
|
||||||
|
return json.loads(meta_path.read_text())
|
||||||
|
except json.JSONDecodeError:
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
def run_workflow(
|
||||||
|
*,
|
||||||
|
label: str,
|
||||||
|
index_path: Path,
|
||||||
|
initial_paragraphs: list[str],
|
||||||
|
update_paragraphs: list[str],
|
||||||
|
model_name: str,
|
||||||
|
embedding_mode: str,
|
||||||
|
is_recompute: bool,
|
||||||
|
query: str,
|
||||||
|
top_k: int,
|
||||||
|
) -> dict[str, Any]:
|
||||||
|
prefix = f"[{label}] " if label else ""
|
||||||
|
|
||||||
|
ensure_index_dir(index_path)
|
||||||
|
cleanup_index_files(index_path)
|
||||||
|
|
||||||
|
print(f"{prefix}Building initial index...")
|
||||||
|
build_initial_index(
|
||||||
|
index_path,
|
||||||
|
initial_paragraphs,
|
||||||
|
model_name,
|
||||||
|
embedding_mode,
|
||||||
|
is_recompute=is_recompute,
|
||||||
|
)
|
||||||
|
|
||||||
|
initial_size = index_file_size(index_path)
|
||||||
|
before_results = run_search(
|
||||||
|
index_path,
|
||||||
|
query,
|
||||||
|
top_k,
|
||||||
|
recompute_embeddings=is_recompute,
|
||||||
|
)
|
||||||
|
|
||||||
|
print(f"\n{prefix}Updating index with additional passages...")
|
||||||
|
update_index(
|
||||||
|
index_path,
|
||||||
|
start_id=len(initial_paragraphs),
|
||||||
|
paragraphs=update_paragraphs,
|
||||||
|
model_name=model_name,
|
||||||
|
embedding_mode=embedding_mode,
|
||||||
|
is_recompute=is_recompute,
|
||||||
|
)
|
||||||
|
|
||||||
|
after_results = run_search(
|
||||||
|
index_path,
|
||||||
|
query,
|
||||||
|
top_k,
|
||||||
|
recompute_embeddings=is_recompute,
|
||||||
|
)
|
||||||
|
updated_size = index_file_size(index_path)
|
||||||
|
|
||||||
|
return {
|
||||||
|
"initial_size": initial_size,
|
||||||
|
"updated_size": updated_size,
|
||||||
|
"delta": updated_size - initial_size,
|
||||||
|
"before_results": before_results,
|
||||||
|
"after_results": after_results,
|
||||||
|
"metadata": load_metadata_snapshot(index_path),
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def main() -> None:
|
||||||
|
parser = argparse.ArgumentParser(description=__doc__)
|
||||||
|
parser.add_argument(
|
||||||
|
"--initial-files",
|
||||||
|
type=Path,
|
||||||
|
nargs="+",
|
||||||
|
default=DEFAULT_INITIAL_FILES,
|
||||||
|
help="Initial document files (PDF/TXT) used to build the base index",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--index-path",
|
||||||
|
type=Path,
|
||||||
|
default=Path(".leann/examples/leann-demo.leann"),
|
||||||
|
help="Destination index path (default: .leann/examples/leann-demo.leann)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--initial-count",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="Number of chunks to use from the initial documents (default: 8)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--update-files",
|
||||||
|
type=Path,
|
||||||
|
nargs="*",
|
||||||
|
default=DEFAULT_UPDATE_FILES,
|
||||||
|
help="Additional documents to add during update (PDF/TXT)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--update-count",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="Number of chunks to append from update documents (default: 4)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--update-text",
|
||||||
|
type=str,
|
||||||
|
default=(
|
||||||
|
"LEANN (Lightweight Embedding ANN) is an indexing toolkit focused on "
|
||||||
|
"recompute-aware HNSW graphs, allowing embeddings to be regenerated "
|
||||||
|
"on demand to keep disk usage minimal."
|
||||||
|
),
|
||||||
|
help="Fallback text to append if --update-files is omitted",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--top-k",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="Number of results to show for each search (default: 4)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--query",
|
||||||
|
type=str,
|
||||||
|
default=DEFAULT_QUERY,
|
||||||
|
help="Query to run before/after the update",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--embedding-model",
|
||||||
|
type=str,
|
||||||
|
default="sentence-transformers/all-MiniLM-L6-v2",
|
||||||
|
help="Embedding model name",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--embedding-mode",
|
||||||
|
type=str,
|
||||||
|
default="sentence-transformers",
|
||||||
|
choices=["sentence-transformers", "openai", "mlx", "ollama"],
|
||||||
|
help="Embedding backend mode",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--compare-no-recompute",
|
||||||
|
dest="compare_no_recompute",
|
||||||
|
action="store_true",
|
||||||
|
help="Also run a baseline with is_recompute=False and report its index growth.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--skip-compare-no-recompute",
|
||||||
|
dest="compare_no_recompute",
|
||||||
|
action="store_false",
|
||||||
|
help="Skip building the no-recompute baseline.",
|
||||||
|
)
|
||||||
|
parser.set_defaults(compare_no_recompute=True)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
ensure_index_dir(args.index_path)
|
||||||
|
register_project_directory(REPO_ROOT)
|
||||||
|
|
||||||
|
initial_chunks = load_chunks_from_files(list(args.initial_files))
|
||||||
|
if not initial_chunks:
|
||||||
|
raise ValueError("No text chunks extracted from the initial files.")
|
||||||
|
|
||||||
|
initial = initial_chunks[: args.initial_count]
|
||||||
|
if not initial:
|
||||||
|
raise ValueError("Initial chunk set is empty after applying --initial-count.")
|
||||||
|
|
||||||
|
if args.update_files:
|
||||||
|
update_chunks = load_chunks_from_files(list(args.update_files))
|
||||||
|
if not update_chunks:
|
||||||
|
raise ValueError("No text chunks extracted from the update files.")
|
||||||
|
to_add = update_chunks[: args.update_count]
|
||||||
|
else:
|
||||||
|
if not args.update_text:
|
||||||
|
raise ValueError("Provide --update-files or --update-text for the update step.")
|
||||||
|
to_add = [args.update_text]
|
||||||
|
if not to_add:
|
||||||
|
raise ValueError("Update chunk set is empty after applying --update-count.")
|
||||||
|
|
||||||
|
recompute_stats = run_workflow(
|
||||||
|
label="recompute",
|
||||||
|
index_path=args.index_path,
|
||||||
|
initial_paragraphs=initial,
|
||||||
|
update_paragraphs=to_add,
|
||||||
|
model_name=args.embedding_model,
|
||||||
|
embedding_mode=args.embedding_mode,
|
||||||
|
is_recompute=True,
|
||||||
|
query=args.query,
|
||||||
|
top_k=args.top_k,
|
||||||
|
)
|
||||||
|
|
||||||
|
print_results("initial search", recompute_stats["before_results"])
|
||||||
|
print_results("after update", recompute_stats["after_results"])
|
||||||
|
print(
|
||||||
|
f"\n[recompute] Index file size change: {recompute_stats['initial_size']} -> {recompute_stats['updated_size']} bytes"
|
||||||
|
f" (Δ {recompute_stats['delta']})"
|
||||||
|
)
|
||||||
|
|
||||||
|
if recompute_stats["metadata"]:
|
||||||
|
meta_view = {k: recompute_stats["metadata"].get(k) for k in ("is_compact", "is_pruned")}
|
||||||
|
print("[recompute] metadata snapshot:")
|
||||||
|
print(json.dumps(meta_view, indent=2))
|
||||||
|
|
||||||
|
if args.compare_no_recompute:
|
||||||
|
baseline_path = (
|
||||||
|
args.index_path.parent / f"{args.index_path.stem}-norecompute{args.index_path.suffix}"
|
||||||
|
)
|
||||||
|
baseline_stats = run_workflow(
|
||||||
|
label="no-recompute",
|
||||||
|
index_path=baseline_path,
|
||||||
|
initial_paragraphs=initial,
|
||||||
|
update_paragraphs=to_add,
|
||||||
|
model_name=args.embedding_model,
|
||||||
|
embedding_mode=args.embedding_mode,
|
||||||
|
is_recompute=False,
|
||||||
|
query=args.query,
|
||||||
|
top_k=args.top_k,
|
||||||
|
)
|
||||||
|
|
||||||
|
print(
|
||||||
|
f"\n[no-recompute] Index file size change: {baseline_stats['initial_size']} -> {baseline_stats['updated_size']} bytes"
|
||||||
|
f" (Δ {baseline_stats['delta']})"
|
||||||
|
)
|
||||||
|
|
||||||
|
after_texts = [res.text for res in recompute_stats["after_results"]]
|
||||||
|
baseline_after_texts = [res.text for res in baseline_stats["after_results"]]
|
||||||
|
if after_texts == baseline_after_texts:
|
||||||
|
print(
|
||||||
|
"[no-recompute] Search results match recompute baseline; see above for the shared output."
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
print("[no-recompute] WARNING: search results differ from recompute baseline.")
|
||||||
|
|
||||||
|
if baseline_stats["metadata"]:
|
||||||
|
meta_view = {k: baseline_stats["metadata"].get(k) for k in ("is_compact", "is_pruned")}
|
||||||
|
print("[no-recompute] metadata snapshot:")
|
||||||
|
print(json.dumps(meta_view, indent=2))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
35
examples/grep_search_example.py
Normal file
35
examples/grep_search_example.py
Normal file
@@ -0,0 +1,35 @@
|
|||||||
|
"""
|
||||||
|
Grep Search Example
|
||||||
|
|
||||||
|
Shows how to use grep-based text search instead of semantic search.
|
||||||
|
Useful when you need exact text matches rather than meaning-based results.
|
||||||
|
"""
|
||||||
|
|
||||||
|
from leann import LeannSearcher
|
||||||
|
|
||||||
|
# Load your index
|
||||||
|
searcher = LeannSearcher("my-documents.leann")
|
||||||
|
|
||||||
|
# Regular semantic search
|
||||||
|
print("=== Semantic Search ===")
|
||||||
|
results = searcher.search("machine learning algorithms", top_k=3)
|
||||||
|
for result in results:
|
||||||
|
print(f"Score: {result.score:.3f}")
|
||||||
|
print(f"Text: {result.text[:80]}...")
|
||||||
|
print()
|
||||||
|
|
||||||
|
# Grep-based search for exact text matches
|
||||||
|
print("=== Grep Search ===")
|
||||||
|
results = searcher.search("def train_model", top_k=3, use_grep=True)
|
||||||
|
for result in results:
|
||||||
|
print(f"Score: {result.score}")
|
||||||
|
print(f"Text: {result.text[:80]}...")
|
||||||
|
print()
|
||||||
|
|
||||||
|
# Find specific error messages
|
||||||
|
error_results = searcher.search("FileNotFoundError", use_grep=True)
|
||||||
|
print(f"Found {len(error_results)} files mentioning FileNotFoundError")
|
||||||
|
|
||||||
|
# Search for function definitions
|
||||||
|
func_results = searcher.search("class SearchResult", use_grep=True, top_k=5)
|
||||||
|
print(f"Found {len(func_results)} class definitions")
|
||||||
250
examples/spoiler_free_book_rag.py
Normal file
250
examples/spoiler_free_book_rag.py
Normal file
@@ -0,0 +1,250 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
"""
|
||||||
|
Spoiler-Free Book RAG Example using LEANN Metadata Filtering
|
||||||
|
|
||||||
|
This example demonstrates how to use LEANN's metadata filtering to create
|
||||||
|
a spoiler-free book RAG system where users can search for information
|
||||||
|
up to a specific chapter they've read.
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
python spoiler_free_book_rag.py
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
from typing import Any, Optional
|
||||||
|
|
||||||
|
# Add LEANN to path (adjust path as needed)
|
||||||
|
sys.path.insert(0, os.path.join(os.path.dirname(__file__), "../packages/leann-core/src"))
|
||||||
|
|
||||||
|
from leann.api import LeannBuilder, LeannSearcher
|
||||||
|
|
||||||
|
|
||||||
|
def chunk_book_with_metadata(book_title: str = "Sample Book") -> list[dict[str, Any]]:
|
||||||
|
"""
|
||||||
|
Create sample book chunks with metadata for demonstration.
|
||||||
|
|
||||||
|
In a real implementation, this would parse actual book files (epub, txt, etc.)
|
||||||
|
and extract chapter boundaries, character mentions, etc.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
book_title: Title of the book
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of chunk dictionaries with text and metadata
|
||||||
|
"""
|
||||||
|
# Sample book chunks with metadata
|
||||||
|
# In practice, you'd use proper text processing libraries
|
||||||
|
|
||||||
|
sample_chunks = [
|
||||||
|
{
|
||||||
|
"text": "Alice was beginning to get very tired of sitting by her sister on the bank, and of having nothing to do.",
|
||||||
|
"metadata": {
|
||||||
|
"book": book_title,
|
||||||
|
"chapter": 1,
|
||||||
|
"page": 1,
|
||||||
|
"characters": ["Alice", "Sister"],
|
||||||
|
"themes": ["boredom", "curiosity"],
|
||||||
|
"location": "riverbank",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"text": "So she was considering in her own mind (as well as she could, for the hot day made her feel very sleepy and stupid), whether the pleasure of making a daisy-chain would be worth the trouble of getting up and picking the daisies, when suddenly a White Rabbit with pink eyes ran close by her.",
|
||||||
|
"metadata": {
|
||||||
|
"book": book_title,
|
||||||
|
"chapter": 1,
|
||||||
|
"page": 2,
|
||||||
|
"characters": ["Alice", "White Rabbit"],
|
||||||
|
"themes": ["decision", "surprise", "magic"],
|
||||||
|
"location": "riverbank",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"text": "Alice found herself falling down a very deep well. Either the well was very deep, or she fell very slowly, for she had plenty of time as she fell to look about her and to wonder what was going to happen next.",
|
||||||
|
"metadata": {
|
||||||
|
"book": book_title,
|
||||||
|
"chapter": 2,
|
||||||
|
"page": 15,
|
||||||
|
"characters": ["Alice"],
|
||||||
|
"themes": ["falling", "wonder", "transformation"],
|
||||||
|
"location": "rabbit hole",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"text": "Alice meets the Cheshire Cat, who tells her that everyone in Wonderland is mad, including Alice herself.",
|
||||||
|
"metadata": {
|
||||||
|
"book": book_title,
|
||||||
|
"chapter": 6,
|
||||||
|
"page": 85,
|
||||||
|
"characters": ["Alice", "Cheshire Cat"],
|
||||||
|
"themes": ["madness", "philosophy", "identity"],
|
||||||
|
"location": "Duchess's house",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"text": "At the Queen's croquet ground, Alice witnesses the absurd trial that reveals the arbitrary nature of Wonderland's justice system.",
|
||||||
|
"metadata": {
|
||||||
|
"book": book_title,
|
||||||
|
"chapter": 8,
|
||||||
|
"page": 120,
|
||||||
|
"characters": ["Alice", "Queen of Hearts", "King of Hearts"],
|
||||||
|
"themes": ["justice", "absurdity", "authority"],
|
||||||
|
"location": "Queen's court",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"text": "Alice realizes that Wonderland was all a dream, even the Rabbit, as she wakes up on the riverbank next to her sister.",
|
||||||
|
"metadata": {
|
||||||
|
"book": book_title,
|
||||||
|
"chapter": 12,
|
||||||
|
"page": 180,
|
||||||
|
"characters": ["Alice", "Sister", "Rabbit"],
|
||||||
|
"themes": ["revelation", "reality", "growth"],
|
||||||
|
"location": "riverbank",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
]
|
||||||
|
|
||||||
|
return sample_chunks
|
||||||
|
|
||||||
|
|
||||||
|
def build_spoiler_free_index(book_chunks: list[dict[str, Any]], index_name: str) -> str:
|
||||||
|
"""
|
||||||
|
Build a LEANN index with book chunks that include spoiler metadata.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
book_chunks: List of book chunks with metadata
|
||||||
|
index_name: Name for the index
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Path to the built index
|
||||||
|
"""
|
||||||
|
print(f"📚 Building spoiler-free book index: {index_name}")
|
||||||
|
|
||||||
|
# Initialize LEANN builder
|
||||||
|
builder = LeannBuilder(
|
||||||
|
backend_name="hnsw", embedding_model="text-embedding-3-small", embedding_mode="openai"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Add each chunk with its metadata
|
||||||
|
for chunk in book_chunks:
|
||||||
|
builder.add_text(text=chunk["text"], metadata=chunk["metadata"])
|
||||||
|
|
||||||
|
# Build the index
|
||||||
|
index_path = f"{index_name}_book_index"
|
||||||
|
builder.build_index(index_path)
|
||||||
|
|
||||||
|
print(f"✅ Index built successfully: {index_path}")
|
||||||
|
return index_path
|
||||||
|
|
||||||
|
|
||||||
|
def spoiler_free_search(
|
||||||
|
index_path: str,
|
||||||
|
query: str,
|
||||||
|
max_chapter: int,
|
||||||
|
character_filter: Optional[list[str]] = None,
|
||||||
|
) -> list[dict[str, Any]]:
|
||||||
|
"""
|
||||||
|
Perform a spoiler-free search on the book index.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
index_path: Path to the LEANN index
|
||||||
|
query: Search query
|
||||||
|
max_chapter: Maximum chapter number to include
|
||||||
|
character_filter: Optional list of characters to focus on
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of search results safe for the reader
|
||||||
|
"""
|
||||||
|
print(f"🔍 Searching: '{query}' (up to chapter {max_chapter})")
|
||||||
|
|
||||||
|
searcher = LeannSearcher(index_path)
|
||||||
|
|
||||||
|
metadata_filters = {"chapter": {"<=": max_chapter}}
|
||||||
|
|
||||||
|
if character_filter:
|
||||||
|
metadata_filters["characters"] = {"contains": character_filter[0]}
|
||||||
|
|
||||||
|
results = searcher.search(query=query, top_k=10, metadata_filters=metadata_filters)
|
||||||
|
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
def demo_spoiler_free_rag():
|
||||||
|
"""
|
||||||
|
Demonstrate the spoiler-free book RAG system.
|
||||||
|
"""
|
||||||
|
print("🎭 Spoiler-Free Book RAG Demo")
|
||||||
|
print("=" * 40)
|
||||||
|
|
||||||
|
# Step 1: Prepare book data
|
||||||
|
book_title = "Alice's Adventures in Wonderland"
|
||||||
|
book_chunks = chunk_book_with_metadata(book_title)
|
||||||
|
|
||||||
|
print(f"📖 Loaded {len(book_chunks)} chunks from '{book_title}'")
|
||||||
|
|
||||||
|
# Step 2: Build the index (in practice, this would be done once)
|
||||||
|
try:
|
||||||
|
index_path = build_spoiler_free_index(book_chunks, "alice_wonderland")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"❌ Failed to build index (likely missing dependencies): {e}")
|
||||||
|
print(
|
||||||
|
"💡 This demo shows the filtering logic - actual indexing requires LEANN dependencies"
|
||||||
|
)
|
||||||
|
return
|
||||||
|
|
||||||
|
# Step 3: Demonstrate various spoiler-free searches
|
||||||
|
search_scenarios = [
|
||||||
|
{
|
||||||
|
"description": "Reader who has only read Chapter 1",
|
||||||
|
"query": "What can you tell me about the rabbit?",
|
||||||
|
"max_chapter": 1,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"description": "Reader who has read up to Chapter 5",
|
||||||
|
"query": "Tell me about Alice's adventures",
|
||||||
|
"max_chapter": 5,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"description": "Reader who has read most of the book",
|
||||||
|
"query": "What does the Cheshire Cat represent?",
|
||||||
|
"max_chapter": 10,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"description": "Reader who has read the whole book",
|
||||||
|
"query": "What can you tell me about the rabbit?",
|
||||||
|
"max_chapter": 12,
|
||||||
|
},
|
||||||
|
]
|
||||||
|
|
||||||
|
for scenario in search_scenarios:
|
||||||
|
print(f"\n📚 Scenario: {scenario['description']}")
|
||||||
|
print(f" Query: {scenario['query']}")
|
||||||
|
|
||||||
|
try:
|
||||||
|
results = spoiler_free_search(
|
||||||
|
index_path=index_path,
|
||||||
|
query=scenario["query"],
|
||||||
|
max_chapter=scenario["max_chapter"],
|
||||||
|
)
|
||||||
|
|
||||||
|
print(f" 📄 Found {len(results)} results:")
|
||||||
|
for i, result in enumerate(results[:3], 1): # Show top 3
|
||||||
|
chapter = result.metadata.get("chapter", "?")
|
||||||
|
location = result.metadata.get("location", "?")
|
||||||
|
print(f" {i}. Chapter {chapter} ({location}): {result.text[:80]}...")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f" ❌ Search failed: {e}")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
print("📚 LEANN Spoiler-Free Book RAG Example")
|
||||||
|
print("=====================================")
|
||||||
|
|
||||||
|
try:
|
||||||
|
demo_spoiler_free_rag()
|
||||||
|
except ImportError as e:
|
||||||
|
print(f"❌ Cannot run demo due to missing dependencies: {e}")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"❌ Error running demo: {e}")
|
||||||
28
llms.txt
Normal file
28
llms.txt
Normal file
@@ -0,0 +1,28 @@
|
|||||||
|
# llms.txt — LEANN MCP and Agent Integration
|
||||||
|
product: LEANN
|
||||||
|
homepage: https://github.com/yichuan-w/LEANN
|
||||||
|
contact: https://github.com/yichuan-w/LEANN/issues
|
||||||
|
|
||||||
|
# Installation
|
||||||
|
install: uv tool install leann-core --with leann
|
||||||
|
|
||||||
|
# MCP Server Entry Point
|
||||||
|
mcp.server: leann_mcp
|
||||||
|
mcp.protocol_version: 2024-11-05
|
||||||
|
|
||||||
|
# Tools
|
||||||
|
mcp.tools: leann_list, leann_search
|
||||||
|
|
||||||
|
mcp.tool.leann_list.description: List available LEANN indexes
|
||||||
|
mcp.tool.leann_list.input: {}
|
||||||
|
|
||||||
|
mcp.tool.leann_search.description: Semantic search across a named LEANN index
|
||||||
|
mcp.tool.leann_search.input.index_name: string, required
|
||||||
|
mcp.tool.leann_search.input.query: string, required
|
||||||
|
mcp.tool.leann_search.input.top_k: integer, optional, default=5, min=1, max=20
|
||||||
|
mcp.tool.leann_search.input.complexity: integer, optional, default=32, min=16, max=128
|
||||||
|
|
||||||
|
# Notes
|
||||||
|
note: Build indexes with `leann build <name> --docs <files...>` before searching.
|
||||||
|
example.add: claude mcp add --scope user leann-server -- leann_mcp
|
||||||
|
example.verify: claude mcp list | cat
|
||||||
1
packages/astchunk-leann
Submodule
1
packages/astchunk-leann
Submodule
Submodule packages/astchunk-leann added at ad9afa07b9
@@ -343,7 +343,8 @@ class DiskannSearcher(BaseSearcher):
|
|||||||
"full_index_prefix": full_index_prefix,
|
"full_index_prefix": full_index_prefix,
|
||||||
"num_threads": self.num_threads,
|
"num_threads": self.num_threads,
|
||||||
"num_nodes_to_cache": kwargs.get("num_nodes_to_cache", 0),
|
"num_nodes_to_cache": kwargs.get("num_nodes_to_cache", 0),
|
||||||
"cache_mechanism": 1,
|
# 1 -> initialize cache using sample_data; 2 -> ready cache without init; others disable cache
|
||||||
|
"cache_mechanism": kwargs.get("cache_mechanism", 1),
|
||||||
"pq_prefix": "",
|
"pq_prefix": "",
|
||||||
"partition_prefix": partition_prefix,
|
"partition_prefix": partition_prefix,
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -10,7 +10,7 @@ import sys
|
|||||||
import threading
|
import threading
|
||||||
import time
|
import time
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Optional
|
from typing import Any, Optional
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import zmq
|
import zmq
|
||||||
@@ -32,6 +32,16 @@ if not logger.handlers:
|
|||||||
logger.propagate = False
|
logger.propagate = False
|
||||||
|
|
||||||
|
|
||||||
|
_RAW_PROVIDER_OPTIONS = os.getenv("LEANN_EMBEDDING_OPTIONS")
|
||||||
|
try:
|
||||||
|
PROVIDER_OPTIONS: dict[str, Any] = (
|
||||||
|
json.loads(_RAW_PROVIDER_OPTIONS) if _RAW_PROVIDER_OPTIONS else {}
|
||||||
|
)
|
||||||
|
except json.JSONDecodeError:
|
||||||
|
logger.warning("Failed to parse LEANN_EMBEDDING_OPTIONS; ignoring provider options")
|
||||||
|
PROVIDER_OPTIONS = {}
|
||||||
|
|
||||||
|
|
||||||
def create_diskann_embedding_server(
|
def create_diskann_embedding_server(
|
||||||
passages_file: Optional[str] = None,
|
passages_file: Optional[str] = None,
|
||||||
zmq_port: int = 5555,
|
zmq_port: int = 5555,
|
||||||
@@ -83,9 +93,7 @@ def create_diskann_embedding_server(
|
|||||||
|
|
||||||
logger.info(f"Loading PassageManager with metadata_file_path: {passages_file}")
|
logger.info(f"Loading PassageManager with metadata_file_path: {passages_file}")
|
||||||
passages = PassageManager(meta["passage_sources"], metadata_file_path=passages_file)
|
passages = PassageManager(meta["passage_sources"], metadata_file_path=passages_file)
|
||||||
logger.info(
|
logger.info(f"Loaded PassageManager with {len(passages)} passages from metadata")
|
||||||
f"Loaded PassageManager with {len(passages.global_offset_map)} passages from metadata"
|
|
||||||
)
|
|
||||||
|
|
||||||
# Import protobuf after ensuring the path is correct
|
# Import protobuf after ensuring the path is correct
|
||||||
try:
|
try:
|
||||||
@@ -183,7 +191,12 @@ def create_diskann_embedding_server(
|
|||||||
logger.debug(f"Text lengths: {[len(t) for t in texts[:5]]}") # Show first 5
|
logger.debug(f"Text lengths: {[len(t) for t in texts[:5]]}") # Show first 5
|
||||||
|
|
||||||
# Process embeddings using unified computation
|
# Process embeddings using unified computation
|
||||||
embeddings = compute_embeddings(texts, model_name, mode=embedding_mode)
|
embeddings = compute_embeddings(
|
||||||
|
texts,
|
||||||
|
model_name,
|
||||||
|
mode=embedding_mode,
|
||||||
|
provider_options=PROVIDER_OPTIONS,
|
||||||
|
)
|
||||||
logger.info(
|
logger.info(
|
||||||
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
|
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
|
||||||
)
|
)
|
||||||
@@ -298,7 +311,12 @@ def create_diskann_embedding_server(
|
|||||||
continue
|
continue
|
||||||
|
|
||||||
# Process the request
|
# Process the request
|
||||||
embeddings = compute_embeddings(texts, model_name, mode=embedding_mode)
|
embeddings = compute_embeddings(
|
||||||
|
texts,
|
||||||
|
model_name,
|
||||||
|
mode=embedding_mode,
|
||||||
|
provider_options=PROVIDER_OPTIONS,
|
||||||
|
)
|
||||||
logger.info(f"Computed embeddings shape: {embeddings.shape}")
|
logger.info(f"Computed embeddings shape: {embeddings.shape}")
|
||||||
|
|
||||||
# Validation
|
# Validation
|
||||||
|
|||||||
@@ -1,11 +1,11 @@
|
|||||||
[build-system]
|
[build-system]
|
||||||
requires = ["scikit-build-core>=0.10", "pybind11>=2.12.0", "numpy"]
|
requires = ["scikit-build-core>=0.10", "pybind11>=2.12.0", "numpy", "cmake>=3.30"]
|
||||||
build-backend = "scikit_build_core.build"
|
build-backend = "scikit_build_core.build"
|
||||||
|
|
||||||
[project]
|
[project]
|
||||||
name = "leann-backend-diskann"
|
name = "leann-backend-diskann"
|
||||||
version = "0.2.9"
|
version = "0.3.4"
|
||||||
dependencies = ["leann-core==0.2.9", "numpy", "protobuf>=3.19.0"]
|
dependencies = ["leann-core==0.3.4", "numpy", "protobuf>=3.19.0"]
|
||||||
|
|
||||||
[tool.scikit-build]
|
[tool.scikit-build]
|
||||||
# Key: simplified CMake path
|
# Key: simplified CMake path
|
||||||
|
|||||||
Submodule packages/leann-backend-diskann/third_party/DiskANN updated: 04048bb302...19f9603c72
@@ -49,9 +49,28 @@ set(BUILD_TESTING OFF CACHE BOOL "" FORCE)
|
|||||||
set(FAISS_ENABLE_C_API OFF CACHE BOOL "" FORCE)
|
set(FAISS_ENABLE_C_API OFF CACHE BOOL "" FORCE)
|
||||||
set(FAISS_OPT_LEVEL "generic" CACHE STRING "" FORCE)
|
set(FAISS_OPT_LEVEL "generic" CACHE STRING "" FORCE)
|
||||||
|
|
||||||
# Disable additional SIMD versions to speed up compilation
|
# Disable x86-specific SIMD optimizations (important for ARM64 compatibility)
|
||||||
set(FAISS_ENABLE_AVX2 OFF CACHE BOOL "" FORCE)
|
set(FAISS_ENABLE_AVX2 OFF CACHE BOOL "" FORCE)
|
||||||
set(FAISS_ENABLE_AVX512 OFF CACHE BOOL "" FORCE)
|
set(FAISS_ENABLE_AVX512 OFF CACHE BOOL "" FORCE)
|
||||||
|
set(FAISS_ENABLE_SSE4_1 OFF CACHE BOOL "" FORCE)
|
||||||
|
|
||||||
|
# ARM64-specific configuration
|
||||||
|
if(CMAKE_SYSTEM_PROCESSOR MATCHES "aarch64|arm64")
|
||||||
|
message(STATUS "Configuring Faiss for ARM64 architecture")
|
||||||
|
|
||||||
|
if(CMAKE_SYSTEM_NAME STREQUAL "Linux")
|
||||||
|
# Use SVE optimization level for ARM64 Linux (as seen in Faiss conda build)
|
||||||
|
set(FAISS_OPT_LEVEL "sve" CACHE STRING "" FORCE)
|
||||||
|
message(STATUS "Setting FAISS_OPT_LEVEL to 'sve' for ARM64 Linux")
|
||||||
|
else()
|
||||||
|
# Use generic optimization for other ARM64 platforms (like macOS)
|
||||||
|
set(FAISS_OPT_LEVEL "generic" CACHE STRING "" FORCE)
|
||||||
|
message(STATUS "Setting FAISS_OPT_LEVEL to 'generic' for ARM64 ${CMAKE_SYSTEM_NAME}")
|
||||||
|
endif()
|
||||||
|
|
||||||
|
# ARM64 compatibility: Faiss submodule has been modified to fix x86 header inclusion
|
||||||
|
message(STATUS "Using ARM64-compatible Faiss submodule")
|
||||||
|
endif()
|
||||||
|
|
||||||
# Additional optimization options from INSTALL.md
|
# Additional optimization options from INSTALL.md
|
||||||
set(CMAKE_BUILD_TYPE "Release" CACHE STRING "" FORCE)
|
set(CMAKE_BUILD_TYPE "Release" CACHE STRING "" FORCE)
|
||||||
|
|||||||
@@ -5,6 +5,8 @@ import os
|
|||||||
import struct
|
import struct
|
||||||
import sys
|
import sys
|
||||||
import time
|
import time
|
||||||
|
from dataclasses import dataclass
|
||||||
|
from typing import Any, Optional
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
@@ -237,6 +239,288 @@ def write_compact_format(
|
|||||||
f_out.write(storage_data)
|
f_out.write(storage_data)
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class HNSWComponents:
|
||||||
|
original_hnsw_data: dict[str, Any]
|
||||||
|
assign_probas_np: np.ndarray
|
||||||
|
cum_nneighbor_per_level_np: np.ndarray
|
||||||
|
levels_np: np.ndarray
|
||||||
|
is_compact: bool
|
||||||
|
compact_level_ptr: Optional[np.ndarray] = None
|
||||||
|
compact_node_offsets_np: Optional[np.ndarray] = None
|
||||||
|
compact_neighbors_data: Optional[list[int]] = None
|
||||||
|
offsets_np: Optional[np.ndarray] = None
|
||||||
|
neighbors_np: Optional[np.ndarray] = None
|
||||||
|
storage_fourcc: int = NULL_INDEX_FOURCC
|
||||||
|
storage_data: bytes = b""
|
||||||
|
|
||||||
|
|
||||||
|
def _read_hnsw_structure(f) -> HNSWComponents:
|
||||||
|
original_hnsw_data: dict[str, Any] = {}
|
||||||
|
|
||||||
|
hnsw_index_fourcc = read_struct(f, "<I")
|
||||||
|
if hnsw_index_fourcc not in EXPECTED_HNSW_FOURCCS:
|
||||||
|
raise ValueError(
|
||||||
|
f"Unexpected HNSW FourCC: {hnsw_index_fourcc:08x}. Expected one of {EXPECTED_HNSW_FOURCCS}."
