Compare commits
91 Commits
fix-macos-
...
feature/cl
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
f52bce23c3 | ||
|
|
f1355b70d8 | ||
|
|
2dd4147de2 | ||
|
|
be17980114 | ||
|
|
5f7806e16f | ||
|
|
d034e2195b | ||
|
|
43894ff605 | ||
|
|
10311cc611 | ||
|
|
ad0d2faabc | ||
|
|
e93c0dec6f | ||
|
|
c5a29f849a | ||
|
|
3b8dc6368e | ||
|
|
e309f292de | ||
|
|
0d9f92ea0f | ||
|
|
b0b353d279 | ||
|
|
4dffdfedbe | ||
|
|
d41e467df9 | ||
|
|
4ca0489cb1 | ||
|
|
e83a671918 | ||
|
|
4e5b73ce7b | ||
|
|
31b4973141 | ||
|
|
dde2221513 | ||
|
|
6d11e86e71 | ||
|
|
13bb561aad | ||
|
|
0174ba5571 | ||
|
|
03af82d695 | ||
|
|
738f1dbab8 | ||
|
|
37d990d51c | ||
|
|
a6f07a54f1 | ||
|
|
46905e0687 | ||
|
|
838ade231e | ||
|
|
da6540decd | ||
|
|
39e18a7c11 | ||
|
|
6bde28584b | ||
|
|
f62632c41f | ||
|
|
27708243ca | ||
|
|
9a1e4652ca | ||
|
|
14e84d9e2d | ||
|
|
2dcfca19ff | ||
|
|
bee2167ee3 | ||
|
|
ef980d70b3 | ||
|
|
db3c63c441 | ||
|
|
00eeadb9dd | ||
|
|
42c8370709 | ||
|
|
fafdf8fcbe | ||
|
|
21f7d8e031 | ||
|
|
46565b9249 | ||
|
|
3dad76126a | ||
|
|
18e28bda32 | ||
|
|
609fa62fd5 | ||
|
|
eab13434ef | ||
|
|
b2390ccc14 | ||
|
|
e8fca2c84a | ||
|
|
790ae14f69 | ||
|
|
ac363072e6 | ||
|
|
93465af46c | ||
|
|
792ece67dc | ||
|
|
239e35e2e6 | ||
|
|
2fac0c6fbf | ||
|
|
9801aa581b | ||
|
|
5e97916608 | ||
|
|
8b9c2be8c9 | ||
|
|
3ff5aac8e0 | ||
|
|
67fef60466 | ||
|
|
b6ab6f1993 | ||
|
|
9f2e82a838 | ||
|
|
0b2b799d5a | ||
|
|
0f790fbbd9 | ||
|
|
387ae21eba | ||
|
|
3cc329c3e7 | ||
|
|
5567302316 | ||
|
|
075d4bd167 | ||
|
|
e4bcc76f88 | ||
|
|
710e83b1fd | ||
|
|
c96d653072 | ||
|
|
8b22d2b5d3 | ||
|
|
4cb544ee38 | ||
|
|
f94ce63d51 | ||
|
|
4271ff9d84 | ||
|
|
0d448c4a41 | ||
|
|
af5599e33c | ||
|
|
efdf6d917a | ||
|
|
dd71ac8d71 | ||
|
|
8bee1d4100 | ||
|
|
33521d6d00 | ||
|
|
8899734952 | ||
|
|
54df6310c5 | ||
|
|
19bcc07814 | ||
|
|
8356e3c668 | ||
|
|
08eac5c821 | ||
|
|
4671ed9b36 |
1
.gitattributes
vendored
1
.gitattributes
vendored
@@ -1 +0,0 @@
|
||||
paper_plot/data/big_graph_degree_data.npz filter=lfs diff=lfs merge=lfs -text
|
||||
50
.github/ISSUE_TEMPLATE/bug_report.yml
vendored
Normal file
50
.github/ISSUE_TEMPLATE/bug_report.yml
vendored
Normal file
@@ -0,0 +1,50 @@
|
||||
name: Bug Report
|
||||
description: Report a bug in LEANN
|
||||
labels: ["bug"]
|
||||
|
||||
body:
|
||||
- type: textarea
|
||||
id: description
|
||||
attributes:
|
||||
label: What happened?
|
||||
description: A clear description of the bug
|
||||
validations:
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
id: reproduce
|
||||
attributes:
|
||||
label: How to reproduce
|
||||
placeholder: |
|
||||
1. Install with...
|
||||
2. Run command...
|
||||
3. See error
|
||||
validations:
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
id: error
|
||||
attributes:
|
||||
label: Error message
|
||||
description: Paste any error messages
|
||||
render: shell
|
||||
|
||||
- type: input
|
||||
id: version
|
||||
attributes:
|
||||
label: LEANN Version
|
||||
placeholder: "0.1.0"
|
||||
validations:
|
||||
required: true
|
||||
|
||||
- type: dropdown
|
||||
id: os
|
||||
attributes:
|
||||
label: Operating System
|
||||
options:
|
||||
- macOS
|
||||
- Linux
|
||||
- Windows
|
||||
- Docker
|
||||
validations:
|
||||
required: true
|
||||
8
.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
8
.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
@@ -0,0 +1,8 @@
|
||||
blank_issues_enabled: true
|
||||
contact_links:
|
||||
- name: Documentation
|
||||
url: https://github.com/LEANN-RAG/LEANN-RAG/tree/main/docs
|
||||
about: Read the docs first
|
||||
- name: Discussions
|
||||
url: https://github.com/LEANN-RAG/LEANN-RAG/discussions
|
||||
about: Ask questions and share ideas
|
||||
27
.github/ISSUE_TEMPLATE/feature_request.yml
vendored
Normal file
27
.github/ISSUE_TEMPLATE/feature_request.yml
vendored
Normal file
@@ -0,0 +1,27 @@
|
||||
name: Feature Request
|
||||
description: Suggest a new feature for LEANN
|
||||
labels: ["enhancement"]
|
||||
|
||||
body:
|
||||
- type: textarea
|
||||
id: problem
|
||||
attributes:
|
||||
label: What problem does this solve?
|
||||
description: Describe the problem or need
|
||||
validations:
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
id: solution
|
||||
attributes:
|
||||
label: Proposed solution
|
||||
description: How would you like this to work?
|
||||
validations:
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
id: example
|
||||
attributes:
|
||||
label: Example usage
|
||||
description: Show how the API might look
|
||||
render: python
|
||||
13
.github/pull_request_template.md
vendored
Normal file
13
.github/pull_request_template.md
vendored
Normal file
@@ -0,0 +1,13 @@
|
||||
## What does this PR do?
|
||||
|
||||
<!-- Brief description of your changes -->
|
||||
|
||||
## Related Issues
|
||||
|
||||
Fixes #
|
||||
|
||||
## Checklist
|
||||
|
||||
- [ ] Tests pass (`uv run pytest`)
|
||||
- [ ] Code formatted (`ruff format` and `ruff check`)
|
||||
- [ ] Pre-commit hooks pass (`pre-commit run --all-files`)
|
||||
1
.github/workflows/build-and-publish.yml
vendored
1
.github/workflows/build-and-publish.yml
vendored
@@ -5,6 +5,7 @@ on:
|
||||
branches: [ main ]
|
||||
pull_request:
|
||||
branches: [ main ]
|
||||
workflow_dispatch:
|
||||
|
||||
jobs:
|
||||
build:
|
||||
|
||||
272
.github/workflows/build-reusable.yml
vendored
272
.github/workflows/build-reusable.yml
vendored
@@ -54,20 +54,51 @@ jobs:
|
||||
python: '3.12'
|
||||
- os: ubuntu-22.04
|
||||
python: '3.13'
|
||||
- os: macos-latest
|
||||
# ARM64 Linux builds
|
||||
- os: ubuntu-24.04-arm
|
||||
python: '3.9'
|
||||
- os: macos-latest
|
||||
- os: ubuntu-24.04-arm
|
||||
python: '3.10'
|
||||
- os: macos-latest
|
||||
- os: ubuntu-24.04-arm
|
||||
python: '3.11'
|
||||
- os: macos-latest
|
||||
- os: ubuntu-24.04-arm
|
||||
python: '3.12'
|
||||
- os: macos-latest
|
||||
- os: ubuntu-24.04-arm
|
||||
python: '3.13'
|
||||
- os: macos-14
|
||||
python: '3.9'
|
||||
- os: macos-14
|
||||
python: '3.10'
|
||||
- os: macos-14
|
||||
python: '3.11'
|
||||
- os: macos-14
|
||||
python: '3.12'
|
||||
- os: macos-14
|
||||
python: '3.13'
|
||||
- os: macos-15
|
||||
python: '3.9'
|
||||
- os: macos-15
|
||||
python: '3.10'
|
||||
- os: macos-15
|
||||
python: '3.11'
|
||||
- os: macos-15
|
||||
python: '3.12'
|
||||
- os: macos-15
|
||||
python: '3.13'
|
||||
- os: macos-13
|
||||
python: '3.9'
|
||||
- os: macos-13
|
||||
python: '3.10'
|
||||
- os: macos-13
|
||||
python: '3.11'
|
||||
- os: macos-13
|
||||
python: '3.12'
|
||||
# Note: macos-13 + Python 3.13 excluded due to PyTorch compatibility
|
||||
# (PyTorch 2.5+ supports Python 3.13 but not Intel Mac x86_64)
|
||||
runs-on: ${{ matrix.os }}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/checkout@v5
|
||||
with:
|
||||
ref: ${{ inputs.ref }}
|
||||
submodules: recursive
|
||||
@@ -78,26 +109,62 @@ jobs:
|
||||
python-version: ${{ matrix.python }}
|
||||
|
||||
- name: Install uv
|
||||
uses: astral-sh/setup-uv@v4
|
||||
uses: astral-sh/setup-uv@v6
|
||||
|
||||
- name: Install system dependencies (Ubuntu)
|
||||
if: runner.os == 'Linux'
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y libomp-dev libboost-all-dev protobuf-compiler libzmq3-dev \
|
||||
pkg-config libopenblas-dev patchelf libabsl-dev libaio-dev libprotobuf-dev
|
||||
pkg-config libabsl-dev libaio-dev libprotobuf-dev \
|
||||
patchelf
|
||||
|
||||
# Install Intel MKL for DiskANN
|
||||
wget -q https://registrationcenter-download.intel.com/akdlm/IRC_NAS/79153e0f-74d7-45af-b8c2-258941adf58a/intel-onemkl-2025.0.0.940.sh
|
||||
sudo sh intel-onemkl-2025.0.0.940.sh -a --components intel.oneapi.lin.mkl.devel --action install --eula accept -s
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
echo "MKLROOT=/opt/intel/oneapi/mkl/latest" >> $GITHUB_ENV
|
||||
echo "LD_LIBRARY_PATH=/opt/intel/oneapi/mkl/latest/lib/intel64:$LD_LIBRARY_PATH" >> $GITHUB_ENV
|
||||
# Debug: Show system information
|
||||
echo "🔍 System Information:"
|
||||
echo "Architecture: $(uname -m)"
|
||||
echo "OS: $(uname -a)"
|
||||
echo "CPU info: $(lscpu | head -5)"
|
||||
|
||||
# Install math library based on architecture
|
||||
ARCH=$(uname -m)
|
||||
echo "🔍 Setting up math library for architecture: $ARCH"
|
||||
|
||||
if [[ "$ARCH" == "x86_64" ]]; then
|
||||
# Install Intel MKL for DiskANN on x86_64
|
||||
echo "📦 Installing Intel MKL for x86_64..."
|
||||
wget -q https://registrationcenter-download.intel.com/akdlm/IRC_NAS/79153e0f-74d7-45af-b8c2-258941adf58a/intel-onemkl-2025.0.0.940.sh
|
||||
sudo sh intel-onemkl-2025.0.0.940.sh -a --components intel.oneapi.lin.mkl.devel --action install --eula accept -s
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
echo "MKLROOT=/opt/intel/oneapi/mkl/latest" >> $GITHUB_ENV
|
||||
echo "LD_LIBRARY_PATH=/opt/intel/oneapi/compiler/latest/linux/compiler/lib/intel64_lin" >> $GITHUB_ENV
|
||||
echo "LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/intel/oneapi/mkl/latest/lib/intel64" >> $GITHUB_ENV
|
||||
echo "✅ Intel MKL installed for x86_64"
|
||||
|
||||
# Debug: Check MKL installation
|
||||
echo "🔍 MKL Installation Check:"
|
||||
ls -la /opt/intel/oneapi/mkl/latest/ || echo "MKL directory not found"
|
||||
ls -la /opt/intel/oneapi/mkl/latest/lib/ || echo "MKL lib directory not found"
|
||||
|
||||
elif [[ "$ARCH" == "aarch64" ]]; then
|
||||
# Use OpenBLAS for ARM64 (MKL installer not compatible with ARM64)
|
||||
echo "📦 Installing OpenBLAS for ARM64..."
|
||||
sudo apt-get install -y libopenblas-dev liblapack-dev liblapacke-dev
|
||||
echo "✅ OpenBLAS installed for ARM64"
|
||||
|
||||
# Debug: Check OpenBLAS installation
|
||||
echo "🔍 OpenBLAS Installation Check:"
|
||||
dpkg -l | grep openblas || echo "OpenBLAS package not found"
|
||||
ls -la /usr/lib/aarch64-linux-gnu/openblas/ || echo "OpenBLAS directory not found"
|
||||
fi
|
||||
|
||||
# Debug: Show final library paths
|
||||
echo "🔍 Final LD_LIBRARY_PATH: $LD_LIBRARY_PATH"
|
||||
|
||||
- name: Install system dependencies (macOS)
|
||||
if: runner.os == 'macOS'
|
||||
run: |
|
||||
brew install llvm libomp boost protobuf zeromq
|
||||
# Don't install LLVM, use system clang for better compatibility
|
||||
brew install libomp boost protobuf zeromq
|
||||
|
||||
- name: Install build dependencies
|
||||
run: |
|
||||
@@ -108,39 +175,73 @@ jobs:
|
||||
uv pip install --system delocate
|
||||
fi
|
||||
|
||||
- name: Set macOS environment variables
|
||||
if: runner.os == 'macOS'
|
||||
run: |
|
||||
# Use brew --prefix to automatically detect Homebrew installation path
|
||||
HOMEBREW_PREFIX=$(brew --prefix)
|
||||
echo "HOMEBREW_PREFIX=${HOMEBREW_PREFIX}" >> $GITHUB_ENV
|
||||
echo "OpenMP_ROOT=${HOMEBREW_PREFIX}/opt/libomp" >> $GITHUB_ENV
|
||||
|
||||
# Set CMAKE_PREFIX_PATH to let CMake find all packages automatically
|
||||
echo "CMAKE_PREFIX_PATH=${HOMEBREW_PREFIX}" >> $GITHUB_ENV
|
||||
|
||||
# Set compiler flags for OpenMP (required for both backends)
|
||||
echo "LDFLAGS=-L${HOMEBREW_PREFIX}/opt/libomp/lib" >> $GITHUB_ENV
|
||||
echo "CPPFLAGS=-I${HOMEBREW_PREFIX}/opt/libomp/include" >> $GITHUB_ENV
|
||||
|
||||
- name: Build packages
|
||||
run: |
|
||||
# Build core (platform independent)
|
||||
if [[ "${{ matrix.os }}" == ubuntu-* ]]; then
|
||||
cd packages/leann-core
|
||||
uv build
|
||||
cd ../..
|
||||
fi
|
||||
cd packages/leann-core
|
||||
uv build
|
||||
cd ../..
|
||||
|
||||
# Build HNSW backend
|
||||
cd packages/leann-backend-hnsw
|
||||
if [ "${{ matrix.os }}" == "macos-latest" ]; then
|
||||
CC=$(brew --prefix llvm)/bin/clang CXX=$(brew --prefix llvm)/bin/clang++ uv build --wheel --python python
|
||||
if [[ "${{ matrix.os }}" == macos-* ]]; then
|
||||
# Use system clang for better compatibility
|
||||
export CC=clang
|
||||
export CXX=clang++
|
||||
# Homebrew libraries on each macOS version require matching minimum version
|
||||
if [[ "${{ matrix.os }}" == "macos-13" ]]; then
|
||||
export MACOSX_DEPLOYMENT_TARGET=13.0
|
||||
elif [[ "${{ matrix.os }}" == "macos-14" ]]; then
|
||||
export MACOSX_DEPLOYMENT_TARGET=14.0
|
||||
elif [[ "${{ matrix.os }}" == "macos-15" ]]; then
|
||||
export MACOSX_DEPLOYMENT_TARGET=15.0
|
||||
fi
|
||||
uv build --wheel --python ${{ matrix.python }} --find-links ${GITHUB_WORKSPACE}/packages/leann-core/dist
|
||||
else
|
||||
uv build --wheel --python python
|
||||
uv build --wheel --python ${{ matrix.python }} --find-links ${GITHUB_WORKSPACE}/packages/leann-core/dist
|
||||
fi
|
||||
cd ../..
|
||||
|
||||
# Build DiskANN backend
|
||||
cd packages/leann-backend-diskann
|
||||
if [ "${{ matrix.os }}" == "macos-latest" ]; then
|
||||
CC=$(brew --prefix llvm)/bin/clang CXX=$(brew --prefix llvm)/bin/clang++ uv build --wheel --python python
|
||||
if [[ "${{ matrix.os }}" == macos-* ]]; then
|
||||
# Use system clang for better compatibility
|
||||
export CC=clang
|
||||
export CXX=clang++
|
||||
# DiskANN requires macOS 13.3+ for sgesdd_ LAPACK function
|
||||
# But Homebrew libraries on each macOS version require matching minimum version
|
||||
if [[ "${{ matrix.os }}" == "macos-13" ]]; then
|
||||
export MACOSX_DEPLOYMENT_TARGET=13.3
|
||||
elif [[ "${{ matrix.os }}" == "macos-14" ]]; then
|
||||
export MACOSX_DEPLOYMENT_TARGET=14.0
|
||||
elif [[ "${{ matrix.os }}" == "macos-15" ]]; then
|
||||
export MACOSX_DEPLOYMENT_TARGET=15.0
|
||||
fi
|
||||
uv build --wheel --python ${{ matrix.python }} --find-links ${GITHUB_WORKSPACE}/packages/leann-core/dist
|
||||
else
|
||||
uv build --wheel --python python
|
||||
uv build --wheel --python ${{ matrix.python }} --find-links ${GITHUB_WORKSPACE}/packages/leann-core/dist
|
||||
fi
|
||||
cd ../..
|
||||
|
||||
# Build meta package (platform independent)
|
||||
if [[ "${{ matrix.os }}" == ubuntu-* ]]; then
|
||||
cd packages/leann
|
||||
uv build
|
||||
cd ../..
|
||||
fi
|
||||
cd packages/leann
|
||||
uv build
|
||||
cd ../..
|
||||
|
||||
- name: Repair wheels (Linux)
|
||||
if: runner.os == 'Linux'
|
||||
@@ -166,10 +267,24 @@ jobs:
|
||||
- name: Repair wheels (macOS)
|
||||
if: runner.os == 'macOS'
|
||||
run: |
|
||||
# Determine deployment target based on runner OS
|
||||
# Must match the Homebrew libraries for each macOS version
|
||||
if [[ "${{ matrix.os }}" == "macos-13" ]]; then
|
||||
HNSW_TARGET="13.0"
|
||||
DISKANN_TARGET="13.3"
|
||||
elif [[ "${{ matrix.os }}" == "macos-14" ]]; then
|
||||
HNSW_TARGET="14.0"
|
||||
DISKANN_TARGET="14.0"
|
||||
elif [[ "${{ matrix.os }}" == "macos-15" ]]; then
|
||||
HNSW_TARGET="15.0"
|
||||
DISKANN_TARGET="15.0"
|
||||
fi
|
||||
|
||||
# Repair HNSW wheel
|
||||
cd packages/leann-backend-hnsw
|
||||
if [ -d dist ]; then
|
||||
delocate-wheel -w dist_repaired -v dist/*.whl
|
||||
export MACOSX_DEPLOYMENT_TARGET=$HNSW_TARGET
|
||||
delocate-wheel -w dist_repaired -v --require-target-macos-version $HNSW_TARGET dist/*.whl
|
||||
rm -rf dist
|
||||
mv dist_repaired dist
|
||||
fi
|
||||
@@ -178,7 +293,8 @@ jobs:
|
||||
# Repair DiskANN wheel
|
||||
cd packages/leann-backend-diskann
|
||||
if [ -d dist ]; then
|
||||
delocate-wheel -w dist_repaired -v dist/*.whl
|
||||
export MACOSX_DEPLOYMENT_TARGET=$DISKANN_TARGET
|
||||
delocate-wheel -w dist_repaired -v --require-target-macos-version $DISKANN_TARGET dist/*.whl
|
||||
rm -rf dist
|
||||
mv dist_repaired dist
|
||||
fi
|
||||
@@ -189,8 +305,98 @@ jobs:
|
||||
echo "📦 Built packages:"
|
||||
find packages/*/dist -name "*.whl" -o -name "*.tar.gz" | sort
|
||||
|
||||
|
||||
- name: Install built packages for testing
|
||||
run: |
|
||||
# Create a virtual environment with the correct Python version
|
||||
uv venv --python ${{ matrix.python }}
|
||||
source .venv/bin/activate || source .venv/Scripts/activate
|
||||
|
||||
# Install packages using --find-links to prioritize local builds
|
||||
uv pip install --find-links packages/leann-core/dist --find-links packages/leann-backend-hnsw/dist --find-links packages/leann-backend-diskann/dist packages/leann-core/dist/*.whl || uv pip install --find-links packages/leann-core/dist packages/leann-core/dist/*.tar.gz
|
||||
uv pip install --find-links packages/leann-core/dist packages/leann-backend-hnsw/dist/*.whl
|
||||
uv pip install --find-links packages/leann-core/dist packages/leann-backend-diskann/dist/*.whl
|
||||
uv pip install packages/leann/dist/*.whl || uv pip install packages/leann/dist/*.tar.gz
|
||||
|
||||
# Install test dependencies using extras
|
||||
uv pip install -e ".[test]"
|
||||
|
||||
- name: Run tests with pytest
|
||||
env:
|
||||
CI: true
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
HF_HUB_DISABLE_SYMLINKS: 1
|
||||
TOKENIZERS_PARALLELISM: false
|
||||
PYTORCH_ENABLE_MPS_FALLBACK: 0
|
||||
OMP_NUM_THREADS: 1
|
||||
MKL_NUM_THREADS: 1
|
||||
run: |
|
||||
source .venv/bin/activate || source .venv/Scripts/activate
|
||||
pytest tests/ -v --tb=short
|
||||
|
||||
- name: Run sanity checks (optional)
|
||||
run: |
|
||||
# Activate virtual environment
|
||||
source .venv/bin/activate || source .venv/Scripts/activate
|
||||
|
||||
# Run distance function tests if available
|
||||
if [ -f test/sanity_checks/test_distance_functions.py ]; then
|
||||
echo "Running distance function sanity checks..."
