Compare commits

...

97 Commits

Author SHA1 Message Date
aakash
2088e45038 docs: Update contributor name to Aakash Suresh
Use actual name instead of GitHub username for better recognition.
2025-10-03 19:59:29 -07:00
aakash
344d7dfddf docs: Add ASuresh0524 to Active Contributors
Recognizing contributions to MCP integration, ChatGPT RAG, Claude RAG, and iMessage RAG features.
2025-10-03 19:59:03 -07:00
aakash
5c7210d6d1 feat: Add MCP integration support for Slack and Twitter
- Implement SlackMCPReader for connecting to Slack MCP servers
- Implement TwitterMCPReader for connecting to Twitter MCP servers
- Add SlackRAG and TwitterRAG applications with full CLI support
- Support live data fetching via Model Context Protocol (MCP)
- Add comprehensive documentation and usage examples
- Include connection testing capabilities with --test-connection flag
- Add standalone tests for core functionality
- Update README with detailed MCP integration guide

Resolves #36
2025-10-03 19:57:51 -07:00
aakash
f95b344011 docs: Group iMessage with WeChat under chat history
- Move iMessage from agent memory to chat history category
- Group WeChat and iMessage together as personal chat history
- Keep ChatGPT and Claude as AI agent memory
- Better categorization based on feedback

Resolves #127
2025-10-02 01:43:29 -07:00
aakash
e88ba0e822 docs: Include ChatGPT and Claude in agent memory links
- Update README intro to include all AI conversation features as agent memory
- Add individual links for ChatGPT, Claude, and iMessage
- Frame all AI conversation history as searchable agent memory
2025-10-02 01:26:56 -07:00
aakash
9447997a80 docs: Frame iMessage as agent memory in README intro
- Add agent memory link to introduction paragraph
- Links to iMessage section to highlight conversation archive feature
- Positions iMessage as searchable AI agent memory
2025-10-02 01:26:01 -07:00
aakash
5219370019 feat: Add iMessage RAG support
- Implement IMessageReader for parsing macOS Messages database
- Add IMessageRAG application with conversation grouping
- Support both concatenated conversations and individual messages
- Include comprehensive README documentation with setup instructions
- Handle Cocoa timestamp conversion and contact name formatting
- Add Full Disk Access requirements and troubleshooting tips

Resolves #126
2025-10-01 20:38:14 -07:00
aakash
f75c0fd19a Address PR feedback: merge ChatGPT and Claude RAG into single PR
- Add ChatGPT RAG documentation to README
- Fix ordering: WeChat, ChatGPT conversations, Claude conversations
- Add comprehensive sections for both ChatGPT and Claude RAG
- Test and verify all README examples work correctly
- Merge both implementations into single feature branch

Addresses feedback from PR review:
- Combines ChatGPT (#40) and Claude (#100) RAG implementations
- Maintains proper ordering as requested
- All example commands tested and verified working
2025-10-01 20:17:20 -07:00
aakash
d18adadf58 Merge branch 'feature/claude-rag-support' into feature/chatgpt-rag-support 2025-10-01 20:16:12 -07:00
aakash
f52bce23c3 Add Claude RAG documentation to README
- Add comprehensive Claude RAG section with usage examples
- Include export instructions and troubleshooting
- Add collapsible sections for detailed parameters
- Update main intro to mention Claude conversation support
- Follow same pattern as other RAG examples (WeChat, Email, etc.)
2025-09-30 01:52:33 -07:00
aakash
68333d1837 Fix linting issue: remove unused loop variable
- Remove unused 'i' variable from enumerate() in chatgpt_reader.py
- All ruff checks now pass
2025-09-30 01:47:56 -07:00
aakash
f1355b70d8 Fix linting issues: remove unused loop variables
- Remove unused 'i' variable from enumerate() in chatgpt_reader.py
- Remove unused 'i' variable from enumerate() in claude_reader.py
- All ruff checks now pass
2025-09-30 01:47:16 -07:00
aakash
2dd4147de2 Add Claude RAG support - resolves #100
- Implement ClaudeReader for parsing JSON exports from Claude
- Add claude_rag.py following BaseRAGExample pattern
- Support both concatenated conversations and individual messages
- Handle multiple JSON formats and structures
- Include comprehensive error handling and user guidance
- Add metadata extraction (titles, timestamps, roles)
- Integrate with existing LEANN chunking and embedding systems

Features:
 JSON parsing from Claude exports
 ZIP file extraction support
 Multiple JSON format support (list, single object, wrapped)
 Conversation detection and structuring
 Message role identification (user/assistant)
 Metadata extraction and preservation
 Dual processing modes (concatenated/separate)
 Command-line interface with all LEANN options
 Comprehensive error handling
 Multiple input format support (.json, .zip, directories)

Usage:
python -m apps.claude_rag --export-path claude_export.json
python -m apps.claude_rag --export-path claude_export.zip --query 'Python help'
2025-09-29 01:56:37 -07:00
aakash
be17980114 Add ChatGPT RAG support - resolves #40
- Implement ChatGPTReader for parsing HTML/ZIP exports from ChatGPT
- Add chatgpt_rag.py following BaseRAGExample pattern
- Support both concatenated conversations and individual messages
- Handle multiple input formats (.html, .zip, directories)
- Include comprehensive error handling and user guidance
- Add metadata extraction (titles, timestamps, roles)
- Integrate with existing LEANN chunking and embedding systems

Features:
 HTML parsing from ChatGPT exports
 ZIP file extraction support
 Conversation detection and structuring
 Message role identification (user/assistant)
 Metadata extraction and preservation
 Dual processing modes
 Command-line interface with all LEANN options
 Comprehensive error handling
 Multiple input format support

Usage:
python -m apps.chatgpt_rag --export-path chatgpt_export.html
python -m apps.chatgpt_rag --export-path chatgpt_export.zip --query 'Python help'
2025-09-29 01:44:32 -07:00
Andy Lee
5f7806e16f Introducing dynamic index update (#108)
* feat: Add GitHub PR and issue templates for better contributor experience

* simplify: Make templates more concise and user-friendly

* fix: enable is_compact=False, is_recompute=True

* feat: update when recompute

* test

* fix: real recompute

* refactor

* fix: compare with no-recompute

* fix: test
2025-09-21 22:56:27 -07:00
yichuan-w
d034e2195b fix build from source in diskann 2025-09-20 19:52:29 +00:00
yichuan520030910320
43894ff605 update submodule 2025-09-19 17:03:55 -07:00
yichuan520030910320
10311cc611 change the submodule for easy pull 2025-09-19 17:02:09 -07:00
Andy Lee
ad0d2faabc feat: Add GitHub PR and issue templates (#105)
* feat: Add GitHub PR and issue templates for better contributor experience

* simplify: Make templates more concise and user-friendly
2025-09-19 13:51:36 -07:00
Andy Lee
e93c0dec6f [Fix] Enable AST chunking when installed (package chunking utils) (#101)
* fix(core): package chunking utils for AST chunking; re-export in apps; CLI imports packaged utils

* style

* chore: fix ruff warnings (RUF059, F401)

* style
2025-09-17 18:44:00 -07:00
GitHub Actions
c5a29f849a chore: release v0.3.4 2025-09-16 20:45:22 +00:00
Yichuan Wang
3b8dc6368e Ast fork (#92) 2025-09-08 18:43:31 -07:00
Aiden Huang
e309f292de docs(mcp): add root llms.txt for MCP discovery; update MCP README to reference it; refs #76 (#91) 2025-09-07 14:39:58 -07:00
AWS Mcleod
0d9f92ea0f Add grep search functionality - Issue #86 (#87)
* Add grep search functionality to LeannSearcher

- Add use_grep parameter to search method
- Implement grep-based search on .jsonl files
- Add fallback Python regex search
- Support same SearchResult format as semantic search

Addresses issue #86

* fix: resolve linting errors

* docs: add grep search example

* docs: add grep search to README examples

* refactor: remove regex fallback, move grep example to features section

* docs: add grep search to Advanced Features with comprehensive guide
2025-09-05 13:48:07 -07:00
GitHub Actions
b0b353d279 chore: release v0.3.3 2025-09-02 21:29:56 +00:00
Andy Lee
4dffdfedbe feat: Add ARM64 Linux wheel support for leann-backend-hnsw (#83)
* feat: Add ARM64 Linux wheel support for leann-backend-hnsw

* fix: Use OpenBLAS for ARM64 Linux builds instead of Intel MKL

* fix: Configure Faiss with SVE optimization for ARM64 builds

- Set FAISS_OPT_LEVEL to "sve" for ARM64 architecture
- Disable x86-specific SIMD instructions (AVX2, AVX512, SSE4.1)
- Use ARM64-native SVE optimization as per Faiss conda build scripts
- Add architecture detection and proper configuration messages

Fixes compilation error: "xmmintrin.h: No such file or directory"
on ubuntu-24.04-arm runners.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Apply ARM64 compatibility fix directly to Faiss submodule

- Modify faiss/impl/pq.cpp to use x86-specific preprocessor conditions
- Remove patch file approach in favor of direct submodule modification
- Update CMakeLists.txt to reflect the submodule changes
- Fixes ARM64 Linux compilation by preventing x86 SIMD header inclusion

This resolves the "xmmintrin.h: No such file or directory" error
when building ARM64 Linux wheels for Docker compatibility.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* chore: Update Faiss submodule to include ARM64 compatibility fix

- Points to commit ed96ff7d with x86-specific preprocessor conditions
- Enables successful ARM64 Linux wheel builds

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* retrigger ci

* fix: Use different optimization levels for ARM64 based on platform

- Use SVE optimization only for ARM64 Linux
- Use generic optimization for ARM64 macOS to avoid clang SVE issues
- Fixes macOS ARM64 compilation errors with SVE instructions

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* feat: Update DiskANN submodule with OpenBLAS fallback support

- Points to commit 5c396c4 with ARM64 Linux OpenBLAS support
- Enables DiskANN to build on ARM64 Linux using standard BLAS libraries
- Resolves Intel MKL dependency issues for Docker ARM64 deployments

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Update DiskANN submodule with ZeroMQ polling configuration

- Points to commit 3a1016e with explicit polling method setup
- Resolves ZeroMQ autodetection issues on ARM64 Linux
- Ensures stable cross-platform ZeroMQ builds

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* retrigger ci

* fix: Update DiskANN submodule with ARM64 compiler flags fix

- Points to commit a0dc600 with architecture-specific compiler flags
- Removes x86 SIMD flags on ARM64 Linux to fix compilation errors
- Enables successful ARM64 Linux wheel builds

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Update DiskANN submodule with ARM64 compiler flags fix

- Points to commit 0921664 with architecture-specific compiler flags
- Removes x86 SIMD flags on ARM64 Linux to fix compilation errors
- Enables successful ARM64 Linux wheel builds

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* retrigger ci

* fix: Update DiskANN submodule with cross-platform prefetch support

- Points to commit 39192d6 with unified prefetch macros
- Replaces all Intel-specific _mm_prefetch calls with cross-platform macros
- Enables ARM64 Linux compatibility while maintaining x86 performance
- Resolves all remaining compilation errors for ARM64 builds

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Update DiskANN submodule with corrected ARM64 compatibility fixes

- Points to commit 3cb87a8 with proper x86 platform detection
- Includes ARM64 fallback for AVXDistanceInnerProductFloat function
- Resolves all remaining '__m256 was not declared' compilation errors
- Enables successful ARM64 Linux wheel builds for Docker compatibility

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Update DiskANN submodule with template type handling fix

- Points to commit d396bc3 with corrected template type handling
- Fixes DistanceInnerProduct template instantiation for int8_t/uint8_t types
- Resolves 'cannot convert const signed char* to const float*' error
- Completes ARM64 Linux compilation compatibility

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Update DiskANN submodule with DistanceFastL2::norm template fix

- Points to commit 69d9a99 with corrected template type handling
- Fixes DistanceFastL2::norm template instantiation for int8_t/uint8_t types
- Resolves another 'cannot convert const signed char* to const float*' error
- Continues ARM64 Linux compilation compatibility improvements

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Update DiskANN submodule with LAPACKE header detection

- Points to commit 64a9e01 with LAPACKE header path configuration
- Adds pkg-config based detection for LAPACKE include directories
- Resolves 'lapacke.h: No such file or directory' compilation error
- Completes OpenBLAS integration for ARM64 Linux builds

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Update DiskANN submodule with enhanced LAPACKE header detection

- Points to commit 18d0721 with fallback LAPACKE header search paths
- Checks multiple standard locations for lapacke.h on various systems
- Improves ARM64 Linux compatibility for OpenBLAS builds
- Should resolve 'lapacke.h: No such file or directory' errors

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Add liblapacke-dev package for ARM64 Linux builds

- Add liblapacke-dev to ARM64 dependencies alongside libopenblas-dev
- Provides lapacke.h header file needed for LAPACK C interface
- Fixes 'lapacke.h: No such file or directory' compilation error
- Enables complete OpenBLAS + LAPACKE support for ARM64 wheel builds

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Update DiskANN submodule with cosine_similarity.h x86 intrinsics fix

- Points to commit dbb17eb with corrected conditional compilation
- Fixes immintrin.h inclusion for ARM64 compatibility in cosine_similarity.h
- Resolves 'immintrin.h: No such file or directory' error
- Continues systematic ARM64 Linux compilation fixes

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Update DiskANN submodule with LAPACKE library linking fix

- Points to commit 19f9603 with explicit LAPACKE library discovery and linking
- Resolves 'undefined symbol: LAPACKE_sgesdd' runtime error on ARM64 Linux
- Completes ARM64 Linux wheel build compatibility for Docker deployments

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-09-02 14:27:06 -07:00
Yichuan Wang
d41e467df9 [CLI] More robust leann list and leann build (#84)
* chore(submodule): bump faiss to latest storage-efficient build

* [chore] add slack to share use case

* [cli] better gitignore / better leann list

* [cli] fix # 81
2025-09-01 18:36:27 -07:00
yichuan520030910320
4ca0489cb1 [chore] add slack to share use case 2025-09-01 13:31:16 -07:00
yichuan520030910320
e83a671918 chore(submodule): bump faiss to latest storage-efficient build 2025-09-01 13:31:12 -07:00
yichuan520030910320
4e5b73ce7b fix bug introduce in #58 2025-08-22 02:35:09 -07:00
Gabriel Dehan
31b4973141 Metadata filtering feature (#75)
* Metadata filtering initial version

* Metadata filtering initial version

* Fixes linter issues

* Cleanup code

* Clean up and readme

* Fix after review

* Use UV in example

* Merge main into feature/metadata-filtering
2025-08-20 19:57:56 -07:00
Yichuan Wang
dde2221513 [EXP] Update the benchmark code (#71)
* chore(hnsw): reorder imports to satisfy ruff I001

* chore: sync changes; fix Ruff import order; update examples, benchmarks, and dependencies

- Fix import order in packages/leann-backend-hnsw/leann_backend_hnsw/hnsw_backend.py (Ruff I001)

- Update benchmarks/run_evaluation.py

- Update apps/base_rag_example.py and leann-core API usage

- Add benchmarks/data/README.md

- Update uv.lock

- Misc cleanup

- Note: added paru-bin as an embedded git repo; consider making it a submodule (git rm --cached paru-bin) if unintended

* chore: remove unintended embedded repo paru-bin and ignore it

Fix CI: avoid missing .gitmodules entry by removing gitlink and adding to .gitignore.

* ci: retrigger after removing unintended gitlink (paru-bin)

* feat(benchmarks): add --batch-size option and plumb through to HNSW search (default 0)

* feat(hnsw): add batch_size to LeannSearcher.search and LeannChat.ask; forward only for HNSW backend

* chore(logging): surface recompute and batching params; enable INFO logging in benchmark

* feat(embeddings): add optional manual tokenization path (HF tokenizer+model) with mean pooling; default remains SentenceTransformer.encode

* fix micro bench and fix pre commit

* update readme

---------

Co-authored-by: yichuan-w <yichuan-w@users.noreply.github.com>
2025-08-20 17:31:46 -07:00
Andy Lee
6d11e86e71 Run Evaluation RPJ Wiki on Arch Linux (#74)
* chore: ignore benchmark data

* perf: avoid merging offset dicts for lower mem usage

* style: format

* docs: rpj_wiki
2025-08-20 12:25:54 -07:00
Gabriel Dehan
13bb561aad Add AST-aware code chunking for better code understanding (#58)
* feat(core): Add AST-aware code chunking with astchunk integration

This PR introduces intelligent code chunking that preserves semantic boundaries
(functions, classes, methods) for better code understanding in RAG applications.

Key Features:
- AST-aware chunking for Python, Java, C#, TypeScript files
- Graceful fallback to traditional chunking for unsupported languages
- New specialized code RAG application for repositories
- Enhanced CLI with --use-ast-chunking flag
- Comprehensive test suite with integration tests

Technical Implementation:
- New chunking_utils.py module with enhanced chunking logic
- Extended base RAG framework with AST chunking arguments
- Updated document RAG with --enable-code-chunking flag
- CLI integration with proper error handling and fallback

Benefits:
- Better semantic understanding of code structure
- Improved search quality for code-related queries
- Maintains backward compatibility with existing workflows
- Supports mixed content (code + documentation) seamlessly

Dependencies:
- Added astchunk and tree-sitter parsers to pyproject.toml
- All dependencies are optional - fallback works without them

Testing:
- Comprehensive test suite in test_astchunk_integration.py
- Integration tests with document RAG
- Error handling and edge case coverage

Documentation:
- Updated README.md with AST chunking highlights
- Added ASTCHUNK_INTEGRATION.md with complete guide
- Updated features.md with new capabilities

* Refactored chunk utils

* Remove useless import

* Update README.md

* Update apps/chunking/utils.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* Update apps/code_rag.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* Fix issue

* apply suggestion from @Copilot

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* Fixes after pr review

* Fix tests not passing

* Fix linter error for documentation files

* Update .gitignore with unwanted files

---------

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: Andy Lee <andylizf@outlook.com>
2025-08-19 23:35:31 -07:00
GitHub Actions
0174ba5571 chore: release v0.3.2 2025-08-19 09:41:40 +00:00
Andy Lee
03af82d695 fix: leann mcp search cwd & interactive issues (#72) 2025-08-19 02:27:06 -07:00
GitHub Actions
738f1dbab8 chore: release v0.3.1 2025-08-19 05:56:45 +00:00
yichuan520030910320
37d990d51c [feature] fix cli 2025-08-18 22:55:43 -07:00
Andy Lee
a6f07a54f1 fix: Use uv venv for Arch Linux CI wheel installation (#69)
- Use astral-sh/setup-uv@v4 action for consistency with other jobs
- Create virtual environment with uv venv to bypass PEP 668 restrictions
- Install wheels using uv pip install for faster dependency resolution
- Maintain tool consistency across the entire CI pipeline

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-authored-by: Claude <noreply@anthropic.com>
2025-08-16 21:32:19 -07:00
Andy Lee
46905e0687 feat: Improve DiskANN cross-platform compatibility and add Arch Linux support (#66)
* feat: Enhance CLI with improved list and smart remove commands

##  New Features

### 🏠 Enhanced `leann list` command
- **Better UX**: Current project shown first with clear separation
- **Visual improvements**: Icons (🏠/📂), better formatting, size info
- **Smart guidance**: Context-aware usage examples and getting started tips

### 🛡️ Smart `leann remove` command
- **Safety first**: Always shows ALL matching indexes across projects
- **Intelligent handling**:
  - Single match: Clear location display with cross-project warnings
  - Multiple matches: Interactive selection with final confirmation
- **Prevents accidents**: No more deleting wrong indexes due to name conflicts
- **User-friendly**: 'c' to cancel, clear visual hierarchy, detailed info

### 🔧 Technical improvements
- **Clean logging**: Hide debug messages for better CLI experience
- **Comprehensive search**: Always scan all projects for transparency
- **Error handling**: Graceful handling of edge cases and user input

## 🎯 Impact
- **Safer**: Eliminates risk of accidental index deletion
- **Clearer**: Users always know what they're operating on
- **Smarter**: Automatic detection and handling of common scenarios

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* chore: vscode ruff, and format

* fix: Update DiskANN submodule with MKL linking improvements

Updates DiskANN submodule to include fix for MKL linking issues:
- Replaces global link_libraries() with target-specific linking
- Uses dynamic MKL linking (mkl_rt) for better cross-platform compatibility
- Prevents MKL contamination of unrelated targets (like zlib tests)
- Resolves build failures on strict linkers (Arch Linux) while maintaining Ubuntu compatibility

DiskANN commit: c593831 - fix: Replace global MKL linking with target-specific approach

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* chore: all linux deps

* fix: Update Intel MKL download link to avoid 403 error

- Replace problematic Intel download URL that returns 403 Forbidden
- Use general Intel oneAPI MKL page instead of specific download parameters
- This fixes the lychee link checker CI failure

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Configure lychee to use browser User-Agent for Intel links

- Replace domain exclusion with browser User-Agent to properly check Intel links
- Intel website blocks automated tools but allows browser-like requests
- This enables proper link validation while avoiding 403 Forbidden errors

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Use curl User-Agent for lychee link checking

Intel website has specific anti-bot logic:
- Blocks browser User-Agents (returns 403)
- Blocks lychee default User-Agent (returns 403)
- Allows curl User-Agent (returns 200)

This enables proper link validation for Intel documentation.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-08-16 14:42:20 -07:00
Andy Lee
838ade231e 🔗 Auto-register apps: Universal index discovery (#64)
* feat: Enhance CLI with improved list and smart remove commands

##  New Features

### 🏠 Enhanced `leann list` command
- **Better UX**: Current project shown first with clear separation
- **Visual improvements**: Icons (🏠/📂), better formatting, size info
- **Smart guidance**: Context-aware usage examples and getting started tips

### 🛡️ Smart `leann remove` command
- **Safety first**: Always shows ALL matching indexes across projects
- **Intelligent handling**:
  - Single match: Clear location display with cross-project warnings
  - Multiple matches: Interactive selection with final confirmation
- **Prevents accidents**: No more deleting wrong indexes due to name conflicts
- **User-friendly**: 'c' to cancel, clear visual hierarchy, detailed info

### 🔧 Technical improvements
- **Clean logging**: Hide debug messages for better CLI experience
- **Comprehensive search**: Always scan all projects for transparency
- **Error handling**: Graceful handling of edge cases and user input

## 🎯 Impact
- **Safer**: Eliminates risk of accidental index deletion
- **Clearer**: Users always know what they're operating on
- **Smarter**: Automatic detection and handling of common scenarios

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* chore: vscode ruff, and format

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-08-16 11:50:25 -07:00
Andy Lee
da6540decd feat: Enhance CLI with improved list and smart remove commands (#63)
- **Better UX**: Current project shown first with clear separation
- **Visual improvements**: Icons (🏠/📂), better formatting, size info
- **Smart guidance**: Context-aware usage examples and getting started tips

- **Safety first**: Always shows ALL matching indexes across projects
- **Intelligent handling**:
  - Single match: Clear location display with cross-project warnings
  - Multiple matches: Interactive selection with final confirmation
- **Prevents accidents**: No more deleting wrong indexes due to name conflicts
- **User-friendly**: 'c' to cancel, clear visual hierarchy, detailed info

- **Clean logging**: Hide debug messages for better CLI experience
- **Comprehensive search**: Always scan all projects for transparency
- **Error handling**: Graceful handling of edge cases and user input

- **Safer**: Eliminates risk of accidental index deletion
- **Clearer**: Users always know what they're operating on
- **Smarter**: Automatic detection and handling of common scenarios
2025-08-15 23:49:47 -07:00
yichuan520030910320
39e18a7c11 [chore] remove gitattribute 2025-08-15 23:12:24 -07:00
Andy Lee
6bde28584b feat: Add Google Gemini API support for chat and embeddings (#57)
- Add GeminiChat class with gemini-2.5-flash model support
- Add compute_embeddings_gemini function with text-embedding-004 model
- Update get_llm factory to support "gemini" type
- Update API documentation to include gemini embedding mode
- Support temperature, max_tokens, top_p parameters for Gemini chat
- Support batch embedding processing with progress bars
- Add proper error handling and API key validation
2025-08-15 21:54:11 -07:00
yichuan520030910320
f62632c41f [readme]update arch linux install 2025-08-15 21:41:34 -07:00
yichuan520030910320
27708243ca update system support 2025-08-15 21:32:53 -07:00
GitHub Actions
9a1e4652ca chore: release v0.3.0 2025-08-16 00:54:47 +00:00
Andy Lee
14e84d9e2d fix(core): skip empty/invalid chunks before embedding; guard OpenAI embeddings (#55)
Avoid 400 errors from OpenAI when chunker yields empty strings by filtering
invalid texts in LeannBuilder.build_index. Add validation fail-fast in
OpenAI embedding path to surface upstream issues earlier. Keeps passages and
embeddings aligned during build.

Refs #54
2025-08-15 17:53:53 -07:00
Yichuan Wang
2dcfca19ff style: apply ruff format (#56) 2025-08-15 17:48:33 -07:00
Yichuan Wang
bee2167ee3 docs: update READMEs (MCP docs + conclusion polish)
- Polish conclusion in packages/leann-mcp/README.md
- Sync root README wording and links
2025-08-15 17:21:23 -07:00
yichuan520030910320
ef980d70b3 [MCP]update MCP of claude code 2025-08-15 14:29:59 -07:00
Andy Lee
db3c63c441 Docs/Core: Low-Resource Setups, SkyPilot Option, and No-Recompute (#45)
* docs: add SkyPilot template and instructions for running embeddings/index build on cloud GPU

* docs: add low-resource note in README; point to config guide; suggest OpenAI embeddings, SkyPilot remote build, and --no-recompute

* docs: consolidate low-resource guidance into config guide; README points to it

* cli: add --no-recompute and --no-recompute-embeddings flags; docs: clarify HNSW requires --no-compact when disabling recompute

* docs: dedupe recomputation guidance; keep single Low-resource setups section

* sky: expand leann-build.yaml with configurable params and flags (backend, recompute, compact, embedding options)

* hnsw: auto-disable compact when --no-recompute is used; docs: expand SkyPilot with -e overrides and copy-back example

* docs+sky: simplify SkyPilot flow (auto-build on launch, rsync copy-back); clarify HNSW auto non-compact when no-recompute

* feat: auto compact for hnsw when recompute

* reader: non-destructive portability (relative hints + fallback); fix comments; sky: refine yaml

* cli: unify flags to --recompute/--no-recompute for build/search/ask; docs: update references

* chore: remove

* hnsw: move pruned/no-recompute assertion into backend; api: drop global assertion; docs: will adjust after benchmarking

* cli: use argparse.BooleanOptionalAction for paired flags (--recompute/--compact) across build/search/ask

* docs: a real example on recompute

* benchmarks: fix and extend HNSW+DiskANN recompute vs no-recompute; docs: add fresh numbers and DiskANN notes

* benchmarks: unify HNSW & DiskANN into one clean script; isolate groups, fixed ports, warm-up, param complexity

* docs: diskann recompute

* core: auto-cleanup for LeannSearcher/LeannChat (__enter__/__exit__/__del__); ensure server terminate/kill robustness; benchmarks: use searcher.cleanup(); docs: suggest uv run

* fix: hang on warnings

* docs: boolean flags

* docs: leann help
2025-08-15 12:03:19 -07:00
yichuan520030910320
00eeadb9dd upd pkg 2025-08-14 14:39:45 -07:00
yichuan520030910320
42c8370709 add chunk size in leann build& fix batch size in oai& docs 2025-08-14 13:14:14 -07:00
Andy Lee
fafdf8fcbe feat(core,diskann): robust embedding server (no-hang) + DiskANN fast mode (graph partition) (#29)
* feat: Add graph partition support for DiskANN backend

- Add GraphPartitioner class for advanced graph partitioning
- Add partition_graph_simple function for easy-to-use partitioning
- Add pybind11 dependency for C++ executable building
- Update __init__.py to export partition functions
- Include test scripts for partition functionality

The partition functionality allows optimizing disk-based indices
for better search performance and memory efficiency.

* chore: Update DiskANN submodule to latest with graph partition tools

- Update DiskANN submodule to commit b2dc4ea
- Includes graph partition tools and CMake integration
- Enables graph partitioning functionality in DiskANN backend

* merge

* ruff

* add a path related fix

* fix: always use relative path in metadata

* docs: tool cli install

* chore: more data

* fix: diskann building and partitioning

* tests: diskann and partition

* docs: highlight diskann readiness and add performance comparison

* docs: add ldg-times parameter for diskann graph locality optimization

* fix: update pre-commit ruff version and format compliance

* fix: format test files with latest ruff version for CI compatibility

* fix: pin ruff version to 0.12.7 across all environments

- Pin ruff==0.12.7 in pyproject.toml dev dependencies
- Update CI to use exact ruff version instead of latest
- Add comments explaining version pinning rationale
- Ensures consistent formatting across local, CI, and pre-commit

* fix: use uv tool install for ruff instead of uv pip install

- uv tool install is the correct way to install CLI tools like ruff
- uv pip install --system is for Python packages, not tools

* debug: add detailed logging for CI path resolution debugging

- Add logging in DiskANN embedding server to show metadata_file_path
- Add debug logging in PassageManager to trace path resolution
- This will help identify why CI fails to find passage files

* fix: force install local wheels in CI to prevent PyPI version conflicts

- Change from --find-links to direct wheel installation with --force-reinstall
- This ensures CI uses locally built packages with latest source code
- Prevents uv from using PyPI packages with same version number but old code
- Fixes CI test failures where old code (without metadata_file_path) was used

Root cause: CI was installing leann-backend-diskann v0.2.1 from PyPI
instead of the locally built wheel with same version number.

* debug: add more CI diagnostics for DiskANN module import issue

- Check wheel contents before and after auditwheel repair
- Verify _diskannpy module installation after pip install
- List installed package directory structure
- Add explicit platform tag for auditwheel repair

This helps diagnose why ImportError: cannot import name '_diskannpy' occurs

* fix: remove invalid --plat argument from auditwheel repair

- Remove '--plat linux_x86_64' which is not a valid platform tag
- Let auditwheel automatically determine the correct platform
- Based on CI output, it will use manylinux_2_35_x86_64

This was causing auditwheel repair to fail, preventing proper wheel repair

* fix: ensure CI installs correct Python version wheel packages

- Use --find-links with --no-index to let uv select correct wheel
- Prevents installing wrong Python version wheel (e.g., cp310 for Python 3.11)
- Fixes ImportError: _diskannpy.cpython-310-x86_64-linux-gnu.so in Python 3.11

The issue was that *.whl glob matched all Python versions, causing
uv to potentially install a cp310 wheel in a Python 3.11 environment.

* fix: ensure venv uses correct Python version from matrix

- Explicitly specify Python version when creating venv with uv
- Prevents mismatch between build Python (e.g., 3.10) and test Python
- Fixes: _diskannpy.cpython-310-x86_64-linux-gnu.so in Python 3.11 error

The issue: uv venv was defaulting to Python 3.11 regardless of matrix version

* fix: resolve dependency issues in CI package installation

- Ubuntu: Install all packages from local builds with --no-index
- macOS: Install core packages from PyPI, backends from local builds
- Remove --no-index for macOS backend installation to allow dependency resolution
- Pin versions when installing from PyPI to ensure consistency

Fixes error: 'leann-core was not found in the provided package locations'

* fix: Python 3.9 compatibility - replace Union type syntax

- Replace 'int | None' with 'Optional[int]' everywhere
- Replace 'subprocess.Popen | None' with 'Optional[subprocess.Popen]'
- Add Optional import to all affected files
- Update ruff target-version from py310 to py39
- The '|' syntax for Union types was introduced in Python 3.10 (PEP 604)

Fixes TypeError: unsupported operand type(s) for |: 'type' and 'NoneType'

* ci: build all packages on all platforms; install from local wheels only

- Build leann-core and leann on macOS too
- Install all packages via --find-links and --no-index across platforms
- Lower macOS MACOSX_DEPLOYMENT_TARGET to 12.0 for wider compatibility

This ensures consistency and avoids PyPI drift while improving macOS compatibility.

* ci: allow resolving third-party deps from index; still prefer local wheels for our packages

- Remove --no-index so numpy/scipy/etc can be resolved on Python 3.13
- Keep --find-links to force our packages from local dist

Fixes: dependency resolution failure on Ubuntu Python 3.13 (numpy missing)

* ci(macOS): set MACOSX_DEPLOYMENT_TARGET back to 13.3

- Fix build failure: 'sgesdd_' only available on macOS 13.3+
- Keep other CI improvements (local builds, find-links installs)

* fix(py39): replace union type syntax in chat.py

- validate_model_and_suggest: str | None -> Optional[str]
- OpenAIChat.__init__: api_key: str | None -> Optional[str]
- get_llm: dict[str, Any] | None -> Optional[dict[str, Any]]

Ensures Python 3.9 compatibility for CI macOS 3.9.

* style: organize imports per ruff; finish py39 Optional changes

- Fix import ordering in embedding servers and graph_partition_simple
- Remove duplicate Optional import
- Complete Optional[...] replacements

* fix(py39): replace remaining '| None' in diskann graph_partition (module-level function)

* fix(py39): remove zip(strict=...) usage in api; Python 3.9 compatibility

* style: organize imports; fix process-group stop for embedding server

* chore: keep embedding server stdout/stderr visible; still use new session and pg-kill on stop

* fix: add timeout to final wait() in stop_server to prevent infinite hang

* fix: prevent hang in CI by flushing print statements and redirecting embedding server output

- Add flush=True to all print statements in convert_to_csr.py to prevent buffer deadlock
- Redirect embedding server stdout/stderr to DEVNULL in CI environment (CI=true)
- Fix timeout in embedding_server_manager.stop_server() final wait call

* fix: resolve CI hanging by removing problematic wait() in stop_server

* fix: remove hardcoded paths from MCP server and documentation

* feat: add CI timeout protection for tests

* fix: skip OpenAI test in CI to avoid failures and API costs

- Add CI skip for test_document_rag_openai
- Test was failing because it incorrectly used --llm simulated which isn't supported by document_rag.py

* feat: add simulated LLM option to document_rag.py

- Add 'simulated' to the LLM choices in base_rag_example.py
- Handle simulated case in get_llm_config() method
- This allows tests to use --llm simulated to avoid API costs

* feat: add comprehensive debugging capabilities with tmate integration

1. Tmate SSH Debugging:
   - Added manual workflow_dispatch trigger with debug_enabled option
   - Integrated mxschmitt/action-tmate@v3 for SSH access to CI runner
   - Can be triggered manually or by adding [debug] to commit message
   - Detached mode with 30min timeout, limited to actor only
   - Also triggers on test failure when debug is enabled

2. Enhanced Pytest Output:
   - Added --capture=no to see real-time output
   - Added --log-cli-level=DEBUG for maximum verbosity
   - Added --tb=short for cleaner tracebacks
   - Pipe output to tee for both display and logging
   - Show last 20 lines of output on completion

3. Environment Diagnostics:
   - Export PYTHONUNBUFFERED=1 for immediate output
   - Show Python/Pytest versions at start
   - Display relevant environment variables
   - Check network ports before/after tests

4. Diagnostic Script:
   - Created scripts/diagnose_hang.sh for comprehensive system checks
   - Shows processes, network, file descriptors, memory, ZMQ status
   - Automatically runs on timeout for detailed debugging info

This allows debugging CI hangs via SSH when needed while providing extensive logging by default.

* fix: add diagnostic script (force add to override .gitignore)

The diagnose_hang.sh script needs to be in git for CI to use it.
Using -f to override *.sh rule in .gitignore.

* test: investigate hanging [debug]

* fix: move tmate debug session inside pytest step to avoid hanging

The issue was that tmate was placed before pytest step, but the hang
occurs during pytest execution. Now tmate starts inside the test step
and provides connection info before running tests.

* debug: trigger tmate debug session [debug]

* fix: debug variable values and add commit message [debug] trigger

- Add debug output to show variable values
- Support both manual trigger and [debug] in commit message

* fix: force debug mode for investigation branch

- Auto-enable debug mode for debug/clean-state-investigation branch
- Add more debug info to troubleshoot trigger issues
- This ensures tmate will start regardless of trigger method

* fix: use github.head_ref for PR branch detection

For pull requests, github.ref is refs/pull/N/merge, but github.head_ref
contains the actual branch name. This should fix debug mode detection.

* fix: FORCE debug mode on - no more conditions

Just always enable debug mode on this branch.
We need tmate to work for investigation!

* fix: improve tmate connection info retrieval

- Add proper wait and retry logic for tmate initialization
- Tmate needs time to connect to servers before showing SSH info
- Try multiple times with delays to get connection details

* fix: ensure OpenMP is found during DiskANN build on macOS

- Add OpenMP environment variables directly in build step
- Should fix the libomp.dylib not found error on macOS-14

* fix: simplify macOS OpenMP configuration to match main branch

- Remove complex OpenMP environment variables
- Use simplified configuration from working main branch
- Remove redundant OpenMP setup in DiskANN build step
- Keep essential settings: OpenMP_ROOT, CMAKE_PREFIX_PATH, LDFLAGS, CPPFLAGS

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: revert DiskANN submodule to stable version

The debug branch had updated DiskANN submodule to a version with
hardcoded OpenMP paths that break macOS 13 builds. This reverts
to the stable version used in main branch.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: update faiss submodule to latest stable version

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* refactor: remove upterm/tmate debug code and clean CI workflow

- Remove all upterm/tmate SSH debugging infrastructure
- Restore clean CI workflow from main branch
- Remove diagnostic script that was only for SSH debugging
- Keep valuable DiskANN and HNSW backend improvements

This provides a clean base to add targeted pytest hang debugging
without the complexity of SSH sessions.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* debug: increase timeouts to 600s for comprehensive hang investigation

- Increase pytest timeout from 300s to 600s for thorough testing
- Increase import testing timeout from 60s to 120s
- Allow more time for C++ extension loading (faiss/diskann)
- Still provides timeout protection against infinite hangs

This gives the system more time to complete imports and tests
while still catching genuine hangs that exceed reasonable limits.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: remove debug_enabled parameter from build-and-publish workflow

- Remove debug_enabled input parameter that no longer exists in build-reusable.yml
- Keep workflow_dispatch trigger but without debug options
- Fixes workflow validation error: 'debug_enabled is not defined'

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* debug: fix YAML syntax and add post-pytest cleanup monitoring

- Fix Python code formatting in YAML (pre-commit fixed indentation issues)
- Add comprehensive post-pytest cleanup monitoring
- Monitor for hanging processes after test completion
- Focus on teardown phase based on previous hang analysis

This addresses the root cause identified: hang occurs after tests pass,
likely during cleanup/teardown of C++ extensions or embedding servers.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* debug: add external process monitoring and unbuffered output for precise hang detection

* fix

* feat: add comprehensive hang detection for pytest CI debugging

- Add Python faulthandler integration with signal-triggered stack dumps
- Implement periodic stack dumps at 5min and 10min intervals
- Add external process monitoring with SIGUSR1 signal on hang detection
- Use debug_pytest.py wrapper to capture exact hang location in C++ cleanup
- Enhance CPU stability monitoring to trigger precise stack traces

This addresses the persistent pytest hanging issue in Ubuntu 22.04 CI by
providing detailed stack traces to identify the exact code location where
the hang occurs during test cleanup phase.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* CI: move pytest hang-debug script into scripts/ci_debug_pytest.py; sort imports and apply ruff suggestion; update workflow to call the script

* fix: improve hang detection to monitor actual pytest process

* fix: implement comprehensive solution for CI pytest hangs

Key improvements:
1. Replace complex monitoring with simpler process group management
2. Add pytest conftest.py with per-test timeouts and aggressive cleanup
3. Skip problematic tests in CI that cause infinite loops
4. Enhanced cleanup at session start/end and after each test
5. Shorter timeouts (3min per test, 10min total) with better monitoring

This should resolve the hanging issues by:
- Preventing individual tests from running too long
- Automatically cleaning up hanging processes
- Skipping known problematic tests in CI
- Using process groups for more reliable cleanup

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: correct pytest_runtest_call hook parameter in conftest.py

- Change invalid 'puretest' parameter to proper pytest hooks
- Replace problematic pytest_runtest_call with pytest_runtest_setup/teardown
- This fixes PluginValidationError preventing pytest from starting
- Remove unused time import

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: prevent wrapper script from killing itself in cleanup

- Remove overly aggressive pattern 'python.*pytest' that matched wrapper itself
- Add current PID check to avoid killing wrapper process
- Add exclusion for wrapper and debug script names
- This fixes exit code 137 (SIGKILL) issue where wrapper killed itself

Root cause: cleanup function was killing the wrapper process itself,
causing immediate termination with no output in CI.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: prevent wrapper from detecting itself as remaining process

- Add PID and script name checks in post-test verification
- Avoid false positive detection of wrapper process as 'remaining'
- This prevents unnecessary cleanup calls that could cause hangs
- Root cause: wrapper was trying to clean up itself in verification phase

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: implement graceful shutdown for embedding servers

- Replace daemon threads with coordinated shutdown mechanism
- Add shutdown_event for thread synchronization
- Implement proper ZMQ resource cleanup
- Wait for threads to complete before exit
- Add ZMQ timeout to allow periodic shutdown checks
- Move signal handlers into server functions for proper scope access
- Fix protobuf class names and variable references
- Simplify resource cleanup to avoid variable scope issues

Root cause: Original servers used daemon threads + direct sys.exit(0)
which interrupted ZMQ operations and prevented proper resource cleanup,
causing hangs during process termination in CI environments.

This should resolve the core pytest hanging issue without complex wrappers.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: simplify embedding server process management

- Remove start_new_session=True to fix signal handling issues
- Simplify termination logic to use standard SIGTERM/SIGKILL
- Remove complex process group management that could cause hangs
- Add timeout-based cleanup to prevent CI hangs while ensuring proper resource cleanup
- Give graceful shutdown more time (5s) since we fixed the server shutdown logic
- Remove unused signal import

This addresses the remaining process management issues that could
cause startup failures and hanging during termination.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: increase CI test timeouts to accommodate model download

Analysis of recent CI failures shows:
- Model download takes ~12 seconds
- Embedding server startup + first search takes additional ~78 seconds
- Total time needed: ~90-100 seconds

Updated timeouts:
- test_readme_basic_example: 90s -> 180s
- test_backend_options: 60s -> 150s
- test_llm_config_simulated: 75s -> 150s

Root cause: Initial model download from huggingface.co in CI environment
is slower than local development, causing legitimate timeouts rather than
actual hanging processes.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* debug: preserve stderr in CI to debug embedding server startup failures

Previous fix revealed the real issue: embedding server fails to start within 120s,
not timeout issues. The error was hidden because both stdout and stderr were
redirected to DEVNULL in CI.

Changes:
- Keep stderr output in CI environment for debugging
- Only redirect stdout to DEVNULL to avoid buffer deadlock
- This will help us see why embedding server startup is failing

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix(embedding-server): ensure shutdown-capable ZMQ threads create/bind their own REP sockets and poll with timeouts; fix undefined socket causing startup crash and CI hangs on Ubuntu 22.04

* style(hnsw-server): apply ruff-format after robustness changes

* fix(hnsw-server): be lenient to nested [[ids]] for both distance and embedding requests to match client expectations; prevents missing ID lookup when wrapper nests the list

* refactor(hnsw-server): remove duplicate legacy ZMQ thread; keep single shutdown-capable server implementation to reduce surface and avoid hangs

* ci: simplify test step to run pytest uniformly across OS; drop ubuntu-22.04 wrapper special-casing

* chore(ci): remove unused pytest wrapper and debug runner

* refactor(diskann): remove redundant graph_partition_simple; keep single partition API (graph_partition)

* refactor(hnsw-convert): remove global print override; rely on default flushing in CI

* tests: drop custom ci_timeout decorator and helpers; rely on pytest defaults and simplified CI

* tests: remove conftest global timeouts/cleanup; keep test suite minimal and rely on simplified CI + robust servers

* tests: call searcher.cleanup()/chat.cleanup() to ensure background embedding servers terminate after tests

* tests: fix ruff warnings in minimal conftest

* core: add weakref.finalize and atexit-based cleanup in EmbeddingServerManager to ensure server stops on interpreter exit/GC

* tests: remove minimal conftest to validate atexit/weakref cleanup path

* core: adopt compatible running server (record PID) and ensure stop_server() can terminate adopted processes; clear server_port on stop

* ci/core: skip compatibility scanning in CI (LEANN_SKIP_COMPAT=1) to avoid slow/hanging process scans; always pick a fresh available port

* core: unify atexit to always call _finalize_process (covers both self-launched and adopted servers)

* zmq: set SNDTIMEO=1s and LINGER=0 for REP sockets to avoid send blocking during shutdown; reduces CI hang risk

* tests(ci): skip DiskANN branch of README basic example on CI to avoid core dump in constrained runners; HNSW still validated

* diskann(ci): avoid stdout/stderr FD redirection in CI to prevent aborts from low-level dup2; no-op contextmanager on CI

* core: purge dead helpers and comments from EmbeddingServerManager; keep only minimal in-process flow

* core: fix lint (remove unused passages_file); keep per-instance reuse only

* fix: keep backward-compat

---------

Co-authored-by: yichuan520030910320 <yichuan_wang@berkeley.edu>
Co-authored-by: Claude <noreply@anthropic.com>
2025-08-14 01:02:24 -07:00
yichuan520030910320
21f7d8e031 docs: update -h and config advice 2025-08-13 14:26:35 -07:00
Andy Lee
46565b9249 docs: follows #34, patch leann backends into tool environment 2025-08-12 17:56:02 -07:00
GitHub Actions
3dad76126a chore: release v0.2.9 2025-08-12 23:00:12 +00:00
Andy Lee
18e28bda32 feat: Add macOS 15 support for M4 Mac compatibility (#38)
* feat: add macOS 15 support for M4 Mac compatibility

- Add macos-15 CI builds for Python 3.9-3.13
- Update MACOSX_DEPLOYMENT_TARGET from 11.0/13.3 to 14.0 for broader compatibility
- Addresses issue #34 with Mac M4 wheel compatibility

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: ensure wheels are compatible with older macOS versions

- Set MACOSX_DEPLOYMENT_TARGET=11.0 for HNSW backend (broad compatibility)
- Set MACOSX_DEPLOYMENT_TARGET=13.0 for DiskANN backend (required for LAPACK)
- Add --require-target-macos-version to delocate-wheel commands
- This fixes CI failures on macos-13 runners while maintaining M4 Mac support

Fixes the issue where wheels built on macos-14 runners were incorrectly
tagged as macosx_14_0, preventing installation on macos-13 runners.

* fix: use macOS 13.3 for DiskANN backend as required by LAPACK

DiskANN requires macOS 13.3+ for sgesdd_ LAPACK function, so we must
use 13.3 as the deployment target, not 13.0.

* fix: match deployment target with runner OS for library compatibility

The issue is that Homebrew libraries on macOS 14 runners are built for
macOS 14 and cannot be downgraded. We must use different deployment
targets based on the runner OS:

- macOS 13 runners: Can build for macOS 11.0 (HNSW) and 13.3 (DiskANN)
- macOS 14 runners: Must build for macOS 14.0 (due to system libraries)

This ensures delocate-wheel succeeds by matching the deployment target
with the actual minimum version required by bundled libraries.

* fix: add macOS 15 support to deployment target configuration

The issue extends to macOS 15 runners where Homebrew libraries are built
for macOS 15. We must handle all runner versions explicitly:

- macOS 13 runners: Can build for macOS 11.0 (HNSW) and 13.3 (DiskANN)
- macOS 14 runners: Must build for macOS 14.0 (system libraries)
- macOS 15 runners: Must build for macOS 15.0 (system libraries)

This ensures wheels are properly tagged for their actual minimum
supported macOS version, matching the bundled libraries.

* fix: correct macOS deployment targets based on Homebrew library requirements

The key insight is that Homebrew libraries on each macOS version are
compiled for that specific version:
- macOS 13: Libraries require macOS 13.0 minimum
- macOS 14: Libraries require macOS 14.0 minimum
- macOS 15: Libraries require macOS 15.0 minimum

We cannot build wheels for older macOS versions than what the bundled
Homebrew libraries require. This means:
- macOS 13 runners: Build for macOS 13.0+ (HNSW) and 13.3+ (DiskANN)
- macOS 14 runners: Build for macOS 14.0+
- macOS 15 runners: Build for macOS 15.0+

This ensures delocate-wheel succeeds by matching deployment targets
with the actual minimum versions required by system libraries.

* fix: restore macOS 15 build matrix and correct test path

- Add back macOS 15 configurations for Python 3.9-3.13
- Fix pytest path from test/ to tests/ (correct directory name)

The macOS 15 support was accidentally missing from the matrix, and
pytest was looking for the wrong directory name.

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-08-12 14:01:02 -07:00
GitHub Actions
609fa62fd5 chore: release v0.2.8 2025-08-12 19:04:51 +00:00
Yichuan Wang
eab13434ef feat: support multiple input formats for --docs argument (#39) 2025-08-12 10:30:31 -07:00
yichuan520030910320
b2390ccc14 [Ollama] fix ollama recompute 2025-08-12 00:24:20 -07:00
Andy Lee
e8fca2c84a fix: detect and report Ollama embedding dimension inconsistency (#37)
- Add validation for embedding dimension consistency in Ollama mode
- Provide clear error message with troubleshooting steps when dimensions mismatch
- Fail fast instead of silent fallback to prevent data corruption

Fixes #31
2025-08-11 17:41:52 -07:00
yichuan520030910320
790ae14f69 fix missing file 2025-08-11 17:35:45 -07:00
yichuan520030910320
ac363072e6 Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-08-11 17:31:04 -07:00
yichuan520030910320
93465af46c docs: update README fix wrong data file 2025-08-11 17:29:54 -07:00
Andy Lee
792ece67dc ci: add Mac Intel (x86_64) build support (#26)
* ci: add Mac Intel (x86_64) build support

* fix: auto-detect Homebrew path for Intel vs Apple Silicon Macs

This fixes the hardcoded /opt/homebrew path which only works on Apple
Silicon Macs. Intel Macs use /usr/local as the Homebrew prefix.

* fix: auto-detect Homebrew paths for both DiskANN and HNSW backends

- Fix DiskANN CMakeLists.txt path reference
- Add macOS environment variable detection for OpenMP_ROOT
- Support both Intel (/usr/local) and Apple Silicon (/opt/homebrew) paths

* fix: improve macOS build reliability with proper OpenMP path detection

- Add proper CMAKE_PREFIX_PATH and OpenMP_ROOT detection for both Intel and Apple Silicon Macs
- Set LDFLAGS and CPPFLAGS for all Homebrew packages to ensure CMake can find them
- Apply CMAKE_ARGS to both HNSW and DiskANN backends for consistent builds
- Fix hardcoded paths that caused build failures on Intel Macs (macos-13)

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: add abseil library path for protobuf compilation on macOS

- Include abseil in CMAKE_PREFIX_PATH for both Intel and Apple Silicon Macs
- Add explicit absl_DIR CMake variable to help find abseil for protobuf
- Fixes 'absl/log/absl_log.h' file not found error during compilation

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: add abseil include path to CPPFLAGS for both Intel and Apple Silicon

- Add -I/opt/homebrew/opt/abseil/include to CPPFLAGS for Apple Silicon
- Add -I/usr/local/opt/abseil/include to CPPFLAGS for Intel
- Fixes 'absl/log/absl_log.h' file not found by ensuring abseil headers are in compiler include path

Root cause: CMAKE_PREFIX_PATH alone wasn't sufficient - compiler needs explicit -I flags

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: clean build system and Python 3.9 compatibility

Build system improvements:
- Simplify macOS environment detection using brew --prefix
- Remove complex hardcoded paths and CMAKE_ARGS
- Let CMake automatically find Homebrew packages via CMAKE_PREFIX_PATH
- Clean separation between Intel (/usr/local) and Apple Silicon (/opt/homebrew)

Python 3.9 compatibility:
- Set ruff target-version to py39 to match project requirements
- Replace str | None with Union[str, None] in type annotations
- Add Union imports where needed
- Fix core interface, CLI, chat, and embedding server files

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: type

* fix: ensure CMAKE_PREFIX_PATH is passed to backend builds

- Add CMAKE_ARGS with CMAKE_PREFIX_PATH and OpenMP_ROOT for both HNSW and DiskANN backends
- This ensures CMake can find Homebrew packages on both Intel (/usr/local) and Apple Silicon (/opt/homebrew)
- Fixes the issue where CMake was still looking for hardcoded paths instead of using detected ones

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: configure CMake paths in pyproject.toml for proper Homebrew detection

- Add CMAKE_PREFIX_PATH and OpenMP_ROOT environment variable mapping in both backends
- Remove CMAKE_ARGS from GitHub Actions workflow (cleaner separation)
- Ensure scikit-build-core correctly uses environment variables for CMake configuration
- This should fix the hardcoded /opt/homebrew paths on Intel Macs

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: remove hardcoded /opt/homebrew paths from DiskANN CMake

- Auto-detect Homebrew libomp path using OpenMP_ROOT environment variable
- Fallback to CMAKE_PREFIX_PATH/opt/libomp if OpenMP_ROOT not set
- Final fallback to brew --prefix libomp for auto-detection
- Maintains backwards compatibility with old hardcoded path
- Fixes Intel Mac builds that were failing due to hardcoded Apple Silicon paths

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: update DiskANN submodule with macOS Intel/Apple Silicon compatibility fixes

- Auto-detect Homebrew libomp path using OpenMP_ROOT environment variable
- Exclude mkl_set_num_threads on macOS (uses Accelerate framework instead of MKL)
- Fixes compilation on Intel Macs by using correct /usr/local paths

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: update DiskANN submodule with SIMD function name corrections

- Fix _mm128_loadu_ps to _mm_loadu_ps (and similar functions)
- This is a known issue in upstream DiskANN code where incorrect function names were used
- Resolves compilation errors on macOS Intel builds

References: Known DiskANN issue with SIMD intrinsics naming

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: update DiskANN submodule with type cast fix for signed char templates

- Add missing type casts (float*)a and (float*)b in SSE2 version
- This matches the existing type casts in the AVX version
- Fixes compilation error when instantiating DistanceInnerProduct<int8_t>
- Resolves "cannot initialize const float* with const signed char*" error

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: update Faiss submodule with override keyword fix

- Add missing override keyword to IDSelectorModulo::is_member function
- Fixes C++ compilation warning that was treated as error due to -Werror flag
- Resolves "warning: 'is_member' overrides a member function but is not marked 'override'"
- Improves code conformance to modern C++ best practices

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: update Faiss submodule with override keyword fix

* fix: update DiskANN submodule with additional type cast fix

- Add missing type cast in DistanceFastL2::norm function SSE2 version
- Fixes const float* = const signed char* compilation error
- Ensures consistent type casting across all SIMD code paths
- Resolves template instantiation error for DistanceFastL2<int8_t>

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* debug: simplify wheel compatibility checking

- Fix YAML syntax error in debug step
- Use simpler approach to show platform tags and wheel names
- This will help identify platform tag compatibility issues

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: use correct Python version for wheel builds

- Replace --python python with --python ${{ matrix.python }}
- This ensures wheels are built for the correct Python version in each matrix job
- Fixes Python version mismatch where cp39 wheels were used in cp311 environments

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: resolve wheel installation conflicts in CI matrix builds

Fix issue where multiple Python versions' wheels in the same dist directory
caused installation conflicts during CI testing. The problem occurred when
matrix builds for different Python versions accumulated wheels in shared
directories, and uv pip install would find incompatible wheels.