|
||||||
|
)
|
||||||
|
|
||||||
|
original_hnsw_data["index_fourcc"] = hnsw_index_fourcc
|
||||||
|
original_hnsw_data["d"] = read_struct(f, "<i")
|
||||||
|
original_hnsw_data["ntotal"] = read_struct(f, "<q")
|
||||||
|
original_hnsw_data["dummy1"] = read_struct(f, "<q")
|
||||||
|
original_hnsw_data["dummy2"] = read_struct(f, "<q")
|
||||||
|
original_hnsw_data["is_trained"] = read_struct(f, "?")
|
||||||
|
original_hnsw_data["metric_type"] = read_struct(f, "<i")
|
||||||
|
original_hnsw_data["metric_arg"] = 0.0
|
||||||
|
if original_hnsw_data["metric_type"] > 1:
|
||||||
|
original_hnsw_data["metric_arg"] = read_struct(f, "<f")
|
||||||
|
|
||||||
|
assign_probas_np = read_numpy_vector(f, np.float64, "d")
|
||||||
|
cum_nneighbor_per_level_np = read_numpy_vector(f, np.int32, "i")
|
||||||
|
levels_np = read_numpy_vector(f, np.int32, "i")
|
||||||
|
|
||||||
|
ntotal = len(levels_np)
|
||||||
|
if ntotal != original_hnsw_data["ntotal"]:
|
||||||
|
original_hnsw_data["ntotal"] = ntotal
|
||||||
|
|
||||||
|
pos_before_compact = f.tell()
|
||||||
|
is_compact_flag = None
|
||||||
|
try:
|
||||||
|
is_compact_flag = read_struct(f, "<?")
|
||||||
|
except EOFError:
|
||||||
|
is_compact_flag = None
|
||||||
|
|
||||||
|
if is_compact_flag:
|
||||||
|
compact_level_ptr = read_numpy_vector(f, np.uint64, "Q")
|
||||||
|
compact_node_offsets_np = read_numpy_vector(f, np.uint64, "Q")
|
||||||
|
|
||||||
|
original_hnsw_data["entry_point"] = read_struct(f, "<i")
|
||||||
|
original_hnsw_data["max_level"] = read_struct(f, "<i")
|
||||||
|
original_hnsw_data["efConstruction"] = read_struct(f, "<i")
|
||||||
|
original_hnsw_data["efSearch"] = read_struct(f, "<i")
|
||||||
|
original_hnsw_data["dummy_upper_beam"] = read_struct(f, "<i")
|
||||||
|
|
||||||
|
storage_fourcc = read_struct(f, "<I")
|
||||||
|
compact_neighbors_data_np = read_numpy_vector(f, np.int32, "i")
|
||||||
|
compact_neighbors_data = compact_neighbors_data_np.tolist()
|
||||||
|
storage_data = f.read()
|
||||||
|
|
||||||
|
return HNSWComponents(
|
||||||
|
original_hnsw_data=original_hnsw_data,
|
||||||
|
assign_probas_np=assign_probas_np,
|
||||||
|
cum_nneighbor_per_level_np=cum_nneighbor_per_level_np,
|
||||||
|
levels_np=levels_np,
|
||||||
|
is_compact=True,
|
||||||
|
compact_level_ptr=compact_level_ptr,
|
||||||
|
compact_node_offsets_np=compact_node_offsets_np,
|
||||||
|
compact_neighbors_data=compact_neighbors_data,
|
||||||
|
storage_fourcc=storage_fourcc,
|
||||||
|
storage_data=storage_data,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Non-compact case
|
||||||
|
f.seek(pos_before_compact)
|
||||||
|
|
||||||
|
pos_before_probe = f.tell()
|
||||||
|
try:
|
||||||
|
suspected_flag = read_struct(f, "<B")
|
||||||
|
if suspected_flag != 0x00:
|
||||||
|
f.seek(pos_before_probe)
|
||||||
|
except EOFError:
|
||||||
|
f.seek(pos_before_probe)
|
||||||
|
|
||||||
|
offsets_np = read_numpy_vector(f, np.uint64, "Q")
|
||||||
|
neighbors_np = read_numpy_vector(f, np.int32, "i")
|
||||||
|
|
||||||
|
original_hnsw_data["entry_point"] = read_struct(f, "<i")
|
||||||
|
original_hnsw_data["max_level"] = read_struct(f, "<i")
|
||||||
|
original_hnsw_data["efConstruction"] = read_struct(f, "<i")
|
||||||
|
original_hnsw_data["efSearch"] = read_struct(f, "<i")
|
||||||
|
original_hnsw_data["dummy_upper_beam"] = read_struct(f, "<i")
|
||||||
|
|
||||||
|
storage_fourcc = NULL_INDEX_FOURCC
|
||||||
|
storage_data = b""
|
||||||
|
try:
|
||||||
|
storage_fourcc = read_struct(f, "<I")
|
||||||
|
storage_data = f.read()
|
||||||
|
except EOFError:
|
||||||
|
storage_fourcc = NULL_INDEX_FOURCC
|
||||||
|
|
||||||
|
return HNSWComponents(
|
||||||
|
original_hnsw_data=original_hnsw_data,
|
||||||
|
assign_probas_np=assign_probas_np,
|
||||||
|
cum_nneighbor_per_level_np=cum_nneighbor_per_level_np,
|
||||||
|
levels_np=levels_np,
|
||||||
|
is_compact=False,
|
||||||
|
offsets_np=offsets_np,
|
||||||
|
neighbors_np=neighbors_np,
|
||||||
|
storage_fourcc=storage_fourcc,
|
||||||
|
storage_data=storage_data,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def _read_hnsw_structure_from_file(path: str) -> HNSWComponents:
|
||||||
|
with open(path, "rb") as f:
|
||||||
|
return _read_hnsw_structure(f)
|
||||||
|
|
||||||
|
|
||||||
|
def write_original_format(
|
||||||
|
f_out,
|
||||||
|
original_hnsw_data,
|
||||||
|
assign_probas_np,
|
||||||
|
cum_nneighbor_per_level_np,
|
||||||
|
levels_np,
|
||||||
|
offsets_np,
|
||||||
|
neighbors_np,
|
||||||
|
storage_fourcc,
|
||||||
|
storage_data,
|
||||||
|
):
|
||||||
|
"""Write non-compact HNSW data in original FAISS order."""
|
||||||
|
|
||||||
|
f_out.write(struct.pack("<I", original_hnsw_data["index_fourcc"]))
|
||||||
|
f_out.write(struct.pack("<i", original_hnsw_data["d"]))
|
||||||
|
f_out.write(struct.pack("<q", original_hnsw_data["ntotal"]))
|
||||||
|
f_out.write(struct.pack("<q", original_hnsw_data["dummy1"]))
|
||||||
|
f_out.write(struct.pack("<q", original_hnsw_data["dummy2"]))
|
||||||
|
f_out.write(struct.pack("<?", original_hnsw_data["is_trained"]))
|
||||||
|
f_out.write(struct.pack("<i", original_hnsw_data["metric_type"]))
|
||||||
|
if original_hnsw_data["metric_type"] > 1:
|
||||||
|
f_out.write(struct.pack("<f", original_hnsw_data["metric_arg"]))
|
||||||
|
|
||||||
|
write_numpy_vector(f_out, assign_probas_np, "d")
|
||||||
|
write_numpy_vector(f_out, cum_nneighbor_per_level_np, "i")
|
||||||
|
write_numpy_vector(f_out, levels_np, "i")
|
||||||
|
|
||||||
|
write_numpy_vector(f_out, offsets_np, "Q")
|
||||||
|
write_numpy_vector(f_out, neighbors_np, "i")
|
||||||
|
|
||||||
|
f_out.write(struct.pack("<i", original_hnsw_data["entry_point"]))
|
||||||
|
f_out.write(struct.pack("<i", original_hnsw_data["max_level"]))
|
||||||
|
f_out.write(struct.pack("<i", original_hnsw_data["efConstruction"]))
|
||||||
|
f_out.write(struct.pack("<i", original_hnsw_data["efSearch"]))
|
||||||
|
f_out.write(struct.pack("<i", original_hnsw_data["dummy_upper_beam"]))
|
||||||
|
|
||||||
|
f_out.write(struct.pack("<I", storage_fourcc))
|
||||||
|
if storage_fourcc != NULL_INDEX_FOURCC and storage_data:
|
||||||
|
f_out.write(storage_data)
|
||||||
|
|
||||||
|
|
||||||
|
def prune_hnsw_embeddings(input_filename: str, output_filename: str) -> bool:
|
||||||
|
"""Rewrite an HNSW index while dropping the embedded storage section."""
|
||||||
|
|
||||||
|
start_time = time.time()
|
||||||
|
try:
|
||||||
|
with open(input_filename, "rb") as f_in, open(output_filename, "wb") as f_out:
|
||||||
|
original_hnsw_data: dict[str, Any] = {}
|
||||||
|
|
||||||
|
hnsw_index_fourcc = read_struct(f_in, "<I")
|
||||||
|
if hnsw_index_fourcc not in EXPECTED_HNSW_FOURCCS:
|
||||||
|
print(
|
||||||
|
f"Error: Expected HNSW Index FourCC ({list(EXPECTED_HNSW_FOURCCS)}), got {hnsw_index_fourcc:08x}.",
|
||||||
|
file=sys.stderr,
|
||||||
|
)
|
||||||
|
return False
|
||||||
|
|
||||||
|
original_hnsw_data["index_fourcc"] = hnsw_index_fourcc
|
||||||
|
original_hnsw_data["d"] = read_struct(f_in, "<i")
|
||||||
|
original_hnsw_data["ntotal"] = read_struct(f_in, "<q")
|
||||||
|
original_hnsw_data["dummy1"] = read_struct(f_in, "<q")
|
||||||
|
original_hnsw_data["dummy2"] = read_struct(f_in, "<q")
|
||||||
|
original_hnsw_data["is_trained"] = read_struct(f_in, "?")
|
||||||
|
original_hnsw_data["metric_type"] = read_struct(f_in, "<i")
|
||||||
|
original_hnsw_data["metric_arg"] = 0.0
|
||||||
|
if original_hnsw_data["metric_type"] > 1:
|
||||||
|
original_hnsw_data["metric_arg"] = read_struct(f_in, "<f")
|
||||||
|
|
||||||
|
assign_probas_np = read_numpy_vector(f_in, np.float64, "d")
|
||||||
|
cum_nneighbor_per_level_np = read_numpy_vector(f_in, np.int32, "i")
|
||||||
|
levels_np = read_numpy_vector(f_in, np.int32, "i")
|
||||||
|
|
||||||
|
ntotal = len(levels_np)
|
||||||
|
if ntotal != original_hnsw_data["ntotal"]:
|
||||||
|
original_hnsw_data["ntotal"] = ntotal
|
||||||
|
|
||||||
|
pos_before_compact = f_in.tell()
|
||||||
|
is_compact_flag = None
|
||||||
|
try:
|
||||||
|
is_compact_flag = read_struct(f_in, "<?")
|
||||||
|
except EOFError:
|
||||||
|
is_compact_flag = None
|
||||||
|
|
||||||
|
if is_compact_flag:
|
||||||
|
compact_level_ptr = read_numpy_vector(f_in, np.uint64, "Q")
|
||||||
|
compact_node_offsets_np = read_numpy_vector(f_in, np.uint64, "Q")
|
||||||
|
|
||||||
|
original_hnsw_data["entry_point"] = read_struct(f_in, "<i")
|
||||||
|
original_hnsw_data["max_level"] = read_struct(f_in, "<i")
|
||||||
|
original_hnsw_data["efConstruction"] = read_struct(f_in, "<i")
|
||||||
|
original_hnsw_data["efSearch"] = read_struct(f_in, "<i")
|
||||||
|
original_hnsw_data["dummy_upper_beam"] = read_struct(f_in, "<i")
|
||||||
|
|
||||||
|
_storage_fourcc = read_struct(f_in, "<I")
|
||||||
|
compact_neighbors_data_np = read_numpy_vector(f_in, np.int32, "i")
|
||||||
|
compact_neighbors_data = compact_neighbors_data_np.tolist()
|
||||||
|
_storage_data = f_in.read()
|
||||||
|
|
||||||
|
write_compact_format(
|
||||||
|
f_out,
|
||||||
|
original_hnsw_data,
|
||||||
|
assign_probas_np,
|
||||||
|
cum_nneighbor_per_level_np,
|
||||||
|
levels_np,
|
||||||
|
compact_level_ptr,
|
||||||
|
compact_node_offsets_np,
|
||||||
|
compact_neighbors_data,
|
||||||
|
NULL_INDEX_FOURCC,
|
||||||
|
b"",
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
f_in.seek(pos_before_compact)
|
||||||
|
|
||||||
|
pos_before_probe = f_in.tell()
|
||||||
|
try:
|
||||||
|
suspected_flag = read_struct(f_in, "<B")
|
||||||
|
if suspected_flag != 0x00:
|
||||||
|
f_in.seek(pos_before_probe)
|
||||||
|
except EOFError:
|
||||||
|
f_in.seek(pos_before_probe)
|
||||||
|
|
||||||
|
offsets_np = read_numpy_vector(f_in, np.uint64, "Q")
|
||||||
|
neighbors_np = read_numpy_vector(f_in, np.int32, "i")
|
||||||
|
|
||||||
|
original_hnsw_data["entry_point"] = read_struct(f_in, "<i")
|
||||||
|
original_hnsw_data["max_level"] = read_struct(f_in, "<i")
|
||||||
|
original_hnsw_data["efConstruction"] = read_struct(f_in, "<i")
|
||||||
|
original_hnsw_data["efSearch"] = read_struct(f_in, "<i")
|
||||||
|
original_hnsw_data["dummy_upper_beam"] = read_struct(f_in, "<i")
|
||||||
|
|
||||||
|
_storage_fourcc = None
|
||||||
|
_storage_data = b""
|
||||||
|
try:
|
||||||
|
_storage_fourcc = read_struct(f_in, "<I")
|
||||||
|
_storage_data = f_in.read()
|
||||||
|
except EOFError:
|
||||||
|
_storage_fourcc = NULL_INDEX_FOURCC
|
||||||
|
|
||||||
|
write_original_format(
|
||||||
|
f_out,
|
||||||
|
original_hnsw_data,
|
||||||
|
assign_probas_np,
|
||||||
|
cum_nneighbor_per_level_np,
|
||||||
|
levels_np,
|
||||||
|
offsets_np,
|
||||||
|
neighbors_np,
|
||||||
|
NULL_INDEX_FOURCC,
|
||||||
|
b"",
|
||||||
|
)
|
||||||
|
|
||||||
|
print(f"[{time.time() - start_time:.2f}s] Pruned embeddings from {input_filename}")
|
||||||
|
return True
|
||||||
|
except Exception as exc:
|
||||||
|
print(f"Failed to prune embeddings: {exc}", file=sys.stderr)
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
# --- Main Conversion Logic ---
|
# --- Main Conversion Logic ---
|
||||||
|
|
||||||
|
|
||||||
@@ -700,6 +984,29 @@ def convert_hnsw_graph_to_csr(input_filename, output_filename, prune_embeddings=
|
|||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
def prune_hnsw_embeddings_inplace(index_filename: str) -> bool:
|
||||||
|
"""Convenience wrapper to prune embeddings in-place."""
|
||||||
|
|
||||||
|
temp_path = f"{index_filename}.prune.tmp"
|
||||||
|
success = prune_hnsw_embeddings(index_filename, temp_path)
|
||||||
|
if success:
|
||||||
|
try:
|
||||||
|
os.replace(temp_path, index_filename)
|
||||||
|
except Exception as exc: # pragma: no cover - defensive
|
||||||
|
logger.error(f"Failed to replace original index with pruned version: {exc}")
|
||||||
|
try:
|
||||||
|
os.remove(temp_path)
|
||||||
|
except OSError:
|
||||||
|
pass
|
||||||
|
return False
|
||||||
|
else:
|
||||||
|
try:
|
||||||
|
os.remove(temp_path)
|
||||||
|
except OSError:
|
||||||
|
pass
|
||||||
|
return success
|
||||||
|
|
||||||
|
|
||||||
# --- Script Execution ---
|
# --- Script Execution ---
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
parser = argparse.ArgumentParser(
|
parser = argparse.ArgumentParser(
|
||||||
|
|||||||
@@ -1,6 +1,7 @@
|
|||||||
import logging
|
import logging
|
||||||
import os
|
import os
|
||||||
import shutil
|
import shutil
|
||||||
|
import time
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Any, Literal, Optional
|
from typing import Any, Literal, Optional
|
||||||
|
|
||||||
@@ -13,7 +14,7 @@ from leann.interface import (
|
|||||||
from leann.registry import register_backend
|
from leann.registry import register_backend
|
||||||
from leann.searcher_base import BaseSearcher
|
from leann.searcher_base import BaseSearcher
|
||||||
|
|
||||||
from .convert_to_csr import convert_hnsw_graph_to_csr
|
from .convert_to_csr import convert_hnsw_graph_to_csr, prune_hnsw_embeddings_inplace
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
@@ -89,8 +90,19 @@ class HNSWBuilder(LeannBackendBuilderInterface):
|
|||||||
index_file = index_dir / f"{index_prefix}.index"
|
index_file = index_dir / f"{index_prefix}.index"
|
||||||
faiss.write_index(index, str(index_file))
|
faiss.write_index(index, str(index_file))
|
||||||
|
|
||||||
|
# Persist ID map so searcher can map FAISS integer labels back to passage IDs
|
||||||
|
try:
|
||||||
|
idmap_file = index_dir / f"{index_prefix}.ids.txt"
|
||||||
|
with open(idmap_file, "w", encoding="utf-8") as f:
|
||||||
|
for id_str in ids:
|
||||||
|
f.write(str(id_str) + "\n")
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"Failed to write ID map: {e}")
|
||||||
|
|
||||||
if self.is_compact:
|
if self.is_compact:
|
||||||
self._convert_to_csr(index_file)
|
self._convert_to_csr(index_file)
|
||||||
|
elif self.is_recompute:
|
||||||
|
prune_hnsw_embeddings_inplace(str(index_file))
|
||||||
|
|
||||||
def _convert_to_csr(self, index_file: Path):
|
def _convert_to_csr(self, index_file: Path):
|
||||||
"""Convert built index to CSR format"""
|
"""Convert built index to CSR format"""
|
||||||
@@ -132,10 +144,10 @@ class HNSWSearcher(BaseSearcher):
|
|||||||
if metric_enum is None:
|
if metric_enum is None:
|
||||||
raise ValueError(f"Unsupported distance_metric '{self.distance_metric}'.")
|
raise ValueError(f"Unsupported distance_metric '{self.distance_metric}'.")
|
||||||
|
|
||||||
self.is_compact, self.is_pruned = (
|
backend_meta_kwargs = self.meta.get("backend_kwargs", {})
|
||||||
self.meta.get("is_compact", True),
|
self.is_compact = self.meta.get("is_compact", backend_meta_kwargs.get("is_compact", True))
|
||||||
self.meta.get("is_pruned", True),
|
default_pruned = backend_meta_kwargs.get("is_recompute", self.is_compact)
|
||||||
)
|
self.is_pruned = bool(self.meta.get("is_pruned", default_pruned))
|
||||||
|
|
||||||
index_file = self.index_dir / f"{self.index_path.stem}.index"
|
index_file = self.index_dir / f"{self.index_path.stem}.index"
|
||||||
if not index_file.exists():
|
if not index_file.exists():
|
||||||
@@ -149,6 +161,16 @@ class HNSWSearcher(BaseSearcher):
|
|||||||
|
|
||||||
self._index = faiss.read_index(str(index_file), faiss.IO_FLAG_MMAP, hnsw_config)
|
self._index = faiss.read_index(str(index_file), faiss.IO_FLAG_MMAP, hnsw_config)
|
||||||
|
|
||||||
|
# Load ID map if available
|
||||||
|
self._id_map: list[str] = []
|
||||||
|
try:
|
||||||
|
idmap_file = self.index_dir / f"{self.index_path.stem}.ids.txt"
|
||||||
|
if idmap_file.exists():
|
||||||
|
with open(idmap_file, encoding="utf-8") as f:
|
||||||
|
self._id_map = [line.rstrip("\n") for line in f]
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"Failed to load ID map: {e}")
|
||||||
|
|
||||||
def search(
|
def search(
|
||||||
self,
|
self,
|
||||||
query: np.ndarray,
|
query: np.ndarray,
|
||||||
@@ -236,6 +258,7 @@ class HNSWSearcher(BaseSearcher):
|
|||||||
distances = np.empty((batch_size_query, top_k), dtype=np.float32)
|
distances = np.empty((batch_size_query, top_k), dtype=np.float32)
|
||||||
labels = np.empty((batch_size_query, top_k), dtype=np.int64)
|
labels = np.empty((batch_size_query, top_k), dtype=np.int64)
|
||||||
|
|
||||||
|
search_time = time.time()
|
||||||
self._index.search(
|
self._index.search(
|
||||||
query.shape[0],
|
query.shape[0],
|
||||||
faiss.swig_ptr(query),
|
faiss.swig_ptr(query),
|
||||||
@@ -244,7 +267,21 @@ class HNSWSearcher(BaseSearcher):
|
|||||||
faiss.swig_ptr(labels),
|
faiss.swig_ptr(labels),
|
||||||
params,
|
params,
|
||||||
)
|
)
|
||||||
|
search_time = time.time() - search_time
|
||||||
|
logger.info(f" Search time in HNSWSearcher.search() backend: {search_time} seconds")
|
||||||
|
if self._id_map:
|
||||||
|
|
||||||
string_labels = [[str(int_label) for int_label in batch_labels] for batch_labels in labels]
|
def map_label(x: int) -> str:
|
||||||
|
if 0 <= x < len(self._id_map):
|
||||||
|
return self._id_map[x]
|
||||||
|
return str(x)
|
||||||
|
|
||||||
|
string_labels = [
|
||||||
|
[map_label(int(label)) for label in batch_labels] for batch_labels in labels
|
||||||
|
]
|
||||||
|
else:
|
||||||
|
string_labels = [
|
||||||
|
[str(int_label) for int_label in batch_labels] for batch_labels in labels
|
||||||
|
]
|
||||||
|
|
||||||
return {"labels": string_labels, "distances": distances}
|
return {"labels": string_labels, "distances": distances}
|
||||||
|
|||||||
@@ -10,7 +10,7 @@ import sys
|
|||||||
import threading
|
import threading
|
||||||
import time
|
import time
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Optional
|
from typing import Any, Optional
|
||||||
|
|
||||||
import msgpack
|
import msgpack
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@@ -24,13 +24,35 @@ logger = logging.getLogger(__name__)
|
|||||||
log_level = getattr(logging, LOG_LEVEL, logging.WARNING)
|
log_level = getattr(logging, LOG_LEVEL, logging.WARNING)
|
||||||
logger.setLevel(log_level)
|
logger.setLevel(log_level)
|
||||||
|
|
||||||
# Ensure we have a handler if none exists
|
# Ensure we have handlers if none exist
|
||||||
if not logger.handlers:
|
if not logger.handlers:
|
||||||
handler = logging.StreamHandler()
|
stream_handler = logging.StreamHandler()
|
||||||
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
|
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
|
||||||
handler.setFormatter(formatter)
|
stream_handler.setFormatter(formatter)
|
||||||
logger.addHandler(handler)
|
logger.addHandler(stream_handler)
|
||||||
logger.propagate = False
|
|
||||||
|
log_path = os.getenv("LEANN_HNSW_LOG_PATH")
|
||||||
|
if log_path:
|
||||||
|
try:
|
||||||
|
file_handler = logging.FileHandler(log_path, mode="a", encoding="utf-8")
|
||||||
|
file_formatter = logging.Formatter(
|
||||||
|
"%(asctime)s - %(levelname)s - [pid=%(process)d] %(message)s"
|
||||||
|
)
|
||||||
|
file_handler.setFormatter(file_formatter)
|
||||||
|
logger.addHandler(file_handler)
|
||||||
|
except Exception as exc: # pragma: no cover - best effort logging
|
||||||
|
logger.warning(f"Failed to attach file handler for log path {log_path}: {exc}")
|
||||||
|
|
||||||
|
logger.propagate = False
|
||||||
|
|
||||||
|
_RAW_PROVIDER_OPTIONS = os.getenv("LEANN_EMBEDDING_OPTIONS")
|
||||||
|
try:
|
||||||
|
PROVIDER_OPTIONS: dict[str, Any] = (
|
||||||
|
json.loads(_RAW_PROVIDER_OPTIONS) if _RAW_PROVIDER_OPTIONS else {}
|
||||||
|
)
|
||||||
|
except json.JSONDecodeError:
|
||||||
|
logger.warning("Failed to parse LEANN_EMBEDDING_OPTIONS; ignoring provider options")
|
||||||
|
PROVIDER_OPTIONS = {}
|
||||||
|
|
||||||
|
|
||||||
def create_hnsw_embedding_server(
|
def create_hnsw_embedding_server(
|
||||||
@@ -90,9 +112,36 @@ def create_hnsw_embedding_server(
|
|||||||
embedding_dim: int = int(meta.get("dimensions", 0))
|
embedding_dim: int = int(meta.get("dimensions", 0))
|
||||||
except Exception:
|
except Exception:
|
||||||
embedding_dim = 0
|
embedding_dim = 0
|
||||||
logger.info(
|
logger.info(f"Loaded PassageManager with {len(passages)} passages from metadata")
|
||||||
f"Loaded PassageManager with {len(passages.global_offset_map)} passages from metadata"
|
|
||||||
)
|
# Attempt to load ID map (maps FAISS integer labels -> passage IDs)
|
||||||
|
id_map: list[str] = []
|
||||||
|
try:
|
||||||
|
meta_path = Path(passages_file)
|
||||||
|
base = meta_path.name
|
||||||
|
if base.endswith(".meta.json"):
|
||||||
|
base = base[: -len(".meta.json")] # e.g., laion_index.leann
|
||||||
|
if base.endswith(".leann"):
|
||||||
|
base = base[: -len(".leann")] # e.g., laion_index
|
||||||
|
idmap_file = meta_path.parent / f"{base}.ids.txt"
|
||||||
|
if idmap_file.exists():
|
||||||
|
with open(idmap_file, encoding="utf-8") as f:
|
||||||
|
id_map = [line.rstrip("\n") for line in f]
|
||||||
|
logger.info(f"Loaded ID map with {len(id_map)} entries from {idmap_file}")
|
||||||
|
else:
|
||||||
|
logger.warning(f"ID map file not found at {idmap_file}; will use raw labels")
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"Failed to load ID map: {e}")
|
||||||
|
|
||||||
|
def _map_node_id(nid) -> str:
|
||||||
|
try:
|
||||||
|
if id_map is not None and len(id_map) > 0 and isinstance(nid, (int, np.integer)):
|
||||||
|
idx = int(nid)
|
||||||
|
if 0 <= idx < len(id_map):
|
||||||
|
return id_map[idx]
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
return str(nid)
|
||||||
|
|
||||||
# (legacy ZMQ thread removed; using shutdown-capable server only)
|
# (legacy ZMQ thread removed; using shutdown-capable server only)
|
||||||
|
|
||||||
@@ -140,7 +189,12 @@ def create_hnsw_embedding_server(
|
|||||||
):
|
):
|
||||||
last_request_type = "text"
|
last_request_type = "text"
|
||||||
last_request_length = len(request)
|
last_request_length = len(request)
|
||||||
embeddings = compute_embeddings(request, model_name, mode=embedding_mode)
|
embeddings = compute_embeddings(
|
||||||
|
request,
|
||||||
|
model_name,
|
||||||
|
mode=embedding_mode,
|
||||||
|
provider_options=PROVIDER_OPTIONS,
|
||||||
|
)
|
||||||
rep_socket.send(msgpack.packb(embeddings.tolist()))
|
rep_socket.send(msgpack.packb(embeddings.tolist()))
|
||||||
e2e_end = time.time()
|
e2e_end = time.time()
|
||||||
logger.info(f"⏱️ Text embedding E2E time: {e2e_end - e2e_start:.6f}s")
|
logger.info(f"⏱️ Text embedding E2E time: {e2e_end - e2e_start:.6f}s")
|
||||||
@@ -170,13 +224,14 @@ def create_hnsw_embedding_server(
|
|||||||
found_indices: list[int] = []
|
found_indices: list[int] = []
|
||||||
for idx, nid in enumerate(node_ids):
|
for idx, nid in enumerate(node_ids):
|
||||||
try:
|
try:
|
||||||
passage_data = passages.get_passage(str(nid))
|
passage_id = _map_node_id(nid)
|
||||||
|
passage_data = passages.get_passage(passage_id)
|
||||||
txt = passage_data.get("text", "")
|
txt = passage_data.get("text", "")
|
||||||
if isinstance(txt, str) and len(txt) > 0:
|
if isinstance(txt, str) and len(txt) > 0:
|
||||||
texts.append(txt)
|
texts.append(txt)
|
||||||
found_indices.append(idx)
|
found_indices.append(idx)
|
||||||
else:
|
else:
|
||||||
logger.error(f"Empty text for passage ID {nid}")
|
logger.error(f"Empty text for passage ID {passage_id}")
|
||||||
except KeyError:
|
except KeyError:
|
||||||
logger.error(f"Passage ID {nid} not found")
|
logger.error(f"Passage ID {nid} not found")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
@@ -189,7 +244,10 @@ def create_hnsw_embedding_server(
|
|||||||
if texts:
|
if texts:
|
||||||
try:
|
try:
|
||||||
embeddings = compute_embeddings(
|
embeddings = compute_embeddings(
|
||||||
texts, model_name, mode=embedding_mode
|
texts,
|
||||||
|
model_name,
|
||||||
|
mode=embedding_mode,
|
||||||
|
provider_options=PROVIDER_OPTIONS,
|
||||||
)
|
)
|
||||||
logger.info(
|
logger.info(
|
||||||
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
|
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
|
||||||
@@ -240,13 +298,14 @@ def create_hnsw_embedding_server(
|
|||||||
found_indices: list[int] = []
|
found_indices: list[int] = []
|
||||||
for idx, nid in enumerate(node_ids):
|
for idx, nid in enumerate(node_ids):
|
||||||
try:
|
try:
|
||||||
passage_data = passages.get_passage(str(nid))
|
passage_id = _map_node_id(nid)
|
||||||
|
passage_data = passages.get_passage(passage_id)
|
||||||
txt = passage_data.get("text", "")
|
txt = passage_data.get("text", "")
|
||||||
if isinstance(txt, str) and len(txt) > 0:
|
if isinstance(txt, str) and len(txt) > 0:
|
||||||
texts.append(txt)
|
texts.append(txt)
|
||||||
found_indices.append(idx)
|
found_indices.append(idx)
|
||||||
else:
|
else:
|
||||||
logger.error(f"Empty text for passage ID {nid}")
|
logger.error(f"Empty text for passage ID {passage_id}")
|
||||||
except KeyError:
|
except KeyError:
|
||||||
logger.error(f"Passage with ID {nid} not found")
|
logger.error(f"Passage with ID {nid} not found")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
@@ -254,7 +313,12 @@ def create_hnsw_embedding_server(
|
|||||||
|
|
||||||
if texts:
|
if texts:
|
||||||
try:
|
try:
|
||||||
embeddings = compute_embeddings(texts, model_name, mode=embedding_mode)
|
embeddings = compute_embeddings(
|
||||||
|
texts,
|
||||||
|
model_name,
|
||||||
|
mode=embedding_mode,
|
||||||
|
provider_options=PROVIDER_OPTIONS,
|
||||||
|
)
|
||||||
logger.info(
|
logger.info(
|
||||||
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
|
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
|
||||||
)
|
)
|
||||||
|
|||||||
@@ -6,10 +6,10 @@ build-backend = "scikit_build_core.build"
|
|||||||
|
|
||||||
[project]
|
[project]
|
||||||
name = "leann-backend-hnsw"
|
name = "leann-backend-hnsw"
|
||||||
version = "0.2.9"
|
version = "0.3.4"
|
||||||
description = "Custom-built HNSW (Faiss) backend for the Leann toolkit."
|
description = "Custom-built HNSW (Faiss) backend for the Leann toolkit."