|
||||
python test/sanity_checks/test_distance_functions.py || echo "⚠️ Distance function test failed, continuing..."
|
||||
fi
|
||||
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: packages-${{ matrix.os }}-py${{ matrix.python }}
|
||||
path: packages/*/dist/
|
||||
|
||||
|
||||
arch-smoke:
|
||||
name: Arch Linux smoke test (install & import)
|
||||
needs: build
|
||||
runs-on: ubuntu-latest
|
||||
container:
|
||||
image: archlinux:latest
|
||||
|
||||
steps:
|
||||
- name: Prepare system
|
||||
run: |
|
||||
pacman -Syu --noconfirm
|
||||
pacman -S --noconfirm python python-pip gcc git zlib openssl
|
||||
|
||||
- name: Download ALL wheel artifacts from this run
|
||||
uses: actions/download-artifact@v5
|
||||
with:
|
||||
# Don't specify name, download all artifacts
|
||||
path: ./wheels
|
||||
|
||||
- name: Install uv
|
||||
uses: astral-sh/setup-uv@v6
|
||||
|
||||
- name: Create virtual environment and install wheels
|
||||
run: |
|
||||
uv venv
|
||||
source .venv/bin/activate || source .venv/Scripts/activate
|
||||
uv pip install --find-links wheels leann-core
|
||||
uv pip install --find-links wheels leann-backend-hnsw
|
||||
uv pip install --find-links wheels leann-backend-diskann
|
||||
uv pip install --find-links wheels leann
|
||||
|
||||
- name: Import & tiny runtime check
|
||||
env:
|
||||
OMP_NUM_THREADS: 1
|
||||
MKL_NUM_THREADS: 1
|
||||
run: |
|
||||
source .venv/bin/activate || source .venv/Scripts/activate
|
||||
python - <<'PY'
|
||||
import leann
|
||||
import leann_backend_hnsw as h
|
||||
import leann_backend_diskann as d
|
||||
from leann import LeannBuilder, LeannSearcher
|
||||
b = LeannBuilder(backend_name="hnsw")
|
||||
b.add_text("hello arch")
|
||||
b.build_index("arch_demo.leann")
|
||||
s = LeannSearcher("arch_demo.leann")
|
||||
print("search:", s.search("hello", top_k=1))
|
||||
PY
|
||||
|
||||
19
.github/workflows/link-check.yml
vendored
Normal file
19
.github/workflows/link-check.yml
vendored
Normal file
@@ -0,0 +1,19 @@
|
||||
name: Link Check
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ main, master ]
|
||||
pull_request:
|
||||
schedule:
|
||||
- cron: "0 3 * * 1"
|
||||
|
||||
jobs:
|
||||
link-check:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: lycheeverse/lychee-action@v2
|
||||
with:
|
||||
args: --no-progress --insecure --user-agent 'curl/7.68.0' README.md docs/ apps/ examples/ benchmarks/
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
25
.gitignore
vendored
25
.gitignore
vendored
@@ -18,9 +18,11 @@ demo/experiment_results/**/*.json
|
||||
*.eml
|
||||
*.emlx
|
||||
*.json
|
||||
!.vscode/*.json
|
||||
*.sh
|
||||
*.txt
|
||||
!CMakeLists.txt
|
||||
!llms.txt
|
||||
latency_breakdown*.json
|
||||
experiment_results/eval_results/diskann/*.json
|
||||
aws/
|
||||
@@ -34,11 +36,15 @@ build/
|
||||
nprobe_logs/
|
||||
micro/results
|
||||
micro/contriever-INT8
|
||||
examples/data/*
|
||||
!examples/data/2501.14312v1 (1).pdf
|
||||
!examples/data/2506.08276v1.pdf
|
||||
!examples/data/PrideandPrejudice.txt
|
||||
!examples/data/README.md
|
||||
data/*
|
||||
!data/2501.14312v1 (1).pdf
|
||||
!data/2506.08276v1.pdf
|
||||
!data/PrideandPrejudice.txt
|
||||
!data/huawei_pangu.md
|
||||
!data/ground_truth/
|
||||
!data/indices/
|
||||
!data/queries/
|
||||
!data/.gitattributes
|
||||
*.qdstrm
|
||||
benchmark_results/
|
||||
results/
|
||||
@@ -86,3 +92,12 @@ packages/leann-backend-diskann/third_party/DiskANN/_deps/
|
||||
*.passages.json
|
||||
|
||||
batchtest.py
|
||||
tests/__pytest_cache__/
|
||||
tests/__pycache__/
|
||||
paru-bin/
|
||||
|
||||
CLAUDE.md
|
||||
CLAUDE.local.md
|
||||
.claude/*.local.*
|
||||
.claude/local/*
|
||||
benchmarks/data/
|
||||
|
||||
3
.gitmodules
vendored
3
.gitmodules
vendored
@@ -14,3 +14,6 @@
|
||||
[submodule "packages/leann-backend-hnsw/third_party/libzmq"]
|
||||
path = packages/leann-backend-hnsw/third_party/libzmq
|
||||
url = https://github.com/zeromq/libzmq.git
|
||||
[submodule "packages/astchunk-leann"]
|
||||
path = packages/astchunk-leann
|
||||
url = https://github.com/yichuan-w/astchunk-leann.git
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
repos:
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v4.5.0
|
||||
rev: v5.0.0
|
||||
hooks:
|
||||
- id: trailing-whitespace
|
||||
- id: end-of-file-fixer
|
||||
@@ -10,7 +10,8 @@ repos:
|
||||
- id: debug-statements
|
||||
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.2.1
|
||||
rev: v0.12.7 # Fixed version to match pyproject.toml
|
||||
hooks:
|
||||
- id: ruff
|
||||
args: [--fix, --exit-non-zero-on-fix]
|
||||
- id: ruff-format
|
||||
|
||||
5
.vscode/extensions.json
vendored
Normal file
5
.vscode/extensions.json
vendored
Normal file
@@ -0,0 +1,5 @@
|
||||
{
|
||||
"recommendations": [
|
||||
"charliermarsh.ruff",
|
||||
]
|
||||
}
|
||||
22
.vscode/settings.json
vendored
Normal file
22
.vscode/settings.json
vendored
Normal file
@@ -0,0 +1,22 @@
|
||||
{
|
||||
"python.defaultInterpreterPath": ".venv/bin/python",
|
||||
"python.terminal.activateEnvironment": true,
|
||||
"[python]": {
|
||||
"editor.defaultFormatter": "charliermarsh.ruff",
|
||||
"editor.formatOnSave": true,
|
||||
"editor.codeActionsOnSave": {
|
||||
"source.organizeImports": "explicit",
|
||||
"source.fixAll": "explicit"
|
||||
},
|
||||
"editor.insertSpaces": true,
|
||||
"editor.tabSize": 4
|
||||
},
|
||||
"ruff.enable": true,
|
||||
"files.watcherExclude": {
|
||||
"**/.venv/**": true,
|
||||
"**/__pycache__/**": true,
|
||||
"**/*.egg-info/**": true,
|
||||
"**/build/**": true,
|
||||
"**/dist/**": true
|
||||
}
|
||||
}
|
||||
545
README.md
545
README.md
@@ -3,9 +3,13 @@
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<img src="https://img.shields.io/badge/Python-3.9%2B-blue.svg" alt="Python 3.9+">
|
||||
<img src="https://img.shields.io/badge/Python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12%20%7C%203.13-blue.svg" alt="Python Versions">
|
||||
<img src="https://github.com/yichuan-w/LEANN/actions/workflows/build-and-publish.yml/badge.svg" alt="CI Status">
|
||||
<img src="https://img.shields.io/badge/Platform-Ubuntu%20%26%20Arch%20%26%20WSL%20%7C%20macOS%20(ARM64%2FIntel)-lightgrey" alt="Platform">
|
||||
<img src="https://img.shields.io/badge/License-MIT-green.svg" alt="MIT License">
|
||||
<img src="https://img.shields.io/badge/Platform-Linux%20%7C%20macOS-lightgrey" alt="Platform">
|
||||
<img src="https://img.shields.io/badge/MCP-Native%20Integration-blue" alt="MCP Integration">
|
||||
<a href="https://join.slack.com/t/leann-e2u9779/shared_invite/zt-3ckd2f6w1-OX08~NN4gkWhh10PRVBj1Q"><img src="https://img.shields.io/badge/Slack-Join-4A154B?logo=slack&logoColor=white" alt="Join Slack">
|
||||
<a href="assets/wechat_user_group.JPG" title="Join WeChat group"><img src="https://img.shields.io/badge/WeChat-Join-2DC100?logo=wechat&logoColor=white" alt="Join WeChat group"></a>
|
||||
</p>
|
||||
|
||||
<h2 align="center" tabindex="-1" class="heading-element" dir="auto">
|
||||
@@ -16,7 +20,10 @@ LEANN is an innovative vector database that democratizes personal AI. Transform
|
||||
|
||||
LEANN achieves this through *graph-based selective recomputation* with *high-degree preserving pruning*, computing embeddings on-demand instead of storing them all. [Illustration Fig →](#️-architecture--how-it-works) | [Paper →](https://arxiv.org/abs/2506.08276)
|
||||
|
||||
**Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can search your **[file system](#-personal-data-manager-process-any-documents-pdf-txt-md)**, **[emails](#-your-personal-email-secretary-rag-on-apple-mail)**, **[browser history](#-time-machine-for-the-web-rag-your-entire-browser-history)**, **[chat history](#-wechat-detective-unlock-your-golden-memories)**, or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy.
|
||||
**Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can semantic search your **[file system](#-personal-data-manager-process-any-documents-pdf-txt-md)**, **[emails](#-your-personal-email-secretary-rag-on-apple-mail)**, **[browser history](#-time-machine-for-the-web-rag-your-entire-browser-history)**, **[chat history](#-wechat-detective-unlock-your-golden-memories)**, **[codebase](#-claude-code-integration-transform-your-development-workflow)**\* , or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy.
|
||||
|
||||
|
||||
\* Claude Code only supports basic `grep`-style keyword search. **LEANN** is a drop-in **semantic search MCP service fully compatible with Claude Code**, unlocking intelligent retrieval without changing your workflow. 🔥 Check out [the easy setup →](packages/leann-mcp/README.md)
|
||||
|
||||
|
||||
|
||||
@@ -26,7 +33,7 @@ LEANN achieves this through *graph-based selective recomputation* with *high-deg
|
||||
<img src="assets/effects.png" alt="LEANN vs Traditional Vector DB Storage Comparison" width="70%">
|
||||
</p>
|
||||
|
||||
> **The numbers speak for themselves:** Index 60 million Wikipedia chunks in just 6GB instead of 201GB. From emails to browser history, everything fits on your laptop. [See detailed benchmarks for different applications below ↓](#storage-comparison)
|
||||
> **The numbers speak for themselves:** Index 60 million text chunks in just 6GB instead of 201GB. From emails to browser history, everything fits on your laptop. [See detailed benchmarks for different applications below ↓](#-storage-comparison)
|
||||
|
||||
|
||||
🔒 **Privacy:** Your data never leaves your laptop. No OpenAI, no cloud, no "terms of service".
|
||||
@@ -41,64 +48,111 @@ LEANN achieves this through *graph-based selective recomputation* with *high-deg
|
||||
|
||||
## Installation
|
||||
|
||||
<details>
|
||||
<summary><strong>📦 Prerequisites: Install uv (if you don't have it)</strong></summary>
|
||||
### 📦 Prerequisites: Install uv
|
||||
|
||||
Install uv first if you don't have it:
|
||||
[Install uv](https://docs.astral.sh/uv/getting-started/installation/#installation-methods) first if you don't have it. Typically, you can install it with:
|
||||
|
||||
```bash
|
||||
curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
```
|
||||
|
||||
📖 [Detailed uv installation methods →](https://docs.astral.sh/uv/getting-started/installation/#installation-methods)
|
||||
### 🚀 Quick Install
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
LEANN provides two installation methods: **pip install** (quick and easy) and **build from source** (recommended for development).
|
||||
|
||||
|
||||
|
||||
### 🚀 Quick Install (Recommended for most users)
|
||||
|
||||
Clone the repository to access all examples and install LEANN from [PyPI](https://pypi.org/project/leann/) to run them immediately:
|
||||
Clone the repository to access all examples and try amazing applications,
|
||||
|
||||
```bash
|
||||
git clone git@github.com:yichuan-w/LEANN.git leann
|
||||
git clone https://github.com/yichuan-w/LEANN.git leann
|
||||
cd leann
|
||||
```
|
||||
|
||||
and install LEANN from [PyPI](https://pypi.org/project/leann/) to run them immediately:
|
||||
|
||||
```bash
|
||||
uv venv
|
||||
source .venv/bin/activate
|
||||
uv pip install leann
|
||||
```
|
||||
<!--
|
||||
> Low-resource? See “Low-resource setups” in the [Configuration Guide](docs/configuration-guide.md#low-resource-setups). -->
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
<strong>🔧 Build from Source (Recommended for development)</strong>
|
||||
</summary>
|
||||
|
||||
|
||||
### 🔧 Build from Source (Recommended for development)
|
||||
|
||||
```bash
|
||||
git clone git@github.com:yichuan-w/LEANN.git leann
|
||||
git clone https://github.com/yichuan-w/LEANN.git leann
|
||||
cd leann
|
||||
git submodule update --init --recursive
|
||||
```
|
||||
|
||||
**macOS:**
|
||||
|
||||
Note: DiskANN requires MacOS 13.3 or later.
|
||||
|
||||
```bash
|
||||
brew install llvm libomp boost protobuf zeromq pkgconf
|
||||
CC=$(brew --prefix llvm)/bin/clang CXX=$(brew --prefix llvm)/bin/clang++ uv sync
|
||||
brew install libomp boost protobuf zeromq pkgconf
|
||||
uv sync --extra diskann
|
||||
```
|
||||
|
||||
**Linux:**
|
||||
**Linux (Ubuntu/Debian):**
|
||||
|
||||
Note: On Ubuntu 20.04, you may need to build a newer Abseil and pin Protobuf (e.g., v3.20.x) for building DiskANN. See [Issue #30](https://github.com/yichuan-w/LEANN/issues/30) for a step-by-step note.
|
||||
|
||||
You can manually install [Intel oneAPI MKL](https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html) instead of `libmkl-full-dev` for DiskANN. You can also use `libopenblas-dev` for building HNSW only, by removing `--extra diskann` in the command below.
|
||||
|
||||
```bash
|
||||
sudo apt-get install libomp-dev libboost-all-dev protobuf-compiler libabsl-dev libmkl-full-dev libaio-dev libzmq3-dev
|
||||
uv sync
|
||||
sudo apt-get update && sudo apt-get install -y \
|
||||
libomp-dev libboost-all-dev protobuf-compiler libzmq3-dev \
|
||||
pkg-config libabsl-dev libaio-dev libprotobuf-dev \
|
||||
libmkl-full-dev
|
||||
|
||||
uv sync --extra diskann
|
||||
```
|
||||
|
||||
**Linux (Arch Linux):**
|
||||
|
||||
```bash
|
||||
sudo pacman -Syu && sudo pacman -S --needed base-devel cmake pkgconf git gcc \
|
||||
boost boost-libs protobuf abseil-cpp libaio zeromq
|
||||
|
||||
# For MKL in DiskANN
|
||||
sudo pacman -S --needed base-devel git
|
||||
git clone https://aur.archlinux.org/paru-bin.git
|
||||
cd paru-bin && makepkg -si
|
||||
paru -S intel-oneapi-mkl intel-oneapi-compiler
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
|
||||
uv sync --extra diskann
|
||||
```
|
||||
|
||||
**Linux (RHEL / CentOS Stream / Oracle / Rocky / AlmaLinux):**
|
||||
|
||||
See [Issue #50](https://github.com/yichuan-w/LEANN/issues/50) for more details.
|
||||
|
||||
```bash
|
||||
sudo dnf groupinstall -y "Development Tools"
|
||||
sudo dnf install -y libomp-devel boost-devel protobuf-compiler protobuf-devel \
|
||||
abseil-cpp-devel libaio-devel zeromq-devel pkgconf-pkg-config
|
||||
|
||||
# For MKL in DiskANN
|
||||
sudo dnf install -y intel-oneapi-mkl intel-oneapi-mkl-devel \
|
||||
intel-oneapi-openmp || sudo dnf install -y intel-oneapi-compiler
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
|
||||
uv sync --extra diskann
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
## Quick Start
|
||||
|
||||
Our declarative API makes RAG as easy as writing a config file.
|
||||
|
||||
[](https://colab.research.google.com/github/yichuan-w/LEANN/blob/main/demo.ipynb) [Try in this ipynb file →](demo.ipynb)
|
||||
Check out [demo.ipynb](demo.ipynb) or [](https://colab.research.google.com/github/yichuan-w/LEANN/blob/main/demo.ipynb)
|
||||
|
||||
```python
|
||||
from leann import LeannBuilder, LeannSearcher, LeannChat
|
||||
@@ -122,11 +176,13 @@ response = chat.ask("How much storage does LEANN save?", top_k=1)
|
||||
|
||||
## RAG on Everything!
|
||||
|
||||
LEANN supports RAG on various data sources including documents (.pdf, .txt, .md), Apple Mail, Google Search History, WeChat, and more.
|
||||
LEANN supports RAG on various data sources including documents (`.pdf`, `.txt`, `.md`), Apple Mail, Google Search History, WeChat, Claude conversations, and more.
|
||||
|
||||
|
||||
> **Generation Model Setup**
|
||||
> LEANN supports multiple LLM providers for text generation (OpenAI API, HuggingFace, Ollama).
|
||||
|
||||
### Generation Model Setup
|
||||
|
||||
LEANN supports multiple LLM providers for text generation (OpenAI API, HuggingFace, Ollama).
|
||||
|
||||
<details>
|
||||
<summary><strong>🔑 OpenAI API Setup (Default)</strong></summary>
|
||||
@@ -166,7 +222,53 @@ ollama pull llama3.2:1b
|
||||
|
||||
</details>
|
||||
|
||||
### 📄 Personal Data Manager: Process Any Documents (.pdf, .txt, .md)!
|
||||
|
||||
## ⭐ Flexible Configuration
|
||||
|
||||
LEANN provides flexible parameters for embedding models, search strategies, and data processing to fit your specific needs.
|
||||
|
||||
📚 **Need configuration best practices?** Check our [Configuration Guide](docs/configuration-guide.md) for detailed optimization tips, model selection advice, and solutions to common issues like slow embeddings or poor search quality.
|
||||
|
||||
<details>
|
||||
<summary><strong>📋 Click to expand: Common Parameters (Available in All Examples)</strong></summary>
|
||||
|
||||
All RAG examples share these common parameters. **Interactive mode** is available in all examples - simply run without `--query` to start a continuous Q&A session where you can ask multiple questions. Type 'quit' to exit.
|
||||
|
||||
```bash
|
||||
# Core Parameters (General preprocessing for all examples)
|
||||
--index-dir DIR # Directory to store the index (default: current directory)
|
||||
--query "YOUR QUESTION" # Single query mode. Omit for interactive chat (type 'quit' to exit), and now you can play with your index interactively
|
||||
--max-items N # Limit data preprocessing (default: -1, process all data)
|
||||
--force-rebuild # Force rebuild index even if it exists
|
||||
|
||||
# Embedding Parameters
|
||||
--embedding-model MODEL # e.g., facebook/contriever, text-embedding-3-small, mlx-community/Qwen3-Embedding-0.6B-8bit or nomic-embed-text
|
||||
--embedding-mode MODE # sentence-transformers, openai, mlx, or ollama
|
||||
|
||||
# LLM Parameters (Text generation models)
|
||||
--llm TYPE # LLM backend: openai, ollama, or hf (default: openai)
|
||||
--llm-model MODEL # Model name (default: gpt-4o) e.g., gpt-4o-mini, llama3.2:1b, Qwen/Qwen2.5-1.5B-Instruct
|
||||
--thinking-budget LEVEL # Thinking budget for reasoning models: low/medium/high (supported by o3, o3-mini, GPT-Oss:20b, and other reasoning models)
|
||||
|
||||
# Search Parameters
|
||||
--top-k N # Number of results to retrieve (default: 20)
|
||||
--search-complexity N # Search complexity for graph traversal (default: 32)
|
||||
|
||||
# Chunking Parameters
|
||||
--chunk-size N # Size of text chunks (default varies by source: 256 for most, 192 for WeChat)
|
||||
--chunk-overlap N # Overlap between chunks (default varies: 25-128 depending on source)
|
||||
|
||||
# Index Building Parameters
|
||||
--backend-name NAME # Backend to use: hnsw or diskann (default: hnsw)
|
||||
--graph-degree N # Graph degree for index construction (default: 32)
|
||||
--build-complexity N # Build complexity for index construction (default: 64)
|
||||
--compact / --no-compact # Use compact storage (default: true). Must be `no-compact` for `no-recompute` build.
|
||||
--recompute / --no-recompute # Enable/disable embedding recomputation (default: enabled). Should not do a `no-recompute` search in a `recompute` build.