Changes:
- Add Python version detection using matrix.python variable
- Convert Python version to wheel tag format (e.g., 3.11 -> cp311)
- Use find with version-specific pattern matching to select correct wheels
- Add explicit error handling if no matching wheel is found

This ensures each CI job installs only wheels compatible with its specific
Python version, preventing "A path dependency is incompatible with the
current platform" errors.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: ensure virtual environment uses correct Python version in CI

Fix issue where uv venv was creating virtual environments with a different
Python version than specified in the matrix, causing wheel compatibility
errors. The problem occurred when the system had multiple Python versions
and uv venv defaulted to a different version than intended.

Changes:
- Add --python ${{ matrix.python }} flag to uv venv command
- Ensures virtual environment matches the matrix-specified Python version
- Fixes "The wheel is compatible with CPython 3.X but you're using CPython 3.Y" errors

This ensures wheel installation selects and installs the correctly built
wheels that match the runtime Python version.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: complete Python 3.9 type annotation compatibility fixes

Fix remaining Python 3.9 incompatible type annotations throughout the
leann-core package that were causing test failures in CI. The union operator
(|) syntax for type hints was introduced in Python 3.10 and causes
"TypeError: unsupported operand type(s) for |" errors in Python 3.9.

Changes:
- Convert dict[str, Any] | None to Optional[dict[str, Any]]
- Convert int | None to Optional[int]
- Convert subprocess.Popen | None to Optional[subprocess.Popen]
- Convert LeannBackendFactoryInterface | None to Optional[LeannBackendFactoryInterface]
- Add missing Optional imports to all affected files

This resolves all test failures related to type annotation syntax and ensures
compatibility with Python 3.9 as specified in pyproject.toml.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: complete Python 3.9 type annotation fixes in backend packages

Fix remaining Python 3.9 incompatible type annotations in backend packages
that were causing test failures. The union operator (|) syntax for type hints
was introduced in Python 3.10 and causes "TypeError: unsupported operand
type(s) for |" errors in Python 3.9.

Changes in leann-backend-diskann:
- Convert zmq_port: int | None to Optional[int] in diskann_backend.py
- Convert passages_file: str | None to Optional[str] in diskann_embedding_server.py
- Add Optional imports to both files

Changes in leann-backend-hnsw:
- Convert zmq_port: int | None to Optional[int] in hnsw_backend.py
- Add Optional import

This resolves the final test failures related to type annotation syntax and
ensures full Python 3.9 compatibility across all packages.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: remove Python 3.10+ zip strict parameter for Python 3.9 compatibility

Remove the strict=False parameter from zip() call in api.py as it was
introduced in Python 3.10 and causes "TypeError: zip() takes no keyword
arguments" in Python 3.9.

The strict parameter controls whether zip() raises an exception when the
iterables have different lengths. Since we're not relying on this behavior
and the code works correctly without it, removing it maintains the same
functionality while ensuring Python 3.9 compatibility.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: ensure leann-core package is built on all platforms, not just Ubuntu

This fixes the issue where CI was installing leann-core from PyPI instead of
using locally built package with Python 3.9 compatibility fixes.

* fix: build and install leann meta package on all platforms

The leann meta package is pure Python and platform-independent, so there's
no reason to restrict it to Ubuntu only. This ensures all platforms use
consistent local builds instead of falling back to PyPI versions.

* fix: restrict MLX dependencies to Apple Silicon Macs only

MLX framework only supports Apple Silicon (ARM64) Macs, not Intel x86_64.
Add platform_machine == 'arm64' condition to prevent installation failures
on Intel Macs (macos-13).

* cleanup: simplify CI configuration

- Remove debug step with non-existent 'uv pip debug' command
- Simplify wheel installation logic - let uv handle compatibility
- Use -e .[test] instead of manually listing all test dependencies

* fix: install backend wheels before meta packages

Install backend wheels first to ensure they're available when core/meta
packages are installed, preventing uv from trying to resolve backend
dependencies from PyPI.

* fix: use local leann-core when building backend packages

Add --find-links to backend builds to ensure they use the locally built
leann-core with fixed MLX dependencies instead of downloading from PyPI.

Also bump leann-core version to 0.2.8 to ensure clean dependency resolution.

* fix: use absolute path for find-links and upgrade backend version

- Use GITHUB_WORKSPACE for absolute path to ensure find-links works
- Upgrade leann-backend-hnsw to 0.2.8 to match leann-core version

* fix: use absolute path for find-links and upgrade backend version

- Use GITHUB_WORKSPACE for absolute path to ensure find-links works
- Upgrade leann-backend-hnsw to 0.2.8 to match leann-core version

* fix: correct version consistency for --find-links to work properly

- All packages now use version 0.2.7 consistently
- Backend packages can find exact leann-core==0.2.7 from local build
- This ensures --find-links works during CI builds instead of falling back to PyPI

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: revert all packages to consistent version 0.2.7

- This PR should not bump versions, only fix Intel Mac build
- Version bumps should be done in release_manual workflow
- All packages now use 0.2.7 consistently for --find-links to work

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: use --find-links during package installation to avoid PyPI MLX conflicts

- Backend wheels contain Requires-Dist: leann-core==0.2.7
- Without --find-links, uv resolves this from PyPI which has MLX for all Darwin
- With --find-links, uv uses local leann-core with proper platform restrictions
- Root cause: dependency resolution happens at install time, not just build time
- Local test confirms this fixes Intel Mac MLX dependency issues

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: restrict MLX dependencies to ARM64 Macs in workspace pyproject.toml

- Root pyproject.toml also had MLX dependencies without platform_machine restriction
- This caused test dependency installation to fail on Intel Macs
- Now consistent with packages/leann-core/pyproject.toml platform restrictions

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* chore: cleanup unused files and fix GitHub Actions warnings

- Remove unused packages/leann-backend-diskann/CMakeLists.txt
  (DiskANN uses cmake.source-dir=third_party/DiskANN instead)
- Replace macos-latest with macos-14 to avoid migration warnings
  (macos-latest will migrate to macOS 15 on August 4, 2025)
- Keep packages/leann-backend-hnsw/CMakeLists.txt (needed for Faiss config)

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: properly handle Python 3.13 support with PyTorch compatibility

- Support Python 3.13 on most platforms (Ubuntu, ARM64 Mac)
- Exclude Intel Mac + Python 3.13 combination due to PyTorch wheel availability
- PyTorch <2.5 supports Intel Mac but not Python 3.13
- PyTorch 2.5+ supports Python 3.13 but not Intel Mac x86_64
- Document limitation in CI configuration comments
- Update README badges with detailed Python version support and CI status

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-08-11 16:39:58 -07:00
GitHub Actions
239e35e2e6 chore: release v0.2.7 2025-08-11 03:11:46 +00:00
Andy Lee
2fac0c6fbf fix: improve gitignore and Jupyter notebook support (#28)
- Add nbconvert dependency for .ipynb file support
- Replace manual gitignore parsing with gitignore-parser library
- Proper recursive .gitignore handling (all subdirectories)
- Fix compliance with Git gitignore behavior
- Simplify code and improve reliability

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-authored-by: Claude <noreply@anthropic.com>
2025-08-10 20:02:46 -07:00
yichuan520030910320
9801aa581b [Readme]update embedding model config according to reddit feedback 2025-08-09 21:33:33 -07:00
GitHub Actions
5e97916608 chore: release v0.2.6 2025-08-10 03:39:45 +00:00
Andy Lee
8b9c2be8c9 Feat/claude code refine (#24)
* feat: Add Ollama embedding support for local embedding models

* docs: Add clear documentation for Ollama embedding usage

* fix: remove leann_ask

* docs: remove ollama embedding extra instructions

* simplify MCP interface for Claude Code

- Remove unnecessary search parameters: search_mode, recompute_embeddings, file_types, min_score
- Remove leann_clear tool (not needed for Claude Code workflow)
- Streamline search to only use: query, index_name, top_k, complexity
- Keep core tools: leann_index, leann_search, leann_status, leann_list

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* remove leann_index from MCP interface

Users should use CLI command 'leann build' to create indexes first.
MCP now only provides search functionality:
- leann_search: search existing indexes
- leann_status: check index health
- leann_list: list available indexes

This separates index creation (CLI) from search (Claude Code).

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* improve CLI with auto project name and .gitignore support

- Make index_name optional, auto-use current directory name
- Read .gitignore patterns and respect them during indexing
- Add _read_gitignore_patterns() to parse .gitignore files
- Add _should_exclude_file() for pattern matching
- Apply exclusion patterns to both PDF and general file processing
- Show helpful messages about gitignore usage

Now users can simply run: leann build
And it will use project name + respect .gitignore patterns.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-08-09 20:37:17 -07:00
Andy Lee
3ff5aac8e0 Add Ollama embedding support to enable local embedding models (#22)
* feat: Add Ollama embedding support for local embedding models

* docs: Add clear documentation for Ollama embedding usage

* feat: Enhance Ollama embedding with better error handling and concurrent processing

- Add intelligent model validation and suggestions (inspired by OllamaChat)
- Implement concurrent processing for better performance
- Add retry mechanism with timeout handling
- Provide user-friendly error messages with emojis
- Auto-detect and recommend embedding models
- Add text truncation for long texts
- Improve progress bar display logic

* docs: don't mention it in README
2025-08-08 18:44:07 -07:00
yichuan520030910320
67fef60466 [Readme]More about claude code 2025-08-08 16:05:35 -07:00
GitHub Actions
b6ab6f1993 chore: release v0.2.5 2025-08-08 22:32:27 +00:00
joshuashaffer
9f2e82a838 Propagate hosts argument for ollama through chat.py (#21)
* Propigate hosts argument for ollama through chat.py

* Apply suggestions from code review

Good AI slop suggestions.

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

---------

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-08-08 15:31:15 -07:00
yichuan520030910320
0b2b799d5a [README]fix instructions in cli 2025-08-08 01:04:13 -07:00
yichuan520030910320
0f790fbbd9 docs: polish README and add optimized MCP integration image
- Improve grammar and sentence structure in MCP section
- Add proper markdown image formatting with relative paths
- Optimize mcp_leann.png size (1.3MB -> 224KB)
- Update data description to be more specific about Chinese content
2025-08-08 00:58:36 -07:00
GitHub Actions
387ae21eba chore: release v0.2.4 2025-08-08 07:14:51 +00:00
Andy Lee
3cc329c3e7 fix: remove hardcoded paths from MCP server and documentation 2025-08-08 00:08:56 -07:00
Andy Lee
5567302316 feat: promote Claude Code integration as primary RAG feature 2025-08-07 23:19:19 -07:00
GitHub Actions
075d4bd167 chore: release v0.2.2 2025-08-08 01:58:40 +00:00
yichuan520030910320
e4bcc76f88 fix cli & make recompute default true 2025-08-07 18:58:04 -07:00
yichuan520030910320
710e83b1fd fix cli if there is no other type of doc to make it robust 2025-08-07 18:46:05 -07:00
yichuan520030910320
c96d653072 more support for type of docs in cli 2025-08-07 18:14:03 -07:00
Andy Lee
8b22d2b5d3 Merge pull request #19 from yichuan-w/feature/claude-code-research
Feature/claude code research
2025-08-05 23:02:34 -07:00
Andy Lee
4cb544ee38 docs: Update co-contributors with GitHub usernames (#18)
* docs: Update co-contributors with GitHub usernames

* docs: Use GitHub links for co-contributors and improve order

* docs: Change to Contributors and use personal homepage

* docs: Specify core contributors and welcome new contributors
2025-08-05 17:43:59 -07:00
yichuan520030910320
f94ce63d51 add gpt oss! serve your RAG using ollama 2025-08-05 16:49:52 -07:00
GitHub Actions
4271ff9d84 chore: release v0.2.1 2025-08-05 05:50:56 +00:00
Andy Lee
0d448c4a41 docs: config guidance (#17)
* docs: config guidance

* feat: add comprehensive configuration guide and update README

- Create docs/configuration-guide.md with detailed guidance on:
  - Embedding model selection (small/medium/large)
  - Index selection (HNSW vs DiskANN)
  - LLM engine and model comparison
  - Parameter tuning (build/search complexity, top-k)
  - Performance optimization tips
  - Deep dive into LEANN's recomputation feature
- Update README.md to link to the configuration guide
- Include latest 2025 model recommendations (Qwen3, DeepSeek-R1, O3-mini)

* chore: move evaluation data .gitattributes to correct location

* docs: Weaken DiskANN emphasis in README

- Change backend description to emphasize HNSW as default
- DiskANN positioned as optional for billion-scale datasets
- Simplify evaluation commands to be more generic

* docs: Adjust DiskANN positioning in features and roadmap

- features.md: Put HNSW/FAISS first as default, DiskANN as optional
- roadmap.md: Reorder to show HNSW integration before DiskANN
- Consistent with positioning DiskANN as advanced option for large-scale use

* docs: Improve configuration guide based on feedback

- List specific files in default data/ directory (2 AI papers, literature, tech report)
- Update examples to use English and better RAG-suitable queries
- Change full dataset reference to use --max-items -1
- Adjust small model guidance about upgrading to larger models when time allows
- Update top-k defaults to reflect actual default of 20
- Ensure consistent use of full model name Qwen/Qwen3-Embedding-0.6B
- Reorder optimization steps, move MLX to third position
- Remove incorrect chunk size tuning guidance
- Change README from 'Having trouble' to 'Need best practices'

* docs: Address all configuration guide feedback

- Fix grammar: 'If time is not a constraint' instead of 'time expense is not large'
- Highlight Qwen3-Embedding-0.6B performance (nearly OpenAI API level)
- Add OpenAI quick start section with configuration example
- Fold Cloud vs Local trade-offs into collapsible section
- Update HNSW as 'default and recommended for extreme low storage'
- Add DiskANN beta warning and explain PQ+rerank architecture
- Expand Ollama models: add qwen3:0.6b, 4b, 7b variants
- Note OpenAI as current default but recommend Ollama switch
- Add 'need to install extra software' warning for Ollama
- Remove incorrect latency numbers from search-complexity recommendations

* docs: add a link
2025-08-04 22:50:32 -07:00
yichuan520030910320
af5599e33c fix data example name 2025-08-04 17:49:03 -07:00
yichuan520030910320
efdf6d917a fix diskann for faster mode 2025-08-04 17:46:46 -07:00
Andy Lee
dd71ac8d71 feat: implement smart memory configuration for DiskANN (#16)
- Add intelligent memory calculation based on data size and system specs
- search_memory_maximum: 1/10 of embedding size (controls PQ compression)
- build_memory_maximum: 50% of available RAM (controls sharding)
- Provides optimal balance between performance and memory usage
- Automatic fallback to default values if parameters are explicitly provided
2025-08-04 14:36:29 -07:00
GitHub Actions
8bee1d4100 chore: release v0.2.0 2025-08-04 21:34:31 +00:00
yichuan520030910320
33521d6d00 add logs 2025-08-04 14:15:52 -07:00
Andy Lee
8899734952 refactor: Unify examples interface with BaseRAGExample (#12)
* refactor: Unify examples interface with BaseRAGExample

- Create BaseRAGExample base class for all RAG examples
- Refactor 4 examples to use unified interface:
  - document_rag.py (replaces main_cli_example.py)
  - email_rag.py (replaces mail_reader_leann.py)
  - browser_rag.py (replaces google_history_reader_leann.py)
  - wechat_rag.py (replaces wechat_history_reader_leann.py)
- Maintain 100% parameter compatibility with original files
- Add interactive mode support for all examples
- Unify parameter names (--max-items replaces --max-emails/--max-entries)
- Update README.md with new examples usage
- Add PARAMETER_CONSISTENCY.md documenting all parameter mappings
- Keep main_cli_example.py for backward compatibility with migration notice

All default values, LeannBuilder parameters, and chunking settings
remain identical to ensure full compatibility with existing indexes.

* fix: Update CI tests for new unified examples interface

- Rename test_main_cli.py to test_document_rag.py
- Update all references from main_cli_example.py to document_rag.py
- Update tests/README.md documentation

The tests now properly test the new unified interface while maintaining
the same test coverage and functionality.

* fix: Fix pre-commit issues and update tests

- Fix import sorting and unused imports
- Update type annotations to use built-in types (list, dict) instead of typing.List/Dict
- Fix trailing whitespace and end-of-file issues
- Fix Chinese fullwidth comma to regular comma
- Update test_main_cli.py to test_document_rag.py
- Add backward compatibility test for main_cli_example.py
- Pass all pre-commit hooks (ruff, ruff-format, etc.)

* refactor: Remove old example scripts and migration references

- Delete old example scripts (mail_reader_leann.py, google_history_reader_leann.py, etc.)
- Remove migration hints and backward compatibility
- Update tests to use new unified examples directly
- Clean up all references to old script names
- Users now only see the new unified interface

* fix: Restore embedding-mode parameter to all examples

- All examples now have --embedding-mode parameter (unified interface benefit)
- Default is 'sentence-transformers' (consistent with original behavior)
- Users can now use OpenAI or MLX embeddings with any data source
- Maintains functional equivalence with original scripts

* docs: Improve parameter categorization in README

- Clearly separate core (shared) vs specific parameters
- Move LLM and embedding examples to 'Example Commands' section
- Add descriptive comments for all specific parameters
- Keep only truly data-source-specific parameters in specific sections

* docs: Make example commands more representative

- Add default values to parameter descriptions
- Replace generic examples with real-world use cases
- Focus on data-source-specific features in examples
- Remove redundant demonstrations of common parameters

* docs: Reorganize parameter documentation structure

- Move common parameters to a dedicated section before all examples
- Rename sections to 'X-Specific Arguments' for clarity
- Remove duplicate common parameters from individual examples
- Better information architecture for users

* docs: polish applications

* docs: Add CLI installation instructions

- Add two installation options: venv and global uv tool
- Clearly explain when to use each option
- Make CLI more accessible for daily use

* docs: Clarify CLI global installation process

- Explain the transition from venv to global installation
- Add upgrade command for global installation
- Make it clear that global install allows usage without venv activation

* docs: Add collapsible section for CLI installation

- Wrap CLI installation instructions in details/summary tags
- Keep consistent with other collapsible sections in README
- Improve document readability and navigation

* style: format

* docs: Fix collapsible sections

- Make Common Parameters collapsible (as it's lengthy reference material)
- Keep CLI Installation visible (important for users to see immediately)
- Better information hierarchy

* docs: Add introduction for Common Parameters section

- Add 'Flexible Configuration' heading with descriptive sentence
- Create parallel structure with 'Generation Model Setup' section
- Improve document flow and readability

* docs: nit

* fix: Fix issues in unified examples

- Add smart path detection for data directory
- Fix add_texts -> add_text method call
- Handle both running from project root and examples directory

* fix: Fix async/await and add_text issues in unified examples

- Remove incorrect await from chat.ask() calls (not async)
- Fix add_texts -> add_text method calls
- Verify search-complexity correctly maps to efSearch parameter
- All examples now run successfully

* feat: Address review comments

- Add complexity parameter to LeannChat initialization (default: search_complexity)
- Fix chunk-size default in README documentation (256, not 2048)
- Add more index building parameters as CLI arguments:
  - --backend-name (hnsw/diskann)
  - --graph-degree (default: 32)
  - --build-complexity (default: 64)
  - --no-compact (disable compact storage)
  - --no-recompute (disable embedding recomputation)
- Update README to document all new parameters

* feat: Add chunk-size parameters and improve file type filtering

- Add --chunk-size and --chunk-overlap parameters to all RAG examples
- Preserve original default values for each data source:
  - Document: 256/128 (optimized for general documents)
  - Email: 256/25 (smaller overlap for email threads)
  - Browser: 256/128 (standard for web content)
  - WeChat: 192/64 (smaller chunks for chat messages)
- Make --file-types optional filter instead of restriction in document_rag
- Update README to clarify interactive mode and parameter usage
- Fix LLM default model documentation (gpt-4o, not gpt-4o-mini)

* feat: Update documentation based on review feedback

- Add MLX embedding example to README
- Clarify examples/data content description (two papers, Pride and Prejudice, Chinese README)
- Move chunk parameters to common parameters section
- Remove duplicate chunk parameters from document-specific section

* docs: Emphasize diverse data sources in examples/data description

* fix: update default embedding models for better performance

- Change WeChat, Browser, and Email RAG examples to use all-MiniLM-L6-v2
- Previous Qwen/Qwen3-Embedding-0.6B was too slow for these use cases
- all-MiniLM-L6-v2 is a fast 384-dim model, ideal for large-scale personal data

* add response highlight

* change rebuild logic

* fix some example

* feat: check if k is larger than #docs

* fix: WeChat history reader bugs and refactor wechat_rag to use unified architecture

* fix email wrong -1 to process all file

* refactor: reorgnize all examples/ and test/

* refactor: reorganize examples and add link checker

* fix: add init.py

* fix: handle certificate errors in link checker

* fix wechat

* merge

* docs: update README to use proper module imports for apps

- Change from 'python apps/xxx.py' to 'python -m apps.xxx'
- More professional and pythonic module calling
- Ensures proper module resolution and imports
- Better separation between apps/ (production tools) and examples/ (demos)

---------

Co-authored-by: yichuan520030910320 <yichuan_wang@berkeley.edu>
2025-08-03 23:06:24 -07:00
Andy Lee
54df6310c5 fix: diskann build and prevent termination from hanging
- Fix OpenMP library linking in DiskANN CMake configuration
- Add timeout protection for HuggingFace model loading to prevent hangs
- Improve embedding server process termination with better timeouts
- Make DiskANN backend default enabled alongside HNSW
- Update documentation to reflect both backends included by default
2025-08-03 21:16:52 -07:00
135 changed files with 16239 additions and 5397 deletions

1
.gitattributes vendored
View File

@@ -1 +0,0 @@
paper_plot/data/big_graph_degree_data.npz filter=lfs diff=lfs merge=lfs -text

50
.github/ISSUE_TEMPLATE/bug_report.yml vendored Normal file
View File

@@ -0,0 +1,50 @@
name: Bug Report
description: Report a bug in LEANN
labels: ["bug"]
body:
- type: textarea
id: description
attributes:
label: What happened?
description: A clear description of the bug
validations:
required: true
- type: textarea
id: reproduce
attributes:
label: How to reproduce
placeholder: |
1. Install with...
2. Run command...
3. See error
validations:
required: true
- type: textarea
id: error
attributes:
label: Error message
description: Paste any error messages
render: shell
- type: input
id: version
attributes:
label: LEANN Version
placeholder: "0.1.0"
validations:
required: true
- type: dropdown
id: os
attributes:
label: Operating System
options:
- macOS
- Linux
- Windows
- Docker
validations:
required: true

8
.github/ISSUE_TEMPLATE/config.yml vendored Normal file
View File

@@ -0,0 +1,8 @@
blank_issues_enabled: true
contact_links:
- name: Documentation
url: https://github.com/LEANN-RAG/LEANN-RAG/tree/main/docs
about: Read the docs first
- name: Discussions
url: https://github.com/LEANN-RAG/LEANN-RAG/discussions
about: Ask questions and share ideas

View File

@@ -0,0 +1,27 @@
name: Feature Request
description: Suggest a new feature for LEANN
labels: ["enhancement"]
body:
- type: textarea
id: problem
attributes:
label: What problem does this solve?
description: Describe the problem or need
validations:
required: true
- type: textarea
id: solution
attributes:
label: Proposed solution
description: How would you like this to work?
validations:
required: true
- type: textarea
id: example
attributes:
label: Example usage
description: Show how the API might look
render: python

13
.github/pull_request_template.md vendored Normal file
View File

@@ -0,0 +1,13 @@
## What does this PR do?
<!-- Brief description of your changes -->
## Related Issues
Fixes #
## Checklist
- [ ] Tests pass (`uv run pytest`)
- [ ] Code formatted (`ruff format` and `ruff check`)
- [ ] Pre-commit hooks pass (`pre-commit run --all-files`)

View File

@@ -5,6 +5,7 @@ on:
branches: [ main ] branches: [ main ]
pull_request: pull_request:
branches: [ main ] branches: [ main ]
workflow_dispatch:
jobs: jobs:
build: build:

View File

@@ -54,20 +54,51 @@ jobs:
python: '3.12' python: '3.12'
- os: ubuntu-22.04 - os: ubuntu-22.04
python: '3.13' python: '3.13'
- os: macos-latest # ARM64 Linux builds
- os: ubuntu-24.04-arm
python: '3.9' python: '3.9'
- os: macos-latest - os: ubuntu-24.04-arm
python: '3.10' python: '3.10'
- os: macos-latest - os: ubuntu-24.04-arm
python: '3.11' python: '3.11'
- os: macos-latest - os: ubuntu-24.04-arm
python: '3.12' python: '3.12'
- os: macos-latest - os: ubuntu-24.04-arm
python: '3.13' python: '3.13'
- os: macos-14
python: '3.9'
- os: macos-14
python: '3.10'
- os: macos-14
python: '3.11'
- os: macos-14
python: '3.12'
- os: macos-14
python: '3.13'
- os: macos-15
python: '3.9'
- os: macos-15
python: '3.10'
- os: macos-15
python: '3.11'
- os: macos-15
python: '3.12'
- os: macos-15
python: '3.13'
- os: macos-13
python: '3.9'
- os: macos-13
python: '3.10'
- os: macos-13
python: '3.11'
- os: macos-13
python: '3.12'
# Note: macos-13 + Python 3.13 excluded due to PyTorch compatibility
# (PyTorch 2.5+ supports Python 3.13 but not Intel Mac x86_64)
runs-on: ${{ matrix.os }} runs-on: ${{ matrix.os }}
steps: steps:
- uses: actions/checkout@v4 - uses: actions/checkout@v5
with: with:
ref: ${{ inputs.ref }} ref: ${{ inputs.ref }}
submodules: recursive submodules: recursive
@@ -78,21 +109,56 @@ jobs:
python-version: ${{ matrix.python }} python-version: ${{ matrix.python }}
- name: Install uv - name: Install uv
uses: astral-sh/setup-uv@v4 uses: astral-sh/setup-uv@v6
- name: Install system dependencies (Ubuntu) - name: Install system dependencies (Ubuntu)
if: runner.os == 'Linux' if: runner.os == 'Linux'
run: | run: |
sudo apt-get update sudo apt-get update
sudo apt-get install -y libomp-dev libboost-all-dev protobuf-compiler libzmq3-dev \ sudo apt-get install -y libomp-dev libboost-all-dev protobuf-compiler libzmq3-dev \
pkg-config libopenblas-dev patchelf libabsl-dev libaio-dev libprotobuf-dev pkg-config libabsl-dev libaio-dev libprotobuf-dev \
patchelf
# Install Intel MKL for DiskANN # Debug: Show system information
wget -q https://registrationcenter-download.intel.com/akdlm/IRC_NAS/79153e0f-74d7-45af-b8c2-258941adf58a/intel-onemkl-2025.0.0.940.sh echo "🔍 System Information:"
sudo sh intel-onemkl-2025.0.0.940.sh -a --components intel.oneapi.lin.mkl.devel --action install --eula accept -s echo "Architecture: $(uname -m)"
source /opt/intel/oneapi/setvars.sh echo "OS: $(uname -a)"
echo "MKLROOT=/opt/intel/oneapi/mkl/latest" >> $GITHUB_ENV echo "CPU info: $(lscpu | head -5)"
echo "LD_LIBRARY_PATH=/opt/intel/oneapi/mkl/latest/lib/intel64:$LD_LIBRARY_PATH" >> $GITHUB_ENV
# Install math library based on architecture
ARCH=$(uname -m)
echo "🔍 Setting up math library for architecture: $ARCH"
if [[ "$ARCH" == "x86_64" ]]; then
# Install Intel MKL for DiskANN on x86_64
echo "📦 Installing Intel MKL for x86_64..."
wget -q https://registrationcenter-download.intel.com/akdlm/IRC_NAS/79153e0f-74d7-45af-b8c2-258941adf58a/intel-onemkl-2025.0.0.940.sh
sudo sh intel-onemkl-2025.0.0.940.sh -a --components intel.oneapi.lin.mkl.devel --action install --eula accept -s
source /opt/intel/oneapi/setvars.sh
echo "MKLROOT=/opt/intel/oneapi/mkl/latest" >> $GITHUB_ENV
echo "LD_LIBRARY_PATH=/opt/intel/oneapi/compiler/latest/linux/compiler/lib/intel64_lin" >> $GITHUB_ENV
echo "LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/intel/oneapi/mkl/latest/lib/intel64" >> $GITHUB_ENV
echo "✅ Intel MKL installed for x86_64"
# Debug: Check MKL installation
echo "🔍 MKL Installation Check:"
ls -la /opt/intel/oneapi/mkl/latest/ || echo "MKL directory not found"
ls -la /opt/intel/oneapi/mkl/latest/lib/ || echo "MKL lib directory not found"
elif [[ "$ARCH" == "aarch64" ]]; then
# Use OpenBLAS for ARM64 (MKL installer not compatible with ARM64)
echo "📦 Installing OpenBLAS for ARM64..."
sudo apt-get install -y libopenblas-dev liblapack-dev liblapacke-dev
echo "✅ OpenBLAS installed for ARM64"
# Debug: Check OpenBLAS installation
echo "🔍 OpenBLAS Installation Check:"
dpkg -l | grep openblas || echo "OpenBLAS package not found"
ls -la /usr/lib/aarch64-linux-gnu/openblas/ || echo "OpenBLAS directory not found"
fi
# Debug: Show final library paths
echo "🔍 Final LD_LIBRARY_PATH: $LD_LIBRARY_PATH"
- name: Install system dependencies (macOS) - name: Install system dependencies (macOS)
if: runner.os == 'macOS' if: runner.os == 'macOS'
@@ -109,48 +175,73 @@ jobs:
uv pip install --system delocate uv pip install --system delocate
fi fi
- name: Set macOS environment variables
if: runner.os == 'macOS'
run: |
# Use brew --prefix to automatically detect Homebrew installation path
HOMEBREW_PREFIX=$(brew --prefix)
echo "HOMEBREW_PREFIX=${HOMEBREW_PREFIX}" >> $GITHUB_ENV
echo "OpenMP_ROOT=${HOMEBREW_PREFIX}/opt/libomp" >> $GITHUB_ENV
# Set CMAKE_PREFIX_PATH to let CMake find all packages automatically
echo "CMAKE_PREFIX_PATH=${HOMEBREW_PREFIX}" >> $GITHUB_ENV
# Set compiler flags for OpenMP (required for both backends)
echo "LDFLAGS=-L${HOMEBREW_PREFIX}/opt/libomp/lib" >> $GITHUB_ENV
echo "CPPFLAGS=-I${HOMEBREW_PREFIX}/opt/libomp/include" >> $GITHUB_ENV
- name: Build packages - name: Build packages
run: | run: |
# Build core (platform independent) # Build core (platform independent)
if [[ "${{ matrix.os }}" == ubuntu-* ]]; then cd packages/leann-core
cd packages/leann-core uv build
uv build cd ../..
cd ../..
fi
# Build HNSW backend # Build HNSW backend
cd packages/leann-backend-hnsw cd packages/leann-backend-hnsw
if [ "${{ matrix.os }}" == "macos-latest" ]; then if [[ "${{ matrix.os }}" == macos-* ]]; then
# Use system clang instead of homebrew LLVM for better compatibility # Use system clang for better compatibility
export CC=clang export CC=clang
export CXX=clang++ export CXX=clang++
export MACOSX_DEPLOYMENT_TARGET=11.0 # Homebrew libraries on each macOS version require matching minimum version
uv build --wheel --python python if [[ "${{ matrix.os }}" == "macos-13" ]]; then
export MACOSX_DEPLOYMENT_TARGET=13.0
elif [[ "${{ matrix.os }}" == "macos-14" ]]; then
export MACOSX_DEPLOYMENT_TARGET=14.0
elif [[ "${{ matrix.os }}" == "macos-15" ]]; then
export MACOSX_DEPLOYMENT_TARGET=15.0
fi
uv build --wheel --python ${{ matrix.python }} --find-links ${GITHUB_WORKSPACE}/packages/leann-core/dist
else else
uv build --wheel --python python uv build --wheel --python ${{ matrix.python }} --find-links ${GITHUB_WORKSPACE}/packages/leann-core/dist
fi fi
cd ../.. cd ../..
# Build DiskANN backend # Build DiskANN backend
cd packages/leann-backend-diskann cd packages/leann-backend-diskann
if [ "${{ matrix.os }}" == "macos-latest" ]; then if [[ "${{ matrix.os }}" == macos-* ]]; then
# Use system clang instead of homebrew LLVM for better compatibility # Use system clang for better compatibility
export CC=clang export CC=clang
export CXX=clang++ export CXX=clang++
# DiskANN requires macOS 13.3+ for sgesdd_ LAPACK function # DiskANN requires macOS 13.3+ for sgesdd_ LAPACK function
export MACOSX_DEPLOYMENT_TARGET=13.3 # But Homebrew libraries on each macOS version require matching minimum version
uv build --wheel --python python if [[ "${{ matrix.os }}" == "macos-13" ]]; then
export MACOSX_DEPLOYMENT_TARGET=13.3
elif [[ "${{ matrix.os }}" == "macos-14" ]]; then
export MACOSX_DEPLOYMENT_TARGET=14.0
elif [[ "${{ matrix.os }}" == "macos-15" ]]; then
export MACOSX_DEPLOYMENT_TARGET=15.0
fi
uv build --wheel --python ${{ matrix.python }} --find-links ${GITHUB_WORKSPACE}/packages/leann-core/dist
else else
uv build --wheel --python python uv build --wheel --python ${{ matrix.python }} --find-links ${GITHUB_WORKSPACE}/packages/leann-core/dist
fi fi
cd ../.. cd ../..
# Build meta package (platform independent) # Build meta package (platform independent)
if [[ "${{ matrix.os }}" == ubuntu-* ]]; then cd packages/leann
cd packages/leann uv build
uv build cd ../..
cd ../..
fi
- name: Repair wheels (Linux) - name: Repair wheels (Linux)
if: runner.os == 'Linux' if: runner.os == 'Linux'
@@ -176,10 +267,24 @@ jobs:
- name: Repair wheels (macOS) - name: Repair wheels (macOS)
if: runner.os == 'macOS' if: runner.os == 'macOS'
run: | run: |
# Determine deployment target based on runner OS
# Must match the Homebrew libraries for each macOS version
if [[ "${{ matrix.os }}" == "macos-13" ]]; then
HNSW_TARGET="13.0"
DISKANN_TARGET="13.3"
elif [[ "${{ matrix.os }}" == "macos-14" ]]; then
HNSW_TARGET="14.0"
DISKANN_TARGET="14.0"
elif [[ "${{ matrix.os }}" == "macos-15" ]]; then
HNSW_TARGET="15.0"
DISKANN_TARGET="15.0"
fi
# Repair HNSW wheel # Repair HNSW wheel
cd packages/leann-backend-hnsw cd packages/leann-backend-hnsw
if [ -d dist ]; then if [ -d dist ]; then
delocate-wheel -w dist_repaired -v dist/*.whl export MACOSX_DEPLOYMENT_TARGET=$HNSW_TARGET
delocate-wheel -w dist_repaired -v --require-target-macos-version $HNSW_TARGET dist/*.whl
rm -rf dist rm -rf dist
mv dist_repaired dist mv dist_repaired dist
fi fi
@@ -188,7 +293,8 @@ jobs:
# Repair DiskANN wheel # Repair DiskANN wheel
cd packages/leann-backend-diskann cd packages/leann-backend-diskann
if [ -d dist ]; then if [ -d dist ]; then
delocate-wheel -w dist_repaired -v dist/*.whl export MACOSX_DEPLOYMENT_TARGET=$DISKANN_TARGET
delocate-wheel -w dist_repaired -v --require-target-macos-version $DISKANN_TARGET dist/*.whl
rm -rf dist rm -rf dist
mv dist_repaired dist mv dist_repaired dist
fi fi
@@ -199,39 +305,34 @@ jobs:
echo "📦 Built packages:" echo "📦 Built packages:"
find packages/*/dist -name "*.whl" -o -name "*.tar.gz" | sort find packages/*/dist -name "*.whl" -o -name "*.tar.gz" | sort
- name: Install built packages for testing - name: Install built packages for testing
run: | run: |
# Create a virtual environment # Create a virtual environment with the correct Python version
uv venv uv venv --python ${{ matrix.python }}
source .venv/bin/activate || source .venv/Scripts/activate source .venv/bin/activate || source .venv/Scripts/activate
# Install the built wheels # Install packages using --find-links to prioritize local builds
# Use --find-links to let uv choose the correct wheel for the platform uv pip install --find-links packages/leann-core/dist --find-links packages/leann-backend-hnsw/dist --find-links packages/leann-backend-diskann/dist packages/leann-core/dist/*.whl || uv pip install --find-links packages/leann-core/dist packages/leann-core/dist/*.tar.gz
if [[ "${{ matrix.os }}" == ubuntu-* ]]; then uv pip install --find-links packages/leann-core/dist packages/leann-backend-hnsw/dist/*.whl
uv pip install leann-core --find-links packages/leann-core/dist uv pip install --find-links packages/leann-core/dist packages/leann-backend-diskann/dist/*.whl
uv pip install leann --find-links packages/leann/dist uv pip install packages/leann/dist/*.whl || uv pip install packages/leann/dist/*.tar.gz
fi
uv pip install leann-backend-hnsw --find-links packages/leann-backend-hnsw/dist
uv pip install leann-backend-diskann --find-links packages/leann-backend-diskann/dist
# Install test dependencies using extras # Install test dependencies using extras
uv pip install -e ".[test]" uv pip install -e ".[test]"
- name: Run tests with pytest - name: Run tests with pytest
env: env:
CI: true # Mark as CI environment to skip memory-intensive tests CI: true
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }} OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
HF_HUB_DISABLE_SYMLINKS: 1 HF_HUB_DISABLE_SYMLINKS: 1
TOKENIZERS_PARALLELISM: false TOKENIZERS_PARALLELISM: false
PYTORCH_ENABLE_MPS_FALLBACK: 0 # Disable MPS on macOS CI to avoid memory issues PYTORCH_ENABLE_MPS_FALLBACK: 0
OMP_NUM_THREADS: 1 # Disable OpenMP parallelism to avoid libomp crashes OMP_NUM_THREADS: 1
MKL_NUM_THREADS: 1 # Single thread for MKL operations MKL_NUM_THREADS: 1
run: | run: |
# Activate virtual environment
source .venv/bin/activate || source .venv/Scripts/activate source .venv/bin/activate || source .venv/Scripts/activate
pytest tests/ -v --tb=short
# Run all tests
pytest tests/
- name: Run sanity checks (optional) - name: Run sanity checks (optional)
run: | run: |
@@ -249,3 +350,53 @@ jobs:
with: with:
name: packages-${{ matrix.os }}-py${{ matrix.python }} name: packages-${{ matrix.os }}-py${{ matrix.python }}
path: packages/*/dist/ path: packages/*/dist/
arch-smoke:
name: Arch Linux smoke test (install & import)
needs: build
runs-on: ubuntu-latest
container:
image: archlinux:latest
steps:
- name: Prepare system
run: |
pacman -Syu --noconfirm
pacman -S --noconfirm python python-pip gcc git zlib openssl
- name: Download ALL wheel artifacts from this run
uses: actions/download-artifact@v5
with:
# Don't specify name, download all artifacts
path: ./wheels
- name: Install uv
uses: astral-sh/setup-uv@v6
- name: Create virtual environment and install wheels
run: |
uv venv
source .venv/bin/activate || source .venv/Scripts/activate
uv pip install --find-links wheels leann-core
uv pip install --find-links wheels leann-backend-hnsw
uv pip install --find-links wheels leann-backend-diskann
uv pip install --find-links wheels leann
- name: Import & tiny runtime check
env:
OMP_NUM_THREADS: 1
MKL_NUM_THREADS: 1
run: |
source .venv/bin/activate || source .venv/Scripts/activate
python - <<'PY'
import leann
import leann_backend_hnsw as h
import leann_backend_diskann as d
from leann import LeannBuilder, LeannSearcher
b = LeannBuilder(backend_name="hnsw")
b.add_text("hello arch")
b.build_index("arch_demo.leann")
s = LeannSearcher("arch_demo.leann")
print("search:", s.search("hello", top_k=1))
PY

19
.github/workflows/link-check.yml vendored Normal file
View File

@@ -0,0 +1,19 @@
name: Link Check
on:
push:
branches: [ main, master ]
pull_request:
schedule:
- cron: "0 3 * * 1"
jobs:
link-check:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: lycheeverse/lychee-action@v2
with:
args: --no-progress --insecure --user-agent 'curl/7.68.0' README.md docs/ apps/ examples/ benchmarks/
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

23
.gitignore vendored
View File

@@ -18,9 +18,11 @@ demo/experiment_results/**/*.json
*.eml *.eml
*.emlx *.emlx
*.json *.json
!.vscode/*.json
*.sh *.sh
*.txt *.txt
!CMakeLists.txt !CMakeLists.txt
!llms.txt
latency_breakdown*.json latency_breakdown*.json
experiment_results/eval_results/diskann/*.json experiment_results/eval_results/diskann/*.json
aws/ aws/
@@ -34,11 +36,15 @@ build/
nprobe_logs/ nprobe_logs/
micro/results micro/results
micro/contriever-INT8 micro/contriever-INT8
examples/data/* data/*
!examples/data/2501.14312v1 (1).pdf !data/2501.14312v1 (1).pdf
!examples/data/2506.08276v1.pdf !data/2506.08276v1.pdf
!examples/data/PrideandPrejudice.txt !data/PrideandPrejudice.txt
!examples/data/README.md !data/huawei_pangu.md
!data/ground_truth/
!data/indices/
!data/queries/
!data/.gitattributes
*.qdstrm *.qdstrm
benchmark_results/ benchmark_results/
results/ results/
@@ -88,3 +94,10 @@ packages/leann-backend-diskann/third_party/DiskANN/_deps/
batchtest.py batchtest.py
tests/__pytest_cache__/ tests/__pytest_cache__/
tests/__pycache__/ tests/__pycache__/
paru-bin/
CLAUDE.md
CLAUDE.local.md
.claude/*.local.*
.claude/local/*
benchmarks/data/

3
.gitmodules vendored
View File

@@ -14,3 +14,6 @@
[submodule "packages/leann-backend-hnsw/third_party/libzmq"] [submodule "packages/leann-backend-hnsw/third_party/libzmq"]
path = packages/leann-backend-hnsw/third_party/libzmq path = packages/leann-backend-hnsw/third_party/libzmq
url = https://github.com/zeromq/libzmq.git url = https://github.com/zeromq/libzmq.git
[submodule "packages/astchunk-leann"]
path = packages/astchunk-leann
url = https://github.com/yichuan-w/astchunk-leann.git

View File

@@ -1,6 +1,6 @@
repos: repos:
- repo: https://github.com/pre-commit/pre-commit-hooks - repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.5.0 rev: v5.0.0
hooks: hooks:
- id: trailing-whitespace - id: trailing-whitespace
- id: end-of-file-fixer - id: end-of-file-fixer
@@ -10,7 +10,8 @@ repos:
- id: debug-statements - id: debug-statements
- repo: https://github.com/astral-sh/ruff-pre-commit - repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.2.1 rev: v0.12.7 # Fixed version to match pyproject.toml
hooks: hooks:
- id: ruff - id: ruff
args: [--fix, --exit-non-zero-on-fix]
- id: ruff-format - id: ruff-format

5
.vscode/extensions.json vendored Normal file
View File

@@ -0,0 +1,5 @@
{
"recommendations": [
"charliermarsh.ruff",
]
}

22
.vscode/settings.json vendored Normal file
View File

@@ -0,0 +1,22 @@
{
"python.defaultInterpreterPath": ".venv/bin/python",
"python.terminal.activateEnvironment": true,
"[python]": {
"editor.defaultFormatter": "charliermarsh.ruff",
"editor.formatOnSave": true,
"editor.codeActionsOnSave": {
"source.organizeImports": "explicit",
"source.fixAll": "explicit"
},
"editor.insertSpaces": true,
"editor.tabSize": 4
},
"ruff.enable": true,
"files.watcherExclude": {
"**/.venv/**": true,
"**/__pycache__/**": true,
"**/*.egg-info/**": true,
"**/build/**": true,
"**/dist/**": true
}
}

815
README.md
View File

File diff suppressed because it is too large Load Diff

0
apps/__init__.py Normal file
View File

342
apps/base_rag_example.py Normal file
View File

@@ -0,0 +1,342 @@
"""
Base class for unified RAG examples interface.
Provides common parameters and functionality for all RAG examples.
"""
import argparse
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Any
import dotenv
from leann.api import LeannBuilder, LeannChat
from leann.registry import register_project_directory
dotenv.load_dotenv()
class BaseRAGExample(ABC):
"""Base class for all RAG examples with unified interface."""
def __init__(
self,
name: str,
description: str,
default_index_name: str,
):
self.name = name
self.description = description
self.default_index_name = default_index_name
self.parser = self._create_parser()
def _create_parser(self) -> argparse.ArgumentParser:
"""Create argument parser with common parameters."""
parser = argparse.ArgumentParser(
description=self.description, formatter_class=argparse.RawDescriptionHelpFormatter
)
# Core parameters (all examples share these)
core_group = parser.add_argument_group("Core Parameters")
core_group.add_argument(
"--index-dir",
type=str,
default=f"./{self.default_index_name}",
help=f"Directory to store the index (default: ./{self.default_index_name})",
)
core_group.add_argument(
"--query",
type=str,
default=None,
help="Query to run (if not provided, will run in interactive mode)",
)
# Allow subclasses to override default max_items
max_items_default = getattr(self, "max_items_default", -1)
core_group.add_argument(
"--max-items",
type=int,
default=max_items_default,
help="Maximum number of items to process -1 for all, means index all documents, and you should set it to a reasonable number if you have a large dataset and try at the first time)",
)
core_group.add_argument(
"--force-rebuild", action="store_true", help="Force rebuild index even if it exists"
)
# Embedding parameters
embedding_group = parser.add_argument_group("Embedding Parameters")
# Allow subclasses to override default embedding_model
embedding_model_default = getattr(self, "embedding_model_default", "facebook/contriever")
embedding_group.add_argument(
"--embedding-model",
type=str,
default=embedding_model_default,
help=f"Embedding model to use (default: {embedding_model_default}), we provide facebook/contriever, text-embedding-3-small,mlx-community/Qwen3-Embedding-0.6B-8bit or nomic-embed-text",
)
embedding_group.add_argument(
"--embedding-mode",
type=str,
default="sentence-transformers",
choices=["sentence-transformers", "openai", "mlx", "ollama"],
help="Embedding backend mode (default: sentence-transformers), we provide sentence-transformers, openai, mlx, or ollama",
)
# LLM parameters
llm_group = parser.add_argument_group("LLM Parameters")
llm_group.add_argument(
"--llm",
type=str,
default="openai",
choices=["openai", "ollama", "hf", "simulated"],
help="LLM backend: openai, ollama, or hf (default: openai)",
)
llm_group.add_argument(
"--llm-model",
type=str,
default=None,
help="Model name (default: gpt-4o) e.g., gpt-4o-mini, llama3.2:1b, Qwen/Qwen2.5-1.5B-Instruct",
)
llm_group.add_argument(
"--llm-host",
type=str,
default="http://localhost:11434",
help="Host for Ollama API (default: http://localhost:11434)",
)
llm_group.add_argument(
"--thinking-budget",
type=str,
choices=["low", "medium", "high"],
default=None,
help="Thinking budget for reasoning models (low/medium/high). Supported by GPT-Oss:20b and other reasoning models.",
)
# AST Chunking parameters
ast_group = parser.add_argument_group("AST Chunking Parameters")
ast_group.add_argument(
"--use-ast-chunking",
action="store_true",
help="Enable AST-aware chunking for code files (requires astchunk)",
)
ast_group.add_argument(
"--ast-chunk-size",
type=int,
default=512,
help="Maximum characters per AST chunk (default: 512)",
)
ast_group.add_argument(
"--ast-chunk-overlap",
type=int,
default=64,
help="Overlap between AST chunks (default: 64)",
)
ast_group.add_argument(
"--code-file-extensions",
nargs="+",
default=None,
help="Additional code file extensions to process with AST chunking (e.g., .py .java .cs .ts)",
)
ast_group.add_argument(
"--ast-fallback-traditional",
action="store_true",
default=True,
help="Fall back to traditional chunking if AST chunking fails (default: True)",
)
# Search parameters
search_group = parser.add_argument_group("Search Parameters")
search_group.add_argument(
"--top-k", type=int, default=20, help="Number of results to retrieve (default: 20)"
)
search_group.add_argument(
"--search-complexity",
type=int,
default=32,
help="Search complexity for graph traversal (default: 64)",
)
# Index building parameters
index_group = parser.add_argument_group("Index Building Parameters")
index_group.add_argument(
"--backend-name",
type=str,
default="hnsw",
choices=["hnsw", "diskann"],
help="Backend to use for index (default: hnsw)",
)
index_group.add_argument(
"--graph-degree",
type=int,
default=32,
help="Graph degree for index construction (default: 32)",
)
index_group.add_argument(
"--build-complexity",
type=int,
default=64,
help="Build complexity for index construction (default: 64)",
)
index_group.add_argument(
"--no-compact",
action="store_true",
help="Disable compact index storage",
)
index_group.add_argument(
"--no-recompute",
action="store_true",
help="Disable embedding recomputation",
)
# Add source-specific parameters
self._add_specific_arguments(parser)
return parser
@abstractmethod
def _add_specific_arguments(self, parser: argparse.ArgumentParser):
"""Add source-specific arguments. Override in subclasses."""
pass
@abstractmethod
async def load_data(self, args) -> list[str]:
"""Load data from the source. Returns list of text chunks."""
pass
def get_llm_config(self, args) -> dict[str, Any]:
"""Get LLM configuration based on arguments."""
config = {"type": args.llm}
if args.llm == "openai":
config["model"] = args.llm_model or "gpt-4o"
elif args.llm == "ollama":
config["model"] = args.llm_model or "llama3.2:1b"
config["host"] = args.llm_host
elif args.llm == "hf":
config["model"] = args.llm_model or "Qwen/Qwen2.5-1.5B-Instruct"
elif args.llm == "simulated":
# Simulated LLM doesn't need additional configuration
pass
return config
async def build_index(self, args, texts: list[str]) -> str:
"""Build LEANN index from texts."""
index_path = str(Path(args.index_dir) / f"{self.default_index_name}.leann")
print(f"\n[Building Index] Creating {self.name} index...")
print(f"Total text chunks: {len(texts)}")
builder = LeannBuilder(
backend_name=args.backend_name,
embedding_model=args.embedding_model,
embedding_mode=args.embedding_mode,
graph_degree=args.graph_degree,
complexity=args.build_complexity,
is_compact=not args.no_compact,
is_recompute=not args.no_recompute,
num_threads=1, # Force single-threaded mode
)
# Add texts in batches for better progress tracking
batch_size = 1000
for i in range(0, len(texts), batch_size):
batch = texts[i : i + batch_size]
for text in batch:
builder.add_text(text)
print(f"Added {min(i + batch_size, len(texts))}/{len(texts)} texts...")
print("Building index structure...")
builder.build_index(index_path)
print(f"Index saved to: {index_path}")
# Register project directory so leann list can discover this index
# The index is saved as args.index_dir/index_name.leann
# We want to register the current working directory where the app is run
register_project_directory(Path.cwd())
return index_path
async def run_interactive_chat(self, args, index_path: str):
"""Run interactive chat with the index."""
chat = LeannChat(
index_path,
llm_config=self.get_llm_config(args),
system_prompt=f"You are a helpful assistant that answers questions about {self.name} data.",
complexity=args.search_complexity,
)
print(f"\n[Interactive Mode] Chat with your {self.name} data!")
print("Type 'quit' or 'exit' to stop.\n")
while True:
try:
query = input("You: ").strip()
if query.lower() in ["quit", "exit", "q"]:
print("Goodbye!")
break
if not query:
continue
# Prepare LLM kwargs with thinking budget if specified
llm_kwargs = {}
if hasattr(args, "thinking_budget") and args.thinking_budget:
llm_kwargs["thinking_budget"] = args.thinking_budget
response = chat.ask(
query,
top_k=args.top_k,
complexity=args.search_complexity,
llm_kwargs=llm_kwargs,
)
print(f"\nAssistant: {response}\n")
except KeyboardInterrupt:
print("\nGoodbye!")
break
except Exception as e:
print(f"Error: {e}")
async def run_single_query(self, args, index_path: str, query: str):
"""Run a single query against the index."""
chat = LeannChat(
index_path,
llm_config=self.get_llm_config(args),
complexity=args.search_complexity,
)
print(f"\n[Query]: \033[36m{query}\033[0m")
# Prepare LLM kwargs with thinking budget if specified
llm_kwargs = {}
if hasattr(args, "thinking_budget") and args.thinking_budget:
llm_kwargs["thinking_budget"] = args.thinking_budget
response = chat.ask(
query, top_k=args.top_k, complexity=args.search_complexity, llm_kwargs=llm_kwargs
)
print(f"\n[Response]: \033[36m{response}\033[0m")
async def run(self):
"""Main entry point for the example."""
args = self.parser.parse_args()
# Check if index exists
index_path = str(Path(args.index_dir) / f"{self.default_index_name}.leann")
index_exists = Path(args.index_dir).exists()
if not index_exists or args.force_rebuild:
# Load data and build index
print(f"\n{'Rebuilding' if index_exists else 'Building'} index...")
texts = await self.load_data(args)
if not texts:
print("No data found to index!")
return
index_path = await self.build_index(args, texts)
else:
print(f"\nUsing existing index in {args.index_dir}")
# Run query or interactive mode
if args.query:
await self.run_single_query(args, index_path, args.query)
else:
await self.run_interactive_chat(args, index_path)