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"leann-core==0.2.9",
|
"leann-core==0.3.4",
|
||||||
"numpy",
|
"numpy",
|
||||||
"pyzmq>=23.0.0",
|
"pyzmq>=23.0.0",
|
||||||
"msgpack>=1.0.0",
|
"msgpack>=1.0.0",
|
||||||
|
|||||||
Submodule packages/leann-backend-hnsw/third_party/faiss updated: 4a2c0d67d3...1d51f0c074
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
|||||||
|
|
||||||
[project]
|
[project]
|
||||||
name = "leann-core"
|
name = "leann-core"
|
||||||
version = "0.2.9"
|
version = "0.3.4"
|
||||||
description = "Core API and plugin system for LEANN"
|
description = "Core API and plugin system for LEANN"
|
||||||
readme = "README.md"
|
readme = "README.md"
|
||||||
requires-python = ">=3.9"
|
requires-python = ">=3.9"
|
||||||
|
|||||||
@@ -6,18 +6,22 @@ with the correct, original embedding logic from the user's reference code.
|
|||||||
import json
|
import json
|
||||||
import logging
|
import logging
|
||||||
import pickle
|
import pickle
|
||||||
|
import re
|
||||||
|
import subprocess
|
||||||
import time
|
import time
|
||||||
import warnings
|
import warnings
|
||||||
from dataclasses import dataclass, field
|
from dataclasses import dataclass, field
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Any, Literal, Optional
|
from typing import Any, Literal, Optional, Union
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
from leann_backend_hnsw.convert_to_csr import prune_hnsw_embeddings_inplace
|
||||||
|
|
||||||
from leann.interface import LeannBackendSearcherInterface
|
from leann.interface import LeannBackendSearcherInterface
|
||||||
|
|
||||||
from .chat import get_llm
|
from .chat import get_llm
|
||||||
from .interface import LeannBackendFactoryInterface
|
from .interface import LeannBackendFactoryInterface
|
||||||
|
from .metadata_filter import MetadataFilterEngine
|
||||||
from .registry import BACKEND_REGISTRY
|
from .registry import BACKEND_REGISTRY
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
@@ -35,6 +39,7 @@ def compute_embeddings(
|
|||||||
use_server: bool = True,
|
use_server: bool = True,
|
||||||
port: Optional[int] = None,
|
port: Optional[int] = None,
|
||||||
is_build=False,
|
is_build=False,
|
||||||
|
provider_options: Optional[dict[str, Any]] = None,
|
||||||
) -> np.ndarray:
|
) -> np.ndarray:
|
||||||
"""
|
"""
|
||||||
Computes embeddings using different backends.
|
Computes embeddings using different backends.
|
||||||
@@ -46,6 +51,7 @@ def compute_embeddings(
|
|||||||
- "sentence-transformers": Use sentence-transformers library (default)
|
- "sentence-transformers": Use sentence-transformers library (default)
|
||||||
- "mlx": Use MLX backend for Apple Silicon
|
- "mlx": Use MLX backend for Apple Silicon
|
||||||
- "openai": Use OpenAI embedding API
|
- "openai": Use OpenAI embedding API
|
||||||
|
- "gemini": Use Google Gemini embedding API
|
||||||
use_server: Whether to use embedding server (True for search, False for build)
|
use_server: Whether to use embedding server (True for search, False for build)
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
@@ -67,6 +73,7 @@ def compute_embeddings(
|
|||||||
model_name,
|
model_name,
|
||||||
mode=mode,
|
mode=mode,
|
||||||
is_build=is_build,
|
is_build=is_build,
|
||||||
|
provider_options=provider_options,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@@ -118,9 +125,13 @@ class PassageManager:
|
|||||||
def __init__(
|
def __init__(
|
||||||
self, passage_sources: list[dict[str, Any]], metadata_file_path: Optional[str] = None
|
self, passage_sources: list[dict[str, Any]], metadata_file_path: Optional[str] = None
|
||||||
):
|
):
|
||||||
self.offset_maps = {}
|
self.offset_maps: dict[str, dict[str, int]] = {}
|
||||||
self.passage_files = {}
|
self.passage_files: dict[str, str] = {}
|
||||||
self.global_offset_map = {} # Combined map for fast lookup
|
# Avoid materializing a single gigantic global map to reduce memory
|
||||||
|
# footprint on very large corpora (e.g., 60M+ passages). Instead, keep
|
||||||
|
# per-shard maps and do a lightweight per-shard lookup on demand.
|
||||||
|
self._total_count: int = 0
|
||||||
|
self.filter_engine = MetadataFilterEngine() # Initialize filter engine
|
||||||
|
|
||||||
# Derive index base name for standard sibling fallbacks, e.g., <index_name>.passages.*
|
# Derive index base name for standard sibling fallbacks, e.g., <index_name>.passages.*
|
||||||
index_name_base = None
|
index_name_base = None
|
||||||
@@ -141,12 +152,25 @@ class PassageManager:
|
|||||||
default_name: Optional[str],
|
default_name: Optional[str],
|
||||||
source_dict: dict[str, Any],
|
source_dict: dict[str, Any],
|
||||||
) -> list[Path]:
|
) -> list[Path]:
|
||||||
|
"""
|
||||||
|
Build an ordered list of candidate paths. For relative paths specified in
|
||||||
|
metadata, prefer resolution relative to the metadata file directory first,
|
||||||
|
then fall back to CWD-based resolution, and finally to conventional
|
||||||
|
sibling defaults (e.g., <index_base>.passages.idx / .jsonl).
|
||||||
|
"""
|
||||||
candidates: list[Path] = []
|
candidates: list[Path] = []
|
||||||
# 1) Primary as-is (absolute or relative)
|
# 1) Primary path
|
||||||
if primary:
|
if primary:
|
||||||
p = Path(primary)
|
p = Path(primary)
|
||||||
candidates.append(p if p.is_absolute() else (Path.cwd() / p))
|
if p.is_absolute():
|
||||||
# 2) metadata-relative explicit relative key
|
candidates.append(p)
|
||||||
|
else:
|
||||||
|
# Prefer metadata-relative resolution for relative paths
|
||||||
|
if metadata_file_path:
|
||||||
|
candidates.append(Path(metadata_file_path).parent / p)
|
||||||
|
# Also consider CWD-relative as a fallback for legacy layouts
|
||||||
|
candidates.append(Path.cwd() / p)
|
||||||
|
# 2) metadata-relative explicit relative key (if present)
|
||||||
if metadata_file_path and source_dict.get(relative_key):
|
if metadata_file_path and source_dict.get(relative_key):
|
||||||
candidates.append(Path(metadata_file_path).parent / source_dict[relative_key])
|
candidates.append(Path(metadata_file_path).parent / source_dict[relative_key])
|
||||||
# 3) metadata-relative standard sibling filename
|
# 3) metadata-relative standard sibling filename
|
||||||
@@ -176,23 +200,78 @@ class PassageManager:
|
|||||||
raise FileNotFoundError(f"Passage index file not found: {index_file}")
|
raise FileNotFoundError(f"Passage index file not found: {index_file}")
|
||||||
|
|
||||||
with open(index_file, "rb") as f:
|
with open(index_file, "rb") as f:
|
||||||
offset_map = pickle.load(f)
|
offset_map: dict[str, int] = pickle.load(f)
|
||||||
self.offset_maps[passage_file] = offset_map
|
self.offset_maps[passage_file] = offset_map
|
||||||
self.passage_files[passage_file] = passage_file
|
self.passage_files[passage_file] = passage_file
|
||||||
|
self._total_count += len(offset_map)
|
||||||
# Build global map for O(1) lookup
|
|
||||||
for passage_id, offset in offset_map.items():
|
|
||||||
self.global_offset_map[passage_id] = (passage_file, offset)
|
|
||||||
|
|
||||||
def get_passage(self, passage_id: str) -> dict[str, Any]:
|
def get_passage(self, passage_id: str) -> dict[str, Any]:
|
||||||
if passage_id in self.global_offset_map:
|
# Fast path: check each shard map (there are typically few shards).
|
||||||
passage_file, offset = self.global_offset_map[passage_id]
|
# This avoids building a massive combined dict while keeping lookups
|
||||||
# Lazy file opening - only open when needed
|
# bounded by the number of shards.
|
||||||
with open(passage_file, encoding="utf-8") as f:
|
for passage_file, offset_map in self.offset_maps.items():
|
||||||
f.seek(offset)
|
try:
|
||||||
return json.loads(f.readline())
|
offset = offset_map[passage_id]
|
||||||
|
with open(passage_file, encoding="utf-8") as f:
|
||||||
|
f.seek(offset)
|
||||||
|
return json.loads(f.readline())
|
||||||
|
except KeyError:
|
||||||
|
continue
|
||||||
raise KeyError(f"Passage ID not found: {passage_id}")
|
raise KeyError(f"Passage ID not found: {passage_id}")
|
||||||
|
|
||||||
|
def filter_search_results(
|
||||||
|
self,
|
||||||
|
search_results: list[SearchResult],
|
||||||
|
metadata_filters: Optional[dict[str, dict[str, Union[str, int, float, bool, list]]]],
|
||||||
|
) -> list[SearchResult]:
|
||||||
|
"""
|
||||||
|
Apply metadata filters to search results.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
search_results: List of SearchResult objects
|
||||||
|
metadata_filters: Filter specifications to apply
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Filtered list of SearchResult objects
|
||||||
|
"""
|
||||||
|
if not metadata_filters:
|
||||||
|
return search_results
|
||||||
|
|
||||||
|
logger.debug(f"Applying metadata filters to {len(search_results)} results")
|
||||||
|
|
||||||
|
# Convert SearchResult objects to dictionaries for the filter engine
|
||||||
|
result_dicts = []
|
||||||
|
for result in search_results:
|
||||||
|
result_dicts.append(
|
||||||
|
{
|
||||||
|
"id": result.id,
|
||||||
|
"score": result.score,
|
||||||
|
"text": result.text,
|
||||||
|
"metadata": result.metadata,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
# Apply filters using the filter engine
|
||||||
|
filtered_dicts = self.filter_engine.apply_filters(result_dicts, metadata_filters)
|
||||||
|
|
||||||
|
# Convert back to SearchResult objects
|
||||||
|
filtered_results = []
|
||||||
|
for result_dict in filtered_dicts:
|
||||||
|
filtered_results.append(
|
||||||
|
SearchResult(
|
||||||
|
id=result_dict["id"],
|
||||||
|
score=result_dict["score"],
|
||||||
|
text=result_dict["text"],
|
||||||
|
metadata=result_dict["metadata"],
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
logger.debug(f"Filtered results: {len(filtered_results)} remaining")
|
||||||
|
return filtered_results
|
||||||
|
|
||||||
|
def __len__(self) -> int:
|
||||||
|
return self._total_count
|
||||||
|
|
||||||
|
|
||||||
class LeannBuilder:
|
class LeannBuilder:
|
||||||
def __init__(
|
def __init__(
|
||||||
@@ -201,6 +280,7 @@ class LeannBuilder:
|
|||||||
embedding_model: str = "facebook/contriever",
|
embedding_model: str = "facebook/contriever",
|
||||||
dimensions: Optional[int] = None,
|
dimensions: Optional[int] = None,
|
||||||
embedding_mode: str = "sentence-transformers",
|
embedding_mode: str = "sentence-transformers",
|
||||||
|
embedding_options: Optional[dict[str, Any]] = None,
|
||||||
**backend_kwargs,
|
**backend_kwargs,
|
||||||
):
|
):
|
||||||
self.backend_name = backend_name
|
self.backend_name = backend_name
|
||||||
@@ -223,6 +303,7 @@ class LeannBuilder:
|
|||||||
self.embedding_model = embedding_model
|
self.embedding_model = embedding_model
|
||||||
self.dimensions = dimensions
|
self.dimensions = dimensions
|
||||||
self.embedding_mode = embedding_mode
|
self.embedding_mode = embedding_mode
|
||||||
|
self.embedding_options = embedding_options or {}
|
||||||
|
|
||||||
# Check if we need to use cosine distance for normalized embeddings
|
# Check if we need to use cosine distance for normalized embeddings
|
||||||
normalized_embeddings_models = {
|
normalized_embeddings_models = {
|
||||||
@@ -306,6 +387,23 @@ class LeannBuilder:
|
|||||||
def build_index(self, index_path: str):
|
def build_index(self, index_path: str):
|
||||||
if not self.chunks:
|
if not self.chunks:
|
||||||
raise ValueError("No chunks added.")
|
raise ValueError("No chunks added.")
|
||||||
|
|
||||||
|
# Filter out invalid/empty text chunks early to keep passage and embedding counts aligned
|
||||||
|
valid_chunks: list[dict[str, Any]] = []
|
||||||
|
skipped = 0
|
||||||
|
for chunk in self.chunks:
|
||||||
|
text = chunk.get("text", "")
|
||||||
|
if isinstance(text, str) and text.strip():
|
||||||
|
valid_chunks.append(chunk)
|
||||||
|
else:
|
||||||
|
skipped += 1
|
||||||
|
if skipped > 0:
|
||||||
|
print(
|
||||||
|
f"Warning: Skipping {skipped} empty/invalid text chunk(s). Processing {len(valid_chunks)} valid chunks"
|
||||||
|
)
|
||||||
|
self.chunks = valid_chunks
|
||||||
|
if not self.chunks:
|
||||||
|
raise ValueError("All provided chunks are empty or invalid. Nothing to index.")
|
||||||
if self.dimensions is None:
|
if self.dimensions is None:
|
||||||
self.dimensions = len(
|
self.dimensions = len(
|
||||||
compute_embeddings(
|
compute_embeddings(
|
||||||
@@ -313,6 +411,7 @@ class LeannBuilder:
|
|||||||
self.embedding_model,
|
self.embedding_model,
|
||||||
self.embedding_mode,
|
self.embedding_mode,
|
||||||
use_server=False,
|
use_server=False,
|
||||||
|
provider_options=self.embedding_options,
|
||||||
)[0]
|
)[0]
|
||||||
)
|
)
|
||||||
path = Path(index_path)
|
path = Path(index_path)
|
||||||
@@ -352,8 +451,20 @@ class LeannBuilder:
|
|||||||
self.embedding_mode,
|
self.embedding_mode,
|
||||||
use_server=False,
|
use_server=False,
|
||||||
is_build=True,
|
is_build=True,
|
||||||
|
provider_options=self.embedding_options,
|
||||||
)
|
)
|
||||||
string_ids = [chunk["id"] for chunk in self.chunks]
|
string_ids = [chunk["id"] for chunk in self.chunks]
|
||||||
|
# Persist ID map alongside index so backends that return integer labels can remap to passage IDs
|
||||||
|
try:
|
||||||
|
idmap_file = (
|
||||||
|
index_dir
|
||||||
|
/ f"{index_name[: -len('.leann')] if index_name.endswith('.leann') else index_name}.ids.txt"
|
||||||
|
)
|
||||||
|
with open(idmap_file, "w", encoding="utf-8") as f:
|
||||||
|
for sid in string_ids:
|
||||||
|
f.write(str(sid) + "\n")
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
current_backend_kwargs = {**self.backend_kwargs, "dimensions": self.dimensions}
|
current_backend_kwargs = {**self.backend_kwargs, "dimensions": self.dimensions}
|
||||||
builder_instance = self.backend_factory.builder(**current_backend_kwargs)
|
builder_instance = self.backend_factory.builder(**current_backend_kwargs)
|
||||||
builder_instance.build(embeddings, string_ids, index_path, **current_backend_kwargs)
|
builder_instance.build(embeddings, string_ids, index_path, **current_backend_kwargs)
|
||||||
@@ -378,14 +489,15 @@ class LeannBuilder:
|
|||||||
],
|
],
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if self.embedding_options:
|
||||||
|
meta_data["embedding_options"] = self.embedding_options
|
||||||
|
|
||||||
# Add storage status flags for HNSW backend
|
# Add storage status flags for HNSW backend
|
||||||
if self.backend_name == "hnsw":
|
if self.backend_name == "hnsw":
|
||||||
is_compact = self.backend_kwargs.get("is_compact", True)
|
is_compact = self.backend_kwargs.get("is_compact", True)
|
||||||
is_recompute = self.backend_kwargs.get("is_recompute", True)
|
is_recompute = self.backend_kwargs.get("is_recompute", True)
|
||||||
meta_data["is_compact"] = is_compact
|
meta_data["is_compact"] = is_compact
|
||||||
meta_data["is_pruned"] = (
|
meta_data["is_pruned"] = bool(is_recompute)
|
||||||
is_compact and is_recompute
|
|
||||||
) # Pruned only if compact and recompute
|
|
||||||
with open(leann_meta_path, "w", encoding="utf-8") as f:
|
with open(leann_meta_path, "w", encoding="utf-8") as f:
|
||||||
json.dump(meta_data, f, indent=2)
|
json.dump(meta_data, f, indent=2)
|
||||||
|
|
||||||
@@ -472,6 +584,17 @@ class LeannBuilder:
|
|||||||
|
|
||||||
# Build the vector index using precomputed embeddings
|
# Build the vector index using precomputed embeddings
|
||||||
string_ids = [str(id_val) for id_val in ids]
|
string_ids = [str(id_val) for id_val in ids]
|
||||||
|
# Persist ID map (order == embeddings order)
|
||||||
|
try:
|
||||||
|
idmap_file = (
|
||||||
|
index_dir
|
||||||
|
/ f"{index_name[: -len('.leann')] if index_name.endswith('.leann') else index_name}.ids.txt"
|
||||||
|
)
|
||||||
|
with open(idmap_file, "w", encoding="utf-8") as f:
|
||||||
|
for sid in string_ids:
|
||||||
|
f.write(str(sid) + "\n")
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
current_backend_kwargs = {**self.backend_kwargs, "dimensions": self.dimensions}
|
current_backend_kwargs = {**self.backend_kwargs, "dimensions": self.dimensions}
|
||||||
builder_instance = self.backend_factory.builder(**current_backend_kwargs)
|
builder_instance = self.backend_factory.builder(**current_backend_kwargs)
|
||||||
builder_instance.build(embeddings, string_ids, index_path)
|
builder_instance.build(embeddings, string_ids, index_path)
|
||||||
@@ -500,18 +623,166 @@ class LeannBuilder:
|
|||||||
"embeddings_source": str(embeddings_file),
|
"embeddings_source": str(embeddings_file),
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if self.embedding_options:
|
||||||
|
meta_data["embedding_options"] = self.embedding_options
|
||||||
|
|
||||||
# Add storage status flags for HNSW backend
|
# Add storage status flags for HNSW backend
|
||||||
if self.backend_name == "hnsw":
|
if self.backend_name == "hnsw":
|
||||||
is_compact = self.backend_kwargs.get("is_compact", True)
|
is_compact = self.backend_kwargs.get("is_compact", True)
|
||||||
is_recompute = self.backend_kwargs.get("is_recompute", True)
|
is_recompute = self.backend_kwargs.get("is_recompute", True)
|
||||||
meta_data["is_compact"] = is_compact
|
meta_data["is_compact"] = is_compact
|
||||||
meta_data["is_pruned"] = is_compact and is_recompute
|
meta_data["is_pruned"] = bool(is_recompute)
|
||||||
|
|
||||||
with open(leann_meta_path, "w", encoding="utf-8") as f:
|
with open(leann_meta_path, "w", encoding="utf-8") as f:
|
||||||
json.dump(meta_data, f, indent=2)
|
json.dump(meta_data, f, indent=2)
|
||||||
|
|
||||||
logger.info(f"Index built successfully from precomputed embeddings: {index_path}")
|
logger.info(f"Index built successfully from precomputed embeddings: {index_path}")
|
||||||
|
|
||||||
|
def update_index(self, index_path: str):
|
||||||
|
"""Append new passages and vectors to an existing HNSW index."""
|
||||||
|
if not self.chunks:
|
||||||
|
raise ValueError("No new chunks provided for update.")
|
||||||
|
|
||||||
|
path = Path(index_path)
|
||||||
|
index_dir = path.parent
|
||||||
|
index_name = path.name
|
||||||
|
index_prefix = path.stem
|
||||||
|
|
||||||
|
meta_path = index_dir / f"{index_name}.meta.json"
|
||||||
|
passages_file = index_dir / f"{index_name}.passages.jsonl"
|
||||||
|
offset_file = index_dir / f"{index_name}.passages.idx"
|
||||||
|
index_file = index_dir / f"{index_prefix}.index"
|
||||||
|
|
||||||
|
if not meta_path.exists() or not passages_file.exists() or not offset_file.exists():
|
||||||
|
raise FileNotFoundError("Index metadata or passage files are missing; cannot update.")
|
||||||
|
if not index_file.exists():
|
||||||
|
raise FileNotFoundError(f"HNSW index file not found: {index_file}")
|
||||||
|
|
||||||
|
with open(meta_path, encoding="utf-8") as f:
|
||||||
|
meta = json.load(f)
|
||||||
|
backend_name = meta.get("backend_name")
|
||||||
|
if backend_name != self.backend_name:
|
||||||
|
raise ValueError(
|
||||||
|
f"Index was built with backend '{backend_name}', cannot update with '{self.backend_name}'."
|
||||||
|
)
|
||||||
|
|
||||||
|
meta_backend_kwargs = meta.get("backend_kwargs", {})
|
||||||
|
index_is_compact = meta.get("is_compact", meta_backend_kwargs.get("is_compact", True))
|
||||||
|
if index_is_compact:
|
||||||
|
raise ValueError(
|
||||||
|
"Compact HNSW indices do not support in-place updates. Rebuild required."
|
||||||
|
)
|
||||||
|
|
||||||
|
distance_metric = meta_backend_kwargs.get(
|
||||||
|
"distance_metric", self.backend_kwargs.get("distance_metric", "mips")
|
||||||
|
).lower()
|
||||||
|
needs_recompute = bool(
|
||||||
|
meta.get("is_pruned")
|
||||||
|
or meta_backend_kwargs.get("is_recompute")
|
||||||
|
or self.backend_kwargs.get("is_recompute")
|
||||||
|
)
|
||||||
|
|
||||||
|
with open(offset_file, "rb") as f:
|
||||||
|
offset_map: dict[str, int] = pickle.load(f)
|
||||||
|
existing_ids = set(offset_map.keys())
|
||||||
|
|
||||||
|
valid_chunks: list[dict[str, Any]] = []
|
||||||
|
for chunk in self.chunks:
|
||||||
|
text = chunk.get("text", "")
|
||||||
|
if not isinstance(text, str) or not text.strip():
|
||||||
|
continue
|
||||||
|
metadata = chunk.setdefault("metadata", {})
|
||||||
|
passage_id = chunk.get("id") or metadata.get("id")
|
||||||
|
if passage_id and passage_id in existing_ids:
|
||||||
|
raise ValueError(f"Passage ID '{passage_id}' already exists in the index.")
|
||||||
|
valid_chunks.append(chunk)
|
||||||
|
|
||||||
|
if not valid_chunks:
|
||||||
|
raise ValueError("No valid chunks to append.")
|
||||||
|
|
||||||
|
texts_to_embed = [chunk["text"] for chunk in valid_chunks]
|
||||||
|
embeddings = compute_embeddings(
|
||||||
|
texts_to_embed,
|
||||||
|
self.embedding_model,
|
||||||
|
self.embedding_mode,
|
||||||
|
use_server=False,
|
||||||
|
is_build=True,
|
||||||
|
provider_options=self.embedding_options,
|
||||||
|
)
|
||||||
|
|
||||||
|
embedding_dim = embeddings.shape[1]
|
||||||
|
expected_dim = meta.get("dimensions")
|
||||||
|
if expected_dim is not None and expected_dim != embedding_dim:
|
||||||
|
raise ValueError(
|
||||||
|
f"Dimension mismatch during update: existing index uses {expected_dim}, got {embedding_dim}."
|
||||||
|
)
|
||||||
|
|
||||||
|
from leann_backend_hnsw import faiss # type: ignore
|
||||||
|
|
||||||
|
embeddings = np.ascontiguousarray(embeddings, dtype=np.float32)
|
||||||
|
if distance_metric == "cosine":
|
||||||
|
norms = np.linalg.norm(embeddings, axis=1, keepdims=True)
|
||||||
|
norms[norms == 0] = 1
|
||||||
|
embeddings = embeddings / norms
|
||||||
|
|
||||||
|
index = faiss.read_index(str(index_file))
|
||||||
|
if hasattr(index, "is_recompute"):
|
||||||
|
index.is_recompute = needs_recompute
|
||||||
|
if getattr(index, "storage", None) is None:
|
||||||
|
if index.metric_type == faiss.METRIC_INNER_PRODUCT:
|
||||||
|
storage_index = faiss.IndexFlatIP(index.d)
|
||||||
|
else:
|
||||||
|
storage_index = faiss.IndexFlatL2(index.d)
|
||||||
|
index.storage = storage_index
|
||||||
|
index.own_fields = True
|
||||||
|
if index.d != embedding_dim:
|
||||||
|
raise ValueError(
|
||||||
|
f"Existing index dimension ({index.d}) does not match new embeddings ({embedding_dim})."
|
||||||
|
)
|
||||||
|
|
||||||
|
base_id = index.ntotal
|
||||||
|
for offset, chunk in enumerate(valid_chunks):
|
||||||
|
new_id = str(base_id + offset)
|
||||||
|
chunk.setdefault("metadata", {})["id"] = new_id
|
||||||
|
chunk["id"] = new_id
|
||||||
|
|
||||||
|
index.add(embeddings.shape[0], faiss.swig_ptr(embeddings))
|
||||||
|
faiss.write_index(index, str(index_file))
|
||||||
|
|
||||||
|
with open(passages_file, "a", encoding="utf-8") as f:
|
||||||
|
for chunk in valid_chunks:
|
||||||
|
offset = f.tell()
|
||||||
|
json.dump(
|
||||||
|
{
|
||||||
|
"id": chunk["id"],
|
||||||
|
"text": chunk["text"],
|
||||||
|
"metadata": chunk.get("metadata", {}),
|
||||||
|
},
|
||||||
|
f,
|
||||||
|
ensure_ascii=False,
|
||||||
|
)
|
||||||
|
f.write("\n")
|
||||||
|
offset_map[chunk["id"]] = offset
|
||||||
|
|
||||||
|
with open(offset_file, "wb") as f:
|
||||||
|
pickle.dump(offset_map, f)
|
||||||
|
|
||||||
|
meta["total_passages"] = len(offset_map)
|
||||||
|
with open(meta_path, "w", encoding="utf-8") as f:
|
||||||
|
json.dump(meta, f, indent=2)
|
||||||
|
|
||||||
|
logger.info(
|
||||||
|
"Appended %d passages to index '%s'. New total: %d",
|
||||||
|
len(valid_chunks),
|
||||||
|
index_path,
|
||||||
|
len(offset_map),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.chunks.clear()
|
||||||
|
|
||||||
|
if needs_recompute:
|
||||||
|
prune_hnsw_embeddings_inplace(str(index_file))
|
||||||
|
|
||||||
|
|
||||||
class LeannSearcher:
|
class LeannSearcher:
|
||||||
def __init__(self, index_path: str, enable_warmup: bool = False, **backend_kwargs):
|
def __init__(self, index_path: str, enable_warmup: bool = False, **backend_kwargs):
|
||||||
@@ -535,15 +806,20 @@ class LeannSearcher:
|
|||||||
self.embedding_model = self.meta_data["embedding_model"]
|
self.embedding_model = self.meta_data["embedding_model"]
|
||||||
# Support both old and new format
|
# Support both old and new format
|
||||||
self.embedding_mode = self.meta_data.get("embedding_mode", "sentence-transformers")
|
self.embedding_mode = self.meta_data.get("embedding_mode", "sentence-transformers")
|
||||||
|
self.embedding_options = self.meta_data.get("embedding_options", {})
|
||||||
# Delegate portability handling to PassageManager
|
# Delegate portability handling to PassageManager
|
||||||
self.passage_manager = PassageManager(
|
self.passage_manager = PassageManager(
|
||||||
self.meta_data.get("passage_sources", []), metadata_file_path=self.meta_path_str
|
self.meta_data.get("passage_sources", []), metadata_file_path=self.meta_path_str
|
||||||
)
|
)
|
||||||
|
# Preserve backend name for conditional parameter forwarding
|
||||||
|
self.backend_name = backend_name
|
||||||
backend_factory = BACKEND_REGISTRY.get(backend_name)
|
backend_factory = BACKEND_REGISTRY.get(backend_name)
|
||||||
if backend_factory is None:
|
if backend_factory is None:
|
||||||
raise ValueError(f"Backend '{backend_name}' not found.")
|
raise ValueError(f"Backend '{backend_name}' not found.")