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
### 📄 Personal Data Manager: Process Any Documents (`.pdf`, `.txt`, `.md`)!
|
||||
|
||||
Ask questions directly about your personal PDFs, documents, and any directory containing your files!
|
||||
|
||||
@@ -174,15 +276,38 @@ Ask questions directly about your personal PDFs, documents, and any directory co
|
||||
<img src="videos/paper_clear.gif" alt="LEANN Document Search Demo" width="600">
|
||||
</p>
|
||||
|
||||
The example below asks a question about summarizing two papers (uses default data in `examples/data`):
|
||||
The example below asks a question about summarizing our paper (uses default data in `data/`, which is a directory with diverse data sources: two papers, Pride and Prejudice, and a Technical report about LLM in Huawei in Chinese), and this is the **easiest example** to run here:
|
||||
|
||||
```
|
||||
# Or use python directly
|
||||
source .venv/bin/activate
|
||||
python ./examples/main_cli_example.py
|
||||
```bash
|
||||
source .venv/bin/activate # Don't forget to activate the virtual environment
|
||||
python -m apps.document_rag --query "What are the main techniques LEANN explores?"
|
||||
```
|
||||
|
||||
<details>
|
||||
<summary><strong>📋 Click to expand: Document-Specific Arguments</strong></summary>
|
||||
|
||||
#### Parameters
|
||||
```bash
|
||||
--data-dir DIR # Directory containing documents to process (default: data)
|
||||
--file-types .ext .ext # Filter by specific file types (optional - all LlamaIndex supported types if omitted)
|
||||
```
|
||||
|
||||
#### Example Commands
|
||||
```bash
|
||||
# Process all documents with larger chunks for academic papers
|
||||
python -m apps.document_rag --data-dir "~/Documents/Papers" --chunk-size 1024
|
||||
|
||||
# Filter only markdown and Python files with smaller chunks
|
||||
python -m apps.document_rag --data-dir "./docs" --chunk-size 256 --file-types .md .py
|
||||
|
||||
# Enable AST-aware chunking for code files
|
||||
python -m apps.document_rag --enable-code-chunking --data-dir "./my_project"
|
||||
|
||||
# Or use the specialized code RAG for better code understanding
|
||||
python -m apps.code_rag --repo-dir "./my_codebase" --query "How does authentication work?"
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
### 📧 Your Personal Email Secretary: RAG on Apple Mail!
|
||||
|
||||
@@ -193,30 +318,29 @@ python ./examples/main_cli_example.py
|
||||
<img src="videos/mail_clear.gif" alt="LEANN Email Search Demo" width="600">
|
||||
</p>
|
||||
|
||||
**Note:** You need to grant full disk access to your terminal/VS Code in System Preferences → Privacy & Security → Full Disk Access.
|
||||
Before running the example below, you need to grant full disk access to your terminal/VS Code in System Preferences → Privacy & Security → Full Disk Access.
|
||||
|
||||
```bash
|
||||
python examples/mail_reader_leann.py --query "What's the food I ordered by doordash or Uber eat mostly?"
|
||||
python -m apps.email_rag --query "What's the food I ordered by DoorDash or Uber Eats mostly?"
|
||||
```
|
||||
**780K email chunks → 78MB storage** Finally, search your email like you search Google.
|
||||
**780K email chunks → 78MB storage.** Finally, search your email like you search Google.
|
||||
|
||||
<details>
|
||||
<summary><strong>📋 Click to expand: Command Examples</strong></summary>
|
||||
<summary><strong>📋 Click to expand: Email-Specific Arguments</strong></summary>
|
||||
|
||||
#### Parameters
|
||||
```bash
|
||||
# Use default mail path (works for most macOS setups)
|
||||
python examples/mail_reader_leann.py
|
||||
--mail-path PATH # Path to specific mail directory (auto-detects if omitted)
|
||||
--include-html # Include HTML content in processing (useful for newsletters)
|
||||
```
|
||||
|
||||
# Run with custom index directory
|
||||
python examples/mail_reader_leann.py --index-dir "./my_mail_index"
|
||||
#### Example Commands
|
||||
```bash
|
||||
# Search work emails from a specific account
|
||||
python -m apps.email_rag --mail-path "~/Library/Mail/V10/WORK_ACCOUNT"
|
||||
|
||||
# Process all emails (may take time but indexes everything)
|
||||
python examples/mail_reader_leann.py --max-emails -1
|
||||
|
||||
# Limit number of emails processed (useful for testing)
|
||||
python examples/mail_reader_leann.py --max-emails 1000
|
||||
|
||||
# Run a single query
|
||||
python examples/mail_reader_leann.py --query "What did my boss say about deadlines?"
|
||||
# Find all receipts and order confirmations (includes HTML)
|
||||
python -m apps.email_rag --query "receipt order confirmation invoice" --include-html
|
||||
```
|
||||
|
||||
</details>
|
||||
@@ -237,25 +361,25 @@ Once the index is built, you can ask questions like:
|
||||
</p>
|
||||
|
||||
```bash
|
||||
python examples/google_history_reader_leann.py --query "Tell me my browser history about machine learning?"
|
||||
python -m apps.browser_rag --query "Tell me my browser history about machine learning?"
|
||||
```
|
||||
**38K browser entries → 6MB storage.** Your browser history becomes your personal search engine.
|
||||
|
||||
<details>
|
||||
<summary><strong>📋 Click to expand: Command Examples</strong></summary>
|
||||
<summary><strong>📋 Click to expand: Browser-Specific Arguments</strong></summary>
|
||||
|
||||
#### Parameters
|
||||
```bash
|
||||
# Use default Chrome profile (auto-finds all profiles)
|
||||
python examples/google_history_reader_leann.py
|
||||
--chrome-profile PATH # Path to Chrome profile directory (auto-detects if omitted)
|
||||
```
|
||||
|
||||
# Run with custom index directory
|
||||
python examples/google_history_reader_leann.py --index-dir "./my_chrome_index"
|
||||
#### Example Commands
|
||||
```bash
|
||||
# Search academic research from your browsing history
|
||||
python -m apps.browser_rag --query "arxiv papers machine learning transformer architecture"
|
||||
|
||||
# Limit number of history entries processed (useful for testing)
|
||||
python examples/google_history_reader_leann.py --max-entries 500
|
||||
|
||||
# Run a single query
|
||||
python examples/google_history_reader_leann.py --query "What websites did I visit about machine learning?"
|
||||
# Track competitor analysis across work profile
|
||||
python -m apps.browser_rag --chrome-profile "~/Library/Application Support/Google/Chrome/Work Profile" --max-items 5000
|
||||
```
|
||||
|
||||
</details>
|
||||
@@ -295,7 +419,7 @@ Once the index is built, you can ask questions like:
|
||||
</p>
|
||||
|
||||
```bash
|
||||
python examples/wechat_history_reader_leann.py --query "Show me all group chats about weekend plans"
|
||||
python -m apps.wechat_rag --query "Show me all group chats about weekend plans"
|
||||
```
|
||||
**400K messages → 64MB storage** Search years of chat history in any language.
|
||||
|
||||
@@ -303,7 +427,13 @@ python examples/wechat_history_reader_leann.py --query "Show me all group chats
|
||||
<details>
|
||||
<summary><strong>🔧 Click to expand: Installation Requirements</strong></summary>
|
||||
|
||||
First, you need to install the WeChat exporter:
|
||||
First, you need to install the [WeChat exporter](https://github.com/sunnyyoung/WeChatTweak-CLI),
|
||||
|
||||
```bash
|
||||
brew install sunnyyoung/repo/wechattweak-cli
|
||||
```
|
||||
|
||||
or install it manually (if you have issues with Homebrew):
|
||||
|
||||
```bash
|
||||
sudo packages/wechat-exporter/wechattweak-cli install
|
||||
@@ -312,30 +442,28 @@ sudo packages/wechat-exporter/wechattweak-cli install
|
||||
**Troubleshooting:**
|
||||
- **Installation issues**: Check the [WeChatTweak-CLI issues page](https://github.com/sunnyyoung/WeChatTweak-CLI/issues/41)
|
||||
- **Export errors**: If you encounter the error below, try restarting WeChat
|
||||
```
|
||||
Failed to export WeChat data. Please ensure WeChat is running and WeChatTweak is installed.
|
||||
Failed to find or export WeChat data. Exiting.
|
||||
```
|
||||
```bash
|
||||
Failed to export WeChat data. Please ensure WeChat is running and WeChatTweak is installed.
|
||||
Failed to find or export WeChat data. Exiting.
|
||||
```
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary><strong>📋 Click to expand: Command Examples</strong></summary>
|
||||
<summary><strong>📋 Click to expand: WeChat-Specific Arguments</strong></summary>
|
||||
|
||||
#### Parameters
|
||||
```bash
|
||||
# Use default settings (recommended for first run)
|
||||
python examples/wechat_history_reader_leann.py
|
||||
--export-dir DIR # Directory to store exported WeChat data (default: wechat_export_direct)
|
||||
--force-export # Force re-export even if data exists
|
||||
```
|
||||
|
||||
# Run with custom export directory and wehn we run the first time, LEANN will export all chat history automatically for you
|
||||
python examples/wechat_history_reader_leann.py --export-dir "./my_wechat_exports"
|
||||
#### Example Commands
|
||||
```bash
|
||||
# Search for travel plans discussed in group chats
|
||||
python -m apps.wechat_rag --query "travel plans" --max-items 10000
|
||||
|
||||
# Run with custom index directory
|
||||
python examples/wechat_history_reader_leann.py --index-dir "./my_wechat_index"
|
||||
|
||||
# Limit number of chat entries processed (useful for testing)
|
||||
python examples/wechat_history_reader_leann.py --max-entries 1000
|
||||
|
||||
# Run a single query
|
||||
python examples/wechat_history_reader_leann.py --query "Show me conversations about travel plans"
|
||||
# Re-export and search recent chats (useful after new messages)
|
||||
python -m apps.wechat_rag --force-export --query "work schedule"
|
||||
```
|
||||
|
||||
</details>
|
||||
@@ -349,15 +477,142 @@ Once the index is built, you can ask questions like:
|
||||
|
||||
</details>
|
||||
|
||||
### 🤖 Claude Chat History: Your Personal AI Conversation Archive!
|
||||
|
||||
Transform your Claude conversations into a searchable knowledge base! Search through all your Claude discussions about coding, research, brainstorming, and more.
|
||||
|
||||
```bash
|
||||
python -m apps.claude_rag --export-path claude_export.json --query "What did I ask about Python dictionaries?"
|
||||
```
|
||||
|
||||
**Unlock your AI conversation history.** Never lose track of valuable insights from your Claude discussions again.
|
||||
|
||||
<details>
|
||||
<summary><strong>📋 Click to expand: How to Export Claude Data</strong></summary>
|
||||
|
||||
**Step-by-step export process:**
|
||||
|
||||
1. **Open Claude** in your browser
|
||||
2. **Navigate to Settings** (look for gear icon or settings menu)
|
||||
3. **Find Export/Download** options in your account settings
|
||||
4. **Download conversation data** (usually in JSON format)
|
||||
5. **Place the file** in your project directory
|
||||
|
||||
*Note: Claude export methods may vary depending on the interface you're using. Check Claude's help documentation for the most current export instructions.*
|
||||
|
||||
**Supported formats:**
|
||||
- `.json` files (recommended)
|
||||
- `.zip` archives containing JSON data
|
||||
- Directories with multiple export files
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary><strong>📋 Click to expand: Claude-Specific Arguments</strong></summary>
|
||||
|
||||
#### Parameters
|
||||
```bash
|
||||
--export-path PATH # Path to Claude export file (.json/.zip) or directory (default: ./claude_export)
|
||||
--separate-messages # Process each message separately instead of concatenated conversations
|
||||
--chunk-size N # Text chunk size (default: 512)
|
||||
--chunk-overlap N # Overlap between chunks (default: 128)
|
||||
```
|
||||
|
||||
#### Example Commands
|
||||
```bash
|
||||
# Basic usage with JSON export
|
||||
python -m apps.claude_rag --export-path my_claude_conversations.json
|
||||
|
||||
# Process ZIP archive from Claude
|
||||
python -m apps.claude_rag --export-path claude_export.zip
|
||||
|
||||
# Search with specific query
|
||||
python -m apps.claude_rag --export-path claude_data.json --query "machine learning advice"
|
||||
|
||||
# Process individual messages for fine-grained search
|
||||
python -m apps.claude_rag --separate-messages --export-path claude_export.json
|
||||
|
||||
# Process directory containing multiple exports
|
||||
python -m apps.claude_rag --export-path ./claude_exports/ --max-items 1000
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary><strong>💡 Click to expand: Example queries you can try</strong></summary>
|
||||
|
||||
Once your Claude conversations are indexed, you can search with queries like:
|
||||
- "What did I ask Claude about Python programming?"
|
||||
- "Show me conversations about machine learning algorithms"
|
||||
- "Find discussions about software architecture patterns"
|
||||
- "What debugging advice did Claude give me?"
|
||||
- "Search for conversations about data structures"
|
||||
- "Find Claude's recommendations for learning resources"
|
||||
|
||||
</details>
|
||||
|
||||
### 🚀 Claude Code Integration: Transform Your Development Workflow!
|
||||
|
||||
<details>
|
||||
<summary><strong>NEW!! AST‑Aware Code Chunking</strong></summary>
|
||||
|
||||
LEANN features intelligent code chunking that preserves semantic boundaries (functions, classes, methods) for Python, Java, C#, and TypeScript, improving code understanding compared to text-based chunking.
|
||||
|
||||
📖 Read the [AST Chunking Guide →](docs/ast_chunking_guide.md)
|
||||
|
||||
</details>
|
||||
|
||||
**The future of code assistance is here.** Transform your development workflow with LEANN's native MCP integration for Claude Code. Index your entire codebase and get intelligent code assistance directly in your IDE.
|
||||
|
||||
**Key features:**
|
||||
- 🔍 **Semantic code search** across your entire project, fully local index and lightweight
|
||||
- 🧠 **AST-aware chunking** preserves code structure (functions, classes)
|
||||
- 📚 **Context-aware assistance** for debugging and development
|
||||
- 🚀 **Zero-config setup** with automatic language detection
|
||||
|
||||
```bash
|
||||
# Install LEANN globally for MCP integration
|
||||
uv tool install leann-core --with leann
|
||||
claude mcp add --scope user leann-server -- leann_mcp
|
||||
# Setup is automatic - just start using Claude Code!
|
||||
```
|
||||
Try our fully agentic pipeline with auto query rewriting, semantic search planning, and more:
|
||||
|
||||

|
||||
|
||||
**🔥 Ready to supercharge your coding?** [Complete Setup Guide →](packages/leann-mcp/README.md)
|
||||
|
||||
## 🖥️ Command Line Interface
|
||||
|
||||
LEANN includes a powerful CLI for document processing and search. Perfect for quick document indexing and interactive chat.
|
||||
|
||||
### Installation
|
||||
|
||||
If you followed the Quick Start, `leann` is already installed in your virtual environment:
|
||||
```bash
|
||||
# Build an index from documents
|
||||
leann build my-docs --docs ./documents
|
||||
source .venv/bin/activate
|
||||
leann --help
|
||||
```
|
||||
|
||||
**To make it globally available:**
|
||||
```bash
|
||||
# Install the LEANN CLI globally using uv tool
|
||||
uv tool install leann-core --with leann
|
||||
|
||||
|
||||
# Now you can use leann from anywhere without activating venv
|
||||
leann --help
|
||||
```
|
||||
|
||||
> **Note**: Global installation is required for Claude Code integration. The `leann_mcp` server depends on the globally available `leann` command.
|
||||
|
||||
|
||||
|
||||
### Usage Examples
|
||||
|
||||
```bash
|
||||
# build from a specific directory, and my_docs is the index name(Here you can also build from multiple dict or multiple files)
|
||||
leann build my-docs --docs ./your_documents
|
||||
|
||||
# Search your documents
|
||||
leann search my-docs "machine learning concepts"
|
||||
@@ -367,30 +622,36 @@ leann ask my-docs --interactive
|
||||
|
||||
# List all your indexes
|
||||
leann list
|
||||
|
||||
# Remove an index
|
||||
leann remove my-docs
|
||||
```
|
||||
|
||||
**Key CLI features:**
|
||||
- Auto-detects document formats (PDF, TXT, MD, DOCX)
|
||||
- Smart text chunking with overlap
|
||||
- Auto-detects document formats (PDF, TXT, MD, DOCX, PPTX + code files)
|
||||
- **🧠 AST-aware chunking** for Python, Java, C#, TypeScript files
|
||||
- Smart text chunking with overlap for all other content
|
||||
- Multiple LLM providers (Ollama, OpenAI, HuggingFace)
|
||||
- Organized index storage in `~/.leann/indexes/`
|
||||
- Organized index storage in `.leann/indexes/` (project-local)
|
||||
- Support for advanced search parameters
|
||||
|
||||
<details>
|
||||
<summary><strong>📋 Click to expand: Complete CLI Reference</strong></summary>
|
||||
|
||||
You can use `leann --help`, or `leann build --help`, `leann search --help`, `leann ask --help`, `leann list --help`, `leann remove --help` to get the complete CLI reference.
|
||||
|
||||
**Build Command:**
|
||||
```bash
|
||||
leann build INDEX_NAME --docs DIRECTORY [OPTIONS]
|
||||
leann build INDEX_NAME --docs DIRECTORY|FILE [DIRECTORY|FILE ...] [OPTIONS]
|
||||
|
||||
Options:
|
||||
--backend {hnsw,diskann} Backend to use (default: hnsw)
|
||||
--embedding-model MODEL Embedding model (default: facebook/contriever)
|
||||
--graph-degree N Graph degree (default: 32)
|
||||
--complexity N Build complexity (default: 64)
|
||||
--force Force rebuild existing index
|
||||
--compact Use compact storage (default: true)
|
||||
--recompute Enable recomputation (default: true)
|
||||
--graph-degree N Graph degree (default: 32)
|
||||
--complexity N Build complexity (default: 64)
|
||||
--force Force rebuild existing index
|
||||
--compact / --no-compact Use compact storage (default: true). Must be `no-compact` for `no-recompute` build.
|
||||
--recompute / --no-recompute Enable recomputation (default: true)
|
||||
```
|
||||
|
||||
**Search Command:**
|
||||
@@ -398,9 +659,9 @@ Options:
|
||||
leann search INDEX_NAME QUERY [OPTIONS]
|
||||
|
||||
Options:
|
||||
--top-k N Number of results (default: 5)
|
||||
--complexity N Search complexity (default: 64)
|
||||
--recompute-embeddings Use recomputation for highest accuracy
|
||||
--top-k N Number of results (default: 5)
|
||||
--complexity N Search complexity (default: 64)
|
||||
--recompute / --no-recompute Enable/disable embedding recomputation (default: enabled). Should not do a `no-recompute` search in a `recompute` build.
|
||||
--pruning-strategy {global,local,proportional}
|
||||
```
|
||||
|
||||
@@ -415,8 +676,73 @@ Options:
|
||||
--top-k N Retrieval count (default: 20)
|
||||
```
|
||||
|
||||
**List Command:**
|
||||
```bash
|
||||
leann list
|
||||
|
||||
# Lists all indexes across all projects with status indicators:
|
||||
# ✅ - Index is complete and ready to use
|
||||
# ❌ - Index is incomplete or corrupted
|
||||
# 📁 - CLI-created index (in .leann/indexes/)
|
||||
# 📄 - App-created index (*.leann.meta.json files)
|
||||
```
|
||||
|
||||
**Remove Command:**
|
||||
```bash
|
||||
leann remove INDEX_NAME [OPTIONS]
|
||||
|
||||
Options:
|
||||
--force, -f Force removal without confirmation
|
||||
|
||||
# Smart removal: automatically finds and safely removes indexes
|
||||
# - Shows all matching indexes across projects
|
||||
# - Requires confirmation for cross-project removal
|
||||
# - Interactive selection when multiple matches found
|
||||
# - Supports both CLI and app-created indexes
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
## 🚀 Advanced Features
|
||||
|
||||
### 🎯 Metadata Filtering
|
||||
|
||||
LEANN supports a simple metadata filtering system to enable sophisticated use cases like document filtering by date/type, code search by file extension, and content management based on custom criteria.
|
||||
|
||||
```python
|
||||
# Add metadata during indexing
|
||||
builder.add_text(
|
||||
"def authenticate_user(token): ...",
|
||||
metadata={"file_extension": ".py", "lines_of_code": 25}
|
||||
)
|
||||
|
||||
# Search with filters
|
||||
results = searcher.search(
|
||||
query="authentication function",
|
||||
metadata_filters={
|
||||
"file_extension": {"==": ".py"},
|
||||
"lines_of_code": {"<": 100}
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
**Supported operators**: `==`, `!=`, `<`, `<=`, `>`, `>=`, `in`, `not_in`, `contains`, `starts_with`, `ends_with`, `is_true`, `is_false`
|
||||
|
||||
📖 **[Complete Metadata filtering guide →](docs/metadata_filtering.md)**
|
||||
|
||||
### 🔍 Grep Search
|
||||
|
||||
For exact text matching instead of semantic search, use the `use_grep` parameter:
|
||||
|
||||
```python
|
||||
# Exact text search
|
||||
results = searcher.search("banana‑crocodile", use_grep=True, top_k=1)
|
||||
```
|
||||
|
||||
**Use cases**: Finding specific code patterns, error messages, function names, or exact phrases where semantic similarity isn't needed.
|
||||
|
||||
📖 **[Complete grep search guide →](docs/grep_search.md)**
|
||||
|
||||
## 🏗️ Architecture & How It Works
|
||||
|
||||
<p align="center">
|
||||
@@ -431,13 +757,17 @@ Options:
|
||||
- **Dynamic batching:** Efficiently batch embedding computations for GPU utilization
|
||||
- **Two-level search:** Smart graph traversal that prioritizes promising nodes
|
||||
|
||||
**Backends:** DiskANN or HNSW - pick what works for your data size.
|
||||
**Backends:**
|
||||
- **HNSW** (default): Ideal for most datasets with maximum storage savings through full recomputation
|
||||
- **DiskANN**: Advanced option with superior search performance, using PQ-based graph traversal with real-time reranking for the best speed-accuracy trade-off
|
||||
|
||||
## Benchmarks
|
||||
|
||||
**[DiskANN vs HNSW Performance Comparison →](benchmarks/diskann_vs_hnsw_speed_comparison.py)** - Compare search performance between both backends
|
||||
|
||||
📊 **[Simple Example: Compare LEANN vs FAISS →](examples/compare_faiss_vs_leann.py)**
|
||||
### Storage Comparison
|
||||
**[Simple Example: Compare LEANN vs FAISS →](benchmarks/compare_faiss_vs_leann.py)** - See storage savings in action
|
||||
|
||||
### 📊 Storage Comparison
|
||||
|
||||
| System | DPR (2.1M) | Wiki (60M) | Chat (400K) | Email (780K) | Browser (38K) |
|
||||
|--------|-------------|------------|-------------|--------------|---------------|
|
||||
@@ -451,8 +781,8 @@ Options:
|
||||
|
||||
```bash
|
||||
uv pip install -e ".[dev]" # Install dev dependencies
|
||||
python examples/run_evaluation.py data/indices/dpr/dpr_diskann # DPR dataset
|
||||
python examples/run_evaluation.py data/indices/rpj_wiki/rpj_wiki.index # Wikipedia
|
||||
python benchmarks/run_evaluation.py # Will auto-download evaluation data and run benchmarks
|
||||
python benchmarks/run_evaluation.py benchmarks/data/indices/rpj_wiki/rpj_wiki --num-queries 2000 # After downloading data, you can run the benchmark with our biggest index
|
||||
```
|
||||
|
||||
The evaluation script downloads data automatically on first run. The last three results were tested with partial personal data, and you can reproduce them with your own data!