171
apps/browser_rag.py Normal file
View File

@@ -0,0 +1,171 @@
"""
Browser History RAG example using the unified interface.
Supports Chrome browser history.
"""
import os
import sys
from pathlib import Path
# Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent))
from base_rag_example import BaseRAGExample
from chunking import create_text_chunks
from .history_data.history import ChromeHistoryReader
class BrowserRAG(BaseRAGExample):
"""RAG example for Chrome browser history."""
def __init__(self):
# Set default values BEFORE calling super().__init__
self.embedding_model_default = (
"sentence-transformers/all-MiniLM-L6-v2" # Fast 384-dim model
)
super().__init__(
name="Browser History",
description="Process and query Chrome browser history with LEANN",
default_index_name="google_history_index",
)
def _add_specific_arguments(self, parser):
"""Add browser-specific arguments."""
browser_group = parser.add_argument_group("Browser Parameters")
browser_group.add_argument(
"--chrome-profile",
type=str,
default=None,
help="Path to Chrome profile directory (auto-detected if not specified)",
)
browser_group.add_argument(
"--auto-find-profiles",
action="store_true",
default=True,
help="Automatically find all Chrome profiles (default: True)",
)
browser_group.add_argument(
"--chunk-size", type=int, default=256, help="Text chunk size (default: 256)"
)
browser_group.add_argument(
"--chunk-overlap", type=int, default=128, help="Text chunk overlap (default: 128)"
)
def _get_chrome_base_path(self) -> Path:
"""Get the base Chrome profile path based on OS."""
if sys.platform == "darwin":
return Path.home() / "Library" / "Application Support" / "Google" / "Chrome"
elif sys.platform.startswith("linux"):
return Path.home() / ".config" / "google-chrome"
elif sys.platform == "win32":
return Path(os.environ["LOCALAPPDATA"]) / "Google" / "Chrome" / "User Data"
else:
raise ValueError(f"Unsupported platform: {sys.platform}")
def _find_chrome_profiles(self) -> list[Path]:
"""Auto-detect all Chrome profiles."""
base_path = self._get_chrome_base_path()
if not base_path.exists():
return []
profiles = []
# Check Default profile
default_profile = base_path / "Default"
if default_profile.exists() and (default_profile / "History").exists():
profiles.append(default_profile)
# Check numbered profiles
for item in base_path.iterdir():
if item.is_dir() and item.name.startswith("Profile "):
if (item / "History").exists():
profiles.append(item)
return profiles
async def load_data(self, args) -> list[str]:
"""Load browser history and convert to text chunks."""
# Determine Chrome profiles
if args.chrome_profile and not args.auto_find_profiles:
profile_dirs = [Path(args.chrome_profile)]
else:
print("Auto-detecting Chrome profiles...")
profile_dirs = self._find_chrome_profiles()
# If specific profile given, filter to just that one
if args.chrome_profile:
profile_path = Path(args.chrome_profile)
profile_dirs = [p for p in profile_dirs if p == profile_path]
if not profile_dirs:
print("No Chrome profiles found!")
print("Please specify --chrome-profile manually")
return []
print(f"Found {len(profile_dirs)} Chrome profiles")
# Create reader
reader = ChromeHistoryReader()
# Process each profile
all_documents = []
total_processed = 0
for i, profile_dir in enumerate(profile_dirs):
print(f"\nProcessing profile {i + 1}/{len(profile_dirs)}: {profile_dir.name}")
try:
# Apply max_items limit per profile
max_per_profile = -1
if args.max_items > 0:
remaining = args.max_items - total_processed
if remaining <= 0:
break
max_per_profile = remaining
# Load history
documents = reader.load_data(
chrome_profile_path=str(profile_dir),
max_count=max_per_profile,
)
if documents:
all_documents.extend(documents)
total_processed += len(documents)
print(f"Processed {len(documents)} history entries from this profile")
except Exception as e:
print(f"Error processing {profile_dir}: {e}")
continue
if not all_documents:
print("No browser history found to process!")
return []
print(f"\nTotal history entries processed: {len(all_documents)}")
# Convert to text chunks
all_texts = create_text_chunks(
all_documents, chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
)
return all_texts
if __name__ == "__main__":
import asyncio
# Example queries for browser history RAG
print("\n🌐 Browser History RAG Example")
print("=" * 50)
print("\nExample queries you can try:")
print("- 'What websites did I visit about machine learning?'")
print("- 'Find my search history about programming'")
print("- 'What YouTube videos did I watch recently?'")
print("- 'Show me websites about travel planning'")
print("\nNote: Make sure Chrome is closed before running\n")
rag = BrowserRAG()
asyncio.run(rag.run())

View File

View File

@@ -0,0 +1,413 @@
"""
ChatGPT export data reader.
Reads and processes ChatGPT export data from chat.html files.
"""
import re
from pathlib import Path
from typing import Any
from zipfile import ZipFile
from bs4 import BeautifulSoup
from llama_index.core import Document
from llama_index.core.readers.base import BaseReader
class ChatGPTReader(BaseReader):
"""
ChatGPT export data reader.
Reads ChatGPT conversation data from exported chat.html files or zip archives.
Processes conversations into structured documents with metadata.
"""
def __init__(self, concatenate_conversations: bool = True) -> None:
"""
Initialize.
Args:
concatenate_conversations: Whether to concatenate messages within conversations for better context
"""
try:
from bs4 import BeautifulSoup # noqa
except ImportError:
raise ImportError("`beautifulsoup4` package not found: `pip install beautifulsoup4`")
self.concatenate_conversations = concatenate_conversations
def _extract_html_from_zip(self, zip_path: Path) -> str | None:
"""
Extract chat.html from ChatGPT export zip file.
Args:
zip_path: Path to the ChatGPT export zip file
Returns:
HTML content as string, or None if not found
"""
try:
with ZipFile(zip_path, "r") as zip_file:
# Look for chat.html or conversations.html
html_files = [
f
for f in zip_file.namelist()
if f.endswith(".html") and ("chat" in f.lower() or "conversation" in f.lower())
]
if not html_files:
print(f"No HTML chat file found in {zip_path}")
return None
# Use the first HTML file found
html_file = html_files[0]
print(f"Found HTML file: {html_file}")
with zip_file.open(html_file) as f:
return f.read().decode("utf-8", errors="ignore")
except Exception as e:
print(f"Error extracting HTML from zip {zip_path}: {e}")
return None
def _parse_chatgpt_html(self, html_content: str) -> list[dict]:
"""
Parse ChatGPT HTML export to extract conversations.
Args:
html_content: HTML content from ChatGPT export
Returns:
List of conversation dictionaries
"""
soup = BeautifulSoup(html_content, "html.parser")
conversations = []
# Try different possible structures for ChatGPT exports
# Structure 1: Look for conversation containers
conversation_containers = soup.find_all(
["div", "section"], class_=re.compile(r"conversation|chat", re.I)
)
if not conversation_containers:
# Structure 2: Look for message containers directly
conversation_containers = [soup] # Use the entire document as one conversation
for container in conversation_containers:
conversation = self._extract_conversation_from_container(container)
if conversation and conversation.get("messages"):
conversations.append(conversation)
# If no structured conversations found, try to extract all text as one conversation
if not conversations:
all_text = soup.get_text(separator="\n", strip=True)
if all_text:
conversations.append(
{
"title": "ChatGPT Conversation",
"messages": [{"role": "mixed", "content": all_text, "timestamp": None}],
"timestamp": None,
}
)
return conversations
def _extract_conversation_from_container(self, container) -> dict | None:
"""
Extract conversation data from a container element.
Args:
container: BeautifulSoup element containing conversation
Returns:
Dictionary with conversation data or None
"""
messages = []
# Look for message elements with various possible structures
message_selectors = ['[class*="message"]', '[class*="chat"]', "[data-message]", "p", "div"]
for selector in message_selectors:
message_elements = container.select(selector)
if message_elements:
break
else:
message_elements = []
# If no structured messages found, treat the entire container as one message
if not message_elements:
text_content = container.get_text(separator="\n", strip=True)
if text_content:
messages.append({"role": "mixed", "content": text_content, "timestamp": None})
else:
for element in message_elements:
message = self._extract_message_from_element(element)
if message:
messages.append(message)
if not messages:
return None
# Try to extract conversation title
title_element = container.find(["h1", "h2", "h3", "title"])
title = title_element.get_text(strip=True) if title_element else "ChatGPT Conversation"
# Try to extract timestamp from various possible locations
timestamp = self._extract_timestamp_from_container(container)
return {"title": title, "messages": messages, "timestamp": timestamp}
def _extract_message_from_element(self, element) -> dict | None:
"""
Extract message data from an element.
Args:
element: BeautifulSoup element containing message
Returns:
Dictionary with message data or None
"""
text_content = element.get_text(separator=" ", strip=True)
# Skip empty or very short messages
if not text_content or len(text_content.strip()) < 3:
return None
# Try to determine role (user/assistant) from class names or content
role = "mixed" # Default role
class_names = " ".join(element.get("class", [])).lower()
if "user" in class_names or "human" in class_names:
role = "user"
elif "assistant" in class_names or "ai" in class_names or "gpt" in class_names:
role = "assistant"
elif text_content.lower().startswith(("you:", "user:", "me:")):
role = "user"
text_content = re.sub(r"^(you|user|me):\s*", "", text_content, flags=re.IGNORECASE)
elif text_content.lower().startswith(("chatgpt:", "assistant:", "ai:")):
role = "assistant"
text_content = re.sub(
r"^(chatgpt|assistant|ai):\s*", "", text_content, flags=re.IGNORECASE
)
# Try to extract timestamp
timestamp = self._extract_timestamp_from_element(element)
return {"role": role, "content": text_content, "timestamp": timestamp}
def _extract_timestamp_from_element(self, element) -> str | None:
"""Extract timestamp from element."""
# Look for timestamp in various attributes and child elements
timestamp_attrs = ["data-timestamp", "timestamp", "datetime"]
for attr in timestamp_attrs:
if element.get(attr):
return element.get(attr)
# Look for time elements
time_element = element.find("time")
if time_element:
return time_element.get("datetime") or time_element.get_text(strip=True)
# Look for date-like text patterns
text = element.get_text()
date_patterns = [r"\d{4}-\d{2}-\d{2}", r"\d{1,2}/\d{1,2}/\d{4}", r"\w+ \d{1,2}, \d{4}"]
for pattern in date_patterns:
match = re.search(pattern, text)
if match:
return match.group()
return None
def _extract_timestamp_from_container(self, container) -> str | None:
"""Extract timestamp from conversation container."""
return self._extract_timestamp_from_element(container)
def _create_concatenated_content(self, conversation: dict) -> str:
"""
Create concatenated content from conversation messages.
Args:
conversation: Dictionary containing conversation data
Returns:
Formatted concatenated content
"""
title = conversation.get("title", "ChatGPT Conversation")
messages = conversation.get("messages", [])
timestamp = conversation.get("timestamp", "Unknown")
# Build message content
message_parts = []
for message in messages:
role = message.get("role", "mixed")
content = message.get("content", "")
msg_timestamp = message.get("timestamp", "")
if role == "user":
prefix = "[You]"
elif role == "assistant":
prefix = "[ChatGPT]"
else:
prefix = "[Message]"
# Add timestamp if available
if msg_timestamp:
prefix += f" ({msg_timestamp})"
message_parts.append(f"{prefix}: {content}")
concatenated_text = "\n\n".join(message_parts)
# Create final document content
doc_content = f"""Conversation: {title}
Date: {timestamp}
Messages ({len(messages)} messages):
{concatenated_text}
"""
return doc_content
def load_data(self, input_dir: str | None = None, **load_kwargs: Any) -> list[Document]:
"""
Load ChatGPT export data.
Args:
input_dir: Directory containing ChatGPT export files or path to specific file
**load_kwargs:
max_count (int): Maximum number of conversations to process
chatgpt_export_path (str): Specific path to ChatGPT export file/directory
include_metadata (bool): Whether to include metadata in documents
"""
docs: list[Document] = []
max_count = load_kwargs.get("max_count", -1)
chatgpt_export_path = load_kwargs.get("chatgpt_export_path", input_dir)
include_metadata = load_kwargs.get("include_metadata", True)
if not chatgpt_export_path:
print("No ChatGPT export path provided")
return docs
export_path = Path(chatgpt_export_path)
if not export_path.exists():
print(f"ChatGPT export path not found: {export_path}")
return docs
html_content = None
# Handle different input types
if export_path.is_file():
if export_path.suffix.lower() == ".zip":
# Extract HTML from zip file
html_content = self._extract_html_from_zip(export_path)
elif export_path.suffix.lower() == ".html":
# Read HTML file directly
try:
with open(export_path, encoding="utf-8", errors="ignore") as f:
html_content = f.read()
except Exception as e:
print(f"Error reading HTML file {export_path}: {e}")
return docs
else:
print(f"Unsupported file type: {export_path.suffix}")
return docs
elif export_path.is_dir():
# Look for HTML files in directory
html_files = list(export_path.glob("*.html"))
zip_files = list(export_path.glob("*.zip"))
if html_files:
# Use first HTML file found
html_file = html_files[0]
print(f"Found HTML file: {html_file}")
try:
with open(html_file, encoding="utf-8", errors="ignore") as f:
html_content = f.read()
except Exception as e:
print(f"Error reading HTML file {html_file}: {e}")
return docs
elif zip_files:
# Use first zip file found
zip_file = zip_files[0]
print(f"Found zip file: {zip_file}")
html_content = self._extract_html_from_zip(zip_file)
else:
print(f"No HTML or zip files found in {export_path}")
return docs
if not html_content:
print("No HTML content found to process")
return docs
# Parse conversations from HTML
print("Parsing ChatGPT conversations from HTML...")
conversations = self._parse_chatgpt_html(html_content)
if not conversations:
print("No conversations found in HTML content")
return docs
print(f"Found {len(conversations)} conversations")
# Process conversations into documents
count = 0
for conversation in conversations:
if max_count > 0 and count >= max_count:
break
if self.concatenate_conversations:
# Create one document per conversation with concatenated messages
doc_content = self._create_concatenated_content(conversation)
metadata = {}
if include_metadata:
metadata = {
"title": conversation.get("title", "ChatGPT Conversation"),
"timestamp": conversation.get("timestamp", "Unknown"),
"message_count": len(conversation.get("messages", [])),
"source": "ChatGPT Export",
}
doc = Document(text=doc_content, metadata=metadata)
docs.append(doc)
count += 1
else:
# Create separate documents for each message
for message in conversation.get("messages", []):
if max_count > 0 and count >= max_count:
break
role = message.get("role", "mixed")
content = message.get("content", "")
msg_timestamp = message.get("timestamp", "")
if not content.strip():
continue
# Create document content with context
doc_content = f"""Conversation: {conversation.get("title", "ChatGPT Conversation")}
Role: {role}
Timestamp: {msg_timestamp or conversation.get("timestamp", "Unknown")}
Message: {content}
"""
metadata = {}
if include_metadata:
metadata = {
"conversation_title": conversation.get("title", "ChatGPT Conversation"),
"role": role,
"timestamp": msg_timestamp or conversation.get("timestamp", "Unknown"),
"source": "ChatGPT Export",
}
doc = Document(text=doc_content, metadata=metadata)
docs.append(doc)
count += 1
print(f"Created {len(docs)} documents from ChatGPT export")
return docs

186
apps/chatgpt_rag.py Normal file
View File

@@ -0,0 +1,186 @@
"""
ChatGPT RAG example using the unified interface.
Supports ChatGPT export data from chat.html files.
"""
import sys
from pathlib import Path
# Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent))
from base_rag_example import BaseRAGExample
from chunking import create_text_chunks
from .chatgpt_data.chatgpt_reader import ChatGPTReader
class ChatGPTRAG(BaseRAGExample):
"""RAG example for ChatGPT conversation data."""
def __init__(self):
# Set default values BEFORE calling super().__init__
self.max_items_default = -1 # Process all conversations by default
self.embedding_model_default = (
"sentence-transformers/all-MiniLM-L6-v2" # Fast 384-dim model
)
super().__init__(
name="ChatGPT",
description="Process and query ChatGPT conversation exports with LEANN",
default_index_name="chatgpt_conversations_index",
)
def _add_specific_arguments(self, parser):
"""Add ChatGPT-specific arguments."""
chatgpt_group = parser.add_argument_group("ChatGPT Parameters")
chatgpt_group.add_argument(
"--export-path",
type=str,
default="./chatgpt_export",
help="Path to ChatGPT export file (.zip or .html) or directory containing exports (default: ./chatgpt_export)",
)
chatgpt_group.add_argument(
"--concatenate-conversations",
action="store_true",
default=True,
help="Concatenate messages within conversations for better context (default: True)",
)
chatgpt_group.add_argument(
"--separate-messages",
action="store_true",
help="Process each message as a separate document (overrides --concatenate-conversations)",
)
chatgpt_group.add_argument(
"--chunk-size", type=int, default=512, help="Text chunk size (default: 512)"
)
chatgpt_group.add_argument(
"--chunk-overlap", type=int, default=128, help="Text chunk overlap (default: 128)"
)
def _find_chatgpt_exports(self, export_path: Path) -> list[Path]:
"""
Find ChatGPT export files in the given path.
Args:
export_path: Path to search for exports
Returns:
List of paths to ChatGPT export files
"""
export_files = []
if export_path.is_file():
if export_path.suffix.lower() in [".zip", ".html"]:
export_files.append(export_path)
elif export_path.is_dir():
# Look for zip and html files
export_files.extend(export_path.glob("*.zip"))
export_files.extend(export_path.glob("*.html"))
return export_files
async def load_data(self, args) -> list[str]:
"""Load ChatGPT export data and convert to text chunks."""
export_path = Path(args.export_path)
if not export_path.exists():
print(f"ChatGPT export path not found: {export_path}")
print(
"Please ensure you have exported your ChatGPT data and placed it in the correct location."
)
print("\nTo export your ChatGPT data:")
print("1. Sign in to ChatGPT")
print("2. Click on your profile icon → Settings → Data Controls")
print("3. Click 'Export' under Export Data")
print("4. Download the zip file from the email link")
print("5. Extract or place the file/directory at the specified path")
return []
# Find export files
export_files = self._find_chatgpt_exports(export_path)
if not export_files:
print(f"No ChatGPT export files (.zip or .html) found in: {export_path}")
return []
print(f"Found {len(export_files)} ChatGPT export files")
# Create reader with appropriate settings
concatenate = args.concatenate_conversations and not args.separate_messages
reader = ChatGPTReader(concatenate_conversations=concatenate)
# Process each export file
all_documents = []
total_processed = 0
for i, export_file in enumerate(export_files):
print(f"\nProcessing export file {i + 1}/{len(export_files)}: {export_file.name}")
try:
# Apply max_items limit per file
max_per_file = -1
if args.max_items > 0:
remaining = args.max_items - total_processed
if remaining <= 0:
break
max_per_file = remaining
# Load conversations
documents = reader.load_data(
chatgpt_export_path=str(export_file),
max_count=max_per_file,
include_metadata=True,
)
if documents:
all_documents.extend(documents)
total_processed += len(documents)
print(f"Processed {len(documents)} conversations from this file")
else:
print(f"No conversations loaded from {export_file}")
except Exception as e:
print(f"Error processing {export_file}: {e}")
continue
if not all_documents:
print("No conversations found to process!")
print("\nTroubleshooting:")
print("- Ensure the export file is a valid ChatGPT export")
print("- Check that the HTML file contains conversation data")
print("- Try extracting the zip file and pointing to the HTML file directly")
return []
print(f"\nTotal conversations processed: {len(all_documents)}")
print("Now starting to split into text chunks... this may take some time")
# Convert to text chunks
all_texts = create_text_chunks(
all_documents, chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
)
print(f"Created {len(all_texts)} text chunks from {len(all_documents)} conversations")
return all_texts
if __name__ == "__main__":
import asyncio
# Example queries for ChatGPT RAG
print("\n🤖 ChatGPT RAG Example")
print("=" * 50)
print("\nExample queries you can try:")
print("- 'What did I ask about Python programming?'")
print("- 'Show me conversations about machine learning'")
print("- 'Find discussions about travel planning'")
print("- 'What advice did ChatGPT give me about career development?'")
print("- 'Search for conversations about cooking recipes'")
print("\nTo get started:")
print("1. Export your ChatGPT data from Settings → Data Controls → Export")
print("2. Place the downloaded zip file or extracted HTML in ./chatgpt_export/")
print("3. Run this script to build your personal ChatGPT knowledge base!")
print("\nOr run without --query for interactive mode\n")
rag = ChatGPTRAG()
asyncio.run(rag.run())

44
apps/chunking/__init__.py Normal file
View File

@@ -0,0 +1,44 @@
"""Unified chunking utilities facade.
This module re-exports the packaged utilities from `leann.chunking_utils` so
that both repo apps (importing `chunking`) and installed wheels share one
single implementation. When running from the repo without installation, it
adds the `packages/leann-core/src` directory to `sys.path` as a fallback.
"""
import sys
from pathlib import Path
try:
from leann.chunking_utils import (
CODE_EXTENSIONS,
create_ast_chunks,
create_text_chunks,
create_traditional_chunks,
detect_code_files,
get_language_from_extension,
)
except Exception: # pragma: no cover - best-effort fallback for dev environment
repo_root = Path(__file__).resolve().parents[2]
leann_src = repo_root / "packages" / "leann-core" / "src"
if leann_src.exists():
sys.path.insert(0, str(leann_src))
from leann.chunking_utils import (
CODE_EXTENSIONS,
create_ast_chunks,
create_text_chunks,
create_traditional_chunks,
detect_code_files,
get_language_from_extension,
)
else:
raise
__all__ = [
"CODE_EXTENSIONS",
"create_ast_chunks",
"create_text_chunks",
"create_traditional_chunks",
"detect_code_files",
"get_language_from_extension",
]

View File

View File

@@ -0,0 +1,420 @@
"""
Claude export data reader.
Reads and processes Claude conversation data from exported JSON files.
"""
import json
from pathlib import Path
from typing import Any
from zipfile import ZipFile
from llama_index.core import Document
from llama_index.core.readers.base import BaseReader
class ClaudeReader(BaseReader):
"""
Claude export data reader.
Reads Claude conversation data from exported JSON files or zip archives.
Processes conversations into structured documents with metadata.
"""
def __init__(self, concatenate_conversations: bool = True) -> None:
"""
Initialize.
Args:
concatenate_conversations: Whether to concatenate messages within conversations for better context
"""
self.concatenate_conversations = concatenate_conversations
def _extract_json_from_zip(self, zip_path: Path) -> list[str]:
"""
Extract JSON files from Claude export zip file.
Args:
zip_path: Path to the Claude export zip file
Returns:
List of JSON content strings, or empty list if not found
"""
json_contents = []
try:
with ZipFile(zip_path, "r") as zip_file:
# Look for JSON files
json_files = [f for f in zip_file.namelist() if f.endswith(".json")]
if not json_files:
print(f"No JSON files found in {zip_path}")
return []
print(f"Found {len(json_files)} JSON files in archive")
for json_file in json_files:
with zip_file.open(json_file) as f:
content = f.read().decode("utf-8", errors="ignore")
json_contents.append(content)
except Exception as e:
print(f"Error extracting JSON from zip {zip_path}: {e}")
return json_contents
def _parse_claude_json(self, json_content: str) -> list[dict]:
"""
Parse Claude JSON export to extract conversations.
Args:
json_content: JSON content from Claude export
Returns:
List of conversation dictionaries
"""
try:
data = json.loads(json_content)
except json.JSONDecodeError as e:
print(f"Error parsing JSON: {e}")
return []
conversations = []
# Handle different possible JSON structures
if isinstance(data, list):
# If data is a list of conversations
for item in data:
conversation = self._extract_conversation_from_json(item)
if conversation:
conversations.append(conversation)
elif isinstance(data, dict):
# Check for common structures
if "conversations" in data:
# Structure: {"conversations": [...]}
for item in data["conversations"]:
conversation = self._extract_conversation_from_json(item)
if conversation:
conversations.append(conversation)
elif "messages" in data:
# Single conversation with messages
conversation = self._extract_conversation_from_json(data)
if conversation:
conversations.append(conversation)
else:
# Try to treat the whole object as a conversation
conversation = self._extract_conversation_from_json(data)
if conversation:
conversations.append(conversation)
return conversations
def _extract_conversation_from_json(self, conv_data: dict) -> dict | None:
"""
Extract conversation data from a JSON object.
Args:
conv_data: Dictionary containing conversation data
Returns:
Dictionary with conversation data or None
"""
if not isinstance(conv_data, dict):
return None
messages = []
# Look for messages in various possible structures
message_sources = []
if "messages" in conv_data:
message_sources = conv_data["messages"]
elif "chat" in conv_data:
message_sources = conv_data["chat"]
elif "conversation" in conv_data:
message_sources = conv_data["conversation"]
else:
# If no clear message structure, try to extract from the object itself
if "content" in conv_data and "role" in conv_data:
message_sources = [conv_data]
for msg_data in message_sources:
message = self._extract_message_from_json(msg_data)
if message:
messages.append(message)
if not messages:
return None
# Extract conversation metadata
title = self._extract_title_from_conversation(conv_data, messages)
timestamp = self._extract_timestamp_from_conversation(conv_data)
return {"title": title, "messages": messages, "timestamp": timestamp}
def _extract_message_from_json(self, msg_data: dict) -> dict | None:
"""
Extract message data from a JSON message object.
Args:
msg_data: Dictionary containing message data
Returns:
Dictionary with message data or None
"""
if not isinstance(msg_data, dict):
return None
# Extract content from various possible fields
content = ""
content_fields = ["content", "text", "message", "body"]
for field in content_fields:
if msg_data.get(field):
content = str(msg_data[field])
break
if not content or len(content.strip()) < 3:
return None
# Extract role (user/assistant/human/ai/claude)
role = "mixed" # Default role
role_fields = ["role", "sender", "from", "author", "type"]
for field in role_fields:
if msg_data.get(field):
role_value = str(msg_data[field]).lower()
if role_value in ["user", "human", "person"]:
role = "user"
elif role_value in ["assistant", "ai", "claude", "bot"]:
role = "assistant"
break
# Extract timestamp
timestamp = self._extract_timestamp_from_message(msg_data)
return {"role": role, "content": content, "timestamp": timestamp}
def _extract_timestamp_from_message(self, msg_data: dict) -> str | None:
"""Extract timestamp from message data."""
timestamp_fields = ["timestamp", "created_at", "date", "time"]
for field in timestamp_fields:
if msg_data.get(field):
return str(msg_data[field])
return None
def _extract_timestamp_from_conversation(self, conv_data: dict) -> str | None:
"""Extract timestamp from conversation data."""
timestamp_fields = ["timestamp", "created_at", "date", "updated_at", "last_updated"]
for field in timestamp_fields:
if conv_data.get(field):
return str(conv_data[field])
return None
def _extract_title_from_conversation(self, conv_data: dict, messages: list) -> str:
"""Extract or generate title for conversation."""
# Try to find explicit title
title_fields = ["title", "name", "subject", "topic"]
for field in title_fields:
if conv_data.get(field):
return str(conv_data[field])
# Generate title from first user message
for message in messages:
if message.get("role") == "user":
content = message.get("content", "")
if content:
# Use first 50 characters as title
title = content[:50].strip()
if len(content) > 50:
title += "..."
return title
return "Claude Conversation"
def _create_concatenated_content(self, conversation: dict) -> str:
"""
Create concatenated content from conversation messages.
Args:
conversation: Dictionary containing conversation data
Returns:
Formatted concatenated content
"""
title = conversation.get("title", "Claude Conversation")
messages = conversation.get("messages", [])
timestamp = conversation.get("timestamp", "Unknown")
# Build message content
message_parts = []
for message in messages:
role = message.get("role", "mixed")
content = message.get("content", "")
msg_timestamp = message.get("timestamp", "")
if role == "user":
prefix = "[You]"
elif role == "assistant":
prefix = "[Claude]"
else:
prefix = "[Message]"
# Add timestamp if available
if msg_timestamp:
prefix += f" ({msg_timestamp})"
message_parts.append(f"{prefix}: {content}")
concatenated_text = "\n\n".join(message_parts)
# Create final document content
doc_content = f"""Conversation: {title}
Date: {timestamp}
Messages ({len(messages)} messages):
{concatenated_text}
"""
return doc_content
def load_data(self, input_dir: str | None = None, **load_kwargs: Any) -> list[Document]:
"""
Load Claude export data.
Args:
input_dir: Directory containing Claude export files or path to specific file
**load_kwargs:
max_count (int): Maximum number of conversations to process
claude_export_path (str): Specific path to Claude export file/directory
include_metadata (bool): Whether to include metadata in documents
"""
docs: list[Document] = []
max_count = load_kwargs.get("max_count", -1)
claude_export_path = load_kwargs.get("claude_export_path", input_dir)
include_metadata = load_kwargs.get("include_metadata", True)
if not claude_export_path:
print("No Claude export path provided")
return docs
export_path = Path(claude_export_path)
if not export_path.exists():
print(f"Claude export path not found: {export_path}")
return docs
json_contents = []
# Handle different input types
if export_path.is_file():
if export_path.suffix.lower() == ".zip":
# Extract JSON from zip file
json_contents = self._extract_json_from_zip(export_path)
elif export_path.suffix.lower() == ".json":
# Read JSON file directly
try:
with open(export_path, encoding="utf-8", errors="ignore") as f:
json_contents.append(f.read())
except Exception as e:
print(f"Error reading JSON file {export_path}: {e}")
return docs
else:
print(f"Unsupported file type: {export_path.suffix}")
return docs
elif export_path.is_dir():
# Look for JSON files in directory
json_files = list(export_path.glob("*.json"))
zip_files = list(export_path.glob("*.zip"))
if json_files:
print(f"Found {len(json_files)} JSON files in directory")
for json_file in json_files:
try:
with open(json_file, encoding="utf-8", errors="ignore") as f:
json_contents.append(f.read())
except Exception as e:
print(f"Error reading JSON file {json_file}: {e}")
continue
if zip_files:
print(f"Found {len(zip_files)} ZIP files in directory")
for zip_file in zip_files:
zip_contents = self._extract_json_from_zip(zip_file)
json_contents.extend(zip_contents)
if not json_files and not zip_files:
print(f"No JSON or ZIP files found in {export_path}")
return docs
if not json_contents:
print("No JSON content found to process")
return docs
# Parse conversations from JSON content
print("Parsing Claude conversations from JSON...")
all_conversations = []
for json_content in json_contents:
conversations = self._parse_claude_json(json_content)
all_conversations.extend(conversations)
if not all_conversations:
print("No conversations found in JSON content")
return docs
print(f"Found {len(all_conversations)} conversations")
# Process conversations into documents
count = 0
for conversation in all_conversations:
if max_count > 0 and count >= max_count:
break
if self.concatenate_conversations:
# Create one document per conversation with concatenated messages
doc_content = self._create_concatenated_content(conversation)
metadata = {}
if include_metadata:
metadata = {
"title": conversation.get("title", "Claude Conversation"),
"timestamp": conversation.get("timestamp", "Unknown"),
"message_count": len(conversation.get("messages", [])),
"source": "Claude Export",
}
doc = Document(text=doc_content, metadata=metadata)
docs.append(doc)
count += 1
else:
# Create separate documents for each message
for message in conversation.get("messages", []):
if max_count > 0 and count >= max_count:
break
role = message.get("role", "mixed")
content = message.get("content", "")
msg_timestamp = message.get("timestamp", "")
if not content.strip():
continue
# Create document content with context
doc_content = f"""Conversation: {conversation.get("title", "Claude Conversation")}
Role: {role}
Timestamp: {msg_timestamp or conversation.get("timestamp", "Unknown")}
Message: {content}
"""
metadata = {}
if include_metadata:
metadata = {
"conversation_title": conversation.get("title", "Claude Conversation"),
"role": role,
"timestamp": msg_timestamp or conversation.get("timestamp", "Unknown"),
"source": "Claude Export",
}
doc = Document(text=doc_content, metadata=metadata)
docs.append(doc)
count += 1
print(f"Created {len(docs)} documents from Claude export")
return docs

189
apps/claude_rag.py Normal file
View File

@@ -0,0 +1,189 @@
"""
Claude RAG example using the unified interface.
Supports Claude export data from JSON files.
"""
import sys
from pathlib import Path
# Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent))
from base_rag_example import BaseRAGExample
from chunking import create_text_chunks
from .claude_data.claude_reader import ClaudeReader
class ClaudeRAG(BaseRAGExample):
"""RAG example for Claude conversation data."""
def __init__(self):
# Set default values BEFORE calling super().__init__
self.max_items_default = -1 # Process all conversations by default
self.embedding_model_default = (
"sentence-transformers/all-MiniLM-L6-v2" # Fast 384-dim model
)
super().__init__(
name="Claude",
description="Process and query Claude conversation exports with LEANN",
default_index_name="claude_conversations_index",
)
def _add_specific_arguments(self, parser):
"""Add Claude-specific arguments."""
claude_group = parser.add_argument_group("Claude Parameters")
claude_group.add_argument(
"--export-path",
type=str,
default="./claude_export",
help="Path to Claude export file (.json or .zip) or directory containing exports (default: ./claude_export)",
)
claude_group.add_argument(
"--concatenate-conversations",
action="store_true",
default=True,
help="Concatenate messages within conversations for better context (default: True)",
)
claude_group.add_argument(
"--separate-messages",
action="store_true",
help="Process each message as a separate document (overrides --concatenate-conversations)",
)
claude_group.add_argument(
"--chunk-size", type=int, default=512, help="Text chunk size (default: 512)"
)
claude_group.add_argument(
"--chunk-overlap", type=int, default=128, help="Text chunk overlap (default: 128)"
)
def _find_claude_exports(self, export_path: Path) -> list[Path]:
"""
Find Claude export files in the given path.
Args:
export_path: Path to search for exports
Returns:
List of paths to Claude export files
"""
export_files = []
if export_path.is_file():
if export_path.suffix.lower() in [".zip", ".json"]:
export_files.append(export_path)
elif export_path.is_dir():
# Look for zip and json files
export_files.extend(export_path.glob("*.zip"))
export_files.extend(export_path.glob("*.json"))
return export_files
async def load_data(self, args) -> list[str]:
"""Load Claude export data and convert to text chunks."""
export_path = Path(args.export_path)
if not export_path.exists():
print(f"Claude export path not found: {export_path}")
print(
"Please ensure you have exported your Claude data and placed it in the correct location."
)
print("\nTo export your Claude data:")
print("1. Open Claude in your browser")
print("2. Look for export/download options in settings or conversation menu")
print("3. Download the conversation data (usually in JSON format)")
print("4. Place the file/directory at the specified path")
print(
"\nNote: Claude export methods may vary. Check Claude's help documentation for current instructions."
)
return []
# Find export files
export_files = self._find_claude_exports(export_path)
if not export_files:
print(f"No Claude export files (.json or .zip) found in: {export_path}")
return []
print(f"Found {len(export_files)} Claude export files")
# Create reader with appropriate settings
concatenate = args.concatenate_conversations and not args.separate_messages
reader = ClaudeReader(concatenate_conversations=concatenate)
# Process each export file
all_documents = []
total_processed = 0
for i, export_file in enumerate(export_files):
print(f"\nProcessing export file {i + 1}/{len(export_files)}: {export_file.name}")
try:
# Apply max_items limit per file
max_per_file = -1
if args.max_items > 0:
remaining = args.max_items - total_processed
if remaining <= 0:
break
max_per_file = remaining
# Load conversations
documents = reader.load_data(
claude_export_path=str(export_file),
max_count=max_per_file,
include_metadata=True,
)
if documents:
all_documents.extend(documents)
total_processed += len(documents)
print(f"Processed {len(documents)} conversations from this file")
else:
print(f"No conversations loaded from {export_file}")
except Exception as e:
print(f"Error processing {export_file}: {e}")
continue
if not all_documents:
print("No conversations found to process!")
print("\nTroubleshooting:")
print("- Ensure the export file is a valid Claude export")
print("- Check that the JSON file contains conversation data")
print("- Try using a different export format or method")
print("- Check Claude's documentation for current export procedures")
return []
print(f"\nTotal conversations processed: {len(all_documents)}")
print("Now starting to split into text chunks... this may take some time")
# Convert to text chunks
all_texts = create_text_chunks(
all_documents, chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
)
print(f"Created {len(all_texts)} text chunks from {len(all_documents)} conversations")
return all_texts
if __name__ == "__main__":
import asyncio
# Example queries for Claude RAG
print("\n🤖 Claude RAG Example")
print("=" * 50)
print("\nExample queries you can try:")
print("- 'What did I ask Claude about Python programming?'")
print("- 'Show me conversations about machine learning'")
print("- 'Find discussions about code optimization'")
print("- 'What advice did Claude give me about software design?'")
print("- 'Search for conversations about debugging techniques'")
print("\nTo get started:")
print("1. Export your Claude conversation data")
print("2. Place the JSON/ZIP file in ./claude_export/")
print("3. Run this script to build your personal Claude knowledge base!")
print("\nOr run without --query for interactive mode\n")
rag = ClaudeRAG()
asyncio.run(rag.run())

211
apps/code_rag.py Normal file
View File

@@ -0,0 +1,211 @@
"""
Code RAG example using AST-aware chunking for optimal code understanding.
Specialized for code repositories with automatic language detection and
optimized chunking parameters.
"""
import sys
from pathlib import Path
# Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent))
from base_rag_example import BaseRAGExample
from chunking import CODE_EXTENSIONS, create_text_chunks
from llama_index.core import SimpleDirectoryReader
class CodeRAG(BaseRAGExample):
"""Specialized RAG example for code repositories with AST-aware chunking."""
def __init__(self):
super().__init__(
name="Code",
description="Process and query code repositories with AST-aware chunking",
default_index_name="code_index",
)
# Override defaults for code-specific usage
self.embedding_model_default = "facebook/contriever" # Good for code
self.max_items_default = -1 # Process all code files by default
def _add_specific_arguments(self, parser):
"""Add code-specific arguments."""
code_group = parser.add_argument_group("Code Repository Parameters")
code_group.add_argument(
"--repo-dir",
type=str,
default=".",
help="Code repository directory to index (default: current directory)",
)
code_group.add_argument(
"--include-extensions",
nargs="+",
default=list(CODE_EXTENSIONS.keys()),
help="File extensions to include (default: supported code extensions)",
)
code_group.add_argument(
"--exclude-dirs",
nargs="+",
default=[
".git",
"__pycache__",
"node_modules",
"venv",
".venv",
"build",
"dist",
"target",
],
help="Directories to exclude from indexing",
)
code_group.add_argument(
"--max-file-size",
type=int,
default=1000000, # 1MB
help="Maximum file size in bytes to process (default: 1MB)",
)
code_group.add_argument(
"--include-comments",
action="store_true",
help="Include comments in chunking (useful for documentation)",
)
code_group.add_argument(
"--preserve-imports",
action="store_true",
default=True,
help="Try to preserve import statements in chunks (default: True)",
)
async def load_data(self, args) -> list[str]:
"""Load code files and convert to AST-aware chunks."""
print(f"🔍 Scanning code repository: {args.repo_dir}")
print(f"📁 Including extensions: {args.include_extensions}")
print(f"🚫 Excluding directories: {args.exclude_dirs}")
# Check if repository directory exists
repo_path = Path(args.repo_dir)
if not repo_path.exists():
raise ValueError(f"Repository directory not found: {args.repo_dir}")
# Load code files with filtering
reader_kwargs = {
"recursive": True,
"encoding": "utf-8",
"required_exts": args.include_extensions,
"exclude_hidden": True,
}
# Create exclusion filter
def file_filter(file_path: str) -> bool:
"""Filter out unwanted files and directories."""
path = Path(file_path)
# Check file size
try:
if path.stat().st_size > args.max_file_size:
print(f"⚠️ Skipping large file: {path.name} ({path.stat().st_size} bytes)")
return False
except Exception:
return False
# Check if in excluded directory
for exclude_dir in args.exclude_dirs:
if exclude_dir in path.parts:
return False
return True
try:
# Load documents with file filtering
documents = SimpleDirectoryReader(
args.repo_dir,
file_extractor=None, # Use default extractors
**reader_kwargs,
).load_data(show_progress=True)
# Apply custom filtering
filtered_docs = []
for doc in documents:
file_path = doc.metadata.get("file_path", "")
if file_filter(file_path):
filtered_docs.append(doc)
documents = filtered_docs
except Exception as e:
print(f"❌ Error loading code files: {e}")
return []
if not documents:
print(
f"❌ No code files found in {args.repo_dir} with extensions {args.include_extensions}"
)
return []
print(f"✅ Loaded {len(documents)} code files")
# Show breakdown by language/extension
ext_counts = {}
for doc in documents:
file_path = doc.metadata.get("file_path", "")
if file_path:
ext = Path(file_path).suffix.lower()
ext_counts[ext] = ext_counts.get(ext, 0) + 1
print("📊 Files by extension:")
for ext, count in sorted(ext_counts.items()):
print(f" {ext}: {count} files")
# Use AST-aware chunking by default for code
print(
f"🧠 Using AST-aware chunking (chunk_size: {args.ast_chunk_size}, overlap: {args.ast_chunk_overlap})"
)
all_texts = create_text_chunks(
documents,
chunk_size=256, # Fallback for non-code files
chunk_overlap=64,
use_ast_chunking=True, # Always use AST for code RAG
ast_chunk_size=args.ast_chunk_size,
ast_chunk_overlap=args.ast_chunk_overlap,
code_file_extensions=args.include_extensions,
ast_fallback_traditional=True,
)
# Apply max_items limit if specified
if args.max_items > 0 and len(all_texts) > args.max_items:
print(f"⏳ Limiting to {args.max_items} chunks (from {len(all_texts)})")
all_texts = all_texts[: args.max_items]
print(f"✅ Generated {len(all_texts)} code chunks")
return all_texts
if __name__ == "__main__":
import asyncio
# Example queries for code RAG
print("\n💻 Code RAG Example")
print("=" * 50)
print("\nExample queries you can try:")
print("- 'How does the embedding computation work?'")
print("- 'What are the main classes in this codebase?'")
print("- 'Show me the search implementation'")
print("- 'How is error handling implemented?'")
print("- 'What design patterns are used?'")
print("- 'Explain the chunking logic'")
print("\n🚀 Features:")
print("- ✅ AST-aware chunking preserves code structure")
print("- ✅ Automatic language detection")
print("- ✅ Smart filtering of large files and common excludes")
print("- ✅ Optimized for code understanding")
print("\nUsage examples:")
print(" python -m apps.code_rag --repo-dir ./my_project")
print(
" python -m apps.code_rag --include-extensions .py .js --query 'How does authentication work?'"
)
print("\nOr run without --query for interactive mode\n")
rag = CodeRAG()
asyncio.run(rag.run())

131
apps/document_rag.py Normal file
View File

@@ -0,0 +1,131 @@
"""
Document RAG example using the unified interface.
Supports PDF, TXT, MD, and other document formats.
"""
import sys
from pathlib import Path
# Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent))
from base_rag_example import BaseRAGExample
from chunking import create_text_chunks
from llama_index.core import SimpleDirectoryReader
class DocumentRAG(BaseRAGExample):
"""RAG example for document processing (PDF, TXT, MD, etc.)."""
def __init__(self):
super().__init__(
name="Document",
description="Process and query documents (PDF, TXT, MD, etc.) with LEANN",
default_index_name="test_doc_files",
)
def _add_specific_arguments(self, parser):
"""Add document-specific arguments."""
doc_group = parser.add_argument_group("Document Parameters")
doc_group.add_argument(
"--data-dir",
type=str,
default="data",
help="Directory containing documents to index (default: data)",
)
doc_group.add_argument(
"--file-types",
nargs="+",
default=None,
help="Filter by file types (e.g., .pdf .txt .md). If not specified, all supported types are processed",
)
doc_group.add_argument(
"--chunk-size", type=int, default=256, help="Text chunk size (default: 256)"
)
doc_group.add_argument(
"--chunk-overlap", type=int, default=128, help="Text chunk overlap (default: 128)"
)
doc_group.add_argument(
"--enable-code-chunking",
action="store_true",
help="Enable AST-aware chunking for code files in the data directory",
)
async def load_data(self, args) -> list[str]:
"""Load documents and convert to text chunks."""
print(f"Loading documents from: {args.data_dir}")
if args.file_types:
print(f"Filtering by file types: {args.file_types}")
else:
print("Processing all supported file types")
# Check if data directory exists
data_path = Path(args.data_dir)
if not data_path.exists():
raise ValueError(f"Data directory not found: {args.data_dir}")
# Load documents
reader_kwargs = {
"recursive": True,
"encoding": "utf-8",
}
if args.file_types:
reader_kwargs["required_exts"] = args.file_types
documents = SimpleDirectoryReader(args.data_dir, **reader_kwargs).load_data(
show_progress=True
)
if not documents:
print(f"No documents found in {args.data_dir} with extensions {args.file_types}")
return []
print(f"Loaded {len(documents)} documents")
# Determine chunking strategy
use_ast = args.enable_code_chunking or getattr(args, "use_ast_chunking", False)
if use_ast:
print("Using AST-aware chunking for code files")
# Convert to text chunks with optional AST support
all_texts = create_text_chunks(
documents,
chunk_size=args.chunk_size,
chunk_overlap=args.chunk_overlap,
use_ast_chunking=use_ast,
ast_chunk_size=getattr(args, "ast_chunk_size", 512),
ast_chunk_overlap=getattr(args, "ast_chunk_overlap", 64),
code_file_extensions=getattr(args, "code_file_extensions", None),
ast_fallback_traditional=getattr(args, "ast_fallback_traditional", True),
)
# Apply max_items limit if specified
if args.max_items > 0 and len(all_texts) > args.max_items:
print(f"Limiting to {args.max_items} chunks (from {len(all_texts)})")
all_texts = all_texts[: args.max_items]
return all_texts
if __name__ == "__main__":
import asyncio
# Example queries for document RAG
print("\n📄 Document RAG Example")
print("=" * 50)
print("\nExample queries you can try:")
print("- 'What are the main techniques LEANN uses?'")
print("- 'What is the technique DLPM?'")
print("- 'Who does Elizabeth Bennet marry?'")
print(
"- 'What is the problem of developing pan gu model Huawei meets? (盘古大模型开发中遇到什么问题?)'"
)
print("\n🚀 NEW: Code-aware chunking available!")
print("- Use --enable-code-chunking to enable AST-aware chunking for code files")
print("- Supports Python, Java, C#, TypeScript files")
print("- Better semantic understanding of code structure")
print("\nOr run without --query for interactive mode\n")
rag = DocumentRAG()
asyncio.run(rag.run())

View File

@@ -52,6 +52,11 @@ class EmlxReader(BaseReader):
docs: list[Document] = [] docs: list[Document] = []
max_count = load_kwargs.get("max_count", 1000) max_count = load_kwargs.get("max_count", 1000)
count = 0 count = 0
total_files = 0
successful_files = 0
failed_files = 0
print(f"Starting to process directory: {input_dir}")
# Walk through the directory recursively # Walk through the directory recursively
for dirpath, dirnames, filenames in os.walk(input_dir): for dirpath, dirnames, filenames in os.walk(input_dir):
@@ -59,10 +64,12 @@ class EmlxReader(BaseReader):
dirnames[:] = [d for d in dirnames if not d.startswith(".")] dirnames[:] = [d for d in dirnames if not d.startswith(".")]
for filename in filenames: for filename in filenames:
if count >= max_count: # Check if we've reached the max count (skip if max_count == -1)
if max_count > 0 and count >= max_count:
break break
if filename.endswith(".emlx"): if filename.endswith(".emlx"):
total_files += 1
filepath = os.path.join(dirpath, filename) filepath = os.path.join(dirpath, filename)
try: try:
# Read the .emlx file # Read the .emlx file
@@ -98,17 +105,26 @@ class EmlxReader(BaseReader):
and not self.include_html and not self.include_html
): ):
continue continue
body += part.get_payload(decode=True).decode( try:
"utf-8", errors="ignore" payload = part.get_payload(decode=True)
) if payload:
# break body += payload.decode("utf-8", errors="ignore")
except Exception as e:
print(f"Error decoding payload: {e}")
continue
else: else:
body = msg.get_payload(decode=True).decode( try:
"utf-8", errors="ignore" payload = msg.get_payload(decode=True)
) if payload:
body = payload.decode("utf-8", errors="ignore")
except Exception as e:
print(f"Error decoding single part payload: {e}")
body = ""
# Create document content with metadata embedded in text # Only create document if we have some content
doc_content = f""" if body.strip() or subject != "No Subject":
# Create document content with metadata embedded in text
doc_content = f"""
[File]: {filename} [File]: {filename}
[From]: {from_addr} [From]: {from_addr}
[To]: {to_addr} [To]: {to_addr}
@@ -118,18 +134,34 @@ class EmlxReader(BaseReader):
{body} {body}
""" """
# No separate metadata - everything is in the text # No separate metadata - everything is in the text
doc = Document(text=doc_content, metadata={}) doc = Document(text=doc_content, metadata={})
docs.append(doc) docs.append(doc)
count += 1 count += 1
successful_files += 1
# Print first few successful files for debugging
if successful_files <= 3:
print(
f"Successfully loaded: {filename} - Subject: {subject[:50]}..."
)
except Exception as e: except Exception as e:
print(f"Error parsing email from {filepath}: {e}") failed_files += 1
if failed_files <= 5: # Only print first few errors
print(f"Error parsing email from {filepath}: {e}")
continue continue
except Exception as e: except Exception as e:
print(f"Error reading file {filepath}: {e}") failed_files += 1
if failed_files <= 5: # Only print first few errors
print(f"Error reading file {filepath}: {e}")
continue continue
print(f"Loaded {len(docs)} email documents") print("Processing summary:")
print(f" Total .emlx files found: {total_files}")
print(f" Successfully loaded: {successful_files}")
print(f" Failed to load: {failed_files}")
print(f" Final documents: {len(docs)}")
return docs return docs

157
apps/email_rag.py Normal file
View File

@@ -0,0 +1,157 @@
"""
Email RAG example using the unified interface.
Supports Apple Mail on macOS.
"""
import sys
from pathlib import Path
# Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent))
from base_rag_example import BaseRAGExample
from chunking import create_text_chunks
from .email_data.LEANN_email_reader import EmlxReader
class EmailRAG(BaseRAGExample):
"""RAG example for Apple Mail processing."""
def __init__(self):
# Set default values BEFORE calling super().__init__
self.max_items_default = -1 # Process all emails by default
self.embedding_model_default = (
"sentence-transformers/all-MiniLM-L6-v2" # Fast 384-dim model
)
super().__init__(
name="Email",
description="Process and query Apple Mail emails with LEANN",
default_index_name="mail_index",
)
def _add_specific_arguments(self, parser):
"""Add email-specific arguments."""
email_group = parser.add_argument_group("Email Parameters")
email_group.add_argument(
"--mail-path",
type=str,
default=None,
help="Path to Apple Mail directory (auto-detected if not specified)",
)
email_group.add_argument(
"--include-html", action="store_true", help="Include HTML content in email processing"
)
email_group.add_argument(
"--chunk-size", type=int, default=256, help="Text chunk size (default: 256)"
)
email_group.add_argument(
"--chunk-overlap", type=int, default=25, help="Text chunk overlap (default: 25)"
)
def _find_mail_directories(self) -> list[Path]:
"""Auto-detect all Apple Mail directories."""
mail_base = Path.home() / "Library" / "Mail"
if not mail_base.exists():
return []
# Find all Messages directories
messages_dirs = []
for item in mail_base.rglob("Messages"):
if item.is_dir():
messages_dirs.append(item)
return messages_dirs
async def load_data(self, args) -> list[str]:
"""Load emails and convert to text chunks."""
# Determine mail directories
if args.mail_path:
messages_dirs = [Path(args.mail_path)]
else:
print("Auto-detecting Apple Mail directories...")
messages_dirs = self._find_mail_directories()
if not messages_dirs:
print("No Apple Mail directories found!")
print("Please specify --mail-path manually")
return []
print(f"Found {len(messages_dirs)} mail directories")
# Create reader
reader = EmlxReader(include_html=args.include_html)
# Process each directory
all_documents = []
total_processed = 0
for i, messages_dir in enumerate(messages_dirs):
print(f"\nProcessing directory {i + 1}/{len(messages_dirs)}: {messages_dir}")
try:
# Count emlx files
emlx_files = list(messages_dir.glob("*.emlx"))
print(f"Found {len(emlx_files)} email files")
# Apply max_items limit per directory
max_per_dir = -1 # Default to process all
if args.max_items > 0:
remaining = args.max_items - total_processed
if remaining <= 0:
break
max_per_dir = remaining
# If args.max_items == -1, max_per_dir stays -1 (process all)
# Load emails - fix the parameter passing
documents = reader.load_data(
input_dir=str(messages_dir),
max_count=max_per_dir,
)
if documents:
all_documents.extend(documents)
total_processed += len(documents)
print(f"Processed {len(documents)} emails from this directory")
except Exception as e:
print(f"Error processing {messages_dir}: {e}")
continue
if not all_documents:
print("No emails found to process!")
return []
print(f"\nTotal emails processed: {len(all_documents)}")
print("now starting to split into text chunks ... take some time")
# Convert to text chunks
# Email reader uses chunk_overlap=25 as in original
all_texts = create_text_chunks(
all_documents, chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
)
return all_texts
if __name__ == "__main__":
import asyncio
# Check platform
if sys.platform != "darwin":
print("\n⚠️ Warning: This example is designed for macOS (Apple Mail)")
print(" Windows/Linux support coming soon!\n")
# Example queries for email RAG
print("\n📧 Email RAG Example")
print("=" * 50)
print("\nExample queries you can try:")
print("- 'What did my boss say about deadlines?'")
print("- 'Find emails about travel expenses'")
print("- 'Show me emails from last month about the project'")
print("- 'What food did I order from DoorDash?'")
print("\nNote: You may need to grant Full Disk Access to your terminal\n")
rag = EmailRAG()
asyncio.run(rag.run())

View File

@@ -74,7 +74,7 @@ class ChromeHistoryReader(BaseReader):
if count >= max_count and max_count > 0: if count >= max_count and max_count > 0:
break break
last_visit, url, title, visit_count, typed_count, hidden = row last_visit, url, title, visit_count, typed_count, _hidden = row
# Create document content with metadata embedded in text # Create document content with metadata embedded in text
doc_content = f""" doc_content = f"""
@@ -97,6 +97,11 @@ class ChromeHistoryReader(BaseReader):
except Exception as e: except Exception as e:
print(f"Error reading Chrome history: {e}") print(f"Error reading Chrome history: {e}")
# add you may need to close your browser to make the database file available
# also highlight in red
print(
"\033[91mYou may need to close your browser to make the database file available\033[0m"
)
return docs return docs
return docs return docs

View File

@@ -411,8 +411,8 @@ Messages ({len(messages)} messages, {message_group["total_length"]} chars):
wechat_export_dir = load_kwargs.get("wechat_export_dir", None) wechat_export_dir = load_kwargs.get("wechat_export_dir", None)
include_non_text = load_kwargs.get("include_non_text", False) include_non_text = load_kwargs.get("include_non_text", False)
concatenate_messages = load_kwargs.get("concatenate_messages", False) concatenate_messages = load_kwargs.get("concatenate_messages", False)
load_kwargs.get("max_length", 1000) max_length = load_kwargs.get("max_length", 1000)
load_kwargs.get("time_window_minutes", 30) time_window_minutes = load_kwargs.get("time_window_minutes", 30)
# Default WeChat export path # Default WeChat export path
if wechat_export_dir is None: if wechat_export_dir is None:
@@ -460,9 +460,9 @@ Messages ({len(messages)} messages, {message_group["total_length"]} chars):
# Concatenate messages based on rules # Concatenate messages based on rules
message_groups = self._concatenate_messages( message_groups = self._concatenate_messages(
readable_messages, readable_messages,
max_length=-1, max_length=max_length,
time_window_minutes=-1, time_window_minutes=time_window_minutes,
overlap_messages=0, # Keep 2 messages overlap between groups overlap_messages=0, # No overlap between groups
) )
# Create documents from concatenated groups # Create documents from concatenated groups
@@ -532,7 +532,9 @@ Message: {readable_text if readable_text else message_text}
""" """
# Create document with embedded metadata # Create document with embedded metadata
doc = Document(text=doc_content, metadata={}) doc = Document(
text=doc_content, metadata={"contact_name": contact_name}
)
docs.append(doc) docs.append(doc)
count += 1 count += 1
@@ -560,8 +562,8 @@ Message: {readable_text if readable_text else message_text}
# Look for common export directory names # Look for common export directory names
possible_dirs = [ possible_dirs = [
Path("./wechat_export_test"),
Path("./wechat_export"), Path("./wechat_export"),
Path("./wechat_export_direct"),
Path("./wechat_chat_history"), Path("./wechat_chat_history"),
Path("./chat_export"), Path("./chat_export"),
] ]

View File

@@ -0,0 +1 @@
"""iMessage data processing module."""