|
||||||
final_kwargs = {**self.meta_data.get("backend_kwargs", {}), **backend_kwargs}
|
final_kwargs = {**self.meta_data.get("backend_kwargs", {}), **backend_kwargs}
|
||||||
final_kwargs["enable_warmup"] = enable_warmup
|
final_kwargs["enable_warmup"] = enable_warmup
|
||||||
|
if self.embedding_options:
|
||||||
|
final_kwargs.setdefault("embedding_options", self.embedding_options)
|
||||||
self.backend_impl: LeannBackendSearcherInterface = backend_factory.searcher(
|
self.backend_impl: LeannBackendSearcherInterface = backend_factory.searcher(
|
||||||
index_path, **final_kwargs
|
index_path, **final_kwargs
|
||||||
)
|
)
|
||||||
@@ -558,15 +834,49 @@ class LeannSearcher:
|
|||||||
recompute_embeddings: bool = True,
|
recompute_embeddings: bool = True,
|
||||||
pruning_strategy: Literal["global", "local", "proportional"] = "global",
|
pruning_strategy: Literal["global", "local", "proportional"] = "global",
|
||||||
expected_zmq_port: int = 5557,
|
expected_zmq_port: int = 5557,
|
||||||
|
metadata_filters: Optional[dict[str, dict[str, Union[str, int, float, bool, list]]]] = None,
|
||||||
|
batch_size: int = 0,
|
||||||
|
use_grep: bool = False,
|
||||||
**kwargs,
|
**kwargs,
|
||||||
) -> list[SearchResult]:
|
) -> list[SearchResult]:
|
||||||
|
"""
|
||||||
|
Search for nearest neighbors with optional metadata filtering.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
query: Text query to search for
|
||||||
|
top_k: Number of nearest neighbors to return
|
||||||
|
complexity: Search complexity/candidate list size, higher = more accurate but slower
|
||||||
|
beam_width: Number of parallel search paths/IO requests per iteration
|
||||||
|
prune_ratio: Ratio of neighbors to prune via approximate distance (0.0-1.0)
|
||||||
|
recompute_embeddings: Whether to fetch fresh embeddings from server vs use stored codes
|
||||||
|
pruning_strategy: Candidate selection strategy - "global" (default), "local", or "proportional"
|
||||||
|
expected_zmq_port: ZMQ port for embedding server communication
|
||||||
|
metadata_filters: Optional filters to apply to search results based on metadata.
|
||||||
|
Format: {"field_name": {"operator": value}}
|
||||||
|
Supported operators:
|
||||||
|
- Comparison: "==", "!=", "<", "<=", ">", ">="
|
||||||
|
- Membership: "in", "not_in"
|
||||||
|
- String: "contains", "starts_with", "ends_with"
|
||||||
|
Example: {"chapter": {"<=": 5}, "tags": {"in": ["fiction", "drama"]}}
|
||||||
|
**kwargs: Backend-specific parameters
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of SearchResult objects with text, metadata, and similarity scores
|
||||||
|
"""
|
||||||
|
# Handle grep search
|
||||||
|
if use_grep:
|
||||||
|
return self._grep_search(query, top_k)
|
||||||
|
|
||||||
logger.info("🔍 LeannSearcher.search() called:")
|
logger.info("🔍 LeannSearcher.search() called:")
|
||||||
logger.info(f" Query: '{query}'")
|
logger.info(f" Query: '{query}'")
|
||||||
logger.info(f" Top_k: {top_k}")
|
logger.info(f" Top_k: {top_k}")
|
||||||
|
logger.info(f" Metadata filters: {metadata_filters}")
|
||||||
logger.info(f" Additional kwargs: {kwargs}")
|
logger.info(f" Additional kwargs: {kwargs}")
|
||||||
|
|
||||||
# Smart top_k detection and adjustment
|
# Smart top_k detection and adjustment
|
||||||
total_docs = len(self.passage_manager.global_offset_map)
|
# Use PassageManager length (sum of shard sizes) to avoid
|
||||||
|
# depending on a massive combined map
|
||||||
|
total_docs = len(self.passage_manager)
|
||||||
original_top_k = top_k
|
original_top_k = top_k
|
||||||
if top_k > total_docs:
|
if top_k > total_docs:
|
||||||
top_k = total_docs
|
top_k = total_docs
|
||||||
@@ -595,23 +905,33 @@ class LeannSearcher:
|
|||||||
use_server_if_available=recompute_embeddings,
|
use_server_if_available=recompute_embeddings,
|
||||||
zmq_port=zmq_port,
|
zmq_port=zmq_port,
|
||||||
)
|
)
|
||||||
# logger.info(f" Generated embedding shape: {query_embedding.shape}")
|
logger.info(f" Generated embedding shape: {query_embedding.shape}")
|
||||||
time.time() - start_time
|
embedding_time = time.time() - start_time
|
||||||
# logger.info(f" Embedding time: {embedding_time} seconds")
|
logger.info(f" Embedding time: {embedding_time} seconds")
|
||||||
|
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
|
backend_search_kwargs: dict[str, Any] = {
|
||||||
|
"complexity": complexity,
|
||||||
|
"beam_width": beam_width,
|
||||||
|
"prune_ratio": prune_ratio,
|
||||||
|
"recompute_embeddings": recompute_embeddings,
|
||||||
|
"pruning_strategy": pruning_strategy,
|
||||||
|
"zmq_port": zmq_port,
|
||||||
|
}
|
||||||
|
# Only HNSW supports batching; forward conditionally
|
||||||
|
if self.backend_name == "hnsw":
|
||||||
|
backend_search_kwargs["batch_size"] = batch_size
|
||||||
|
|
||||||
|
# Merge any extra kwargs last
|
||||||
|
backend_search_kwargs.update(kwargs)
|
||||||
|
|
||||||
results = self.backend_impl.search(
|
results = self.backend_impl.search(
|
||||||
query_embedding,
|
query_embedding,
|
||||||
top_k,
|
top_k,
|
||||||
complexity=complexity,
|
**backend_search_kwargs,
|
||||||
beam_width=beam_width,
|
|
||||||
prune_ratio=prune_ratio,
|
|
||||||
recompute_embeddings=recompute_embeddings,
|
|
||||||
pruning_strategy=pruning_strategy,
|
|
||||||
zmq_port=zmq_port,
|
|
||||||
**kwargs,
|
|
||||||
)
|
)
|
||||||
# logger.info(f" Search time: {search_time} seconds")
|
search_time = time.time() - start_time
|
||||||
|
logger.info(f" Search time in search() LEANN searcher: {search_time} seconds")
|
||||||
logger.info(f" Backend returned: labels={len(results.get('labels', [[]])[0])} results")
|
logger.info(f" Backend returned: labels={len(results.get('labels', [[]])[0])} results")
|
||||||
|
|
||||||
enriched_results = []
|
enriched_results = []
|
||||||
@@ -650,20 +970,115 @@ class LeannSearcher:
|
|||||||
f" {RED}✗{RESET} [{i + 1:2d}] ID: '{string_id}' -> {RED}ERROR: Passage not found!{RESET}"
|
f" {RED}✗{RESET} [{i + 1:2d}] ID: '{string_id}' -> {RED}ERROR: Passage not found!{RESET}"
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# Apply metadata filters if specified
|
||||||
|
if metadata_filters:
|
||||||
|
logger.info(f" 🔍 Applying metadata filters: {metadata_filters}")
|
||||||
|
enriched_results = self.passage_manager.filter_search_results(
|
||||||
|
enriched_results, metadata_filters
|
||||||
|
)
|
||||||
|
|
||||||
# Define color codes outside the loop for final message
|
# Define color codes outside the loop for final message
|
||||||
GREEN = "\033[92m"
|
GREEN = "\033[92m"
|
||||||
RESET = "\033[0m"
|
RESET = "\033[0m"
|
||||||
logger.info(f" {GREEN}✓ Final enriched results: {len(enriched_results)} passages{RESET}")
|
logger.info(f" {GREEN}✓ Final enriched results: {len(enriched_results)} passages{RESET}")
|
||||||
return enriched_results
|
return enriched_results
|
||||||
|
|
||||||
|
def _find_jsonl_file(self) -> Optional[str]:
|
||||||
|
"""Find the .jsonl file containing raw passages for grep search"""
|
||||||
|
index_path = Path(self.meta_path_str).parent
|
||||||
|
potential_files = [
|
||||||
|
index_path / "documents.leann.passages.jsonl",
|
||||||
|
index_path.parent / "documents.leann.passages.jsonl",
|
||||||
|
]
|
||||||
|
|
||||||
|
for file_path in potential_files:
|
||||||
|
if file_path.exists():
|
||||||
|
return str(file_path)
|
||||||
|
return None
|
||||||
|
|
||||||
|
def _grep_search(self, query: str, top_k: int = 5) -> list[SearchResult]:
|
||||||
|
"""Perform grep-based search on raw passages"""
|
||||||
|
jsonl_file = self._find_jsonl_file()
|
||||||
|
if not jsonl_file:
|
||||||
|
raise FileNotFoundError("No .jsonl passages file found for grep search")
|
||||||
|
|
||||||
|
try:
|
||||||
|
cmd = ["grep", "-i", "-n", query, jsonl_file]
|
||||||
|
result = subprocess.run(cmd, capture_output=True, text=True, check=False)
|
||||||
|
|
||||||
|
if result.returncode == 1:
|
||||||
|
return []
|
||||||
|
elif result.returncode != 0:
|
||||||
|
raise RuntimeError(f"Grep failed: {result.stderr}")
|
||||||
|
|
||||||
|
matches = []
|
||||||
|
for line in result.stdout.strip().split("\n"):
|
||||||
|
if not line:
|
||||||
|
continue
|
||||||
|
parts = line.split(":", 1)
|
||||||
|
if len(parts) != 2:
|
||||||
|
continue
|
||||||
|
|
||||||
|
try:
|
||||||
|
data = json.loads(parts[1])
|
||||||
|
text = data.get("text", "")
|
||||||
|
score = text.lower().count(query.lower())
|
||||||
|
|
||||||
|
matches.append(
|
||||||
|
SearchResult(
|
||||||
|
id=data.get("id", parts[0]),
|
||||||
|
text=text,
|
||||||
|
metadata=data.get("metadata", {}),
|
||||||
|
score=float(score),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
except json.JSONDecodeError:
|
||||||
|
continue
|
||||||
|
|
||||||
|
matches.sort(key=lambda x: x.score, reverse=True)
|
||||||
|
return matches[:top_k]
|
||||||
|
|
||||||
|
except FileNotFoundError:
|
||||||
|
raise RuntimeError(
|
||||||
|
"grep command not found. Please install grep or use semantic search."
|
||||||
|
)
|
||||||
|
|
||||||
|
def _python_regex_search(self, query: str, top_k: int = 5) -> list[SearchResult]:
|
||||||
|
"""Fallback regex search"""
|
||||||
|
jsonl_file = self._find_jsonl_file()
|
||||||
|
if not jsonl_file:
|
||||||
|
raise FileNotFoundError("No .jsonl file found")
|
||||||
|
|
||||||
|
pattern = re.compile(re.escape(query), re.IGNORECASE)
|
||||||
|
matches = []
|
||||||
|
|
||||||
|
with open(jsonl_file, encoding="utf-8") as f:
|
||||||
|
for line_num, line in enumerate(f, 1):
|
||||||
|
if pattern.search(line):
|
||||||
|
try:
|
||||||
|
data = json.loads(line.strip())
|
||||||
|
matches.append(
|
||||||
|
SearchResult(
|
||||||
|
id=data.get("id", str(line_num)),
|
||||||
|
text=data.get("text", ""),
|
||||||
|
metadata=data.get("metadata", {}),
|
||||||
|
score=float(len(pattern.findall(data.get("text", "")))),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
except json.JSONDecodeError:
|
||||||
|
continue
|
||||||
|
|
||||||
|
matches.sort(key=lambda x: x.score, reverse=True)
|
||||||
|
return matches[:top_k]
|
||||||
|
|
||||||
def cleanup(self):
|
def cleanup(self):
|
||||||
"""Explicitly cleanup embedding server resources.
|
"""Explicitly cleanup embedding server resources.
|
||||||
|
|
||||||
This method should be called after you're done using the searcher,
|
This method should be called after you're done using the searcher,
|
||||||
especially in test environments or batch processing scenarios.
|
especially in test environments or batch processing scenarios.
|
||||||
"""
|
"""
|
||||||
if hasattr(self.backend_impl, "embedding_server_manager"):
|
backend = getattr(self.backend_impl, "embedding_server_manager", None)
|
||||||
self.backend_impl.embedding_server_manager.stop_server()
|
if backend is not None:
|
||||||
|
backend.stop_server()
|
||||||
|
|
||||||
# Enable automatic cleanup patterns
|
# Enable automatic cleanup patterns
|
||||||
def __enter__(self):
|
def __enter__(self):
|
||||||
@@ -689,9 +1104,15 @@ class LeannChat:
|
|||||||
index_path: str,
|
index_path: str,
|
||||||
llm_config: Optional[dict[str, Any]] = None,
|
llm_config: Optional[dict[str, Any]] = None,
|
||||||
enable_warmup: bool = False,
|
enable_warmup: bool = False,
|
||||||
|
searcher: Optional[LeannSearcher] = None,
|
||||||
**kwargs,
|
**kwargs,
|
||||||
):
|
):
|
||||||
self.searcher = LeannSearcher(index_path, enable_warmup=enable_warmup, **kwargs)
|
if searcher is None:
|
||||||
|
self.searcher = LeannSearcher(index_path, enable_warmup=enable_warmup, **kwargs)
|
||||||
|
self._owns_searcher = True
|
||||||
|
else:
|
||||||
|
self.searcher = searcher
|
||||||
|
self._owns_searcher = False
|
||||||
self.llm = get_llm(llm_config)
|
self.llm = get_llm(llm_config)
|
||||||
|
|
||||||
def ask(
|
def ask(
|
||||||
@@ -705,6 +1126,9 @@ class LeannChat:
|
|||||||
pruning_strategy: Literal["global", "local", "proportional"] = "global",
|
pruning_strategy: Literal["global", "local", "proportional"] = "global",
|
||||||
llm_kwargs: Optional[dict[str, Any]] = None,
|
llm_kwargs: Optional[dict[str, Any]] = None,
|
||||||
expected_zmq_port: int = 5557,
|
expected_zmq_port: int = 5557,
|
||||||
|
metadata_filters: Optional[dict[str, dict[str, Union[str, int, float, bool, list]]]] = None,
|
||||||
|
batch_size: int = 0,
|
||||||
|
use_grep: bool = False,
|
||||||
**search_kwargs,
|
**search_kwargs,
|
||||||
):
|
):
|
||||||
if llm_kwargs is None:
|
if llm_kwargs is None:
|
||||||
@@ -719,10 +1143,12 @@ class LeannChat:
|
|||||||
recompute_embeddings=recompute_embeddings,
|
recompute_embeddings=recompute_embeddings,
|
||||||
pruning_strategy=pruning_strategy,
|
pruning_strategy=pruning_strategy,
|
||||||
expected_zmq_port=expected_zmq_port,
|
expected_zmq_port=expected_zmq_port,
|
||||||
|
metadata_filters=metadata_filters,
|
||||||
|
batch_size=batch_size,
|
||||||
**search_kwargs,
|
**search_kwargs,
|
||||||
)
|
)
|
||||||
search_time = time.time() - search_time
|
search_time = time.time() - search_time
|
||||||
# logger.info(f" Search time: {search_time} seconds")
|
logger.info(f" Search time: {search_time} seconds")
|
||||||
context = "\n\n".join([r.text for r in results])
|
context = "\n\n".join([r.text for r in results])
|
||||||
prompt = (
|
prompt = (
|
||||||
"Here is some retrieved context that might help answer your question:\n\n"
|
"Here is some retrieved context that might help answer your question:\n\n"
|
||||||
@@ -758,7 +1184,9 @@ class LeannChat:
|
|||||||
This method should be called after you're done using the chat interface,
|
This method should be called after you're done using the chat interface,
|
||||||
especially in test environments or batch processing scenarios.
|
especially in test environments or batch processing scenarios.
|
||||||
"""
|
"""
|
||||||
if hasattr(self.searcher, "cleanup"):
|
# Only stop the embedding server if this LeannChat instance created the searcher.
|
||||||
|
# When a shared searcher is passed in, avoid shutting down the server to enable reuse.
|
||||||
|
if getattr(self, "_owns_searcher", False) and hasattr(self.searcher, "cleanup"):
|
||||||
self.searcher.cleanup()
|
self.searcher.cleanup()
|
||||||
|
|
||||||
# Enable automatic cleanup patterns
|
# Enable automatic cleanup patterns
|
||||||
|
|||||||
@@ -12,6 +12,8 @@ from typing import Any, Optional
|
|||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
|
from .settings import resolve_ollama_host, resolve_openai_api_key, resolve_openai_base_url
|
||||||
|
|
||||||
# Configure logging
|
# Configure logging
|
||||||
logging.basicConfig(level=logging.INFO)
|
logging.basicConfig(level=logging.INFO)
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
@@ -310,11 +312,12 @@ def search_hf_models(query: str, limit: int = 10) -> list[str]:
|
|||||||
|
|
||||||
|
|
||||||
def validate_model_and_suggest(
|
def validate_model_and_suggest(
|
||||||
model_name: str, llm_type: str, host: str = "http://localhost:11434"
|
model_name: str, llm_type: str, host: Optional[str] = None
|
||||||
) -> Optional[str]:
|
) -> Optional[str]:
|
||||||
"""Validate model name and provide suggestions if invalid"""
|
"""Validate model name and provide suggestions if invalid"""
|
||||||
if llm_type == "ollama":
|
if llm_type == "ollama":
|
||||||
available_models = check_ollama_models(host)
|
resolved_host = resolve_ollama_host(host)
|
||||||
|
available_models = check_ollama_models(resolved_host)
|
||||||
if available_models and model_name not in available_models:
|
if available_models and model_name not in available_models:
|
||||||
error_msg = f"Model '{model_name}' not found in your local Ollama installation."
|
error_msg = f"Model '{model_name}' not found in your local Ollama installation."
|
||||||
|
|
||||||
@@ -457,19 +460,19 @@ class LLMInterface(ABC):
|
|||||||
class OllamaChat(LLMInterface):
|
class OllamaChat(LLMInterface):
|
||||||
"""LLM interface for Ollama models."""
|
"""LLM interface for Ollama models."""
|
||||||
|
|
||||||
def __init__(self, model: str = "llama3:8b", host: str = "http://localhost:11434"):
|
def __init__(self, model: str = "llama3:8b", host: Optional[str] = None):
|
||||||
self.model = model
|
self.model = model
|
||||||
self.host = host
|
self.host = resolve_ollama_host(host)
|
||||||
logger.info(f"Initializing OllamaChat with model='{model}' and host='{host}'")
|
logger.info(f"Initializing OllamaChat with model='{model}' and host='{self.host}'")
|
||||||
try:
|
try:
|
||||||
import requests
|
import requests
|
||||||
|
|
||||||
# Check if the Ollama server is responsive
|
# Check if the Ollama server is responsive
|
||||||
if host:
|
if self.host:
|
||||||
requests.get(host)
|
requests.get(self.host)
|
||||||
|
|
||||||
# Pre-check model availability with helpful suggestions
|
# Pre-check model availability with helpful suggestions
|
||||||
model_error = validate_model_and_suggest(model, "ollama", host)
|
model_error = validate_model_and_suggest(model, "ollama", self.host)
|
||||||
if model_error:
|
if model_error:
|
||||||
raise ValueError(model_error)
|
raise ValueError(model_error)
|
||||||
|
|
||||||
@@ -478,9 +481,11 @@ class OllamaChat(LLMInterface):
|
|||||||
"The 'requests' library is required for Ollama. Please install it with 'pip install requests'."
|
"The 'requests' library is required for Ollama. Please install it with 'pip install requests'."
|
||||||
)
|
)
|
||||||
except requests.exceptions.ConnectionError:
|
except requests.exceptions.ConnectionError:
|
||||||
logger.error(f"Could not connect to Ollama at {host}. Please ensure Ollama is running.")
|
logger.error(
|
||||||
|
f"Could not connect to Ollama at {self.host}. Please ensure Ollama is running."
|
||||||
|
)
|
||||||
raise ConnectionError(
|
raise ConnectionError(
|
||||||
f"Could not connect to Ollama at {host}. Please ensure Ollama is running."
|
f"Could not connect to Ollama at {self.host}. Please ensure Ollama is running."
|
||||||
)
|
)
|
||||||
|
|
||||||
def ask(self, prompt: str, **kwargs) -> str:
|
def ask(self, prompt: str, **kwargs) -> str:
|
||||||
@@ -680,24 +685,88 @@ class HFChat(LLMInterface):
|
|||||||
return response.strip()
|
return response.strip()
|
||||||
|
|
||||||
|
|
||||||
|
class GeminiChat(LLMInterface):
|
||||||
|
"""LLM interface for Google Gemini models."""
|
||||||
|
|
||||||
|
def __init__(self, model: str = "gemini-2.5-flash", api_key: Optional[str] = None):
|
||||||
|
self.model = model
|
||||||
|
self.api_key = api_key or os.getenv("GEMINI_API_KEY")
|
||||||
|
|
||||||
|
if not self.api_key:
|
||||||
|
raise ValueError(
|
||||||
|
"Gemini API key is required. Set GEMINI_API_KEY environment variable or pass api_key parameter."
|
||||||
|
)
|
||||||
|
|
||||||
|
logger.info(f"Initializing Gemini Chat with model='{model}'")
|
||||||
|
|
||||||
|
try:
|
||||||
|
import google.genai as genai
|
||||||
|
|
||||||
|
self.client = genai.Client(api_key=self.api_key)
|
||||||
|
except ImportError:
|
||||||
|
raise ImportError(
|
||||||
|
"The 'google-genai' library is required for Gemini models. Please install it with 'uv pip install google-genai'."
|
||||||
|
)
|
||||||
|
|
||||||
|
def ask(self, prompt: str, **kwargs) -> str:
|
||||||
|
logger.info(f"Sending request to Gemini with model {self.model}")
|
||||||
|
|
||||||
|
try:
|
||||||
|
from google.genai.types import GenerateContentConfig
|
||||||
|
|
||||||
|
generation_config = GenerateContentConfig(
|
||||||
|
temperature=kwargs.get("temperature", 0.7),
|
||||||
|
max_output_tokens=kwargs.get("max_tokens", 1000),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Handle top_p parameter
|
||||||
|
if "top_p" in kwargs:
|
||||||
|
generation_config.top_p = kwargs["top_p"]
|
||||||
|
|
||||||
|
response = self.client.models.generate_content(
|
||||||
|
model=self.model,
|
||||||
|
contents=prompt,
|
||||||
|
config=generation_config,
|
||||||
|
)
|
||||||
|
# Handle potential None response text
|
||||||
|
response_text = response.text
|
||||||
|
if response_text is None:
|
||||||
|
logger.warning("Gemini returned None response text")
|
||||||
|
return ""
|
||||||
|
return response_text.strip()
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error communicating with Gemini: {e}")
|
||||||
|
return f"Error: Could not get a response from Gemini. Details: {e}"
|
||||||
|
|
||||||
|
|
||||||
class OpenAIChat(LLMInterface):
|
class OpenAIChat(LLMInterface):
|
||||||
"""LLM interface for OpenAI models."""
|
"""LLM interface for OpenAI models."""
|
||||||
|
|
||||||
def __init__(self, model: str = "gpt-4o", api_key: Optional[str] = None):
|
def __init__(
|
||||||
|
self,
|
||||||
|
model: str = "gpt-4o",
|
||||||
|
api_key: Optional[str] = None,
|
||||||
|
base_url: Optional[str] = None,
|
||||||
|
):
|
||||||
self.model = model
|
self.model = model
|
||||||
self.api_key = api_key or os.getenv("OPENAI_API_KEY")
|
self.base_url = resolve_openai_base_url(base_url)
|
||||||
|
self.api_key = resolve_openai_api_key(api_key)
|
||||||
|
|
||||||
if not self.api_key:
|
if not self.api_key:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
"OpenAI API key is required. Set OPENAI_API_KEY environment variable or pass api_key parameter."
|
"OpenAI API key is required. Set OPENAI_API_KEY environment variable or pass api_key parameter."
|
||||||
)
|
)
|
||||||
|
|
||||||
logger.info(f"Initializing OpenAI Chat with model='{model}'")
|
logger.info(
|
||||||
|
"Initializing OpenAI Chat with model='%s' and base_url='%s'",
|
||||||
|
model,
|
||||||
|
self.base_url,
|
||||||
|
)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
import openai
|
import openai
|
||||||
|
|
||||||
self.client = openai.OpenAI(api_key=self.api_key)
|
self.client = openai.OpenAI(api_key=self.api_key, base_url=self.base_url)
|
||||||
except ImportError:
|
except ImportError:
|
||||||
raise ImportError(
|
raise ImportError(
|
||||||
"The 'openai' library is required for OpenAI models. Please install it with 'pip install openai'."
|
"The 'openai' library is required for OpenAI models. Please install it with 'pip install openai'."
|
||||||
@@ -787,12 +856,18 @@ def get_llm(llm_config: Optional[dict[str, Any]] = None) -> LLMInterface:
|
|||||||
if llm_type == "ollama":
|
if llm_type == "ollama":
|
||||||
return OllamaChat(
|
return OllamaChat(
|
||||||
model=model or "llama3:8b",
|
model=model or "llama3:8b",
|
||||||
host=llm_config.get("host", "http://localhost:11434"),
|
host=llm_config.get("host"),
|
||||||
)
|
)
|
||||||
elif llm_type == "hf":
|
elif llm_type == "hf":
|
||||||
return HFChat(model_name=model or "deepseek-ai/deepseek-llm-7b-chat")
|
return HFChat(model_name=model or "deepseek-ai/deepseek-llm-7b-chat")
|
||||||
elif llm_type == "openai":
|
elif llm_type == "openai":
|
||||||
return OpenAIChat(model=model or "gpt-4o", api_key=llm_config.get("api_key"))
|
return OpenAIChat(
|
||||||
|
model=model or "gpt-4o",
|
||||||
|
api_key=llm_config.get("api_key"),
|
||||||
|
base_url=llm_config.get("base_url"),
|
||||||
|
)
|
||||||
|
elif llm_type == "gemini":
|
||||||
|
return GeminiChat(model=model or "gemini-2.5-flash", api_key=llm_config.get("api_key"))
|
||||||
elif llm_type == "simulated":
|
elif llm_type == "simulated":
|
||||||
return SimulatedChat()
|
return SimulatedChat()
|
||||||
else:
|
else:
|
||||||
|
|||||||
220
packages/leann-core/src/leann/chunking_utils.py
Normal file
220
packages/leann-core/src/leann/chunking_utils.py
Normal file
@@ -0,0 +1,220 @@
|
|||||||
|
"""
|
||||||
|
Enhanced chunking utilities with AST-aware code chunking support.
|
||||||
|
Packaged within leann-core so installed wheels can import it reliably.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
from llama_index.core.node_parser import SentenceSplitter
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
# Code file extensions supported by astchunk
|
||||||
|
CODE_EXTENSIONS = {
|
||||||
|
".py": "python",
|
||||||
|
".java": "java",
|
||||||
|
".cs": "csharp",
|
||||||
|
".ts": "typescript",
|
||||||
|
".tsx": "typescript",
|
||||||
|
".js": "typescript",
|
||||||
|
".jsx": "typescript",
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def detect_code_files(documents, code_extensions=None) -> tuple[list, list]:
|
||||||
|
"""Separate documents into code files and regular text files."""
|
||||||
|
if code_extensions is None:
|
||||||
|
code_extensions = CODE_EXTENSIONS
|
||||||
|
|
||||||
|
code_docs = []
|
||||||
|
text_docs = []
|
||||||
|
|
||||||
|
for doc in documents:
|
||||||
|
file_path = doc.metadata.get("file_path", "") or doc.metadata.get("file_name", "")
|
||||||
|
if file_path:
|
||||||
|
file_ext = Path(file_path).suffix.lower()
|
||||||
|
if file_ext in code_extensions:
|
||||||
|
doc.metadata["language"] = code_extensions[file_ext]
|
||||||
|
doc.metadata["is_code"] = True
|
||||||
|
code_docs.append(doc)
|
||||||
|
else:
|
||||||
|
doc.metadata["is_code"] = False
|
||||||
|
text_docs.append(doc)
|
||||||
|
else:
|
||||||
|
doc.metadata["is_code"] = False
|
||||||
|
text_docs.append(doc)
|
||||||
|
|
||||||
|
logger.info(f"Detected {len(code_docs)} code files and {len(text_docs)} text files")
|
||||||
|
return code_docs, text_docs
|
||||||
|
|
||||||
|
|
||||||
|
def get_language_from_extension(file_path: str) -> Optional[str]:
|
||||||
|
"""Return language string from a filename/extension using CODE_EXTENSIONS."""
|
||||||
|
ext = Path(file_path).suffix.lower()
|
||||||
|
return CODE_EXTENSIONS.get(ext)
|
||||||
|
|
||||||
|
|
||||||
|
def create_ast_chunks(
|
||||||
|
documents,
|
||||||
|
max_chunk_size: int = 512,
|
||||||
|
chunk_overlap: int = 64,
|
||||||
|
metadata_template: str = "default",
|
||||||
|
) -> list[str]:
|
||||||
|
"""Create AST-aware chunks from code documents using astchunk.
|
||||||
|
|
||||||
|
Falls back to traditional chunking if astchunk is unavailable.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
from astchunk import ASTChunkBuilder # optional dependency
|
||||||
|
except ImportError as e:
|
||||||
|
logger.error(f"astchunk not available: {e}")
|
||||||
|
logger.info("Falling back to traditional chunking for code files")
|
||||||
|
return create_traditional_chunks(documents, max_chunk_size, chunk_overlap)
|
||||||
|
|
||||||
|
all_chunks = []
|
||||||
|
for doc in documents:
|
||||||
|
language = doc.metadata.get("language")
|
||||||
|
if not language:
|
||||||
|
logger.warning("No language detected; falling back to traditional chunking")
|
||||||
|
all_chunks.extend(create_traditional_chunks([doc], max_chunk_size, chunk_overlap))
|
||||||
|
continue
|
||||||
|
|
||||||
|
try:
|
||||||
|
configs = {
|
||||||
|
"max_chunk_size": max_chunk_size,
|
||||||
|
"language": language,
|
||||||
|
"metadata_template": metadata_template,
|
||||||
|
"chunk_overlap": chunk_overlap if chunk_overlap > 0 else 0,
|
||||||
|
}
|
||||||
|
|
||||||
|
repo_metadata = {
|
||||||
|
"file_path": doc.metadata.get("file_path", ""),
|
||||||
|
"file_name": doc.metadata.get("file_name", ""),
|
||||||
|
"creation_date": doc.metadata.get("creation_date", ""),
|
||||||
|
"last_modified_date": doc.metadata.get("last_modified_date", ""),
|
||||||
|
}
|
||||||
|
configs["repo_level_metadata"] = repo_metadata
|
||||||
|
|
||||||
|
chunk_builder = ASTChunkBuilder(**configs)
|
||||||
|
code_content = doc.get_content()
|
||||||
|
if not code_content or not code_content.strip():
|
||||||
|
logger.warning("Empty code content, skipping")
|
||||||
|
continue
|
||||||
|
|
||||||
|
chunks = chunk_builder.chunkify(code_content)
|
||||||
|
for chunk in chunks:
|
||||||
|
if hasattr(chunk, "text"):
|
||||||
|
chunk_text = chunk.text
|
||||||
|
elif isinstance(chunk, dict) and "text" in chunk:
|
||||||
|
chunk_text = chunk["text"]
|
||||||
|
elif isinstance(chunk, str):
|
||||||
|
chunk_text = chunk
|
||||||
|
else:
|
||||||
|
chunk_text = str(chunk)
|
||||||
|
|
||||||
|
if chunk_text and chunk_text.strip():
|
||||||
|
all_chunks.append(chunk_text.strip())
|
||||||
|
|
||||||
|
logger.info(
|
||||||
|
f"Created {len(chunks)} AST chunks from {language} file: {doc.metadata.get('file_name', 'unknown')}"
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"AST chunking failed for {language} file: {e}")
|
||||||
|
logger.info("Falling back to traditional chunking")
|
||||||
|
all_chunks.extend(create_traditional_chunks([doc], max_chunk_size, chunk_overlap))
|
||||||
|
|
||||||
|
return all_chunks
|
||||||
|
|
||||||
|
|
||||||
|
def create_traditional_chunks(
|
||||||
|
documents, chunk_size: int = 256, chunk_overlap: int = 128
|
||||||
|
) -> list[str]:
|
||||||
|
"""Create traditional text chunks using LlamaIndex SentenceSplitter."""