|
||||
@@ -490,9 +820,18 @@ MIT License - see [LICENSE](LICENSE) for details.
|
||||
|
||||
## 🙏 Acknowledgments
|
||||
|
||||
This work is done at [**Berkeley Sky Computing Lab**](https://sky.cs.berkeley.edu/)
|
||||
---
|
||||
Core Contributors: [Yichuan Wang](https://yichuan-w.github.io/) & [Zhifei Li](https://github.com/andylizf).
|
||||
|
||||
Active Contributors: [Gabriel Dehan](https://github.com/gabriel-dehan)
|
||||
|
||||
|
||||
We welcome more contributors! Feel free to open issues or submit PRs.
|
||||
|
||||
This work is done at [**Berkeley Sky Computing Lab**](https://sky.cs.berkeley.edu/).
|
||||
|
||||
## Star History
|
||||
|
||||
[](https://www.star-history.com/#yichuan-w/LEANN&Date)
|
||||
<p align="center">
|
||||
<strong>⭐ Star us on GitHub if Leann is useful for your research or applications!</strong>
|
||||
</p>
|
||||
|
||||
0
apps/__init__.py
Normal file
0
apps/__init__.py
Normal file
342
apps/base_rag_example.py
Normal file
342
apps/base_rag_example.py
Normal file
@@ -0,0 +1,342 @@
|
||||
"""
|
||||
Base class for unified RAG examples interface.
|
||||
Provides common parameters and functionality for all RAG examples.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
from abc import ABC, abstractmethod
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import dotenv
|
||||
from leann.api import LeannBuilder, LeannChat
|
||||
from leann.registry import register_project_directory
|
||||
|
||||
dotenv.load_dotenv()
|
||||
|
||||
|
||||
class BaseRAGExample(ABC):
|
||||
"""Base class for all RAG examples with unified interface."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
name: str,
|
||||
description: str,
|
||||
default_index_name: str,
|
||||
):
|
||||
self.name = name
|
||||
self.description = description
|
||||
self.default_index_name = default_index_name
|
||||
self.parser = self._create_parser()
|
||||
|
||||
def _create_parser(self) -> argparse.ArgumentParser:
|
||||
"""Create argument parser with common parameters."""
|
||||
parser = argparse.ArgumentParser(
|
||||
description=self.description, formatter_class=argparse.RawDescriptionHelpFormatter
|
||||
)
|
||||
|
||||
# Core parameters (all examples share these)
|
||||
core_group = parser.add_argument_group("Core Parameters")
|
||||
core_group.add_argument(
|
||||
"--index-dir",
|
||||
type=str,
|
||||
default=f"./{self.default_index_name}",
|
||||
help=f"Directory to store the index (default: ./{self.default_index_name})",
|
||||
)
|
||||
core_group.add_argument(
|
||||
"--query",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Query to run (if not provided, will run in interactive mode)",
|
||||
)
|
||||
# Allow subclasses to override default max_items
|
||||
max_items_default = getattr(self, "max_items_default", -1)
|
||||
core_group.add_argument(
|
||||
"--max-items",
|
||||
type=int,
|
||||
default=max_items_default,
|
||||
help="Maximum number of items to process -1 for all, means index all documents, and you should set it to a reasonable number if you have a large dataset and try at the first time)",
|
||||
)
|
||||
core_group.add_argument(
|
||||
"--force-rebuild", action="store_true", help="Force rebuild index even if it exists"
|
||||
)
|
||||
|
||||
# Embedding parameters
|
||||
embedding_group = parser.add_argument_group("Embedding Parameters")
|
||||
# Allow subclasses to override default embedding_model
|
||||
embedding_model_default = getattr(self, "embedding_model_default", "facebook/contriever")
|
||||
embedding_group.add_argument(
|
||||
"--embedding-model",
|
||||
type=str,
|
||||
default=embedding_model_default,
|
||||
help=f"Embedding model to use (default: {embedding_model_default}), we provide facebook/contriever, text-embedding-3-small,mlx-community/Qwen3-Embedding-0.6B-8bit or nomic-embed-text",
|
||||
)
|
||||
embedding_group.add_argument(
|
||||
"--embedding-mode",
|
||||
type=str,
|
||||
default="sentence-transformers",
|
||||
choices=["sentence-transformers", "openai", "mlx", "ollama"],
|
||||
help="Embedding backend mode (default: sentence-transformers), we provide sentence-transformers, openai, mlx, or ollama",
|
||||
)
|
||||
|
||||
# LLM parameters
|
||||
llm_group = parser.add_argument_group("LLM Parameters")
|
||||
llm_group.add_argument(
|
||||
"--llm",
|
||||
type=str,
|
||||
default="openai",
|
||||
choices=["openai", "ollama", "hf", "simulated"],
|
||||
help="LLM backend: openai, ollama, or hf (default: openai)",
|
||||
)
|
||||
llm_group.add_argument(
|
||||
"--llm-model",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Model name (default: gpt-4o) e.g., gpt-4o-mini, llama3.2:1b, Qwen/Qwen2.5-1.5B-Instruct",
|
||||
)
|
||||
llm_group.add_argument(
|
||||
"--llm-host",
|
||||
type=str,
|
||||
default="http://localhost:11434",
|
||||
help="Host for Ollama API (default: http://localhost:11434)",
|
||||
)
|
||||
llm_group.add_argument(
|
||||
"--thinking-budget",
|
||||
type=str,
|
||||
choices=["low", "medium", "high"],
|
||||
default=None,
|
||||
help="Thinking budget for reasoning models (low/medium/high). Supported by GPT-Oss:20b and other reasoning models.",
|
||||
)
|
||||
|
||||
# AST Chunking parameters
|
||||
ast_group = parser.add_argument_group("AST Chunking Parameters")
|
||||
ast_group.add_argument(
|
||||
"--use-ast-chunking",
|
||||
action="store_true",
|
||||
help="Enable AST-aware chunking for code files (requires astchunk)",
|
||||
)
|
||||
ast_group.add_argument(
|
||||
"--ast-chunk-size",
|
||||
type=int,
|
||||
default=512,
|
||||
help="Maximum characters per AST chunk (default: 512)",
|
||||
)
|
||||
ast_group.add_argument(
|
||||
"--ast-chunk-overlap",
|
||||
type=int,
|
||||
default=64,
|
||||
help="Overlap between AST chunks (default: 64)",
|
||||
)
|
||||
ast_group.add_argument(
|
||||
"--code-file-extensions",
|
||||
nargs="+",
|
||||
default=None,
|
||||
help="Additional code file extensions to process with AST chunking (e.g., .py .java .cs .ts)",
|
||||
)
|
||||
ast_group.add_argument(
|
||||
"--ast-fallback-traditional",
|
||||
action="store_true",
|
||||
default=True,
|
||||
help="Fall back to traditional chunking if AST chunking fails (default: True)",
|
||||
)
|
||||
|
||||
# Search parameters
|
||||
search_group = parser.add_argument_group("Search Parameters")
|
||||
search_group.add_argument(
|
||||
"--top-k", type=int, default=20, help="Number of results to retrieve (default: 20)"
|
||||
)
|
||||
search_group.add_argument(
|
||||
"--search-complexity",
|
||||
type=int,
|
||||
default=32,
|
||||
help="Search complexity for graph traversal (default: 64)",
|
||||
)
|
||||
|
||||
# Index building parameters
|
||||
index_group = parser.add_argument_group("Index Building Parameters")
|
||||
index_group.add_argument(
|
||||
"--backend-name",
|
||||
type=str,
|
||||
default="hnsw",
|
||||
choices=["hnsw", "diskann"],
|
||||
help="Backend to use for index (default: hnsw)",
|
||||
)
|
||||
index_group.add_argument(
|
||||
"--graph-degree",
|
||||
type=int,
|
||||
default=32,
|
||||
help="Graph degree for index construction (default: 32)",
|
||||
)
|
||||
index_group.add_argument(
|
||||
"--build-complexity",
|
||||
type=int,
|
||||
default=64,
|
||||
help="Build complexity for index construction (default: 64)",
|
||||
)
|
||||
index_group.add_argument(
|
||||
"--no-compact",
|
||||
action="store_true",
|
||||
help="Disable compact index storage",
|
||||
)
|
||||
index_group.add_argument(
|
||||
"--no-recompute",
|
||||
action="store_true",
|
||||
help="Disable embedding recomputation",
|
||||
)
|
||||
|
||||
# Add source-specific parameters
|
||||
self._add_specific_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
@abstractmethod
|
||||
def _add_specific_arguments(self, parser: argparse.ArgumentParser):
|
||||
"""Add source-specific arguments. Override in subclasses."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def load_data(self, args) -> list[str]:
|
||||
"""Load data from the source. Returns list of text chunks."""
|
||||
pass
|
||||
|
||||
def get_llm_config(self, args) -> dict[str, Any]:
|
||||
"""Get LLM configuration based on arguments."""
|
||||
config = {"type": args.llm}
|
||||
|
||||
if args.llm == "openai":
|
||||
config["model"] = args.llm_model or "gpt-4o"
|
||||
elif args.llm == "ollama":
|
||||
config["model"] = args.llm_model or "llama3.2:1b"
|
||||
config["host"] = args.llm_host
|
||||
elif args.llm == "hf":
|
||||
config["model"] = args.llm_model or "Qwen/Qwen2.5-1.5B-Instruct"
|
||||
elif args.llm == "simulated":
|
||||
# Simulated LLM doesn't need additional configuration
|
||||
pass
|
||||
|
||||
return config
|
||||
|
||||
async def build_index(self, args, texts: list[str]) -> str:
|
||||
"""Build LEANN index from texts."""
|
||||
index_path = str(Path(args.index_dir) / f"{self.default_index_name}.leann")
|
||||
|
||||
print(f"\n[Building Index] Creating {self.name} index...")
|
||||
print(f"Total text chunks: {len(texts)}")
|
||||
|
||||
builder = LeannBuilder(
|
||||
backend_name=args.backend_name,
|
||||
embedding_model=args.embedding_model,
|
||||
embedding_mode=args.embedding_mode,
|
||||
graph_degree=args.graph_degree,
|
||||
complexity=args.build_complexity,
|
||||
is_compact=not args.no_compact,
|
||||
is_recompute=not args.no_recompute,
|
||||
num_threads=1, # Force single-threaded mode
|
||||
)
|
||||
|
||||
# Add texts in batches for better progress tracking
|
||||
batch_size = 1000
|
||||
for i in range(0, len(texts), batch_size):
|
||||
batch = texts[i : i + batch_size]
|
||||
for text in batch:
|
||||
builder.add_text(text)
|
||||
print(f"Added {min(i + batch_size, len(texts))}/{len(texts)} texts...")
|
||||
|
||||
print("Building index structure...")
|
||||
builder.build_index(index_path)
|
||||
print(f"Index saved to: {index_path}")
|
||||
|
||||
# Register project directory so leann list can discover this index
|
||||
# The index is saved as args.index_dir/index_name.leann
|
||||
# We want to register the current working directory where the app is run
|
||||
register_project_directory(Path.cwd())
|
||||
|
||||
return index_path
|
||||
|
||||
async def run_interactive_chat(self, args, index_path: str):
|
||||
"""Run interactive chat with the index."""
|
||||
chat = LeannChat(
|
||||
index_path,
|
||||
llm_config=self.get_llm_config(args),
|
||||
system_prompt=f"You are a helpful assistant that answers questions about {self.name} data.",
|
||||
complexity=args.search_complexity,
|
||||
)
|
||||
|
||||
print(f"\n[Interactive Mode] Chat with your {self.name} data!")
|
||||
print("Type 'quit' or 'exit' to stop.\n")
|
||||
|
||||
while True:
|
||||
try:
|
||||
query = input("You: ").strip()
|
||||
if query.lower() in ["quit", "exit", "q"]:
|
||||
print("Goodbye!")
|
||||
break
|
||||
|
||||
if not query:
|
||||
continue
|
||||
|
||||
# Prepare LLM kwargs with thinking budget if specified
|
||||
llm_kwargs = {}
|
||||
if hasattr(args, "thinking_budget") and args.thinking_budget:
|
||||
llm_kwargs["thinking_budget"] = args.thinking_budget
|
||||
|
||||
response = chat.ask(
|
||||
query,
|
||||
top_k=args.top_k,
|
||||
complexity=args.search_complexity,
|
||||
llm_kwargs=llm_kwargs,
|
||||
)
|
||||
print(f"\nAssistant: {response}\n")
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print("\nGoodbye!")
|
||||
break
|
||||
except Exception as e:
|
||||
print(f"Error: {e}")
|
||||
|
||||
async def run_single_query(self, args, index_path: str, query: str):
|
||||
"""Run a single query against the index."""
|
||||
chat = LeannChat(
|
||||
index_path,
|
||||
llm_config=self.get_llm_config(args),
|
||||
complexity=args.search_complexity,
|
||||
)
|
||||
|
||||
print(f"\n[Query]: \033[36m{query}\033[0m")
|
||||
|
||||
# Prepare LLM kwargs with thinking budget if specified
|
||||
llm_kwargs = {}
|
||||
if hasattr(args, "thinking_budget") and args.thinking_budget:
|
||||
llm_kwargs["thinking_budget"] = args.thinking_budget
|
||||
|
||||
response = chat.ask(
|
||||
query, top_k=args.top_k, complexity=args.search_complexity, llm_kwargs=llm_kwargs
|
||||
)
|
||||
print(f"\n[Response]: \033[36m{response}\033[0m")
|
||||
|
||||
async def run(self):
|
||||
"""Main entry point for the example."""
|
||||
args = self.parser.parse_args()
|
||||
|
||||
# Check if index exists
|
||||
index_path = str(Path(args.index_dir) / f"{self.default_index_name}.leann")
|
||||
index_exists = Path(args.index_dir).exists()
|
||||
|
||||
if not index_exists or args.force_rebuild:
|
||||
# Load data and build index
|
||||
print(f"\n{'Rebuilding' if index_exists else 'Building'} index...")
|
||||
texts = await self.load_data(args)
|
||||
|
||||
if not texts:
|
||||
print("No data found to index!")
|
||||
return
|
||||
|
||||
index_path = await self.build_index(args, texts)
|
||||
else:
|
||||
print(f"\nUsing existing index in {args.index_dir}")
|
||||
|
||||
# Run query or interactive mode
|
||||
if args.query:
|
||||
await self.run_single_query(args, index_path, args.query)
|
||||
else:
|
||||
await self.run_interactive_chat(args, index_path)
|
||||
171
apps/browser_rag.py
Normal file
171
apps/browser_rag.py
Normal file
@@ -0,0 +1,171 @@
|
||||
"""
|
||||
Browser History RAG example using the unified interface.
|
||||
Supports Chrome browser history.
|
||||
"""
|
||||
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
# Add parent directory to path for imports
|
||||
sys.path.insert(0, str(Path(__file__).parent))
|
||||
|
||||
from base_rag_example import BaseRAGExample
|
||||
from chunking import create_text_chunks
|
||||
|
||||
from .history_data.history import ChromeHistoryReader
|
||||
|
||||
|
||||
class BrowserRAG(BaseRAGExample):
|
||||
"""RAG example for Chrome browser history."""
|
||||
|
||||
def __init__(self):
|
||||
# Set default values BEFORE calling super().__init__
|
||||
self.embedding_model_default = (
|
||||
"sentence-transformers/all-MiniLM-L6-v2" # Fast 384-dim model
|
||||
)
|
||||
|
||||
super().__init__(
|
||||
name="Browser History",
|
||||
description="Process and query Chrome browser history with LEANN",
|
||||
default_index_name="google_history_index",
|
||||
)
|
||||
|
||||
def _add_specific_arguments(self, parser):
|
||||
"""Add browser-specific arguments."""
|
||||
browser_group = parser.add_argument_group("Browser Parameters")
|
||||
browser_group.add_argument(
|
||||
"--chrome-profile",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to Chrome profile directory (auto-detected if not specified)",
|
||||
)
|
||||
browser_group.add_argument(
|
||||
"--auto-find-profiles",
|
||||
action="store_true",
|
||||
default=True,
|
||||
help="Automatically find all Chrome profiles (default: True)",
|
||||
)
|
||||
browser_group.add_argument(
|
||||
"--chunk-size", type=int, default=256, help="Text chunk size (default: 256)"
|
||||
)
|
||||
browser_group.add_argument(
|
||||
"--chunk-overlap", type=int, default=128, help="Text chunk overlap (default: 128)"
|
||||
)
|
||||
|
||||
def _get_chrome_base_path(self) -> Path:
|
||||
"""Get the base Chrome profile path based on OS."""
|
||||
if sys.platform == "darwin":
|
||||
return Path.home() / "Library" / "Application Support" / "Google" / "Chrome"
|
||||
elif sys.platform.startswith("linux"):
|
||||
return Path.home() / ".config" / "google-chrome"
|
||||
elif sys.platform == "win32":
|
||||
return Path(os.environ["LOCALAPPDATA"]) / "Google" / "Chrome" / "User Data"
|
||||
else:
|
||||
raise ValueError(f"Unsupported platform: {sys.platform}")
|
||||
|
||||
def _find_chrome_profiles(self) -> list[Path]:
|
||||
"""Auto-detect all Chrome profiles."""
|
||||
base_path = self._get_chrome_base_path()
|
||||
if not base_path.exists():
|
||||
return []
|
||||
|
||||
profiles = []
|
||||
|
||||
# Check Default profile
|
||||
default_profile = base_path / "Default"
|
||||
if default_profile.exists() and (default_profile / "History").exists():
|
||||
profiles.append(default_profile)
|
||||
|
||||
# Check numbered profiles
|
||||
for item in base_path.iterdir():
|
||||
if item.is_dir() and item.name.startswith("Profile "):
|
||||
if (item / "History").exists():
|
||||
profiles.append(item)
|
||||
|
||||
return profiles
|
||||
|
||||
async def load_data(self, args) -> list[str]:
|
||||
"""Load browser history and convert to text chunks."""
|
||||
# Determine Chrome profiles
|
||||
if args.chrome_profile and not args.auto_find_profiles:
|
||||
profile_dirs = [Path(args.chrome_profile)]
|
||||
else:
|
||||
print("Auto-detecting Chrome profiles...")
|
||||
profile_dirs = self._find_chrome_profiles()
|
||||
|
||||
# If specific profile given, filter to just that one
|
||||
if args.chrome_profile:
|
||||
profile_path = Path(args.chrome_profile)
|
||||
profile_dirs = [p for p in profile_dirs if p == profile_path]
|
||||
|
||||
if not profile_dirs:
|
||||
print("No Chrome profiles found!")
|
||||
print("Please specify --chrome-profile manually")
|
||||
return []
|
||||
|
||||
print(f"Found {len(profile_dirs)} Chrome profiles")
|
||||
|
||||
# Create reader
|
||||
reader = ChromeHistoryReader()
|
||||
|
||||
# Process each profile
|
||||
all_documents = []
|
||||
total_processed = 0
|
||||
|
||||
for i, profile_dir in enumerate(profile_dirs):
|
||||
print(f"\nProcessing profile {i + 1}/{len(profile_dirs)}: {profile_dir.name}")
|
||||
|
||||
try:
|
||||
# Apply max_items limit per profile
|
||||
max_per_profile = -1
|
||||
if args.max_items > 0:
|
||||
remaining = args.max_items - total_processed
|
||||
if remaining <= 0:
|
||||
break
|
||||
max_per_profile = remaining
|
||||
|
||||
# Load history
|
||||
documents = reader.load_data(
|
||||
chrome_profile_path=str(profile_dir),
|
||||
max_count=max_per_profile,
|
||||
)
|
||||
|
||||
if documents:
|
||||
all_documents.extend(documents)
|
||||
total_processed += len(documents)
|
||||
print(f"Processed {len(documents)} history entries from this profile")
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error processing {profile_dir}: {e}")
|
||||
continue
|
||||
|
||||
if not all_documents:
|
||||
print("No browser history found to process!")
|
||||
return []
|
||||
|
||||
print(f"\nTotal history entries processed: {len(all_documents)}")
|
||||
|
||||
# Convert to text chunks
|
||||
all_texts = create_text_chunks(
|
||||
all_documents, chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
|
||||
)
|
||||
|
||||
return all_texts
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import asyncio
|
||||
|
||||
# Example queries for browser history RAG
|
||||
print("\n🌐 Browser History RAG Example")
|
||||
print("=" * 50)
|
||||
print("\nExample queries you can try:")
|
||||
print("- 'What websites did I visit about machine learning?'")
|
||||
print("- 'Find my search history about programming'")
|
||||
print("- 'What YouTube videos did I watch recently?'")
|
||||
print("- 'Show me websites about travel planning'")
|
||||
print("\nNote: Make sure Chrome is closed before running\n")
|
||||
|
||||
rag = BrowserRAG()
|
||||
asyncio.run(rag.run())
|
||||
0
apps/chatgpt_data/__init__.py
Normal file
0
apps/chatgpt_data/__init__.py
Normal file
413
apps/chatgpt_data/chatgpt_reader.py
Normal file
413
apps/chatgpt_data/chatgpt_reader.py
Normal file
@@ -0,0 +1,413 @@
|
||||
"""
|
||||
ChatGPT export data reader.
|
||||
|
||||
Reads and processes ChatGPT export data from chat.html files.