View File

@@ -0,0 +1,342 @@
"""
iMessage data reader.
Reads and processes iMessage conversation data from the macOS Messages database.
"""
import sqlite3
from datetime import datetime
from pathlib import Path
from typing import Any
from llama_index.core import Document
from llama_index.core.readers.base import BaseReader
class IMessageReader(BaseReader):
"""
iMessage data reader.
Reads iMessage conversation data from the macOS Messages database (chat.db).
Processes conversations into structured documents with metadata.
"""
def __init__(self, concatenate_conversations: bool = True) -> None:
"""
Initialize.
Args:
concatenate_conversations: Whether to concatenate messages within conversations for better context
"""
self.concatenate_conversations = concatenate_conversations
def _get_default_chat_db_path(self) -> Path:
"""
Get the default path to the iMessage chat database.
Returns:
Path to the chat.db file
"""
home = Path.home()
return home / "Library" / "Messages" / "chat.db"
def _convert_cocoa_timestamp(self, cocoa_timestamp: int) -> str:
"""
Convert Cocoa timestamp to readable format.
Args:
cocoa_timestamp: Timestamp in Cocoa format (nanoseconds since 2001-01-01)
Returns:
Formatted timestamp string
"""
if cocoa_timestamp == 0:
return "Unknown"
try:
# Cocoa timestamp is nanoseconds since 2001-01-01 00:00:00 UTC
# Convert to seconds and add to Unix epoch
cocoa_epoch = datetime(2001, 1, 1)
unix_timestamp = cocoa_timestamp / 1_000_000_000 # Convert nanoseconds to seconds
message_time = cocoa_epoch.timestamp() + unix_timestamp
return datetime.fromtimestamp(message_time).strftime("%Y-%m-%d %H:%M:%S")
except (ValueError, OSError):
return "Unknown"
def _get_contact_name(self, handle_id: str) -> str:
"""
Get a readable contact name from handle ID.
Args:
handle_id: The handle ID (phone number or email)
Returns:
Formatted contact name
"""
if not handle_id:
return "Unknown"
# Clean up phone numbers and emails for display
if "@" in handle_id:
return handle_id # Email address
elif handle_id.startswith("+"):
return handle_id # International phone number
else:
# Try to format as phone number
digits = "".join(filter(str.isdigit, handle_id))
if len(digits) == 10:
return f"({digits[:3]}) {digits[3:6]}-{digits[6:]}"
elif len(digits) == 11 and digits[0] == "1":
return f"+1 ({digits[1:4]}) {digits[4:7]}-{digits[7:]}"
else:
return handle_id
def _read_messages_from_db(self, db_path: Path) -> list[dict]:
"""
Read messages from the iMessage database.
Args:
db_path: Path to the chat.db file
Returns:
List of message dictionaries
"""
if not db_path.exists():
print(f"iMessage database not found at: {db_path}")
return []
try:
# Connect to the database
conn = sqlite3.connect(str(db_path))
cursor = conn.cursor()
# Query to get messages with chat and handle information
query = """
SELECT
m.ROWID as message_id,
m.text,
m.date,
m.is_from_me,
m.service,
c.chat_identifier,
c.display_name as chat_display_name,
h.id as handle_id,
c.ROWID as chat_id
FROM message m
LEFT JOIN chat_message_join cmj ON m.ROWID = cmj.message_id
LEFT JOIN chat c ON cmj.chat_id = c.ROWID
LEFT JOIN handle h ON m.handle_id = h.ROWID
WHERE m.text IS NOT NULL AND m.text != ''
ORDER BY c.ROWID, m.date
"""
cursor.execute(query)
rows = cursor.fetchall()
messages = []
for row in rows:
(
message_id,
text,
date,
is_from_me,
service,
chat_identifier,
chat_display_name,
handle_id,
chat_id,
) = row
message = {
"message_id": message_id,
"text": text,
"timestamp": self._convert_cocoa_timestamp(date),
"is_from_me": bool(is_from_me),
"service": service or "iMessage",
"chat_identifier": chat_identifier or "Unknown",
"chat_display_name": chat_display_name or "Unknown Chat",
"handle_id": handle_id or "Unknown",
"contact_name": self._get_contact_name(handle_id or ""),
"chat_id": chat_id,
}
messages.append(message)
conn.close()
print(f"Found {len(messages)} messages in database")
return messages
except sqlite3.Error as e:
print(f"Error reading iMessage database: {e}")
return []
except Exception as e:
print(f"Unexpected error reading iMessage database: {e}")
return []
def _group_messages_by_chat(self, messages: list[dict]) -> dict[int, list[dict]]:
"""
Group messages by chat ID.
Args:
messages: List of message dictionaries
Returns:
Dictionary mapping chat_id to list of messages
"""
chats = {}
for message in messages:
chat_id = message["chat_id"]
if chat_id not in chats:
chats[chat_id] = []
chats[chat_id].append(message)
return chats
def _create_concatenated_content(self, chat_id: int, messages: list[dict]) -> str:
"""
Create concatenated content from chat messages.
Args:
chat_id: The chat ID
messages: List of messages in the chat
Returns:
Concatenated text content
"""
if not messages:
return ""
# Get chat info from first message
first_msg = messages[0]
chat_name = first_msg["chat_display_name"]
chat_identifier = first_msg["chat_identifier"]
# Build message content
message_parts = []
for message in messages:
timestamp = message["timestamp"]
is_from_me = message["is_from_me"]
text = message["text"]
contact_name = message["contact_name"]
if is_from_me:
prefix = "[You]"
else:
prefix = f"[{contact_name}]"
if timestamp != "Unknown":
prefix += f" ({timestamp})"
message_parts.append(f"{prefix}: {text}")
concatenated_text = "\n\n".join(message_parts)
doc_content = f"""Chat: {chat_name}
Identifier: {chat_identifier}
Messages ({len(messages)} messages):
{concatenated_text}
"""
return doc_content
def _create_individual_content(self, message: dict) -> str:
"""
Create content for individual message.
Args:
message: Message dictionary
Returns:
Formatted message content
"""
timestamp = message["timestamp"]
is_from_me = message["is_from_me"]
text = message["text"]
contact_name = message["contact_name"]
chat_name = message["chat_display_name"]
sender = "You" if is_from_me else contact_name
return f"""Message from {sender} in chat "{chat_name}"
Time: {timestamp}
Content: {text}
"""
def load_data(self, input_dir: str | None = None, **load_kwargs: Any) -> list[Document]:
"""
Load iMessage data and return as documents.
Args:
input_dir: Optional path to directory containing chat.db file.
If not provided, uses default macOS location.
**load_kwargs: Additional arguments (unused)
Returns:
List of Document objects containing iMessage data
"""
docs = []
# Determine database path
if input_dir:
db_path = Path(input_dir) / "chat.db"
else:
db_path = self._get_default_chat_db_path()
print(f"Reading iMessage database from: {db_path}")
# Read messages from database
messages = self._read_messages_from_db(db_path)
if not messages:
return docs
if self.concatenate_conversations:
# Group messages by chat and create concatenated documents
chats = self._group_messages_by_chat(messages)
for chat_id, chat_messages in chats.items():
if not chat_messages:
continue
content = self._create_concatenated_content(chat_id, chat_messages)
# Create metadata
first_msg = chat_messages[0]
last_msg = chat_messages[-1]
metadata = {
"source": "iMessage",
"chat_id": chat_id,
"chat_name": first_msg["chat_display_name"],
"chat_identifier": first_msg["chat_identifier"],
"message_count": len(chat_messages),
"first_message_date": first_msg["timestamp"],
"last_message_date": last_msg["timestamp"],
"participants": list(
{msg["contact_name"] for msg in chat_messages if not msg["is_from_me"]}
),
}
doc = Document(text=content, metadata=metadata)
docs.append(doc)
else:
# Create individual documents for each message
for message in messages:
content = self._create_individual_content(message)
metadata = {
"source": "iMessage",
"message_id": message["message_id"],
"chat_id": message["chat_id"],
"chat_name": message["chat_display_name"],
"chat_identifier": message["chat_identifier"],
"timestamp": message["timestamp"],
"is_from_me": message["is_from_me"],
"contact_name": message["contact_name"],
"service": message["service"],
}
doc = Document(text=content, metadata=metadata)
docs.append(doc)
print(f"Created {len(docs)} documents from iMessage data")
return docs

125
apps/imessage_rag.py Normal file
View File

@@ -0,0 +1,125 @@
"""
iMessage RAG Example.
This example demonstrates how to build a RAG system on your iMessage conversation history.
"""
import asyncio
from pathlib import Path
from leann.chunking_utils import create_text_chunks
from apps.base_rag_example import BaseRAGExample
from apps.imessage_data.imessage_reader import IMessageReader
class IMessageRAG(BaseRAGExample):
"""RAG example for iMessage conversation history."""
def __init__(self):
super().__init__(
name="iMessage",
description="RAG on your iMessage conversation history",
default_index_name="imessage_index",
)
def _add_specific_arguments(self, parser):
"""Add iMessage-specific arguments."""
imessage_group = parser.add_argument_group("iMessage Parameters")
imessage_group.add_argument(
"--db-path",
type=str,
default=None,
help="Path to iMessage chat.db file (default: ~/Library/Messages/chat.db)",
)
imessage_group.add_argument(
"--concatenate-conversations",
action="store_true",
default=True,
help="Concatenate messages within conversations for better context (default: True)",
)
imessage_group.add_argument(
"--no-concatenate-conversations",
action="store_true",
help="Process each message individually instead of concatenating by conversation",
)
imessage_group.add_argument(
"--chunk-size",
type=int,
default=1000,
help="Maximum characters per text chunk (default: 1000)",
)
imessage_group.add_argument(
"--chunk-overlap",
type=int,
default=200,
help="Overlap between text chunks (default: 200)",
)
async def load_data(self, args) -> list[str]:
"""Load iMessage history and convert to text chunks."""
print("Loading iMessage conversation history...")
# Determine concatenation setting
concatenate = args.concatenate_conversations and not args.no_concatenate_conversations
# Initialize iMessage reader
reader = IMessageReader(concatenate_conversations=concatenate)
# Load documents
try:
if args.db_path:
# Use custom database path
db_dir = str(Path(args.db_path).parent)
documents = reader.load_data(input_dir=db_dir)
else:
# Use default macOS location
documents = reader.load_data()
except Exception as e:
print(f"Error loading iMessage data: {e}")
print("\nTroubleshooting tips:")
print("1. Make sure you have granted Full Disk Access to your terminal/IDE")
print("2. Check that the iMessage database exists at ~/Library/Messages/chat.db")
print("3. Try specifying a custom path with --db-path if you have a backup")
return []
if not documents:
print("No iMessage conversations found!")
return []
print(f"Loaded {len(documents)} iMessage documents")
# Show some statistics
total_messages = sum(doc.metadata.get("message_count", 1) for doc in documents)
print(f"Total messages: {total_messages}")
if concatenate:
# Show chat statistics
chat_names = [doc.metadata.get("chat_name", "Unknown") for doc in documents]
unique_chats = len(set(chat_names))
print(f"Unique conversations: {unique_chats}")
# Convert to text chunks
all_texts = create_text_chunks(
documents,
chunk_size=args.chunk_size,
chunk_overlap=args.chunk_overlap,
)
# Apply max_items limit if specified
if args.max_items > 0:
all_texts = all_texts[: args.max_items]
print(f"Limited to {len(all_texts)} text chunks (max_items={args.max_items})")
return all_texts
async def main():
"""Main entry point."""
app = IMessageRAG()
await app.run()
if __name__ == "__main__":
asyncio.run(main())

View File

@@ -0,0 +1 @@
# Slack MCP data integration for LEANN

View File

@@ -0,0 +1,334 @@
#!/usr/bin/env python3
"""
Slack MCP Reader for LEANN
This module provides functionality to connect to Slack MCP servers and fetch message data
for indexing in LEANN. It supports various Slack MCP server implementations and provides
flexible message processing options.
"""
import asyncio
import json
import logging
from typing import Any, Dict, List, Optional
logger = logging.getLogger(__name__)
class SlackMCPReader:
"""
Reader for Slack data via MCP (Model Context Protocol) servers.
This class connects to Slack MCP servers to fetch message data and convert it
into a format suitable for LEANN indexing.
"""
def __init__(
self,
mcp_server_command: str,
workspace_name: Optional[str] = None,
concatenate_conversations: bool = True,
max_messages_per_conversation: int = 100,
):
"""
Initialize the Slack MCP Reader.
Args:
mcp_server_command: Command to start the MCP server (e.g., 'slack-mcp-server')
workspace_name: Optional workspace name to filter messages
concatenate_conversations: Whether to group messages by channel/thread
max_messages_per_conversation: Maximum messages to include per conversation
"""
self.mcp_server_command = mcp_server_command
self.workspace_name = workspace_name
self.concatenate_conversations = concatenate_conversations
self.max_messages_per_conversation = max_messages_per_conversation
self.mcp_process = None
async def start_mcp_server(self):
"""Start the MCP server process."""
try:
self.mcp_process = await asyncio.create_subprocess_exec(
*self.mcp_server_command.split(),
stdin=asyncio.subprocess.PIPE,
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE,
)
logger.info(f"Started MCP server: {self.mcp_server_command}")
except Exception as e:
logger.error(f"Failed to start MCP server: {e}")
raise
async def stop_mcp_server(self):
"""Stop the MCP server process."""
if self.mcp_process:
self.mcp_process.terminate()
await self.mcp_process.wait()
logger.info("Stopped MCP server")
async def send_mcp_request(self, request: Dict[str, Any]) -> Dict[str, Any]:
"""Send a request to the MCP server and get response."""
if not self.mcp_process:
raise RuntimeError("MCP server not started")
request_json = json.dumps(request) + "\n"
self.mcp_process.stdin.write(request_json.encode())
await self.mcp_process.stdin.drain()
response_line = await self.mcp_process.stdout.readline()
if not response_line:
raise RuntimeError("No response from MCP server")
return json.loads(response_line.decode().strip())
async def initialize_mcp_connection(self):
"""Initialize the MCP connection."""
init_request = {
"jsonrpc": "2.0",
"id": 1,
"method": "initialize",
"params": {
"protocolVersion": "2024-11-05",
"capabilities": {},
"clientInfo": {"name": "leann-slack-reader", "version": "1.0.0"},
},
}
response = await self.send_mcp_request(init_request)
if "error" in response:
raise RuntimeError(f"MCP initialization failed: {response['error']}")
logger.info("MCP connection initialized successfully")
async def list_available_tools(self) -> List[Dict[str, Any]]:
"""List available tools from the MCP server."""
list_request = {"jsonrpc": "2.0", "id": 2, "method": "tools/list", "params": {}}
response = await self.send_mcp_request(list_request)
if "error" in response:
raise RuntimeError(f"Failed to list tools: {response['error']}")
return response.get("result", {}).get("tools", [])
async def fetch_slack_messages(
self, channel: Optional[str] = None, limit: int = 100
) -> List[Dict[str, Any]]:
"""
Fetch Slack messages using MCP tools.
Args:
channel: Optional channel name to filter messages
limit: Maximum number of messages to fetch
Returns:
List of message dictionaries
"""
# This is a generic implementation - specific MCP servers may have different tool names
# Common tool names might be: 'get_messages', 'list_messages', 'fetch_channel_history'
tools = await self.list_available_tools()
message_tool = None
# Look for a tool that can fetch messages
for tool in tools:
tool_name = tool.get("name", "").lower()
if any(
keyword in tool_name
for keyword in ["message", "history", "channel", "conversation"]
):
message_tool = tool
break
if not message_tool:
raise RuntimeError("No message fetching tool found in MCP server")
# Prepare tool call parameters
tool_params = {"limit": limit}
if channel:
# Try common parameter names for channel specification
for param_name in ["channel", "channel_id", "channel_name"]:
tool_params[param_name] = channel
break
fetch_request = {
"jsonrpc": "2.0",
"id": 3,
"method": "tools/call",
"params": {"name": message_tool["name"], "arguments": tool_params},
}
response = await self.send_mcp_request(fetch_request)
if "error" in response:
raise RuntimeError(f"Failed to fetch messages: {response['error']}")
# Extract messages from response - format may vary by MCP server
result = response.get("result", {})
if "content" in result and isinstance(result["content"], list):
# Some MCP servers return content as a list
content = result["content"][0] if result["content"] else {}
if "text" in content:
try:
messages = json.loads(content["text"])
except json.JSONDecodeError:
# If not JSON, treat as plain text
messages = [{"text": content["text"], "channel": channel or "unknown"}]
else:
messages = result["content"]
else:
# Direct message format
messages = result.get("messages", [result])
return messages if isinstance(messages, list) else [messages]
def _format_message(self, message: Dict[str, Any]) -> str:
"""Format a single message for indexing."""
text = message.get("text", "")
user = message.get("user", message.get("username", "Unknown"))
channel = message.get("channel", message.get("channel_name", "Unknown"))
timestamp = message.get("ts", message.get("timestamp", ""))
# Format timestamp if available
formatted_time = ""
if timestamp:
try:
import datetime
if isinstance(timestamp, str) and "." in timestamp:
dt = datetime.datetime.fromtimestamp(float(timestamp))
formatted_time = dt.strftime("%Y-%m-%d %H:%M:%S")
elif isinstance(timestamp, (int, float)):
dt = datetime.datetime.fromtimestamp(timestamp)
formatted_time = dt.strftime("%Y-%m-%d %H:%M:%S")
else:
formatted_time = str(timestamp)
except (ValueError, TypeError):
formatted_time = str(timestamp)
# Build formatted message
parts = []
if channel:
parts.append(f"Channel: #{channel}")
if user:
parts.append(f"User: {user}")
if formatted_time:
parts.append(f"Time: {formatted_time}")
if text:
parts.append(f"Message: {text}")
return "\n".join(parts)
def _create_concatenated_content(self, messages: List[Dict[str, Any]], channel: str) -> str:
"""Create concatenated content from multiple messages in a channel."""
if not messages:
return ""
# Sort messages by timestamp if available
try:
messages.sort(key=lambda x: float(x.get("ts", x.get("timestamp", 0))))
except (ValueError, TypeError):
pass # Keep original order if timestamps aren't numeric
# Limit messages per conversation
if len(messages) > self.max_messages_per_conversation:
messages = messages[-self.max_messages_per_conversation :]
# Create header
content_parts = [
f"Slack Channel: #{channel}",
f"Message Count: {len(messages)}",
f"Workspace: {self.workspace_name or 'Unknown'}",
"=" * 50,
"",
]
# Add messages
for message in messages:
formatted_msg = self._format_message(message)
if formatted_msg.strip():
content_parts.append(formatted_msg)
content_parts.append("-" * 30)
content_parts.append("")
return "\n".join(content_parts)
async def read_slack_data(self, channels: Optional[List[str]] = None) -> List[str]:
"""
Read Slack data and return formatted text chunks.
Args:
channels: Optional list of channel names to fetch. If None, fetches from all available channels.
Returns:
List of formatted text chunks ready for LEANN indexing
"""
try:
await self.start_mcp_server()
await self.initialize_mcp_connection()
all_texts = []
if channels:
# Fetch specific channels
for channel in channels:
try:
messages = await self.fetch_slack_messages(channel=channel, limit=1000)
if messages:
if self.concatenate_conversations:
text_content = self._create_concatenated_content(messages, channel)
if text_content.strip():
all_texts.append(text_content)
else:
# Process individual messages
for message in messages:
formatted_msg = self._format_message(message)
if formatted_msg.strip():
all_texts.append(formatted_msg)
except Exception as e:
logger.warning(f"Failed to fetch messages from channel {channel}: {e}")
continue
else:
# Fetch from all available channels/conversations
# This is a simplified approach - real implementation would need to
# discover available channels first
try:
messages = await self.fetch_slack_messages(limit=1000)
if messages:
# Group messages by channel if concatenating
if self.concatenate_conversations:
channel_messages = {}
for message in messages:
channel = message.get(
"channel", message.get("channel_name", "general")
)
if channel not in channel_messages:
channel_messages[channel] = []
channel_messages[channel].append(message)
# Create concatenated content for each channel
for channel, msgs in channel_messages.items():
text_content = self._create_concatenated_content(msgs, channel)
if text_content.strip():
all_texts.append(text_content)
else:
# Process individual messages
for message in messages:
formatted_msg = self._format_message(message)
if formatted_msg.strip():
all_texts.append(formatted_msg)
except Exception as e:
logger.error(f"Failed to fetch messages: {e}")
return all_texts
finally:
await self.stop_mcp_server()
async def __aenter__(self):
"""Async context manager entry."""
await self.start_mcp_server()
await self.initialize_mcp_connection()
return self
async def __aexit__(self, exc_type, exc_val, exc_tb):
"""Async context manager exit."""
await self.stop_mcp_server()

204
apps/slack_rag.py Normal file
View File

@@ -0,0 +1,204 @@
#!/usr/bin/env python3
"""
Slack RAG Application with MCP Support
This application enables RAG (Retrieval-Augmented Generation) on Slack messages
by connecting to Slack MCP servers to fetch live data and index it in LEANN.
Usage:
python -m apps.slack_rag --mcp-server "slack-mcp-server" --query "What did the team discuss about the project?"
"""
import argparse
import asyncio
from typing import List
from apps.base_rag_example import BaseRAGExample
from apps.slack_data.slack_mcp_reader import SlackMCPReader
class SlackMCPRAG(BaseRAGExample):
"""
RAG application for Slack messages via MCP servers.
This class provides a complete RAG pipeline for Slack data, including
MCP server connection, data fetching, indexing, and interactive chat.
"""
def __init__(self):
super().__init__()
self.default_index_name = "slack_messages"
def _add_specific_arguments(self, parser: argparse.ArgumentParser):
"""Add Slack MCP-specific arguments."""
parser.add_argument(
"--mcp-server",
type=str,
required=True,
help="Command to start the Slack MCP server (e.g., 'slack-mcp-server' or 'npx slack-mcp-server')",
)
parser.add_argument(
"--workspace-name",
type=str,
help="Slack workspace name for better organization and filtering",
)
parser.add_argument(
"--channels",
nargs="+",
help="Specific Slack channels to index (e.g., general random). If not specified, fetches from all available channels",
)
parser.add_argument(
"--concatenate-conversations",
action="store_true",
default=True,
help="Group messages by channel/thread for better context (default: True)",
)
parser.add_argument(
"--no-concatenate-conversations",
action="store_true",
help="Process individual messages instead of grouping by channel",
)
parser.add_argument(
"--max-messages-per-channel",
type=int,
default=100,
help="Maximum number of messages to include per channel (default: 100)",
)
parser.add_argument(
"--test-connection",
action="store_true",
help="Test MCP server connection and list available tools without indexing",
)
async def test_mcp_connection(self, args) -> bool:
"""Test the MCP server connection and display available tools."""
print(f"Testing connection to MCP server: {args.mcp_server}")
try:
reader = SlackMCPReader(
mcp_server_command=args.mcp_server,
workspace_name=args.workspace_name,
concatenate_conversations=not args.no_concatenate_conversations,
max_messages_per_conversation=args.max_messages_per_channel,
)
async with reader:
tools = await reader.list_available_tools()
print("\n✅ Successfully connected to MCP server!")
print(f"Available tools ({len(tools)}):")
for i, tool in enumerate(tools, 1):
name = tool.get("name", "Unknown")
description = tool.get("description", "No description available")
print(f"\n{i}. {name}")
print(
f" Description: {description[:100]}{'...' if len(description) > 100 else ''}"
)
# Show input schema if available
schema = tool.get("inputSchema", {})
if schema.get("properties"):
props = list(schema["properties"].keys())[:3] # Show first 3 properties
print(
f" Parameters: {', '.join(props)}{'...' if len(schema['properties']) > 3 else ''}"
)
return True
except Exception as e:
print(f"\n❌ Failed to connect to MCP server: {e}")
print("\nTroubleshooting tips:")
print("1. Make sure the MCP server is installed and accessible")
print("2. Check if the server command is correct")
print("3. Ensure you have proper authentication/credentials configured")
print("4. Try running the MCP server command directly to test it")
return False
async def load_data(self, args) -> List[str]:
"""Load Slack messages via MCP server."""
print(f"Connecting to Slack MCP server: {args.mcp_server}")
if args.workspace_name:
print(f"Workspace: {args.workspace_name}")
if args.channels:
print(f"Channels: {', '.join(args.channels)}")
else:
print("Fetching from all available channels")
concatenate = not args.no_concatenate_conversations
print(
f"Processing mode: {'Concatenated conversations' if concatenate else 'Individual messages'}"
)
try:
reader = SlackMCPReader(
mcp_server_command=args.mcp_server,
workspace_name=args.workspace_name,
concatenate_conversations=concatenate,
max_messages_per_conversation=args.max_messages_per_channel,
)
texts = await reader.read_slack_data(channels=args.channels)
if not texts:
print("❌ No messages found! This could mean:")
print("- The MCP server couldn't fetch messages")
print("- The specified channels don't exist or are empty")
print("- Authentication issues with the Slack workspace")
return []
print(f"✅ Successfully loaded {len(texts)} text chunks from Slack")
# Show sample of what was loaded
if texts:
sample_text = texts[0][:200] + "..." if len(texts[0]) > 200 else texts[0]
print("\nSample content:")
print("-" * 40)
print(sample_text)
print("-" * 40)
return texts
except Exception as e:
print(f"❌ Error loading Slack data: {e}")
print("\nThis might be due to:")
print("- MCP server connection issues")
print("- Authentication problems")
print("- Network connectivity issues")
print("- Incorrect channel names")
raise
async def run(self):
"""Main entry point with MCP connection testing."""
args = self.parser.parse_args()
# Test connection if requested
if args.test_connection:
success = await self.test_mcp_connection(args)
if not success:
return
print(
"\n🎉 MCP server is working! You can now run without --test-connection to start indexing."
)
return
# Run the standard RAG pipeline
await super().run()
async def main():
"""Main entry point for the Slack MCP RAG application."""
app = SlackMCPRAG()
await app.run()
if __name__ == "__main__":
asyncio.run(main())

View File

@@ -0,0 +1 @@
# Twitter MCP data integration for LEANN

View File

@@ -0,0 +1,295 @@
#!/usr/bin/env python3
"""
Twitter MCP Reader for LEANN
This module provides functionality to connect to Twitter MCP servers and fetch bookmark data
for indexing in LEANN. It supports various Twitter MCP server implementations and provides
flexible bookmark processing options.
"""
import asyncio
import json
import logging
from typing import Any, Dict, List, Optional
logger = logging.getLogger(__name__)
class TwitterMCPReader:
"""
Reader for Twitter bookmark data via MCP (Model Context Protocol) servers.
This class connects to Twitter MCP servers to fetch bookmark data and convert it
into a format suitable for LEANN indexing.
"""
def __init__(
self,
mcp_server_command: str,
username: Optional[str] = None,
include_tweet_content: bool = True,
include_metadata: bool = True,
max_bookmarks: int = 1000,
):
"""
Initialize the Twitter MCP Reader.
Args:
mcp_server_command: Command to start the MCP server (e.g., 'twitter-mcp-server')
username: Optional Twitter username to filter bookmarks
include_tweet_content: Whether to include full tweet content
include_metadata: Whether to include tweet metadata (likes, retweets, etc.)
max_bookmarks: Maximum number of bookmarks to fetch
"""
self.mcp_server_command = mcp_server_command
self.username = username
self.include_tweet_content = include_tweet_content
self.include_metadata = include_metadata
self.max_bookmarks = max_bookmarks
self.mcp_process = None
async def start_mcp_server(self):
"""Start the MCP server process."""
try:
self.mcp_process = await asyncio.create_subprocess_exec(
*self.mcp_server_command.split(),
stdin=asyncio.subprocess.PIPE,
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE,
)
logger.info(f"Started MCP server: {self.mcp_server_command}")
except Exception as e:
logger.error(f"Failed to start MCP server: {e}")
raise
async def stop_mcp_server(self):
"""Stop the MCP server process."""
if self.mcp_process:
self.mcp_process.terminate()
await self.mcp_process.wait()
logger.info("Stopped MCP server")
async def send_mcp_request(self, request: Dict[str, Any]) -> Dict[str, Any]:
"""Send a request to the MCP server and get response."""
if not self.mcp_process:
raise RuntimeError("MCP server not started")
request_json = json.dumps(request) + "\n"
self.mcp_process.stdin.write(request_json.encode())
await self.mcp_process.stdin.drain()
response_line = await self.mcp_process.stdout.readline()
if not response_line:
raise RuntimeError("No response from MCP server")
return json.loads(response_line.decode().strip())
async def initialize_mcp_connection(self):
"""Initialize the MCP connection."""
init_request = {
"jsonrpc": "2.0",
"id": 1,
"method": "initialize",
"params": {
"protocolVersion": "2024-11-05",
"capabilities": {},
"clientInfo": {"name": "leann-twitter-reader", "version": "1.0.0"},
},
}
response = await self.send_mcp_request(init_request)
if "error" in response:
raise RuntimeError(f"MCP initialization failed: {response['error']}")
logger.info("MCP connection initialized successfully")
async def list_available_tools(self) -> List[Dict[str, Any]]:
"""List available tools from the MCP server."""
list_request = {"jsonrpc": "2.0", "id": 2, "method": "tools/list", "params": {}}
response = await self.send_mcp_request(list_request)
if "error" in response:
raise RuntimeError(f"Failed to list tools: {response['error']}")
return response.get("result", {}).get("tools", [])
async def fetch_twitter_bookmarks(self, limit: Optional[int] = None) -> List[Dict[str, Any]]:
"""
Fetch Twitter bookmarks using MCP tools.
Args:
limit: Maximum number of bookmarks to fetch
Returns:
List of bookmark dictionaries
"""
tools = await self.list_available_tools()
bookmark_tool = None
# Look for a tool that can fetch bookmarks
for tool in tools:
tool_name = tool.get("name", "").lower()
if any(keyword in tool_name for keyword in ["bookmark", "saved", "favorite"]):
bookmark_tool = tool
break
if not bookmark_tool:
raise RuntimeError("No bookmark fetching tool found in MCP server")
# Prepare tool call parameters
tool_params = {}
if limit or self.max_bookmarks:
tool_params["limit"] = limit or self.max_bookmarks
if self.username:
tool_params["username"] = self.username
fetch_request = {
"jsonrpc": "2.0",
"id": 3,
"method": "tools/call",
"params": {"name": bookmark_tool["name"], "arguments": tool_params},
}
response = await self.send_mcp_request(fetch_request)
if "error" in response:
raise RuntimeError(f"Failed to fetch bookmarks: {response['error']}")
# Extract bookmarks from response
result = response.get("result", {})
if "content" in result and isinstance(result["content"], list):
content = result["content"][0] if result["content"] else {}
if "text" in content:
try:
bookmarks = json.loads(content["text"])
except json.JSONDecodeError:
# If not JSON, treat as plain text
bookmarks = [{"text": content["text"], "source": "twitter"}]
else:
bookmarks = result["content"]
else:
bookmarks = result.get("bookmarks", result.get("tweets", [result]))
return bookmarks if isinstance(bookmarks, list) else [bookmarks]
def _format_bookmark(self, bookmark: Dict[str, Any]) -> str:
"""Format a single bookmark for indexing."""
# Extract tweet information
text = bookmark.get("text", bookmark.get("content", ""))
author = bookmark.get(
"author", bookmark.get("username", bookmark.get("user", {}).get("username", "Unknown"))
)
timestamp = bookmark.get("created_at", bookmark.get("timestamp", ""))
url = bookmark.get("url", bookmark.get("tweet_url", ""))
# Extract metadata if available
likes = bookmark.get("likes", bookmark.get("favorite_count", 0))
retweets = bookmark.get("retweets", bookmark.get("retweet_count", 0))
replies = bookmark.get("replies", bookmark.get("reply_count", 0))
# Build formatted bookmark
parts = []
# Header
parts.append("=== Twitter Bookmark ===")
if author:
parts.append(f"Author: @{author}")
if timestamp:
# Format timestamp if it's a standard format
try:
import datetime
if "T" in str(timestamp): # ISO format
dt = datetime.datetime.fromisoformat(timestamp.replace("Z", "+00:00"))
formatted_time = dt.strftime("%Y-%m-%d %H:%M:%S")
else:
formatted_time = str(timestamp)
parts.append(f"Date: {formatted_time}")
except (ValueError, TypeError):
parts.append(f"Date: {timestamp}")
if url:
parts.append(f"URL: {url}")
# Tweet content
if text and self.include_tweet_content:
parts.append("")
parts.append("Content:")
parts.append(text)
# Metadata
if self.include_metadata and any([likes, retweets, replies]):
parts.append("")
parts.append("Engagement:")
if likes:
parts.append(f" Likes: {likes}")
if retweets:
parts.append(f" Retweets: {retweets}")
if replies:
parts.append(f" Replies: {replies}")
# Extract hashtags and mentions if available
hashtags = bookmark.get("hashtags", [])
mentions = bookmark.get("mentions", [])
if hashtags or mentions:
parts.append("")
if hashtags:
parts.append(f"Hashtags: {', '.join(hashtags)}")
if mentions:
parts.append(f"Mentions: {', '.join(mentions)}")
return "\n".join(parts)
async def read_twitter_bookmarks(self) -> List[str]:
"""
Read Twitter bookmark data and return formatted text chunks.
Returns:
List of formatted text chunks ready for LEANN indexing
"""
try:
await self.start_mcp_server()
await self.initialize_mcp_connection()
print(f"Fetching up to {self.max_bookmarks} bookmarks...")
if self.username:
print(f"Filtering for user: @{self.username}")
bookmarks = await self.fetch_twitter_bookmarks()
if not bookmarks:
print("No bookmarks found")
return []
print(f"Processing {len(bookmarks)} bookmarks...")
all_texts = []
processed_count = 0
for bookmark in bookmarks:
try:
formatted_bookmark = self._format_bookmark(bookmark)
if formatted_bookmark.strip():
all_texts.append(formatted_bookmark)
processed_count += 1
except Exception as e:
logger.warning(f"Failed to format bookmark: {e}")
continue
print(f"Successfully processed {processed_count} bookmarks")
return all_texts
finally:
await self.stop_mcp_server()
async def __aenter__(self):
"""Async context manager entry."""
await self.start_mcp_server()
await self.initialize_mcp_connection()
return self
async def __aexit__(self, exc_type, exc_val, exc_tb):
"""Async context manager exit."""
await self.stop_mcp_server()

190
apps/twitter_rag.py Normal file
View File

@@ -0,0 +1,190 @@
#!/usr/bin/env python3
"""
Twitter RAG Application with MCP Support
This application enables RAG (Retrieval-Augmented Generation) on Twitter bookmarks
by connecting to Twitter MCP servers to fetch live data and index it in LEANN.
Usage:
python -m apps.twitter_rag --mcp-server "twitter-mcp-server" --query "What articles did I bookmark about AI?"
"""
import argparse
import asyncio
from pathlib import Path
from typing import List
from apps.base_rag_example import BaseRAGExample
from apps.twitter_data.twitter_mcp_reader import TwitterMCPReader
class TwitterMCPRAG(BaseRAGExample):
"""
RAG application for Twitter bookmarks via MCP servers.
This class provides a complete RAG pipeline for Twitter bookmark data, including
MCP server connection, data fetching, indexing, and interactive chat.
"""
def __init__(self):
super().__init__()
self.default_index_name = "twitter_bookmarks"
def _add_specific_arguments(self, parser: argparse.ArgumentParser):
"""Add Twitter MCP-specific arguments."""
parser.add_argument(
"--mcp-server",
type=str,
required=True,
help="Command to start the Twitter MCP server (e.g., 'twitter-mcp-server' or 'npx twitter-mcp-server')"
)
parser.add_argument(
"--username",
type=str,
help="Twitter username to filter bookmarks (without @)"
)
parser.add_argument(
"--max-bookmarks",
type=int,
default=1000,
help="Maximum number of bookmarks to fetch (default: 1000)"
)
parser.add_argument(
"--no-tweet-content",
action="store_true",
help="Exclude tweet content, only include metadata"
)
parser.add_argument(
"--no-metadata",
action="store_true",
help="Exclude engagement metadata (likes, retweets, etc.)"
)
parser.add_argument(
"--test-connection",
action="store_true",
help="Test MCP server connection and list available tools without indexing"
)
async def test_mcp_connection(self, args) -> bool:
"""Test the MCP server connection and display available tools."""
print(f"Testing connection to MCP server: {args.mcp_server}")
try:
reader = TwitterMCPReader(
mcp_server_command=args.mcp_server,
username=args.username,
include_tweet_content=not args.no_tweet_content,
include_metadata=not args.no_metadata,
max_bookmarks=args.max_bookmarks,
)
async with reader:
tools = await reader.list_available_tools()
print(f"\n✅ Successfully connected to MCP server!")
print(f"Available tools ({len(tools)}):")
for i, tool in enumerate(tools, 1):
name = tool.get("name", "Unknown")
description = tool.get("description", "No description available")
print(f"\n{i}. {name}")
print(f" Description: {description[:100]}{'...' if len(description) > 100 else ''}")
# Show input schema if available
schema = tool.get("inputSchema", {})
if schema.get("properties"):
props = list(schema["properties"].keys())[:3] # Show first 3 properties
print(f" Parameters: {', '.join(props)}{'...' if len(schema['properties']) > 3 else ''}")
return True
except Exception as e:
print(f"\n❌ Failed to connect to MCP server: {e}")
print("\nTroubleshooting tips:")
print("1. Make sure the Twitter MCP server is installed and accessible")
print("2. Check if the server command is correct")
print("3. Ensure you have proper Twitter API credentials configured")
print("4. Verify your Twitter account has bookmarks to fetch")
print("5. Try running the MCP server command directly to test it")
return False
async def load_data(self, args) -> List[str]:
"""Load Twitter bookmarks via MCP server."""
print(f"Connecting to Twitter MCP server: {args.mcp_server}")
if args.username:
print(f"Username filter: @{args.username}")
print(f"Max bookmarks: {args.max_bookmarks}")
print(f"Include tweet content: {not args.no_tweet_content}")
print(f"Include metadata: {not args.no_metadata}")
try:
reader = TwitterMCPReader(
mcp_server_command=args.mcp_server,
username=args.username,
include_tweet_content=not args.no_tweet_content,
include_metadata=not args.no_metadata,
max_bookmarks=args.max_bookmarks,
)
texts = await reader.read_twitter_bookmarks()
if not texts:
print("❌ No bookmarks found! This could mean:")
print("- You don't have any bookmarks on Twitter")
print("- The MCP server couldn't access your bookmarks")
print("- Authentication issues with Twitter API")
print("- The username filter didn't match any bookmarks")
return []
print(f"✅ Successfully loaded {len(texts)} bookmarks from Twitter")
# Show sample of what was loaded
if texts:
sample_text = texts[0][:300] + "..." if len(texts[0]) > 300 else texts[0]
print(f"\nSample bookmark:")
print("-" * 50)
print(sample_text)
print("-" * 50)
return texts
except Exception as e:
print(f"❌ Error loading Twitter bookmarks: {e}")
print("\nThis might be due to:")
print("- MCP server connection issues")
print("- Twitter API authentication problems")
print("- Network connectivity issues")
print("- Rate limiting from Twitter API")
raise
async def run(self):
"""Main entry point with MCP connection testing."""
args = self.parser.parse_args()
# Test connection if requested
if args.test_connection:
success = await self.test_mcp_connection(args)
if not success:
return
print(f"\n🎉 MCP server is working! You can now run without --test-connection to start indexing.")
return
# Run the standard RAG pipeline
await super().run()
async def main():
"""Main entry point for the Twitter MCP RAG application."""
app = TwitterMCPRAG()
await app.run()
if __name__ == "__main__":
asyncio.run(main())

189
apps/wechat_rag.py Normal file
View File

@@ -0,0 +1,189 @@
"""
WeChat History RAG example using the unified interface.
Supports WeChat chat history export and search.
"""
import subprocess
import sys
from pathlib import Path
# Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent))
from base_rag_example import BaseRAGExample
from .history_data.wechat_history import WeChatHistoryReader
class WeChatRAG(BaseRAGExample):
"""RAG example for WeChat chat history."""
def __init__(self):
# Set default values BEFORE calling super().__init__
self.max_items_default = -1 # Match original default
self.embedding_model_default = (
"sentence-transformers/all-MiniLM-L6-v2" # Fast 384-dim model
)
super().__init__(
name="WeChat History",
description="Process and query WeChat chat history with LEANN",
default_index_name="wechat_history_magic_test_11Debug_new",
)
def _add_specific_arguments(self, parser):
"""Add WeChat-specific arguments."""
wechat_group = parser.add_argument_group("WeChat Parameters")
wechat_group.add_argument(
"--export-dir",
type=str,
default="./wechat_export",
help="Directory to store WeChat exports (default: ./wechat_export)",
)
wechat_group.add_argument(
"--force-export",
action="store_true",
help="Force re-export of WeChat data even if exports exist",
)
wechat_group.add_argument(
"--chunk-size", type=int, default=192, help="Text chunk size (default: 192)"
)
wechat_group.add_argument(
"--chunk-overlap", type=int, default=64, help="Text chunk overlap (default: 64)"
)
def _export_wechat_data(self, export_dir: Path) -> bool:
"""Export WeChat data using wechattweak-cli."""
print("Exporting WeChat data...")
# Check if WeChat is running
try:
result = subprocess.run(["pgrep", "WeChat"], capture_output=True, text=True)
if result.returncode != 0:
print("WeChat is not running. Please start WeChat first.")
return False
except Exception:
pass # pgrep might not be available on all systems
# Create export directory
export_dir.mkdir(parents=True, exist_ok=True)
# Run export command
cmd = ["packages/wechat-exporter/wechattweak-cli", "export", str(export_dir)]
try:
print(f"Running: {' '.join(cmd)}")
result = subprocess.run(cmd, capture_output=True, text=True)
if result.returncode == 0:
print("WeChat data exported successfully!")
return True
else:
print(f"Export failed: {result.stderr}")
return False
except FileNotFoundError:
print("\nError: wechattweak-cli not found!")
print("Please install it first:")
print(" sudo packages/wechat-exporter/wechattweak-cli install")
return False
except Exception as e:
print(f"Export error: {e}")
return False
async def load_data(self, args) -> list[str]:
"""Load WeChat history and convert to text chunks."""
# Initialize WeChat reader with export capabilities
reader = WeChatHistoryReader()
# Find existing exports or create new ones using the centralized method
export_dirs = reader.find_or_export_wechat_data(args.export_dir)
if not export_dirs:
print("Failed to find or export WeChat data. Trying to find any existing exports...")
# Try to find any existing exports in common locations
export_dirs = reader.find_wechat_export_dirs()
if not export_dirs:
print("No WeChat data found. Please ensure WeChat exports exist.")
return []
# Load documents from all found export directories
all_documents = []
total_processed = 0
for i, export_dir in enumerate(export_dirs):
print(f"\nProcessing WeChat export {i + 1}/{len(export_dirs)}: {export_dir}")
try:
# Apply max_items limit per export
max_per_export = -1
if args.max_items > 0:
remaining = args.max_items - total_processed
if remaining <= 0:
break
max_per_export = remaining
documents = reader.load_data(
wechat_export_dir=str(export_dir),
max_count=max_per_export,
concatenate_messages=True, # Enable message concatenation for better context
)
if documents:
print(f"Loaded {len(documents)} chat documents from {export_dir}")
all_documents.extend(documents)
total_processed += len(documents)
else:
print(f"No documents loaded from {export_dir}")
except Exception as e:
print(f"Error processing {export_dir}: {e}")
continue
if not all_documents:
print("No documents loaded from any source. Exiting.")
return []
print(f"\nTotal loaded {len(all_documents)} chat documents from {len(export_dirs)} exports")
print("now starting to split into text chunks ... take some time")
# Convert to text chunks with contact information
all_texts = []
for doc in all_documents:
# Split the document into chunks
from llama_index.core.node_parser import SentenceSplitter
text_splitter = SentenceSplitter(
chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
)
nodes = text_splitter.get_nodes_from_documents([doc])
for node in nodes:
# Add contact information to each chunk
contact_name = doc.metadata.get("contact_name", "Unknown")
text = f"[Contact] means the message is from: {contact_name}\n" + node.get_content()
all_texts.append(text)
print(f"Created {len(all_texts)} text chunks from {len(all_documents)} documents")
return all_texts
if __name__ == "__main__":
import asyncio
# Check platform
if sys.platform != "darwin":
print("\n⚠️ Warning: WeChat export is only supported on macOS")
print(" You can still query existing exports on other platforms\n")
# Example queries for WeChat RAG
print("\n💬 WeChat History RAG Example")
print("=" * 50)
print("\nExample queries you can try:")
print("- 'Show me conversations about travel plans'")
print("- 'Find group chats about weekend activities'")
print("- '我想买魔术师约翰逊的球衣,给我一些对应聊天记录?'")
print("- 'What did we discuss about the project last month?'")
print("\nNote: WeChat must be running for export to work\n")
rag = WeChatRAG()
asyncio.run(rag.run())

View File

Binary file not shown.

After

Width:  |  Height:  |  Size: 73 KiB

BIN
assets/mcp_leann.png Normal file
View File

Binary file not shown.

After

Width:  |  Height:  |  Size: 224 KiB

View File

Binary file not shown.