|
||||||
|
if chunk_size <= 0:
|
||||||
|
logger.warning(f"Invalid chunk_size={chunk_size}, using default value of 256")
|
||||||
|
chunk_size = 256
|
||||||
|
if chunk_overlap < 0:
|
||||||
|
chunk_overlap = 0
|
||||||
|
if chunk_overlap >= chunk_size:
|
||||||
|
chunk_overlap = chunk_size // 2
|
||||||
|
|
||||||
|
node_parser = SentenceSplitter(
|
||||||
|
chunk_size=chunk_size,
|
||||||
|
chunk_overlap=chunk_overlap,
|
||||||
|
separator=" ",
|
||||||
|
paragraph_separator="\n\n",
|
||||||
|
)
|
||||||
|
|
||||||
|
all_texts = []
|
||||||
|
for doc in documents:
|
||||||
|
try:
|
||||||
|
nodes = node_parser.get_nodes_from_documents([doc])
|
||||||
|
if nodes:
|
||||||
|
all_texts.extend(node.get_content() for node in nodes)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Traditional chunking failed for document: {e}")
|
||||||
|
content = doc.get_content()
|
||||||
|
if content and content.strip():
|
||||||
|
all_texts.append(content.strip())
|
||||||
|
|
||||||
|
return all_texts
|
||||||
|
|
||||||
|
|
||||||
|
def create_text_chunks(
|
||||||
|
documents,
|
||||||
|
chunk_size: int = 256,
|
||||||
|
chunk_overlap: int = 128,
|
||||||
|
use_ast_chunking: bool = False,
|
||||||
|
ast_chunk_size: int = 512,
|
||||||
|
ast_chunk_overlap: int = 64,
|
||||||
|
code_file_extensions: Optional[list[str]] = None,
|
||||||
|
ast_fallback_traditional: bool = True,
|
||||||
|
) -> list[str]:
|
||||||
|
"""Create text chunks from documents with optional AST support for code files."""
|
||||||
|
if not documents:
|
||||||
|
logger.warning("No documents provided for chunking")
|
||||||
|
return []
|
||||||
|
|
||||||
|
local_code_extensions = CODE_EXTENSIONS.copy()
|
||||||
|
if code_file_extensions:
|
||||||
|
ext_mapping = {
|
||||||
|
".py": "python",
|
||||||
|
".java": "java",
|
||||||
|
".cs": "c_sharp",
|
||||||
|
".ts": "typescript",
|
||||||
|
".tsx": "typescript",
|
||||||
|
}
|
||||||
|
for ext in code_file_extensions:
|
||||||
|
if ext.lower() not in local_code_extensions:
|
||||||
|
if ext.lower() in ext_mapping:
|
||||||
|
local_code_extensions[ext.lower()] = ext_mapping[ext.lower()]
|
||||||
|
else:
|
||||||
|
logger.warning(f"Unsupported extension {ext}, will use traditional chunking")
|
||||||
|
|
||||||
|
all_chunks = []
|
||||||
|
if use_ast_chunking:
|
||||||
|
code_docs, text_docs = detect_code_files(documents, local_code_extensions)
|
||||||
|
if code_docs:
|
||||||
|
try:
|
||||||
|
all_chunks.extend(
|
||||||
|
create_ast_chunks(
|
||||||
|
code_docs, max_chunk_size=ast_chunk_size, chunk_overlap=ast_chunk_overlap
|
||||||
|
)
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"AST chunking failed: {e}")
|
||||||
|
if ast_fallback_traditional:
|
||||||
|
all_chunks.extend(
|
||||||
|
create_traditional_chunks(code_docs, chunk_size, chunk_overlap)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise
|
||||||
|
if text_docs:
|
||||||
|
all_chunks.extend(create_traditional_chunks(text_docs, chunk_size, chunk_overlap))
|
||||||
|
else:
|
||||||
|
all_chunks = create_traditional_chunks(documents, chunk_size, chunk_overlap)
|
||||||
|
|
||||||
|
logger.info(f"Total chunks created: {len(all_chunks)}")
|
||||||
|
return all_chunks
|
||||||
File diff suppressed because it is too large
Load Diff
@@ -6,11 +6,14 @@ Preserves all optimization parameters to ensure performance
|
|||||||
|
|
||||||
import logging
|
import logging
|
||||||
import os
|
import os
|
||||||
from typing import Any
|
import time
|
||||||
|
from typing import Any, Optional
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
|
from .settings import resolve_ollama_host, resolve_openai_api_key, resolve_openai_base_url
|
||||||
|
|
||||||
# Set up logger with proper level
|
# Set up logger with proper level
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
LOG_LEVEL = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
|
LOG_LEVEL = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
|
||||||
@@ -28,6 +31,9 @@ def compute_embeddings(
|
|||||||
is_build: bool = False,
|
is_build: bool = False,
|
||||||
batch_size: int = 32,
|
batch_size: int = 32,
|
||||||
adaptive_optimization: bool = True,
|
adaptive_optimization: bool = True,
|
||||||
|
manual_tokenize: bool = False,
|
||||||
|
max_length: int = 512,
|
||||||
|
provider_options: Optional[dict[str, Any]] = None,
|
||||||
) -> np.ndarray:
|
) -> np.ndarray:
|
||||||
"""
|
"""
|
||||||
Unified embedding computation entry point
|
Unified embedding computation entry point
|
||||||
@@ -43,6 +49,8 @@ def compute_embeddings(
|
|||||||
Returns:
|
Returns:
|
||||||
Normalized embeddings array, shape: (len(texts), embedding_dim)
|
Normalized embeddings array, shape: (len(texts), embedding_dim)
|
||||||
"""
|
"""
|
||||||
|
provider_options = provider_options or {}
|
||||||
|
|
||||||
if mode == "sentence-transformers":
|
if mode == "sentence-transformers":
|
||||||
return compute_embeddings_sentence_transformers(
|
return compute_embeddings_sentence_transformers(
|
||||||
texts,
|
texts,
|
||||||
@@ -50,13 +58,27 @@ def compute_embeddings(
|
|||||||
is_build=is_build,
|
is_build=is_build,
|
||||||
batch_size=batch_size,
|
batch_size=batch_size,
|
||||||
adaptive_optimization=adaptive_optimization,
|
adaptive_optimization=adaptive_optimization,
|
||||||
|
manual_tokenize=manual_tokenize,
|
||||||
|
max_length=max_length,
|
||||||
)
|
)
|
||||||
elif mode == "openai":
|
elif mode == "openai":
|
||||||
return compute_embeddings_openai(texts, model_name)
|
return compute_embeddings_openai(
|
||||||
|
texts,
|
||||||
|
model_name,
|
||||||
|
base_url=provider_options.get("base_url"),
|
||||||
|
api_key=provider_options.get("api_key"),
|
||||||
|
)
|
||||||
elif mode == "mlx":
|
elif mode == "mlx":
|
||||||
return compute_embeddings_mlx(texts, model_name)
|
return compute_embeddings_mlx(texts, model_name)
|
||||||
elif mode == "ollama":
|
elif mode == "ollama":
|
||||||
return compute_embeddings_ollama(texts, model_name, is_build=is_build)
|
return compute_embeddings_ollama(
|
||||||
|
texts,
|
||||||
|
model_name,
|
||||||
|
is_build=is_build,
|
||||||
|
host=provider_options.get("host"),
|
||||||
|
)
|
||||||
|
elif mode == "gemini":
|
||||||
|
return compute_embeddings_gemini(texts, model_name, is_build=is_build)
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Unsupported embedding mode: {mode}")
|
raise ValueError(f"Unsupported embedding mode: {mode}")
|
||||||
|
|
||||||
@@ -69,6 +91,8 @@ def compute_embeddings_sentence_transformers(
|
|||||||
batch_size: int = 32,
|
batch_size: int = 32,
|
||||||
is_build: bool = False,
|
is_build: bool = False,
|
||||||
adaptive_optimization: bool = True,
|
adaptive_optimization: bool = True,
|
||||||
|
manual_tokenize: bool = False,
|
||||||
|
max_length: int = 512,
|
||||||
) -> np.ndarray:
|
) -> np.ndarray:
|
||||||
"""
|
"""
|
||||||
Compute embeddings using SentenceTransformer with model caching and adaptive optimization
|
Compute embeddings using SentenceTransformer with model caching and adaptive optimization
|
||||||
@@ -212,20 +236,130 @@ def compute_embeddings_sentence_transformers(
|
|||||||
logger.info(f"Model cached: {cache_key}")
|
logger.info(f"Model cached: {cache_key}")
|
||||||
|
|
||||||
# Compute embeddings with optimized inference mode
|
# Compute embeddings with optimized inference mode
|
||||||
logger.info(f"Starting embedding computation... (batch_size: {batch_size})")
|
logger.info(
|
||||||
|
f"Starting embedding computation... (batch_size: {batch_size}, manual_tokenize={manual_tokenize})"
|
||||||
|
)
|
||||||
|
|
||||||
# Use torch.inference_mode for optimal performance
|
start_time = time.time()
|
||||||
with torch.inference_mode():
|
if not manual_tokenize:
|
||||||
embeddings = model.encode(
|
# Use SentenceTransformer's optimized encode path (default)
|
||||||
texts,
|
with torch.inference_mode():
|
||||||
batch_size=batch_size,
|
embeddings = model.encode(
|
||||||
show_progress_bar=is_build, # Don't show progress bar in server environment
|
texts,
|
||||||
convert_to_numpy=True,
|
batch_size=batch_size,
|
||||||
normalize_embeddings=False,
|
show_progress_bar=is_build, # Don't show progress bar in server environment
|
||||||
device=device,
|
convert_to_numpy=True,
|
||||||
)
|
normalize_embeddings=False,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
# Synchronize if CUDA to measure accurate wall time
|
||||||
|
try:
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
torch.cuda.synchronize()
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
# Manual tokenization + forward pass using HF AutoTokenizer/AutoModel
|
||||||
|
try:
|
||||||
|
from transformers import AutoModel, AutoTokenizer # type: ignore
|
||||||
|
except Exception as e:
|
||||||
|
raise ImportError(f"transformers is required for manual_tokenize=True: {e}")
|
||||||
|
|
||||||
|
# Cache tokenizer and model
|
||||||
|
tok_cache_key = f"hf_tokenizer_{model_name}"
|
||||||
|
mdl_cache_key = f"hf_model_{model_name}_{device}_{use_fp16}"
|
||||||
|
if tok_cache_key in _model_cache and mdl_cache_key in _model_cache:
|
||||||
|
hf_tokenizer = _model_cache[tok_cache_key]
|
||||||
|
hf_model = _model_cache[mdl_cache_key]
|
||||||
|
logger.info("Using cached HF tokenizer/model for manual path")
|
||||||
|
else:
|
||||||
|
logger.info("Loading HF tokenizer/model for manual tokenization path")
|
||||||
|
hf_tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
||||||
|
torch_dtype = torch.float16 if (use_fp16 and device == "cuda") else torch.float32
|
||||||
|
hf_model = AutoModel.from_pretrained(model_name, torch_dtype=torch_dtype)
|
||||||
|
hf_model.to(device)
|
||||||
|
hf_model.eval()
|
||||||
|
# Optional compile on supported devices
|
||||||
|
if device in ["cuda", "mps"]:
|
||||||
|
try:
|
||||||
|
hf_model = torch.compile(hf_model, mode="reduce-overhead", dynamic=True) # type: ignore
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
_model_cache[tok_cache_key] = hf_tokenizer
|
||||||
|
_model_cache[mdl_cache_key] = hf_model
|
||||||
|
|
||||||
|
all_embeddings: list[np.ndarray] = []
|
||||||
|
# Progress bar when building or for large inputs
|
||||||
|
show_progress = is_build or len(texts) > 32
|
||||||
|
try:
|
||||||
|
if show_progress:
|
||||||
|
from tqdm import tqdm # type: ignore
|
||||||
|
|
||||||
|
batch_iter = tqdm(
|
||||||
|
range(0, len(texts), batch_size),
|
||||||
|
desc="Embedding (manual)",
|
||||||
|
unit="batch",
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
batch_iter = range(0, len(texts), batch_size)
|
||||||
|
except Exception:
|
||||||
|
batch_iter = range(0, len(texts), batch_size)
|
||||||
|
|
||||||
|
start_time_manual = time.time()
|
||||||
|
with torch.inference_mode():
|
||||||
|
for start_index in batch_iter:
|
||||||
|
end_index = min(start_index + batch_size, len(texts))
|
||||||
|
batch_texts = texts[start_index:end_index]
|
||||||
|
tokenize_start_time = time.time()
|
||||||
|
inputs = hf_tokenizer(
|
||||||
|
batch_texts,
|
||||||
|
padding=True,
|
||||||
|
truncation=True,
|
||||||
|
max_length=max_length,
|
||||||
|
return_tensors="pt",
|
||||||
|
)
|
||||||
|
tokenize_end_time = time.time()
|
||||||
|
logger.info(
|
||||||
|
f"Tokenize time taken: {tokenize_end_time - tokenize_start_time} seconds"
|
||||||
|
)
|
||||||
|
# Print shapes of all input tensors for debugging
|
||||||
|
for k, v in inputs.items():
|
||||||
|
print(f"inputs[{k!r}] shape: {getattr(v, 'shape', type(v))}")
|
||||||
|
to_device_start_time = time.time()
|
||||||
|
inputs = {k: v.to(device) for k, v in inputs.items()}
|
||||||
|
to_device_end_time = time.time()
|
||||||
|
logger.info(
|
||||||
|
f"To device time taken: {to_device_end_time - to_device_start_time} seconds"
|
||||||
|
)
|
||||||
|
forward_start_time = time.time()
|
||||||
|
outputs = hf_model(**inputs)
|
||||||
|
forward_end_time = time.time()
|
||||||
|
logger.info(f"Forward time taken: {forward_end_time - forward_start_time} seconds")
|
||||||
|
last_hidden_state = outputs.last_hidden_state # (B, L, H)
|
||||||
|
attention_mask = inputs.get("attention_mask")
|
||||||
|
if attention_mask is None:
|
||||||
|
# Fallback: assume all tokens are valid
|
||||||
|
pooled = last_hidden_state.mean(dim=1)
|
||||||
|
else:
|
||||||
|
mask = attention_mask.unsqueeze(-1).to(last_hidden_state.dtype)
|
||||||
|
masked = last_hidden_state * mask
|
||||||
|
lengths = mask.sum(dim=1).clamp(min=1)
|
||||||
|
pooled = masked.sum(dim=1) / lengths
|
||||||
|
# Move to CPU float32
|
||||||
|
batch_embeddings = pooled.detach().to("cpu").float().numpy()
|
||||||
|
all_embeddings.append(batch_embeddings)
|
||||||
|
|
||||||
|
embeddings = np.vstack(all_embeddings).astype(np.float32, copy=False)
|
||||||
|
try:
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
torch.cuda.synchronize()
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
end_time = time.time()
|
||||||
|
logger.info(f"Manual tokenize time taken: {end_time - start_time_manual} seconds")
|
||||||
|
end_time = time.time()
|
||||||
logger.info(f"Generated {len(embeddings)} embeddings, dimension: {embeddings.shape[1]}")
|
logger.info(f"Generated {len(embeddings)} embeddings, dimension: {embeddings.shape[1]}")
|
||||||
|
logger.info(f"Time taken: {end_time - start_time} seconds")
|
||||||
|
|
||||||
# Validate results
|
# Validate results
|
||||||
if np.isnan(embeddings).any() or np.isinf(embeddings).any():
|
if np.isnan(embeddings).any() or np.isinf(embeddings).any():
|
||||||
@@ -234,26 +368,41 @@ def compute_embeddings_sentence_transformers(
|
|||||||
return embeddings
|
return embeddings
|
||||||
|
|
||||||
|
|
||||||
def compute_embeddings_openai(texts: list[str], model_name: str) -> np.ndarray:
|
def compute_embeddings_openai(
|
||||||
|
texts: list[str],
|
||||||
|
model_name: str,
|
||||||
|
base_url: Optional[str] = None,
|
||||||
|
api_key: Optional[str] = None,
|
||||||
|
) -> np.ndarray:
|
||||||
# TODO: @yichuan-w add progress bar only in build mode
|
# TODO: @yichuan-w add progress bar only in build mode
|
||||||
"""Compute embeddings using OpenAI API"""
|
"""Compute embeddings using OpenAI API"""
|
||||||
try:
|
try:
|
||||||
import os
|
|
||||||
|
|
||||||
import openai
|
import openai
|
||||||
except ImportError as e:
|
except ImportError as e:
|
||||||
raise ImportError(f"OpenAI package not installed: {e}")
|
raise ImportError(f"OpenAI package not installed: {e}")
|
||||||
|
|
||||||
api_key = os.getenv("OPENAI_API_KEY")
|
# Validate input list
|
||||||
if not api_key:
|
if not texts:
|
||||||
|
raise ValueError("Cannot compute embeddings for empty text list")
|
||||||
|
# Extra validation: abort early if any item is empty/whitespace
|
||||||
|
invalid_count = sum(1 for t in texts if not isinstance(t, str) or not t.strip())
|
||||||
|
if invalid_count > 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"Found {invalid_count} empty/invalid text(s) in input. Upstream should filter before calling OpenAI."
|
||||||
|
)
|
||||||
|
|
||||||
|
resolved_base_url = resolve_openai_base_url(base_url)
|
||||||
|
resolved_api_key = resolve_openai_api_key(api_key)
|
||||||
|
|
||||||
|
if not resolved_api_key:
|
||||||
raise RuntimeError("OPENAI_API_KEY environment variable not set")
|
raise RuntimeError("OPENAI_API_KEY environment variable not set")
|
||||||
|
|
||||||
# Cache OpenAI client
|
# Cache OpenAI client
|
||||||
cache_key = "openai_client"
|
cache_key = f"openai_client::{resolved_base_url}"
|
||||||
if cache_key in _model_cache:
|
if cache_key in _model_cache:
|
||||||
client = _model_cache[cache_key]
|
client = _model_cache[cache_key]
|
||||||
else:
|
else:
|
||||||
client = openai.OpenAI(api_key=api_key)
|
client = openai.OpenAI(api_key=resolved_api_key, base_url=resolved_base_url)
|
||||||
_model_cache[cache_key] = client
|
_model_cache[cache_key] = client
|
||||||
logger.info("OpenAI client cached")
|
logger.info("OpenAI client cached")
|
||||||
|
|
||||||
@@ -263,8 +412,16 @@ def compute_embeddings_openai(texts: list[str], model_name: str) -> np.ndarray:
|
|||||||
print(f"len of texts: {len(texts)}")
|
print(f"len of texts: {len(texts)}")
|
||||||
|
|
||||||
# OpenAI has limits on batch size and input length
|
# OpenAI has limits on batch size and input length
|
||||||
max_batch_size = 1000 # Conservative batch size
|
max_batch_size = 800 # Conservative batch size because the token limit is 300K
|
||||||
all_embeddings = []
|
all_embeddings = []
|
||||||
|
# get the avg len of texts
|
||||||
|
avg_len = sum(len(text) for text in texts) / len(texts)
|
||||||
|
print(f"avg len of texts: {avg_len}")
|
||||||
|
# if avg len is less than 1000, use the max batch size
|
||||||
|
if avg_len > 300:
|
||||||
|
max_batch_size = 500
|
||||||
|
|
||||||
|
# if avg len is less than 1000, use the max batch size
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
@@ -370,7 +527,10 @@ def compute_embeddings_mlx(chunks: list[str], model_name: str, batch_size: int =
|
|||||||
|
|
||||||
|
|
||||||
def compute_embeddings_ollama(
|
def compute_embeddings_ollama(
|
||||||
texts: list[str], model_name: str, is_build: bool = False, host: str = "http://localhost:11434"
|
texts: list[str],
|
||||||
|
model_name: str,
|
||||||
|
is_build: bool = False,
|
||||||
|
host: Optional[str] = None,
|
||||||
) -> np.ndarray:
|
) -> np.ndarray:
|
||||||
"""
|
"""
|
||||||
Compute embeddings using Ollama API with simplified batch processing.
|
Compute embeddings using Ollama API with simplified batch processing.
|
||||||
@@ -381,7 +541,7 @@ def compute_embeddings_ollama(
|
|||||||
texts: List of texts to compute embeddings for
|
texts: List of texts to compute embeddings for
|
||||||
model_name: Ollama model name (e.g., "nomic-embed-text", "mxbai-embed-large")
|
model_name: Ollama model name (e.g., "nomic-embed-text", "mxbai-embed-large")
|
||||||
is_build: Whether this is a build operation (shows progress bar)
|
is_build: Whether this is a build operation (shows progress bar)
|
||||||
host: Ollama host URL (default: http://localhost:11434)
|
host: Ollama host URL (defaults to environment or http://localhost:11434)
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Normalized embeddings array, shape: (len(texts), embedding_dim)
|
Normalized embeddings array, shape: (len(texts), embedding_dim)
|
||||||
@@ -396,17 +556,19 @@ def compute_embeddings_ollama(
|
|||||||
if not texts:
|
if not texts:
|
||||||
raise ValueError("Cannot compute embeddings for empty text list")
|
raise ValueError("Cannot compute embeddings for empty text list")
|
||||||
|
|
||||||
|
resolved_host = resolve_ollama_host(host)
|
||||||
|
|
||||||
logger.info(
|
logger.info(
|
||||||
f"Computing embeddings for {len(texts)} texts using Ollama API, model: '{model_name}'"
|
f"Computing embeddings for {len(texts)} texts using Ollama API, model: '{model_name}', host: '{resolved_host}'"
|
||||||
)
|
)
|
||||||
|
|
||||||
# Check if Ollama is running
|
# Check if Ollama is running
|
||||||
try:
|
try:
|
||||||
response = requests.get(f"{host}/api/version", timeout=5)
|
response = requests.get(f"{resolved_host}/api/version", timeout=5)
|
||||||
response.raise_for_status()
|
response.raise_for_status()
|
||||||
except requests.exceptions.ConnectionError:
|
except requests.exceptions.ConnectionError:
|
||||||
error_msg = (
|
error_msg = (
|
||||||
f"❌ Could not connect to Ollama at {host}.\n\n"
|
f"❌ Could not connect to Ollama at {resolved_host}.\n\n"
|
||||||
"Please ensure Ollama is running:\n"
|
"Please ensure Ollama is running:\n"
|
||||||
" • macOS/Linux: ollama serve\n"
|
" • macOS/Linux: ollama serve\n"
|
||||||
" • Windows: Make sure Ollama is running in the system tray\n\n"
|
" • Windows: Make sure Ollama is running in the system tray\n\n"
|
||||||
@@ -418,7 +580,7 @@ def compute_embeddings_ollama(
|
|||||||
|
|
||||||
# Check if model exists and provide helpful suggestions
|
# Check if model exists and provide helpful suggestions
|
||||||
try:
|
try:
|
||||||
response = requests.get(f"{host}/api/tags", timeout=5)
|
response = requests.get(f"{resolved_host}/api/tags", timeout=5)
|
||||||
response.raise_for_status()
|
response.raise_for_status()
|
||||||
models = response.json()
|
models = response.json()
|
||||||
model_names = [model["name"] for model in models.get("models", [])]
|
model_names = [model["name"] for model in models.get("models", [])]
|
||||||
@@ -481,7 +643,9 @@ def compute_embeddings_ollama(
|
|||||||
# Verify the model supports embeddings by testing it
|
# Verify the model supports embeddings by testing it
|
||||||
try:
|
try:
|
||||||
test_response = requests.post(
|
test_response = requests.post(
|
||||||
f"{host}/api/embeddings", json={"model": model_name, "prompt": "test"}, timeout=10
|
f"{resolved_host}/api/embeddings",
|
||||||
|
json={"model": model_name, "prompt": "test"},
|
||||||
|
timeout=10,
|
||||||
)
|
)
|
||||||
if test_response.status_code != 200:
|
if test_response.status_code != 200:
|
||||||
error_msg = (
|
error_msg = (
|
||||||
@@ -528,7 +692,7 @@ def compute_embeddings_ollama(
|
|||||||
while retry_count < max_retries:
|
while retry_count < max_retries:
|
||||||
try:
|
try:
|
||||||
response = requests.post(
|
response = requests.post(
|
||||||
f"{host}/api/embeddings",
|
f"{resolved_host}/api/embeddings",
|
||||||
json={"model": model_name, "prompt": truncated_text},
|
json={"model": model_name, "prompt": truncated_text},
|
||||||
timeout=30,
|
timeout=30,
|
||||||
)
|
)
|
||||||
@@ -650,3 +814,83 @@ def compute_embeddings_ollama(
|
|||||||
logger.info(f"Generated {len(embeddings)} embeddings, dimension: {embeddings.shape[1]}")
|
logger.info(f"Generated {len(embeddings)} embeddings, dimension: {embeddings.shape[1]}")
|
||||||
|
|
||||||
return embeddings
|
return embeddings
|
||||||
|
|
||||||
|
|
||||||
|
def compute_embeddings_gemini(
|
||||||
|
texts: list[str], model_name: str = "text-embedding-004", is_build: bool = False
|
||||||
|
) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Compute embeddings using Google Gemini API.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
texts: List of texts to compute embeddings for
|
||||||
|
model_name: Gemini model name (default: "text-embedding-004")
|
||||||
|
is_build: Whether this is a build operation (shows progress bar)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Embeddings array, shape: (len(texts), embedding_dim)
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
import os
|
||||||
|
|
||||||
|
import google.genai as genai
|
||||||
|
except ImportError as e:
|
||||||
|
raise ImportError(f"Google GenAI package not installed: {e}")
|
||||||
|
|
||||||
|
api_key = os.getenv("GEMINI_API_KEY")
|
||||||
|
if not api_key:
|
||||||
|
raise RuntimeError("GEMINI_API_KEY environment variable not set")
|
||||||
|
|
||||||
|
# Cache Gemini client
|
||||||
|
cache_key = "gemini_client"
|
||||||
|
if cache_key in _model_cache:
|
||||||
|
client = _model_cache[cache_key]
|
||||||
|
else:
|
||||||
|
client = genai.Client(api_key=api_key)
|
||||||
|
_model_cache[cache_key] = client
|
||||||
|
logger.info("Gemini client cached")
|
||||||
|
|
||||||
|
logger.info(
|
||||||
|
f"Computing embeddings for {len(texts)} texts using Gemini API, model: '{model_name}'"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Gemini supports batch embedding
|
||||||
|
max_batch_size = 100 # Conservative batch size for Gemini
|
||||||
|
all_embeddings = []
|
||||||
|
|
||||||
|
try:
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
total_batches = (len(texts) + max_batch_size - 1) // max_batch_size
|
||||||
|
batch_range = range(0, len(texts), max_batch_size)
|
||||||
|
batch_iterator = tqdm(
|
||||||
|
batch_range, desc="Computing embeddings", unit="batch", total=total_batches
|
||||||
|
)
|
||||||
|
except ImportError:
|
||||||
|
# Fallback when tqdm is not available
|
||||||
|
batch_iterator = range(0, len(texts), max_batch_size)
|
||||||
|
|
||||||
|
for i in batch_iterator:
|
||||||
|
batch_texts = texts[i : i + max_batch_size]
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Use the embed_content method from the new Google GenAI SDK
|
||||||
|
response = client.models.embed_content(
|
||||||
|
model=model_name,
|
||||||
|
contents=batch_texts,
|
||||||
|
config=genai.types.EmbedContentConfig(
|
||||||
|
task_type="RETRIEVAL_DOCUMENT" # For document embedding
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Extract embeddings from response
|
||||||
|
for embedding_data in response.embeddings:
|
||||||
|
all_embeddings.append(embedding_data.values)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Batch {i} failed: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
embeddings = np.array(all_embeddings, dtype=np.float32)
|
||||||
|
logger.info(f"Generated {len(embeddings)} embeddings, dimension: {embeddings.shape[1]}")
|
||||||
|
|
||||||
|
return embeddings
|
||||||
|
|||||||
@@ -8,6 +8,8 @@ import time
|
|||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
|
||||||
|
from .settings import encode_provider_options
|
||||||
|
|
||||||
# Lightweight, self-contained server manager with no cross-process inspection
|
# Lightweight, self-contained server manager with no cross-process inspection
|
||||||
|
|
||||||
# Set up logging based on environment variable
|
# Set up logging based on environment variable
|
||||||
@@ -82,16 +84,40 @@ class EmbeddingServerManager:
|
|||||||
) -> tuple[bool, int]:
|
) -> tuple[bool, int]:
|
||||||
"""Start the embedding server."""
|
"""Start the embedding server."""