|
||||
"""
|
||||
|
||||
import re
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
from zipfile import ZipFile
|
||||
|
||||
from bs4 import BeautifulSoup
|
||||
from llama_index.core import Document
|
||||
from llama_index.core.readers.base import BaseReader
|
||||
|
||||
|
||||
class ChatGPTReader(BaseReader):
|
||||
"""
|
||||
ChatGPT export data reader.
|
||||
|
||||
Reads ChatGPT conversation data from exported chat.html files or zip archives.
|
||||
Processes conversations into structured documents with metadata.
|
||||
"""
|
||||
|
||||
def __init__(self, concatenate_conversations: bool = True) -> None:
|
||||
"""
|
||||
Initialize.
|
||||
|
||||
Args:
|
||||
concatenate_conversations: Whether to concatenate messages within conversations for better context
|
||||
"""
|
||||
try:
|
||||
from bs4 import BeautifulSoup # noqa
|
||||
except ImportError:
|
||||
raise ImportError("`beautifulsoup4` package not found: `pip install beautifulsoup4`")
|
||||
|
||||
self.concatenate_conversations = concatenate_conversations
|
||||
|
||||
def _extract_html_from_zip(self, zip_path: Path) -> str | None:
|
||||
"""
|
||||
Extract chat.html from ChatGPT export zip file.
|
||||
|
||||
Args:
|
||||
zip_path: Path to the ChatGPT export zip file
|
||||
|
||||
Returns:
|
||||
HTML content as string, or None if not found
|
||||
"""
|
||||
try:
|
||||
with ZipFile(zip_path, "r") as zip_file:
|
||||
# Look for chat.html or conversations.html
|
||||
html_files = [
|
||||
f
|
||||
for f in zip_file.namelist()
|
||||
if f.endswith(".html") and ("chat" in f.lower() or "conversation" in f.lower())
|
||||
]
|
||||
|
||||
if not html_files:
|
||||
print(f"No HTML chat file found in {zip_path}")
|
||||
return None
|
||||
|
||||
# Use the first HTML file found
|
||||
html_file = html_files[0]
|
||||
print(f"Found HTML file: {html_file}")
|
||||
|
||||
with zip_file.open(html_file) as f:
|
||||
return f.read().decode("utf-8", errors="ignore")
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error extracting HTML from zip {zip_path}: {e}")
|
||||
return None
|
||||
|
||||
def _parse_chatgpt_html(self, html_content: str) -> list[dict]:
|
||||
"""
|
||||
Parse ChatGPT HTML export to extract conversations.
|
||||
|
||||
Args:
|
||||
html_content: HTML content from ChatGPT export
|
||||
|
||||
Returns:
|
||||
List of conversation dictionaries
|
||||
"""
|
||||
soup = BeautifulSoup(html_content, "html.parser")
|
||||
conversations = []
|
||||
|
||||
# Try different possible structures for ChatGPT exports
|
||||
# Structure 1: Look for conversation containers
|
||||
conversation_containers = soup.find_all(
|
||||
["div", "section"], class_=re.compile(r"conversation|chat", re.I)
|
||||
)
|
||||
|
||||
if not conversation_containers:
|
||||
# Structure 2: Look for message containers directly
|
||||
conversation_containers = [soup] # Use the entire document as one conversation
|
||||
|
||||
for container in conversation_containers:
|
||||
conversation = self._extract_conversation_from_container(container)
|
||||
if conversation and conversation.get("messages"):
|
||||
conversations.append(conversation)
|
||||
|
||||
# If no structured conversations found, try to extract all text as one conversation
|
||||
if not conversations:
|
||||
all_text = soup.get_text(separator="\n", strip=True)
|
||||
if all_text:
|
||||
conversations.append(
|
||||
{
|
||||
"title": "ChatGPT Conversation",
|
||||
"messages": [{"role": "mixed", "content": all_text, "timestamp": None}],
|
||||
"timestamp": None,
|
||||
}
|
||||
)
|
||||
|
||||
return conversations
|
||||
|
||||
def _extract_conversation_from_container(self, container) -> dict | None:
|
||||
"""
|
||||
Extract conversation data from a container element.
|
||||
|
||||
Args:
|
||||
container: BeautifulSoup element containing conversation
|
||||
|
||||
Returns:
|
||||
Dictionary with conversation data or None
|
||||
"""
|
||||
messages = []
|
||||
|
||||
# Look for message elements with various possible structures
|
||||
message_selectors = ['[class*="message"]', '[class*="chat"]', "[data-message]", "p", "div"]
|
||||
|
||||
for selector in message_selectors:
|
||||
message_elements = container.select(selector)
|
||||
if message_elements:
|
||||
break
|
||||
else:
|
||||
message_elements = []
|
||||
|
||||
# If no structured messages found, treat the entire container as one message
|
||||
if not message_elements:
|
||||
text_content = container.get_text(separator="\n", strip=True)
|
||||
if text_content:
|
||||
messages.append({"role": "mixed", "content": text_content, "timestamp": None})
|
||||
else:
|
||||
for element in message_elements:
|
||||
message = self._extract_message_from_element(element)
|
||||
if message:
|
||||
messages.append(message)
|
||||
|
||||
if not messages:
|
||||
return None
|
||||
|
||||
# Try to extract conversation title
|
||||
title_element = container.find(["h1", "h2", "h3", "title"])
|
||||
title = title_element.get_text(strip=True) if title_element else "ChatGPT Conversation"
|
||||
|
||||
# Try to extract timestamp from various possible locations
|
||||
timestamp = self._extract_timestamp_from_container(container)
|
||||
|
||||
return {"title": title, "messages": messages, "timestamp": timestamp}
|
||||
|
||||
def _extract_message_from_element(self, element) -> dict | None:
|
||||
"""
|
||||
Extract message data from an element.
|
||||
|
||||
Args:
|
||||
element: BeautifulSoup element containing message
|
||||
|
||||
Returns:
|
||||
Dictionary with message data or None
|
||||
"""
|
||||
text_content = element.get_text(separator=" ", strip=True)
|
||||
|
||||
# Skip empty or very short messages
|
||||
if not text_content or len(text_content.strip()) < 3:
|
||||
return None
|
||||
|
||||
# Try to determine role (user/assistant) from class names or content
|
||||
role = "mixed" # Default role
|
||||
|
||||
class_names = " ".join(element.get("class", [])).lower()
|
||||
if "user" in class_names or "human" in class_names:
|
||||
role = "user"
|
||||
elif "assistant" in class_names or "ai" in class_names or "gpt" in class_names:
|
||||
role = "assistant"
|
||||
elif text_content.lower().startswith(("you:", "user:", "me:")):
|
||||
role = "user"
|
||||
text_content = re.sub(r"^(you|user|me):\s*", "", text_content, flags=re.IGNORECASE)
|
||||
elif text_content.lower().startswith(("chatgpt:", "assistant:", "ai:")):
|
||||
role = "assistant"
|
||||
text_content = re.sub(
|
||||
r"^(chatgpt|assistant|ai):\s*", "", text_content, flags=re.IGNORECASE
|
||||
)
|
||||
|
||||
# Try to extract timestamp
|
||||
timestamp = self._extract_timestamp_from_element(element)
|
||||
|
||||
return {"role": role, "content": text_content, "timestamp": timestamp}
|
||||
|
||||
def _extract_timestamp_from_element(self, element) -> str | None:
|
||||
"""Extract timestamp from element."""
|
||||
# Look for timestamp in various attributes and child elements
|
||||
timestamp_attrs = ["data-timestamp", "timestamp", "datetime"]
|
||||
for attr in timestamp_attrs:
|
||||
if element.get(attr):
|
||||
return element.get(attr)
|
||||
|
||||
# Look for time elements
|
||||
time_element = element.find("time")
|
||||
if time_element:
|
||||
return time_element.get("datetime") or time_element.get_text(strip=True)
|
||||
|
||||
# Look for date-like text patterns
|
||||
text = element.get_text()
|
||||
date_patterns = [r"\d{4}-\d{2}-\d{2}", r"\d{1,2}/\d{1,2}/\d{4}", r"\w+ \d{1,2}, \d{4}"]
|
||||
|
||||
for pattern in date_patterns:
|
||||
match = re.search(pattern, text)
|
||||
if match:
|
||||
return match.group()
|
||||
|
||||
return None
|
||||
|
||||
def _extract_timestamp_from_container(self, container) -> str | None:
|
||||
"""Extract timestamp from conversation container."""
|
||||
return self._extract_timestamp_from_element(container)
|
||||
|
||||
def _create_concatenated_content(self, conversation: dict) -> str:
|
||||
"""
|
||||
Create concatenated content from conversation messages.
|
||||
|
||||
Args:
|
||||
conversation: Dictionary containing conversation data
|
||||
|
||||
Returns:
|
||||
Formatted concatenated content
|
||||
"""
|
||||
title = conversation.get("title", "ChatGPT Conversation")
|
||||
messages = conversation.get("messages", [])
|
||||
timestamp = conversation.get("timestamp", "Unknown")
|
||||
|
||||
# Build message content
|
||||
message_parts = []
|
||||
for message in messages:
|
||||
role = message.get("role", "mixed")
|
||||
content = message.get("content", "")
|
||||
msg_timestamp = message.get("timestamp", "")
|
||||
|
||||
if role == "user":
|
||||
prefix = "[You]"
|
||||
elif role == "assistant":
|
||||
prefix = "[ChatGPT]"
|
||||
else:
|
||||
prefix = "[Message]"
|
||||
|
||||
# Add timestamp if available
|
||||
if msg_timestamp:
|
||||
prefix += f" ({msg_timestamp})"
|
||||
|
||||
message_parts.append(f"{prefix}: {content}")
|
||||
|
||||
concatenated_text = "\n\n".join(message_parts)
|
||||
|
||||
# Create final document content
|
||||
doc_content = f"""Conversation: {title}
|
||||
Date: {timestamp}
|
||||
Messages ({len(messages)} messages):
|
||||
|
||||
{concatenated_text}
|
||||
"""
|
||||
return doc_content
|
||||
|
||||
def load_data(self, input_dir: str | None = None, **load_kwargs: Any) -> list[Document]:
|
||||
"""
|
||||
Load ChatGPT export data.
|
||||
|
||||
Args:
|
||||
input_dir: Directory containing ChatGPT export files or path to specific file
|
||||
**load_kwargs:
|
||||
max_count (int): Maximum number of conversations to process
|
||||
chatgpt_export_path (str): Specific path to ChatGPT export file/directory
|
||||
include_metadata (bool): Whether to include metadata in documents
|
||||
"""
|
||||
docs: list[Document] = []
|
||||
max_count = load_kwargs.get("max_count", -1)
|
||||
chatgpt_export_path = load_kwargs.get("chatgpt_export_path", input_dir)
|
||||
include_metadata = load_kwargs.get("include_metadata", True)
|
||||
|
||||
if not chatgpt_export_path:
|
||||
print("No ChatGPT export path provided")
|
||||
return docs
|
||||
|
||||
export_path = Path(chatgpt_export_path)
|
||||
|
||||
if not export_path.exists():
|
||||
print(f"ChatGPT export path not found: {export_path}")
|
||||
return docs
|
||||
|
||||
html_content = None
|
||||
|
||||
# Handle different input types
|
||||
if export_path.is_file():
|
||||
if export_path.suffix.lower() == ".zip":
|
||||
# Extract HTML from zip file
|
||||
html_content = self._extract_html_from_zip(export_path)
|
||||
elif export_path.suffix.lower() == ".html":
|
||||
# Read HTML file directly
|
||||
try:
|
||||
with open(export_path, encoding="utf-8", errors="ignore") as f:
|
||||
html_content = f.read()
|
||||
except Exception as e:
|
||||
print(f"Error reading HTML file {export_path}: {e}")
|
||||
return docs
|
||||
else:
|
||||
print(f"Unsupported file type: {export_path.suffix}")
|
||||
return docs
|
||||
|
||||
elif export_path.is_dir():
|
||||
# Look for HTML files in directory
|
||||
html_files = list(export_path.glob("*.html"))
|
||||
zip_files = list(export_path.glob("*.zip"))
|
||||
|
||||
if html_files:
|
||||
# Use first HTML file found
|
||||
html_file = html_files[0]
|
||||
print(f"Found HTML file: {html_file}")
|
||||
try:
|
||||
with open(html_file, encoding="utf-8", errors="ignore") as f:
|
||||
html_content = f.read()
|
||||
except Exception as e:
|
||||
print(f"Error reading HTML file {html_file}: {e}")
|
||||
return docs
|
||||
|
||||
elif zip_files:
|
||||
# Use first zip file found
|
||||
zip_file = zip_files[0]
|
||||
print(f"Found zip file: {zip_file}")
|
||||
html_content = self._extract_html_from_zip(zip_file)
|
||||
|
||||
else:
|
||||
print(f"No HTML or zip files found in {export_path}")
|
||||
return docs
|
||||
|
||||
if not html_content:
|
||||
print("No HTML content found to process")
|
||||
return docs
|
||||
|
||||
# Parse conversations from HTML
|
||||
print("Parsing ChatGPT conversations from HTML...")
|
||||
conversations = self._parse_chatgpt_html(html_content)
|
||||
|
||||
if not conversations:
|
||||
print("No conversations found in HTML content")
|
||||
return docs
|
||||
|
||||
print(f"Found {len(conversations)} conversations")
|
||||
|
||||
# Process conversations into documents
|
||||
count = 0
|
||||
for conversation in conversations:
|
||||
if max_count > 0 and count >= max_count:
|
||||
break
|
||||
|
||||
if self.concatenate_conversations:
|
||||
# Create one document per conversation with concatenated messages
|
||||
doc_content = self._create_concatenated_content(conversation)
|
||||
|
||||
metadata = {}
|
||||
if include_metadata:
|
||||
metadata = {
|
||||
"title": conversation.get("title", "ChatGPT Conversation"),
|
||||
"timestamp": conversation.get("timestamp", "Unknown"),
|
||||
"message_count": len(conversation.get("messages", [])),
|
||||
"source": "ChatGPT Export",
|
||||
}
|
||||
|
||||
doc = Document(text=doc_content, metadata=metadata)
|
||||
docs.append(doc)
|
||||
count += 1
|
||||
|
||||
else:
|
||||
# Create separate documents for each message
|
||||
for message in conversation.get("messages", []):
|
||||
if max_count > 0 and count >= max_count:
|
||||
break
|
||||
|
||||
role = message.get("role", "mixed")
|
||||
content = message.get("content", "")
|
||||
msg_timestamp = message.get("timestamp", "")
|
||||
|
||||
if not content.strip():
|
||||
continue
|
||||
|
||||
# Create document content with context
|
||||
doc_content = f"""Conversation: {conversation.get("title", "ChatGPT Conversation")}
|
||||
Role: {role}
|
||||
Timestamp: {msg_timestamp or conversation.get("timestamp", "Unknown")}
|
||||
Message: {content}
|
||||
"""
|
||||
|
||||
metadata = {}
|
||||
if include_metadata:
|
||||
metadata = {
|
||||
"conversation_title": conversation.get("title", "ChatGPT Conversation"),
|
||||
"role": role,
|
||||
"timestamp": msg_timestamp or conversation.get("timestamp", "Unknown"),
|
||||
"source": "ChatGPT Export",
|
||||
}
|
||||
|
||||
doc = Document(text=doc_content, metadata=metadata)
|
||||
docs.append(doc)
|
||||
count += 1
|
||||
|
||||
print(f"Created {len(docs)} documents from ChatGPT export")
|
||||
return docs
|
||||
186
apps/chatgpt_rag.py
Normal file
186
apps/chatgpt_rag.py
Normal file
@@ -0,0 +1,186 @@
|
||||
"""
|
||||
ChatGPT RAG example using the unified interface.
|
||||
Supports ChatGPT export data from chat.html files.
|
||||
"""
|
||||
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
# Add parent directory to path for imports
|
||||
sys.path.insert(0, str(Path(__file__).parent))
|
||||
|
||||
from base_rag_example import BaseRAGExample
|
||||
from chunking import create_text_chunks
|
||||
|
||||
from .chatgpt_data.chatgpt_reader import ChatGPTReader
|
||||
|
||||
|
||||
class ChatGPTRAG(BaseRAGExample):
|
||||
"""RAG example for ChatGPT conversation data."""
|
||||
|
||||
def __init__(self):
|
||||
# Set default values BEFORE calling super().__init__
|
||||
self.max_items_default = -1 # Process all conversations by default
|
||||
self.embedding_model_default = (
|
||||
"sentence-transformers/all-MiniLM-L6-v2" # Fast 384-dim model
|
||||
)
|
||||
|
||||
super().__init__(
|
||||
name="ChatGPT",
|
||||
description="Process and query ChatGPT conversation exports with LEANN",
|
||||
default_index_name="chatgpt_conversations_index",
|
||||
)
|
||||
|
||||
def _add_specific_arguments(self, parser):
|
||||
"""Add ChatGPT-specific arguments."""
|
||||
chatgpt_group = parser.add_argument_group("ChatGPT Parameters")
|
||||
chatgpt_group.add_argument(
|
||||
"--export-path",
|
||||
type=str,
|
||||
default="./chatgpt_export",
|
||||
help="Path to ChatGPT export file (.zip or .html) or directory containing exports (default: ./chatgpt_export)",
|
||||
)
|
||||
chatgpt_group.add_argument(
|
||||
"--concatenate-conversations",
|
||||
action="store_true",
|
||||
default=True,
|
||||
help="Concatenate messages within conversations for better context (default: True)",
|
||||
)
|
||||
chatgpt_group.add_argument(
|
||||
"--separate-messages",
|
||||
action="store_true",
|
||||
help="Process each message as a separate document (overrides --concatenate-conversations)",
|
||||
)
|
||||
chatgpt_group.add_argument(
|
||||
"--chunk-size", type=int, default=512, help="Text chunk size (default: 512)"
|
||||
)
|
||||
chatgpt_group.add_argument(
|
||||
"--chunk-overlap", type=int, default=128, help="Text chunk overlap (default: 128)"
|
||||
)
|
||||
|
||||
def _find_chatgpt_exports(self, export_path: Path) -> list[Path]:
|
||||
"""
|
||||
Find ChatGPT export files in the given path.
|
||||
|
||||
Args:
|
||||
export_path: Path to search for exports
|
||||
|
||||
Returns:
|
||||
List of paths to ChatGPT export files
|
||||
"""
|
||||
export_files = []
|
||||
|
||||
if export_path.is_file():
|
||||
if export_path.suffix.lower() in [".zip", ".html"]:
|
||||
export_files.append(export_path)
|
||||
elif export_path.is_dir():
|
||||
# Look for zip and html files
|
||||
export_files.extend(export_path.glob("*.zip"))
|
||||
export_files.extend(export_path.glob("*.html"))
|
||||
|
||||
return export_files
|
||||
|
||||
async def load_data(self, args) -> list[str]:
|
||||
"""Load ChatGPT export data and convert to text chunks."""
|
||||
export_path = Path(args.export_path)
|
||||
|
||||
if not export_path.exists():
|
||||
print(f"ChatGPT export path not found: {export_path}")
|
||||
print(
|
||||
"Please ensure you have exported your ChatGPT data and placed it in the correct location."
|
||||
)
|
||||
print("\nTo export your ChatGPT data:")
|
||||
print("1. Sign in to ChatGPT")
|
||||
print("2. Click on your profile icon → Settings → Data Controls")
|
||||
print("3. Click 'Export' under Export Data")
|
||||
print("4. Download the zip file from the email link")
|
||||
print("5. Extract or place the file/directory at the specified path")
|
||||
return []
|
||||
|
||||
# Find export files
|
||||
export_files = self._find_chatgpt_exports(export_path)
|
||||
|
||||
if not export_files:
|
||||
print(f"No ChatGPT export files (.zip or .html) found in: {export_path}")
|
||||
return []
|
||||
|
||||
print(f"Found {len(export_files)} ChatGPT export files")
|
||||
|
||||
# Create reader with appropriate settings
|
||||
concatenate = args.concatenate_conversations and not args.separate_messages
|
||||
reader = ChatGPTReader(concatenate_conversations=concatenate)
|
||||
|
||||
# Process each export file
|
||||
all_documents = []
|
||||
total_processed = 0
|
||||
|
||||
for i, export_file in enumerate(export_files):
|
||||
print(f"\nProcessing export file {i + 1}/{len(export_files)}: {export_file.name}")
|
||||
|
||||
try:
|
||||
# Apply max_items limit per file
|
||||
max_per_file = -1
|
||||
if args.max_items > 0:
|
||||
remaining = args.max_items - total_processed
|
||||
if remaining <= 0:
|
||||
break
|
||||
max_per_file = remaining
|
||||
|
||||
# Load conversations
|
||||
documents = reader.load_data(
|
||||
chatgpt_export_path=str(export_file),
|
||||
max_count=max_per_file,
|
||||
include_metadata=True,
|
||||
)
|
||||
|
||||
if documents:
|
||||
all_documents.extend(documents)
|
||||
total_processed += len(documents)
|
||||
print(f"Processed {len(documents)} conversations from this file")
|
||||
else:
|
||||
print(f"No conversations loaded from {export_file}")
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error processing {export_file}: {e}")
|
||||
continue
|
||||
|
||||
if not all_documents:
|
||||
print("No conversations found to process!")
|
||||
print("\nTroubleshooting:")
|
||||
print("- Ensure the export file is a valid ChatGPT export")
|
||||
print("- Check that the HTML file contains conversation data")
|
||||
print("- Try extracting the zip file and pointing to the HTML file directly")
|
||||
return []
|
||||
|
||||
print(f"\nTotal conversations processed: {len(all_documents)}")
|
||||
print("Now starting to split into text chunks... this may take some time")
|
||||
|
||||
# Convert to text chunks
|
||||
all_texts = create_text_chunks(
|
||||
all_documents, chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
|
||||
)
|
||||
|
||||
print(f"Created {len(all_texts)} text chunks from {len(all_documents)} conversations")
|
||||
return all_texts
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import asyncio
|
||||
|
||||
# Example queries for ChatGPT RAG
|
||||
print("\n🤖 ChatGPT RAG Example")
|
||||
print("=" * 50)
|
||||
print("\nExample queries you can try:")
|
||||
print("- 'What did I ask about Python programming?'")
|
||||
print("- 'Show me conversations about machine learning'")
|
||||
print("- 'Find discussions about travel planning'")
|
||||
print("- 'What advice did ChatGPT give me about career development?'")