After

Width:  |  Height:  |  Size: 152 KiB

View File

@@ -1,9 +1,24 @@
# 🧪 Leann Sanity Checks # 🧪 LEANN Benchmarks & Testing
This directory contains comprehensive sanity checks for the Leann system, ensuring all components work correctly across different configurations. This directory contains performance benchmarks and comprehensive tests for the LEANN system, including backend comparisons and sanity checks across different configurations.
## 📁 Test Files ## 📁 Test Files
### `diskann_vs_hnsw_speed_comparison.py`
Performance comparison between DiskANN and HNSW backends:
- ✅ **Search latency** comparison with both backends using recompute
- ✅ **Index size** and **build time** measurements
- ✅ **Score validity** testing (ensures no -inf scores)
- ✅ **Configurable dataset sizes** for different scales
```bash
# Quick comparison with 500 docs, 10 queries
python benchmarks/diskann_vs_hnsw_speed_comparison.py
# Large-scale comparison with 2000 docs, 20 queries
python benchmarks/diskann_vs_hnsw_speed_comparison.py 2000 20
```
### `test_distance_functions.py` ### `test_distance_functions.py`
Tests all supported distance functions across DiskANN backend: Tests all supported distance functions across DiskANN backend:
- ✅ **MIPS** (Maximum Inner Product Search) - ✅ **MIPS** (Maximum Inner Product Search)

View File

@@ -0,0 +1,148 @@
import argparse
import os
import time
from pathlib import Path
from leann import LeannBuilder, LeannSearcher
def _meta_exists(index_path: str) -> bool:
p = Path(index_path)
return (p.parent / f"{p.stem}.meta.json").exists()
def ensure_index(index_path: str, backend_name: str, num_docs: int, is_recompute: bool) -> None:
# if _meta_exists(index_path):
# return
kwargs = {}
if backend_name == "hnsw":
kwargs["is_compact"] = is_recompute
builder = LeannBuilder(
backend_name=backend_name,
embedding_model=os.getenv("LEANN_EMBED_MODEL", "facebook/contriever"),
embedding_mode=os.getenv("LEANN_EMBED_MODE", "sentence-transformers"),
graph_degree=32,
complexity=64,
is_recompute=is_recompute,
num_threads=4,
**kwargs,
)
for i in range(num_docs):
builder.add_text(
f"This is a test document number {i}. It contains some repeated text for benchmarking."
)
builder.build_index(index_path)
def _bench_group(
index_path: str,
recompute: bool,
query: str,
repeats: int,
complexity: int = 32,
top_k: int = 10,
) -> float:
# Independent searcher per group; fixed port when recompute
searcher = LeannSearcher(index_path=index_path)
# Warm-up once
_ = searcher.search(
query,
top_k=top_k,
complexity=complexity,
recompute_embeddings=recompute,
)
def _once() -> float:
t0 = time.time()
_ = searcher.search(
query,
top_k=top_k,
complexity=complexity,
recompute_embeddings=recompute,
)
return time.time() - t0
if repeats <= 1:
t = _once()
else:
vals = [_once() for _ in range(repeats)]
vals.sort()
t = vals[len(vals) // 2]
searcher.cleanup()
return t
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--num-docs", type=int, default=5000)
parser.add_argument("--repeats", type=int, default=3)
parser.add_argument("--complexity", type=int, default=32)
args = parser.parse_args()
base = Path.cwd() / ".leann" / "indexes" / f"bench_n{args.num_docs}"
base.parent.mkdir(parents=True, exist_ok=True)
# ---------- Build HNSW variants ----------
hnsw_r = str(base / f"hnsw_recompute_n{args.num_docs}.leann")
hnsw_nr = str(base / f"hnsw_norecompute_n{args.num_docs}.leann")
ensure_index(hnsw_r, "hnsw", args.num_docs, True)
ensure_index(hnsw_nr, "hnsw", args.num_docs, False)
# ---------- Build DiskANN variants ----------
diskann_r = str(base / "diskann_r.leann")
diskann_nr = str(base / "diskann_nr.leann")
ensure_index(diskann_r, "diskann", args.num_docs, True)
ensure_index(diskann_nr, "diskann", args.num_docs, False)
# ---------- Helpers ----------
def _size_for(prefix: str) -> int:
p = Path(prefix)
base_dir = p.parent
stem = p.stem
total = 0
for f in base_dir.iterdir():
if f.is_file() and f.name.startswith(stem):
total += f.stat().st_size
return total
# ---------- HNSW benchmark ----------
t_hnsw_r = _bench_group(
hnsw_r, True, "test document number 42", repeats=args.repeats, complexity=args.complexity
)
t_hnsw_nr = _bench_group(
hnsw_nr, False, "test document number 42", repeats=args.repeats, complexity=args.complexity
)
size_hnsw_r = _size_for(hnsw_r)
size_hnsw_nr = _size_for(hnsw_nr)
print("Benchmark results (HNSW):")
print(f" recompute=True: search_time={t_hnsw_r:.3f}s, size={size_hnsw_r / 1024 / 1024:.1f}MB")
print(
f" recompute=False: search_time={t_hnsw_nr:.3f}s, size={size_hnsw_nr / 1024 / 1024:.1f}MB"
)
print(" Expectation: no-recompute should be faster but larger on disk.")
# ---------- DiskANN benchmark ----------
t_diskann_r = _bench_group(
diskann_r, True, "DiskANN R test doc 123", repeats=args.repeats, complexity=args.complexity
)
t_diskann_nr = _bench_group(
diskann_nr,
False,
"DiskANN NR test doc 123",
repeats=args.repeats,
complexity=args.complexity,
)
size_diskann_r = _size_for(diskann_r)
size_diskann_nr = _size_for(diskann_nr)
print("\nBenchmark results (DiskANN):")
print(f" build(recompute=True, partition): size={size_diskann_r / 1024 / 1024:.1f}MB")
print(f" build(recompute=False): size={size_diskann_nr / 1024 / 1024:.1f}MB")
print(f" search recompute=True (final rerank): {t_diskann_r:.3f}s")
print(f" search recompute=False (PQ only): {t_diskann_nr:.3f}s")
if __name__ == "__main__":
main()

View File

@@ -62,7 +62,7 @@ def test_faiss_hnsw():
try: try:
result = subprocess.run( result = subprocess.run(
[sys.executable, "examples/faiss_only.py"], [sys.executable, "benchmarks/faiss_only.py"],
capture_output=True, capture_output=True,
text=True, text=True,
timeout=300, timeout=300,
@@ -115,7 +115,7 @@ def test_leann_hnsw():
# Load and parse documents # Load and parse documents
documents = SimpleDirectoryReader( documents = SimpleDirectoryReader(
"examples/data", "data",
recursive=True, recursive=True,
encoding="utf-8", encoding="utf-8",
required_exts=[".pdf", ".txt", ".md"], required_exts=[".pdf", ".txt", ".md"],

0
data/README.md → benchmarks/data/README.md Normal file → Executable file
View File

View File

@@ -0,0 +1,286 @@
#!/usr/bin/env python3
"""
DiskANN vs HNSW Search Performance Comparison
This benchmark compares search performance between DiskANN and HNSW backends:
- DiskANN: With graph partitioning enabled (is_recompute=True)
- HNSW: With recompute enabled (is_recompute=True)
- Tests performance across different dataset sizes
- Measures search latency, recall, and index size
"""
import gc
import multiprocessing as mp
import tempfile
import time
from pathlib import Path
from typing import Any
import numpy as np
# Prefer 'fork' start method to avoid POSIX semaphore leaks on macOS
try:
mp.set_start_method("fork", force=True)
except Exception:
pass
def create_test_texts(n_docs: int) -> list[str]:
"""Create synthetic test documents for benchmarking."""
np.random.seed(42)
topics = [
"machine learning and artificial intelligence",
"natural language processing and text analysis",
"computer vision and image recognition",
"data science and statistical analysis",
"deep learning and neural networks",
"information retrieval and search engines",
"database systems and data management",
"software engineering and programming",
"cybersecurity and network protection",
"cloud computing and distributed systems",
]
texts = []
for i in range(n_docs):
topic = topics[i % len(topics)]
variation = np.random.randint(1, 100)
text = (
f"This is document {i} about {topic}. Content variation {variation}. "
f"Additional information about {topic} with details and examples. "
f"Technical discussion of {topic} including implementation aspects."
)
texts.append(text)
return texts
def benchmark_backend(
backend_name: str, texts: list[str], test_queries: list[str], backend_kwargs: dict[str, Any]
) -> dict[str, float]:
"""Benchmark a specific backend with the given configuration."""
from leann.api import LeannBuilder, LeannSearcher
print(f"\n🔧 Testing {backend_name.upper()} backend...")
with tempfile.TemporaryDirectory() as temp_dir:
index_path = str(Path(temp_dir) / f"benchmark_{backend_name}.leann")
# Build index
print(f"📦 Building {backend_name} index with {len(texts)} documents...")
start_time = time.time()
builder = LeannBuilder(
backend_name=backend_name,
embedding_model="facebook/contriever",
embedding_mode="sentence-transformers",
**backend_kwargs,
)
for text in texts:
builder.add_text(text)
builder.build_index(index_path)
build_time = time.time() - start_time
# Measure index size
index_dir = Path(index_path).parent
index_files = list(index_dir.glob(f"{Path(index_path).stem}.*"))
total_size = sum(f.stat().st_size for f in index_files if f.is_file())
size_mb = total_size / (1024 * 1024)
print(f" ✅ Build completed in {build_time:.2f}s, index size: {size_mb:.1f}MB")
# Search benchmark
print("🔍 Running search benchmark...")
searcher = LeannSearcher(index_path)
search_times = []
all_results = []
for query in test_queries:
start_time = time.time()
results = searcher.search(query, top_k=5)
search_time = time.time() - start_time
search_times.append(search_time)
all_results.append(results)
avg_search_time = np.mean(search_times) * 1000 # Convert to ms
print(f" ✅ Average search time: {avg_search_time:.1f}ms")
# Check for valid scores (detect -inf issues)
all_scores = [
result.score
for results in all_results
for result in results
if result.score is not None
]
valid_scores = [
score for score in all_scores if score != float("-inf") and score != float("inf")
]
score_validity_rate = len(valid_scores) / len(all_scores) if all_scores else 0
# Clean up (ensure embedding server shutdown and object GC)
try:
if hasattr(searcher, "cleanup"):
searcher.cleanup()
del searcher
del builder
gc.collect()
except Exception as e:
print(f"⚠️ Warning: Resource cleanup error: {e}")
return {
"build_time": build_time,
"avg_search_time_ms": avg_search_time,
"index_size_mb": size_mb,
"score_validity_rate": score_validity_rate,
}
def run_comparison(n_docs: int = 500, n_queries: int = 10):
"""Run performance comparison between DiskANN and HNSW."""
print("🚀 Starting DiskANN vs HNSW Performance Comparison")
print(f"📊 Dataset: {n_docs} documents, {n_queries} test queries")
# Create test data
texts = create_test_texts(n_docs)
test_queries = [
"machine learning algorithms",
"natural language processing",
"computer vision techniques",
"data analysis methods",
"neural network architectures",
"database query optimization",
"software development practices",
"security vulnerabilities",
"cloud infrastructure",
"distributed computing",
][:n_queries]
# HNSW benchmark
hnsw_results = benchmark_backend(
backend_name="hnsw",
texts=texts,
test_queries=test_queries,
backend_kwargs={
"is_recompute": True, # Enable recompute for fair comparison
"M": 16,
"efConstruction": 200,
},
)
# DiskANN benchmark
diskann_results = benchmark_backend(
backend_name="diskann",
texts=texts,
test_queries=test_queries,
backend_kwargs={
"is_recompute": True, # Enable graph partitioning
"num_neighbors": 32,
"search_list_size": 50,
},
)
# Performance comparison
print("\n📈 Performance Comparison Results")
print(f"{'=' * 60}")
print(f"{'Metric':<25} {'HNSW':<15} {'DiskANN':<15} {'Speedup':<10}")
print(f"{'-' * 60}")
# Build time comparison
build_speedup = hnsw_results["build_time"] / diskann_results["build_time"]
print(
f"{'Build Time (s)':<25} {hnsw_results['build_time']:<15.2f} {diskann_results['build_time']:<15.2f} {build_speedup:<10.2f}x"
)
# Search time comparison
search_speedup = hnsw_results["avg_search_time_ms"] / diskann_results["avg_search_time_ms"]
print(
f"{'Search Time (ms)':<25} {hnsw_results['avg_search_time_ms']:<15.1f} {diskann_results['avg_search_time_ms']:<15.1f} {search_speedup:<10.2f}x"
)
# Index size comparison
size_ratio = diskann_results["index_size_mb"] / hnsw_results["index_size_mb"]
print(
f"{'Index Size (MB)':<25} {hnsw_results['index_size_mb']:<15.1f} {diskann_results['index_size_mb']:<15.1f} {size_ratio:<10.2f}x"
)
# Score validity
print(
f"{'Score Validity (%)':<25} {hnsw_results['score_validity_rate'] * 100:<15.1f} {diskann_results['score_validity_rate'] * 100:<15.1f}"
)
print(f"{'=' * 60}")
print("\n🎯 Summary:")
if search_speedup > 1:
print(f" DiskANN is {search_speedup:.2f}x faster than HNSW for search")
else:
print(f" HNSW is {1 / search_speedup:.2f}x faster than DiskANN for search")
if size_ratio > 1:
print(f" DiskANN uses {size_ratio:.2f}x more storage than HNSW")
else:
print(f" DiskANN uses {1 / size_ratio:.2f}x less storage than HNSW")
print(
f" Both backends achieved {min(hnsw_results['score_validity_rate'], diskann_results['score_validity_rate']) * 100:.1f}% score validity"
)
if __name__ == "__main__":
import sys
try:
# Handle help request
if len(sys.argv) > 1 and sys.argv[1] in ["-h", "--help", "help"]:
print("DiskANN vs HNSW Performance Comparison")
print("=" * 50)
print(f"Usage: python {sys.argv[0]} [n_docs] [n_queries]")
print()
print("Arguments:")
print(" n_docs Number of documents to index (default: 500)")
print(" n_queries Number of test queries to run (default: 10)")
print()
print("Examples:")
print(" python benchmarks/diskann_vs_hnsw_speed_comparison.py")
print(" python benchmarks/diskann_vs_hnsw_speed_comparison.py 1000")
print(" python benchmarks/diskann_vs_hnsw_speed_comparison.py 2000 20")
sys.exit(0)
# Parse command line arguments
n_docs = int(sys.argv[1]) if len(sys.argv) > 1 else 500
n_queries = int(sys.argv[2]) if len(sys.argv) > 2 else 10
print("DiskANN vs HNSW Performance Comparison")
print("=" * 50)
print(f"Dataset: {n_docs} documents, {n_queries} queries")
print()
run_comparison(n_docs=n_docs, n_queries=n_queries)
except KeyboardInterrupt:
print("\n⚠️ Benchmark interrupted by user")
sys.exit(130)
except Exception as e:
print(f"\n❌ Benchmark failed: {e}")
sys.exit(1)
finally:
# Ensure clean exit (forceful to prevent rare hangs from atexit/threads)
try:
gc.collect()
print("\n🧹 Cleanup completed")
# Flush stdio to ensure message is visible before hard-exit
try:
import sys as _sys
_sys.stdout.flush()
_sys.stderr.flush()
except Exception:
pass
except Exception:
pass
# Use os._exit to bypass atexit handlers that may hang in rare cases
import os as _os
_os._exit(0)

View File

@@ -65,7 +65,7 @@ def main():
tracker.checkpoint("After Faiss index creation") tracker.checkpoint("After Faiss index creation")
documents = SimpleDirectoryReader( documents = SimpleDirectoryReader(
"examples/data", "data",
recursive=True, recursive=True,
encoding="utf-8", encoding="utf-8",
required_exts=[".pdf", ".txt", ".md"], required_exts=[".pdf", ".txt", ".md"],

View File

@@ -12,7 +12,7 @@ import time
from pathlib import Path from pathlib import Path
import numpy as np import numpy as np
from leann.api import LeannBuilder, LeannSearcher from leann.api import LeannBuilder, LeannChat, LeannSearcher
def download_data_if_needed(data_root: Path, download_embeddings: bool = False): def download_data_if_needed(data_root: Path, download_embeddings: bool = False):
@@ -197,13 +197,32 @@ def main():
parser.add_argument( parser.add_argument(
"--ef-search", type=int, default=120, help="The 'efSearch' parameter for HNSW." "--ef-search", type=int, default=120, help="The 'efSearch' parameter for HNSW."
) )
parser.add_argument(
"--batch-size",
type=int,
default=0,
help="Batch size for HNSW batched search (0 disables batching)",
)
parser.add_argument(
"--llm-type",
type=str,
choices=["ollama", "hf", "openai", "gemini", "simulated"],
default="ollama",
help="LLM backend type to optionally query during evaluation (default: ollama)",
)
parser.add_argument(
"--llm-model",
type=str,
default="qwen3:1.7b",
help="LLM model identifier for the chosen backend (default: qwen3:1.7b)",
)
args = parser.parse_args() args = parser.parse_args()
# --- Path Configuration --- # --- Path Configuration ---
# Assumes a project structure where the script is in 'examples/' # Assumes a project structure where the script is in 'benchmarks/'
# and data is in 'data/' at the project root. # and evaluation data is in 'benchmarks/data/'.
project_root = Path(__file__).resolve().parent.parent script_dir = Path(__file__).resolve().parent
data_root = project_root / "data" data_root = script_dir / "data"
# Download data based on mode # Download data based on mode
if args.mode == "build": if args.mode == "build":
@@ -279,7 +298,9 @@ def main():
if not args.index_path: if not args.index_path:
print("No indices found. The data download should have included pre-built indices.") print("No indices found. The data download should have included pre-built indices.")
print("Please check the data/indices/ directory or provide --index-path manually.") print(
"Please check the benchmarks/data/indices/ directory or provide --index-path manually."
)
sys.exit(1) sys.exit(1)
# Detect dataset type from index path to select the correct ground truth # Detect dataset type from index path to select the correct ground truth
@@ -316,9 +337,24 @@ def main():
for i in range(num_eval_queries): for i in range(num_eval_queries):
start_time = time.time() start_time = time.time()
new_results = searcher.search(queries[i], top_k=args.top_k, ef=args.ef_search) new_results = searcher.search(
queries[i],
top_k=args.top_k,
complexity=args.ef_search,
batch_size=args.batch_size,
)
search_times.append(time.time() - start_time) search_times.append(time.time() - start_time)
# Optional: also call the LLM with configurable backend/model (does not affect recall)
llm_config = {"type": args.llm_type, "model": args.llm_model}
chat = LeannChat(args.index_path, llm_config=llm_config, searcher=searcher)
answer = chat.ask(
queries[i],
top_k=args.top_k,
complexity=args.ef_search,
batch_size=args.batch_size,
)
print(f"Answer: {answer}")
# Correct Recall Calculation: Based on TEXT content # Correct Recall Calculation: Based on TEXT content
new_texts = {result.text for result in new_results} new_texts = {result.text for result in new_results}

View File

@@ -20,7 +20,7 @@ except ImportError:
@dataclass @dataclass
class BenchmarkConfig: class BenchmarkConfig:
model_path: str = "facebook/contriever" model_path: str = "facebook/contriever-msmarco"
batch_sizes: list[int] = None batch_sizes: list[int] = None
seq_length: int = 256 seq_length: int = 256
num_runs: int = 5 num_runs: int = 5
@@ -34,7 +34,7 @@ class BenchmarkConfig:
def __post_init__(self): def __post_init__(self):
if self.batch_sizes is None: if self.batch_sizes is None:
self.batch_sizes = [1, 2, 4, 8, 16, 32, 64] self.batch_sizes = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
class MLXBenchmark: class MLXBenchmark:
@@ -179,10 +179,16 @@ class Benchmark:
def _run_inference(self, input_ids: torch.Tensor) -> float: def _run_inference(self, input_ids: torch.Tensor) -> float:
attention_mask = torch.ones_like(input_ids) attention_mask = torch.ones_like(input_ids)
# print shape of input_ids and attention_mask
print(f"input_ids shape: {input_ids.shape}")
print(f"attention_mask shape: {attention_mask.shape}")
start_time = time.time() start_time = time.time()
with torch.no_grad(): with torch.no_grad():
self.model(input_ids=input_ids, attention_mask=attention_mask) self.model(input_ids=input_ids, attention_mask=attention_mask)
if torch.cuda.is_available():
torch.cuda.synchronize()
if torch.backends.mps.is_available():
torch.mps.synchronize()
end_time = time.time() end_time = time.time()
return end_time - start_time return end_time - start_time

82
data/.gitattributes vendored
View File

@@ -1,82 +0,0 @@
*.7z filter=lfs diff=lfs merge=lfs -text
*.arrow filter=lfs diff=lfs merge=lfs -text
*.bin filter=lfs diff=lfs merge=lfs -text
*.bz2 filter=lfs diff=lfs merge=lfs -text
*.ckpt filter=lfs diff=lfs merge=lfs -text
*.ftz filter=lfs diff=lfs merge=lfs -text
*.gz filter=lfs diff=lfs merge=lfs -text
*.h5 filter=lfs diff=lfs merge=lfs -text
*.joblib filter=lfs diff=lfs merge=lfs -text
*.lfs.* filter=lfs diff=lfs merge=lfs -text
*.lz4 filter=lfs diff=lfs merge=lfs -text
*.mds filter=lfs diff=lfs merge=lfs -text
*.mlmodel filter=lfs diff=lfs merge=lfs -text
*.model filter=lfs diff=lfs merge=lfs -text
*.msgpack filter=lfs diff=lfs merge=lfs -text
*.npy filter=lfs diff=lfs merge=lfs -text
*.npz filter=lfs diff=lfs merge=lfs -text
*.onnx filter=lfs diff=lfs merge=lfs -text
*.ot filter=lfs diff=lfs merge=lfs -text
*.parquet filter=lfs diff=lfs merge=lfs -text
*.pb filter=lfs diff=lfs merge=lfs -text
*.pickle filter=lfs diff=lfs merge=lfs -text
*.pkl filter=lfs diff=lfs merge=lfs -text
*.pt filter=lfs diff=lfs merge=lfs -text
*.pth filter=lfs diff=lfs merge=lfs -text
*.rar filter=lfs diff=lfs merge=lfs -text
*.safetensors filter=lfs diff=lfs merge=lfs -text
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
*.tar.* filter=lfs diff=lfs merge=lfs -text
*.tar filter=lfs diff=lfs merge=lfs -text
*.tflite filter=lfs diff=lfs merge=lfs -text
*.tgz filter=lfs diff=lfs merge=lfs -text
*.wasm filter=lfs diff=lfs merge=lfs -text
*.xz filter=lfs diff=lfs merge=lfs -text
*.zip filter=lfs diff=lfs merge=lfs -text
*.zst filter=lfs diff=lfs merge=lfs -text
*tfevents* filter=lfs diff=lfs merge=lfs -text
# Audio files - uncompressed
*.pcm filter=lfs diff=lfs merge=lfs -text
*.sam filter=lfs diff=lfs merge=lfs -text
*.raw filter=lfs diff=lfs merge=lfs -text
# Audio files - compressed
*.aac filter=lfs diff=lfs merge=lfs -text
*.flac filter=lfs diff=lfs merge=lfs -text
*.mp3 filter=lfs diff=lfs merge=lfs -text
*.ogg filter=lfs diff=lfs merge=lfs -text
*.wav filter=lfs diff=lfs merge=lfs -text
# Image files - uncompressed
*.bmp filter=lfs diff=lfs merge=lfs -text
*.gif filter=lfs diff=lfs merge=lfs -text
*.png filter=lfs diff=lfs merge=lfs -text
*.tiff filter=lfs diff=lfs merge=lfs -text
# Image files - compressed
*.jpg filter=lfs diff=lfs merge=lfs -text
*.jpeg filter=lfs diff=lfs merge=lfs -text
*.webp filter=lfs diff=lfs merge=lfs -text
# Video files - compressed
*.mp4 filter=lfs diff=lfs merge=lfs -text
*.webm filter=lfs diff=lfs merge=lfs -text
ground_truth/dpr/id_map.json filter=lfs diff=lfs merge=lfs -text
indices/dpr/dpr_diskann.passages.idx filter=lfs diff=lfs merge=lfs -text
indices/dpr/dpr_diskann.passages.jsonl filter=lfs diff=lfs merge=lfs -text
indices/dpr/dpr_diskann_disk.index filter=lfs diff=lfs merge=lfs -text
indices/dpr/leann.labels.map filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/leann.labels.map filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.index filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.0.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.0.jsonl filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.1.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.1.jsonl filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.2.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.2.jsonl filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.3.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.3.jsonl filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.4.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.4.jsonl filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.5.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.5.jsonl filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.6.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.6.jsonl filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.7.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.7.jsonl filter=lfs diff=lfs merge=lfs -text

View File

@@ -0,0 +1,123 @@
# Thinking Budget Feature Implementation
## Overview
This document describes the implementation of the **thinking budget** feature for LEANN, which allows users to control the computational effort for reasoning models like GPT-Oss:20b.
## Feature Description
The thinking budget feature provides three levels of computational effort for reasoning models:
- **`low`**: Fast responses, basic reasoning (default for simple queries)
- **`medium`**: Balanced speed and reasoning depth
- **`high`**: Maximum reasoning effort, best for complex analytical questions
## Implementation Details
### 1. Command Line Interface
Added `--thinking-budget` parameter to both CLI and RAG examples:
```bash
# LEANN CLI
leann ask my-index --llm ollama --model gpt-oss:20b --thinking-budget high
# RAG Examples
python apps/email_rag.py --llm ollama --llm-model gpt-oss:20b --thinking-budget high
python apps/document_rag.py --llm openai --llm-model o3 --thinking-budget medium
```
### 2. LLM Backend Support
#### Ollama Backend (`packages/leann-core/src/leann/chat.py`)
```python
def ask(self, prompt: str, **kwargs) -> str:
# Handle thinking budget for reasoning models
options = kwargs.copy()
thinking_budget = kwargs.get("thinking_budget")
if thinking_budget:
options.pop("thinking_budget", None)
if thinking_budget in ["low", "medium", "high"]:
options["reasoning"] = {"effort": thinking_budget, "exclude": False}
```
**API Format**: Uses Ollama's `reasoning` parameter with `effort` and `exclude` fields.
#### OpenAI Backend (`packages/leann-core/src/leann/chat.py`)
```python
def ask(self, prompt: str, **kwargs) -> str:
# Handle thinking budget for reasoning models
thinking_budget = kwargs.get("thinking_budget")
if thinking_budget and thinking_budget in ["low", "medium", "high"]:
# Check if this is an o-series model
o_series_models = ["o3", "o3-mini", "o4-mini", "o1", "o3-pro", "o3-deep-research"]
if any(model in self.model for model in o_series_models):
params["reasoning_effort"] = thinking_budget
```
**API Format**: Uses OpenAI's `reasoning_effort` parameter for o-series models.
### 3. Parameter Propagation
The thinking budget parameter is properly propagated through the LEANN architecture:
1. **CLI** (`packages/leann-core/src/leann/cli.py`): Captures `--thinking-budget` argument
2. **Base RAG** (`apps/base_rag_example.py`): Adds parameter to argument parser
3. **LeannChat** (`packages/leann-core/src/leann/api.py`): Passes `llm_kwargs` to LLM
4. **LLM Interface**: Handles the parameter in backend-specific implementations
## Files Modified
### Core Implementation
- `packages/leann-core/src/leann/chat.py`: Added thinking budget support to OllamaChat and OpenAIChat
- `packages/leann-core/src/leann/cli.py`: Added `--thinking-budget` argument
- `apps/base_rag_example.py`: Added thinking budget parameter to RAG examples
### Documentation
- `README.md`: Added thinking budget parameter to usage examples
- `docs/configuration-guide.md`: Added detailed documentation and usage guidelines
### Examples
- `examples/thinking_budget_demo.py`: Comprehensive demo script with usage examples
## Usage Examples
### Basic Usage
```bash
# High reasoning effort for complex questions
leann ask my-index --llm ollama --model gpt-oss:20b --thinking-budget high
# Medium reasoning for balanced performance
leann ask my-index --llm openai --model gpt-4o --thinking-budget medium
# Low reasoning for fast responses
leann ask my-index --llm ollama --model gpt-oss:20b --thinking-budget low
```
### RAG Examples
```bash
# Email RAG with high reasoning
python apps/email_rag.py --llm ollama --llm-model gpt-oss:20b --thinking-budget high
# Document RAG with medium reasoning
python apps/document_rag.py --llm openai --llm-model gpt-4o --thinking-budget medium
```
## Supported Models
### Ollama Models
- **GPT-Oss:20b**: Primary target model with reasoning capabilities
- **Other reasoning models**: Any Ollama model that supports the `reasoning` parameter
### OpenAI Models
- **o3, o3-mini, o4-mini, o1**: o-series reasoning models with `reasoning_effort` parameter
- **GPT-OSS models**: Models that support reasoning capabilities
## Testing
The implementation includes comprehensive testing:
- Parameter handling verification
- Backend-specific API format validation
- CLI argument parsing tests
- Integration with existing LEANN architecture

143
docs/ast_chunking_guide.md Normal file
View File

@@ -0,0 +1,143 @@
# AST-Aware Code chunking guide
## Overview
This guide covers best practices for using AST-aware code chunking in LEANN. AST chunking provides better semantic understanding of code structure compared to traditional text-based chunking.
## Quick Start
### Basic Usage
```bash
# Enable AST chunking for mixed content (code + docs)
python -m apps.document_rag --enable-code-chunking --data-dir ./my_project
# Specialized code repository indexing
python -m apps.code_rag --repo-dir ./my_codebase
# Global CLI with AST support
leann build my-code-index --docs ./src --use-ast-chunking
```
### Installation
```bash
# Install LEANN with AST chunking support
uv pip install -e "."
```
#### For normal users (PyPI install)
- Use `pip install leann` or `uv pip install leann`.
- `astchunk` is pulled automatically from PyPI as a dependency; no extra steps.
#### For developers (from source, editable)
```bash
git clone https://github.com/yichuan-w/LEANN.git leann
cd leann
git submodule update --init --recursive
uv sync
```
- This repo vendors `astchunk` as a git submodule at `packages/astchunk-leann` (our fork).
- `[tool.uv.sources]` maps the `astchunk` package to that path in editable mode.
- You can edit code under `packages/astchunk-leann` and Python will use your changes immediately (no separate `pip install astchunk` needed).
## Best Practices
### When to Use AST Chunking
**Recommended for:**
- Code repositories with multiple languages
- Mixed documentation and code content
- Complex codebases with deep function/class hierarchies
- When working with Claude Code for code assistance
**Not recommended for:**
- Pure text documents
- Very large files (>1MB)
- Languages not supported by tree-sitter
### Optimal Configuration
```bash
# Recommended settings for most codebases
python -m apps.code_rag \
--repo-dir ./src \
--ast-chunk-size 768 \
--ast-chunk-overlap 96 \
--exclude-dirs .git __pycache__ node_modules build dist
```
### Supported Languages
| Extension | Language | Status |
|-----------|----------|--------|
| `.py` | Python | ✅ Full support |
| `.java` | Java | ✅ Full support |
| `.cs` | C# | ✅ Full support |
| `.ts`, `.tsx` | TypeScript | ✅ Full support |
| `.js`, `.jsx` | JavaScript | ✅ Via TypeScript parser |
## Integration Examples
### Document RAG with Code Support
```python
# Enable code chunking in document RAG
python -m apps.document_rag \
--enable-code-chunking \
--data-dir ./project \
--query "How does authentication work in the codebase?"
```
### Claude Code Integration
When using with Claude Code MCP server, AST chunking provides better context for:
- Code completion and suggestions
- Bug analysis and debugging
- Architecture understanding
- Refactoring assistance
## Troubleshooting
### Common Issues
1. **Fallback to Traditional Chunking**
- Normal behavior for unsupported languages
- Check logs for specific language support
2. **Performance with Large Files**
- Adjust `--max-file-size` parameter
- Use `--exclude-dirs` to skip unnecessary directories
3. **Quality Issues**
- Try different `--ast-chunk-size` values (512, 768, 1024)
- Adjust overlap for better context preservation
### Debug Mode
```bash
export LEANN_LOG_LEVEL=DEBUG
python -m apps.code_rag --repo-dir ./my_code
```
## Migration from Traditional Chunking
Existing workflows continue to work without changes. To enable AST chunking:
```bash
# Before
python -m apps.document_rag --chunk-size 256
# After (maintains traditional chunking for non-code files)
python -m apps.document_rag --enable-code-chunking --chunk-size 256 --ast-chunk-size 768
```
## References
- [astchunk GitHub Repository](https://github.com/yilinjz/astchunk)
- [LEANN MCP Integration](../packages/leann-mcp/README.md)
- [Research Paper](https://arxiv.org/html/2506.15655v1)
---
**Note**: AST chunking maintains full backward compatibility while enhancing code understanding capabilities.

384
docs/configuration-guide.md Normal file
View File

@@ -0,0 +1,384 @@
# LEANN Configuration Guide
This guide helps you optimize LEANN for different use cases and understand the trade-offs between various configuration options.
## Getting Started: Simple is Better
When first trying LEANN, start with a small dataset to quickly validate your approach:
**For document RAG**: The default `data/` directory works perfectly - includes 2 AI research papers, Pride and Prejudice literature, and a technical report
```bash
python -m apps.document_rag --query "What techniques does LEANN use?"
```
**For other data sources**: Limit the dataset size for quick testing
```bash
# WeChat: Test with recent messages only
python -m apps.wechat_rag --max-items 100 --query "What did we discuss about the project timeline?"
# Browser history: Last few days
python -m apps.browser_rag --max-items 500 --query "Find documentation about vector databases"
# Email: Recent inbox
python -m apps.email_rag --max-items 200 --query "Who sent updates about the deployment status?"
```
Once validated, scale up gradually:
- 100 documents → 1,000 → 10,000 → full dataset (`--max-items -1`)
- This helps identify issues early before committing to long processing times
## Embedding Model Selection: Understanding the Trade-offs
Based on our experience developing LEANN, embedding models fall into three categories:
### Small Models (< 100M parameters)
**Example**: `sentence-transformers/all-MiniLM-L6-v2` (22M params)
- **Pros**: Lightweight, fast for both indexing and inference
- **Cons**: Lower semantic understanding, may miss nuanced relationships
- **Use when**: Speed is critical, handling simple queries, interactive mode, or just experimenting with LEANN. If time is not a constraint, consider using a larger/better embedding model
### Medium Models (100M-500M parameters)
**Example**: `facebook/contriever` (110M params), `BAAI/bge-base-en-v1.5` (110M params)
- **Pros**: Balanced performance, good multilingual support, reasonable speed
- **Cons**: Requires more compute than small models
- **Use when**: Need quality results without extreme compute requirements, general-purpose RAG applications
### Large Models (500M+ parameters)
**Example**: `Qwen/Qwen3-Embedding-0.6B` (600M params), `intfloat/multilingual-e5-large` (560M params)
- **Pros**: Best semantic understanding, captures complex relationships, excellent multilingual support. **Qwen3-Embedding-0.6B achieves nearly OpenAI API performance!**
- **Cons**: Slower inference, longer index build times
- **Use when**: Quality is paramount and you have sufficient compute resources. **Highly recommended** for production use
### Quick Start: Cloud and Local Embedding Options
**OpenAI Embeddings (Fastest Setup)**
For immediate testing without local model downloads(also if you [do not have GPU](https://github.com/yichuan-w/LEANN/issues/43) and do not care that much about your document leak, you should use this, we compute the embedding and recompute using openai API):
```bash
# Set OpenAI embeddings (requires OPENAI_API_KEY)
--embedding-mode openai --embedding-model text-embedding-3-small
```
**Ollama Embeddings (Privacy-Focused)**
For local embeddings with complete privacy:
```bash
# First, pull an embedding model
ollama pull nomic-embed-text
# Use Ollama embeddings
--embedding-mode ollama --embedding-model nomic-embed-text
```
<details>
<summary><strong>Cloud vs Local Trade-offs</strong></summary>
**OpenAI Embeddings** (`text-embedding-3-small/large`)
- **Pros**: No local compute needed, consistently fast, high quality
- **Cons**: Requires API key, costs money, data leaves your system, [known limitations with certain languages](https://yichuan-w.github.io/blog/lessons_learned_in_dev_leann/)
- **When to use**: Prototyping, non-sensitive data, need immediate results
**Local Embeddings**
- **Pros**: Complete privacy, no ongoing costs, full control, can sometimes outperform OpenAI embeddings
- **Cons**: Slower than cloud APIs, requires local compute resources
- **When to use**: Production systems, sensitive data, cost-sensitive applications
</details>
## Index Selection: Matching Your Scale
### HNSW (Hierarchical Navigable Small World)
**Best for**: Small to medium datasets (< 10M vectors) - **Default and recommended for extreme low storage**
- Full recomputation required
- High memory usage during build phase
- Excellent recall (95%+)
```bash
# Optimal for most use cases
--backend-name hnsw --graph-degree 32 --build-complexity 64
```
### DiskANN
**Best for**: Large datasets, especially when you want `recompute=True`.
**Key advantages:**
- **Faster search** on large datasets (3x+ speedup vs HNSW in many cases)
- **Smart storage**: `recompute=True` enables automatic graph partitioning for smaller indexes
- **Better scaling**: Designed for 100k+ documents
**Recompute behavior:**
- `recompute=True` (recommended): Pure PQ traversal + final reranking - faster and enables partitioning
- `recompute=False`: PQ + partial real distances during traversal - slower but higher accuracy
```bash
# Recommended for most use cases
--backend-name diskann --graph-degree 32 --build-complexity 64
```
**Performance Benchmark**: Run `uv run benchmarks/diskann_vs_hnsw_speed_comparison.py` to compare DiskANN and HNSW on your system.
## LLM Selection: Engine and Model Comparison
### LLM Engines
**OpenAI** (`--llm openai`)
- **Pros**: Best quality, consistent performance, no local resources needed
- **Cons**: Costs money ($0.15-2.5 per million tokens), requires internet, data privacy concerns
- **Models**: `gpt-4o-mini` (fast, cheap), `gpt-4o` (best quality), `o3` (reasoning), `o3-mini` (reasoning, cheaper)
- **Thinking Budget**: Use `--thinking-budget low/medium/high` for o-series reasoning models (o3, o3-mini, o4-mini)
- **Note**: Our current default, but we recommend switching to Ollama for most use cases
**Ollama** (`--llm ollama`)
- **Pros**: Fully local, free, privacy-preserving, good model variety
- **Cons**: Requires local GPU/CPU resources, slower than cloud APIs, need to install extra [ollama app](https://github.com/ollama/ollama?tab=readme-ov-file#ollama) and pre-download models by `ollama pull`
- **Models**: `qwen3:0.6b` (ultra-fast), `qwen3:1.7b` (balanced), `qwen3:4b` (good quality), `qwen3:7b` (high quality), `deepseek-r1:1.5b` (reasoning)
- **Thinking Budget**: Use `--thinking-budget low/medium/high` for reasoning models like GPT-Oss:20b
**HuggingFace** (`--llm hf`)
- **Pros**: Free tier available, huge model selection, direct model loading (vs Ollama's server-based approach)
- **Cons**: More complex initial setup
- **Models**: `Qwen/Qwen3-1.7B-FP8`
## Parameter Tuning Guide
### Search Complexity Parameters
**`--build-complexity`** (index building)
- Controls thoroughness during index construction
- Higher = better recall but slower build
- Recommendations:
- 32: Quick prototyping
- 64: Balanced (default)
- 128: Production systems
- 256: Maximum quality
**`--search-complexity`** (query time)
- Controls search thoroughness
- Higher = better results but slower
- Recommendations:
- 16: Fast/Interactive search
- 32: High quality with diversity
- 64+: Maximum accuracy
### Top-K Selection
**`--top-k`** (number of retrieved chunks)
- More chunks = better context but slower LLM processing
- Should be always smaller than `--search-complexity`
- Guidelines:
- 10-20: General questions (default: 20)
- 30+: Complex multi-hop reasoning requiring comprehensive context
**Trade-off formula**:
- Retrieval time ∝ log(n) × search_complexity
- LLM processing time ∝ top_k × chunk_size
- Total context = top_k × chunk_size tokens
### Thinking Budget for Reasoning Models
**`--thinking-budget`** (reasoning effort level)
- Controls the computational effort for reasoning models
- Options: `low`, `medium`, `high`
- Guidelines:
- `low`: Fast responses, basic reasoning (default for simple queries)
- `medium`: Balanced speed and reasoning depth
- `high`: Maximum reasoning effort, best for complex analytical questions
- **Supported Models**:
- **Ollama**: `gpt-oss:20b`, `gpt-oss:120b`
- **OpenAI**: `o3`, `o3-mini`, `o4-mini`, `o1` (o-series reasoning models)
- **Note**: Models without reasoning support will show a warning and proceed without reasoning parameters
- **Example**: `--thinking-budget high` for complex analytical questions
**📖 For detailed usage examples and implementation details, check out [Thinking Budget Documentation](THINKING_BUDGET_FEATURE.md)**
**💡 Quick Examples:**
```bash
# OpenAI o-series reasoning model
python apps/document_rag.py --query "What are the main techniques LEANN explores?" \
--index-dir hnswbuild --backend hnsw \
--llm openai --llm-model o3 --thinking-budget medium
# Ollama reasoning model
python apps/document_rag.py --query "What are the main techniques LEANN explores?" \
--index-dir hnswbuild --backend hnsw \
--llm ollama --llm-model gpt-oss:20b --thinking-budget high
```
### Graph Degree (HNSW/DiskANN)
**`--graph-degree`**
- Number of connections per node in the graph
- Higher = better recall but more memory
- HNSW: 16-32 (default: 32)
- DiskANN: 32-128 (default: 64)
## Performance Optimization Checklist
### If Embedding is Too Slow
1. **Switch to smaller model**:
```bash
# From large model
--embedding-model Qwen/Qwen3-Embedding-0.6B
# To small model
--embedding-model sentence-transformers/all-MiniLM-L6-v2
```
2. **Limit dataset size for testing**:
```bash
--max-items 1000 # Process first 1k items only
```
3. **Use MLX on Apple Silicon** (optional optimization):
```bash
--embedding-mode mlx --embedding-model mlx-community/Qwen3-Embedding-0.6B-8bit
```
MLX might not be the best choice, as we tested and found that it only offers 1.3x acceleration compared to HF, so maybe using ollama is a better choice for embedding generation
4. **Use Ollama**
```bash
--embedding-mode ollama --embedding-model nomic-embed-text
```
To discover additional embedding models in ollama, check out https://ollama.com/search?c=embedding or read more about embedding models at https://ollama.com/blog/embedding-models, please do check the model size that works best for you
### If Search Quality is Poor
1. **Increase retrieval count**:
```bash
--top-k 30 # Retrieve more candidates
```
2. **Upgrade embedding model**:
```bash
# For English
--embedding-model BAAI/bge-base-en-v1.5
# For multilingual
--embedding-model intfloat/multilingual-e5-large
```
## Understanding the Trade-offs
Every configuration choice involves trade-offs:
| Factor | Small/Fast | Large/Quality |
|--------|------------|---------------|
| Embedding Model | `all-MiniLM-L6-v2` | `Qwen/Qwen3-Embedding-0.6B` |
| Chunk Size | 512 tokens | 128 tokens |
| Index Type | HNSW | DiskANN |
| LLM | `qwen3:1.7b` | `gpt-4o` |
The key is finding the right balance for your specific use case. Start small and simple, measure performance, then scale up only where needed.
## Low-resource setups
If you dont have a local GPU or builds/searches are too slow, use one or more of the options below.
### 1) Use OpenAI embeddings (no local compute)
Fastest path with zero local GPU requirements. Set your API key and use OpenAI embeddings during build and search:
```bash
export OPENAI_API_KEY=sk-...
# Build with OpenAI embeddings
leann build my-index \
--embedding-mode openai \
--embedding-model text-embedding-3-small
# Search with OpenAI embeddings (recompute at query time)
leann search my-index "your query" \
--recompute
```
### 2) Run remote builds with SkyPilot (cloud GPU)
Offload embedding generation and index building to a GPU VM using [SkyPilot](https://skypilot.readthedocs.io/en/latest/). A template is provided at `sky/leann-build.yaml`.
```bash
# One-time: install and configure SkyPilot
pip install skypilot
# Launch with defaults (L4:1) and mount ./data to ~/leann-data; the build runs automatically
sky launch -c leann-gpu sky/leann-build.yaml
# Override parameters via -e key=value (optional)
sky launch -c leann-gpu sky/leann-build.yaml \
-e index_name=my-index \
-e backend=hnsw \
-e embedding_mode=sentence-transformers \
-e embedding_model=Qwen/Qwen3-Embedding-0.6B
# Copy the built index back to your local .leann (use rsync)
rsync -Pavz leann-gpu:~/.leann/indexes/my-index ./.leann/indexes/
```
### 3) Disable recomputation to trade storage for speed
If you need lower latency and have more storage/memory, disable recomputation. This stores full embeddings and avoids recomputing at search time.
```bash
# Build without recomputation (HNSW requires non-compact in this mode)
leann build my-index --no-recompute --no-compact
# Search without recomputation
leann search my-index "your query" --no-recompute
```
When to use:
- Extreme low latency requirements (high QPS, interactive assistants)
- Read-heavy workloads where storage is cheaper than latency
- No always-available GPU
Constraints:
- HNSW: when `--no-recompute` is set, LEANN automatically disables compact mode during build
- DiskANN: supported; `--no-recompute` skips selective recompute during search
Storage impact:
- Storing N embeddings of dimension D with float32 requires approximately N × D × 4 bytes
- Example: 1,000,000 chunks × 768 dims × 4 bytes ≈ 2.86 GB (plus graph/metadata)
Converting an existing index (rebuild required):
```bash
# Rebuild in-place (ensure you still have original docs or can regenerate chunks)
leann build my-index --force --no-recompute --no-compact
```
Python API usage:
```python
from leann import LeannSearcher
searcher = LeannSearcher("/path/to/my-index.leann")
results = searcher.search("your query", top_k=10, recompute_embeddings=False)
```
Trade-offs:
- Lower latency and fewer network hops at query time
- Significantly higher storage (10100× vs selective recomputation)
- Slightly larger memory footprint during build and search
Quick benchmark results (`benchmarks/benchmark_no_recompute.py` with 5k texts, complexity=32):
- HNSW
```text
recompute=True: search_time=0.818s, size=1.1MB
recompute=False: search_time=0.012s, size=16.6MB
```
- DiskANN
```text
recompute=True: search_time=0.041s, size=5.9MB
recompute=False: search_time=0.013s, size=24.6MB
```
Conclusion:
- **HNSW**: `no-recompute` is significantly faster (no embedding recomputation) but requires much more storage (stores all embeddings)
- **DiskANN**: `no-recompute` uses PQ + partial real distances during traversal (slower but higher accuracy), while `recompute=True` uses pure PQ traversal + final reranking (faster traversal, enables build-time partitioning for smaller storage)
## Further Reading
- [Lessons Learned Developing LEANN](https://yichuan-w.github.io/blog/lessons_learned_in_dev_leann/)
- [LEANN Technical Paper](https://arxiv.org/abs/2506.08276)
- [DiskANN Original Paper](https://papers.nips.cc/paper/2019/file/09853c7fb1d3f8ee67a61b6bf4a7f8e6-Paper.pdf)
- [SSD-based Graph Partitioning](https://github.com/SonglinLife/SSD_BASED_PLAN)

View File

@@ -3,9 +3,10 @@
## 🔥 Core Features ## 🔥 Core Features
- **🔄 Real-time Embeddings** - Eliminate heavy embedding storage with dynamic computation using optimized ZMQ servers and highly optimized search paradigm (overlapping and batching) with highly optimized embedding engine - **🔄 Real-time Embeddings** - Eliminate heavy embedding storage with dynamic computation using optimized ZMQ servers and highly optimized search paradigm (overlapping and batching) with highly optimized embedding engine
- **🧠 AST-Aware Code Chunking** - Intelligent code chunking that preserves semantic boundaries (functions, classes, methods) for Python, Java, C#, and TypeScript files
- **📈 Scalable Architecture** - Handles millions of documents on consumer hardware; the larger your dataset, the more LEANN can save - **📈 Scalable Architecture** - Handles millions of documents on consumer hardware; the larger your dataset, the more LEANN can save
- **🎯 Graph Pruning** - Advanced techniques to minimize the storage overhead of vector search to a limited footprint - **🎯 Graph Pruning** - Advanced techniques to minimize the storage overhead of vector search to a limited footprint
- **🏗️ Pluggable Backends** - DiskANN, HNSW/FAISS with unified API - **🏗️ Pluggable Backends** - HNSW/FAISS (default), with optional DiskANN for large-scale deployments
## 🛠️ Technical Highlights ## 🛠️ Technical Highlights
- **🔄 Recompute Mode** - Highest accuracy scenarios while eliminating vector storage overhead - **🔄 Recompute Mode** - Highest accuracy scenarios while eliminating vector storage overhead
@@ -13,7 +14,7 @@
- **🚀 High-throughput Embedding Pipeline** - Optimized batched processing for maximum efficiency - **🚀 High-throughput Embedding Pipeline** - Optimized batched processing for maximum efficiency
- **🎯 Two-level Search** - Novel coarse-to-fine search overlap for accelerated query processing (optional) - **🎯 Two-level Search** - Novel coarse-to-fine search overlap for accelerated query processing (optional)
- **💾 Memory-mapped Indices** - Fast startup with raw text mapping to reduce memory overhead - **💾 Memory-mapped Indices** - Fast startup with raw text mapping to reduce memory overhead
- **🚀 MLX Support** - Ultra-fast recompute/build with quantized embedding models, accelerating building and search ([minimal example](test/build_mlx_index.py)) - **🚀 MLX Support** - Ultra-fast recompute/build with quantized embedding models, accelerating building and search ([minimal example](../examples/mlx_demo.py))
## 🎨 Developer Experience ## 🎨 Developer Experience

149
docs/grep_search.md Normal file
View File

@@ -0,0 +1,149 @@
# LEANN Grep Search Usage Guide
## Overview
LEANN's grep search functionality provides exact text matching for finding specific code patterns, error messages, function names, or exact phrases in your indexed documents.
## Basic Usage
### Simple Grep Search
```python
from leann.api import LeannSearcher
searcher = LeannSearcher("your_index_path")
# Exact text search
results = searcher.search("def authenticate_user", use_grep=True, top_k=5)
for result in results:
print(f"Score: {result.score}")
print(f"Text: {result.text[:100]}...")
print("-" * 40)
```
### Comparison: Semantic vs Grep Search
```python
# Semantic search - finds conceptually similar content
semantic_results = searcher.search("machine learning algorithms", top_k=3)
# Grep search - finds exact text matches
grep_results = searcher.search("def train_model", use_grep=True, top_k=3)
```
## When to Use Grep Search
### Use Cases
- **Code Search**: Finding specific function definitions, class names, or variable references
- **Error Debugging**: Locating exact error messages or stack traces
- **Documentation**: Finding specific API endpoints or exact terminology
### Examples
```python
# Find function definitions
functions = searcher.search("def __init__", use_grep=True)
# Find import statements
imports = searcher.search("from sklearn import", use_grep=True)
# Find specific error types
errors = searcher.search("FileNotFoundError", use_grep=True)
# Find TODO comments
todos = searcher.search("TODO:", use_grep=True)
# Find configuration entries
configs = searcher.search("server_port=", use_grep=True)
```
## Technical Details
### How It Works
1. **File Location**: Grep search operates on the raw text stored in `.jsonl` files
2. **Command Execution**: Uses the system `grep` command with case-insensitive search
3. **Result Processing**: Parses JSON lines and extracts text and metadata
4. **Scoring**: Simple frequency-based scoring based on query term occurrences
### Search Process
```
Query: "def train_model"
grep -i -n "def train_model" documents.leann.passages.jsonl
Parse matching JSON lines
Calculate scores based on term frequency
Return top_k results
```
### Scoring Algorithm
```python
# Term frequency in document
score = text.lower().count(query.lower())
```
Results are ranked by score (highest first), with higher scores indicating more occurrences of the search term.
## Error Handling
### Common Issues
#### Grep Command Not Found
```
RuntimeError: grep command not found. Please install grep or use semantic search.
```
**Solution**: Install grep on your system:
- **Ubuntu/Debian**: `sudo apt-get install grep`
- **macOS**: grep is pre-installed
- **Windows**: Use WSL or install grep via Git Bash/MSYS2
#### No Results Found
```python
# Check if your query exists in the raw data
results = searcher.search("your_query", use_grep=True)
if not results:
print("No exact matches found. Try:")
print("1. Check spelling and case")
print("2. Use partial terms")
print("3. Switch to semantic search")
```
## Complete Example
```python
#!/usr/bin/env python3
"""
Grep Search Example
Demonstrates grep search for exact text matching.
"""
from leann.api import LeannSearcher
def demonstrate_grep_search():
# Initialize searcher
searcher = LeannSearcher("my_index")
print("=== Function Search ===")
functions = searcher.search("def __init__", use_grep=True, top_k=5)
for i, result in enumerate(functions, 1):
print(f"{i}. Score: {result.score}")
print(f" Preview: {result.text[:60]}...")
print()
print("=== Error Search ===")
errors = searcher.search("FileNotFoundError", use_grep=True, top_k=3)
for result in errors:
print(f"Content: {result.text.strip()}")
print("-" * 40)
if __name__ == "__main__":
demonstrate_grep_search()
```

300
docs/metadata_filtering.md Normal file
View File

@@ -0,0 +1,300 @@
# LEANN Metadata Filtering Usage Guide
## Overview
Leann possesses metadata filtering capabilities that allow you to filter search results based on arbitrary metadata fields set during chunking. This feature enables use cases like spoiler-free book search, document filtering by date/type, code search by file type, and potentially much more.
## Basic Usage
### Adding Metadata to Your Documents
When building your index, add metadata to each text chunk:
```python
from leann.api import LeannBuilder
builder = LeannBuilder("hnsw")
# Add text with metadata
builder.add_text(
text="Chapter 1: Alice falls down the rabbit hole",
metadata={
"chapter": 1,
"character": "Alice",
"themes": ["adventure", "curiosity"],
"word_count": 150
}
)
builder.build_index("alice_in_wonderland_index")
```
### Searching with Metadata Filters
Use the `metadata_filters` parameter in search calls:
```python
from leann.api import LeannSearcher
searcher = LeannSearcher("alice_in_wonderland_index")
# Search with filters
results = searcher.search(
query="What happens to Alice?",
top_k=10,
metadata_filters={
"chapter": {"<=": 5}, # Only chapters 1-5
"spoiler_level": {"!=": "high"} # No high spoilers
}
)
```
## Filter Syntax
### Basic Structure
```python
metadata_filters = {
"field_name": {"operator": value},
"another_field": {"operator": value}
}
```
### Supported Operators
#### Comparison Operators
- `"=="`: Equal to
- `"!="`: Not equal to
- `"<"`: Less than
- `"<="`: Less than or equal
- `">"`: Greater than
- `">="`: Greater than or equal
```python
# Examples
{"chapter": {"==": 1}} # Exactly chapter 1
{"page": {">": 100}} # Pages after 100
{"rating": {">=": 4.0}} # Rating 4.0 or higher
{"word_count": {"<": 500}} # Short passages
```
#### Membership Operators
- `"in"`: Value is in list
- `"not_in"`: Value is not in list
```python
# Examples
{"character": {"in": ["Alice", "Bob"]}} # Alice OR Bob
{"genre": {"not_in": ["horror", "thriller"]}} # Exclude genres
{"tags": {"in": ["fiction", "adventure"]}} # Any of these tags
```
#### String Operators
- `"contains"`: String contains substring
- `"starts_with"`: String starts with prefix
- `"ends_with"`: String ends with suffix
```python
# Examples
{"title": {"contains": "alice"}} # Title contains "alice"
{"filename": {"ends_with": ".py"}} # Python files
{"author": {"starts_with": "Dr."}} # Authors with "Dr." prefix
```
#### Boolean Operators
- `"is_true"`: Field is truthy
- `"is_false"`: Field is falsy
```python
# Examples
{"is_published": {"is_true": True}} # Published content
{"is_draft": {"is_false": False}} # Not drafts
```
### Multiple Operators on Same Field
You can apply multiple operators to the same field (AND logic):
```python
metadata_filters = {
"word_count": {
">=": 100, # At least 100 words
"<=": 500 # At most 500 words
}
}
```
### Compound Filters
Multiple fields are combined with AND logic:
```python
metadata_filters = {
"chapter": {"<=": 10}, # Up to chapter 10
"character": {"==": "Alice"}, # About Alice
"spoiler_level": {"!=": "high"} # No major spoilers
}
```
## Use Case Examples
### 1. Spoiler-Free Book Search
```python
# Reader has only read up to chapter 5
def search_spoiler_free(query, max_chapter):
return searcher.search(
query=query,
metadata_filters={
"chapter": {"<=": max_chapter},
"spoiler_level": {"in": ["none", "low"]}
}
)
results = search_spoiler_free("What happens to Alice?", max_chapter=5)
```
### 2. Document Management by Date
```python
# Find recent documents
recent_docs = searcher.search(
query="project updates",
metadata_filters={
"date": {">=": "2024-01-01"},
"document_type": {"==": "report"}
}
)
```
### 3. Code Search by File Type
```python
# Search only Python files
python_code = searcher.search(
query="authentication function",
metadata_filters={
"file_extension": {"==": ".py"},
"lines_of_code": {"<": 100}
}
)
```
### 4. Content Filtering by Audience
```python
# Age-appropriate content
family_content = searcher.search(
query="adventure stories",
metadata_filters={
"age_rating": {"in": ["G", "PG"]},
"content_warnings": {"not_in": ["violence", "adult_themes"]}
}
)
```
### 5. Multi-Book Series Management
```python
# Search across first 3 books only
early_series = searcher.search(
query="character development",
metadata_filters={
"series": {"==": "Harry Potter"},
"book_number": {"<=": 3}
}
)
```
## Running the Example
You can see metadata filtering in action with our spoiler-free book RAG example:
```bash
# Don't forget to set up the environment
uv venv
source .venv/bin/activate
# Set your OpenAI API key (required for embeddings, but you can update the example locally and use ollama instead)
export OPENAI_API_KEY="your-api-key-here"
# Run the spoiler-free book RAG example
uv run examples/spoiler_free_book_rag.py
```
This example demonstrates:
- Building an index with metadata (chapter numbers, characters, themes, locations)
- Searching with filters to avoid spoilers (e.g., only show results up to chapter 5)
- Different scenarios for readers at various points in the book
The example uses Alice's Adventures in Wonderland as sample data and shows how you can search for information without revealing plot points from later chapters.
## Advanced Patterns
### Custom Chunking with metadata
```python
def chunk_book_with_metadata(book_text, book_info):
chunks = []
for chapter_num, chapter_text in parse_chapters(book_text):
# Extract entities, themes, etc.
characters = extract_characters(chapter_text)
themes = classify_themes(chapter_text)
spoiler_level = assess_spoiler_level(chapter_text, chapter_num)
# Create chunks with rich metadata
for paragraph in split_paragraphs(chapter_text):
chunks.append({
"text": paragraph,
"metadata": {
"book_title": book_info["title"],
"chapter": chapter_num,
"characters": characters,
"themes": themes,
"spoiler_level": spoiler_level,
"word_count": len(paragraph.split()),
"reading_level": calculate_reading_level(paragraph)
}
})
return chunks
```
## Performance Considerations
### Efficient Filtering Strategies
1. **Post-search filtering**: Applies filters after vector search, which should be efficient for typical result sets (10-100 results).
2. **Metadata design**: Keep metadata fields simple and avoid deeply nested structures.
### Best Practices
1. **Consistent metadata schema**: Use consistent field names and value types across your documents.
2. **Reasonable metadata size**: Keep metadata reasonably sized to avoid storage overhead.
3. **Type consistency**: Use consistent data types for the same fields (e.g., always integers for chapter numbers).
4. **Index multiple granularities**: Consider chunking at different levels (paragraph, section, chapter) with appropriate metadata.
### Adding Metadata to Existing Indices
To add metadata filtering to existing indices, you'll need to rebuild them with metadata:
```python
# Read existing passages and add metadata
def add_metadata_to_existing_chunks(chunks):
for chunk in chunks:
# Extract or assign metadata based on content
chunk["metadata"] = extract_metadata(chunk["text"])
return chunks
# Rebuild index with metadata
enhanced_chunks = add_metadata_to_existing_chunks(existing_chunks)
builder = LeannBuilder("hnsw")
for chunk in enhanced_chunks:
builder.add_text(chunk["text"], chunk["metadata"])
builder.build_index("enhanced_index")
```

View File

@@ -72,4 +72,4 @@ Using the wrong distance metric with normalized embeddings can lead to:
- **Incorrect ranking** of search results - **Incorrect ranking** of search results
- **Suboptimal performance** compared to using the correct metric - **Suboptimal performance** compared to using the correct metric
For more details on why this happens, see our analysis of [OpenAI embeddings with MIPS](../examples/main_cli_example.py). For more details on why this happens, see our analysis in the [embedding detection code](../packages/leann-core/src/leann/api.py) which automatically handles normalized embeddings and MIPS distance metric issues.