|
||||||
# passages_file may be present in kwargs for server CLI, but we don't need it here
|
# passages_file may be present in kwargs for server CLI, but we don't need it here
|
||||||
|
provider_options = kwargs.pop("provider_options", None)
|
||||||
|
|
||||||
|
config_signature = {
|
||||||
|
"model_name": model_name,
|
||||||
|
"passages_file": kwargs.get("passages_file", ""),
|
||||||
|
"embedding_mode": embedding_mode,
|
||||||
|
"provider_options": provider_options or {},
|
||||||
|
}
|
||||||
|
|
||||||
# If this manager already has a live server, just reuse it
|
# If this manager already has a live server, just reuse it
|
||||||
if self.server_process and self.server_process.poll() is None and self.server_port:
|
if (
|
||||||
|
self.server_process
|
||||||
|
and self.server_process.poll() is None
|
||||||
|
and self.server_port
|
||||||
|
and self._server_config == config_signature
|
||||||
|
):
|
||||||
logger.info("Reusing in-process server")
|
logger.info("Reusing in-process server")
|
||||||
return True, self.server_port
|
return True, self.server_port
|
||||||
|
|
||||||
|
# Configuration changed, stop existing server before starting a new one
|
||||||
|
if self.server_process and self.server_process.poll() is None:
|
||||||
|
logger.info("Existing server configuration differs; restarting embedding server")
|
||||||
|
self.stop_server()
|
||||||
|
|
||||||
# For Colab environment, use a different strategy
|
# For Colab environment, use a different strategy
|
||||||
if _is_colab_environment():
|
if _is_colab_environment():
|
||||||
logger.info("Detected Colab environment, using alternative startup strategy")
|
logger.info("Detected Colab environment, using alternative startup strategy")
|
||||||
return self._start_server_colab(port, model_name, embedding_mode, **kwargs)
|
return self._start_server_colab(
|
||||||
|
port,
|
||||||
|
model_name,
|
||||||
|
embedding_mode,
|
||||||
|
provider_options=provider_options,
|
||||||
|
**kwargs,
|
||||||
|
)
|
||||||
|
|
||||||
# Always pick a fresh available port
|
# Always pick a fresh available port
|
||||||
try:
|
try:
|
||||||
@@ -101,13 +127,21 @@ class EmbeddingServerManager:
|
|||||||
return False, port
|
return False, port
|
||||||
|
|
||||||
# Start a new server
|
# Start a new server
|
||||||
return self._start_new_server(actual_port, model_name, embedding_mode, **kwargs)
|
return self._start_new_server(
|
||||||
|
actual_port,
|
||||||
|
model_name,
|
||||||
|
embedding_mode,
|
||||||
|
provider_options=provider_options,
|
||||||
|
config_signature=config_signature,
|
||||||
|
**kwargs,
|
||||||
|
)
|
||||||
|
|
||||||
def _start_server_colab(
|
def _start_server_colab(
|
||||||
self,
|
self,
|
||||||
port: int,
|
port: int,
|
||||||
model_name: str,
|
model_name: str,
|
||||||
embedding_mode: str = "sentence-transformers",
|
embedding_mode: str = "sentence-transformers",
|
||||||
|
provider_options: Optional[dict] = None,
|
||||||
**kwargs,
|
**kwargs,
|
||||||
) -> tuple[bool, int]:
|
) -> tuple[bool, int]:
|
||||||
"""Start server with Colab-specific configuration."""
|
"""Start server with Colab-specific configuration."""
|
||||||
@@ -125,8 +159,20 @@ class EmbeddingServerManager:
|
|||||||
|
|
||||||
try:
|
try:
|
||||||
# In Colab, we'll use a more direct approach
|
# In Colab, we'll use a more direct approach
|
||||||
self._launch_server_process_colab(command, actual_port)
|
self._launch_server_process_colab(
|
||||||
return self._wait_for_server_ready_colab(actual_port)
|
command,
|
||||||
|
actual_port,
|
||||||
|
provider_options=provider_options,
|
||||||
|
)
|
||||||
|
started, ready_port = self._wait_for_server_ready_colab(actual_port)
|
||||||
|
if started:
|
||||||
|
self._server_config = {
|
||||||
|
"model_name": model_name,
|
||||||
|
"passages_file": kwargs.get("passages_file", ""),
|
||||||
|
"embedding_mode": embedding_mode,
|
||||||
|
"provider_options": provider_options or {},
|
||||||
|
}
|
||||||
|
return started, ready_port
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Failed to start embedding server in Colab: {e}")
|
logger.error(f"Failed to start embedding server in Colab: {e}")
|
||||||
return False, actual_port
|
return False, actual_port
|
||||||
@@ -134,7 +180,13 @@ class EmbeddingServerManager:
|
|||||||
# Note: No compatibility check needed; manager is per-searcher and configs are stable per instance
|
# Note: No compatibility check needed; manager is per-searcher and configs are stable per instance
|
||||||
|
|
||||||
def _start_new_server(
|
def _start_new_server(
|
||||||
self, port: int, model_name: str, embedding_mode: str, **kwargs
|
self,
|
||||||
|
port: int,
|
||||||
|
model_name: str,
|
||||||
|
embedding_mode: str,
|
||||||
|
provider_options: Optional[dict] = None,
|
||||||
|
config_signature: Optional[dict] = None,
|
||||||
|
**kwargs,
|
||||||
) -> tuple[bool, int]:
|
) -> tuple[bool, int]:
|
||||||
"""Start a new embedding server on the given port."""
|
"""Start a new embedding server on the given port."""
|
||||||
logger.info(f"Starting embedding server on port {port}...")
|
logger.info(f"Starting embedding server on port {port}...")
|
||||||
@@ -142,8 +194,20 @@ class EmbeddingServerManager:
|
|||||||
command = self._build_server_command(port, model_name, embedding_mode, **kwargs)
|
command = self._build_server_command(port, model_name, embedding_mode, **kwargs)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
self._launch_server_process(command, port)
|
self._launch_server_process(
|
||||||
return self._wait_for_server_ready(port)
|
command,
|
||||||
|
port,
|
||||||
|
provider_options=provider_options,
|
||||||
|
)
|
||||||
|
started, ready_port = self._wait_for_server_ready(port)
|
||||||
|
if started:
|
||||||
|
self._server_config = config_signature or {
|
||||||
|
"model_name": model_name,
|
||||||
|
"passages_file": kwargs.get("passages_file", ""),
|
||||||
|
"embedding_mode": embedding_mode,
|
||||||
|
"provider_options": provider_options or {},
|
||||||
|
}
|
||||||
|
return started, ready_port
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Failed to start embedding server: {e}")
|
logger.error(f"Failed to start embedding server: {e}")
|
||||||
return False, port
|
return False, port
|
||||||
@@ -173,7 +237,12 @@ class EmbeddingServerManager:
|
|||||||
|
|
||||||
return command
|
return command
|
||||||
|
|
||||||
def _launch_server_process(self, command: list, port: int) -> None:
|
def _launch_server_process(
|
||||||
|
self,
|
||||||
|
command: list,
|
||||||
|
port: int,
|
||||||
|
provider_options: Optional[dict] = None,
|
||||||
|
) -> None:
|
||||||
"""Launch the server process."""
|
"""Launch the server process."""
|
||||||
project_root = Path(__file__).parent.parent.parent.parent.parent
|
project_root = Path(__file__).parent.parent.parent.parent.parent
|
||||||
logger.info(f"Command: {' '.join(command)}")
|
logger.info(f"Command: {' '.join(command)}")
|
||||||
@@ -192,14 +261,21 @@ class EmbeddingServerManager:
|
|||||||
stderr_target = None # Direct to console for visible logs
|
stderr_target = None # Direct to console for visible logs
|
||||||
|
|
||||||
# Start embedding server subprocess
|
# Start embedding server subprocess
|
||||||
|
logger.info(f"Starting server process with command: {' '.join(command)}")
|
||||||
|
env = os.environ.copy()
|
||||||
|
encoded_options = encode_provider_options(provider_options)
|
||||||
|
if encoded_options:
|
||||||
|
env["LEANN_EMBEDDING_OPTIONS"] = encoded_options
|
||||||
|
|
||||||
self.server_process = subprocess.Popen(
|
self.server_process = subprocess.Popen(
|
||||||
command,
|
command,
|
||||||
cwd=project_root,
|
cwd=project_root,
|
||||||
stdout=stdout_target,
|
stdout=stdout_target,
|
||||||
stderr=stderr_target,
|
stderr=stderr_target,
|
||||||
|
env=env,
|
||||||
)
|
)
|
||||||
self.server_port = port
|
self.server_port = port
|
||||||
# Record config for in-process reuse
|
# Record config for in-process reuse (best effort; refined later when ready)
|
||||||
try:
|
try:
|
||||||
self._server_config = {
|
self._server_config = {
|
||||||
"model_name": command[command.index("--model-name") + 1]
|
"model_name": command[command.index("--model-name") + 1]
|
||||||
@@ -211,12 +287,14 @@ class EmbeddingServerManager:
|
|||||||
"embedding_mode": command[command.index("--embedding-mode") + 1]
|
"embedding_mode": command[command.index("--embedding-mode") + 1]
|
||||||
if "--embedding-mode" in command
|
if "--embedding-mode" in command
|
||||||
else "sentence-transformers",
|
else "sentence-transformers",
|
||||||
|
"provider_options": provider_options or {},
|
||||||
}
|
}
|
||||||
except Exception:
|
except Exception:
|
||||||
self._server_config = {
|
self._server_config = {
|
||||||
"model_name": "",
|
"model_name": "",
|
||||||
"passages_file": "",
|
"passages_file": "",
|
||||||
"embedding_mode": "sentence-transformers",
|
"embedding_mode": "sentence-transformers",
|
||||||
|
"provider_options": provider_options or {},
|
||||||
}
|
}
|
||||||
logger.info(f"Server process started with PID: {self.server_process.pid}")
|
logger.info(f"Server process started with PID: {self.server_process.pid}")
|
||||||
|
|
||||||
@@ -321,16 +399,27 @@ class EmbeddingServerManager:
|
|||||||
# Removed: cross-process adoption no longer supported
|
# Removed: cross-process adoption no longer supported
|
||||||
return
|
return
|
||||||
|
|
||||||
def _launch_server_process_colab(self, command: list, port: int) -> None:
|
def _launch_server_process_colab(
|
||||||
|
self,
|
||||||
|
command: list,
|
||||||
|
port: int,
|
||||||
|
provider_options: Optional[dict] = None,
|
||||||
|
) -> None:
|
||||||
"""Launch the server process with Colab-specific settings."""
|
"""Launch the server process with Colab-specific settings."""
|
||||||
logger.info(f"Colab Command: {' '.join(command)}")
|
logger.info(f"Colab Command: {' '.join(command)}")
|
||||||
|
|
||||||
# In Colab, we need to be more careful about process management
|
# In Colab, we need to be more careful about process management
|
||||||
|
env = os.environ.copy()
|
||||||
|
encoded_options = encode_provider_options(provider_options)
|
||||||
|
if encoded_options:
|
||||||
|
env["LEANN_EMBEDDING_OPTIONS"] = encoded_options
|
||||||
|
|
||||||
self.server_process = subprocess.Popen(
|
self.server_process = subprocess.Popen(
|
||||||
command,
|
command,
|
||||||
stdout=subprocess.PIPE,
|
stdout=subprocess.PIPE,
|
||||||
stderr=subprocess.PIPE,
|
stderr=subprocess.PIPE,
|
||||||
text=True,
|
text=True,
|
||||||
|
env=env,
|
||||||
)
|
)
|
||||||
self.server_port = port
|
self.server_port = port
|
||||||
logger.info(f"Colab server process started with PID: {self.server_process.pid}")
|
logger.info(f"Colab server process started with PID: {self.server_process.pid}")
|
||||||
@@ -344,6 +433,7 @@ class EmbeddingServerManager:
|
|||||||
"model_name": "",
|
"model_name": "",
|
||||||
"passages_file": "",
|
"passages_file": "",
|
||||||
"embedding_mode": "sentence-transformers",
|
"embedding_mode": "sentence-transformers",
|
||||||
|
"provider_options": provider_options or {},
|
||||||
}
|
}
|
||||||
|
|
||||||
def _wait_for_server_ready_colab(self, port: int) -> tuple[bool, int]:
|
def _wait_for_server_ready_colab(self, port: int) -> tuple[bool, int]:
|
||||||
|
|||||||
@@ -64,19 +64,6 @@ def handle_request(request):
|
|||||||
"required": ["index_name", "query"],
|
"required": ["index_name", "query"],
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
{
|
|
||||||
"name": "leann_status",
|
|
||||||
"description": "📊 Check the health and stats of your code indexes - like a medical checkup for your codebase knowledge!",
|
|
||||||
"inputSchema": {
|
|
||||||
"type": "object",
|
|
||||||
"properties": {
|
|
||||||
"index_name": {
|
|
||||||
"type": "string",
|
|
||||||
"description": "Optional: Name of specific index to check. If not provided, shows status of all indexes.",
|
|
||||||
}
|
|
||||||
},
|
|
||||||
},
|
|
||||||
},
|
|
||||||
{
|
{
|
||||||
"name": "leann_list",
|
"name": "leann_list",
|
||||||
"description": "📋 Show all your indexed codebases - your personal code library! Use this to see what's available for search.",
|
"description": "📋 Show all your indexed codebases - your personal code library! Use this to see what's available for search.",
|
||||||
@@ -107,7 +94,7 @@ def handle_request(request):
|
|||||||
},
|
},
|
||||||
}
|
}
|
||||||
|
|
||||||
# Build simplified command
|
# Build simplified command with non-interactive flag for MCP compatibility
|
||||||
cmd = [
|
cmd = [
|
||||||
"leann",
|
"leann",
|
||||||
"search",
|
"search",
|
||||||
@@ -115,18 +102,10 @@ def handle_request(request):
|
|||||||
args["query"],
|
args["query"],
|
||||||
f"--top-k={args.get('top_k', 5)}",
|
f"--top-k={args.get('top_k', 5)}",
|
||||||
f"--complexity={args.get('complexity', 32)}",
|
f"--complexity={args.get('complexity', 32)}",
|
||||||
|
"--non-interactive",
|
||||||
]
|
]
|
||||||
result = subprocess.run(cmd, capture_output=True, text=True)
|
result = subprocess.run(cmd, capture_output=True, text=True)
|
||||||
|
|
||||||
elif tool_name == "leann_status":
|
|
||||||
if args.get("index_name"):
|
|
||||||
# Check specific index status - for now, we'll use leann list and filter
|
|
||||||
result = subprocess.run(["leann", "list"], capture_output=True, text=True)
|
|
||||||
# We could enhance this to show more detailed status per index
|
|
||||||
else:
|
|
||||||
# Show all indexes status
|
|
||||||
result = subprocess.run(["leann", "list"], capture_output=True, text=True)
|
|
||||||
|
|
||||||
elif tool_name == "leann_list":
|
elif tool_name == "leann_list":
|
||||||
result = subprocess.run(["leann", "list"], capture_output=True, text=True)
|
result = subprocess.run(["leann", "list"], capture_output=True, text=True)
|
||||||
|
|
||||||
|
|||||||
240
packages/leann-core/src/leann/metadata_filter.py
Normal file
240
packages/leann-core/src/leann/metadata_filter.py
Normal file
@@ -0,0 +1,240 @@
|
|||||||
|
"""
|
||||||
|
Metadata filtering engine for LEANN search results.
|
||||||
|
|
||||||
|
This module provides generic metadata filtering capabilities that can be applied
|
||||||
|
to search results from any LEANN backend. The filtering supports various
|
||||||
|
operators for different data types including numbers, strings, booleans, and lists.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import logging
|
||||||
|
from typing import Any, Union
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
# Type alias for filter specifications
|
||||||
|
FilterValue = Union[str, int, float, bool, list]
|
||||||
|
FilterSpec = dict[str, FilterValue]
|
||||||
|
MetadataFilters = dict[str, FilterSpec]
|
||||||
|
|
||||||
|
|
||||||
|
class MetadataFilterEngine:
|
||||||
|
"""
|
||||||
|
Engine for evaluating metadata filters against search results.
|
||||||
|
|
||||||
|
Supports various operators for filtering based on metadata fields:
|
||||||
|
- Comparison: ==, !=, <, <=, >, >=
|
||||||
|
- Membership: in, not_in
|
||||||
|
- String operations: contains, starts_with, ends_with
|
||||||
|
- Boolean operations: is_true, is_false
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
"""Initialize the filter engine with supported operators."""
|
||||||
|
self.operators = {
|
||||||
|
"==": self._equals,
|
||||||
|
"!=": self._not_equals,
|
||||||
|
"<": self._less_than,
|
||||||
|
"<=": self._less_than_or_equal,
|
||||||
|
">": self._greater_than,
|
||||||
|
">=": self._greater_than_or_equal,
|
||||||
|
"in": self._in,
|
||||||
|
"not_in": self._not_in,
|
||||||
|
"contains": self._contains,
|
||||||
|
"starts_with": self._starts_with,
|
||||||
|
"ends_with": self._ends_with,
|
||||||
|
"is_true": self._is_true,
|
||||||
|
"is_false": self._is_false,
|
||||||
|
}
|
||||||
|
|
||||||
|
def apply_filters(
|
||||||
|
self, search_results: list[dict[str, Any]], metadata_filters: MetadataFilters
|
||||||
|
) -> list[dict[str, Any]]:
|
||||||
|
"""
|
||||||
|
Apply metadata filters to a list of search results.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
search_results: List of result dictionaries, each containing 'metadata' field
|
||||||
|
metadata_filters: Dictionary of filter specifications
|
||||||
|
Format: {"field_name": {"operator": value}}
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Filtered list of search results
|
||||||
|
"""
|
||||||
|
if not metadata_filters:
|
||||||
|
return search_results
|
||||||
|
|
||||||
|
logger.debug(f"Applying filters: {metadata_filters}")
|
||||||
|
logger.debug(f"Input results count: {len(search_results)}")
|
||||||
|
|
||||||
|
filtered_results = []
|
||||||
|
for result in search_results:
|
||||||
|
if self._evaluate_filters(result, metadata_filters):
|
||||||
|
filtered_results.append(result)
|
||||||
|
|
||||||
|
logger.debug(f"Filtered results count: {len(filtered_results)}")
|
||||||
|
return filtered_results
|
||||||
|
|
||||||
|
def _evaluate_filters(self, result: dict[str, Any], filters: MetadataFilters) -> bool:
|
||||||
|
"""
|
||||||
|
Evaluate all filters against a single search result.
|
||||||
|
|
||||||
|
All filters must pass (AND logic) for the result to be included.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
result: Full search result dictionary (including metadata, text, etc.)
|
||||||
|
filters: Filter specifications to evaluate
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
True if all filters pass, False otherwise
|
||||||
|
"""
|
||||||
|
for field_name, filter_spec in filters.items():
|
||||||
|
if not self._evaluate_field_filter(result, field_name, filter_spec):
|
||||||
|
return False
|
||||||
|
return True
|
||||||
|
|
||||||
|
def _evaluate_field_filter(
|
||||||
|
self, result: dict[str, Any], field_name: str, filter_spec: FilterSpec
|
||||||
|
) -> bool:
|
||||||
|
"""
|
||||||
|
Evaluate a single field filter against a search result.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
result: Full search result dictionary
|
||||||
|
field_name: Name of the field to filter on
|
||||||
|
filter_spec: Filter specification for this field
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
True if the filter passes, False otherwise
|
||||||
|
"""
|
||||||
|
# First check top-level fields, then check metadata
|
||||||
|
field_value = result.get(field_name)
|
||||||
|
if field_value is None:
|
||||||
|
# Try to get from metadata if not found at top level
|
||||||
|
metadata = result.get("metadata", {})
|
||||||
|
field_value = metadata.get(field_name)
|
||||||
|
|
||||||
|
# Handle missing fields - they fail all filters except existence checks
|
||||||
|
if field_value is None:
|
||||||
|
logger.debug(f"Field '{field_name}' not found in result or metadata")
|
||||||
|
return False
|
||||||
|
|
||||||
|
# Evaluate each operator in the filter spec
|
||||||
|
for operator, expected_value in filter_spec.items():
|
||||||
|
if operator not in self.operators:
|
||||||
|
logger.warning(f"Unsupported operator: {operator}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
try:
|
||||||
|
if not self.operators[operator](field_value, expected_value):
|
||||||
|
logger.debug(
|
||||||
|
f"Filter failed: {field_name} {operator} {expected_value} "
|
||||||
|
f"(actual: {field_value})"
|
||||||
|
)
|
||||||
|
return False
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(
|
||||||
|
f"Error evaluating filter {field_name} {operator} {expected_value}: {e}"
|
||||||
|
)
|
||||||
|
return False
|
||||||
|
|
||||||
|
return True
|
||||||
|
|
||||||
|
# Comparison operators
|
||||||
|
def _equals(self, field_value: Any, expected_value: Any) -> bool:
|
||||||
|
"""Check if field value equals expected value."""
|
||||||
|
return field_value == expected_value
|
||||||
|
|
||||||
|
def _not_equals(self, field_value: Any, expected_value: Any) -> bool:
|
||||||
|
"""Check if field value does not equal expected value."""
|
||||||
|
return field_value != expected_value
|
||||||
|
|
||||||
|
def _less_than(self, field_value: Any, expected_value: Any) -> bool:
|
||||||
|
"""Check if field value is less than expected value."""
|
||||||
|
return self._numeric_compare(field_value, expected_value, lambda a, b: a < b)
|
||||||
|
|
||||||
|
def _less_than_or_equal(self, field_value: Any, expected_value: Any) -> bool:
|
||||||
|
"""Check if field value is less than or equal to expected value."""
|
||||||
|
return self._numeric_compare(field_value, expected_value, lambda a, b: a <= b)
|
||||||
|
|
||||||
|
def _greater_than(self, field_value: Any, expected_value: Any) -> bool:
|
||||||
|
"""Check if field value is greater than expected value."""
|
||||||
|
return self._numeric_compare(field_value, expected_value, lambda a, b: a > b)
|
||||||
|
|
||||||
|
def _greater_than_or_equal(self, field_value: Any, expected_value: Any) -> bool:
|
||||||
|
"""Check if field value is greater than or equal to expected value."""
|
||||||
|
return self._numeric_compare(field_value, expected_value, lambda a, b: a >= b)
|
||||||
|
|
||||||
|
# Membership operators
|
||||||
|
def _in(self, field_value: Any, expected_value: Any) -> bool:
|
||||||
|
"""Check if field value is in the expected list/collection."""
|
||||||
|
if not isinstance(expected_value, (list, tuple, set)):
|
||||||
|
raise ValueError("'in' operator requires a list, tuple, or set")
|
||||||
|
return field_value in expected_value
|
||||||
|
|
||||||
|
def _not_in(self, field_value: Any, expected_value: Any) -> bool:
|
||||||
|
"""Check if field value is not in the expected list/collection."""
|
||||||
|
if not isinstance(expected_value, (list, tuple, set)):
|
||||||
|
raise ValueError("'not_in' operator requires a list, tuple, or set")
|
||||||
|
return field_value not in expected_value
|
||||||
|
|
||||||
|
# String operators
|
||||||
|
def _contains(self, field_value: Any, expected_value: Any) -> bool:
|
||||||
|
"""Check if field value contains the expected substring."""
|
||||||
|
field_str = str(field_value)
|
||||||
|
expected_str = str(expected_value)
|
||||||
|
return expected_str in field_str
|
||||||
|
|
||||||
|
def _starts_with(self, field_value: Any, expected_value: Any) -> bool:
|
||||||
|
"""Check if field value starts with the expected prefix."""
|
||||||
|
field_str = str(field_value)
|
||||||
|
expected_str = str(expected_value)
|
||||||
|
return field_str.startswith(expected_str)
|
||||||
|
|
||||||
|
def _ends_with(self, field_value: Any, expected_value: Any) -> bool:
|
||||||
|
"""Check if field value ends with the expected suffix."""
|
||||||
|
field_str = str(field_value)
|
||||||
|
expected_str = str(expected_value)
|
||||||
|
return field_str.endswith(expected_str)
|
||||||
|
|
||||||
|
# Boolean operators
|
||||||
|
def _is_true(self, field_value: Any, expected_value: Any) -> bool:
|
||||||
|
"""Check if field value is truthy."""
|
||||||
|
return bool(field_value)
|
||||||
|
|
||||||
|
def _is_false(self, field_value: Any, expected_value: Any) -> bool:
|
||||||
|
"""Check if field value is falsy."""
|
||||||
|
return not bool(field_value)
|
||||||
|
|
||||||
|
# Helper methods
|
||||||
|
def _numeric_compare(self, field_value: Any, expected_value: Any, compare_func) -> bool:
|
||||||
|
"""
|
||||||
|
Helper for numeric comparisons with type coercion.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
field_value: Value from metadata
|
||||||
|
expected_value: Value to compare against
|
||||||
|
compare_func: Comparison function to apply
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Result of comparison
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
# Try to convert both values to numbers for comparison
|
||||||
|
if isinstance(field_value, str) and isinstance(expected_value, str):
|
||||||
|
# String comparison if both are strings
|
||||||
|
return compare_func(field_value, expected_value)
|
||||||
|
|
||||||
|
# Numeric comparison - attempt to convert to float
|
||||||
|
field_num = (
|
||||||
|
float(field_value) if not isinstance(field_value, (int, float)) else field_value
|
||||||
|
)
|
||||||
|
expected_num = (
|
||||||
|
float(expected_value)
|
||||||
|
if not isinstance(expected_value, (int, float))
|
||||||
|
else expected_value
|
||||||
|
)
|
||||||
|
|
||||||
|
return compare_func(field_num, expected_num)
|
||||||
|
except (ValueError, TypeError):
|
||||||
|
# Fall back to string comparison if numeric conversion fails
|
||||||
|
return compare_func(str(field_value), str(expected_value))
|
||||||
@@ -2,11 +2,17 @@
|
|||||||
|
|
||||||
import importlib
|
import importlib
|
||||||
import importlib.metadata
|
import importlib.metadata
|
||||||
from typing import TYPE_CHECKING
|
import json
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import TYPE_CHECKING, Optional, Union
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
from leann.interface import LeannBackendFactoryInterface
|
from leann.interface import LeannBackendFactoryInterface
|
||||||
|
|
||||||
|
# Set up logger for this module
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
BACKEND_REGISTRY: dict[str, "LeannBackendFactoryInterface"] = {}
|
BACKEND_REGISTRY: dict[str, "LeannBackendFactoryInterface"] = {}
|
||||||
|
|
||||||
|
|
||||||
@@ -14,7 +20,7 @@ def register_backend(name: str):
|
|||||||
"""A decorator to register a new backend class."""
|
"""A decorator to register a new backend class."""
|
||||||
|
|
||||||
def decorator(cls):
|
def decorator(cls):
|
||||||
print(f"INFO: Registering backend '{name}'")
|
logger.debug(f"Registering backend '{name}'")
|
||||||
BACKEND_REGISTRY[name] = cls
|
BACKEND_REGISTRY[name] = cls
|
||||||
return cls
|
return cls
|
||||||
|
|
||||||
@@ -39,3 +45,54 @@ def autodiscover_backends():
|
|||||||
# print(f"WARN: Could not import backend module '{backend_module_name}': {e}")
|
# print(f"WARN: Could not import backend module '{backend_module_name}': {e}")
|
||||||
pass
|
pass
|
||||||
# print("INFO: Backend auto-discovery finished.")
|
# print("INFO: Backend auto-discovery finished.")
|
||||||
|
|
||||||
|
|
||||||
|
def register_project_directory(project_dir: Optional[Union[str, Path]] = None):
|
||||||
|
"""
|
||||||
|
Register a project directory in the global LEANN registry.
|
||||||
|
|
||||||
|
This allows `leann list` to discover indexes created by apps or other tools.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
project_dir: Directory to register. If None, uses current working directory.
|
||||||
|
"""
|
||||||
|
if project_dir is None:
|
||||||
|
project_dir = Path.cwd()
|
||||||
|
else:
|
||||||
|
project_dir = Path(project_dir)
|
||||||
|
|
||||||
|
# Only register directories that have some kind of LEANN content
|
||||||
|
# Either .leann/indexes/ (CLI format) or *.leann.meta.json files (apps format)
|
||||||
|
has_cli_indexes = (project_dir / ".leann" / "indexes").exists()
|
||||||
|
has_app_indexes = any(project_dir.rglob("*.leann.meta.json"))
|
||||||
|
|
||||||
|
if not (has_cli_indexes or has_app_indexes):
|
||||||
|
# Don't register if there are no LEANN indexes
|
||||||
|
return
|
||||||
|
|
||||||
|
global_registry = Path.home() / ".leann" / "projects.json"
|
||||||
|
global_registry.parent.mkdir(exist_ok=True)
|
||||||
|
|
||||||
|
project_str = str(project_dir.resolve())
|
||||||
|
|
||||||
|
# Load existing registry
|
||||||
|
projects = []
|
||||||
|
if global_registry.exists():
|
||||||
|
try:
|
||||||
|
with open(global_registry) as f:
|
||||||
|
projects = json.load(f)
|
||||||
|
except Exception:
|
||||||
|
logger.debug("Could not load existing project registry")
|
||||||
|
projects = []
|
||||||
|
|
||||||
|
# Add project if not already present
|
||||||
|
if project_str not in projects:
|
||||||
|
projects.append(project_str)
|
||||||
|
|
||||||
|
# Save updated registry
|
||||||
|
try:
|
||||||
|
with open(global_registry, "w") as f:
|
||||||
|
json.dump(projects, f, indent=2)
|
||||||
|
logger.debug(f"Registered project directory: {project_str}")
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"Could not save project registry: {e}")
|
||||||
|
|||||||
@@ -41,6 +41,7 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
|
|||||||
print("WARNING: embedding_model not found in meta.json. Recompute will fail.")
|
print("WARNING: embedding_model not found in meta.json. Recompute will fail.")
|
||||||
|
|
||||||
self.embedding_mode = self.meta.get("embedding_mode", "sentence-transformers")
|
self.embedding_mode = self.meta.get("embedding_mode", "sentence-transformers")
|
||||||
|
self.embedding_options = self.meta.get("embedding_options", {})
|
||||||
|
|
||||||
self.embedding_server_manager = EmbeddingServerManager(
|
self.embedding_server_manager = EmbeddingServerManager(
|
||||||
backend_module_name=backend_module_name,
|
backend_module_name=backend_module_name,
|
||||||
@@ -77,6 +78,7 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
|
|||||||
passages_file=passages_source_file,
|
passages_file=passages_source_file,
|
||||||
distance_metric=distance_metric,
|
distance_metric=distance_metric,
|
||||||
enable_warmup=kwargs.get("enable_warmup", False),
|
enable_warmup=kwargs.get("enable_warmup", False),
|
||||||
|
provider_options=self.embedding_options,
|
||||||
)
|
)
|
||||||
if not server_started:
|
if not server_started:
|
||||||
raise RuntimeError(f"Failed to start embedding server on port {actual_port}")
|
raise RuntimeError(f"Failed to start embedding server on port {actual_port}")
|
||||||
@@ -125,7 +127,12 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
|
|||||||
from .embedding_compute import compute_embeddings
|
from .embedding_compute import compute_embeddings
|
||||||
|
|
||||||
embedding_mode = self.meta.get("embedding_mode", "sentence-transformers")
|
embedding_mode = self.meta.get("embedding_mode", "sentence-transformers")
|
||||||
return compute_embeddings([query], self.embedding_model, embedding_mode)
|
return compute_embeddings(
|
||||||
|
[query],
|
||||||
|
self.embedding_model,
|
||||||
|
embedding_mode,
|
||||||
|
provider_options=self.embedding_options,
|
||||||
|
)
|
||||||
|
|
||||||
def _compute_embedding_via_server(self, chunks: list, zmq_port: int) -> np.ndarray:
|
def _compute_embedding_via_server(self, chunks: list, zmq_port: int) -> np.ndarray:
|
||||||
"""Compute embeddings using the ZMQ embedding server."""
|
"""Compute embeddings using the ZMQ embedding server."""
|
||||||
|
|||||||
74
packages/leann-core/src/leann/settings.py
Normal file
74
packages/leann-core/src/leann/settings.py
Normal file
@@ -0,0 +1,74 @@
|
|||||||
|
"""Runtime configuration helpers for LEANN."""
|
||||||
|
|
||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
|
# Default fallbacks to preserve current behaviour while keeping them in one place.
|
||||||
|
_DEFAULT_OLLAMA_HOST = "http://localhost:11434"
|
||||||
|
_DEFAULT_OPENAI_BASE_URL = "https://api.openai.com/v1"
|
||||||
|
|
||||||
|
|
||||||
|
def _clean_url(value: str) -> str:
|
||||||
|
"""Normalize URL strings by stripping trailing slashes."""