|
||||
print("- 'Search for conversations about cooking recipes'")
|
||||
print("\nTo get started:")
|
||||
print("1. Export your ChatGPT data from Settings → Data Controls → Export")
|
||||
print("2. Place the downloaded zip file or extracted HTML in ./chatgpt_export/")
|
||||
print("3. Run this script to build your personal ChatGPT knowledge base!")
|
||||
print("\nOr run without --query for interactive mode\n")
|
||||
|
||||
rag = ChatGPTRAG()
|
||||
asyncio.run(rag.run())
|
||||
44
apps/chunking/__init__.py
Normal file
44
apps/chunking/__init__.py
Normal file
@@ -0,0 +1,44 @@
|
||||
"""Unified chunking utilities facade.
|
||||
|
||||
This module re-exports the packaged utilities from `leann.chunking_utils` so
|
||||
that both repo apps (importing `chunking`) and installed wheels share one
|
||||
single implementation. When running from the repo without installation, it
|
||||
adds the `packages/leann-core/src` directory to `sys.path` as a fallback.
|
||||
"""
|
||||
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
try:
|
||||
from leann.chunking_utils import (
|
||||
CODE_EXTENSIONS,
|
||||
create_ast_chunks,
|
||||
create_text_chunks,
|
||||
create_traditional_chunks,
|
||||
detect_code_files,
|
||||
get_language_from_extension,
|
||||
)
|
||||
except Exception: # pragma: no cover - best-effort fallback for dev environment
|
||||
repo_root = Path(__file__).resolve().parents[2]
|
||||
leann_src = repo_root / "packages" / "leann-core" / "src"
|
||||
if leann_src.exists():
|
||||
sys.path.insert(0, str(leann_src))
|
||||
from leann.chunking_utils import (
|
||||
CODE_EXTENSIONS,
|
||||
create_ast_chunks,
|
||||
create_text_chunks,
|
||||
create_traditional_chunks,
|
||||
detect_code_files,
|
||||
get_language_from_extension,
|
||||
)
|
||||
else:
|
||||
raise
|
||||
|
||||
__all__ = [
|
||||
"CODE_EXTENSIONS",
|
||||
"create_ast_chunks",
|
||||
"create_text_chunks",
|
||||
"create_traditional_chunks",
|
||||
"detect_code_files",
|
||||
"get_language_from_extension",
|
||||
]
|
||||
0
apps/claude_data/__init__.py
Normal file
0
apps/claude_data/__init__.py
Normal file
420
apps/claude_data/claude_reader.py
Normal file
420
apps/claude_data/claude_reader.py
Normal file
@@ -0,0 +1,420 @@
|
||||
"""
|
||||
Claude export data reader.
|
||||
|
||||
Reads and processes Claude conversation data from exported JSON files.
|
||||
"""
|
||||
|
||||
import json
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
from zipfile import ZipFile
|
||||
|
||||
from llama_index.core import Document
|
||||
from llama_index.core.readers.base import BaseReader
|
||||
|
||||
|
||||
class ClaudeReader(BaseReader):
|
||||
"""
|
||||
Claude export data reader.
|
||||
|
||||
Reads Claude conversation data from exported JSON files or zip archives.
|
||||
Processes conversations into structured documents with metadata.
|
||||
"""
|
||||
|
||||
def __init__(self, concatenate_conversations: bool = True) -> None:
|
||||
"""
|
||||
Initialize.
|
||||
|
||||
Args:
|
||||
concatenate_conversations: Whether to concatenate messages within conversations for better context
|
||||
"""
|
||||
self.concatenate_conversations = concatenate_conversations
|
||||
|
||||
def _extract_json_from_zip(self, zip_path: Path) -> list[str]:
|
||||
"""
|
||||
Extract JSON files from Claude export zip file.
|
||||
|
||||
Args:
|
||||
zip_path: Path to the Claude export zip file
|
||||
|
||||
Returns:
|
||||
List of JSON content strings, or empty list if not found
|
||||
"""
|
||||
json_contents = []
|
||||
try:
|
||||
with ZipFile(zip_path, "r") as zip_file:
|
||||
# Look for JSON files
|
||||
json_files = [f for f in zip_file.namelist() if f.endswith(".json")]
|
||||
|
||||
if not json_files:
|
||||
print(f"No JSON files found in {zip_path}")
|
||||
return []
|
||||
|
||||
print(f"Found {len(json_files)} JSON files in archive")
|
||||
|
||||
for json_file in json_files:
|
||||
with zip_file.open(json_file) as f:
|
||||
content = f.read().decode("utf-8", errors="ignore")
|
||||
json_contents.append(content)
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error extracting JSON from zip {zip_path}: {e}")
|
||||
|
||||
return json_contents
|
||||
|
||||
def _parse_claude_json(self, json_content: str) -> list[dict]:
|
||||
"""
|
||||
Parse Claude JSON export to extract conversations.
|
||||
|
||||
Args:
|
||||
json_content: JSON content from Claude export
|
||||
|
||||
Returns:
|
||||
List of conversation dictionaries
|
||||
"""
|
||||
try:
|
||||
data = json.loads(json_content)
|
||||
except json.JSONDecodeError as e:
|
||||
print(f"Error parsing JSON: {e}")
|
||||
return []
|
||||
|
||||
conversations = []
|
||||
|
||||
# Handle different possible JSON structures
|
||||
if isinstance(data, list):
|
||||
# If data is a list of conversations
|
||||
for item in data:
|
||||
conversation = self._extract_conversation_from_json(item)
|
||||
if conversation:
|
||||
conversations.append(conversation)
|
||||
elif isinstance(data, dict):
|
||||
# Check for common structures
|
||||
if "conversations" in data:
|
||||
# Structure: {"conversations": [...]}
|
||||
for item in data["conversations"]:
|
||||
conversation = self._extract_conversation_from_json(item)
|
||||
if conversation:
|
||||
conversations.append(conversation)
|
||||
elif "messages" in data:
|
||||
# Single conversation with messages
|
||||
conversation = self._extract_conversation_from_json(data)
|
||||
if conversation:
|
||||
conversations.append(conversation)
|
||||
else:
|
||||
# Try to treat the whole object as a conversation
|
||||
conversation = self._extract_conversation_from_json(data)
|
||||
if conversation:
|
||||
conversations.append(conversation)
|
||||
|
||||
return conversations
|
||||
|
||||
def _extract_conversation_from_json(self, conv_data: dict) -> dict | None:
|
||||
"""
|
||||
Extract conversation data from a JSON object.
|
||||
|
||||
Args:
|
||||
conv_data: Dictionary containing conversation data
|
||||
|
||||
Returns:
|
||||
Dictionary with conversation data or None
|
||||
"""
|
||||
if not isinstance(conv_data, dict):
|
||||
return None
|
||||
|
||||
messages = []
|
||||
|
||||
# Look for messages in various possible structures
|
||||
message_sources = []
|
||||
if "messages" in conv_data:
|
||||
message_sources = conv_data["messages"]
|
||||
elif "chat" in conv_data:
|
||||
message_sources = conv_data["chat"]
|
||||
elif "conversation" in conv_data:
|
||||
message_sources = conv_data["conversation"]
|
||||
else:
|
||||
# If no clear message structure, try to extract from the object itself
|
||||
if "content" in conv_data and "role" in conv_data:
|
||||
message_sources = [conv_data]
|
||||
|
||||
for msg_data in message_sources:
|
||||
message = self._extract_message_from_json(msg_data)
|
||||
if message:
|
||||
messages.append(message)
|
||||
|
||||
if not messages:
|
||||
return None
|
||||
|
||||
# Extract conversation metadata
|
||||
title = self._extract_title_from_conversation(conv_data, messages)
|
||||
timestamp = self._extract_timestamp_from_conversation(conv_data)
|
||||
|
||||
return {"title": title, "messages": messages, "timestamp": timestamp}
|
||||
|
||||
def _extract_message_from_json(self, msg_data: dict) -> dict | None:
|
||||
"""
|
||||
Extract message data from a JSON message object.
|
||||
|
||||
Args:
|
||||
msg_data: Dictionary containing message data
|
||||
|
||||
Returns:
|
||||
Dictionary with message data or None
|
||||
"""
|
||||
if not isinstance(msg_data, dict):
|
||||
return None
|
||||
|
||||
# Extract content from various possible fields
|
||||
content = ""
|
||||
content_fields = ["content", "text", "message", "body"]
|
||||
for field in content_fields:
|
||||
if msg_data.get(field):
|
||||
content = str(msg_data[field])
|
||||
break
|
||||
|
||||
if not content or len(content.strip()) < 3:
|
||||
return None
|
||||
|
||||
# Extract role (user/assistant/human/ai/claude)
|
||||
role = "mixed" # Default role
|
||||
role_fields = ["role", "sender", "from", "author", "type"]
|
||||
for field in role_fields:
|
||||
if msg_data.get(field):
|
||||
role_value = str(msg_data[field]).lower()
|
||||
if role_value in ["user", "human", "person"]:
|
||||
role = "user"
|
||||
elif role_value in ["assistant", "ai", "claude", "bot"]:
|
||||
role = "assistant"
|
||||
break
|
||||
|
||||
# Extract timestamp
|
||||
timestamp = self._extract_timestamp_from_message(msg_data)
|
||||
|
||||
return {"role": role, "content": content, "timestamp": timestamp}
|
||||
|
||||
def _extract_timestamp_from_message(self, msg_data: dict) -> str | None:
|
||||
"""Extract timestamp from message data."""
|
||||
timestamp_fields = ["timestamp", "created_at", "date", "time"]
|
||||
for field in timestamp_fields:
|
||||
if msg_data.get(field):
|
||||
return str(msg_data[field])
|
||||
return None
|
||||
|
||||
def _extract_timestamp_from_conversation(self, conv_data: dict) -> str | None:
|
||||
"""Extract timestamp from conversation data."""
|
||||
timestamp_fields = ["timestamp", "created_at", "date", "updated_at", "last_updated"]
|
||||
for field in timestamp_fields:
|
||||
if conv_data.get(field):
|
||||
return str(conv_data[field])
|
||||
return None
|
||||
|
||||
def _extract_title_from_conversation(self, conv_data: dict, messages: list) -> str:
|
||||
"""Extract or generate title for conversation."""
|
||||
# Try to find explicit title
|
||||
title_fields = ["title", "name", "subject", "topic"]
|
||||
for field in title_fields:
|
||||
if conv_data.get(field):
|
||||
return str(conv_data[field])
|
||||
|
||||
# Generate title from first user message
|
||||
for message in messages:
|
||||
if message.get("role") == "user":
|
||||
content = message.get("content", "")
|
||||
if content:
|
||||
# Use first 50 characters as title
|
||||
title = content[:50].strip()
|
||||
if len(content) > 50:
|
||||
title += "..."
|
||||
return title
|
||||
|
||||
return "Claude Conversation"
|
||||
|
||||
def _create_concatenated_content(self, conversation: dict) -> str:
|
||||
"""
|
||||
Create concatenated content from conversation messages.
|
||||
|
||||
Args:
|
||||
conversation: Dictionary containing conversation data
|
||||
|
||||
Returns:
|
||||
Formatted concatenated content
|
||||
"""
|
||||
title = conversation.get("title", "Claude Conversation")
|
||||
messages = conversation.get("messages", [])
|
||||
timestamp = conversation.get("timestamp", "Unknown")
|
||||
|
||||
# Build message content
|
||||
message_parts = []
|
||||
for message in messages:
|
||||
role = message.get("role", "mixed")
|
||||
content = message.get("content", "")
|
||||
msg_timestamp = message.get("timestamp", "")
|
||||
|
||||
if role == "user":
|
||||
prefix = "[You]"
|
||||
elif role == "assistant":
|
||||
prefix = "[Claude]"
|
||||
else:
|
||||
prefix = "[Message]"
|
||||
|
||||
# Add timestamp if available
|
||||
if msg_timestamp:
|
||||
prefix += f" ({msg_timestamp})"
|
||||
|
||||
message_parts.append(f"{prefix}: {content}")
|
||||
|
||||
concatenated_text = "\n\n".join(message_parts)
|
||||
|
||||
# Create final document content
|
||||
doc_content = f"""Conversation: {title}
|
||||
Date: {timestamp}
|
||||
Messages ({len(messages)} messages):
|
||||
|
||||
{concatenated_text}
|
||||
"""
|
||||
return doc_content
|
||||
|
||||
def load_data(self, input_dir: str | None = None, **load_kwargs: Any) -> list[Document]:
|
||||
"""
|
||||
Load Claude export data.
|
||||
|
||||
Args:
|
||||
input_dir: Directory containing Claude export files or path to specific file
|
||||
**load_kwargs:
|
||||
max_count (int): Maximum number of conversations to process
|
||||
claude_export_path (str): Specific path to Claude export file/directory
|
||||
include_metadata (bool): Whether to include metadata in documents
|
||||
"""
|
||||
docs: list[Document] = []
|
||||
max_count = load_kwargs.get("max_count", -1)
|
||||
claude_export_path = load_kwargs.get("claude_export_path", input_dir)
|
||||
include_metadata = load_kwargs.get("include_metadata", True)
|
||||
|
||||
if not claude_export_path:
|
||||
print("No Claude export path provided")
|
||||
return docs
|
||||
|
||||
export_path = Path(claude_export_path)
|
||||
|
||||
if not export_path.exists():
|
||||
print(f"Claude export path not found: {export_path}")
|
||||
return docs
|
||||
|
||||
json_contents = []
|
||||
|
||||
# Handle different input types
|
||||
if export_path.is_file():
|
||||
if export_path.suffix.lower() == ".zip":
|
||||
# Extract JSON from zip file
|
||||
json_contents = self._extract_json_from_zip(export_path)
|
||||
elif export_path.suffix.lower() == ".json":
|
||||
# Read JSON file directly
|
||||
try:
|
||||
with open(export_path, encoding="utf-8", errors="ignore") as f:
|
||||
json_contents.append(f.read())
|
||||
except Exception as e:
|
||||
print(f"Error reading JSON file {export_path}: {e}")
|
||||
return docs
|
||||
else:
|
||||
print(f"Unsupported file type: {export_path.suffix}")
|
||||
return docs
|
||||
|
||||
elif export_path.is_dir():
|
||||
# Look for JSON files in directory
|
||||
json_files = list(export_path.glob("*.json"))
|
||||
zip_files = list(export_path.glob("*.zip"))
|
||||
|
||||
if json_files:
|
||||
print(f"Found {len(json_files)} JSON files in directory")
|
||||
for json_file in json_files:
|
||||
try:
|
||||
with open(json_file, encoding="utf-8", errors="ignore") as f:
|
||||
json_contents.append(f.read())
|
||||
except Exception as e:
|
||||
print(f"Error reading JSON file {json_file}: {e}")
|
||||
continue
|
||||
|
||||
if zip_files:
|
||||
print(f"Found {len(zip_files)} ZIP files in directory")
|
||||
for zip_file in zip_files:
|
||||
zip_contents = self._extract_json_from_zip(zip_file)
|
||||
json_contents.extend(zip_contents)
|
||||
|
||||
if not json_files and not zip_files:
|
||||
print(f"No JSON or ZIP files found in {export_path}")
|
||||
return docs
|
||||
|
||||
if not json_contents:
|
||||
print("No JSON content found to process")
|
||||
return docs
|
||||
|
||||
# Parse conversations from JSON content
|
||||
print("Parsing Claude conversations from JSON...")
|
||||
all_conversations = []
|
||||
for json_content in json_contents:
|
||||
conversations = self._parse_claude_json(json_content)
|
||||
all_conversations.extend(conversations)
|
||||
|
||||
if not all_conversations:
|
||||
print("No conversations found in JSON content")
|
||||
return docs
|
||||
|
||||
print(f"Found {len(all_conversations)} conversations")
|
||||
|
||||
# Process conversations into documents
|
||||
count = 0
|
||||
for conversation in all_conversations:
|
||||
if max_count > 0 and count >= max_count:
|
||||
break
|
||||
|
||||
if self.concatenate_conversations:
|
||||
# Create one document per conversation with concatenated messages
|
||||
doc_content = self._create_concatenated_content(conversation)
|
||||
|
||||
metadata = {}
|
||||
if include_metadata:
|
||||
metadata = {
|
||||
"title": conversation.get("title", "Claude Conversation"),
|
||||
"timestamp": conversation.get("timestamp", "Unknown"),
|
||||
"message_count": len(conversation.get("messages", [])),
|
||||
"source": "Claude Export",
|
||||
}
|
||||
|
||||
doc = Document(text=doc_content, metadata=metadata)
|
||||
docs.append(doc)
|
||||
count += 1
|
||||
|
||||
else:
|
||||
# Create separate documents for each message
|
||||
for message in conversation.get("messages", []):
|
||||
if max_count > 0 and count >= max_count:
|
||||
break
|
||||
|
||||
role = message.get("role", "mixed")
|
||||
content = message.get("content", "")
|
||||
msg_timestamp = message.get("timestamp", "")
|
||||
|
||||
if not content.strip():
|
||||
continue
|
||||
|
||||
# Create document content with context
|
||||
doc_content = f"""Conversation: {conversation.get("title", "Claude Conversation")}
|
||||
Role: {role}
|
||||
Timestamp: {msg_timestamp or conversation.get("timestamp", "Unknown")}
|
||||
Message: {content}
|
||||
"""
|
||||
|
||||
metadata = {}
|
||||
if include_metadata:
|
||||
metadata = {
|
||||
"conversation_title": conversation.get("title", "Claude Conversation"),
|
||||
"role": role,
|
||||
"timestamp": msg_timestamp or conversation.get("timestamp", "Unknown"),
|
||||
"source": "Claude Export",
|
||||
}
|
||||
|
||||
doc = Document(text=doc_content, metadata=metadata)
|
||||
docs.append(doc)
|
||||
count += 1
|
||||
|
||||
print(f"Created {len(docs)} documents from Claude export")
|
||||
return docs
|
||||
189
apps/claude_rag.py
Normal file
189
apps/claude_rag.py
Normal file
@@ -0,0 +1,189 @@
|
||||
"""
|
||||
Claude RAG example using the unified interface.
|
||||
Supports Claude export data from JSON files.
|
||||
"""
|
||||
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
# Add parent directory to path for imports
|
||||
sys.path.insert(0, str(Path(__file__).parent))
|
||||
|
||||
from base_rag_example import BaseRAGExample
|
||||
from chunking import create_text_chunks
|
||||
|
||||
from .claude_data.claude_reader import ClaudeReader
|
||||
|
||||
|
||||
class ClaudeRAG(BaseRAGExample):
|
||||
"""RAG example for Claude conversation data."""
|
||||
|
||||
def __init__(self):
|
||||
# Set default values BEFORE calling super().__init__
|
||||
self.max_items_default = -1 # Process all conversations by default
|
||||
self.embedding_model_default = (
|
||||
"sentence-transformers/all-MiniLM-L6-v2" # Fast 384-dim model
|
||||
)
|
||||
|
||||
super().__init__(
|
||||
name="Claude",
|
||||
description="Process and query Claude conversation exports with LEANN",
|
||||
default_index_name="claude_conversations_index",
|
||||
)
|
||||
|
||||
def _add_specific_arguments(self, parser):
|
||||
"""Add Claude-specific arguments."""
|
||||
claude_group = parser.add_argument_group("Claude Parameters")
|
||||
claude_group.add_argument(
|
||||
"--export-path",
|
||||
type=str,
|
||||
default="./claude_export",
|
||||
help="Path to Claude export file (.json or .zip) or directory containing exports (default: ./claude_export)",
|
||||
)
|
||||
claude_group.add_argument(
|
||||
"--concatenate-conversations",
|
||||
action="store_true",
|
||||
default=True,
|
||||
help="Concatenate messages within conversations for better context (default: True)",
|
||||
)
|
||||
claude_group.add_argument(
|
||||
"--separate-messages",
|
||||
action="store_true",
|
||||
help="Process each message as a separate document (overrides --concatenate-conversations)",
|
||||
)
|
||||
claude_group.add_argument(
|
||||
"--chunk-size", type=int, default=512, help="Text chunk size (default: 512)"
|
||||
)
|
||||
claude_group.add_argument(
|
||||
"--chunk-overlap", type=int, default=128, help="Text chunk overlap (default: 128)"
|
||||
)
|
||||
|
||||
def _find_claude_exports(self, export_path: Path) -> list[Path]:
|
||||
"""
|
||||
Find Claude export files in the given path.
|
||||
|
||||
Args:
|
||||
export_path: Path to search for exports
|
||||
|
||||
Returns:
|
||||
List of paths to Claude export files
|
||||
"""
|
||||
export_files = []
|
||||
|
||||
if export_path.is_file():
|
||||
if export_path.suffix.lower() in [".zip", ".json"]:
|
||||
export_files.append(export_path)
|
||||
elif export_path.is_dir():
|
||||
# Look for zip and json files
|
||||
export_files.extend(export_path.glob("*.zip"))
|
||||
export_files.extend(export_path.glob("*.json"))
|
||||
|
||||
return export_files
|
||||
|
||||
async def load_data(self, args) -> list[str]:
|
||||
"""Load Claude export data and convert to text chunks."""
|
||||
export_path = Path(args.export_path)
|
||||
|
||||
if not export_path.exists():
|
||||
print(f"Claude export path not found: {export_path}")
|
||||
print(
|
||||
"Please ensure you have exported your Claude data and placed it in the correct location."
|
||||
)
|
||||
print("\nTo export your Claude data:")
|
||||
print("1. Open Claude in your browser")
|
||||
print("2. Look for export/download options in settings or conversation menu")
|
||||
print("3. Download the conversation data (usually in JSON format)")
|
||||
print("4. Place the file/directory at the specified path")
|
||||
print(
|
||||
"\nNote: Claude export methods may vary. Check Claude's help documentation for current instructions."