View File

@@ -2,8 +2,8 @@
## 🎯 Q2 2025 ## 🎯 Q2 2025
- [X] DiskANN backend with MIPS/L2/Cosine support
- [X] HNSW backend integration - [X] HNSW backend integration
- [X] DiskANN backend with MIPS/L2/Cosine support
- [X] Real-time embedding pipeline - [X] Real-time embedding pipeline
- [X] Memory-efficient graph pruning - [X] Memory-efficient graph pruning

0
examples/__init__.py Normal file
View File

View File

@@ -1,6 +1,6 @@
""" """
Simple demo showing basic leann usage Simple demo showing basic leann usage
Run: uv run python examples/simple_demo.py Run: uv run python examples/basic_demo.py
""" """
import argparse import argparse
@@ -81,7 +81,7 @@ def main():
print() print()
print("Demo completed! Try running:") print("Demo completed! Try running:")
print(" uv run python examples/document_search.py") print(" uv run python apps/document_rag.py")
if __name__ == "__main__": if __name__ == "__main__":

View File

@@ -1,158 +0,0 @@
#!/usr/bin/env python3
"""
Document search demo with recompute mode
"""
import shutil
import time
from pathlib import Path
# Import backend packages to trigger plugin registration
try:
import leann_backend_diskann # noqa: F401
import leann_backend_hnsw # noqa: F401
print("INFO: Backend packages imported successfully.")
except ImportError as e:
print(f"WARNING: Could not import backend packages. Error: {e}")
# Import upper-level API from leann-core
from leann.api import LeannBuilder, LeannChat, LeannSearcher
def load_sample_documents():
"""Create sample documents for demonstration"""
docs = [
{
"title": "Intro to Python",
"content": "Python is a high-level, interpreted language known for simplicity.",
},
{
"title": "ML Basics",
"content": "Machine learning builds systems that learn from data.",
},
{
"title": "Data Structures",
"content": "Data structures like arrays, lists, and graphs organize data.",
},
]
return docs
def main():
print("==========================================================")
print("=== Leann Document Search Demo (DiskANN + Recompute) ===")
print("==========================================================")
INDEX_DIR = Path("./test_indices")
INDEX_PATH = str(INDEX_DIR / "documents.diskann")
BACKEND_TO_TEST = "diskann"
if INDEX_DIR.exists():
print(f"--- Cleaning up old index directory: {INDEX_DIR} ---")
shutil.rmtree(INDEX_DIR)
# --- 1. Build index ---
print(f"\n[PHASE 1] Building index using '{BACKEND_TO_TEST}' backend...")
builder = LeannBuilder(backend_name=BACKEND_TO_TEST, graph_degree=32, complexity=64)
documents = load_sample_documents()
print(f"Loaded {len(documents)} sample documents.")
for doc in documents:
builder.add_text(doc["content"], metadata={"title": doc["title"]})
builder.build_index(INDEX_PATH)
print("\nIndex built!")
# --- 2. Basic search demo ---
print(f"\n[PHASE 2] Basic search using '{BACKEND_TO_TEST}' backend...")
searcher = LeannSearcher(index_path=INDEX_PATH)
query = "What is machine learning?"
print(f"\nQuery: '{query}'")
print("\n--- Basic search mode (PQ computation) ---")
start_time = time.time()
results = searcher.search(query, top_k=2)
basic_time = time.time() - start_time
print(f"⏱️ Basic search time: {basic_time:.3f} seconds")
print(">>> Basic search results <<<")
for i, res in enumerate(results, 1):
print(
f" {i}. ID: {res.id}, Score: {res.score:.4f}, Text: '{res.text}', Metadata: {res.metadata}"
)
# --- 3. Recompute search demo ---
print("\n[PHASE 3] Recompute search using embedding server...")
print("\n--- Recompute search mode (get real embeddings via network) ---")
# Configure recompute parameters
recompute_params = {
"recompute_beighbor_embeddings": True, # Enable network recomputation
"USE_DEFERRED_FETCH": False, # Don't use deferred fetch
"skip_search_reorder": True, # Skip search reordering
"dedup_node_dis": True, # Enable node distance deduplication
"prune_ratio": 0.1, # Pruning ratio 10%
"batch_recompute": False, # Don't use batch recomputation
"global_pruning": False, # Don't use global pruning
"zmq_port": 5555, # ZMQ port
"embedding_model": "sentence-transformers/all-mpnet-base-v2",
}
print("Recompute parameter configuration:")
for key, value in recompute_params.items():
print(f" {key}: {value}")
print("\n🔄 Executing Recompute search...")
try:
start_time = time.time()
recompute_results = searcher.search(query, top_k=2, **recompute_params)
recompute_time = time.time() - start_time
print(f"⏱️ Recompute search time: {recompute_time:.3f} seconds")
print(">>> Recompute search results <<<")
for i, res in enumerate(recompute_results, 1):
print(
f" {i}. ID: {res.id}, Score: {res.score:.4f}, Text: '{res.text}', Metadata: {res.metadata}"
)
# Compare results
print("\n--- Result comparison ---")
print(f"Basic search time: {basic_time:.3f} seconds")
print(f"Recompute time: {recompute_time:.3f} seconds")
print("\nBasic search vs Recompute results:")
for i in range(min(len(results), len(recompute_results))):
basic_score = results[i].score
recompute_score = recompute_results[i].score
score_diff = abs(basic_score - recompute_score)
print(
f" Position {i + 1}: PQ={basic_score:.4f}, Recompute={recompute_score:.4f}, Difference={score_diff:.4f}"
)
if recompute_time > basic_time:
print("✅ Recompute mode working correctly (more accurate but slower)")
else:
print("i Recompute time is unusually fast, network recomputation may not be enabled")
except Exception as e:
print(f"❌ Recompute search failed: {e}")
print("This usually indicates an embedding server connection issue")
# --- 4. Chat demo ---
print("\n[PHASE 4] Starting chat session...")
chat = LeannChat(index_path=INDEX_PATH)
chat_response = chat.ask(query)
print(f"You: {query}")
print(f"Leann: {chat_response}")
print("\n==========================================================")
print("✅ Demo finished successfully!")
print("==========================================================")
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,404 @@
"""Dynamic HNSW update demo without compact storage.
This script reproduces the minimal scenario we used while debugging on-the-fly
recompute:
1. Build a non-compact HNSW index from the first few paragraphs of a text file.
2. Print the top results with `recompute_embeddings=True`.
3. Append additional paragraphs with :meth:`LeannBuilder.update_index`.
4. Run the same query again to show the newly inserted passages.
Run it with ``uv`` (optionally pointing LEANN_HNSW_LOG_PATH at a file to inspect
ZMQ activity)::
LEANN_HNSW_LOG_PATH=embedding_fetch.log \
uv run -m examples.dynamic_update_no_recompute \
--index-path .leann/examples/leann-demo.leann
By default the script builds an index from ``data/2501.14312v1 (1).pdf`` and
then updates it with LEANN-related material from ``data/2506.08276v1.pdf``.
It issues the query "What's LEANN?" before and after the update to show how the
new passages become immediately searchable. The script uses the
``sentence-transformers/all-MiniLM-L6-v2`` model with ``is_recompute=True`` so
Faiss pulls existing vectors on demand via the ZMQ embedding server, while
freshly added passages are embedded locally just like the initial build.
To make storage comparisons easy, the script can also build a matching
``is_recompute=False`` baseline (enabled by default) and report the index size
delta after the update. Disable the baseline run with
``--skip-compare-no-recompute`` if you only need the recompute flow.
"""
import argparse
import json
from collections.abc import Iterable
from pathlib import Path
from typing import Any
from leann.api import LeannBuilder, LeannSearcher
from leann.registry import register_project_directory
from apps.chunking import create_text_chunks
REPO_ROOT = Path(__file__).resolve().parents[1]
DEFAULT_QUERY = "What's LEANN?"
DEFAULT_INITIAL_FILES = [REPO_ROOT / "data" / "2501.14312v1 (1).pdf"]
DEFAULT_UPDATE_FILES = [REPO_ROOT / "data" / "2506.08276v1.pdf"]
def load_chunks_from_files(paths: list[Path]) -> list[str]:
from llama_index.core import SimpleDirectoryReader
documents = []
for path in paths:
p = path.expanduser().resolve()
if not p.exists():
raise FileNotFoundError(f"Input path not found: {p}")
if p.is_dir():
reader = SimpleDirectoryReader(str(p), recursive=False)
documents.extend(reader.load_data(show_progress=True))
else:
reader = SimpleDirectoryReader(input_files=[str(p)])
documents.extend(reader.load_data(show_progress=True))
if not documents:
return []
chunks = create_text_chunks(
documents,
chunk_size=512,
chunk_overlap=128,
use_ast_chunking=False,
)
return [c for c in chunks if isinstance(c, str) and c.strip()]
def run_search(index_path: Path, query: str, top_k: int, *, recompute_embeddings: bool) -> list:
searcher = LeannSearcher(str(index_path))
try:
return searcher.search(
query=query,
top_k=top_k,
recompute_embeddings=recompute_embeddings,
batch_size=16,
)
finally:
searcher.cleanup()
def print_results(title: str, results: Iterable) -> None:
print(f"\n=== {title} ===")
res_list = list(results)
print(f"results count: {len(res_list)}")
print("passages:")
if not res_list:
print(" (no passages returned)")
for res in res_list:
snippet = res.text.replace("\n", " ")[:120]
print(f" - {res.id}: {snippet}... (score={res.score:.4f})")
def build_initial_index(
index_path: Path,
paragraphs: list[str],
model_name: str,
embedding_mode: str,
is_recompute: bool,
) -> None:
builder = LeannBuilder(
backend_name="hnsw",
embedding_model=model_name,
embedding_mode=embedding_mode,
is_compact=False,
is_recompute=is_recompute,
)
for idx, passage in enumerate(paragraphs):
builder.add_text(passage, metadata={"id": str(idx)})
builder.build_index(str(index_path))
def update_index(
index_path: Path,
start_id: int,
paragraphs: list[str],
model_name: str,
embedding_mode: str,
is_recompute: bool,
) -> None:
updater = LeannBuilder(
backend_name="hnsw",
embedding_model=model_name,
embedding_mode=embedding_mode,
is_compact=False,
is_recompute=is_recompute,
)
for offset, passage in enumerate(paragraphs, start=start_id):
updater.add_text(passage, metadata={"id": str(offset)})
updater.update_index(str(index_path))
def ensure_index_dir(index_path: Path) -> None:
index_path.parent.mkdir(parents=True, exist_ok=True)
def cleanup_index_files(index_path: Path) -> None:
"""Remove leftover index artifacts for a clean rebuild."""
parent = index_path.parent
if not parent.exists():
return
stem = index_path.stem
for file in parent.glob(f"{stem}*"):
if file.is_file():
file.unlink()
def index_file_size(index_path: Path) -> int:
"""Return the size of the primary .index file for the given index path."""
index_file = index_path.parent / f"{index_path.stem}.index"
return index_file.stat().st_size if index_file.exists() else 0
def load_metadata_snapshot(index_path: Path) -> dict[str, Any] | None:
meta_path = index_path.parent / f"{index_path.name}.meta.json"
if not meta_path.exists():
return None
try:
return json.loads(meta_path.read_text())
except json.JSONDecodeError:
return None
def run_workflow(
*,
label: str,
index_path: Path,
initial_paragraphs: list[str],
update_paragraphs: list[str],
model_name: str,
embedding_mode: str,
is_recompute: bool,
query: str,
top_k: int,
) -> dict[str, Any]:
prefix = f"[{label}] " if label else ""
ensure_index_dir(index_path)
cleanup_index_files(index_path)
print(f"{prefix}Building initial index...")
build_initial_index(
index_path,
initial_paragraphs,
model_name,
embedding_mode,
is_recompute=is_recompute,
)
initial_size = index_file_size(index_path)
before_results = run_search(
index_path,
query,
top_k,
recompute_embeddings=is_recompute,
)
print(f"\n{prefix}Updating index with additional passages...")
update_index(
index_path,
start_id=len(initial_paragraphs),
paragraphs=update_paragraphs,
model_name=model_name,
embedding_mode=embedding_mode,
is_recompute=is_recompute,
)
after_results = run_search(
index_path,
query,
top_k,
recompute_embeddings=is_recompute,
)
updated_size = index_file_size(index_path)
return {
"initial_size": initial_size,
"updated_size": updated_size,
"delta": updated_size - initial_size,
"before_results": before_results,
"after_results": after_results,
"metadata": load_metadata_snapshot(index_path),
}
def main() -> None:
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--initial-files",
type=Path,
nargs="+",
default=DEFAULT_INITIAL_FILES,
help="Initial document files (PDF/TXT) used to build the base index",
)
parser.add_argument(
"--index-path",
type=Path,
default=Path(".leann/examples/leann-demo.leann"),
help="Destination index path (default: .leann/examples/leann-demo.leann)",
)
parser.add_argument(
"--initial-count",
type=int,
default=8,
help="Number of chunks to use from the initial documents (default: 8)",
)
parser.add_argument(
"--update-files",
type=Path,
nargs="*",
default=DEFAULT_UPDATE_FILES,
help="Additional documents to add during update (PDF/TXT)",
)
parser.add_argument(
"--update-count",
type=int,
default=4,
help="Number of chunks to append from update documents (default: 4)",
)
parser.add_argument(
"--update-text",
type=str,
default=(
"LEANN (Lightweight Embedding ANN) is an indexing toolkit focused on "
"recompute-aware HNSW graphs, allowing embeddings to be regenerated "
"on demand to keep disk usage minimal."
),
help="Fallback text to append if --update-files is omitted",
)
parser.add_argument(
"--top-k",
type=int,
default=4,
help="Number of results to show for each search (default: 4)",
)
parser.add_argument(
"--query",
type=str,
default=DEFAULT_QUERY,
help="Query to run before/after the update",
)
parser.add_argument(
"--embedding-model",
type=str,
default="sentence-transformers/all-MiniLM-L6-v2",
help="Embedding model name",
)
parser.add_argument(
"--embedding-mode",
type=str,
default="sentence-transformers",
choices=["sentence-transformers", "openai", "mlx", "ollama"],
help="Embedding backend mode",
)
parser.add_argument(
"--compare-no-recompute",
dest="compare_no_recompute",
action="store_true",
help="Also run a baseline with is_recompute=False and report its index growth.",
)
parser.add_argument(
"--skip-compare-no-recompute",
dest="compare_no_recompute",
action="store_false",
help="Skip building the no-recompute baseline.",
)
parser.set_defaults(compare_no_recompute=True)
args = parser.parse_args()
ensure_index_dir(args.index_path)
register_project_directory(REPO_ROOT)
initial_chunks = load_chunks_from_files(list(args.initial_files))
if not initial_chunks:
raise ValueError("No text chunks extracted from the initial files.")
initial = initial_chunks[: args.initial_count]
if not initial:
raise ValueError("Initial chunk set is empty after applying --initial-count.")
if args.update_files:
update_chunks = load_chunks_from_files(list(args.update_files))
if not update_chunks:
raise ValueError("No text chunks extracted from the update files.")
to_add = update_chunks[: args.update_count]
else:
if not args.update_text:
raise ValueError("Provide --update-files or --update-text for the update step.")
to_add = [args.update_text]
if not to_add:
raise ValueError("Update chunk set is empty after applying --update-count.")
recompute_stats = run_workflow(
label="recompute",
index_path=args.index_path,
initial_paragraphs=initial,
update_paragraphs=to_add,
model_name=args.embedding_model,
embedding_mode=args.embedding_mode,
is_recompute=True,
query=args.query,
top_k=args.top_k,
)
print_results("initial search", recompute_stats["before_results"])
print_results("after update", recompute_stats["after_results"])
print(
f"\n[recompute] Index file size change: {recompute_stats['initial_size']} -> {recompute_stats['updated_size']} bytes"
f"{recompute_stats['delta']})"
)
if recompute_stats["metadata"]:
meta_view = {k: recompute_stats["metadata"].get(k) for k in ("is_compact", "is_pruned")}
print("[recompute] metadata snapshot:")
print(json.dumps(meta_view, indent=2))
if args.compare_no_recompute:
baseline_path = (
args.index_path.parent / f"{args.index_path.stem}-norecompute{args.index_path.suffix}"
)
baseline_stats = run_workflow(
label="no-recompute",
index_path=baseline_path,
initial_paragraphs=initial,
update_paragraphs=to_add,
model_name=args.embedding_model,
embedding_mode=args.embedding_mode,
is_recompute=False,
query=args.query,
top_k=args.top_k,
)
print(
f"\n[no-recompute] Index file size change: {baseline_stats['initial_size']} -> {baseline_stats['updated_size']} bytes"
f"{baseline_stats['delta']})"
)
after_texts = [res.text for res in recompute_stats["after_results"]]
baseline_after_texts = [res.text for res in baseline_stats["after_results"]]
if after_texts == baseline_after_texts:
print(
"[no-recompute] Search results match recompute baseline; see above for the shared output."
)
else:
print("[no-recompute] WARNING: search results differ from recompute baseline.")
if baseline_stats["metadata"]:
meta_view = {k: baseline_stats["metadata"].get(k) for k in ("is_compact", "is_pruned")}
print("[no-recompute] metadata snapshot:")
print(json.dumps(meta_view, indent=2))
if __name__ == "__main__":
main()

View File

@@ -1,362 +0,0 @@
import argparse
import asyncio
import os
try:
import dotenv
dotenv.load_dotenv()
except ModuleNotFoundError:
# python-dotenv is not installed; skip loading environment variables
dotenv = None
from pathlib import Path
from leann.api import LeannBuilder, LeannChat
from llama_index.core.node_parser import SentenceSplitter
# dotenv.load_dotenv() # handled above if python-dotenv is available
# Default Chrome profile path
DEFAULT_CHROME_PROFILE = os.path.expanduser("~/Library/Application Support/Google/Chrome/Default")
def create_leann_index_from_multiple_chrome_profiles(
profile_dirs: list[Path],
index_path: str = "chrome_history_index.leann",
max_count: int = -1,
embedding_model: str = "facebook/contriever",
embedding_mode: str = "sentence-transformers",
):
"""
Create LEANN index from multiple Chrome profile data sources.
Args:
profile_dirs: List of Path objects pointing to Chrome profile directories
index_path: Path to save the LEANN index
max_count: Maximum number of history entries to process per profile
embedding_model: The embedding model to use
embedding_mode: The embedding backend mode
"""
print("Creating LEANN index from multiple Chrome profile data sources...")
# Load documents using ChromeHistoryReader from history_data
from history_data.history import ChromeHistoryReader
reader = ChromeHistoryReader()
INDEX_DIR = Path(index_path).parent
if not INDEX_DIR.exists():
print("--- Index directory not found, building new index ---")
all_documents = []
total_processed = 0
# Process each Chrome profile directory
for i, profile_dir in enumerate(profile_dirs):
print(f"\nProcessing Chrome profile {i + 1}/{len(profile_dirs)}: {profile_dir}")
try:
documents = reader.load_data(
chrome_profile_path=str(profile_dir), max_count=max_count
)
if documents:
print(f"Loaded {len(documents)} history documents from {profile_dir}")
all_documents.extend(documents)
total_processed += len(documents)
# Check if we've reached the max count
if max_count > 0 and total_processed >= max_count:
print(f"Reached max count of {max_count} documents")
break
else:
print(f"No documents loaded from {profile_dir}")
except Exception as e:
print(f"Error processing {profile_dir}: {e}")
continue
if not all_documents:
print("No documents loaded from any source. Exiting.")
# highlight info that you need to close all chrome browser before running this script and high light the instruction!!
print(
"\033[91mYou need to close or quit all chrome browser before running this script\033[0m"
)
return None
print(
f"\nTotal loaded {len(all_documents)} history documents from {len(profile_dirs)} profiles"
)
# Create text splitter with 256 chunk size
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=128)
# Convert Documents to text strings and chunk them
all_texts = []
for doc in all_documents:
# Split the document into chunks
nodes = text_splitter.get_nodes_from_documents([doc])
for node in nodes:
text = node.get_content()
# text = '[Title] ' + doc.metadata["title"] + '\n' + text
all_texts.append(text)
print(f"Created {len(all_texts)} text chunks from {len(all_documents)} documents")
# Create LEANN index directory
print("--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print("--- Building new LEANN index ---")
print("\n[PHASE 1] Building Leann index...")
# Use HNSW backend for better macOS compatibility
# LeannBuilder will automatically detect normalized embeddings and set appropriate distance metric
builder = LeannBuilder(
backend_name="hnsw",
embedding_model=embedding_model,
embedding_mode=embedding_mode,
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1, # Force single-threaded mode
)
print(f"Adding {len(all_texts)} history chunks to index...")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(index_path)
print(f"\nLEANN index built at {index_path}!")
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
return index_path
def create_leann_index(
profile_path: str | None = None,
index_path: str = "chrome_history_index.leann",
max_count: int = 1000,
embedding_model: str = "facebook/contriever",
embedding_mode: str = "sentence-transformers",
):
"""
Create LEANN index from Chrome history data.
Args:
profile_path: Path to the Chrome profile directory (optional, uses default if None)
index_path: Path to save the LEANN index
max_count: Maximum number of history entries to process
embedding_model: The embedding model to use
embedding_mode: The embedding backend mode
"""
print("Creating LEANN index from Chrome history data...")
INDEX_DIR = Path(index_path).parent
if not INDEX_DIR.exists():
print("--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print("--- Building new LEANN index ---")
print("\n[PHASE 1] Building Leann index...")
# Load documents using ChromeHistoryReader from history_data
from history_data.history import ChromeHistoryReader
reader = ChromeHistoryReader()
documents = reader.load_data(chrome_profile_path=profile_path, max_count=max_count)
if not documents:
print("No documents loaded. Exiting.")
return None
print(f"Loaded {len(documents)} history documents")
# Create text splitter with 256 chunk size
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25)
# Convert Documents to text strings and chunk them
all_texts = []
for doc in documents:
# Split the document into chunks
nodes = text_splitter.get_nodes_from_documents([doc])
for node in nodes:
all_texts.append(node.get_content())
print(f"Created {len(all_texts)} text chunks from {len(documents)} documents")
# Create LEANN index directory
print("--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print("--- Building new LEANN index ---")
print("\n[PHASE 1] Building Leann index...")
# Use HNSW backend for better macOS compatibility
# LeannBuilder will automatically detect normalized embeddings and set appropriate distance metric
builder = LeannBuilder(
backend_name="hnsw",
embedding_model=embedding_model,
embedding_mode=embedding_mode,
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1, # Force single-threaded mode
)
print(f"Adding {len(all_texts)} history chunks to index...")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(index_path)
print(f"\nLEANN index built at {index_path}!")
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
return index_path
async def query_leann_index(index_path: str, query: str):
"""
Query the LEANN index.
Args:
index_path: Path to the LEANN index
query: The query string
"""
print("\n[PHASE 2] Starting Leann chat session...")
chat = LeannChat(index_path=index_path)
print(f"You: {query}")
chat_response = chat.ask(
query,
top_k=10,
recompute_beighbor_embeddings=True,
complexity=32,
beam_width=1,
llm_config={
"type": "openai",
"model": "gpt-4o",
"api_key": os.getenv("OPENAI_API_KEY"),
},
llm_kwargs={"temperature": 0.0, "max_tokens": 1000},
)
print(f"Leann chat response: \033[36m{chat_response}\033[0m")
async def main():
# Parse command line arguments
parser = argparse.ArgumentParser(
description="LEANN Chrome History Reader - Create and query browser history index"
)
parser.add_argument(
"--chrome-profile",
type=str,
default=DEFAULT_CHROME_PROFILE,
help=f"Path to Chrome profile directory (default: {DEFAULT_CHROME_PROFILE}), usually you dont need to change this",
)
parser.add_argument(
"--index-dir",
type=str,
default="./google_history_index",
help="Directory to store the LEANN index (default: ./chrome_history_index_leann_test)",
)
parser.add_argument(
"--max-entries",
type=int,
default=1000,
help="Maximum number of history entries to process (default: 1000)",
)
parser.add_argument(
"--query",
type=str,
default=None,
help="Single query to run (default: runs example queries)",
)
parser.add_argument(
"--auto-find-profiles",
action="store_true",
default=True,
help="Automatically find all Chrome profiles (default: True)",
)
parser.add_argument(
"--embedding-model",
type=str,
default="facebook/contriever",
help="The embedding model to use (e.g., 'facebook/contriever', 'text-embedding-3-small')",
)
parser.add_argument(
"--embedding-mode",
type=str,
default="sentence-transformers",
choices=["sentence-transformers", "openai", "mlx"],
help="The embedding backend mode",
)
parser.add_argument(
"--use-existing-index",
action="store_true",
help="Use existing index without rebuilding",
)
args = parser.parse_args()
INDEX_DIR = Path(args.index_dir)
INDEX_PATH = str(INDEX_DIR / "chrome_history.leann")
print(f"Using Chrome profile: {args.chrome_profile}")
print(f"Index directory: {INDEX_DIR}")
print(f"Max entries: {args.max_entries}")
if args.use_existing_index:
# Use existing index without rebuilding
if not Path(INDEX_PATH).exists():
print(f"Error: Index file not found at {INDEX_PATH}")
return
print(f"Using existing index at {INDEX_PATH}")
index_path = INDEX_PATH
else:
# Find Chrome profile directories
from history_data.history import ChromeHistoryReader
if args.auto_find_profiles:
profile_dirs = ChromeHistoryReader.find_chrome_profiles()
if not profile_dirs:
print("No Chrome profiles found automatically. Exiting.")
return
else:
# Use single specified profile
profile_path = Path(args.chrome_profile)
if not profile_path.exists():
print(f"Chrome profile not found: {profile_path}")
return
profile_dirs = [profile_path]
# Create or load the LEANN index from all sources
index_path = create_leann_index_from_multiple_chrome_profiles(
profile_dirs, INDEX_PATH, args.max_entries, args.embedding_model, args.embedding_mode
)
if index_path:
if args.query:
# Run single query
await query_leann_index(index_path, args.query)
else:
# Example queries
queries = [
"What websites did I visit about machine learning?",
"Find my search history about programming",
]
for query in queries:
print("\n" + "=" * 60)
await query_leann_index(index_path, query)
if __name__ == "__main__":
asyncio.run(main())

View File

@@ -0,0 +1,35 @@
"""
Grep Search Example
Shows how to use grep-based text search instead of semantic search.
Useful when you need exact text matches rather than meaning-based results.
"""
from leann import LeannSearcher
# Load your index
searcher = LeannSearcher("my-documents.leann")
# Regular semantic search
print("=== Semantic Search ===")
results = searcher.search("machine learning algorithms", top_k=3)
for result in results:
print(f"Score: {result.score:.3f}")
print(f"Text: {result.text[:80]}...")
print()
# Grep-based search for exact text matches
print("=== Grep Search ===")
results = searcher.search("def train_model", top_k=3, use_grep=True)
for result in results:
print(f"Score: {result.score}")
print(f"Text: {result.text[:80]}...")
print()
# Find specific error messages
error_results = searcher.search("FileNotFoundError", use_grep=True)
print(f"Found {len(error_results)} files mentioning FileNotFoundError")
# Search for function definitions
func_results = searcher.search("class SearchResult", use_grep=True, top_k=5)
print(f"Found {len(func_results)} class definitions")

View File

@@ -1,342 +0,0 @@
import argparse
import asyncio
import os
import sys
from pathlib import Path
import dotenv
# Add the project root to Python path so we can import from examples
project_root = Path(__file__).parent.parent
sys.path.insert(0, str(project_root))
from leann.api import LeannBuilder, LeannChat
from llama_index.core.node_parser import SentenceSplitter
dotenv.load_dotenv()
# Auto-detect user's mail path
def get_mail_path():
"""Get the mail path for the current user"""
home_dir = os.path.expanduser("~")
return os.path.join(home_dir, "Library", "Mail")
# Default mail path for macOS
DEFAULT_MAIL_PATH = "/Users/yichuan/Library/Mail/V10/0FCA0879-FD8C-4B7E-83BF-FDDA930791C5/[Gmail].mbox/All Mail.mbox/78BA5BE1-8819-4F9A-9613-EB63772F1DD0/Data"
def create_leann_index_from_multiple_sources(
messages_dirs: list[Path],
index_path: str = "mail_index.leann",
max_count: int = -1,
include_html: bool = False,
embedding_model: str = "facebook/contriever",
):
"""
Create LEANN index from multiple mail data sources.
Args:
messages_dirs: List of Path objects pointing to Messages directories
index_path: Path to save the LEANN index
max_count: Maximum number of emails to process per directory
include_html: Whether to include HTML content in email processing
"""
print("Creating LEANN index from multiple mail data sources...")
# Load documents using EmlxReader from LEANN_email_reader
from examples.email_data.LEANN_email_reader import EmlxReader
reader = EmlxReader(include_html=include_html)
# from email_data.email import EmlxMboxReader
# from pathlib import Path
# reader = EmlxMboxReader()
INDEX_DIR = Path(index_path).parent
if not INDEX_DIR.exists():
print("--- Index directory not found, building new index ---")
all_documents = []
total_processed = 0
# Process each Messages directory
for i, messages_dir in enumerate(messages_dirs):
print(f"\nProcessing Messages directory {i + 1}/{len(messages_dirs)}: {messages_dir}")
try:
documents = reader.load_data(messages_dir)
if documents:
print(f"Loaded {len(documents)} email documents from {messages_dir}")
all_documents.extend(documents)
total_processed += len(documents)
# Check if we've reached the max count
if max_count > 0 and total_processed >= max_count:
print(f"Reached max count of {max_count} documents")
break
else:
print(f"No documents loaded from {messages_dir}")
except Exception as e:
print(f"Error processing {messages_dir}: {e}")
continue
if not all_documents:
print("No documents loaded from any source. Exiting.")
return None
print(
f"\nTotal loaded {len(all_documents)} email documents from {len(messages_dirs)} directories and starting to split them into chunks"
)
# Create text splitter with 256 chunk size
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25)
# Convert Documents to text strings and chunk them
all_texts = []
for doc in all_documents:
# Split the document into chunks
nodes = text_splitter.get_nodes_from_documents([doc])
for node in nodes:
text = node.get_content()
# text = '[subject] ' + doc.metadata["subject"] + '\n' + text
all_texts.append(text)
print(
f"Finished splitting {len(all_documents)} documents into {len(all_texts)} text chunks"
)
# Create LEANN index directory
print("--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print("--- Building new LEANN index ---")
print("\n[PHASE 1] Building Leann index...")
# Use HNSW backend for better macOS compatibility
builder = LeannBuilder(
backend_name="hnsw",
embedding_model=embedding_model,
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1, # Force single-threaded mode
)
print(f"Adding {len(all_texts)} email chunks to index...")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(index_path)
print(f"\nLEANN index built at {index_path}!")
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
return index_path
def create_leann_index(
mail_path: str,
index_path: str = "mail_index.leann",
max_count: int = 1000,
include_html: bool = False,
embedding_model: str = "facebook/contriever",
):
"""
Create LEANN index from mail data.
Args:
mail_path: Path to the mail directory
index_path: Path to save the LEANN index
max_count: Maximum number of emails to process
include_html: Whether to include HTML content in email processing
"""
print("Creating LEANN index from mail data...")
INDEX_DIR = Path(index_path).parent
if not INDEX_DIR.exists():
print("--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print("--- Building new LEANN index ---")
print("\n[PHASE 1] Building Leann index...")
# Load documents using EmlxReader from LEANN_email_reader
from examples.email_data.LEANN_email_reader import EmlxReader
reader = EmlxReader(include_html=include_html)
# from email_data.email import EmlxMboxReader
# from pathlib import Path
# reader = EmlxMboxReader()
documents = reader.load_data(Path(mail_path))
if not documents:
print("No documents loaded. Exiting.")
return None
print(f"Loaded {len(documents)} email documents")
# Create text splitter with 256 chunk size
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=128)
# Convert Documents to text strings and chunk them
all_texts = []
for doc in documents:
# Split the document into chunks
nodes = text_splitter.get_nodes_from_documents([doc])
for node in nodes:
all_texts.append(node.get_content())
print(f"Created {len(all_texts)} text chunks from {len(documents)} documents")
# Create LEANN index directory
print("--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print("--- Building new LEANN index ---")
print("\n[PHASE 1] Building Leann index...")
# Use HNSW backend for better macOS compatibility
builder = LeannBuilder(
backend_name="hnsw",
embedding_model=embedding_model,
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1, # Force single-threaded mode
)
print(f"Adding {len(all_texts)} email chunks to index...")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(index_path)
print(f"\nLEANN index built at {index_path}!")
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
return index_path
async def query_leann_index(index_path: str, query: str):
"""
Query the LEANN index.
Args:
index_path: Path to the LEANN index
query: The query string
"""
print("\n[PHASE 2] Starting Leann chat session...")
chat = LeannChat(index_path=index_path, llm_config={"type": "openai", "model": "gpt-4o"})
print(f"You: {query}")
import time
time.time()
chat_response = chat.ask(
query,
top_k=20,
recompute_beighbor_embeddings=True,
complexity=32,
beam_width=1,
)
time.time()
# print(f"Time taken: {end_time - start_time} seconds")
# highlight the answer
print(f"Leann chat response: \033[36m{chat_response}\033[0m")
async def main():
# Parse command line arguments
parser = argparse.ArgumentParser(description="LEANN Mail Reader - Create and query email index")
# Remove --mail-path argument and auto-detect all Messages directories
# Remove DEFAULT_MAIL_PATH
parser.add_argument(
"--index-dir",
type=str,
default="./mail_index",
help="Directory to store the LEANN index (default: ./mail_index_leann_raw_text_all_dicts)",
)
parser.add_argument(
"--max-emails",
type=int,
default=1000,
help="Maximum number of emails to process (-1 means all)",
)
parser.add_argument(
"--query",
type=str,
default="Give me some funny advertisement about apple or other companies",
help="Single query to run (default: runs example queries)",
)
parser.add_argument(
"--include-html",
action="store_true",
default=False,
help="Include HTML content in email processing (default: False)",
)
parser.add_argument(
"--embedding-model",
type=str,
default="facebook/contriever",
help="Embedding model to use (default: facebook/contriever)",
)
args = parser.parse_args()
print(f"args: {args}")
# Automatically find all Messages directories under the current user's Mail directory
from examples.email_data.LEANN_email_reader import find_all_messages_directories
mail_path = get_mail_path()
print(f"Searching for email data in: {mail_path}")
messages_dirs = find_all_messages_directories(mail_path)
# messages_dirs = find_all_messages_directories(DEFAULT_MAIL_PATH)
# messages_dirs = [DEFAULT_MAIL_PATH]
# messages_dirs = messages_dirs[:1]
print("len(messages_dirs): ", len(messages_dirs))
if not messages_dirs:
print("No Messages directories found. Exiting.")
return
INDEX_DIR = Path(args.index_dir)
INDEX_PATH = str(INDEX_DIR / "mail_documents.leann")
print(f"Index directory: {INDEX_DIR}")
print(f"Found {len(messages_dirs)} Messages directories.")
# Create or load the LEANN index from all sources
index_path = create_leann_index_from_multiple_sources(
messages_dirs,
INDEX_PATH,
args.max_emails,
args.include_html,
args.embedding_model,
)
if index_path:
if args.query:
# Run single query
await query_leann_index(index_path, args.query)
else:
# Example queries
queries = [
"Hows Berkeley Graduate Student Instructor",
"how's the icloud related advertisement saying",
"Whats the number of class recommend to take per semester for incoming EECS students",
]
for query in queries:
print("\n" + "=" * 60)
await query_leann_index(index_path, query)
if __name__ == "__main__":
asyncio.run(main())

View File

@@ -1,135 +0,0 @@
import argparse
import os
import sys
from pathlib import Path
# Add the project root to Python path so we can import from examples
project_root = Path(__file__).parent.parent
sys.path.insert(0, str(project_root))
import torch
from llama_index.core import StorageContext, VectorStoreIndex
from llama_index.core.node_parser import SentenceSplitter
# --- EMBEDDING MODEL ---
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
# --- END EMBEDDING MODEL ---
# Import EmlxReader from the new module
from examples.email_data.LEANN_email_reader import EmlxReader
def create_and_save_index(
mail_path: str,
save_dir: str = "mail_index_embedded",
max_count: int = 1000,
include_html: bool = False,
):
print("Creating index from mail data with embedded metadata...")
documents = EmlxReader(include_html=include_html).load_data(mail_path, max_count=max_count)
if not documents:
print("No documents loaded. Exiting.")
return None
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25)
# Use facebook/contriever as the embedder
embed_model = HuggingFaceEmbedding(model_name="facebook/contriever")
# set on device
if torch.cuda.is_available():
embed_model._model.to("cuda")
# set mps
elif torch.backends.mps.is_available():
embed_model._model.to("mps")
else:
embed_model._model.to("cpu")
index = VectorStoreIndex.from_documents(
documents, transformations=[text_splitter], embed_model=embed_model
)
os.makedirs(save_dir, exist_ok=True)
index.storage_context.persist(persist_dir=save_dir)
print(f"Index saved to {save_dir}")
return index
def load_index(save_dir: str = "mail_index_embedded"):
try:
storage_context = StorageContext.from_defaults(persist_dir=save_dir)
index = VectorStoreIndex.from_vector_store(
storage_context.vector_store, storage_context=storage_context
)
print(f"Index loaded from {save_dir}")
return index
except Exception as e:
print(f"Error loading index: {e}")
return None
def query_index(index, query: str):
if index is None:
print("No index available for querying.")
return
query_engine = index.as_query_engine()
response = query_engine.query(query)
print(f"Query: {query}")
print(f"Response: {response}")
def main():
# Parse command line arguments
parser = argparse.ArgumentParser(
description="LlamaIndex Mail Reader - Create and query email index"
)
parser.add_argument(
"--mail-path",
type=str,
default="/Users/yichuan/Library/Mail/V10/0FCA0879-FD8C-4B7E-83BF-FDDA930791C5/[Gmail].mbox/All Mail.mbox/78BA5BE1-8819-4F9A-9613-EB63772F1DD0/Data/9/Messages",
help="Path to mail data directory",
)
parser.add_argument(
"--save-dir",
type=str,
default="mail_index_embedded",
help="Directory to store the index (default: mail_index_embedded)",
)
parser.add_argument(
"--max-emails",
type=int,
default=10000,
help="Maximum number of emails to process",
)
parser.add_argument(
"--include-html",
action="store_true",
default=False,
help="Include HTML content in email processing (default: False)",
)
args = parser.parse_args()
mail_path = args.mail_path
save_dir = args.save_dir
if os.path.exists(save_dir) and os.path.exists(os.path.join(save_dir, "vector_store.json")):
print("Loading existing index...")
index = load_index(save_dir)
else:
print("Creating new index...")
index = create_and_save_index(
mail_path,
save_dir,
max_count=args.max_emails,
include_html=args.include_html,
)
if index:
queries = [
"Hows Berkeley Graduate Student Instructor",
"how's the icloud related advertisement saying",
"Whats the number of class recommend to take per semester for incoming EECS students",
]
for query in queries:
print("\n" + "=" * 50)
query_index(index, query)
if __name__ == "__main__":
main()

View File

@@ -1,146 +0,0 @@
import argparse
import asyncio
from pathlib import Path
import dotenv
from leann.api import LeannBuilder, LeannChat
from llama_index.core import SimpleDirectoryReader
from llama_index.core.node_parser import SentenceSplitter
dotenv.load_dotenv()
async def main(args):
INDEX_DIR = Path(args.index_dir)
INDEX_PATH = str(INDEX_DIR / "pdf_documents.leann")
if not INDEX_DIR.exists():
node_parser = SentenceSplitter(
chunk_size=256, chunk_overlap=128, separator=" ", paragraph_separator="\n\n"
)
print("Loading documents...")
documents = SimpleDirectoryReader(
args.data_dir,
recursive=True,
encoding="utf-8",
required_exts=[".pdf", ".txt", ".md"],
).load_data(show_progress=True)
print("Documents loaded.")
all_texts = []
for doc in documents:
nodes = node_parser.get_nodes_from_documents([doc])
if nodes:
all_texts.extend(node.get_content() for node in nodes)
print("--- Index directory not found, building new index ---")
print("\n[PHASE 1] Building Leann index...")
# LeannBuilder now automatically detects normalized embeddings and sets appropriate distance metric
print(f"Using {args.embedding_model} with {args.embedding_mode} mode")
# Use HNSW backend for better macOS compatibility
builder = LeannBuilder(
backend_name="hnsw",
embedding_model=args.embedding_model,
embedding_mode=args.embedding_mode,
# distance_metric is automatically set based on embedding model
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1, # Force single-threaded mode
)
print(f"Loaded {len(all_texts)} text chunks from documents.")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(INDEX_PATH)
print(f"\nLeann index built at {INDEX_PATH}!")
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
print("\n[PHASE 2] Starting Leann chat session...")
# Build llm_config based on command line arguments
if args.llm == "simulated":
llm_config = {"type": "simulated"}
elif args.llm == "ollama":
llm_config = {"type": "ollama", "model": args.model, "host": args.host}
elif args.llm == "hf":
llm_config = {"type": "hf", "model": args.model}
elif args.llm == "openai":
llm_config = {"type": "openai", "model": args.model}
else:
raise ValueError(f"Unknown LLM type: {args.llm}")
print(f"Using LLM: {args.llm} with model: {args.model if args.llm != 'simulated' else 'N/A'}")
chat = LeannChat(index_path=INDEX_PATH, llm_config=llm_config)
# query = (
# "什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发"
# )
query = args.query
print(f"You: {query}")
chat_response = chat.ask(query, top_k=20, recompute_embeddings=True, complexity=32)
print(f"Leann chat response: \033[36m{chat_response}\033[0m")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run Leann Chat with various LLM backends.")
parser.add_argument(
"--llm",
type=str,
default="openai",
choices=["simulated", "ollama", "hf", "openai"],
help="The LLM backend to use.",
)
parser.add_argument(
"--model",
type=str,
default="gpt-4o",
help="The model name to use (e.g., 'llama3:8b' for ollama, 'deepseek-ai/deepseek-llm-7b-chat' for hf, 'gpt-4o' for openai).",
)
parser.add_argument(
"--embedding-model",
type=str,
default="facebook/contriever",
help="The embedding model to use (e.g., 'facebook/contriever', 'text-embedding-3-small').",
)
parser.add_argument(
"--embedding-mode",
type=str,
default="sentence-transformers",
choices=["sentence-transformers", "openai", "mlx"],
help="The embedding backend mode.",
)
parser.add_argument(
"--host",
type=str,
default="http://localhost:11434",
help="The host for the Ollama API.",
)
parser.add_argument(
"--index-dir",
type=str,
default="./test_doc_files",
help="Directory where the Leann index will be stored.",
)
parser.add_argument(
"--data-dir",
type=str,
default="examples/data",
help="Directory containing documents to index (PDF, TXT, MD files).",
)
parser.add_argument(
"--query",
type=str,
default="Based on the paper, what are the main techniques LEANN explores to reduce the storage overhead and DLPM explore to achieve Fairness and Efiiciency trade-off?",
help="The query to ask the Leann chat system.",
)
args = parser.parse_args()
asyncio.run(main(args))

View File

@@ -0,0 +1,181 @@
#!/usr/bin/env python3
"""
MCP Integration Examples for LEANN
This script demonstrates how to use LEANN with different MCP servers for
RAG on various platforms like Slack and Twitter.
Examples:
1. Slack message RAG via MCP
2. Twitter bookmark RAG via MCP
3. Testing MCP server connections
"""
import asyncio
import sys
from pathlib import Path
# Add the parent directory to the path so we can import from apps
sys.path.append(str(Path(__file__).parent.parent))
from apps.slack_rag import SlackMCPRAG
from apps.twitter_rag import TwitterMCPRAG
async def demo_slack_mcp():
"""Demonstrate Slack MCP integration."""
print("=" * 60)
print("🔥 Slack MCP RAG Demo")
print("=" * 60)
print("\n1. Testing Slack MCP server connection...")
# This would typically use a real MCP server command
# For demo purposes, we show what the command would look like
slack_app = SlackMCPRAG()
# Simulate command line arguments for testing
class MockArgs:
mcp_server = "slack-mcp-server" # This would be the actual MCP server command
workspace_name = "my-workspace"
channels = ["general", "random", "dev-team"]
no_concatenate_conversations = False
max_messages_per_channel = 50
test_connection = True
print(f"MCP Server Command: {MockArgs.mcp_server}")
print(f"Workspace: {MockArgs.workspace_name}")
print(f"Channels: {', '.join(MockArgs.channels)}")
# In a real scenario, you would run:
# success = await slack_app.test_mcp_connection(MockArgs)
print("\n📝 Example usage:")
print("python -m apps.slack_rag \\")
print(" --mcp-server 'slack-mcp-server' \\")
print(" --workspace-name 'my-team' \\")
print(" --channels general dev-team \\")
print(" --test-connection")
print("\n🔍 After indexing, you could query:")
print("- 'What did the team discuss about the project deadline?'")
print("- 'Find messages about the new feature launch'")
print("- 'Show me conversations about budget planning'")
async def demo_twitter_mcp():
"""Demonstrate Twitter MCP integration."""
print("\n" + "=" * 60)
print("🐦 Twitter MCP RAG Demo")
print("=" * 60)
print("\n1. Testing Twitter MCP server connection...")
twitter_app = TwitterMCPRAG()
class MockArgs:
mcp_server = "twitter-mcp-server"
username = None # Fetch all bookmarks
max_bookmarks = 500
no_tweet_content = False
no_metadata = False
test_connection = True
print(f"MCP Server Command: {MockArgs.mcp_server}")
print(f"Max Bookmarks: {MockArgs.max_bookmarks}")
print(f"Include Content: {not MockArgs.no_tweet_content}")
print(f"Include Metadata: {not MockArgs.no_metadata}")
print("\n📝 Example usage:")
print("python -m apps.twitter_rag \\")
print(" --mcp-server 'twitter-mcp-server' \\")
print(" --max-bookmarks 1000 \\")
print(" --test-connection")
print("\n🔍 After indexing, you could query:")
print("- 'What AI articles did I bookmark last month?'")
print("- 'Find tweets about machine learning techniques'")
print("- 'Show me bookmarked threads about startup advice'")
async def show_mcp_server_setup():
"""Show how to set up MCP servers."""
print("\n" + "=" * 60)
print("⚙️ MCP Server Setup Guide")
print("=" * 60)
print("\n🔧 Setting up Slack MCP Server:")
print("1. Install a Slack MCP server (example commands):")
print(" npm install -g slack-mcp-server")
print(" # OR")
print(" pip install slack-mcp-server")
print("\n2. Configure Slack credentials:")
print(" export SLACK_BOT_TOKEN='xoxb-your-bot-token'")
print(" export SLACK_APP_TOKEN='xapp-your-app-token'")
print("\n3. Test the server:")
print(" slack-mcp-server --help")
print("\n🔧 Setting up Twitter MCP Server:")
print("1. Install a Twitter MCP server:")
print(" npm install -g twitter-mcp-server")
print(" # OR")
print(" pip install twitter-mcp-server")
print("\n2. Configure Twitter API credentials:")
print(" export TWITTER_API_KEY='your-api-key'")
print(" export TWITTER_API_SECRET='your-api-secret'")
print(" export TWITTER_ACCESS_TOKEN='your-access-token'")
print(" export TWITTER_ACCESS_TOKEN_SECRET='your-access-token-secret'")
print("\n3. Test the server:")
print(" twitter-mcp-server --help")
async def show_integration_benefits():
"""Show the benefits of MCP integration."""
print("\n" + "=" * 60)
print("🌟 Benefits of MCP Integration")
print("=" * 60)
benefits = [
("🔄 Live Data Access", "Fetch real-time data from platforms without manual exports"),
("🔌 Standardized Protocol", "Use any MCP-compatible server with minimal code changes"),
("🚀 Easy Extension", "Add new platforms by implementing MCP readers"),
("🔒 Secure Access", "MCP servers handle authentication and API management"),
("📊 Rich Metadata", "Access full platform metadata (timestamps, engagement, etc.)"),
("⚡ Efficient Processing", "Stream data directly into LEANN without intermediate files"),
]
for title, description in benefits:
print(f"\n{title}")
print(f" {description}")
async def main():
"""Main demo function."""
print("🎯 LEANN MCP Integration Examples")
print("This demo shows how to integrate LEANN with MCP servers for various platforms.")
await demo_slack_mcp()
await demo_twitter_mcp()
await show_mcp_server_setup()
await show_integration_benefits()
print("\n" + "=" * 60)
print("✨ Next Steps")
print("=" * 60)
print("1. Install and configure MCP servers for your platforms")
print("2. Test connections using --test-connection flag")
print("3. Run indexing to build your RAG knowledge base")
print("4. Start querying your personal data!")
print("\n📚 For more information:")
print("- Check the README for detailed setup instructions")
print("- Look at the apps/slack_rag.py and apps/twitter_rag.py for implementation details")
print("- Explore other MCP servers for additional platforms")
if __name__ == "__main__":
asyncio.run(main())