|
||||||
|
|
||||||
|
return value.rstrip("/") if value else value
|
||||||
|
|
||||||
|
|
||||||
|
def resolve_ollama_host(explicit: str | None = None) -> str:
|
||||||
|
"""Resolve the Ollama-compatible endpoint to use."""
|
||||||
|
|
||||||
|
candidates = (
|
||||||
|
explicit,
|
||||||
|
os.getenv("LEANN_LOCAL_LLM_HOST"),
|
||||||
|
os.getenv("LEANN_OLLAMA_HOST"),
|
||||||
|
os.getenv("OLLAMA_HOST"),
|
||||||
|
os.getenv("LOCAL_LLM_ENDPOINT"),
|
||||||
|
)
|
||||||
|
|
||||||
|
for candidate in candidates:
|
||||||
|
if candidate:
|
||||||
|
return _clean_url(candidate)
|
||||||
|
|
||||||
|
return _clean_url(_DEFAULT_OLLAMA_HOST)
|
||||||
|
|
||||||
|
|
||||||
|
def resolve_openai_base_url(explicit: str | None = None) -> str:
|
||||||
|
"""Resolve the base URL for OpenAI-compatible services."""
|
||||||
|
|
||||||
|
candidates = (
|
||||||
|
explicit,
|
||||||
|
os.getenv("LEANN_OPENAI_BASE_URL"),
|
||||||
|
os.getenv("OPENAI_BASE_URL"),
|
||||||
|
os.getenv("LOCAL_OPENAI_BASE_URL"),
|
||||||
|
)
|
||||||
|
|
||||||
|
for candidate in candidates:
|
||||||
|
if candidate:
|
||||||
|
return _clean_url(candidate)
|
||||||
|
|
||||||
|
return _clean_url(_DEFAULT_OPENAI_BASE_URL)
|
||||||
|
|
||||||
|
|
||||||
|
def resolve_openai_api_key(explicit: str | None = None) -> str | None:
|
||||||
|
"""Resolve the API key for OpenAI-compatible services."""
|
||||||
|
|
||||||
|
if explicit:
|
||||||
|
return explicit
|
||||||
|
|
||||||
|
return os.getenv("OPENAI_API_KEY")
|
||||||
|
|
||||||
|
|
||||||
|
def encode_provider_options(options: dict[str, Any] | None) -> str | None:
|
||||||
|
"""Serialize provider options for child processes."""
|
||||||
|
|
||||||
|
if not options:
|
||||||
|
return None
|
||||||
|
|
||||||
|
try:
|
||||||
|
return json.dumps(options)
|
||||||
|
except (TypeError, ValueError):
|
||||||
|
# Fall back to empty payload if serialization fails
|
||||||
|
return None
|
||||||
@@ -2,6 +2,8 @@
|
|||||||
|
|
||||||
Transform your development workflow with intelligent code assistance using LEANN's semantic search directly in Claude Code.
|
Transform your development workflow with intelligent code assistance using LEANN's semantic search directly in Claude Code.
|
||||||
|
|
||||||
|
For agent-facing discovery details, see `llms.txt` in the repository root.
|
||||||
|
|
||||||
## Prerequisites
|
## Prerequisites
|
||||||
|
|
||||||
Install LEANN globally for MCP integration (with default backend):
|
Install LEANN globally for MCP integration (with default backend):
|
||||||
@@ -13,10 +15,20 @@ This installs the `leann` CLI into an isolated tool environment and includes bot
|
|||||||
|
|
||||||
## 🚀 Quick Setup
|
## 🚀 Quick Setup
|
||||||
|
|
||||||
Add the LEANN MCP server to Claude Code:
|
Add the LEANN MCP server to Claude Code. Choose the scope based on how widely you want it available. Below is the command to install it globally; if you prefer a local install, skip this step:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
claude mcp add leann-server -- leann_mcp
|
# Global (recommended): available in all projects for your user
|
||||||
|
claude mcp add --scope user leann-server -- leann_mcp
|
||||||
|
```
|
||||||
|
|
||||||
|
- `leann-server`: the display name of the MCP server in Claude Code (you can change it).
|
||||||
|
- `leann_mcp`: the Python entry point installed with LEANN that starts the MCP server.
|
||||||
|
|
||||||
|
Verify it is registered globally:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
claude mcp list | cat
|
||||||
```
|
```
|
||||||
|
|
||||||
## 🛠️ Available Tools
|
## 🛠️ Available Tools
|
||||||
@@ -25,27 +37,36 @@ Once connected, you'll have access to these powerful semantic search tools in Cl
|
|||||||
|
|
||||||
- **`leann_list`** - List all available indexes across your projects
|
- **`leann_list`** - List all available indexes across your projects
|
||||||
- **`leann_search`** - Perform semantic searches across code and documents
|
- **`leann_search`** - Perform semantic searches across code and documents
|
||||||
- **`leann_ask`** - Ask natural language questions and get AI-powered answers from your codebase
|
|
||||||
|
|
||||||
## 🎯 Quick Start Example
|
## 🎯 Quick Start Example
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
|
# Add locally if you did not add it globally (current folder only; default if --scope is omitted)
|
||||||
|
claude mcp add leann-server -- leann_mcp
|
||||||
|
|
||||||
# Build an index for your project (change to your actual path)
|
# Build an index for your project (change to your actual path)
|
||||||
leann build my-project --docs ./
|
# See the advanced examples below for more ways to configure indexing
|
||||||
|
# Set the index name (replace 'my-project' with your own)
|
||||||
|
leann build my-project --docs $(git ls-files)
|
||||||
|
|
||||||
# Start Claude Code
|
# Start Claude Code
|
||||||
claude
|
claude
|
||||||
```
|
```
|
||||||
|
|
||||||
## 🚀 Advanced Usage Examples
|
## 🚀 Advanced Usage Examples to build the index
|
||||||
|
|
||||||
### Index Entire Git Repository
|
### Index Entire Git Repository
|
||||||
```bash
|
```bash
|
||||||
# Index all tracked files in your git repository, note right now we will skip submodules, but we can add it back easily if you want
|
# Index all tracked files in your Git repository.
|
||||||
|
# Note: submodules are currently skipped; we can add them back if needed.
|
||||||
leann build my-repo --docs $(git ls-files) --embedding-mode sentence-transformers --embedding-model all-MiniLM-L6-v2 --backend hnsw
|
leann build my-repo --docs $(git ls-files) --embedding-mode sentence-transformers --embedding-model all-MiniLM-L6-v2 --backend hnsw
|
||||||
|
|
||||||
# Index only specific file types from git
|
# Index only tracked Python files from Git.
|
||||||
leann build my-python-code --docs $(git ls-files "*.py") --embedding-mode sentence-transformers --embedding-model all-MiniLM-L6-v2 --backend hnsw
|
leann build my-python-code --docs $(git ls-files "*.py") --embedding-mode sentence-transformers --embedding-model all-MiniLM-L6-v2 --backend hnsw
|
||||||
|
|
||||||
|
# If you encounter empty requests caused by empty files (e.g., __init__.py), exclude zero-byte files. Thanks @ww2283 for pointing [that](https://github.com/yichuan-w/LEANN/issues/48) out
|
||||||
|
leann build leann-prospec-lig --docs $(find ./src -name "*.py" -not -empty) --embedding-mode openai --embedding-model text-embedding-3-small
|
||||||
```
|
```
|
||||||
|
|
||||||
### Multiple Directories and Files
|
### Multiple Directories and Files
|
||||||
@@ -73,7 +94,7 @@ leann build docs-and-configs --docs $(git ls-files "*.md" "*.yml" "*.yaml" "*.js
|
|||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
**Try this in Claude Code:**
|
## **Try this in Claude Code:**
|
||||||
```
|
```
|
||||||
Help me understand this codebase. List available indexes and search for authentication patterns.
|
Help me understand this codebase. List available indexes and search for authentication patterns.
|
||||||
```
|
```
|
||||||
@@ -82,6 +103,7 @@ Help me understand this codebase. List available indexes and search for authenti
|
|||||||
<img src="../../assets/claude_code_leann.png" alt="LEANN in Claude Code" width="80%">
|
<img src="../../assets/claude_code_leann.png" alt="LEANN in Claude Code" width="80%">
|
||||||
</p>
|
</p>
|
||||||
|
|
||||||
|
If you see a prompt asking whether to proceed with LEANN, you can now use it in your chat!
|
||||||
|
|
||||||
## 🧠 How It Works
|
## 🧠 How It Works
|
||||||
|
|
||||||
@@ -117,3 +139,11 @@ To remove LEANN
|
|||||||
```
|
```
|
||||||
uv pip uninstall leann leann-backend-hnsw leann-core
|
uv pip uninstall leann leann-backend-hnsw leann-core
|
||||||
```
|
```
|
||||||
|
|
||||||
|
To globally remove LEANN (for version update)
|
||||||
|
```
|
||||||
|
uv tool list | cat
|
||||||
|
uv tool uninstall leann-core
|
||||||
|
command -v leann || echo "leann gone"
|
||||||
|
command -v leann_mcp || echo "leann_mcp gone"
|
||||||
|
```
|
||||||
|
|||||||
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
|||||||
|
|
||||||
[project]
|
[project]
|
||||||
name = "leann"
|
name = "leann"
|
||||||
version = "0.2.9"
|
version = "0.3.4"
|
||||||
description = "LEANN - The smallest vector index in the world. RAG Everything with LEANN!"
|
description = "LEANN - The smallest vector index in the world. RAG Everything with LEANN!"
|
||||||
readme = "README.md"
|
readme = "README.md"
|
||||||
requires-python = ">=3.9"
|
requires-python = ">=3.9"
|
||||||
|
|||||||
1
packages/wechat-exporter/__init__.py
Normal file
1
packages/wechat-exporter/__init__.py
Normal file
@@ -0,0 +1 @@
|
|||||||
|
__all__ = []
|
||||||
@@ -136,5 +136,9 @@ def export_sqlite(
|
|||||||
connection.commit()
|
connection.commit()
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
def main():
|
||||||
app()
|
app()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
|
|||||||
@@ -10,11 +10,10 @@ requires-python = ">=3.9"
|
|||||||
dependencies = [
|
dependencies = [
|
||||||
"leann-core",
|
"leann-core",
|
||||||
"leann-backend-hnsw",
|
"leann-backend-hnsw",
|
||||||
|
"typer>=0.12.3",
|
||||||
"numpy>=1.26.0",
|
"numpy>=1.26.0",
|
||||||
"torch",
|
"torch",
|
||||||
"tqdm",
|
"tqdm",
|
||||||
"flask",
|
|
||||||
"flask_compress",
|
|
||||||
"datasets>=2.15.0",
|
"datasets>=2.15.0",
|
||||||
"evaluate",
|
"evaluate",
|
||||||
"colorama",
|
"colorama",
|
||||||
@@ -47,29 +46,17 @@ dependencies = [
|
|||||||
"pathspec>=0.12.1",
|
"pathspec>=0.12.1",
|
||||||
"nbconvert>=7.16.6",
|
"nbconvert>=7.16.6",
|
||||||
"gitignore-parser>=0.1.12",
|
"gitignore-parser>=0.1.12",
|
||||||
|
# AST-aware code chunking dependencies
|
||||||
|
"astchunk>=0.1.0",
|
||||||
|
"tree-sitter>=0.20.0",
|
||||||
|
"tree-sitter-python>=0.20.0",
|
||||||
|
"tree-sitter-java>=0.20.0",
|
||||||
|
"tree-sitter-c-sharp>=0.20.0",
|
||||||
|
"tree-sitter-typescript>=0.20.0",
|
||||||
|
"torchvision>=0.23.0",
|
||||||
]
|
]
|
||||||
|
|
||||||
[project.optional-dependencies]
|
[project.optional-dependencies]
|
||||||
dev = [
|
|
||||||
"pytest>=7.0",
|
|
||||||
"pytest-cov>=4.0",
|
|
||||||
"pytest-xdist>=3.0", # For parallel test execution
|
|
||||||
"black>=23.0",
|
|
||||||
"ruff==0.12.7", # Fixed version to ensure consistent formatting across all environments
|
|
||||||
"matplotlib",
|
|
||||||
"huggingface-hub>=0.20.0",
|
|
||||||
"pre-commit>=3.5.0",
|
|
||||||
]
|
|
||||||
|
|
||||||
test = [
|
|
||||||
"pytest>=7.0",
|
|
||||||
"pytest-timeout>=2.0",
|
|
||||||
"llama-index-core>=0.12.0",
|
|
||||||
"llama-index-readers-file>=0.4.0",
|
|
||||||
"python-dotenv>=1.0.0",
|
|
||||||
"sentence-transformers>=2.2.0",
|
|
||||||
]
|
|
||||||
|
|
||||||
diskann = [
|
diskann = [
|
||||||
"leann-backend-diskann",
|
"leann-backend-diskann",
|
||||||
]
|
]
|
||||||
@@ -84,24 +71,51 @@ documents = [
|
|||||||
|
|
||||||
[tool.setuptools]
|
[tool.setuptools]
|
||||||
py-modules = []
|
py-modules = []
|
||||||
|
packages = ["wechat_exporter"]
|
||||||
|
package-dir = { "wechat_exporter" = "packages/wechat-exporter" }
|
||||||
|
|
||||||
|
[project.scripts]
|
||||||
|
wechat-exporter = "wechat_exporter.main:main"
|
||||||
|
|
||||||
|
|
||||||
[tool.uv.sources]
|
[tool.uv.sources]
|
||||||
leann-core = { path = "packages/leann-core", editable = true }
|
leann-core = { path = "packages/leann-core", editable = true }
|
||||||
leann-backend-diskann = { path = "packages/leann-backend-diskann", editable = true }
|
leann-backend-diskann = { path = "packages/leann-backend-diskann", editable = true }
|
||||||
leann-backend-hnsw = { path = "packages/leann-backend-hnsw", editable = true }
|
leann-backend-hnsw = { path = "packages/leann-backend-hnsw", editable = true }
|
||||||
|
astchunk = { path = "packages/astchunk-leann", editable = true }
|
||||||
|
|
||||||
|
[dependency-groups]
|
||||||
|
# Minimal lint toolchain for CI and local hooks
|
||||||
|
lint = [
|
||||||
|
"pre-commit>=3.5.0",
|
||||||
|
"ruff==0.12.7", # Fixed version to ensure consistent formatting across all environments
|
||||||
|
]
|
||||||
|
|
||||||
|
# Test toolchain (no heavy project runtime deps)
|
||||||
|
test = [
|
||||||
|
"pytest>=7.0",
|
||||||
|
"pytest-cov>=4.0",
|
||||||
|
"pytest-xdist>=3.0",
|
||||||
|
"pytest-timeout>=2.0",
|
||||||
|
"python-dotenv>=1.0.0",
|
||||||
|
]
|
||||||
|
|
||||||
|
# dependencies by apps/ should list here
|
||||||
|
dev = [
|
||||||
|
"matplotlib",
|
||||||
|
"huggingface-hub>=0.20.0",
|
||||||
|
]
|
||||||
|
|
||||||
[tool.ruff]
|
[tool.ruff]
|
||||||
target-version = "py39"
|
target-version = "py39"
|
||||||
line-length = 100
|
line-length = 100
|
||||||
extend-exclude = [
|
extend-exclude = [
|
||||||
"third_party",
|
"third_party",
|
||||||
"*.egg-info",
|
"apps/multimodal/vision-based-pdf-multi-vector/multi-vector-leann.py",
|
||||||
"__pycache__",
|
"apps/multimodal/vision-based-pdf-multi-vector/multi-vector-leann-similarity-map.py"
|
||||||
".git",
|
|
||||||
".venv",
|
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
[tool.ruff.lint]
|
[tool.ruff.lint]
|
||||||
select = [
|
select = [
|
||||||
"E", # pycodestyle errors
|
"E", # pycodestyle errors
|
||||||
@@ -123,21 +137,12 @@ ignore = [
|
|||||||
"RUF012", # mutable class attributes should be annotated with typing.ClassVar
|
"RUF012", # mutable class attributes should be annotated with typing.ClassVar
|
||||||
]
|
]
|
||||||
|
|
||||||
[tool.ruff.lint.per-file-ignores]
|
|
||||||
"test/**/*.py" = ["E402"] # module level import not at top of file (common in tests)
|
|
||||||
"examples/**/*.py" = ["E402"] # module level import not at top of file (common in examples)
|
|
||||||
|
|
||||||
[tool.ruff.format]
|
[tool.ruff.format]
|
||||||
quote-style = "double"
|
quote-style = "double"
|
||||||
indent-style = "space"
|
indent-style = "space"
|
||||||
skip-magic-trailing-comma = false
|
skip-magic-trailing-comma = false
|
||||||
line-ending = "auto"
|
line-ending = "auto"
|
||||||
|
|
||||||
[dependency-groups]
|
|
||||||
dev = [
|
|
||||||
"ruff>=0.12.4",
|
|
||||||
]
|
|
||||||
|
|
||||||
[tool.lychee]
|
[tool.lychee]
|
||||||
accept = ["200", "403", "429", "503"]
|
accept = ["200", "403", "429", "503"]
|
||||||
timeout = 20
|
timeout = 20
|
||||||
|
|||||||
121
scripts/hf_upload.py
Normal file
121
scripts/hf_upload.py
Normal file
@@ -0,0 +1,121 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
"""
|
||||||
|
Upload local evaluation data to Hugging Face Hub, excluding diskann_rpj_wiki.
|
||||||
|
|
||||||
|
Defaults:
|
||||||
|
- repo_id: LEANN-RAG/leann-rag-evaluation-data (dataset)
|
||||||
|
- folder_path: benchmarks/data
|
||||||
|
- ignore_patterns: diskann_rpj_wiki/** and .cache/**
|
||||||
|
|
||||||
|
Requires authentication via `huggingface-cli login` or HF_TOKEN env var.
|
||||||
|
"""
|
||||||
|
|
||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
|
||||||
|
try:
|
||||||
|
from huggingface_hub import HfApi
|
||||||
|
except Exception as e:
|
||||||
|
raise SystemExit(
|
||||||
|
"huggingface_hub is required. Install with: pip install huggingface_hub hf_transfer"
|
||||||
|
) from e
|
||||||
|
|
||||||
|
|
||||||
|
def _enable_transfer_accel_if_available() -> None:
|
||||||
|
"""Best-effort enabling of accelerated transfers across hub versions.
|
||||||
|
|
||||||
|
Tries the public util if present; otherwise, falls back to env flag when
|
||||||
|
hf_transfer is installed. Silently no-ops if unavailable.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
# Newer huggingface_hub exposes this under utils
|
||||||
|
from huggingface_hub.utils import hf_hub_enable_hf_transfer # type: ignore
|
||||||
|
|
||||||
|
hf_hub_enable_hf_transfer()
|
||||||
|
return
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
|
||||||
|
try:
|
||||||
|
# If hf_transfer is installed, set env flag recognized by the hub
|
||||||
|
import hf_transfer # noqa: F401
|
||||||
|
|
||||||
|
os.environ.setdefault("HF_HUB_ENABLE_HF_TRANSFER", "1")
|
||||||
|
except Exception:
|
||||||
|
# Acceleration not available; proceed without it
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
def parse_args() -> argparse.Namespace:
|
||||||
|
p = argparse.ArgumentParser(description="Upload local data to HF, excluding diskann_rpj_wiki")
|
||||||
|
p.add_argument(
|
||||||
|
"--repo-id",
|
||||||
|
default="LEANN-RAG/leann-rag-evaluation-data",
|
||||||
|
help="Target dataset repo id (namespace/name)",
|
||||||
|
)
|
||||||
|
p.add_argument(
|
||||||
|
"--folder-path",
|
||||||
|
default="benchmarks/data",
|
||||||
|
help="Local folder to upload (default: benchmarks/data)",
|
||||||
|
)
|
||||||
|
p.add_argument(
|
||||||
|
"--ignore",
|
||||||
|
default=["diskann_rpj_wiki/**", ".cache/**"],
|
||||||
|
nargs="+",
|
||||||
|
help="Glob patterns to ignore (space-separated)",
|
||||||
|
)
|
||||||
|
p.add_argument(
|
||||||
|
"--allow",
|
||||||
|
default=["**"],
|
||||||
|
nargs="+",
|
||||||
|
help="Glob patterns to allow (space-separated). Defaults to everything.",
|
||||||
|
)
|
||||||
|
p.add_argument(
|
||||||
|
"--message",
|
||||||
|
default="sync local data (exclude diskann_rpj_wiki)",
|
||||||
|
help="Commit message",
|
||||||
|
)
|
||||||
|
p.add_argument(
|
||||||
|
"--no-transfer-accel",
|
||||||
|
action="store_true",
|
||||||
|
help="Disable hf_transfer accelerated uploads",
|
||||||
|
)
|
||||||
|
return p.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def main() -> None:
|
||||||
|
args = parse_args()
|
||||||
|
|
||||||
|
if not args.no_transfer_accel:
|
||||||
|
_enable_transfer_accel_if_available()
|
||||||
|
|
||||||
|
if not os.path.isdir(args.folder_path):
|
||||||
|
raise SystemExit(f"Folder not found: {args.folder_path}")
|
||||||
|
|
||||||
|
print("Uploading to Hugging Face Hub:")
|
||||||
|
print(f" repo_id: {args.repo_id}")
|
||||||
|
print(" repo_type: dataset")
|
||||||
|
print(f" folder_path: {args.folder_path}")
|
||||||
|
print(f" allow_patterns: {args.allow}")
|
||||||
|
print(f" ignore_patterns:{args.ignore}")
|
||||||
|
|
||||||
|
api = HfApi()
|
||||||
|
|
||||||
|
# Perform upload. This skips unchanged files by content hash.
|
||||||
|
api.upload_folder(
|
||||||
|
repo_id=args.repo_id,
|
||||||
|
repo_type="dataset",
|
||||||
|
folder_path=args.folder_path,
|
||||||
|
path_in_repo=".",
|
||||||
|
allow_patterns=args.allow,
|
||||||
|
ignore_patterns=args.ignore,
|
||||||
|
commit_message=args.message,
|
||||||
|
)
|
||||||
|
|
||||||
|
print("Upload completed (unchanged files were skipped by the Hub).")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
@@ -40,8 +40,8 @@ Tests DiskANN graph partitioning functionality:
|
|||||||
|
|
||||||
### Install test dependencies:
|
### Install test dependencies:
|
||||||
```bash
|
```bash
|
||||||
# Using extras
|
# Using uv dependency groups (tools only)
|
||||||
uv pip install -e ".[test]"
|
uv sync --only-group test
|
||||||
```
|
```
|
||||||
|
|
||||||
### Run all tests:
|
### Run all tests:
|
||||||
|
|||||||
397
tests/test_astchunk_integration.py
Normal file
397
tests/test_astchunk_integration.py
Normal file
@@ -0,0 +1,397 @@
|
|||||||
|
"""
|
||||||
|
Test suite for astchunk integration with LEANN.
|
||||||
|
Tests AST-aware chunking functionality, language detection, and fallback mechanisms.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
import subprocess
|
||||||
|
import sys
|
||||||
|
import tempfile
|
||||||
|
from pathlib import Path
|
||||||
|
from unittest.mock import patch
|
||||||
|
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
# Add apps directory to path for imports
|
||||||
|
sys.path.insert(0, str(Path(__file__).parent.parent / "apps"))
|
||||||
|
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
from chunking import (
|
||||||
|
create_ast_chunks,
|
||||||
|
create_text_chunks,
|
||||||
|
create_traditional_chunks,
|
||||||
|
detect_code_files,
|
||||||
|
get_language_from_extension,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class MockDocument:
|
||||||
|
"""Mock LlamaIndex Document for testing."""
|
||||||
|
|
||||||
|
def __init__(self, content: str, file_path: str = "", metadata: Optional[dict] = None):
|
||||||
|
self.content = content
|
||||||
|
self.metadata = metadata or {}
|
||||||
|
if file_path:
|
||||||
|
self.metadata["file_path"] = file_path
|
||||||
|
|
||||||
|
def get_content(self) -> str:
|
||||||
|
return self.content
|
||||||
|
|
||||||
|
|
||||||
|
class TestCodeFileDetection:
|
||||||
|
"""Test code file detection and language mapping."""
|
||||||
|
|
||||||
|
def test_detect_code_files_python(self):
|
||||||
|
"""Test detection of Python files."""
|
||||||
|
docs = [
|
||||||
|
MockDocument("print('hello')", "/path/to/file.py"),
|
||||||
|
MockDocument("This is text", "/path/to/file.txt"),
|
||||||
|
]
|
||||||
|
|
||||||
|
code_docs, text_docs = detect_code_files(docs)
|
||||||
|
|
||||||
|
assert len(code_docs) == 1
|
||||||
|
assert len(text_docs) == 1
|
||||||
|
assert code_docs[0].metadata["language"] == "python"
|
||||||
|
assert code_docs[0].metadata["is_code"] is True
|
||||||
|
assert text_docs[0].metadata["is_code"] is False
|
||||||
|
|
||||||
|
def test_detect_code_files_multiple_languages(self):
|
||||||
|
"""Test detection of multiple programming languages."""
|
||||||
|
docs = [
|
||||||
|
MockDocument("def func():", "/path/to/script.py"),
|
||||||
|
MockDocument("public class Test {}", "/path/to/Test.java"),
|
||||||
|
MockDocument("interface ITest {}", "/path/to/test.ts"),
|
||||||
|
MockDocument("using System;", "/path/to/Program.cs"),
|
||||||
|
MockDocument("Regular text content", "/path/to/document.txt"),
|
||||||
|
]
|
||||||
|
|
||||||
|
code_docs, text_docs = detect_code_files(docs)
|
||||||
|
|
||||||
|
assert len(code_docs) == 4
|
||||||
|
assert len(text_docs) == 1
|
||||||
|
|
||||||
|
languages = [doc.metadata["language"] for doc in code_docs]
|
||||||
|
assert "python" in languages
|
||||||
|
assert "java" in languages
|
||||||
|
assert "typescript" in languages
|
||||||
|
assert "csharp" in languages
|
||||||
|
|
||||||
|
def test_detect_code_files_no_file_path(self):
|
||||||
|
"""Test handling of documents without file paths."""
|
||||||
|
docs = [
|
||||||
|
MockDocument("some content"),
|
||||||
|
MockDocument("other content", metadata={"some_key": "value"}),
|
||||||
|
]
|
||||||
|
|
||||||
|
code_docs, text_docs = detect_code_files(docs)
|
||||||
|
|
||||||
|
assert len(code_docs) == 0
|
||||||
|
assert len(text_docs) == 2
|
||||||
|
for doc in text_docs:
|
||||||
|
assert doc.metadata["is_code"] is False
|
||||||
|
|
||||||
|
def test_get_language_from_extension(self):
|
||||||
|
"""Test language detection from file extensions."""
|
||||||
|
assert get_language_from_extension("test.py") == "python"
|
||||||
|
assert get_language_from_extension("Test.java") == "java"
|
||||||
|
assert get_language_from_extension("component.tsx") == "typescript"
|
||||||
|
assert get_language_from_extension("Program.cs") == "csharp"
|
||||||
|
assert get_language_from_extension("document.txt") is None
|
||||||
|
assert get_language_from_extension("") is None
|
||||||
|
|
||||||
|
|
||||||
|
class TestChunkingFunctions:
|
||||||
|
"""Test various chunking functionality."""
|
||||||
|
|
||||||
|
def test_create_traditional_chunks(self):
|
||||||
|
"""Test traditional text chunking."""
|
||||||
|
docs = [
|
||||||
|
MockDocument(
|
||||||
|
"This is a test document. It has multiple sentences. We want to test chunking."
|
||||||
|
)
|
||||||
|
]
|
||||||
|
|
||||||
|
chunks = create_traditional_chunks(docs, chunk_size=50, chunk_overlap=10)
|
||||||
|
|
||||||
|
assert len(chunks) > 0
|
||||||
|
assert all(isinstance(chunk, str) for chunk in chunks)
|
||||||
|
assert all(len(chunk.strip()) > 0 for chunk in chunks)
|
||||||
|
|
||||||
|
def test_create_traditional_chunks_empty_docs(self):
|
||||||
|
"""Test traditional chunking with empty documents."""
|
||||||
|
chunks = create_traditional_chunks([], chunk_size=50, chunk_overlap=10)
|
||||||
|
assert chunks == []
|
||||||
|
|
||||||
|
@pytest.mark.skipif(
|
||||||
|
os.environ.get("CI") == "true",
|
||||||
|
reason="Skip astchunk tests in CI - dependency may not be available",
|
||||||
|
)
|
||||||
|
def test_create_ast_chunks_with_astchunk_available(self):
|
||||||
|
"""Test AST chunking when astchunk is available."""
|
||||||
|
python_code = '''
|
||||||
|
def hello_world():
|
||||||
|
"""Print hello world message."""
|
||||||
|
print("Hello, World!")
|
||||||
|
|
||||||
|
def add_numbers(a, b):
|
||||||
|
"""Add two numbers and return the result."""
|
||||||
|
return a + b
|
||||||
|
|
||||||
|
class Calculator:
|
||||||
|
"""A simple calculator class."""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
self.history = []
|
||||||
|
|
||||||
|
def add(self, a, b):
|
||||||
|
result = a + b
|
||||||
|
self.history.append(f"{a} + {b} = {result}")
|
||||||
|
return result
|
||||||
|
'''
|
||||||
|
|
||||||
|
docs = [MockDocument(python_code, "/test/calculator.py", {"language": "python"})]
|
||||||
|
|
||||||
|
try:
|
||||||
|
chunks = create_ast_chunks(docs, max_chunk_size=200, chunk_overlap=50)
|
||||||
|
|
||||||
|
# Should have multiple chunks due to different functions/classes
|
||||||
|
assert len(chunks) > 0
|
||||||
|
assert all(isinstance(chunk, str) for chunk in chunks)
|
||||||
|
assert all(len(chunk.strip()) > 0 for chunk in chunks)
|
||||||
|
|
||||||
|
# Check that code structure is somewhat preserved
|
||||||
|
combined_content = " ".join(chunks)
|
||||||
|
assert "def hello_world" in combined_content
|
||||||
|
assert "class Calculator" in combined_content
|
||||||
|
|
||||||
|
except ImportError:
|
||||||
|
# astchunk not available, should fall back to traditional chunking
|
||||||
|
chunks = create_ast_chunks(docs, max_chunk_size=200, chunk_overlap=50)
|
||||||
|
assert len(chunks) > 0 # Should still get chunks from fallback
|
||||||
|
|
||||||
|
def test_create_ast_chunks_fallback_to_traditional(self):
|
||||||
|
"""Test AST chunking falls back to traditional when astchunk is not available."""
|
||||||
|
docs = [MockDocument("def test(): pass", "/test/script.py", {"language": "python"})]
|
||||||
|
|
||||||
|
# Mock astchunk import to fail
|
||||||
|
with patch("chunking.create_ast_chunks"):
|
||||||
|
# First call (actual test) should import astchunk and potentially fail
|
||||||
|
# Let's call the actual function to test the import error handling
|
||||||
|
chunks = create_ast_chunks(docs)
|
||||||
|
|
||||||
|
# Should return some chunks (either from astchunk or fallback)
|
||||||
|
assert isinstance(chunks, list)
|
||||||
|
|
||||||
|
def test_create_text_chunks_traditional_mode(self):
|
||||||
|
"""Test text chunking in traditional mode."""
|
||||||
|
docs = [
|
||||||
|
MockDocument("def test(): pass", "/test/script.py"),
|
||||||
|
MockDocument("This is regular text.", "/test/doc.txt"),
|
||||||
|
]
|
||||||
|
|
||||||
|
chunks = create_text_chunks(docs, use_ast_chunking=False, chunk_size=50, chunk_overlap=10)
|
||||||
|
|
||||||
|
assert len(chunks) > 0
|
||||||
|
assert all(isinstance(chunk, str) for chunk in chunks)
|
||||||
|
|
||||||
|
def test_create_text_chunks_ast_mode(self):
|
||||||
|
"""Test text chunking in AST mode."""
|
||||||
|
docs = [
|
||||||
|
MockDocument("def test(): pass", "/test/script.py"),
|
||||||
|
MockDocument("This is regular text.", "/test/doc.txt"),
|
||||||
|
]
|
||||||
|
|
||||||
|
chunks = create_text_chunks(
|
||||||
|
docs,
|
||||||
|
use_ast_chunking=True,
|
||||||
|
ast_chunk_size=100,
|
||||||
|
ast_chunk_overlap=20,
|
||||||
|
chunk_size=50,
|
||||||
|
chunk_overlap=10,
|
||||||
|
)
|
||||||
|
|
||||||
|
assert len(chunks) > 0
|
||||||
|
assert all(isinstance(chunk, str) for chunk in chunks)
|
||||||
|
|
||||||
|
def test_create_text_chunks_custom_extensions(self):
|
||||||
|
"""Test text chunking with custom code file extensions."""
|
||||||
|
docs = [
|
||||||
|
MockDocument("function test() {}", "/test/script.js"), # Not in default extensions
|
||||||
|
MockDocument("Regular text", "/test/doc.txt"),
|
||||||
|
]
|
||||||
|
|
||||||
|
# First without custom extensions - should treat .js as text
|
||||||
|
chunks_without = create_text_chunks(docs, use_ast_chunking=True, code_file_extensions=None)
|
||||||
|
|
||||||
|
# Then with custom extensions - should treat .js as code
|
||||||
|
chunks_with = create_text_chunks(
|
||||||
|
docs, use_ast_chunking=True, code_file_extensions=[".js", ".jsx"]
|
||||||
|
)
|
||||||
|
|
||||||
|
# Both should return chunks
|
||||||
|
assert len(chunks_without) > 0
|
||||||
|
assert len(chunks_with) > 0
|
||||||
|
|
||||||
|
|
||||||
|
class TestIntegrationWithDocumentRAG:
|
||||||
|
"""Integration tests with the document RAG system."""