|
||||
)
|
||||
return []
|
||||
|
||||
# Find export files
|
||||
export_files = self._find_claude_exports(export_path)
|
||||
|
||||
if not export_files:
|
||||
print(f"No Claude export files (.json or .zip) found in: {export_path}")
|
||||
return []
|
||||
|
||||
print(f"Found {len(export_files)} Claude export files")
|
||||
|
||||
# Create reader with appropriate settings
|
||||
concatenate = args.concatenate_conversations and not args.separate_messages
|
||||
reader = ClaudeReader(concatenate_conversations=concatenate)
|
||||
|
||||
# Process each export file
|
||||
all_documents = []
|
||||
total_processed = 0
|
||||
|
||||
for i, export_file in enumerate(export_files):
|
||||
print(f"\nProcessing export file {i + 1}/{len(export_files)}: {export_file.name}")
|
||||
|
||||
try:
|
||||
# Apply max_items limit per file
|
||||
max_per_file = -1
|
||||
if args.max_items > 0:
|
||||
remaining = args.max_items - total_processed
|
||||
if remaining <= 0:
|
||||
break
|
||||
max_per_file = remaining
|
||||
|
||||
# Load conversations
|
||||
documents = reader.load_data(
|
||||
claude_export_path=str(export_file),
|
||||
max_count=max_per_file,
|
||||
include_metadata=True,
|
||||
)
|
||||
|
||||
if documents:
|
||||
all_documents.extend(documents)
|
||||
total_processed += len(documents)
|
||||
print(f"Processed {len(documents)} conversations from this file")
|
||||
else:
|
||||
print(f"No conversations loaded from {export_file}")
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error processing {export_file}: {e}")
|
||||
continue
|
||||
|
||||
if not all_documents:
|
||||
print("No conversations found to process!")
|
||||
print("\nTroubleshooting:")
|
||||
print("- Ensure the export file is a valid Claude export")
|
||||
print("- Check that the JSON file contains conversation data")
|
||||
print("- Try using a different export format or method")
|
||||
print("- Check Claude's documentation for current export procedures")
|
||||
return []
|
||||
|
||||
print(f"\nTotal conversations processed: {len(all_documents)}")
|
||||
print("Now starting to split into text chunks... this may take some time")
|
||||
|
||||
# Convert to text chunks
|
||||
all_texts = create_text_chunks(
|
||||
all_documents, chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
|
||||
)
|
||||
|
||||
print(f"Created {len(all_texts)} text chunks from {len(all_documents)} conversations")
|
||||
return all_texts
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import asyncio
|
||||
|
||||
# Example queries for Claude RAG
|
||||
print("\n🤖 Claude RAG Example")
|
||||
print("=" * 50)
|
||||
print("\nExample queries you can try:")
|
||||
print("- 'What did I ask Claude about Python programming?'")
|
||||
print("- 'Show me conversations about machine learning'")
|
||||
print("- 'Find discussions about code optimization'")
|
||||
print("- 'What advice did Claude give me about software design?'")
|
||||
print("- 'Search for conversations about debugging techniques'")
|
||||
print("\nTo get started:")
|
||||
print("1. Export your Claude conversation data")
|
||||
print("2. Place the JSON/ZIP file in ./claude_export/")
|
||||
print("3. Run this script to build your personal Claude knowledge base!")
|
||||
print("\nOr run without --query for interactive mode\n")
|
||||
|
||||
rag = ClaudeRAG()
|
||||
asyncio.run(rag.run())
|
||||
211
apps/code_rag.py
Normal file
211
apps/code_rag.py
Normal file
@@ -0,0 +1,211 @@
|
||||
"""
|
||||
Code RAG example using AST-aware chunking for optimal code understanding.
|
||||
Specialized for code repositories with automatic language detection and
|
||||
optimized chunking parameters.
|
||||
"""
|
||||
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
# Add parent directory to path for imports
|
||||
sys.path.insert(0, str(Path(__file__).parent))
|
||||
|
||||
from base_rag_example import BaseRAGExample
|
||||
from chunking import CODE_EXTENSIONS, create_text_chunks
|
||||
from llama_index.core import SimpleDirectoryReader
|
||||
|
||||
|
||||
class CodeRAG(BaseRAGExample):
|
||||
"""Specialized RAG example for code repositories with AST-aware chunking."""
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
name="Code",
|
||||
description="Process and query code repositories with AST-aware chunking",
|
||||
default_index_name="code_index",
|
||||
)
|
||||
# Override defaults for code-specific usage
|
||||
self.embedding_model_default = "facebook/contriever" # Good for code
|
||||
self.max_items_default = -1 # Process all code files by default
|
||||
|
||||
def _add_specific_arguments(self, parser):
|
||||
"""Add code-specific arguments."""
|
||||
code_group = parser.add_argument_group("Code Repository Parameters")
|
||||
|
||||
code_group.add_argument(
|
||||
"--repo-dir",
|
||||
type=str,
|
||||
default=".",
|
||||
help="Code repository directory to index (default: current directory)",
|
||||
)
|
||||
code_group.add_argument(
|
||||
"--include-extensions",
|
||||
nargs="+",
|
||||
default=list(CODE_EXTENSIONS.keys()),
|
||||
help="File extensions to include (default: supported code extensions)",
|
||||
)
|
||||
code_group.add_argument(
|
||||
"--exclude-dirs",
|
||||
nargs="+",
|
||||
default=[
|
||||
".git",
|
||||
"__pycache__",
|
||||
"node_modules",
|
||||
"venv",
|
||||
".venv",
|
||||
"build",
|
||||
"dist",
|
||||
"target",
|
||||
],
|
||||
help="Directories to exclude from indexing",
|
||||
)
|
||||
code_group.add_argument(
|
||||
"--max-file-size",
|
||||
type=int,
|
||||
default=1000000, # 1MB
|
||||
help="Maximum file size in bytes to process (default: 1MB)",
|
||||
)
|
||||
code_group.add_argument(
|
||||
"--include-comments",
|
||||
action="store_true",
|
||||
help="Include comments in chunking (useful for documentation)",
|
||||
)
|
||||
code_group.add_argument(
|
||||
"--preserve-imports",
|
||||
action="store_true",
|
||||
default=True,
|
||||
help="Try to preserve import statements in chunks (default: True)",
|
||||
)
|
||||
|
||||
async def load_data(self, args) -> list[str]:
|
||||
"""Load code files and convert to AST-aware chunks."""
|
||||
print(f"🔍 Scanning code repository: {args.repo_dir}")
|
||||
print(f"📁 Including extensions: {args.include_extensions}")
|
||||
print(f"🚫 Excluding directories: {args.exclude_dirs}")
|
||||
|
||||
# Check if repository directory exists
|
||||
repo_path = Path(args.repo_dir)
|
||||
if not repo_path.exists():
|
||||
raise ValueError(f"Repository directory not found: {args.repo_dir}")
|
||||
|
||||
# Load code files with filtering
|
||||
reader_kwargs = {
|
||||
"recursive": True,
|
||||
"encoding": "utf-8",
|
||||
"required_exts": args.include_extensions,
|
||||
"exclude_hidden": True,
|
||||
}
|
||||
|
||||
# Create exclusion filter
|
||||
def file_filter(file_path: str) -> bool:
|
||||
"""Filter out unwanted files and directories."""
|
||||
path = Path(file_path)
|
||||
|
||||
# Check file size
|
||||
try:
|
||||
if path.stat().st_size > args.max_file_size:
|
||||
print(f"⚠️ Skipping large file: {path.name} ({path.stat().st_size} bytes)")
|
||||
return False
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
# Check if in excluded directory
|
||||
for exclude_dir in args.exclude_dirs:
|
||||
if exclude_dir in path.parts:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
try:
|
||||
# Load documents with file filtering
|
||||
documents = SimpleDirectoryReader(
|
||||
args.repo_dir,
|
||||
file_extractor=None, # Use default extractors
|
||||
**reader_kwargs,
|
||||
).load_data(show_progress=True)
|
||||
|
||||
# Apply custom filtering
|
||||
filtered_docs = []
|
||||
for doc in documents:
|
||||
file_path = doc.metadata.get("file_path", "")
|
||||
if file_filter(file_path):
|
||||
filtered_docs.append(doc)
|
||||
|
||||
documents = filtered_docs
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Error loading code files: {e}")
|
||||
return []
|
||||
|
||||
if not documents:
|
||||
print(
|
||||
f"❌ No code files found in {args.repo_dir} with extensions {args.include_extensions}"
|
||||
)
|
||||
return []
|
||||
|
||||
print(f"✅ Loaded {len(documents)} code files")
|
||||
|
||||
# Show breakdown by language/extension
|
||||
ext_counts = {}
|
||||
for doc in documents:
|
||||
file_path = doc.metadata.get("file_path", "")
|
||||
if file_path:
|
||||
ext = Path(file_path).suffix.lower()
|
||||
ext_counts[ext] = ext_counts.get(ext, 0) + 1
|
||||
|
||||
print("📊 Files by extension:")
|
||||
for ext, count in sorted(ext_counts.items()):
|
||||
print(f" {ext}: {count} files")
|
||||
|
||||
# Use AST-aware chunking by default for code
|
||||
print(
|
||||
f"🧠 Using AST-aware chunking (chunk_size: {args.ast_chunk_size}, overlap: {args.ast_chunk_overlap})"
|
||||
)
|
||||
|
||||
all_texts = create_text_chunks(
|
||||
documents,
|
||||
chunk_size=256, # Fallback for non-code files
|
||||
chunk_overlap=64,
|
||||
use_ast_chunking=True, # Always use AST for code RAG
|
||||
ast_chunk_size=args.ast_chunk_size,
|
||||
ast_chunk_overlap=args.ast_chunk_overlap,
|
||||
code_file_extensions=args.include_extensions,
|
||||
ast_fallback_traditional=True,
|
||||
)
|
||||
|
||||
# Apply max_items limit if specified
|
||||
if args.max_items > 0 and len(all_texts) > args.max_items:
|
||||
print(f"⏳ Limiting to {args.max_items} chunks (from {len(all_texts)})")
|
||||
all_texts = all_texts[: args.max_items]
|
||||
|
||||
print(f"✅ Generated {len(all_texts)} code chunks")
|
||||
return all_texts
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import asyncio
|
||||
|
||||
# Example queries for code RAG
|
||||
print("\n💻 Code RAG Example")
|
||||
print("=" * 50)
|
||||
print("\nExample queries you can try:")
|
||||
print("- 'How does the embedding computation work?'")
|
||||
print("- 'What are the main classes in this codebase?'")
|
||||
print("- 'Show me the search implementation'")
|
||||
print("- 'How is error handling implemented?'")
|
||||
print("- 'What design patterns are used?'")
|
||||
print("- 'Explain the chunking logic'")
|
||||
print("\n🚀 Features:")
|
||||
print("- ✅ AST-aware chunking preserves code structure")
|
||||
print("- ✅ Automatic language detection")
|
||||
print("- ✅ Smart filtering of large files and common excludes")
|
||||
print("- ✅ Optimized for code understanding")
|
||||
print("\nUsage examples:")
|
||||
print(" python -m apps.code_rag --repo-dir ./my_project")
|
||||
print(
|
||||
" python -m apps.code_rag --include-extensions .py .js --query 'How does authentication work?'"
|
||||
)
|
||||
print("\nOr run without --query for interactive mode\n")
|
||||
|
||||
rag = CodeRAG()
|
||||
asyncio.run(rag.run())
|
||||
131
apps/document_rag.py
Normal file
131
apps/document_rag.py
Normal file
@@ -0,0 +1,131 @@
|
||||
"""
|
||||
Document RAG example using the unified interface.
|
||||
Supports PDF, TXT, MD, and other document formats.
|
||||
"""
|
||||
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
# Add parent directory to path for imports
|
||||
sys.path.insert(0, str(Path(__file__).parent))
|
||||
|
||||
from base_rag_example import BaseRAGExample
|
||||
from chunking import create_text_chunks
|
||||
from llama_index.core import SimpleDirectoryReader
|
||||
|
||||
|
||||
class DocumentRAG(BaseRAGExample):
|
||||
"""RAG example for document processing (PDF, TXT, MD, etc.)."""
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
name="Document",
|
||||
description="Process and query documents (PDF, TXT, MD, etc.) with LEANN",
|
||||
default_index_name="test_doc_files",
|
||||
)
|
||||
|
||||
def _add_specific_arguments(self, parser):
|
||||
"""Add document-specific arguments."""
|
||||
doc_group = parser.add_argument_group("Document Parameters")
|
||||
doc_group.add_argument(
|
||||
"--data-dir",
|
||||
type=str,
|
||||
default="data",
|
||||
help="Directory containing documents to index (default: data)",
|
||||
)
|
||||
doc_group.add_argument(
|
||||
"--file-types",
|
||||
nargs="+",
|
||||
default=None,
|
||||
help="Filter by file types (e.g., .pdf .txt .md). If not specified, all supported types are processed",
|
||||
)
|
||||
doc_group.add_argument(
|
||||
"--chunk-size", type=int, default=256, help="Text chunk size (default: 256)"
|
||||
)
|
||||
doc_group.add_argument(
|
||||
"--chunk-overlap", type=int, default=128, help="Text chunk overlap (default: 128)"
|
||||
)
|
||||
doc_group.add_argument(
|
||||
"--enable-code-chunking",
|
||||
action="store_true",
|
||||
help="Enable AST-aware chunking for code files in the data directory",
|
||||
)
|
||||
|
||||
async def load_data(self, args) -> list[str]:
|
||||
"""Load documents and convert to text chunks."""
|
||||
print(f"Loading documents from: {args.data_dir}")
|
||||
if args.file_types:
|
||||
print(f"Filtering by file types: {args.file_types}")
|
||||
else:
|
||||
print("Processing all supported file types")
|
||||
|
||||
# Check if data directory exists
|
||||
data_path = Path(args.data_dir)
|
||||
if not data_path.exists():
|
||||
raise ValueError(f"Data directory not found: {args.data_dir}")
|
||||
|
||||
# Load documents
|
||||
reader_kwargs = {
|
||||
"recursive": True,
|
||||
"encoding": "utf-8",
|
||||
}
|
||||
if args.file_types:
|
||||
reader_kwargs["required_exts"] = args.file_types
|
||||
|
||||
documents = SimpleDirectoryReader(args.data_dir, **reader_kwargs).load_data(
|
||||
show_progress=True
|
||||
)
|
||||
|
||||
if not documents:
|
||||
print(f"No documents found in {args.data_dir} with extensions {args.file_types}")
|
||||
return []
|
||||
|
||||
print(f"Loaded {len(documents)} documents")
|
||||
|
||||
# Determine chunking strategy
|
||||
use_ast = args.enable_code_chunking or getattr(args, "use_ast_chunking", False)
|
||||
|
||||
if use_ast:
|
||||
print("Using AST-aware chunking for code files")
|
||||
|
||||
# Convert to text chunks with optional AST support
|
||||
all_texts = create_text_chunks(
|
||||
documents,
|
||||
chunk_size=args.chunk_size,
|
||||
chunk_overlap=args.chunk_overlap,
|
||||
use_ast_chunking=use_ast,
|
||||
ast_chunk_size=getattr(args, "ast_chunk_size", 512),
|
||||
ast_chunk_overlap=getattr(args, "ast_chunk_overlap", 64),
|
||||
code_file_extensions=getattr(args, "code_file_extensions", None),
|
||||
ast_fallback_traditional=getattr(args, "ast_fallback_traditional", True),
|
||||
)
|
||||
|
||||
# Apply max_items limit if specified
|
||||
if args.max_items > 0 and len(all_texts) > args.max_items:
|
||||
print(f"Limiting to {args.max_items} chunks (from {len(all_texts)})")
|
||||
all_texts = all_texts[: args.max_items]
|
||||
|
||||
return all_texts
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import asyncio
|
||||
|
||||
# Example queries for document RAG
|
||||
print("\n📄 Document RAG Example")
|
||||
print("=" * 50)
|
||||
print("\nExample queries you can try:")
|
||||
print("- 'What are the main techniques LEANN uses?'")
|
||||
print("- 'What is the technique DLPM?'")
|
||||
print("- 'Who does Elizabeth Bennet marry?'")
|
||||
print(
|
||||
"- 'What is the problem of developing pan gu model Huawei meets? (盘古大模型开发中遇到什么问题?)'"
|
||||
)
|
||||
print("\n🚀 NEW: Code-aware chunking available!")
|
||||
print("- Use --enable-code-chunking to enable AST-aware chunking for code files")
|
||||
print("- Supports Python, Java, C#, TypeScript files")
|
||||
print("- Better semantic understanding of code structure")
|
||||
print("\nOr run without --query for interactive mode\n")
|
||||
|
||||
rag = DocumentRAG()
|
||||
asyncio.run(rag.run())
|
||||
@@ -52,6 +52,11 @@ class EmlxReader(BaseReader):
|
||||
docs: list[Document] = []
|
||||
max_count = load_kwargs.get("max_count", 1000)
|
||||
count = 0
|
||||
total_files = 0
|
||||
successful_files = 0
|
||||
failed_files = 0
|
||||
|
||||
print(f"Starting to process directory: {input_dir}")
|
||||
|
||||
# Walk through the directory recursively
|
||||
for dirpath, dirnames, filenames in os.walk(input_dir):
|
||||
@@ -59,10 +64,12 @@ class EmlxReader(BaseReader):
|
||||
dirnames[:] = [d for d in dirnames if not d.startswith(".")]
|
||||
|
||||
for filename in filenames:
|
||||
if count >= max_count:
|
||||
# Check if we've reached the max count (skip if max_count == -1)
|
||||
if max_count > 0 and count >= max_count:
|
||||
break
|
||||
|
||||
if filename.endswith(".emlx"):
|
||||
total_files += 1
|
||||
filepath = os.path.join(dirpath, filename)
|
||||
try:
|
||||
# Read the .emlx file
|
||||
@@ -98,17 +105,26 @@ class EmlxReader(BaseReader):
|
||||
and not self.include_html
|
||||
):
|
||||
continue
|
||||
body += part.get_payload(decode=True).decode(
|
||||
"utf-8", errors="ignore"
|
||||
)
|
||||
# break
|
||||
try:
|
||||
payload = part.get_payload(decode=True)
|
||||
if payload:
|
||||
body += payload.decode("utf-8", errors="ignore")
|
||||
except Exception as e:
|
||||
print(f"Error decoding payload: {e}")
|
||||
continue
|
||||
else:
|
||||
body = msg.get_payload(decode=True).decode(
|
||||
"utf-8", errors="ignore"
|
||||
)
|
||||
try:
|
||||
payload = msg.get_payload(decode=True)
|
||||
if payload:
|
||||
body = payload.decode("utf-8", errors="ignore")
|
||||
except Exception as e:
|
||||
print(f"Error decoding single part payload: {e}")
|
||||
body = ""
|
||||
|
||||
# Create document content with metadata embedded in text
|
||||
doc_content = f"""
|
||||
# Only create document if we have some content
|
||||
if body.strip() or subject != "No Subject":
|
||||
# Create document content with metadata embedded in text
|
||||
doc_content = f"""
|
||||
[File]: {filename}
|
||||
[From]: {from_addr}
|
||||
[To]: {to_addr}
|
||||
@@ -118,18 +134,34 @@ class EmlxReader(BaseReader):
|
||||
{body}
|
||||
"""
|
||||
|
||||
# No separate metadata - everything is in the text
|
||||
doc = Document(text=doc_content, metadata={})
|
||||
docs.append(doc)
|
||||
count += 1
|
||||
# No separate metadata - everything is in the text
|
||||
doc = Document(text=doc_content, metadata={})
|
||||
docs.append(doc)
|
||||
count += 1
|
||||
successful_files += 1
|
||||
|
||||
# Print first few successful files for debugging
|
||||
if successful_files <= 3:
|
||||
print(
|
||||
f"Successfully loaded: {filename} - Subject: {subject[:50]}..."