View File

@@ -1,360 +0,0 @@
#!/usr/bin/env python3
"""
Multi-Vector Aggregator for Fat Embeddings
==========================================
This module implements aggregation strategies for multi-vector embeddings,
similar to ColPali's approach where multiple patch vectors represent a single document.
Key features:
- MaxSim aggregation (take maximum similarity across patches)
- Voting-based aggregation (count patch matches)
- Weighted aggregation (attention-score weighted)
- Spatial clustering of matching patches
- Document-level result consolidation
"""
from collections import defaultdict
from dataclasses import dataclass
from typing import Any
import numpy as np
@dataclass
class PatchResult:
"""Represents a single patch search result."""
patch_id: int
image_name: str
image_path: str
coordinates: tuple[int, int, int, int] # (x1, y1, x2, y2)
score: float
attention_score: float
scale: float
metadata: dict[str, Any]
@dataclass
class AggregatedResult:
"""Represents an aggregated document-level result."""
image_name: str
image_path: str
doc_score: float
patch_count: int
best_patch: PatchResult
all_patches: list[PatchResult]
aggregation_method: str
spatial_clusters: list[list[PatchResult]] | None = None
class MultiVectorAggregator:
"""
Aggregates multiple patch-level results into document-level results.
"""
def __init__(
self,
aggregation_method: str = "maxsim",
spatial_clustering: bool = True,
cluster_distance_threshold: float = 100.0,
):
"""
Initialize the aggregator.
Args:
aggregation_method: "maxsim", "voting", "weighted", or "mean"
spatial_clustering: Whether to cluster spatially close patches
cluster_distance_threshold: Distance threshold for spatial clustering
"""
self.aggregation_method = aggregation_method
self.spatial_clustering = spatial_clustering
self.cluster_distance_threshold = cluster_distance_threshold
def aggregate_results(
self, search_results: list[dict[str, Any]], top_k: int = 10
) -> list[AggregatedResult]:
"""
Aggregate patch-level search results into document-level results.
Args:
search_results: List of search results from LeannSearcher
top_k: Number of top documents to return
Returns:
List of aggregated document results
"""
# Group results by image
image_groups = defaultdict(list)
for result in search_results:
metadata = result.metadata
if "image_name" in metadata and "patch_id" in metadata:
patch_result = PatchResult(
patch_id=metadata["patch_id"],
image_name=metadata["image_name"],
image_path=metadata["image_path"],
coordinates=tuple(metadata["coordinates"]),
score=result.score,
attention_score=metadata.get("attention_score", 0.0),
scale=metadata.get("scale", 1.0),
metadata=metadata,
)
image_groups[metadata["image_name"]].append(patch_result)
# Aggregate each image group
aggregated_results = []
for image_name, patches in image_groups.items():
if len(patches) == 0:
continue
agg_result = self._aggregate_image_patches(image_name, patches)
aggregated_results.append(agg_result)
# Sort by aggregated score and return top-k
aggregated_results.sort(key=lambda x: x.doc_score, reverse=True)
return aggregated_results[:top_k]
def _aggregate_image_patches(
self, image_name: str, patches: list[PatchResult]
) -> AggregatedResult:
"""Aggregate patches for a single image."""
if self.aggregation_method == "maxsim":
doc_score = max(patch.score for patch in patches)
best_patch = max(patches, key=lambda p: p.score)
elif self.aggregation_method == "voting":
# Count patches above threshold
threshold = np.percentile([p.score for p in patches], 75)
doc_score = sum(1 for patch in patches if patch.score >= threshold)
best_patch = max(patches, key=lambda p: p.score)
elif self.aggregation_method == "weighted":
# Weight by attention scores
total_weighted_score = sum(p.score * p.attention_score for p in patches)
total_weights = sum(p.attention_score for p in patches)
doc_score = total_weighted_score / max(total_weights, 1e-8)
best_patch = max(patches, key=lambda p: p.score * p.attention_score)
elif self.aggregation_method == "mean":
doc_score = np.mean([patch.score for patch in patches])
best_patch = max(patches, key=lambda p: p.score)
else:
raise ValueError(f"Unknown aggregation method: {self.aggregation_method}")
# Spatial clustering if enabled
spatial_clusters = None
if self.spatial_clustering:
spatial_clusters = self._cluster_patches_spatially(patches)
return AggregatedResult(
image_name=image_name,
image_path=patches[0].image_path,
doc_score=float(doc_score),
patch_count=len(patches),
best_patch=best_patch,
all_patches=sorted(patches, key=lambda p: p.score, reverse=True),
aggregation_method=self.aggregation_method,
spatial_clusters=spatial_clusters,
)
def _cluster_patches_spatially(self, patches: list[PatchResult]) -> list[list[PatchResult]]:
"""Cluster patches that are spatially close to each other."""
if len(patches) <= 1:
return [patches]
clusters = []
remaining_patches = patches.copy()
while remaining_patches:
# Start new cluster with highest scoring remaining patch
seed_patch = max(remaining_patches, key=lambda p: p.score)
current_cluster = [seed_patch]
remaining_patches.remove(seed_patch)
# Add nearby patches to cluster
added_to_cluster = True
while added_to_cluster:
added_to_cluster = False
for patch in remaining_patches.copy():
if self._is_patch_nearby(patch, current_cluster):
current_cluster.append(patch)
remaining_patches.remove(patch)
added_to_cluster = True
clusters.append(current_cluster)
return sorted(clusters, key=lambda cluster: max(p.score for p in cluster), reverse=True)
def _is_patch_nearby(self, patch: PatchResult, cluster: list[PatchResult]) -> bool:
"""Check if a patch is spatially close to any patch in the cluster."""
patch_center = self._get_patch_center(patch.coordinates)
for cluster_patch in cluster:
cluster_center = self._get_patch_center(cluster_patch.coordinates)
distance = np.sqrt(
(patch_center[0] - cluster_center[0]) ** 2
+ (patch_center[1] - cluster_center[1]) ** 2
)
if distance <= self.cluster_distance_threshold:
return True
return False
def _get_patch_center(self, coordinates: tuple[int, int, int, int]) -> tuple[float, float]:
"""Get center point of a patch."""
x1, y1, x2, y2 = coordinates
return ((x1 + x2) / 2, (y1 + y2) / 2)
def print_aggregated_results(
self, results: list[AggregatedResult], max_patches_per_doc: int = 3
):
"""Pretty print aggregated results."""
print(f"\n🔍 Aggregated Results (method: {self.aggregation_method})")
print("=" * 80)
for i, result in enumerate(results):
print(f"\n{i + 1}. {result.image_name}")
print(f" Doc Score: {result.doc_score:.4f} | Patches: {result.patch_count}")
print(f" Path: {result.image_path}")
# Show best patch
best = result.best_patch
print(
f" 🌟 Best Patch: #{best.patch_id} at {best.coordinates} (score: {best.score:.4f})"
)
# Show top patches
print(" 📍 Top Patches:")
for j, patch in enumerate(result.all_patches[:max_patches_per_doc]):
print(
f" {j + 1}. Patch #{patch.patch_id}: {patch.score:.4f} at {patch.coordinates}"
)
# Show spatial clusters if available
if result.spatial_clusters and len(result.spatial_clusters) > 1:
print(f" 🗂️ Spatial Clusters: {len(result.spatial_clusters)}")
for j, cluster in enumerate(result.spatial_clusters[:2]): # Show top 2 clusters
cluster_score = max(p.score for p in cluster)
print(
f" Cluster {j + 1}: {len(cluster)} patches (best: {cluster_score:.4f})"
)
def demo_aggregation():
"""Demonstrate the multi-vector aggregation functionality."""
print("=== Multi-Vector Aggregation Demo ===")
# Simulate some patch-level search results
# In real usage, these would come from LeannSearcher.search()
class MockResult:
def __init__(self, score, metadata):
self.score = score
self.metadata = metadata
# Simulate results for 2 images with multiple patches each
mock_results = [
# Image 1: cats_and_kitchen.jpg - 4 patches
MockResult(
0.85,
{
"image_name": "cats_and_kitchen.jpg",
"image_path": "/path/to/cats_and_kitchen.jpg",
"patch_id": 3,
"coordinates": [100, 50, 224, 174], # Kitchen area
"attention_score": 0.92,
"scale": 1.0,
},
),
MockResult(
0.78,
{
"image_name": "cats_and_kitchen.jpg",
"image_path": "/path/to/cats_and_kitchen.jpg",
"patch_id": 7,
"coordinates": [200, 300, 324, 424], # Cat area
"attention_score": 0.88,
"scale": 1.0,
},
),
MockResult(
0.72,
{
"image_name": "cats_and_kitchen.jpg",
"image_path": "/path/to/cats_and_kitchen.jpg",
"patch_id": 12,
"coordinates": [150, 100, 274, 224], # Appliances
"attention_score": 0.75,
"scale": 1.0,
},
),
MockResult(
0.65,
{
"image_name": "cats_and_kitchen.jpg",
"image_path": "/path/to/cats_and_kitchen.jpg",
"patch_id": 15,
"coordinates": [50, 250, 174, 374], # Furniture
"attention_score": 0.70,
"scale": 1.0,
},
),
# Image 2: city_street.jpg - 3 patches
MockResult(
0.68,
{
"image_name": "city_street.jpg",
"image_path": "/path/to/city_street.jpg",
"patch_id": 2,
"coordinates": [300, 100, 424, 224], # Buildings
"attention_score": 0.80,
"scale": 1.0,
},
),
MockResult(
0.62,
{
"image_name": "city_street.jpg",
"image_path": "/path/to/city_street.jpg",
"patch_id": 8,
"coordinates": [100, 350, 224, 474], # Street level
"attention_score": 0.75,
"scale": 1.0,
},
),
MockResult(
0.55,
{
"image_name": "city_street.jpg",
"image_path": "/path/to/city_street.jpg",
"patch_id": 11,
"coordinates": [400, 200, 524, 324], # Sky area
"attention_score": 0.60,
"scale": 1.0,
},
),
]
# Test different aggregation methods
methods = ["maxsim", "voting", "weighted", "mean"]
for method in methods:
print(f"\n{'=' * 20} {method.upper()} AGGREGATION {'=' * 20}")
aggregator = MultiVectorAggregator(
aggregation_method=method,
spatial_clustering=True,
cluster_distance_threshold=100.0,
)
aggregated = aggregator.aggregate_results(mock_results, top_k=5)
aggregator.print_aggregated_results(aggregated)
if __name__ == "__main__":
demo_aggregation()

View File

@@ -1,113 +0,0 @@
#!/usr/bin/env python3
"""
OpenAI Embedding Example
Complete example showing how to build and search with OpenAI embeddings using HNSW backend.
"""
import os
from pathlib import Path
import dotenv
from leann.api import LeannBuilder, LeannSearcher
# Load environment variables
dotenv.load_dotenv()
def main():
# Check if OpenAI API key is available
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
print("ERROR: OPENAI_API_KEY environment variable not set")
return False
print(f"✅ OpenAI API key found: {api_key[:10]}...")
# Sample texts
sample_texts = [
"Machine learning is a powerful technology that enables computers to learn from data.",
"Natural language processing helps computers understand and generate human language.",
"Deep learning uses neural networks with multiple layers to solve complex problems.",
"Computer vision allows machines to interpret and understand visual information.",
"Reinforcement learning trains agents to make decisions through trial and error.",
"Data science combines statistics, math, and programming to extract insights from data.",
"Artificial intelligence aims to create machines that can perform human-like tasks.",
"Python is a popular programming language used extensively in data science and AI.",
"Neural networks are inspired by the structure and function of the human brain.",
"Big data refers to extremely large datasets that require special tools to process.",
]
INDEX_DIR = Path("./simple_openai_test_index")
INDEX_PATH = str(INDEX_DIR / "simple_test.leann")
print("\n=== Building Index with OpenAI Embeddings ===")
print(f"Index path: {INDEX_PATH}")
try:
# Use proper configuration for OpenAI embeddings
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="text-embedding-3-small",
embedding_mode="openai",
# HNSW settings for OpenAI embeddings
M=16, # Smaller graph degree
efConstruction=64, # Smaller construction complexity
is_compact=True, # Enable compact storage for recompute
is_recompute=True, # MUST enable for OpenAI embeddings
num_threads=1,
)
print(f"Adding {len(sample_texts)} texts to the index...")
for i, text in enumerate(sample_texts):
metadata = {"id": f"doc_{i}", "topic": "AI"}
builder.add_text(text, metadata)
print("Building index...")
builder.build_index(INDEX_PATH)
print("✅ Index built successfully!")
except Exception as e:
print(f"❌ Error building index: {e}")
import traceback
traceback.print_exc()
return False
print("\n=== Testing Search ===")
try:
searcher = LeannSearcher(INDEX_PATH)
test_queries = [
"What is machine learning?",
"How do neural networks work?",
"Programming languages for data science",
]
for query in test_queries:
print(f"\n🔍 Query: '{query}'")
results = searcher.search(query, top_k=3)
print(f" Found {len(results)} results:")
for i, result in enumerate(results):
print(f" {i + 1}. Score: {result.score:.4f}")
print(f" Text: {result.text[:80]}...")
print("\n✅ Search test completed successfully!")
return True
except Exception as e:
print(f"❌ Error during search: {e}")
import traceback
traceback.print_exc()
return False
if __name__ == "__main__":
success = main()
if success:
print("\n🎉 Simple OpenAI index test completed successfully!")
else:
print("\n💥 Simple OpenAI index test failed!")

View File

@@ -1,23 +0,0 @@
import asyncio
from pathlib import Path
from leann.api import LeannChat
INDEX_DIR = Path("./test_pdf_index_huawei")
INDEX_PATH = str(INDEX_DIR / "pdf_documents.leann")
async def main():
print("\n[PHASE 2] Starting Leann chat session...")
chat = LeannChat(index_path=INDEX_PATH)
query = "What is the main idea of RL and give me 5 exapmle of classic RL algorithms?"
query = "Based on the paper, what are the main techniques LEANN explores to reduce the storage overhead and DLPM explore to achieve Fairness and Efiiciency trade-off?"
# query = "什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发"
response = chat.ask(
query, top_k=20, recompute_beighbor_embeddings=True, complexity=32, beam_width=1
)
print(f"\n[PHASE 2] Response: {response}")
if __name__ == "__main__":
asyncio.run(main())

View File

@@ -0,0 +1,250 @@
#!/usr/bin/env python3
"""
Spoiler-Free Book RAG Example using LEANN Metadata Filtering
This example demonstrates how to use LEANN's metadata filtering to create
a spoiler-free book RAG system where users can search for information
up to a specific chapter they've read.
Usage:
python spoiler_free_book_rag.py
"""
import os
import sys
from typing import Any, Optional
# Add LEANN to path (adjust path as needed)
sys.path.insert(0, os.path.join(os.path.dirname(__file__), "../packages/leann-core/src"))
from leann.api import LeannBuilder, LeannSearcher
def chunk_book_with_metadata(book_title: str = "Sample Book") -> list[dict[str, Any]]:
"""
Create sample book chunks with metadata for demonstration.
In a real implementation, this would parse actual book files (epub, txt, etc.)
and extract chapter boundaries, character mentions, etc.
Args:
book_title: Title of the book
Returns:
List of chunk dictionaries with text and metadata
"""
# Sample book chunks with metadata
# In practice, you'd use proper text processing libraries
sample_chunks = [
{
"text": "Alice was beginning to get very tired of sitting by her sister on the bank, and of having nothing to do.",
"metadata": {
"book": book_title,
"chapter": 1,
"page": 1,
"characters": ["Alice", "Sister"],
"themes": ["boredom", "curiosity"],
"location": "riverbank",
},
},
{
"text": "So she was considering in her own mind (as well as she could, for the hot day made her feel very sleepy and stupid), whether the pleasure of making a daisy-chain would be worth the trouble of getting up and picking the daisies, when suddenly a White Rabbit with pink eyes ran close by her.",
"metadata": {
"book": book_title,
"chapter": 1,
"page": 2,
"characters": ["Alice", "White Rabbit"],
"themes": ["decision", "surprise", "magic"],
"location": "riverbank",
},
},
{
"text": "Alice found herself falling down a very deep well. Either the well was very deep, or she fell very slowly, for she had plenty of time as she fell to look about her and to wonder what was going to happen next.",
"metadata": {
"book": book_title,
"chapter": 2,
"page": 15,
"characters": ["Alice"],
"themes": ["falling", "wonder", "transformation"],
"location": "rabbit hole",
},
},
{
"text": "Alice meets the Cheshire Cat, who tells her that everyone in Wonderland is mad, including Alice herself.",
"metadata": {
"book": book_title,
"chapter": 6,
"page": 85,
"characters": ["Alice", "Cheshire Cat"],
"themes": ["madness", "philosophy", "identity"],
"location": "Duchess's house",
},
},
{
"text": "At the Queen's croquet ground, Alice witnesses the absurd trial that reveals the arbitrary nature of Wonderland's justice system.",
"metadata": {
"book": book_title,
"chapter": 8,
"page": 120,
"characters": ["Alice", "Queen of Hearts", "King of Hearts"],
"themes": ["justice", "absurdity", "authority"],
"location": "Queen's court",
},
},
{
"text": "Alice realizes that Wonderland was all a dream, even the Rabbit, as she wakes up on the riverbank next to her sister.",
"metadata": {
"book": book_title,
"chapter": 12,
"page": 180,
"characters": ["Alice", "Sister", "Rabbit"],
"themes": ["revelation", "reality", "growth"],
"location": "riverbank",
},
},
]
return sample_chunks
def build_spoiler_free_index(book_chunks: list[dict[str, Any]], index_name: str) -> str:
"""
Build a LEANN index with book chunks that include spoiler metadata.
Args:
book_chunks: List of book chunks with metadata
index_name: Name for the index
Returns:
Path to the built index
"""
print(f"📚 Building spoiler-free book index: {index_name}")
# Initialize LEANN builder
builder = LeannBuilder(
backend_name="hnsw", embedding_model="text-embedding-3-small", embedding_mode="openai"
)
# Add each chunk with its metadata
for chunk in book_chunks:
builder.add_text(text=chunk["text"], metadata=chunk["metadata"])
# Build the index
index_path = f"{index_name}_book_index"
builder.build_index(index_path)
print(f"✅ Index built successfully: {index_path}")
return index_path
def spoiler_free_search(
index_path: str,
query: str,
max_chapter: int,
character_filter: Optional[list[str]] = None,
) -> list[dict[str, Any]]:
"""
Perform a spoiler-free search on the book index.
Args:
index_path: Path to the LEANN index
query: Search query
max_chapter: Maximum chapter number to include
character_filter: Optional list of characters to focus on
Returns:
List of search results safe for the reader
"""
print(f"🔍 Searching: '{query}' (up to chapter {max_chapter})")
searcher = LeannSearcher(index_path)
metadata_filters = {"chapter": {"<=": max_chapter}}
if character_filter:
metadata_filters["characters"] = {"contains": character_filter[0]}
results = searcher.search(query=query, top_k=10, metadata_filters=metadata_filters)
return results
def demo_spoiler_free_rag():
"""
Demonstrate the spoiler-free book RAG system.
"""
print("🎭 Spoiler-Free Book RAG Demo")
print("=" * 40)
# Step 1: Prepare book data
book_title = "Alice's Adventures in Wonderland"
book_chunks = chunk_book_with_metadata(book_title)
print(f"📖 Loaded {len(book_chunks)} chunks from '{book_title}'")
# Step 2: Build the index (in practice, this would be done once)
try:
index_path = build_spoiler_free_index(book_chunks, "alice_wonderland")
except Exception as e:
print(f"❌ Failed to build index (likely missing dependencies): {e}")
print(
"💡 This demo shows the filtering logic - actual indexing requires LEANN dependencies"
)
return
# Step 3: Demonstrate various spoiler-free searches
search_scenarios = [
{
"description": "Reader who has only read Chapter 1",
"query": "What can you tell me about the rabbit?",
"max_chapter": 1,
},
{
"description": "Reader who has read up to Chapter 5",
"query": "Tell me about Alice's adventures",
"max_chapter": 5,
},
{
"description": "Reader who has read most of the book",
"query": "What does the Cheshire Cat represent?",
"max_chapter": 10,
},
{
"description": "Reader who has read the whole book",
"query": "What can you tell me about the rabbit?",
"max_chapter": 12,
},
]
for scenario in search_scenarios:
print(f"\n📚 Scenario: {scenario['description']}")
print(f" Query: {scenario['query']}")
try:
results = spoiler_free_search(
index_path=index_path,
query=scenario["query"],
max_chapter=scenario["max_chapter"],
)
print(f" 📄 Found {len(results)} results:")
for i, result in enumerate(results[:3], 1): # Show top 3
chapter = result.metadata.get("chapter", "?")
location = result.metadata.get("location", "?")
print(f" {i}. Chapter {chapter} ({location}): {result.text[:80]}...")
except Exception as e:
print(f" ❌ Search failed: {e}")
if __name__ == "__main__":
print("📚 LEANN Spoiler-Free Book RAG Example")
print("=====================================")
try:
demo_spoiler_free_rag()
except ImportError as e:
print(f"❌ Cannot run demo due to missing dependencies: {e}")
except Exception as e:
print(f"❌ Error running demo: {e}")

View File

@@ -1,320 +0,0 @@
import argparse
import asyncio
import os
from pathlib import Path
import dotenv
from leann.api import LeannBuilder, LeannChat
from llama_index.core.node_parser import SentenceSplitter
dotenv.load_dotenv()
# Default WeChat export directory
DEFAULT_WECHAT_EXPORT_DIR = "./wechat_export_direct"
def create_leann_index_from_multiple_wechat_exports(
export_dirs: list[Path],
index_path: str = "wechat_history_index.leann",
max_count: int = -1,
):
"""
Create LEANN index from multiple WeChat export data sources.
Args:
export_dirs: List of Path objects pointing to WeChat export directories
index_path: Path to save the LEANN index
max_count: Maximum number of chat entries to process per export
"""
print("Creating LEANN index from multiple WeChat export data sources...")
# Load documents using WeChatHistoryReader from history_data
from history_data.wechat_history import WeChatHistoryReader
reader = WeChatHistoryReader()
INDEX_DIR = Path(index_path).parent
if not INDEX_DIR.exists():
print("--- Index directory not found, building new index ---")
all_documents = []
total_processed = 0
# Process each WeChat export directory
for i, export_dir in enumerate(export_dirs):
print(f"\nProcessing WeChat export {i + 1}/{len(export_dirs)}: {export_dir}")
try:
documents = reader.load_data(
wechat_export_dir=str(export_dir),
max_count=max_count,
concatenate_messages=True, # Disable concatenation - one message per document
)
if documents:
print(f"Loaded {len(documents)} chat documents from {export_dir}")
all_documents.extend(documents)
total_processed += len(documents)
# Check if we've reached the max count
if max_count > 0 and total_processed >= max_count:
print(f"Reached max count of {max_count} documents")
break
else:
print(f"No documents loaded from {export_dir}")
except Exception as e:
print(f"Error processing {export_dir}: {e}")
continue
if not all_documents:
print("No documents loaded from any source. Exiting.")
return None
print(
f"\nTotal loaded {len(all_documents)} chat documents from {len(export_dirs)} exports and starting to split them into chunks"
)
# Create text splitter with 256 chunk size
text_splitter = SentenceSplitter(chunk_size=192, chunk_overlap=64)
# Convert Documents to text strings and chunk them
all_texts = []
for doc in all_documents:
# Split the document into chunks
nodes = text_splitter.get_nodes_from_documents([doc])
for node in nodes:
text = (
"[Contact] means the message is from: "
+ doc.metadata["contact_name"]
+ "\n"
+ node.get_content()
)
all_texts.append(text)
print(
f"Finished splitting {len(all_documents)} documents into {len(all_texts)} text chunks"
)
# Create LEANN index directory
print("--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print("--- Building new LEANN index ---")
print("\n[PHASE 1] Building Leann index...")
# Use HNSW backend for better macOS compatibility
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="Qwen/Qwen3-Embedding-0.6B",
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1, # Force single-threaded mode
)
print(f"Adding {len(all_texts)} chat chunks to index...")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(index_path)
print(f"\nLEANN index built at {index_path}!")
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
return index_path
def create_leann_index(
export_dir: str | None = None,
index_path: str = "wechat_history_index.leann",
max_count: int = 1000,
):
"""
Create LEANN index from WeChat chat history data.
Args:
export_dir: Path to the WeChat export directory (optional, uses default if None)
index_path: Path to save the LEANN index
max_count: Maximum number of chat entries to process
"""
print("Creating LEANN index from WeChat chat history data...")
INDEX_DIR = Path(index_path).parent
if not INDEX_DIR.exists():
print("--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print("--- Building new LEANN index ---")
print("\n[PHASE 1] Building Leann index...")
# Load documents using WeChatHistoryReader from history_data
from history_data.wechat_history import WeChatHistoryReader
reader = WeChatHistoryReader()
documents = reader.load_data(
wechat_export_dir=export_dir,
max_count=max_count,
concatenate_messages=False, # Disable concatenation - one message per document
)
if not documents:
print("No documents loaded. Exiting.")
return None
print(f"Loaded {len(documents)} chat documents")
# Create text splitter with 256 chunk size
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25)
# Convert Documents to text strings and chunk them
all_texts = []
for doc in documents:
# Split the document into chunks
nodes = text_splitter.get_nodes_from_documents([doc])
for node in nodes:
all_texts.append(node.get_content())
print(f"Created {len(all_texts)} text chunks from {len(documents)} documents")
# Create LEANN index directory
print("--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print("--- Building new LEANN index ---")
print("\n[PHASE 1] Building Leann index...")
# Use HNSW backend for better macOS compatibility
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="mlx-community/Qwen3-Embedding-0.6B-4bit-DWQ", # MLX-optimized model
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1, # Force single-threaded mode
)
print(f"Adding {len(all_texts)} chat chunks to index...")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(index_path)
print(f"\nLEANN index built at {index_path}!")
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
return index_path
async def query_leann_index(index_path: str, query: str):
"""
Query the LEANN index.
Args:
index_path: Path to the LEANN index
query: The query string
"""
print("\n[PHASE 2] Starting Leann chat session...")
chat = LeannChat(index_path=index_path)
print(f"You: {query}")
chat_response = chat.ask(
query,
top_k=20,
recompute_beighbor_embeddings=True,
complexity=16,
beam_width=1,
llm_config={
"type": "openai",
"model": "gpt-4o",
"api_key": os.getenv("OPENAI_API_KEY"),
},
llm_kwargs={"temperature": 0.0, "max_tokens": 1000},
)
print(f"Leann chat response: \033[36m{chat_response}\033[0m")
async def main():
"""Main function with integrated WeChat export functionality."""
# Parse command line arguments
parser = argparse.ArgumentParser(
description="LEANN WeChat History Reader - Create and query WeChat chat history index"
)
parser.add_argument(
"--export-dir",
type=str,
default=DEFAULT_WECHAT_EXPORT_DIR,
help=f"Directory to store WeChat exports (default: {DEFAULT_WECHAT_EXPORT_DIR})",
)
parser.add_argument(
"--index-dir",
type=str,
default="./wechat_history_magic_test_11Debug_new",
help="Directory to store the LEANN index (default: ./wechat_history_index_leann_test)",
)
parser.add_argument(
"--max-entries",
type=int,
default=50,
help="Maximum number of chat entries to process (default: 5000)",
)
parser.add_argument(
"--query",
type=str,
default=None,
help="Single query to run (default: runs example queries)",
)
parser.add_argument(
"--force-export",
action="store_true",
default=False,
help="Force re-export of WeChat data even if exports exist",
)
args = parser.parse_args()
INDEX_DIR = Path(args.index_dir)
INDEX_PATH = str(INDEX_DIR / "wechat_history.leann")
print(f"Using WeChat export directory: {args.export_dir}")
print(f"Index directory: {INDEX_DIR}")
print(f"Max entries: {args.max_entries}")
# Initialize WeChat reader with export capabilities
from history_data.wechat_history import WeChatHistoryReader
reader = WeChatHistoryReader()
# Find existing exports or create new ones using the centralized method
export_dirs = reader.find_or_export_wechat_data(args.export_dir)
if not export_dirs:
print("Failed to find or export WeChat data. Exiting.")
return
# Create or load the LEANN index from all sources
index_path = create_leann_index_from_multiple_wechat_exports(
export_dirs, INDEX_PATH, max_count=args.max_entries
)
if index_path:
if args.query:
# Run single query
await query_leann_index(index_path, args.query)
else:
# Example queries
queries = [
"我想买魔术师约翰逊的球衣,给我一些对应聊天记录?",
]
for query in queries:
print("\n" + "=" * 60)
await query_leann_index(index_path, query)
if __name__ == "__main__":
asyncio.run(main())

28
llms.txt Normal file
View File

@@ -0,0 +1,28 @@
# llms.txt — LEANN MCP and Agent Integration
product: LEANN
homepage: https://github.com/yichuan-w/LEANN
contact: https://github.com/yichuan-w/LEANN/issues
# Installation
install: uv tool install leann-core --with leann
# MCP Server Entry Point
mcp.server: leann_mcp
mcp.protocol_version: 2024-11-05
# Tools
mcp.tools: leann_list, leann_search
mcp.tool.leann_list.description: List available LEANN indexes
mcp.tool.leann_list.input: {}
mcp.tool.leann_search.description: Semantic search across a named LEANN index
mcp.tool.leann_search.input.index_name: string, required
mcp.tool.leann_search.input.query: string, required
mcp.tool.leann_search.input.top_k: integer, optional, default=5, min=1, max=20
mcp.tool.leann_search.input.complexity: integer, optional, default=32, min=16, max=128
# Notes
note: Build indexes with `leann build <name> --docs <files...>` before searching.
example.add: claude mcp add --scope user leann-server -- leann_mcp
example.verify: claude mcp list | cat

View File

@@ -1,8 +0,0 @@
# packages/leann-backend-diskann/CMakeLists.txt (simplified version)
cmake_minimum_required(VERSION 3.20)
project(leann_backend_diskann_wrapper)
# Tell CMake to directly enter the DiskANN submodule and execute its own CMakeLists.txt
# DiskANN will handle everything itself, including compiling Python bindings
add_subdirectory(src/third_party/DiskANN)

View File

@@ -1 +1,7 @@
from . import diskann_backend as diskann_backend from . import diskann_backend as diskann_backend
from . import graph_partition
# Export main classes and functions
from .graph_partition import GraphPartitioner, partition_graph
__all__ = ["GraphPartitioner", "diskann_backend", "graph_partition", "partition_graph"]

View File

@@ -4,9 +4,10 @@ import os
import struct import struct
import sys import sys
from pathlib import Path from pathlib import Path
from typing import Any, Literal from typing import Any, Literal, Optional
import numpy as np import numpy as np
import psutil
from leann.interface import ( from leann.interface import (
LeannBackendBuilderInterface, LeannBackendBuilderInterface,
LeannBackendFactoryInterface, LeannBackendFactoryInterface,
@@ -21,6 +22,11 @@ logger = logging.getLogger(__name__)
@contextlib.contextmanager @contextlib.contextmanager
def suppress_cpp_output_if_needed(): def suppress_cpp_output_if_needed():
"""Suppress C++ stdout/stderr based on LEANN_LOG_LEVEL""" """Suppress C++ stdout/stderr based on LEANN_LOG_LEVEL"""
# In CI we avoid fiddling with low-level file descriptors to prevent aborts
if os.getenv("CI") == "true":
yield
return
log_level = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper() log_level = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
# Only suppress if log level is WARNING or higher (ERROR, CRITICAL) # Only suppress if log level is WARNING or higher (ERROR, CRITICAL)
@@ -84,6 +90,43 @@ def _write_vectors_to_bin(data: np.ndarray, file_path: Path):
f.write(data.tobytes()) f.write(data.tobytes())
def _calculate_smart_memory_config(data: np.ndarray) -> tuple[float, float]:
"""
Calculate smart memory configuration for DiskANN based on data size and system specs.
Args:
data: The embedding data array
Returns:
tuple: (search_memory_maximum, build_memory_maximum) in GB
"""
num_vectors, dim = data.shape
# Calculate embedding storage size
embedding_size_bytes = num_vectors * dim * 4 # float32 = 4 bytes
embedding_size_gb = embedding_size_bytes / (1024**3)
# search_memory_maximum: 1/10 of embedding size for optimal PQ compression
# This controls Product Quantization size - smaller means more compression
search_memory_gb = max(0.1, embedding_size_gb / 10) # At least 100MB
# build_memory_maximum: Based on available system RAM for sharding control
# This controls how much memory DiskANN uses during index construction
available_memory_gb = psutil.virtual_memory().available / (1024**3)
total_memory_gb = psutil.virtual_memory().total / (1024**3)
# Use 50% of available memory, but at least 2GB and at most 75% of total
build_memory_gb = max(2.0, min(available_memory_gb * 0.5, total_memory_gb * 0.75))
logger.info(
f"Smart memory config - Data: {embedding_size_gb:.2f}GB, "
f"Search mem: {search_memory_gb:.2f}GB (PQ control), "
f"Build mem: {build_memory_gb:.2f}GB (sharding control)"
)
return search_memory_gb, build_memory_gb
@register_backend("diskann") @register_backend("diskann")
class DiskannBackend(LeannBackendFactoryInterface): class DiskannBackend(LeannBackendFactoryInterface):
@staticmethod @staticmethod
@@ -99,6 +142,71 @@ class DiskannBuilder(LeannBackendBuilderInterface):
def __init__(self, **kwargs): def __init__(self, **kwargs):
self.build_params = kwargs self.build_params = kwargs
def _safe_cleanup_after_partition(self, index_dir: Path, index_prefix: str):
"""
Safely cleanup files after partition.
In partition mode, C++ doesn't read _disk.index content,
so we can delete it if all derived files exist.
"""
disk_index_file = index_dir / f"{index_prefix}_disk.index"
beam_search_file = index_dir / f"{index_prefix}_disk_beam_search.index"
# Required files that C++ partition mode needs
# Note: C++ generates these with _disk.index suffix
disk_suffix = "_disk.index"
required_files = [
f"{index_prefix}{disk_suffix}_medoids.bin", # Critical: assert fails if missing
# Note: _centroids.bin is not created in single-shot build - C++ handles this automatically
f"{index_prefix}_pq_pivots.bin", # PQ table
f"{index_prefix}_pq_compressed.bin", # PQ compressed vectors
]
# Check if all required files exist
missing_files = []
for filename in required_files:
file_path = index_dir / filename
if not file_path.exists():
missing_files.append(filename)
if missing_files:
logger.warning(
f"Cannot safely delete _disk.index - missing required files: {missing_files}"
)
logger.info("Keeping all original files for safety")
return
# Calculate space savings
space_saved = 0
files_to_delete = []
if disk_index_file.exists():
space_saved += disk_index_file.stat().st_size
files_to_delete.append(disk_index_file)
if beam_search_file.exists():
space_saved += beam_search_file.stat().st_size
files_to_delete.append(beam_search_file)
# Safe to delete!
for file_to_delete in files_to_delete:
try:
os.remove(file_to_delete)
logger.info(f"✅ Safely deleted: {file_to_delete.name}")
except Exception as e:
logger.warning(f"Failed to delete {file_to_delete.name}: {e}")
if space_saved > 0:
space_saved_mb = space_saved / (1024 * 1024)
logger.info(f"💾 Space saved: {space_saved_mb:.1f} MB")
# Show what files are kept
logger.info("📁 Kept essential files for partition mode:")
for filename in required_files:
file_path = index_dir / filename
if file_path.exists():
size_mb = file_path.stat().st_size / (1024 * 1024)
logger.info(f" - {filename} ({size_mb:.1f} MB)")
def build(self, data: np.ndarray, ids: list[str], index_path: str, **kwargs): def build(self, data: np.ndarray, ids: list[str], index_path: str, **kwargs):
path = Path(index_path) path = Path(index_path)
index_dir = path.parent index_dir = path.parent
@@ -113,6 +221,17 @@ class DiskannBuilder(LeannBackendBuilderInterface):
_write_vectors_to_bin(data, index_dir / data_filename) _write_vectors_to_bin(data, index_dir / data_filename)
build_kwargs = {**self.build_params, **kwargs} build_kwargs = {**self.build_params, **kwargs}
# Extract is_recompute from nested backend_kwargs if needed
is_recompute = build_kwargs.get("is_recompute", False)
if not is_recompute and "backend_kwargs" in build_kwargs:
is_recompute = build_kwargs["backend_kwargs"].get("is_recompute", False)
# Flatten all backend_kwargs parameters to top level for compatibility
if "backend_kwargs" in build_kwargs:
nested_params = build_kwargs.pop("backend_kwargs")
build_kwargs.update(nested_params)
metric_enum = _get_diskann_metrics().get( metric_enum = _get_diskann_metrics().get(
build_kwargs.get("distance_metric", "mips").lower() build_kwargs.get("distance_metric", "mips").lower()
) )
@@ -121,6 +240,16 @@ class DiskannBuilder(LeannBackendBuilderInterface):
f"Unsupported distance_metric '{build_kwargs.get('distance_metric', 'unknown')}'." f"Unsupported distance_metric '{build_kwargs.get('distance_metric', 'unknown')}'."
) )
# Calculate smart memory configuration if not explicitly provided
if (
"search_memory_maximum" not in build_kwargs
or "build_memory_maximum" not in build_kwargs
):
smart_search_mem, smart_build_mem = _calculate_smart_memory_config(data)
else:
smart_search_mem = build_kwargs.get("search_memory_maximum", 4.0)
smart_build_mem = build_kwargs.get("build_memory_maximum", 8.0)
try: try:
from . import _diskannpy as diskannpy # type: ignore from . import _diskannpy as diskannpy # type: ignore
@@ -131,12 +260,36 @@ class DiskannBuilder(LeannBackendBuilderInterface):
index_prefix, index_prefix,
build_kwargs.get("complexity", 64), build_kwargs.get("complexity", 64),
build_kwargs.get("graph_degree", 32), build_kwargs.get("graph_degree", 32),
build_kwargs.get("search_memory_maximum", 4.0), build_kwargs.get("search_memory_maximum", smart_search_mem),
build_kwargs.get("build_memory_maximum", 8.0), build_kwargs.get("build_memory_maximum", smart_build_mem),
build_kwargs.get("num_threads", 8), build_kwargs.get("num_threads", 8),
build_kwargs.get("pq_disk_bytes", 0), build_kwargs.get("pq_disk_bytes", 0),
"", "",
) )
# Auto-partition if is_recompute is enabled
if build_kwargs.get("is_recompute", False):
logger.info("is_recompute=True, starting automatic graph partitioning...")
from .graph_partition import partition_graph
# Partition the index using absolute paths
# Convert to absolute paths to avoid issues with working directory changes
absolute_index_dir = Path(index_dir).resolve()
absolute_index_prefix_path = str(absolute_index_dir / index_prefix)
disk_graph_path, partition_bin_path = partition_graph(
index_prefix_path=absolute_index_prefix_path,
output_dir=str(absolute_index_dir),
partition_prefix=index_prefix,
)
# Safe cleanup: In partition mode, C++ doesn't read _disk.index content
# but still needs the derived files (_medoids.bin, _centroids.bin, etc.)
self._safe_cleanup_after_partition(index_dir, index_prefix)
logger.info("✅ Graph partitioning completed successfully!")
logger.info(f" - Disk graph: {disk_graph_path}")
logger.info(f" - Partition file: {partition_bin_path}")
finally: finally:
temp_data_file = index_dir / data_filename temp_data_file = index_dir / data_filename
if temp_data_file.exists(): if temp_data_file.exists():
@@ -165,7 +318,26 @@ class DiskannSearcher(BaseSearcher):
# For DiskANN, we need to reinitialize the index when zmq_port changes # For DiskANN, we need to reinitialize the index when zmq_port changes
# Store the initialization parameters for later use # Store the initialization parameters for later use
full_index_prefix = str(self.index_dir / self.index_path.stem) # Note: C++ load method expects the BASE path (without _disk.index suffix)
# C++ internally constructs: index_prefix + "_disk.index"
index_name = self.index_path.stem # "simple_test.leann" -> "simple_test"
diskann_index_prefix = str(self.index_dir / index_name) # /path/to/simple_test
full_index_prefix = diskann_index_prefix # /path/to/simple_test (base path)
# Auto-detect partition files and set partition_prefix
partition_graph_file = self.index_dir / f"{index_name}_disk_graph.index"
partition_bin_file = self.index_dir / f"{index_name}_partition.bin"
partition_prefix = ""
if partition_graph_file.exists() and partition_bin_file.exists():
# C++ expects full path prefix, not just filename
partition_prefix = str(self.index_dir / index_name) # /path/to/simple_test
logger.info(
f"✅ Detected partition files, using partition_prefix='{partition_prefix}'"
)
else:
logger.debug("No partition files detected, using standard index files")
self._init_params = { self._init_params = {
"metric_enum": metric_enum, "metric_enum": metric_enum,
"full_index_prefix": full_index_prefix, "full_index_prefix": full_index_prefix,
@@ -173,8 +345,14 @@ class DiskannSearcher(BaseSearcher):
"num_nodes_to_cache": kwargs.get("num_nodes_to_cache", 0), "num_nodes_to_cache": kwargs.get("num_nodes_to_cache", 0),
"cache_mechanism": 1, "cache_mechanism": 1,
"pq_prefix": "", "pq_prefix": "",
"partition_prefix": "", "partition_prefix": partition_prefix,
} }
# Log partition configuration for debugging
if partition_prefix:
logger.info(
f"✅ Detected partition files, using partition_prefix='{partition_prefix}'"
)
self._diskannpy = diskannpy self._diskannpy = diskannpy
self._current_zmq_port = None self._current_zmq_port = None
self._index = None self._index = None
@@ -211,7 +389,7 @@ class DiskannSearcher(BaseSearcher):
prune_ratio: float = 0.0, prune_ratio: float = 0.0,
recompute_embeddings: bool = False, recompute_embeddings: bool = False,
pruning_strategy: Literal["global", "local", "proportional"] = "global", pruning_strategy: Literal["global", "local", "proportional"] = "global",
zmq_port: int | None = None, zmq_port: Optional[int] = None,
batch_recompute: bool = False, batch_recompute: bool = False,
dedup_node_dis: bool = False, dedup_node_dis: bool = False,
**kwargs, **kwargs,
@@ -263,7 +441,14 @@ class DiskannSearcher(BaseSearcher):
else: # "global" else: # "global"
use_global_pruning = True use_global_pruning = True
# Perform search with suppressed C++ output based on log level # Strategy:
# - Traversal always uses PQ distances
# - If recompute_embeddings=True, do a single final rerank via deferred fetch
# (fetch embeddings for the final candidate set only)
# - Do not recompute neighbor distances along the path
use_deferred_fetch = True if recompute_embeddings else False
recompute_neighors = False # Expected typo. For backward compatibility.
with suppress_cpp_output_if_needed(): with suppress_cpp_output_if_needed():
labels, distances = self._index.batch_search( labels, distances = self._index.batch_search(
query, query,
@@ -272,9 +457,9 @@ class DiskannSearcher(BaseSearcher):
complexity, complexity,
beam_width, beam_width,
self.num_threads, self.num_threads,
kwargs.get("USE_DEFERRED_FETCH", False), use_deferred_fetch,
kwargs.get("skip_search_reorder", False), kwargs.get("skip_search_reorder", False),
recompute_embeddings, recompute_neighors,
dedup_node_dis, dedup_node_dis,
prune_ratio, prune_ratio,
batch_recompute, batch_recompute,

View File

@@ -10,6 +10,7 @@ import sys
import threading import threading
import time import time
from pathlib import Path from pathlib import Path
from typing import Optional
import numpy as np import numpy as np
import zmq import zmq
@@ -32,7 +33,7 @@ if not logger.handlers:
def create_diskann_embedding_server( def create_diskann_embedding_server(
passages_file: str | None = None, passages_file: Optional[str] = None,
zmq_port: int = 5555, zmq_port: int = 5555,
model_name: str = "sentence-transformers/all-mpnet-base-v2", model_name: str = "sentence-transformers/all-mpnet-base-v2",
embedding_mode: str = "sentence-transformers", embedding_mode: str = "sentence-transformers",
@@ -80,10 +81,9 @@ def create_diskann_embedding_server(
with open(passages_file) as f: with open(passages_file) as f:
meta = json.load(f) meta = json.load(f)
passages = PassageManager(meta["passage_sources"]) logger.info(f"Loading PassageManager with metadata_file_path: {passages_file}")
logger.info( passages = PassageManager(meta["passage_sources"], metadata_file_path=passages_file)
f"Loaded PassageManager with {len(passages.global_offset_map)} passages from metadata" logger.info(f"Loaded PassageManager with {len(passages)} passages from metadata")
)
# Import protobuf after ensuring the path is correct # Import protobuf after ensuring the path is correct
try: try:
@@ -101,8 +101,9 @@ def create_diskann_embedding_server(
socket.bind(f"tcp://*:{zmq_port}") socket.bind(f"tcp://*:{zmq_port}")
logger.info(f"DiskANN ZMQ REP server listening on port {zmq_port}") logger.info(f"DiskANN ZMQ REP server listening on port {zmq_port}")
socket.setsockopt(zmq.RCVTIMEO, 300000) socket.setsockopt(zmq.RCVTIMEO, 1000)
socket.setsockopt(zmq.SNDTIMEO, 300000) socket.setsockopt(zmq.SNDTIMEO, 1000)
socket.setsockopt(zmq.LINGER, 0)
while True: while True:
try: try:
@@ -219,30 +220,217 @@ def create_diskann_embedding_server(
traceback.print_exc() traceback.print_exc()
raise raise
zmq_thread = threading.Thread(target=zmq_server_thread, daemon=True) def zmq_server_thread_with_shutdown(shutdown_event):
"""ZMQ server thread that respects shutdown signal.
This creates its own REP socket, binds to zmq_port, and periodically
checks shutdown_event using recv timeouts to exit cleanly.
"""
logger.info("DiskANN ZMQ server thread started with shutdown support")
context = zmq.Context()
rep_socket = context.socket(zmq.REP)
rep_socket.bind(f"tcp://*:{zmq_port}")
logger.info(f"DiskANN ZMQ REP server listening on port {zmq_port}")
# Set receive timeout so we can check shutdown_event periodically
rep_socket.setsockopt(zmq.RCVTIMEO, 1000) # 1 second timeout
rep_socket.setsockopt(zmq.SNDTIMEO, 1000)
rep_socket.setsockopt(zmq.LINGER, 0)
try:
while not shutdown_event.is_set():
try:
e2e_start = time.time()
# REP socket receives single-part messages
message = rep_socket.recv()
# Check for empty messages - REP socket requires response to every request
if not message:
logger.warning("Received empty message, sending empty response")
rep_socket.send(b"")
continue
# Try protobuf first (same logic as original)
texts = []
is_text_request = False
try:
req_proto = embedding_pb2.NodeEmbeddingRequest()
req_proto.ParseFromString(message)
node_ids = list(req_proto.node_ids)
# Look up texts by node IDs
for nid in node_ids:
try:
passage_data = passages.get_passage(str(nid))
txt = passage_data["text"]
if not txt:
raise RuntimeError(f"FATAL: Empty text for passage ID {nid}")
texts.append(txt)
except KeyError:
raise RuntimeError(f"FATAL: Passage with ID {nid} not found")
logger.info(f"ZMQ received protobuf request for {len(node_ids)} node IDs")
except Exception:
# Fallback to msgpack for text requests
try:
import msgpack
request = msgpack.unpackb(message)
if isinstance(request, list) and all(
isinstance(item, str) for item in request
):
texts = request
is_text_request = True
logger.info(
f"ZMQ received msgpack text request for {len(texts)} texts"
)
else:
raise ValueError("Not a valid msgpack text request")
except Exception:
logger.error("Both protobuf and msgpack parsing failed!")
# Send error response
resp_proto = embedding_pb2.NodeEmbeddingResponse()
rep_socket.send(resp_proto.SerializeToString())
continue
# Process the request
embeddings = compute_embeddings(texts, model_name, mode=embedding_mode)
logger.info(f"Computed embeddings shape: {embeddings.shape}")
# Validation
if np.isnan(embeddings).any() or np.isinf(embeddings).any():
logger.error("NaN or Inf detected in embeddings!")
# Send error response
if is_text_request:
import msgpack
response_data = msgpack.packb([])
else:
resp_proto = embedding_pb2.NodeEmbeddingResponse()
response_data = resp_proto.SerializeToString()
rep_socket.send(response_data)
continue
# Prepare response based on request type
if is_text_request:
# For direct text requests, return msgpack
import msgpack
response_data = msgpack.packb(embeddings.tolist())
else:
# For protobuf requests, return protobuf
resp_proto = embedding_pb2.NodeEmbeddingResponse()
hidden_contiguous = np.ascontiguousarray(embeddings, dtype=np.float32)
resp_proto.embeddings_data = hidden_contiguous.tobytes()
resp_proto.dimensions.append(hidden_contiguous.shape[0])
resp_proto.dimensions.append(hidden_contiguous.shape[1])
response_data = resp_proto.SerializeToString()
# Send response back to the client
rep_socket.send(response_data)
e2e_end = time.time()
logger.info(f"⏱️ ZMQ E2E time: {e2e_end - e2e_start:.6f}s")
except zmq.Again:
# Timeout - check shutdown_event and continue
continue
except Exception as e:
if not shutdown_event.is_set():
logger.error(f"Error in ZMQ server loop: {e}")
try:
# Send error response for REP socket
resp_proto = embedding_pb2.NodeEmbeddingResponse()
rep_socket.send(resp_proto.SerializeToString())
except Exception:
pass
else:
logger.info("Shutdown in progress, ignoring ZMQ error")
break
finally:
try:
rep_socket.close(0)
except Exception:
pass
try:
context.term()
except Exception:
pass
logger.info("DiskANN ZMQ server thread exiting gracefully")
# Add shutdown coordination
shutdown_event = threading.Event()
def shutdown_zmq_server():
"""Gracefully shutdown ZMQ server."""
logger.info("Initiating graceful shutdown...")
shutdown_event.set()
if zmq_thread.is_alive():
logger.info("Waiting for ZMQ thread to finish...")
zmq_thread.join(timeout=5)
if zmq_thread.is_alive():
logger.warning("ZMQ thread did not finish in time")
# Clean up ZMQ resources
try:
# Note: socket and context are cleaned up by thread exit
logger.info("ZMQ resources cleaned up")
except Exception as e:
logger.warning(f"Error cleaning ZMQ resources: {e}")
# Clean up other resources
try:
import gc
gc.collect()
logger.info("Additional resources cleaned up")
except Exception as e:
logger.warning(f"Error cleaning additional resources: {e}")
logger.info("Graceful shutdown completed")
sys.exit(0)
# Register signal handlers within this function scope
import signal
def signal_handler(sig, frame):
logger.info(f"Received signal {sig}, shutting down gracefully...")
shutdown_zmq_server()
signal.signal(signal.SIGTERM, signal_handler)
signal.signal(signal.SIGINT, signal_handler)
# Start ZMQ thread (NOT daemon!)
zmq_thread = threading.Thread(
target=lambda: zmq_server_thread_with_shutdown(shutdown_event),
daemon=False, # Not daemon - we want to wait for it
)
zmq_thread.start() zmq_thread.start()
logger.info(f"Started DiskANN ZMQ server thread on port {zmq_port}") logger.info(f"Started DiskANN ZMQ server thread on port {zmq_port}")
# Keep the main thread alive # Keep the main thread alive
try: try:
while True: while not shutdown_event.is_set():
time.sleep(1) time.sleep(0.1) # Check shutdown more frequently
except KeyboardInterrupt: except KeyboardInterrupt:
logger.info("DiskANN Server shutting down...") logger.info("DiskANN Server shutting down...")
shutdown_zmq_server()
return return
# If we reach here, shutdown was triggered by signal
logger.info("Main loop exited, process should be shutting down")
if __name__ == "__main__": if __name__ == "__main__":
import signal
import sys import sys
def signal_handler(sig, frame): # Signal handlers are now registered within create_diskann_embedding_server
logger.info(f"Received signal {sig}, shutting down gracefully...")
sys.exit(0)
# Register signal handlers for graceful shutdown
signal.signal(signal.SIGTERM, signal_handler)
signal.signal(signal.SIGINT, signal_handler)
parser = argparse.ArgumentParser(description="DiskANN Embedding service") parser = argparse.ArgumentParser(description="DiskANN Embedding service")
parser.add_argument("--zmq-port", type=int, default=5555, help="ZMQ port to run on") parser.add_argument("--zmq-port", type=int, default=5555, help="ZMQ port to run on")
@@ -261,7 +449,7 @@ if __name__ == "__main__":
"--embedding-mode", "--embedding-mode",
type=str, type=str,
default="sentence-transformers", default="sentence-transformers",
choices=["sentence-transformers", "openai", "mlx"], choices=["sentence-transformers", "openai", "mlx", "ollama"],
help="Embedding backend mode", help="Embedding backend mode",
) )
parser.add_argument( parser.add_argument(