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def temp_code_dir(self):
|
||||||
|
"""Create a temporary directory with sample code files."""
|
||||||
|
with tempfile.TemporaryDirectory() as temp_dir:
|
||||||
|
temp_path = Path(temp_dir)
|
||||||
|
|
||||||
|
# Create sample Python file
|
||||||
|
python_file = temp_path / "example.py"
|
||||||
|
python_file.write_text('''
|
||||||
|
def fibonacci(n):
|
||||||
|
"""Calculate fibonacci number."""
|
||||||
|
if n <= 1:
|
||||||
|
return n
|
||||||
|
return fibonacci(n-1) + fibonacci(n-2)
|
||||||
|
|
||||||
|
class MathUtils:
|
||||||
|
@staticmethod
|
||||||
|
def factorial(n):
|
||||||
|
if n <= 1:
|
||||||
|
return 1
|
||||||
|
return n * MathUtils.factorial(n-1)
|
||||||
|
''')
|
||||||
|
|
||||||
|
# Create sample text file
|
||||||
|
text_file = temp_path / "readme.txt"
|
||||||
|
text_file.write_text("This is a sample text file for testing purposes.")
|
||||||
|
|
||||||
|
yield temp_path
|
||||||
|
|
||||||
|
@pytest.mark.skipif(
|
||||||
|
os.environ.get("CI") == "true",
|
||||||
|
reason="Skip integration tests in CI to avoid dependency issues",
|
||||||
|
)
|
||||||
|
def test_document_rag_with_ast_chunking(self, temp_code_dir):
|
||||||
|
"""Test document RAG with AST chunking enabled."""
|
||||||
|
with tempfile.TemporaryDirectory() as index_dir:
|
||||||
|
cmd = [
|
||||||
|
sys.executable,
|
||||||
|
"apps/document_rag.py",
|
||||||
|
"--llm",
|
||||||
|
"simulated",
|
||||||
|
"--embedding-model",
|
||||||
|
"facebook/contriever",
|
||||||
|
"--embedding-mode",
|
||||||
|
"sentence-transformers",
|
||||||
|
"--index-dir",
|
||||||
|
index_dir,
|
||||||
|
"--data-dir",
|
||||||
|
str(temp_code_dir),
|
||||||
|
"--enable-code-chunking",
|
||||||
|
"--query",
|
||||||
|
"How does the fibonacci function work?",
|
||||||
|
]
|
||||||
|
|
||||||
|
env = os.environ.copy()
|
||||||
|
env["HF_HUB_DISABLE_SYMLINKS"] = "1"
|
||||||
|
env["TOKENIZERS_PARALLELISM"] = "false"
|
||||||
|
|
||||||
|
try:
|
||||||
|
result = subprocess.run(
|
||||||
|
cmd,
|
||||||
|
capture_output=True,
|
||||||
|
text=True,
|
||||||
|
timeout=300, # 5 minutes
|
||||||
|
env=env,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Should succeed even if astchunk is not available (fallback)
|
||||||
|
assert result.returncode == 0, f"Command failed: {result.stderr}"
|
||||||
|
|
||||||
|
output = result.stdout + result.stderr
|
||||||
|
assert "Index saved to" in output or "Using existing index" in output
|
||||||
|
|
||||||
|
except subprocess.TimeoutExpired:
|
||||||
|
pytest.skip("Test timed out - likely due to model download in CI")
|
||||||
|
|
||||||
|
@pytest.mark.skipif(
|
||||||
|
os.environ.get("CI") == "true",
|
||||||
|
reason="Skip integration tests in CI to avoid dependency issues",
|
||||||
|
)
|
||||||
|
def test_code_rag_application(self, temp_code_dir):
|
||||||
|
"""Test the specialized code RAG application."""
|
||||||
|
with tempfile.TemporaryDirectory() as index_dir:
|
||||||
|
cmd = [
|
||||||
|
sys.executable,
|
||||||
|
"apps/code_rag.py",
|
||||||
|
"--llm",
|
||||||
|
"simulated",
|
||||||
|
"--embedding-model",
|
||||||
|
"facebook/contriever",
|
||||||
|
"--index-dir",
|
||||||
|
index_dir,
|
||||||
|
"--repo-dir",
|
||||||
|
str(temp_code_dir),
|
||||||
|
"--query",
|
||||||
|
"What classes are defined in this code?",
|
||||||
|
]
|
||||||
|
|
||||||
|
env = os.environ.copy()
|
||||||
|
env["HF_HUB_DISABLE_SYMLINKS"] = "1"
|
||||||
|
env["TOKENIZERS_PARALLELISM"] = "false"
|
||||||
|
|
||||||
|
try:
|
||||||
|
result = subprocess.run(cmd, capture_output=True, text=True, timeout=300, env=env)
|
||||||
|
|
||||||
|
# Should succeed
|
||||||
|
assert result.returncode == 0, f"Command failed: {result.stderr}"
|
||||||
|
|
||||||
|
output = result.stdout + result.stderr
|
||||||
|
assert "Using AST-aware chunking" in output or "traditional chunking" in output
|
||||||
|
|
||||||
|
except subprocess.TimeoutExpired:
|
||||||
|
pytest.skip("Test timed out - likely due to model download in CI")
|
||||||
|
|
||||||
|
|
||||||
|
class TestErrorHandling:
|
||||||
|
"""Test error handling and edge cases."""
|
||||||
|
|
||||||
|
def test_text_chunking_empty_documents(self):
|
||||||
|
"""Test text chunking with empty document list."""
|
||||||
|
chunks = create_text_chunks([])
|
||||||
|
assert chunks == []
|
||||||
|
|
||||||
|
def test_text_chunking_invalid_parameters(self):
|
||||||
|
"""Test text chunking with invalid parameters."""
|
||||||
|
docs = [MockDocument("test content")]
|
||||||
|
|
||||||
|
# Should handle negative chunk sizes gracefully
|
||||||
|
chunks = create_text_chunks(
|
||||||
|
docs, chunk_size=0, chunk_overlap=0, ast_chunk_size=0, ast_chunk_overlap=0
|
||||||
|
)
|
||||||
|
|
||||||
|
# Should still return some result
|
||||||
|
assert isinstance(chunks, list)
|
||||||
|
|
||||||
|
def test_create_ast_chunks_no_language(self):
|
||||||
|
"""Test AST chunking with documents missing language metadata."""
|
||||||
|
docs = [MockDocument("def test(): pass", "/test/script.py")] # No language set
|
||||||
|
|
||||||
|
chunks = create_ast_chunks(docs)
|
||||||
|
|
||||||
|
# Should fall back to traditional chunking
|
||||||
|
assert isinstance(chunks, list)
|
||||||
|
assert len(chunks) >= 0 # May be empty if fallback also fails
|
||||||
|
|
||||||
|
def test_create_ast_chunks_empty_content(self):
|
||||||
|
"""Test AST chunking with empty content."""
|
||||||
|
docs = [MockDocument("", "/test/script.py", {"language": "python"})]
|
||||||
|
|
||||||
|
chunks = create_ast_chunks(docs)
|
||||||
|
|
||||||
|
# Should handle empty content gracefully
|
||||||
|
assert isinstance(chunks, list)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
pytest.main([__file__, "-v"])
|
||||||
14
tests/test_cli_ask.py
Normal file
14
tests/test_cli_ask.py
Normal file
@@ -0,0 +1,14 @@
|
|||||||
|
from leann.cli import LeannCLI
|
||||||
|
|
||||||
|
|
||||||
|
def test_cli_ask_accepts_positional_query(tmp_path, monkeypatch):
|
||||||
|
monkeypatch.chdir(tmp_path)
|
||||||
|
|
||||||
|
cli = LeannCLI()
|
||||||
|
parser = cli.create_parser()
|
||||||
|
|
||||||
|
args = parser.parse_args(["ask", "my-docs", "Where are prompts configured?"])
|
||||||
|
|
||||||
|
assert args.command == "ask"
|
||||||
|
assert args.index_name == "my-docs"
|
||||||
|
assert args.query == "Where are prompts configured?"
|
||||||
@@ -57,6 +57,51 @@ def test_document_rag_simulated(test_data_dir):
|
|||||||
assert "This is a simulated answer" in output
|
assert "This is a simulated answer" in output
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.skipif(
|
||||||
|
os.environ.get("CI") == "true",
|
||||||
|
reason="Skip AST chunking tests in CI to avoid dependency issues",
|
||||||
|
)
|
||||||
|
def test_document_rag_with_ast_chunking(test_data_dir):
|
||||||
|
"""Test document_rag with AST-aware chunking enabled."""
|
||||||
|
with tempfile.TemporaryDirectory() as temp_dir:
|
||||||
|
# Use a subdirectory that doesn't exist yet to force index creation
|
||||||
|
index_dir = Path(temp_dir) / "test_ast_index"
|
||||||
|
cmd = [
|
||||||
|
sys.executable,
|
||||||
|
"apps/document_rag.py",
|
||||||
|
"--llm",
|
||||||
|
"simulated",
|
||||||
|
"--embedding-model",
|
||||||
|
"facebook/contriever",
|
||||||
|
"--embedding-mode",
|
||||||
|
"sentence-transformers",
|
||||||
|
"--index-dir",
|
||||||
|
str(index_dir),
|
||||||
|
"--data-dir",
|
||||||
|
str(test_data_dir),
|
||||||
|
"--enable-code-chunking", # Enable AST chunking
|
||||||
|
"--query",
|
||||||
|
"What is Pride and Prejudice about?",
|
||||||
|
]
|
||||||
|
|
||||||
|
env = os.environ.copy()
|
||||||
|
env["HF_HUB_DISABLE_SYMLINKS"] = "1"
|
||||||
|
env["TOKENIZERS_PARALLELISM"] = "false"
|
||||||
|
|
||||||
|
result = subprocess.run(cmd, capture_output=True, text=True, timeout=600, env=env)
|
||||||
|
|
||||||
|
# Check return code
|
||||||
|
assert result.returncode == 0, f"Command failed: {result.stderr}"
|
||||||
|
|
||||||
|
# Verify output
|
||||||
|
output = result.stdout + result.stderr
|
||||||
|
assert "Index saved to" in output or "Using existing index" in output
|
||||||
|
assert "This is a simulated answer" in output
|
||||||
|
|
||||||
|
# Should mention AST chunking if code files are present
|
||||||
|
# (might not be relevant for the test data, but command should succeed)
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.skipif(not os.environ.get("OPENAI_API_KEY"), reason="OpenAI API key not available")
|
@pytest.mark.skipif(not os.environ.get("OPENAI_API_KEY"), reason="OpenAI API key not available")
|
||||||
@pytest.mark.skipif(
|
@pytest.mark.skipif(
|
||||||
os.environ.get("CI") == "true", reason="Skip OpenAI tests in CI to avoid API costs"
|
os.environ.get("CI") == "true", reason="Skip OpenAI tests in CI to avoid API costs"
|
||||||
|
|||||||
365
tests/test_metadata_filtering.py
Normal file
365
tests/test_metadata_filtering.py
Normal file
@@ -0,0 +1,365 @@
|
|||||||
|
"""
|
||||||
|
Comprehensive tests for metadata filtering functionality.
|
||||||
|
|
||||||
|
This module tests the MetadataFilterEngine class and its integration
|
||||||
|
with the LEANN search system.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
|
||||||
|
# Import the modules we're testing
|
||||||
|
import sys
|
||||||
|
from unittest.mock import Mock, patch
|
||||||
|
|
||||||
|
sys.path.insert(0, os.path.join(os.path.dirname(__file__), "../packages/leann-core/src"))
|
||||||
|
|
||||||
|
from leann.api import PassageManager, SearchResult
|
||||||
|
from leann.metadata_filter import MetadataFilterEngine
|
||||||
|
|
||||||
|
|
||||||
|
class TestMetadataFilterEngine:
|
||||||
|
"""Test suite for the MetadataFilterEngine class."""
|
||||||
|
|
||||||
|
def setup_method(self):
|
||||||
|
"""Setup test fixtures."""
|
||||||
|
self.engine = MetadataFilterEngine()
|
||||||
|
|
||||||
|
# Sample search results for testing
|
||||||
|
self.sample_results = [
|
||||||
|
{
|
||||||
|
"id": "doc1",
|
||||||
|
"score": 0.95,
|
||||||
|
"text": "This is chapter 1 content",
|
||||||
|
"metadata": {
|
||||||
|
"chapter": 1,
|
||||||
|
"character": "Alice",
|
||||||
|
"tags": ["adventure", "fantasy"],
|
||||||
|
"word_count": 150,
|
||||||
|
"is_published": True,
|
||||||
|
"genre": "fiction",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "doc2",
|
||||||
|
"score": 0.87,
|
||||||
|
"text": "This is chapter 3 content",
|
||||||
|
"metadata": {
|
||||||
|
"chapter": 3,
|
||||||
|
"character": "Bob",
|
||||||
|
"tags": ["mystery", "thriller"],
|
||||||
|
"word_count": 250,
|
||||||
|
"is_published": True,
|
||||||
|
"genre": "fiction",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "doc3",
|
||||||
|
"score": 0.82,
|
||||||
|
"text": "This is chapter 5 content",
|
||||||
|
"metadata": {
|
||||||
|
"chapter": 5,
|
||||||
|
"character": "Alice",
|
||||||
|
"tags": ["romance", "drama"],
|
||||||
|
"word_count": 300,
|
||||||
|
"is_published": False,
|
||||||
|
"genre": "non-fiction",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "doc4",
|
||||||
|
"score": 0.78,
|
||||||
|
"text": "This is chapter 10 content",
|
||||||
|
"metadata": {
|
||||||
|
"chapter": 10,
|
||||||
|
"character": "Charlie",
|
||||||
|
"tags": ["action", "adventure"],
|
||||||
|
"word_count": 400,
|
||||||
|
"is_published": True,
|
||||||
|
"genre": "fiction",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
]
|
||||||
|
|
||||||
|
def test_engine_initialization(self):
|
||||||
|
"""Test that the filter engine initializes correctly."""
|
||||||
|
assert self.engine is not None
|
||||||
|
assert len(self.engine.operators) > 0
|
||||||
|
assert "==" in self.engine.operators
|
||||||
|
assert "contains" in self.engine.operators
|
||||||
|
assert "in" in self.engine.operators
|
||||||
|
|
||||||
|
def test_direct_instantiation(self):
|
||||||
|
"""Test direct instantiation of the engine."""
|
||||||
|
engine = MetadataFilterEngine()
|
||||||
|
assert isinstance(engine, MetadataFilterEngine)
|
||||||
|
|
||||||
|
def test_no_filters_returns_all_results(self):
|
||||||
|
"""Test that passing None or empty filters returns all results."""
|
||||||
|
# Test with None
|
||||||
|
result = self.engine.apply_filters(self.sample_results, None)
|
||||||
|
assert len(result) == len(self.sample_results)
|
||||||
|
|
||||||
|
# Test with empty dict
|
||||||
|
result = self.engine.apply_filters(self.sample_results, {})
|
||||||
|
assert len(result) == len(self.sample_results)
|
||||||
|
|
||||||
|
# Test comparison operators
|
||||||
|
def test_equals_filter(self):
|
||||||
|
"""Test equals (==) filter."""
|
||||||
|
filters = {"chapter": {"==": 1}}
|
||||||
|
result = self.engine.apply_filters(self.sample_results, filters)
|
||||||
|
assert len(result) == 1
|
||||||
|
assert result[0]["id"] == "doc1"
|
||||||
|
|
||||||
|
def test_not_equals_filter(self):
|
||||||
|
"""Test not equals (!=) filter."""
|
||||||
|
filters = {"genre": {"!=": "fiction"}}
|
||||||
|
result = self.engine.apply_filters(self.sample_results, filters)
|
||||||
|
assert len(result) == 1
|
||||||
|
assert result[0]["metadata"]["genre"] == "non-fiction"
|
||||||
|
|
||||||
|
def test_less_than_filter(self):
|
||||||
|
"""Test less than (<) filter."""
|
||||||
|
filters = {"chapter": {"<": 5}}
|
||||||
|
result = self.engine.apply_filters(self.sample_results, filters)
|
||||||
|
assert len(result) == 2
|
||||||
|
chapters = [r["metadata"]["chapter"] for r in result]
|
||||||
|
assert all(ch < 5 for ch in chapters)
|
||||||
|
|
||||||
|
def test_less_than_or_equal_filter(self):
|
||||||
|
"""Test less than or equal (<=) filter."""
|
||||||
|
filters = {"chapter": {"<=": 5}}
|
||||||
|
result = self.engine.apply_filters(self.sample_results, filters)
|
||||||
|
assert len(result) == 3
|
||||||
|
chapters = [r["metadata"]["chapter"] for r in result]
|
||||||
|
assert all(ch <= 5 for ch in chapters)
|
||||||
|
|
||||||
|
def test_greater_than_filter(self):
|
||||||
|
"""Test greater than (>) filter."""
|
||||||
|
filters = {"word_count": {">": 200}}
|
||||||
|
result = self.engine.apply_filters(self.sample_results, filters)
|
||||||
|
assert len(result) == 3 # Documents with word_count 250, 300, 400
|
||||||
|
word_counts = [r["metadata"]["word_count"] for r in result]
|
||||||
|
assert all(wc > 200 for wc in word_counts)
|
||||||
|
|
||||||
|
def test_greater_than_or_equal_filter(self):
|
||||||
|
"""Test greater than or equal (>=) filter."""
|
||||||
|
filters = {"word_count": {">=": 250}}
|
||||||
|
result = self.engine.apply_filters(self.sample_results, filters)
|
||||||
|
assert len(result) == 3
|
||||||
|
word_counts = [r["metadata"]["word_count"] for r in result]
|
||||||
|
assert all(wc >= 250 for wc in word_counts)
|
||||||
|
|
||||||
|
# Test membership operators
|
||||||
|
def test_in_filter(self):
|
||||||
|
"""Test in filter."""
|
||||||
|
filters = {"character": {"in": ["Alice", "Bob"]}}
|
||||||
|
result = self.engine.apply_filters(self.sample_results, filters)
|
||||||
|
assert len(result) == 3
|
||||||
|
characters = [r["metadata"]["character"] for r in result]
|
||||||
|
assert all(ch in ["Alice", "Bob"] for ch in characters)
|
||||||
|
|
||||||
|
def test_not_in_filter(self):
|
||||||
|
"""Test not_in filter."""
|
||||||
|
filters = {"character": {"not_in": ["Alice", "Bob"]}}
|
||||||
|
result = self.engine.apply_filters(self.sample_results, filters)
|
||||||
|
assert len(result) == 1
|
||||||
|
assert result[0]["metadata"]["character"] == "Charlie"
|
||||||
|
|
||||||
|
# Test string operators
|
||||||
|
def test_contains_filter(self):
|
||||||
|
"""Test contains filter."""
|
||||||
|
filters = {"genre": {"contains": "fiction"}}
|
||||||
|
result = self.engine.apply_filters(self.sample_results, filters)
|
||||||
|
assert len(result) == 4 # Both "fiction" and "non-fiction"
|
||||||
|
|
||||||
|
def test_starts_with_filter(self):
|
||||||
|
"""Test starts_with filter."""
|
||||||
|
filters = {"genre": {"starts_with": "non"}}
|
||||||
|
result = self.engine.apply_filters(self.sample_results, filters)
|
||||||
|
assert len(result) == 1
|
||||||
|
assert result[0]["metadata"]["genre"] == "non-fiction"
|
||||||
|
|
||||||
|
def test_ends_with_filter(self):
|
||||||
|
"""Test ends_with filter."""
|
||||||
|
filters = {"text": {"ends_with": "content"}}
|
||||||
|
result = self.engine.apply_filters(self.sample_results, filters)
|
||||||
|
assert len(result) == 4 # All sample texts end with "content"
|
||||||
|
|
||||||
|
# Test boolean operators
|
||||||
|
def test_is_true_filter(self):
|
||||||
|
"""Test is_true filter."""
|
||||||
|
filters = {"is_published": {"is_true": True}}
|
||||||
|
result = self.engine.apply_filters(self.sample_results, filters)
|
||||||
|
assert len(result) == 3
|
||||||
|
assert all(r["metadata"]["is_published"] for r in result)
|
||||||
|
|
||||||
|
def test_is_false_filter(self):
|
||||||
|
"""Test is_false filter."""
|
||||||
|
filters = {"is_published": {"is_false": False}}
|
||||||
|
result = self.engine.apply_filters(self.sample_results, filters)
|
||||||
|
assert len(result) == 1
|
||||||
|
assert not result[0]["metadata"]["is_published"]
|
||||||
|
|
||||||
|
# Test compound filters (AND logic)
|
||||||
|
def test_compound_filters(self):
|
||||||
|
"""Test multiple filters applied together (AND logic)."""
|
||||||
|
filters = {"genre": {"==": "fiction"}, "chapter": {"<=": 5}}
|
||||||
|
result = self.engine.apply_filters(self.sample_results, filters)
|
||||||
|
assert len(result) == 2
|
||||||
|
for r in result:
|
||||||
|
assert r["metadata"]["genre"] == "fiction"
|
||||||
|
assert r["metadata"]["chapter"] <= 5
|
||||||
|
|
||||||
|
def test_multiple_operators_same_field(self):
|
||||||
|
"""Test multiple operators on the same field."""
|
||||||
|
filters = {"word_count": {">=": 200, "<=": 350}}
|
||||||
|
result = self.engine.apply_filters(self.sample_results, filters)
|
||||||
|
assert len(result) == 2
|
||||||
|
for r in result:
|
||||||
|
wc = r["metadata"]["word_count"]
|
||||||
|
assert 200 <= wc <= 350
|
||||||
|
|
||||||
|
# Test edge cases
|
||||||
|
def test_missing_field_fails_filter(self):
|
||||||
|
"""Test that missing metadata fields fail filters."""
|
||||||
|
filters = {"nonexistent_field": {"==": "value"}}
|
||||||
|
result = self.engine.apply_filters(self.sample_results, filters)
|
||||||
|
assert len(result) == 0
|
||||||
|
|
||||||
|
def test_invalid_operator(self):
|
||||||
|
"""Test that invalid operators are handled gracefully."""
|
||||||
|
filters = {"chapter": {"invalid_op": 1}}
|
||||||
|
result = self.engine.apply_filters(self.sample_results, filters)
|
||||||
|
assert len(result) == 0 # Should filter out all results
|
||||||
|
|
||||||
|
def test_type_coercion_numeric(self):
|
||||||
|
"""Test numeric type coercion in comparisons."""
|
||||||
|
# Add a result with string chapter number
|
||||||
|
test_results = [
|
||||||
|
*self.sample_results,
|
||||||
|
{
|
||||||
|
"id": "doc5",
|
||||||
|
"score": 0.75,
|
||||||
|
"text": "String chapter test",
|
||||||
|
"metadata": {"chapter": "2", "genre": "test"},
|
||||||
|
},
|
||||||
|
]
|
||||||
|
|
||||||
|
filters = {"chapter": {"<": 3}}
|
||||||
|
result = self.engine.apply_filters(test_results, filters)
|
||||||
|
# Should include doc1 (chapter=1) and doc5 (chapter="2")
|
||||||
|
assert len(result) == 2
|
||||||
|
ids = [r["id"] for r in result]
|
||||||
|
assert "doc1" in ids
|
||||||
|
assert "doc5" in ids
|
||||||
|
|
||||||
|
def test_list_membership_with_nested_tags(self):
|
||||||
|
"""Test membership operations with list metadata."""
|
||||||
|
# Note: This tests the metadata structure, not list field filtering
|
||||||
|
# For list field filtering, we'd need to modify the test data
|
||||||
|
filters = {"character": {"in": ["Alice"]}}
|
||||||
|
result = self.engine.apply_filters(self.sample_results, filters)
|
||||||
|
assert len(result) == 2
|
||||||
|
assert all(r["metadata"]["character"] == "Alice" for r in result)
|
||||||
|
|
||||||
|
def test_empty_results_list(self):
|
||||||
|
"""Test filtering on empty results list."""
|
||||||
|
filters = {"chapter": {"==": 1}}
|
||||||
|
result = self.engine.apply_filters([], filters)
|
||||||
|
assert len(result) == 0
|
||||||
|
|
||||||
|
|
||||||
|
class TestPassageManagerFiltering:
|
||||||
|
"""Test suite for PassageManager filtering integration."""
|
||||||
|
|
||||||
|
def setup_method(self):
|
||||||
|
"""Setup test fixtures."""
|
||||||
|
# Mock the passage manager without actual file I/O
|
||||||
|
self.passage_manager = Mock(spec=PassageManager)
|
||||||
|
self.passage_manager.filter_engine = MetadataFilterEngine()
|
||||||
|
|
||||||
|
# Sample SearchResult objects
|
||||||
|
self.search_results = [
|
||||||
|
SearchResult(
|
||||||
|
id="doc1",
|
||||||
|
score=0.95,
|
||||||
|
text="Chapter 1 content",
|
||||||
|
metadata={"chapter": 1, "character": "Alice"},
|
||||||
|
),
|
||||||
|
SearchResult(
|
||||||
|
id="doc2",
|
||||||
|
score=0.87,
|
||||||
|
text="Chapter 5 content",
|
||||||
|
metadata={"chapter": 5, "character": "Bob"},
|
||||||
|
),
|
||||||
|
SearchResult(
|
||||||
|
id="doc3",
|
||||||
|
score=0.82,
|
||||||
|
text="Chapter 10 content",
|
||||||
|
metadata={"chapter": 10, "character": "Alice"},
|
||||||
|
),
|
||||||
|
]
|
||||||
|
|
||||||
|
def test_search_result_filtering(self):
|
||||||
|
"""Test filtering SearchResult objects."""
|
||||||
|
# Create a real PassageManager instance just for the filtering method
|
||||||
|
# We'll mock the file operations
|
||||||
|
with patch("builtins.open"), patch("json.loads"), patch("pickle.load"):
|
||||||
|
pm = PassageManager([{"type": "jsonl", "path": "test.jsonl"}])
|
||||||
|
|
||||||
|
filters = {"chapter": {"<=": 5}}
|
||||||
|
result = pm.filter_search_results(self.search_results, filters)
|
||||||
|
|
||||||
|
assert len(result) == 2
|
||||||
|
chapters = [r.metadata["chapter"] for r in result]
|
||||||
|
assert all(ch <= 5 for ch in chapters)
|
||||||
|
|
||||||
|
def test_filter_search_results_no_filters(self):
|
||||||
|
"""Test that None filters return all results."""
|
||||||
|
with patch("builtins.open"), patch("json.loads"), patch("pickle.load"):
|
||||||
|
pm = PassageManager([{"type": "jsonl", "path": "test.jsonl"}])
|
||||||
|
|
||||||
|
result = pm.filter_search_results(self.search_results, None)
|
||||||
|
assert len(result) == len(self.search_results)
|
||||||
|
|
||||||
|
def test_filter_maintains_search_result_type(self):
|
||||||
|
"""Test that filtering returns SearchResult objects."""
|
||||||
|
with patch("builtins.open"), patch("json.loads"), patch("pickle.load"):
|
||||||
|
pm = PassageManager([{"type": "jsonl", "path": "test.jsonl"}])
|
||||||
|
|
||||||
|
filters = {"character": {"==": "Alice"}}
|
||||||
|
result = pm.filter_search_results(self.search_results, filters)
|
||||||
|
|
||||||
|
assert len(result) == 2
|
||||||
|
for r in result:
|
||||||
|
assert isinstance(r, SearchResult)
|
||||||
|
assert r.metadata["character"] == "Alice"
|
||||||
|
|
||||||
|
|
||||||
|
# Integration tests would go here, but they require actual LEANN backend setup
|
||||||
|
# These would test the full pipeline from LeannSearcher.search() with metadata_filters
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# Run basic smoke tests
|
||||||
|
engine = MetadataFilterEngine()
|
||||||
|
|
||||||
|
sample_data = [
|
||||||
|
{
|
||||||
|
"id": "test1",
|
||||||
|
"score": 0.9,
|
||||||
|
"text": "Test content",
|
||||||
|
"metadata": {"chapter": 1, "published": True},
|
||||||
|
}
|
||||||
|
]
|
||||||
|
|
||||||
|
# Test basic filtering
|
||||||
|
result = engine.apply_filters(sample_data, {"chapter": {"==": 1}})
|
||||||
|
assert len(result) == 1
|
||||||
|
print("✅ Basic filtering test passed")
|
||||||
|
|
||||||
|
result = engine.apply_filters(sample_data, {"chapter": {"==": 2}})
|
||||||
|
assert len(result) == 0
|
||||||
|
print("✅ No match filtering test passed")
|
||||||
|
|
||||||
|
print("🎉 All smoke tests passed!")
|
||||||
Reference in New Issue
Block a user