View File

@@ -0,0 +1,299 @@
#!/usr/bin/env python3
"""
Graph Partition Module for LEANN DiskANN Backend
This module provides Python bindings for the graph partition functionality
of DiskANN, allowing users to partition disk-based indices for better
performance.
"""
import os
import shutil
import subprocess
import tempfile
from pathlib import Path
from typing import Optional
class GraphPartitioner:
"""
A Python interface for DiskANN's graph partition functionality.
This class provides methods to partition disk-based indices for improved
search performance and memory efficiency.
"""
def __init__(self, build_type: str = "release"):
"""
Initialize the GraphPartitioner.
Args:
build_type: Build type for the executables ("debug" or "release")
"""
self.build_type = build_type
self._ensure_executables()
def _get_executable_path(self, name: str) -> str:
"""Get the path to a graph partition executable."""
# Get the directory where this Python module is located
module_dir = Path(__file__).parent
# Navigate to the graph_partition directory
graph_partition_dir = module_dir.parent / "third_party" / "DiskANN" / "graph_partition"
executable_path = graph_partition_dir / "build" / self.build_type / "graph_partition" / name
if not executable_path.exists():
raise FileNotFoundError(f"Executable {name} not found at {executable_path}")
return str(executable_path)
def _ensure_executables(self):
"""Ensure that the required executables are built."""
try:
self._get_executable_path("partitioner")
self._get_executable_path("index_relayout")
except FileNotFoundError:
# Try to build the executables automatically
print("Executables not found, attempting to build them...")
self._build_executables()
def _build_executables(self):
"""Build the required executables."""
graph_partition_dir = (
Path(__file__).parent.parent / "third_party" / "DiskANN" / "graph_partition"
)
original_dir = os.getcwd()
try:
os.chdir(graph_partition_dir)
# Clean any existing build
if (graph_partition_dir / "build").exists():
shutil.rmtree(graph_partition_dir / "build")
# Run the build script
cmd = ["./build.sh", self.build_type, "split_graph", "/tmp/dummy"]
subprocess.run(cmd, capture_output=True, text=True, cwd=graph_partition_dir)
# Check if executables were created
partitioner_path = self._get_executable_path("partitioner")
relayout_path = self._get_executable_path("index_relayout")
print(f"✅ Built partitioner: {partitioner_path}")
print(f"✅ Built index_relayout: {relayout_path}")
except Exception as e:
raise RuntimeError(f"Failed to build executables: {e}")
finally:
os.chdir(original_dir)
def partition_graph(
self,
index_prefix_path: str,
output_dir: Optional[str] = None,
partition_prefix: Optional[str] = None,
**kwargs,
) -> tuple[str, str]:
"""
Partition a disk-based index for improved performance.
Args:
index_prefix_path: Path to the index prefix (e.g., "/path/to/index")
output_dir: Output directory for results (defaults to parent of index_prefix_path)
partition_prefix: Prefix for output files (defaults to basename of index_prefix_path)
**kwargs: Additional parameters for graph partitioning:
- gp_times: Number of LDG partition iterations (default: 10)
- lock_nums: Number of lock nodes (default: 10)
- cut: Cut adjacency list degree (default: 100)
- scale_factor: Scale factor (default: 1)
- data_type: Data type (default: "float")
- thread_nums: Number of threads (default: 10)
Returns:
Tuple of (disk_graph_index_path, partition_bin_path)
Raises:
RuntimeError: If the partitioning process fails
"""
# Set default parameters
params = {
"gp_times": 10,
"lock_nums": 10,
"cut": 100,
"scale_factor": 1,
"data_type": "float",
"thread_nums": 10,
**kwargs,
}
# Determine output directory
if output_dir is None:
output_dir = str(Path(index_prefix_path).parent)
# Create output directory if it doesn't exist
Path(output_dir).mkdir(parents=True, exist_ok=True)
# Determine partition prefix
if partition_prefix is None:
partition_prefix = Path(index_prefix_path).name
# Get executable paths
partitioner_path = self._get_executable_path("partitioner")
relayout_path = self._get_executable_path("index_relayout")
# Create temporary directory for processing
with tempfile.TemporaryDirectory() as temp_dir:
# Change to the graph_partition directory for temporary files
graph_partition_dir = (
Path(__file__).parent.parent / "third_party" / "DiskANN" / "graph_partition"
)
original_dir = os.getcwd()
try:
os.chdir(graph_partition_dir)
# Create temporary data directory
temp_data_dir = Path(temp_dir) / "data"
temp_data_dir.mkdir(parents=True, exist_ok=True)
# Set up paths for temporary files
graph_path = temp_data_dir / "starling" / "_M_R_L_B" / "GRAPH"
graph_gp_path = (
graph_path
/ f"GP_TIMES_{params['gp_times']}_LOCK_{params['lock_nums']}_GP_USE_FREQ0_CUT{params['cut']}_SCALE{params['scale_factor']}"
)
graph_gp_path.mkdir(parents=True, exist_ok=True)
# Find input index file
old_index_file = f"{index_prefix_path}_disk_beam_search.index"
if not os.path.exists(old_index_file):
old_index_file = f"{index_prefix_path}_disk.index"
if not os.path.exists(old_index_file):
raise RuntimeError(f"Index file not found: {old_index_file}")
# Run partitioner
gp_file_path = graph_gp_path / "_part.bin"
partitioner_cmd = [
partitioner_path,
"--index_file",
old_index_file,
"--data_type",
params["data_type"],
"--gp_file",
str(gp_file_path),
"-T",
str(params["thread_nums"]),
"--ldg_times",
str(params["gp_times"]),
"--scale",
str(params["scale_factor"]),
"--mode",
"1",
]
print(f"Running partitioner: {' '.join(partitioner_cmd)}")
result = subprocess.run(
partitioner_cmd, capture_output=True, text=True, cwd=graph_partition_dir
)
if result.returncode != 0:
raise RuntimeError(
f"Partitioner failed with return code {result.returncode}.\n"
f"stdout: {result.stdout}\n"
f"stderr: {result.stderr}"
)
# Run relayout
part_tmp_index = graph_gp_path / "_part_tmp.index"
relayout_cmd = [
relayout_path,
old_index_file,
str(gp_file_path),
params["data_type"],
"1",
]
print(f"Running relayout: {' '.join(relayout_cmd)}")
result = subprocess.run(
relayout_cmd, capture_output=True, text=True, cwd=graph_partition_dir
)
if result.returncode != 0:
raise RuntimeError(
f"Relayout failed with return code {result.returncode}.\n"
f"stdout: {result.stdout}\n"
f"stderr: {result.stderr}"
)
# Copy results to output directory
disk_graph_path = Path(output_dir) / f"{partition_prefix}_disk_graph.index"
partition_bin_path = Path(output_dir) / f"{partition_prefix}_partition.bin"
shutil.copy2(part_tmp_index, disk_graph_path)
shutil.copy2(gp_file_path, partition_bin_path)
print(f"Results copied to: {output_dir}")
return str(disk_graph_path), str(partition_bin_path)
finally:
os.chdir(original_dir)
def get_partition_info(self, partition_bin_path: str) -> dict:
"""
Get information about a partition file.
Args:
partition_bin_path: Path to the partition binary file
Returns:
Dictionary containing partition information
"""
if not os.path.exists(partition_bin_path):
raise FileNotFoundError(f"Partition file not found: {partition_bin_path}")
# For now, return basic file information
# In the future, this could parse the binary file for detailed info
stat = os.stat(partition_bin_path)
return {
"file_size": stat.st_size,
"file_path": partition_bin_path,
"modified_time": stat.st_mtime,
}
def partition_graph(
index_prefix_path: str,
output_dir: Optional[str] = None,
partition_prefix: Optional[str] = None,
build_type: str = "release",
**kwargs,
) -> tuple[str, str]:
"""
Convenience function to partition a graph index.
Args:
index_prefix_path: Path to the index prefix
output_dir: Output directory (defaults to parent of index_prefix_path)
partition_prefix: Prefix for output files (defaults to basename of index_prefix_path)
build_type: Build type for executables ("debug" or "release")
**kwargs: Additional parameters for graph partitioning
Returns:
Tuple of (disk_graph_index_path, partition_bin_path)
"""
partitioner = GraphPartitioner(build_type=build_type)
return partitioner.partition_graph(index_prefix_path, output_dir, partition_prefix, **kwargs)
# Example usage:
if __name__ == "__main__":
# Example: partition an index
try:
disk_graph_path, partition_bin_path = partition_graph(
"/path/to/your/index_prefix", gp_times=10, lock_nums=10, cut=100
)
print("Partitioning completed successfully!")
print(f"Disk graph index: {disk_graph_path}")
print(f"Partition binary: {partition_bin_path}")
except Exception as e:
print(f"Partitioning failed: {e}")

View File

@@ -1,11 +1,11 @@
[build-system] [build-system]
requires = ["scikit-build-core>=0.10", "pybind11>=2.12.0", "numpy"] requires = ["scikit-build-core>=0.10", "pybind11>=2.12.0", "numpy", "cmake>=3.30"]
build-backend = "scikit_build_core.build" build-backend = "scikit_build_core.build"
[project] [project]
name = "leann-backend-diskann" name = "leann-backend-diskann"
version = "0.1.16" version = "0.3.4"
dependencies = ["leann-core==0.1.16", "numpy", "protobuf>=3.19.0"] dependencies = ["leann-core==0.3.4", "numpy", "protobuf>=3.19.0"]
[tool.scikit-build] [tool.scikit-build]
# Key: simplified CMake path # Key: simplified CMake path
@@ -17,3 +17,5 @@ editable.mode = "redirect"
cmake.build-type = "Release" cmake.build-type = "Release"
build.verbose = true build.verbose = true
build.tool-args = ["-j8"] build.tool-args = ["-j8"]
# Let CMake find packages via Homebrew prefix
cmake.define = {CMAKE_PREFIX_PATH = {env = "CMAKE_PREFIX_PATH"}, OpenMP_ROOT = {env = "OpenMP_ROOT"}}

View File

@@ -5,11 +5,20 @@ set(CMAKE_CXX_COMPILER_WORKS 1)
# Set OpenMP path for macOS # Set OpenMP path for macOS
if(APPLE) if(APPLE)
set(OpenMP_C_FLAGS "-Xpreprocessor -fopenmp -I/opt/homebrew/opt/libomp/include") # Detect Homebrew installation path (Apple Silicon vs Intel)
set(OpenMP_CXX_FLAGS "-Xpreprocessor -fopenmp -I/opt/homebrew/opt/libomp/include") if(EXISTS "/opt/homebrew/opt/libomp")
set(HOMEBREW_PREFIX "/opt/homebrew")
elseif(EXISTS "/usr/local/opt/libomp")
set(HOMEBREW_PREFIX "/usr/local")
else()
message(FATAL_ERROR "Could not find libomp installation. Please install with: brew install libomp")
endif()
set(OpenMP_C_FLAGS "-Xpreprocessor -fopenmp -I${HOMEBREW_PREFIX}/opt/libomp/include")
set(OpenMP_CXX_FLAGS "-Xpreprocessor -fopenmp -I${HOMEBREW_PREFIX}/opt/libomp/include")
set(OpenMP_C_LIB_NAMES "omp") set(OpenMP_C_LIB_NAMES "omp")
set(OpenMP_CXX_LIB_NAMES "omp") set(OpenMP_CXX_LIB_NAMES "omp")
set(OpenMP_omp_LIBRARY "/opt/homebrew/opt/libomp/lib/libomp.dylib") set(OpenMP_omp_LIBRARY "${HOMEBREW_PREFIX}/opt/libomp/lib/libomp.dylib")
# Force use of system libc++ to avoid version mismatch # Force use of system libc++ to avoid version mismatch
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -stdlib=libc++") set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -stdlib=libc++")
@@ -40,9 +49,28 @@ set(BUILD_TESTING OFF CACHE BOOL "" FORCE)
set(FAISS_ENABLE_C_API OFF CACHE BOOL "" FORCE) set(FAISS_ENABLE_C_API OFF CACHE BOOL "" FORCE)
set(FAISS_OPT_LEVEL "generic" CACHE STRING "" FORCE) set(FAISS_OPT_LEVEL "generic" CACHE STRING "" FORCE)
# Disable additional SIMD versions to speed up compilation # Disable x86-specific SIMD optimizations (important for ARM64 compatibility)
set(FAISS_ENABLE_AVX2 OFF CACHE BOOL "" FORCE) set(FAISS_ENABLE_AVX2 OFF CACHE BOOL "" FORCE)
set(FAISS_ENABLE_AVX512 OFF CACHE BOOL "" FORCE) set(FAISS_ENABLE_AVX512 OFF CACHE BOOL "" FORCE)
set(FAISS_ENABLE_SSE4_1 OFF CACHE BOOL "" FORCE)
# ARM64-specific configuration
if(CMAKE_SYSTEM_PROCESSOR MATCHES "aarch64|arm64")
message(STATUS "Configuring Faiss for ARM64 architecture")
if(CMAKE_SYSTEM_NAME STREQUAL "Linux")
# Use SVE optimization level for ARM64 Linux (as seen in Faiss conda build)
set(FAISS_OPT_LEVEL "sve" CACHE STRING "" FORCE)
message(STATUS "Setting FAISS_OPT_LEVEL to 'sve' for ARM64 Linux")
else()
# Use generic optimization for other ARM64 platforms (like macOS)
set(FAISS_OPT_LEVEL "generic" CACHE STRING "" FORCE)
message(STATUS "Setting FAISS_OPT_LEVEL to 'generic' for ARM64 ${CMAKE_SYSTEM_NAME}")
endif()
# ARM64 compatibility: Faiss submodule has been modified to fix x86 header inclusion
message(STATUS "Using ARM64-compatible Faiss submodule")
endif()
# Additional optimization options from INSTALL.md # Additional optimization options from INSTALL.md
set(CMAKE_BUILD_TYPE "Release" CACHE STRING "" FORCE) set(CMAKE_BUILD_TYPE "Release" CACHE STRING "" FORCE)

View File

@@ -1,12 +1,21 @@
import argparse import argparse
import gc # Import garbage collector interface import gc # Import garbage collector interface
import logging
import os import os
import struct import struct
import sys import sys
import time import time
from dataclasses import dataclass
from typing import Any, Optional
import numpy as np import numpy as np
# Set up logging to avoid print buffer issues
logger = logging.getLogger(__name__)
LOG_LEVEL = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
log_level = getattr(logging, LOG_LEVEL, logging.WARNING)
logger.setLevel(log_level)
# --- FourCCs (add more if needed) --- # --- FourCCs (add more if needed) ---
INDEX_HNSW_FLAT_FOURCC = int.from_bytes(b"IHNf", "little") INDEX_HNSW_FLAT_FOURCC = int.from_bytes(b"IHNf", "little")
# Add other HNSW fourccs if you expect different storage types inside HNSW # Add other HNSW fourccs if you expect different storage types inside HNSW
@@ -230,6 +239,288 @@ def write_compact_format(
f_out.write(storage_data) f_out.write(storage_data)
@dataclass
class HNSWComponents:
original_hnsw_data: dict[str, Any]
assign_probas_np: np.ndarray
cum_nneighbor_per_level_np: np.ndarray
levels_np: np.ndarray
is_compact: bool
compact_level_ptr: Optional[np.ndarray] = None
compact_node_offsets_np: Optional[np.ndarray] = None
compact_neighbors_data: Optional[list[int]] = None
offsets_np: Optional[np.ndarray] = None
neighbors_np: Optional[np.ndarray] = None
storage_fourcc: int = NULL_INDEX_FOURCC
storage_data: bytes = b""
def _read_hnsw_structure(f) -> HNSWComponents:
original_hnsw_data: dict[str, Any] = {}
hnsw_index_fourcc = read_struct(f, "<I")
if hnsw_index_fourcc not in EXPECTED_HNSW_FOURCCS:
raise ValueError(
f"Unexpected HNSW FourCC: {hnsw_index_fourcc:08x}. Expected one of {EXPECTED_HNSW_FOURCCS}."
)
original_hnsw_data["index_fourcc"] = hnsw_index_fourcc
original_hnsw_data["d"] = read_struct(f, "<i")
original_hnsw_data["ntotal"] = read_struct(f, "<q")
original_hnsw_data["dummy1"] = read_struct(f, "<q")
original_hnsw_data["dummy2"] = read_struct(f, "<q")
original_hnsw_data["is_trained"] = read_struct(f, "?")
original_hnsw_data["metric_type"] = read_struct(f, "<i")
original_hnsw_data["metric_arg"] = 0.0
if original_hnsw_data["metric_type"] > 1:
original_hnsw_data["metric_arg"] = read_struct(f, "<f")
assign_probas_np = read_numpy_vector(f, np.float64, "d")
cum_nneighbor_per_level_np = read_numpy_vector(f, np.int32, "i")
levels_np = read_numpy_vector(f, np.int32, "i")
ntotal = len(levels_np)
if ntotal != original_hnsw_data["ntotal"]:
original_hnsw_data["ntotal"] = ntotal
pos_before_compact = f.tell()
is_compact_flag = None
try:
is_compact_flag = read_struct(f, "<?")
except EOFError:
is_compact_flag = None
if is_compact_flag:
compact_level_ptr = read_numpy_vector(f, np.uint64, "Q")
compact_node_offsets_np = read_numpy_vector(f, np.uint64, "Q")
original_hnsw_data["entry_point"] = read_struct(f, "<i")
original_hnsw_data["max_level"] = read_struct(f, "<i")
original_hnsw_data["efConstruction"] = read_struct(f, "<i")
original_hnsw_data["efSearch"] = read_struct(f, "<i")
original_hnsw_data["dummy_upper_beam"] = read_struct(f, "<i")
storage_fourcc = read_struct(f, "<I")
compact_neighbors_data_np = read_numpy_vector(f, np.int32, "i")
compact_neighbors_data = compact_neighbors_data_np.tolist()
storage_data = f.read()
return HNSWComponents(
original_hnsw_data=original_hnsw_data,
assign_probas_np=assign_probas_np,
cum_nneighbor_per_level_np=cum_nneighbor_per_level_np,
levels_np=levels_np,
is_compact=True,
compact_level_ptr=compact_level_ptr,
compact_node_offsets_np=compact_node_offsets_np,
compact_neighbors_data=compact_neighbors_data,
storage_fourcc=storage_fourcc,
storage_data=storage_data,
)
# Non-compact case
f.seek(pos_before_compact)
pos_before_probe = f.tell()
try:
suspected_flag = read_struct(f, "<B")
if suspected_flag != 0x00:
f.seek(pos_before_probe)
except EOFError:
f.seek(pos_before_probe)
offsets_np = read_numpy_vector(f, np.uint64, "Q")
neighbors_np = read_numpy_vector(f, np.int32, "i")
original_hnsw_data["entry_point"] = read_struct(f, "<i")
original_hnsw_data["max_level"] = read_struct(f, "<i")
original_hnsw_data["efConstruction"] = read_struct(f, "<i")
original_hnsw_data["efSearch"] = read_struct(f, "<i")
original_hnsw_data["dummy_upper_beam"] = read_struct(f, "<i")
storage_fourcc = NULL_INDEX_FOURCC
storage_data = b""
try:
storage_fourcc = read_struct(f, "<I")
storage_data = f.read()
except EOFError:
storage_fourcc = NULL_INDEX_FOURCC
return HNSWComponents(
original_hnsw_data=original_hnsw_data,
assign_probas_np=assign_probas_np,
cum_nneighbor_per_level_np=cum_nneighbor_per_level_np,
levels_np=levels_np,
is_compact=False,
offsets_np=offsets_np,
neighbors_np=neighbors_np,
storage_fourcc=storage_fourcc,
storage_data=storage_data,
)
def _read_hnsw_structure_from_file(path: str) -> HNSWComponents:
with open(path, "rb") as f:
return _read_hnsw_structure(f)
def write_original_format(
f_out,
original_hnsw_data,
assign_probas_np,
cum_nneighbor_per_level_np,
levels_np,
offsets_np,
neighbors_np,
storage_fourcc,
storage_data,
):
"""Write non-compact HNSW data in original FAISS order."""
f_out.write(struct.pack("<I", original_hnsw_data["index_fourcc"]))
f_out.write(struct.pack("<i", original_hnsw_data["d"]))
f_out.write(struct.pack("<q", original_hnsw_data["ntotal"]))
f_out.write(struct.pack("<q", original_hnsw_data["dummy1"]))
f_out.write(struct.pack("<q", original_hnsw_data["dummy2"]))
f_out.write(struct.pack("<?", original_hnsw_data["is_trained"]))
f_out.write(struct.pack("<i", original_hnsw_data["metric_type"]))
if original_hnsw_data["metric_type"] > 1:
f_out.write(struct.pack("<f", original_hnsw_data["metric_arg"]))
write_numpy_vector(f_out, assign_probas_np, "d")
write_numpy_vector(f_out, cum_nneighbor_per_level_np, "i")
write_numpy_vector(f_out, levels_np, "i")
write_numpy_vector(f_out, offsets_np, "Q")
write_numpy_vector(f_out, neighbors_np, "i")
f_out.write(struct.pack("<i", original_hnsw_data["entry_point"]))
f_out.write(struct.pack("<i", original_hnsw_data["max_level"]))
f_out.write(struct.pack("<i", original_hnsw_data["efConstruction"]))
f_out.write(struct.pack("<i", original_hnsw_data["efSearch"]))
f_out.write(struct.pack("<i", original_hnsw_data["dummy_upper_beam"]))
f_out.write(struct.pack("<I", storage_fourcc))
if storage_fourcc != NULL_INDEX_FOURCC and storage_data:
f_out.write(storage_data)
def prune_hnsw_embeddings(input_filename: str, output_filename: str) -> bool:
"""Rewrite an HNSW index while dropping the embedded storage section."""
start_time = time.time()
try:
with open(input_filename, "rb") as f_in, open(output_filename, "wb") as f_out:
original_hnsw_data: dict[str, Any] = {}
hnsw_index_fourcc = read_struct(f_in, "<I")
if hnsw_index_fourcc not in EXPECTED_HNSW_FOURCCS:
print(
f"Error: Expected HNSW Index FourCC ({list(EXPECTED_HNSW_FOURCCS)}), got {hnsw_index_fourcc:08x}.",
file=sys.stderr,
)
return False
original_hnsw_data["index_fourcc"] = hnsw_index_fourcc
original_hnsw_data["d"] = read_struct(f_in, "<i")
original_hnsw_data["ntotal"] = read_struct(f_in, "<q")
original_hnsw_data["dummy1"] = read_struct(f_in, "<q")
original_hnsw_data["dummy2"] = read_struct(f_in, "<q")
original_hnsw_data["is_trained"] = read_struct(f_in, "?")
original_hnsw_data["metric_type"] = read_struct(f_in, "<i")
original_hnsw_data["metric_arg"] = 0.0
if original_hnsw_data["metric_type"] > 1:
original_hnsw_data["metric_arg"] = read_struct(f_in, "<f")
assign_probas_np = read_numpy_vector(f_in, np.float64, "d")
cum_nneighbor_per_level_np = read_numpy_vector(f_in, np.int32, "i")
levels_np = read_numpy_vector(f_in, np.int32, "i")
ntotal = len(levels_np)
if ntotal != original_hnsw_data["ntotal"]:
original_hnsw_data["ntotal"] = ntotal
pos_before_compact = f_in.tell()
is_compact_flag = None
try:
is_compact_flag = read_struct(f_in, "<?")
except EOFError:
is_compact_flag = None
if is_compact_flag:
compact_level_ptr = read_numpy_vector(f_in, np.uint64, "Q")
compact_node_offsets_np = read_numpy_vector(f_in, np.uint64, "Q")
original_hnsw_data["entry_point"] = read_struct(f_in, "<i")
original_hnsw_data["max_level"] = read_struct(f_in, "<i")
original_hnsw_data["efConstruction"] = read_struct(f_in, "<i")
original_hnsw_data["efSearch"] = read_struct(f_in, "<i")
original_hnsw_data["dummy_upper_beam"] = read_struct(f_in, "<i")
_storage_fourcc = read_struct(f_in, "<I")
compact_neighbors_data_np = read_numpy_vector(f_in, np.int32, "i")
compact_neighbors_data = compact_neighbors_data_np.tolist()
_storage_data = f_in.read()
write_compact_format(
f_out,
original_hnsw_data,
assign_probas_np,
cum_nneighbor_per_level_np,
levels_np,
compact_level_ptr,
compact_node_offsets_np,
compact_neighbors_data,
NULL_INDEX_FOURCC,
b"",
)
else:
f_in.seek(pos_before_compact)
pos_before_probe = f_in.tell()
try:
suspected_flag = read_struct(f_in, "<B")
if suspected_flag != 0x00:
f_in.seek(pos_before_probe)
except EOFError:
f_in.seek(pos_before_probe)
offsets_np = read_numpy_vector(f_in, np.uint64, "Q")
neighbors_np = read_numpy_vector(f_in, np.int32, "i")
original_hnsw_data["entry_point"] = read_struct(f_in, "<i")
original_hnsw_data["max_level"] = read_struct(f_in, "<i")
original_hnsw_data["efConstruction"] = read_struct(f_in, "<i")
original_hnsw_data["efSearch"] = read_struct(f_in, "<i")
original_hnsw_data["dummy_upper_beam"] = read_struct(f_in, "<i")
_storage_fourcc = None
_storage_data = b""
try:
_storage_fourcc = read_struct(f_in, "<I")
_storage_data = f_in.read()
except EOFError:
_storage_fourcc = NULL_INDEX_FOURCC
write_original_format(
f_out,
original_hnsw_data,
assign_probas_np,
cum_nneighbor_per_level_np,
levels_np,
offsets_np,
neighbors_np,
NULL_INDEX_FOURCC,
b"",
)
print(f"[{time.time() - start_time:.2f}s] Pruned embeddings from {input_filename}")
return True
except Exception as exc:
print(f"Failed to prune embeddings: {exc}", file=sys.stderr)
return False
# --- Main Conversion Logic --- # --- Main Conversion Logic ---
@@ -243,6 +534,8 @@ def convert_hnsw_graph_to_csr(input_filename, output_filename, prune_embeddings=
output_filename: Output CSR index file output_filename: Output CSR index file
prune_embeddings: Whether to prune embedding storage (write NULL storage marker) prune_embeddings: Whether to prune embedding storage (write NULL storage marker)
""" """
# Keep prints simple; rely on CI runner to flush output as needed
print(f"Starting conversion: {input_filename} -> {output_filename}") print(f"Starting conversion: {input_filename} -> {output_filename}")
start_time = time.time() start_time = time.time()
original_hnsw_data = {} original_hnsw_data = {}
@@ -691,6 +984,29 @@ def convert_hnsw_graph_to_csr(input_filename, output_filename, prune_embeddings=
pass pass
def prune_hnsw_embeddings_inplace(index_filename: str) -> bool:
"""Convenience wrapper to prune embeddings in-place."""
temp_path = f"{index_filename}.prune.tmp"
success = prune_hnsw_embeddings(index_filename, temp_path)
if success:
try:
os.replace(temp_path, index_filename)
except Exception as exc: # pragma: no cover - defensive
logger.error(f"Failed to replace original index with pruned version: {exc}")
try:
os.remove(temp_path)
except OSError:
pass
return False
else:
try:
os.remove(temp_path)
except OSError:
pass
return success
# --- Script Execution --- # --- Script Execution ---
if __name__ == "__main__": if __name__ == "__main__":
parser = argparse.ArgumentParser( parser = argparse.ArgumentParser(

View File

@@ -1,8 +1,9 @@
import logging import logging
import os import os
import shutil import shutil
import time
from pathlib import Path from pathlib import Path
from typing import Any, Literal from typing import Any, Literal, Optional
import numpy as np import numpy as np
from leann.interface import ( from leann.interface import (
@@ -13,7 +14,7 @@ from leann.interface import (
from leann.registry import register_backend from leann.registry import register_backend
from leann.searcher_base import BaseSearcher from leann.searcher_base import BaseSearcher
from .convert_to_csr import convert_hnsw_graph_to_csr from .convert_to_csr import convert_hnsw_graph_to_csr, prune_hnsw_embeddings_inplace
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@@ -54,12 +55,13 @@ class HNSWBuilder(LeannBackendBuilderInterface):
self.efConstruction = self.build_params.setdefault("efConstruction", 200) self.efConstruction = self.build_params.setdefault("efConstruction", 200)
self.distance_metric = self.build_params.setdefault("distance_metric", "mips") self.distance_metric = self.build_params.setdefault("distance_metric", "mips")
self.dimensions = self.build_params.get("dimensions") self.dimensions = self.build_params.get("dimensions")
if not self.is_recompute: if not self.is_recompute and self.is_compact:
if self.is_compact: # Auto-correct: non-recompute requires non-compact storage for HNSW
# TODO: support this case @andy logger.warning(
raise ValueError( "is_recompute=False requires non-compact HNSW. Forcing is_compact=False."
"is_recompute is False, but is_compact is True. This is not compatible now. change is compact to False and you can use the original HNSW index." )
) self.is_compact = False
self.build_params["is_compact"] = False
def build(self, data: np.ndarray, ids: list[str], index_path: str, **kwargs): def build(self, data: np.ndarray, ids: list[str], index_path: str, **kwargs):
from . import faiss # type: ignore from . import faiss # type: ignore
@@ -90,6 +92,8 @@ class HNSWBuilder(LeannBackendBuilderInterface):
if self.is_compact: if self.is_compact:
self._convert_to_csr(index_file) self._convert_to_csr(index_file)
elif self.is_recompute:
prune_hnsw_embeddings_inplace(str(index_file))
def _convert_to_csr(self, index_file: Path): def _convert_to_csr(self, index_file: Path):
"""Convert built index to CSR format""" """Convert built index to CSR format"""
@@ -131,10 +135,10 @@ class HNSWSearcher(BaseSearcher):
if metric_enum is None: if metric_enum is None:
raise ValueError(f"Unsupported distance_metric '{self.distance_metric}'.") raise ValueError(f"Unsupported distance_metric '{self.distance_metric}'.")
self.is_compact, self.is_pruned = ( backend_meta_kwargs = self.meta.get("backend_kwargs", {})
self.meta.get("is_compact", True), self.is_compact = self.meta.get("is_compact", backend_meta_kwargs.get("is_compact", True))
self.meta.get("is_pruned", True), default_pruned = backend_meta_kwargs.get("is_recompute", self.is_compact)
) self.is_pruned = bool(self.meta.get("is_pruned", default_pruned))
index_file = self.index_dir / f"{self.index_path.stem}.index" index_file = self.index_dir / f"{self.index_path.stem}.index"
if not index_file.exists(): if not index_file.exists():
@@ -152,7 +156,7 @@ class HNSWSearcher(BaseSearcher):
self, self,
query: np.ndarray, query: np.ndarray,
top_k: int, top_k: int,
zmq_port: int | None = None, zmq_port: Optional[int] = None,
complexity: int = 64, complexity: int = 64,
beam_width: int = 1, beam_width: int = 1,
prune_ratio: float = 0.0, prune_ratio: float = 0.0,
@@ -184,9 +188,11 @@ class HNSWSearcher(BaseSearcher):
""" """
from . import faiss # type: ignore from . import faiss # type: ignore
if not recompute_embeddings: if not recompute_embeddings and self.is_pruned:
if self.is_pruned: raise RuntimeError(
raise RuntimeError("Recompute is required for pruned index.") "Recompute is required for pruned/compact HNSW index. "
"Re-run search with --recompute, or rebuild with --no-recompute and --no-compact."
)
if recompute_embeddings: if recompute_embeddings:
if zmq_port is None: if zmq_port is None:
raise ValueError("zmq_port must be provided if recompute_embeddings is True") raise ValueError("zmq_port must be provided if recompute_embeddings is True")
@@ -233,6 +239,7 @@ class HNSWSearcher(BaseSearcher):
distances = np.empty((batch_size_query, top_k), dtype=np.float32) distances = np.empty((batch_size_query, top_k), dtype=np.float32)
labels = np.empty((batch_size_query, top_k), dtype=np.int64) labels = np.empty((batch_size_query, top_k), dtype=np.int64)
search_time = time.time()
self._index.search( self._index.search(
query.shape[0], query.shape[0],
faiss.swig_ptr(query), faiss.swig_ptr(query),
@@ -241,7 +248,8 @@ class HNSWSearcher(BaseSearcher):
faiss.swig_ptr(labels), faiss.swig_ptr(labels),
params, params,
) )
search_time = time.time() - search_time
logger.info(f" Search time in HNSWSearcher.search() backend: {search_time} seconds")
string_labels = [[str(int_label) for int_label in batch_labels] for batch_labels in labels] string_labels = [[str(int_label) for int_label in batch_labels] for batch_labels in labels]
return {"labels": string_labels, "distances": distances} return {"labels": string_labels, "distances": distances}

View File

@@ -10,6 +10,7 @@ import sys
import threading import threading
import time import time
from pathlib import Path from pathlib import Path
from typing import Optional
import msgpack import msgpack
import numpy as np import numpy as np
@@ -23,17 +24,30 @@ logger = logging.getLogger(__name__)
log_level = getattr(logging, LOG_LEVEL, logging.WARNING) log_level = getattr(logging, LOG_LEVEL, logging.WARNING)
logger.setLevel(log_level) logger.setLevel(log_level)
# Ensure we have a handler if none exists # Ensure we have handlers if none exist
if not logger.handlers: if not logger.handlers:
handler = logging.StreamHandler() stream_handler = logging.StreamHandler()
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s") formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
handler.setFormatter(formatter) stream_handler.setFormatter(formatter)
logger.addHandler(handler) logger.addHandler(stream_handler)
logger.propagate = False
log_path = os.getenv("LEANN_HNSW_LOG_PATH")
if log_path:
try:
file_handler = logging.FileHandler(log_path, mode="a", encoding="utf-8")
file_formatter = logging.Formatter(
"%(asctime)s - %(levelname)s - [pid=%(process)d] %(message)s"
)
file_handler.setFormatter(file_formatter)
logger.addHandler(file_handler)
except Exception as exc: # pragma: no cover - best effort logging
logger.warning(f"Failed to attach file handler for log path {log_path}: {exc}")
logger.propagate = False
def create_hnsw_embedding_server( def create_hnsw_embedding_server(
passages_file: str | None = None, passages_file: Optional[str] = None,
zmq_port: int = 5555, zmq_port: int = 5555,
model_name: str = "sentence-transformers/all-mpnet-base-v2", model_name: str = "sentence-transformers/all-mpnet-base-v2",
distance_metric: str = "mips", distance_metric: str = "mips",
@@ -81,199 +95,315 @@ def create_hnsw_embedding_server(
with open(passages_file) as f: with open(passages_file) as f:
meta = json.load(f) meta = json.load(f)
# Convert relative paths to absolute paths based on metadata file location # Let PassageManager handle path resolution uniformly. It supports fallback order:
metadata_dir = Path(passages_file).parent.parent # Go up one level from the metadata file # 1) path/index_path; 2) *_relative; 3) standard siblings next to meta
passage_sources = [] passages = PassageManager(meta["passage_sources"], metadata_file_path=passages_file)
for source in meta["passage_sources"]: # Dimension from metadata for shaping responses
source_copy = source.copy() try:
# Convert relative paths to absolute paths embedding_dim: int = int(meta.get("dimensions", 0))
if not Path(source_copy["path"]).is_absolute(): except Exception:
source_copy["path"] = str(metadata_dir / source_copy["path"]) embedding_dim = 0
if not Path(source_copy["index_path"]).is_absolute(): logger.info(f"Loaded PassageManager with {len(passages)} passages from metadata")
source_copy["index_path"] = str(metadata_dir / source_copy["index_path"])
passage_sources.append(source_copy)
passages = PassageManager(passage_sources) # (legacy ZMQ thread removed; using shutdown-capable server only)
logger.info(
f"Loaded PassageManager with {len(passages.global_offset_map)} passages from metadata" def zmq_server_thread_with_shutdown(shutdown_event):
) """ZMQ server thread that respects shutdown signal.
Creates its own REP socket bound to zmq_port and polls with timeouts
to allow graceful shutdown.
"""
logger.info("ZMQ server thread started with shutdown support")
def zmq_server_thread():
"""ZMQ server thread"""
context = zmq.Context() context = zmq.Context()
socket = context.socket(zmq.REP) rep_socket = context.socket(zmq.REP)
socket.bind(f"tcp://*:{zmq_port}") rep_socket.bind(f"tcp://*:{zmq_port}")
logger.info(f"HNSW ZMQ server listening on port {zmq_port}") logger.info(f"HNSW ZMQ REP server listening on port {zmq_port}")
rep_socket.setsockopt(zmq.RCVTIMEO, 1000)
# Keep sends from blocking during shutdown; fail fast and drop on close
rep_socket.setsockopt(zmq.SNDTIMEO, 1000)
rep_socket.setsockopt(zmq.LINGER, 0)
socket.setsockopt(zmq.RCVTIMEO, 300000) # Track last request type/length for shape-correct fallbacks
socket.setsockopt(zmq.SNDTIMEO, 300000) last_request_type = "unknown" # 'text' | 'distance' | 'embedding' | 'unknown'
last_request_length = 0
while True: try:
try: while not shutdown_event.is_set():
message_bytes = socket.recv() try:
logger.debug(f"Received ZMQ request of size {len(message_bytes)} bytes") e2e_start = time.time()
logger.debug("🔍 Waiting for ZMQ message...")
request_bytes = rep_socket.recv()
e2e_start = time.time() # Rest of the processing logic (same as original)
request_payload = msgpack.unpackb(message_bytes) request = msgpack.unpackb(request_bytes)
# Handle direct text embedding request if len(request) == 1 and request[0] == "__QUERY_MODEL__":
if isinstance(request_payload, list) and len(request_payload) > 0: response_bytes = msgpack.packb([model_name])
# Check if this is a direct text request (list of strings) rep_socket.send(response_bytes)
if all(isinstance(item, str) for item in request_payload): continue
logger.info(
f"Processing direct text embedding request for {len(request_payload)} texts in {embedding_mode} mode"
)
# Use unified embedding computation (now with model caching) # Handle direct text embedding request
embeddings = compute_embeddings( if (
request_payload, model_name, mode=embedding_mode isinstance(request, list)
) and request
and all(isinstance(item, str) for item in request)
response = embeddings.tolist() ):
socket.send(msgpack.packb(response)) last_request_type = "text"
last_request_length = len(request)
embeddings = compute_embeddings(request, model_name, mode=embedding_mode)
rep_socket.send(msgpack.packb(embeddings.tolist()))
e2e_end = time.time() e2e_end = time.time()
logger.info(f"⏱️ Text embedding E2E time: {e2e_end - e2e_start:.6f}s") logger.info(f"⏱️ Text embedding E2E time: {e2e_end - e2e_start:.6f}s")
continue continue
# Handle distance calculation requests # Handle distance calculation request: [[ids], [query_vector]]
if ( if (
isinstance(request_payload, list) isinstance(request, list)
and len(request_payload) == 2 and len(request) == 2
and isinstance(request_payload[0], list) and isinstance(request[0], list)
and isinstance(request_payload[1], list) and isinstance(request[1], list)
): ):
node_ids = request_payload[0] node_ids = request[0]
query_vector = np.array(request_payload[1], dtype=np.float32) # Handle nested [[ids]] shape defensively
if len(node_ids) == 1 and isinstance(node_ids[0], list):
node_ids = node_ids[0]
query_vector = np.array(request[1], dtype=np.float32)
last_request_type = "distance"
last_request_length = len(node_ids)
logger.debug("Distance calculation request received") logger.debug("Distance calculation request received")
logger.debug(f" Node IDs: {node_ids}") logger.debug(f" Node IDs: {node_ids}")
logger.debug(f" Query vector dim: {len(query_vector)}") logger.debug(f" Query vector dim: {len(query_vector)}")
# Get embeddings for node IDs # Gather texts for found ids
texts = [] texts: list[str] = []
for nid in node_ids: found_indices: list[int] = []
for idx, nid in enumerate(node_ids):
try:
passage_data = passages.get_passage(str(nid))
txt = passage_data.get("text", "")
if isinstance(txt, str) and len(txt) > 0:
texts.append(txt)
found_indices.append(idx)
else:
logger.error(f"Empty text for passage ID {nid}")
except KeyError:
logger.error(f"Passage ID {nid} not found")
except Exception as e:
logger.error(f"Exception looking up passage ID {nid}: {e}")
# Prepare full-length response with large sentinel values
large_distance = 1e9
response_distances = [large_distance] * len(node_ids)
if texts:
try:
embeddings = compute_embeddings(
texts, model_name, mode=embedding_mode
)
logger.info(
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
)
if distance_metric == "l2":
partial = np.sum(
np.square(embeddings - query_vector.reshape(1, -1)), axis=1
)
else: # mips or cosine
partial = -np.dot(embeddings, query_vector)
for pos, dval in zip(found_indices, partial.flatten().tolist()):
response_distances[pos] = float(dval)
except Exception as e:
logger.error(f"Distance computation error, using sentinels: {e}")
# Send response in expected shape [[distances]]
rep_socket.send(msgpack.packb([response_distances], use_single_float=True))
e2e_end = time.time()
logger.info(f"⏱️ Distance calculation E2E time: {e2e_end - e2e_start:.6f}s")
continue
# Fallback: treat as embedding-by-id request
if (
isinstance(request, list)
and len(request) == 1
and isinstance(request[0], list)
):
node_ids = request[0]
elif isinstance(request, list):
node_ids = request
else:
node_ids = []
last_request_type = "embedding"
last_request_length = len(node_ids)
logger.info(f"ZMQ received {len(node_ids)} node IDs for embedding fetch")
# Preallocate zero-filled flat data for robustness
if embedding_dim <= 0:
dims = [0, 0]
flat_data: list[float] = []
else:
dims = [len(node_ids), embedding_dim]
flat_data = [0.0] * (dims[0] * dims[1])
# Collect texts for found ids
texts: list[str] = []
found_indices: list[int] = []
for idx, nid in enumerate(node_ids):
try: try:
passage_data = passages.get_passage(str(nid)) passage_data = passages.get_passage(str(nid))
txt = passage_data["text"] txt = passage_data.get("text", "")
texts.append(txt) if isinstance(txt, str) and len(txt) > 0:
texts.append(txt)
found_indices.append(idx)
else:
logger.error(f"Empty text for passage ID {nid}")
except KeyError: except KeyError:
logger.error(f"Passage ID {nid} not found") logger.error(f"Passage with ID {nid} not found")
raise RuntimeError(f"FATAL: Passage with ID {nid} not found")
except Exception as e: except Exception as e:
logger.error(f"Exception looking up passage ID {nid}: {e}") logger.error(f"Exception looking up passage ID {nid}: {e}")
raise
# Process embeddings if texts:
embeddings = compute_embeddings(texts, model_name, mode=embedding_mode) try:
logger.info( embeddings = compute_embeddings(texts, model_name, mode=embedding_mode)
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}" logger.info(
) f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
)
# Calculate distances if np.isnan(embeddings).any() or np.isinf(embeddings).any():
if distance_metric == "l2": logger.error(
distances = np.sum( f"NaN or Inf detected in embeddings! Requested IDs: {node_ids[:5]}..."
np.square(embeddings - query_vector.reshape(1, -1)), axis=1 )
) dims = [0, embedding_dim]
else: # mips or cosine flat_data = []
distances = -np.dot(embeddings, query_vector) else:
emb_f32 = np.ascontiguousarray(embeddings, dtype=np.float32)
flat = emb_f32.flatten().tolist()
for j, pos in enumerate(found_indices):
start = pos * embedding_dim
end = start + embedding_dim
if end <= len(flat_data):
flat_data[start:end] = flat[
j * embedding_dim : (j + 1) * embedding_dim
]
except Exception as e:
logger.error(f"Embedding computation error, returning zeros: {e}")
response_payload = distances.flatten().tolist() response_payload = [dims, flat_data]
response_bytes = msgpack.packb([response_payload], use_single_float=True) response_bytes = msgpack.packb(response_payload, use_single_float=True)
logger.debug(f"Sending distance response with {len(distances)} distances")
socket.send(response_bytes) rep_socket.send(response_bytes)
e2e_end = time.time() e2e_end = time.time()
logger.info(f"⏱️ Distance calculation E2E time: {e2e_end - e2e_start:.6f}s") logger.info(f"⏱️ ZMQ E2E time: {e2e_end - e2e_start:.6f}s")
except zmq.Again:
# Timeout - check shutdown_event and continue
continue continue
except Exception as e:
if not shutdown_event.is_set():
logger.error(f"Error in ZMQ server loop: {e}")
# Shape-correct fallback
try:
if last_request_type == "distance":
large_distance = 1e9
fallback_len = max(0, int(last_request_length))
safe = [[large_distance] * fallback_len]
elif last_request_type == "embedding":
bsz = max(0, int(last_request_length))
dim = max(0, int(embedding_dim))
safe = (
[[bsz, dim], [0.0] * (bsz * dim)] if dim > 0 else [[0, 0], []]
)
elif last_request_type == "text":
safe = [] # direct text embeddings expectation is a flat list
else:
safe = [[0, int(embedding_dim) if embedding_dim > 0 else 0], []]
rep_socket.send(msgpack.packb(safe, use_single_float=True))
except Exception:
pass
else:
logger.info("Shutdown in progress, ignoring ZMQ error")
break
finally:
try:
rep_socket.close(0)
except Exception:
pass
try:
context.term()
except Exception:
pass
# Standard embedding request (passage ID lookup) logger.info("ZMQ server thread exiting gracefully")
if (
not isinstance(request_payload, list)
or len(request_payload) != 1
or not isinstance(request_payload[0], list)
):
logger.error(
f"Invalid MessagePack request format. Expected [[ids...]] or [texts...], got: {type(request_payload)}"
)
socket.send(msgpack.packb([[], []]))
continue
node_ids = request_payload[0] # Add shutdown coordination
logger.debug(f"Request for {len(node_ids)} node embeddings") shutdown_event = threading.Event()
# Look up texts by node IDs def shutdown_zmq_server():
texts = [] """Gracefully shutdown ZMQ server."""
for nid in node_ids: logger.info("Initiating graceful shutdown...")
try: shutdown_event.set()
passage_data = passages.get_passage(str(nid))
txt = passage_data["text"]
if not txt:
raise RuntimeError(f"FATAL: Empty text for passage ID {nid}")
texts.append(txt)
except KeyError:
raise RuntimeError(f"FATAL: Passage with ID {nid} not found")
except Exception as e:
logger.error(f"Exception looking up passage ID {nid}: {e}")
raise
# Process embeddings if zmq_thread.is_alive():
embeddings = compute_embeddings(texts, model_name, mode=embedding_mode) logger.info("Waiting for ZMQ thread to finish...")
logger.info( zmq_thread.join(timeout=5)
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}" if zmq_thread.is_alive():
) logger.warning("ZMQ thread did not finish in time")
# Serialization and response # Clean up ZMQ resources
if np.isnan(embeddings).any() or np.isinf(embeddings).any(): try:
logger.error( # Note: socket and context are cleaned up by thread exit
f"NaN or Inf detected in embeddings! Requested IDs: {node_ids[:5]}..." logger.info("ZMQ resources cleaned up")
) except Exception as e:
raise AssertionError() logger.warning(f"Error cleaning ZMQ resources: {e}")
hidden_contiguous_f32 = np.ascontiguousarray(embeddings, dtype=np.float32) # Clean up other resources
response_payload = [ try:
list(hidden_contiguous_f32.shape), import gc
hidden_contiguous_f32.flatten().tolist(),
]
response_bytes = msgpack.packb(response_payload, use_single_float=True)
socket.send(response_bytes) gc.collect()
e2e_end = time.time() logger.info("Additional resources cleaned up")
logger.info(f"⏱️ ZMQ E2E time: {e2e_end - e2e_start:.6f}s") except Exception as e:
logger.warning(f"Error cleaning additional resources: {e}")
except zmq.Again: logger.info("Graceful shutdown completed")
logger.debug("ZMQ socket timeout, continuing to listen") sys.exit(0)
continue
except Exception as e:
logger.error(f"Error in ZMQ server loop: {e}")
import traceback
traceback.print_exc() # Register signal handlers within this function scope
socket.send(msgpack.packb([[], []])) import signal
zmq_thread = threading.Thread(target=zmq_server_thread, daemon=True) def signal_handler(sig, frame):
logger.info(f"Received signal {sig}, shutting down gracefully...")
shutdown_zmq_server()
signal.signal(signal.SIGTERM, signal_handler)
signal.signal(signal.SIGINT, signal_handler)
# Pass shutdown_event to ZMQ thread
zmq_thread = threading.Thread(
target=lambda: zmq_server_thread_with_shutdown(shutdown_event),
daemon=False, # Not daemon - we want to wait for it
)
zmq_thread.start() zmq_thread.start()
logger.info(f"Started HNSW ZMQ server thread on port {zmq_port}") logger.info(f"Started HNSW ZMQ server thread on port {zmq_port}")
# Keep the main thread alive # Keep the main thread alive
try: try:
while True: while not shutdown_event.is_set():
time.sleep(1) time.sleep(0.1) # Check shutdown more frequently
except KeyboardInterrupt: except KeyboardInterrupt:
logger.info("HNSW Server shutting down...") logger.info("HNSW Server shutting down...")
shutdown_zmq_server()
return return
# If we reach here, shutdown was triggered by signal
logger.info("Main loop exited, process should be shutting down")
if __name__ == "__main__": if __name__ == "__main__":
import signal
import sys import sys
def signal_handler(sig, frame): # Signal handlers are now registered within create_hnsw_embedding_server
logger.info(f"Received signal {sig}, shutting down gracefully...")
sys.exit(0)
# Register signal handlers for graceful shutdown
signal.signal(signal.SIGTERM, signal_handler)
signal.signal(signal.SIGINT, signal_handler)
parser = argparse.ArgumentParser(description="HNSW Embedding service") parser = argparse.ArgumentParser(description="HNSW Embedding service")
parser.add_argument("--zmq-port", type=int, default=5555, help="ZMQ port to run on") parser.add_argument("--zmq-port", type=int, default=5555, help="ZMQ port to run on")
@@ -295,7 +425,7 @@ if __name__ == "__main__":
"--embedding-mode", "--embedding-mode",
type=str, type=str,
default="sentence-transformers", default="sentence-transformers",
choices=["sentence-transformers", "openai", "mlx"], choices=["sentence-transformers", "openai", "mlx", "ollama"],
help="Embedding backend mode", help="Embedding backend mode",
) )

View File

@@ -6,10 +6,10 @@ build-backend = "scikit_build_core.build"
[project] [project]
name = "leann-backend-hnsw" name = "leann-backend-hnsw"
version = "0.1.16" version = "0.3.4"
description = "Custom-built HNSW (Faiss) backend for the Leann toolkit." description = "Custom-built HNSW (Faiss) backend for the Leann toolkit."
dependencies = [ dependencies = [
"leann-core==0.1.16", "leann-core==0.3.4",
"numpy", "numpy",
"pyzmq>=23.0.0", "pyzmq>=23.0.0",
"msgpack>=1.0.0", "msgpack>=1.0.0",
@@ -22,6 +22,8 @@ cmake.build-type = "Release"
build.verbose = true build.verbose = true
build.tool-args = ["-j8"] build.tool-args = ["-j8"]
# CMake definitions to optimize compilation # CMake definitions to optimize compilation and find Homebrew packages
[tool.scikit-build.cmake.define] [tool.scikit-build.cmake.define]
CMAKE_BUILD_PARALLEL_LEVEL = "8" CMAKE_BUILD_PARALLEL_LEVEL = "8"
CMAKE_PREFIX_PATH = {env = "CMAKE_PREFIX_PATH"}
OpenMP_ROOT = {env = "OpenMP_ROOT"}

View File

@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
[project] [project]
name = "leann-core" name = "leann-core"
version = "0.1.16" version = "0.3.4"
description = "Core API and plugin system for LEANN" description = "Core API and plugin system for LEANN"
readme = "README.md" readme = "README.md"
requires-python = ">=3.9" requires-python = ">=3.9"
@@ -31,8 +31,10 @@ dependencies = [
"PyPDF2>=3.0.0", "PyPDF2>=3.0.0",
"pymupdf>=1.23.0", "pymupdf>=1.23.0",
"pdfplumber>=0.10.0", "pdfplumber>=0.10.0",
"mlx>=0.26.3; sys_platform == 'darwin'", "nbconvert>=7.0.0", # For .ipynb file support
"mlx-lm>=0.26.0; sys_platform == 'darwin'", "gitignore-parser>=0.1.12", # For proper .gitignore handling
"mlx>=0.26.3; sys_platform == 'darwin' and platform_machine == 'arm64'",
"mlx-lm>=0.26.0; sys_platform == 'darwin' and platform_machine == 'arm64'",
] ]
[project.optional-dependencies] [project.optional-dependencies]
@@ -44,6 +46,7 @@ colab = [
[project.scripts] [project.scripts]
leann = "leann.cli:main" leann = "leann.cli:main"
leann_mcp = "leann.mcp:main"
[tool.setuptools.packages.find] [tool.setuptools.packages.find]
where = ["src"] where = ["src"]

Some files were not shown because too many files have changed in this diff Show More