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error parsing email from {filepath}: {e}")
|
||||
failed_files += 1
|
||||
if failed_files <= 5: # Only print first few errors
|
||||
print(f"Error parsing email from {filepath}: {e}")
|
||||
continue
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error reading file {filepath}: {e}")
|
||||
failed_files += 1
|
||||
if failed_files <= 5: # Only print first few errors
|
||||
print(f"Error reading file {filepath}: {e}")
|
||||
continue
|
||||
|
||||
print(f"Loaded {len(docs)} email documents")
|
||||
print("Processing summary:")
|
||||
print(f" Total .emlx files found: {total_files}")
|
||||
print(f" Successfully loaded: {successful_files}")
|
||||
print(f" Failed to load: {failed_files}")
|
||||
print(f" Final documents: {len(docs)}")
|
||||
|
||||
return docs
|
||||
157
apps/email_rag.py
Normal file
157
apps/email_rag.py
Normal file
@@ -0,0 +1,157 @@
|
||||
"""
|
||||
Email RAG example using the unified interface.
|
||||
Supports Apple Mail on macOS.
|
||||
"""
|
||||
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
# Add parent directory to path for imports
|
||||
sys.path.insert(0, str(Path(__file__).parent))
|
||||
|
||||
from base_rag_example import BaseRAGExample
|
||||
from chunking import create_text_chunks
|
||||
|
||||
from .email_data.LEANN_email_reader import EmlxReader
|
||||
|
||||
|
||||
class EmailRAG(BaseRAGExample):
|
||||
"""RAG example for Apple Mail processing."""
|
||||
|
||||
def __init__(self):
|
||||
# Set default values BEFORE calling super().__init__
|
||||
self.max_items_default = -1 # Process all emails by default
|
||||
self.embedding_model_default = (
|
||||
"sentence-transformers/all-MiniLM-L6-v2" # Fast 384-dim model
|
||||
)
|
||||
|
||||
super().__init__(
|
||||
name="Email",
|
||||
description="Process and query Apple Mail emails with LEANN",
|
||||
default_index_name="mail_index",
|
||||
)
|
||||
|
||||
def _add_specific_arguments(self, parser):
|
||||
"""Add email-specific arguments."""
|
||||
email_group = parser.add_argument_group("Email Parameters")
|
||||
email_group.add_argument(
|
||||
"--mail-path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to Apple Mail directory (auto-detected if not specified)",
|
||||
)
|
||||
email_group.add_argument(
|
||||
"--include-html", action="store_true", help="Include HTML content in email processing"
|
||||
)
|
||||
email_group.add_argument(
|
||||
"--chunk-size", type=int, default=256, help="Text chunk size (default: 256)"
|
||||
)
|
||||
email_group.add_argument(
|
||||
"--chunk-overlap", type=int, default=25, help="Text chunk overlap (default: 25)"
|
||||
)
|
||||
|
||||
def _find_mail_directories(self) -> list[Path]:
|
||||
"""Auto-detect all Apple Mail directories."""
|
||||
mail_base = Path.home() / "Library" / "Mail"
|
||||
if not mail_base.exists():
|
||||
return []
|
||||
|
||||
# Find all Messages directories
|
||||
messages_dirs = []
|
||||
for item in mail_base.rglob("Messages"):
|
||||
if item.is_dir():
|
||||
messages_dirs.append(item)
|
||||
|
||||
return messages_dirs
|
||||
|
||||
async def load_data(self, args) -> list[str]:
|
||||
"""Load emails and convert to text chunks."""
|
||||
# Determine mail directories
|
||||
if args.mail_path:
|
||||
messages_dirs = [Path(args.mail_path)]
|
||||
else:
|
||||
print("Auto-detecting Apple Mail directories...")
|
||||
messages_dirs = self._find_mail_directories()
|
||||
|
||||
if not messages_dirs:
|
||||
print("No Apple Mail directories found!")
|
||||
print("Please specify --mail-path manually")
|
||||
return []
|
||||
|
||||
print(f"Found {len(messages_dirs)} mail directories")
|
||||
|
||||
# Create reader
|
||||
reader = EmlxReader(include_html=args.include_html)
|
||||
|
||||
# Process each directory
|
||||
all_documents = []
|
||||
total_processed = 0
|
||||
|
||||
for i, messages_dir in enumerate(messages_dirs):
|
||||
print(f"\nProcessing directory {i + 1}/{len(messages_dirs)}: {messages_dir}")
|
||||
|
||||
try:
|
||||
# Count emlx files
|
||||
emlx_files = list(messages_dir.glob("*.emlx"))
|
||||
print(f"Found {len(emlx_files)} email files")
|
||||
|
||||
# Apply max_items limit per directory
|
||||
max_per_dir = -1 # Default to process all
|
||||
if args.max_items > 0:
|
||||
remaining = args.max_items - total_processed
|
||||
if remaining <= 0:
|
||||
break
|
||||
max_per_dir = remaining
|
||||
# If args.max_items == -1, max_per_dir stays -1 (process all)
|
||||
|
||||
# Load emails - fix the parameter passing
|
||||
documents = reader.load_data(
|
||||
input_dir=str(messages_dir),
|
||||
max_count=max_per_dir,
|
||||
)
|
||||
|
||||
if documents:
|
||||
all_documents.extend(documents)
|
||||
total_processed += len(documents)
|
||||
print(f"Processed {len(documents)} emails from this directory")
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error processing {messages_dir}: {e}")
|
||||
continue
|
||||
|
||||
if not all_documents:
|
||||
print("No emails found to process!")
|
||||
return []
|
||||
|
||||
print(f"\nTotal emails processed: {len(all_documents)}")
|
||||
print("now starting to split into text chunks ... take some time")
|
||||
|
||||
# Convert to text chunks
|
||||
# Email reader uses chunk_overlap=25 as in original
|
||||
all_texts = create_text_chunks(
|
||||
all_documents, chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
|
||||
)
|
||||
|
||||
return all_texts
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import asyncio
|
||||
|
||||
# Check platform
|
||||
if sys.platform != "darwin":
|
||||
print("\n⚠️ Warning: This example is designed for macOS (Apple Mail)")
|
||||
print(" Windows/Linux support coming soon!\n")
|
||||
|
||||
# Example queries for email RAG
|
||||
print("\n📧 Email RAG Example")
|
||||
print("=" * 50)
|
||||
print("\nExample queries you can try:")
|
||||
print("- 'What did my boss say about deadlines?'")
|
||||
print("- 'Find emails about travel expenses'")
|
||||
print("- 'Show me emails from last month about the project'")
|
||||
print("- 'What food did I order from DoorDash?'")
|
||||
print("\nNote: You may need to grant Full Disk Access to your terminal\n")
|
||||
|
||||
rag = EmailRAG()
|
||||
asyncio.run(rag.run())
|
||||
@@ -74,7 +74,7 @@ class ChromeHistoryReader(BaseReader):
|
||||
if count >= max_count and max_count > 0:
|
||||
break
|
||||
|
||||
last_visit, url, title, visit_count, typed_count, hidden = row
|
||||
last_visit, url, title, visit_count, typed_count, _hidden = row
|
||||
|
||||
# Create document content with metadata embedded in text
|
||||
doc_content = f"""
|
||||
@@ -97,6 +97,11 @@ class ChromeHistoryReader(BaseReader):
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error reading Chrome history: {e}")
|
||||
# add you may need to close your browser to make the database file available
|
||||
# also highlight in red
|
||||
print(
|
||||
"\033[91mYou may need to close your browser to make the database file available\033[0m"
|
||||
)
|
||||
return docs
|
||||
|
||||
return docs
|
||||
@@ -411,8 +411,8 @@ Messages ({len(messages)} messages, {message_group["total_length"]} chars):
|
||||
wechat_export_dir = load_kwargs.get("wechat_export_dir", None)
|
||||
include_non_text = load_kwargs.get("include_non_text", False)
|
||||
concatenate_messages = load_kwargs.get("concatenate_messages", False)
|
||||
load_kwargs.get("max_length", 1000)
|
||||
load_kwargs.get("time_window_minutes", 30)
|
||||
max_length = load_kwargs.get("max_length", 1000)
|
||||
time_window_minutes = load_kwargs.get("time_window_minutes", 30)
|
||||
|
||||
# Default WeChat export path
|
||||
if wechat_export_dir is None:
|
||||
@@ -460,9 +460,9 @@ Messages ({len(messages)} messages, {message_group["total_length"]} chars):
|
||||
# Concatenate messages based on rules
|
||||
message_groups = self._concatenate_messages(
|
||||
readable_messages,
|
||||
max_length=-1,
|
||||
time_window_minutes=-1,
|
||||
overlap_messages=0, # Keep 2 messages overlap between groups
|
||||
max_length=max_length,
|
||||
time_window_minutes=time_window_minutes,
|
||||
overlap_messages=0, # No overlap between groups
|
||||
)
|
||||
|
||||
# Create documents from concatenated groups
|
||||
@@ -532,7 +532,9 @@ Message: {readable_text if readable_text else message_text}
|
||||
"""
|
||||
|
||||
# Create document with embedded metadata
|
||||
doc = Document(text=doc_content, metadata={})
|
||||
doc = Document(
|
||||
text=doc_content, metadata={"contact_name": contact_name}
|
||||
)
|
||||
docs.append(doc)
|
||||
count += 1
|
||||
|
||||
@@ -560,8 +562,8 @@ Message: {readable_text if readable_text else message_text}
|
||||
|
||||
# Look for common export directory names
|
||||
possible_dirs = [
|
||||
Path("./wechat_export_test"),
|
||||
Path("./wechat_export"),
|
||||
Path("./wechat_export_direct"),
|
||||
Path("./wechat_chat_history"),
|
||||
Path("./chat_export"),
|
||||
]
|
||||
189
apps/wechat_rag.py
Normal file
189
apps/wechat_rag.py
Normal file
@@ -0,0 +1,189 @@
|
||||
"""
|
||||
WeChat History RAG example using the unified interface.
|
||||
Supports WeChat chat history export and search.
|
||||
"""
|
||||
|
||||
import subprocess
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
# Add parent directory to path for imports
|
||||
sys.path.insert(0, str(Path(__file__).parent))
|
||||
|
||||
from base_rag_example import BaseRAGExample
|
||||
|
||||
from .history_data.wechat_history import WeChatHistoryReader
|
||||
|
||||
|
||||
class WeChatRAG(BaseRAGExample):
|
||||
"""RAG example for WeChat chat history."""
|
||||
|
||||
def __init__(self):
|
||||
# Set default values BEFORE calling super().__init__
|
||||
self.max_items_default = -1 # Match original default
|
||||
self.embedding_model_default = (
|
||||
"sentence-transformers/all-MiniLM-L6-v2" # Fast 384-dim model
|
||||
)
|
||||
|
||||
super().__init__(
|
||||
name="WeChat History",
|
||||
description="Process and query WeChat chat history with LEANN",
|
||||
default_index_name="wechat_history_magic_test_11Debug_new",
|
||||
)
|
||||
|
||||
def _add_specific_arguments(self, parser):
|
||||
"""Add WeChat-specific arguments."""
|
||||
wechat_group = parser.add_argument_group("WeChat Parameters")
|
||||
wechat_group.add_argument(
|
||||
"--export-dir",
|
||||
type=str,
|
||||
default="./wechat_export",
|
||||
help="Directory to store WeChat exports (default: ./wechat_export)",
|
||||
)
|
||||
wechat_group.add_argument(
|
||||
"--force-export",
|
||||
action="store_true",
|
||||
help="Force re-export of WeChat data even if exports exist",
|
||||
)
|
||||
wechat_group.add_argument(
|
||||
"--chunk-size", type=int, default=192, help="Text chunk size (default: 192)"
|
||||
)
|
||||
wechat_group.add_argument(
|
||||
"--chunk-overlap", type=int, default=64, help="Text chunk overlap (default: 64)"
|
||||
)
|
||||
|
||||
def _export_wechat_data(self, export_dir: Path) -> bool:
|
||||
"""Export WeChat data using wechattweak-cli."""
|
||||
print("Exporting WeChat data...")
|
||||
|
||||
# Check if WeChat is running
|
||||
try:
|
||||
result = subprocess.run(["pgrep", "WeChat"], capture_output=True, text=True)
|
||||
if result.returncode != 0:
|
||||
print("WeChat is not running. Please start WeChat first.")
|
||||
return False
|
||||
except Exception:
|
||||
pass # pgrep might not be available on all systems
|
||||
|
||||
# Create export directory
|
||||
export_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Run export command
|
||||
cmd = ["packages/wechat-exporter/wechattweak-cli", "export", str(export_dir)]
|
||||
|
||||
try:
|
||||
print(f"Running: {' '.join(cmd)}")
|
||||
result = subprocess.run(cmd, capture_output=True, text=True)
|
||||
|
||||
if result.returncode == 0:
|
||||
print("WeChat data exported successfully!")
|
||||
return True
|
||||
else:
|
||||
print(f"Export failed: {result.stderr}")
|
||||
return False
|
||||
|
||||
except FileNotFoundError:
|
||||
print("\nError: wechattweak-cli not found!")
|
||||
print("Please install it first:")
|
||||
print(" sudo packages/wechat-exporter/wechattweak-cli install")
|
||||
return False
|
||||
except Exception as e:
|
||||
print(f"Export error: {e}")
|
||||
return False
|
||||
|
||||
async def load_data(self, args) -> list[str]:
|
||||
"""Load WeChat history and convert to text chunks."""
|
||||
# Initialize WeChat reader with export capabilities
|
||||
reader = WeChatHistoryReader()
|
||||
|
||||
# Find existing exports or create new ones using the centralized method
|
||||
export_dirs = reader.find_or_export_wechat_data(args.export_dir)
|
||||
if not export_dirs:
|
||||
print("Failed to find or export WeChat data. Trying to find any existing exports...")
|
||||
# Try to find any existing exports in common locations
|
||||
export_dirs = reader.find_wechat_export_dirs()
|
||||
if not export_dirs:
|
||||
print("No WeChat data found. Please ensure WeChat exports exist.")
|
||||
return []
|
||||
|
||||
# Load documents from all found export directories
|
||||
all_documents = []
|
||||
total_processed = 0
|
||||
|
||||
for i, export_dir in enumerate(export_dirs):
|
||||
print(f"\nProcessing WeChat export {i + 1}/{len(export_dirs)}: {export_dir}")
|
||||
|
||||
try:
|
||||
# Apply max_items limit per export
|
||||
max_per_export = -1
|
||||
if args.max_items > 0:
|
||||
remaining = args.max_items - total_processed
|
||||
if remaining <= 0:
|
||||
break
|
||||
max_per_export = remaining
|
||||
|
||||
documents = reader.load_data(
|
||||
wechat_export_dir=str(export_dir),
|
||||
max_count=max_per_export,
|
||||
concatenate_messages=True, # Enable message concatenation for better context
|
||||
)
|
||||
|
||||
if documents:
|
||||
print(f"Loaded {len(documents)} chat documents from {export_dir}")
|
||||
all_documents.extend(documents)
|
||||
total_processed += len(documents)
|
||||
else:
|
||||
print(f"No documents loaded from {export_dir}")
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error processing {export_dir}: {e}")
|
||||
continue
|
||||
|
||||
if not all_documents:
|
||||
print("No documents loaded from any source. Exiting.")
|
||||
return []
|
||||
|
||||
print(f"\nTotal loaded {len(all_documents)} chat documents from {len(export_dirs)} exports")
|
||||
print("now starting to split into text chunks ... take some time")
|
||||
|
||||
# Convert to text chunks with contact information
|
||||
all_texts = []
|
||||
for doc in all_documents:
|
||||
# Split the document into chunks
|
||||
from llama_index.core.node_parser import SentenceSplitter
|
||||
|
||||
text_splitter = SentenceSplitter(
|
||||
chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
|
||||
)
|
||||
nodes = text_splitter.get_nodes_from_documents([doc])
|
||||
|
||||
for node in nodes:
|
||||
# Add contact information to each chunk
|
||||
contact_name = doc.metadata.get("contact_name", "Unknown")
|
||||
text = f"[Contact] means the message is from: {contact_name}\n" + node.get_content()
|
||||
all_texts.append(text)
|
||||
|
||||
print(f"Created {len(all_texts)} text chunks from {len(all_documents)} documents")
|
||||
return all_texts
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import asyncio
|
||||
|
||||
# Check platform
|
||||
if sys.platform != "darwin":
|
||||
print("\n⚠️ Warning: WeChat export is only supported on macOS")
|
||||
print(" You can still query existing exports on other platforms\n")
|
||||
|
||||
# Example queries for WeChat RAG
|
||||
print("\n💬 WeChat History RAG Example")
|
||||
print("=" * 50)
|
||||
print("\nExample queries you can try:")
|
||||
print("- 'Show me conversations about travel plans'")
|
||||
print("- 'Find group chats about weekend activities'")
|
||||
print("- '我想买魔术师约翰逊的球衣,给我一些对应聊天记录?'")
|
||||
print("- 'What did we discuss about the project last month?'")
|
||||
print("\nNote: WeChat must be running for export to work\n")
|
||||
|
||||
rag = WeChatRAG()
|
||||
asyncio.run(rag.run())
|
||||
BIN
assets/claude_code_leann.png
Normal file
BIN
assets/claude_code_leann.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 73 KiB |
BIN
assets/mcp_leann.png
Normal file
BIN
assets/mcp_leann.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 224 KiB |
BIN
assets/wechat_user_group.JPG
Normal file
BIN
assets/wechat_user_group.JPG
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 152 KiB |
@@ -1,9 +1,24 @@
|
||||
# 🧪 Leann Sanity Checks
|
||||
# 🧪 LEANN Benchmarks & Testing
|
||||
|
||||
This directory contains comprehensive sanity checks for the Leann system, ensuring all components work correctly across different configurations.
|
||||
This directory contains performance benchmarks and comprehensive tests for the LEANN system, including backend comparisons and sanity checks across different configurations.
|
||||
|
||||
## 📁 Test Files
|
||||
|
||||
### `diskann_vs_hnsw_speed_comparison.py`
|
||||
Performance comparison between DiskANN and HNSW backends:
|
||||
- ✅ **Search latency** comparison with both backends using recompute
|
||||
- ✅ **Index size** and **build time** measurements
|
||||
- ✅ **Score validity** testing (ensures no -inf scores)
|
||||
- ✅ **Configurable dataset sizes** for different scales
|
||||
|
||||
```bash
|
||||
# Quick comparison with 500 docs, 10 queries
|
||||
python benchmarks/diskann_vs_hnsw_speed_comparison.py
|
||||
|
||||
# Large-scale comparison with 2000 docs, 20 queries
|
||||
python benchmarks/diskann_vs_hnsw_speed_comparison.py 2000 20
|
||||
```
|
||||
|
||||
### `test_distance_functions.py`
|
||||
Tests all supported distance functions across DiskANN backend:
|
||||
- ✅ **MIPS** (Maximum Inner Product Search)
|
||||
148
benchmarks/benchmark_no_recompute.py
Normal file
148
benchmarks/benchmark_no_recompute.py
Normal file
@@ -0,0 +1,148 @@
|
||||
import argparse
|
||||
import os
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
from leann import LeannBuilder, LeannSearcher
|
||||
|
||||
|
||||
def _meta_exists(index_path: str) -> bool:
|
||||
p = Path(index_path)
|
||||
return (p.parent / f"{p.stem}.meta.json").exists()
|
||||
|
||||
|
||||
def ensure_index(index_path: str, backend_name: str, num_docs: int, is_recompute: bool) -> None:
|
||||
# if _meta_exists(index_path):
|
||||
# return
|
||||
kwargs = {}
|
||||
if backend_name == "hnsw":
|
||||
kwargs["is_compact"] = is_recompute
|
||||
builder = LeannBuilder(
|
||||
backend_name=backend_name,
|
||||
embedding_model=os.getenv("LEANN_EMBED_MODEL", "facebook/contriever"),
|
||||
embedding_mode=os.getenv("LEANN_EMBED_MODE", "sentence-transformers"),
|
||||
graph_degree=32,
|
||||
complexity=64,
|
||||
is_recompute=is_recompute,
|
||||
num_threads=4,
|
||||
**kwargs,
|
||||
)
|
||||
for i in range(num_docs):
|
||||
builder.add_text(
|
||||
f"This is a test document number {i}. It contains some repeated text for benchmarking."
|
||||
)
|
||||
builder.build_index(index_path)
|
||||
|
||||
|
||||
def _bench_group(
|
||||
index_path: str,
|
||||
recompute: bool,
|
||||
query: str,
|
||||
repeats: int,
|
||||
complexity: int = 32,
|
||||
top_k: int = 10,
|
||||
) -> float:
|
||||
# Independent searcher per group; fixed port when recompute
|
||||
searcher = LeannSearcher(index_path=index_path)
|
||||
|
||||
# Warm-up once
|
||||
_ = searcher.search(
|
||||
query,
|
||||
top_k=top_k,
|
||||
complexity=complexity,
|
||||
recompute_embeddings=recompute,
|
||||
)
|
||||
|
||||
def _once() -> float:
|
||||
t0 = time.time()
|
||||
_ = searcher.search(
|
||||
query,
|
||||
top_k=top_k,
|
||||
complexity=complexity,
|
||||
recompute_embeddings=recompute,
|
||||
)
|
||||
return time.time() - t0
|
||||
|
||||
if repeats <= 1:
|
||||
t = _once()
|
||||
else:
|
||||
vals = [_once() for _ in range(repeats)]
|
||||
vals.sort()
|
||||
t = vals[len(vals) // 2]
|
||||
|
||||
searcher.cleanup()
|
||||
return t
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--num-docs", type=int, default=5000)
|
||||
parser.add_argument("--repeats", type=int, default=3)
|
||||
parser.add_argument("--complexity", type=int, default=32)
|
||||
args = parser.parse_args()
|
||||
|
||||
base = Path.cwd() / ".leann" / "indexes" / f"bench_n{args.num_docs}"
|
||||
base.parent.mkdir(parents=True, exist_ok=True)
|
||||
# ---------- Build HNSW variants ----------
|
||||
hnsw_r = str(base / f"hnsw_recompute_n{args.num_docs}.leann")
|
||||
hnsw_nr = str(base / f"hnsw_norecompute_n{args.num_docs}.leann")
|
||||
ensure_index(hnsw_r, "hnsw", args.num_docs, True)
|
||||
ensure_index(hnsw_nr, "hnsw", args.num_docs, False)
|
||||
|
||||
# ---------- Build DiskANN variants ----------
|
||||
diskann_r = str(base / "diskann_r.leann")
|
||||
diskann_nr = str(base / "diskann_nr.leann")
|
||||
ensure_index(diskann_r, "diskann", args.num_docs, True)
|
||||
ensure_index(diskann_nr, "diskann", args.num_docs, False)
|
||||
|
||||
# ---------- Helpers ----------
|
||||
def _size_for(prefix: str) -> int:
|
||||
p = Path(prefix)
|
||||
base_dir = p.parent
|
||||
stem = p.stem
|
||||
total = 0
|
||||
for f in base_dir.iterdir():
|
||||
if f.is_file() and f.name.startswith(stem):
|
||||
total += f.stat().st_size
|
||||
return total
|
||||
|
||||
# ---------- HNSW benchmark ----------
|
||||
t_hnsw_r = _bench_group(
|
||||
hnsw_r, True, "test document number 42", repeats=args.repeats, complexity=args.complexity
|
||||
)
|
||||
t_hnsw_nr = _bench_group(
|
||||
hnsw_nr, False, "test document number 42", repeats=args.repeats, complexity=args.complexity
|
||||
)
|
||||
size_hnsw_r = _size_for(hnsw_r)
|
||||
size_hnsw_nr = _size_for(hnsw_nr)
|
||||
|
||||
print("Benchmark results (HNSW):")
|
||||
print(f" recompute=True: search_time={t_hnsw_r:.3f}s, size={size_hnsw_r / 1024 / 1024:.1f}MB")
|
||||
print(
|
||||
f" recompute=False: search_time={t_hnsw_nr:.3f}s, size={size_hnsw_nr / 1024 / 1024:.1f}MB"
|
||||
)
|
||||
print(" Expectation: no-recompute should be faster but larger on disk.")
|
||||
|
||||
# ---------- DiskANN benchmark ----------
|
||||
t_diskann_r = _bench_group(
|
||||
diskann_r, True, "DiskANN R test doc 123", repeats=args.repeats, complexity=args.complexity
|
||||
)
|
||||
t_diskann_nr = _bench_group(
|
||||
diskann_nr,
|
||||
False,
|
||||
"DiskANN NR test doc 123",
|
||||
repeats=args.repeats,
|
||||
complexity=args.complexity,
|
||||
)
|
||||
size_diskann_r = _size_for(diskann_r)
|
||||
size_diskann_nr = _size_for(diskann_nr)
|
||||
|
||||
print("\nBenchmark results (DiskANN):")
|
||||
print(f" build(recompute=True, partition): size={size_diskann_r / 1024 / 1024:.1f}MB")
|
||||
print(f" build(recompute=False): size={size_diskann_nr / 1024 / 1024:.1f}MB")
|
||||
print(f" search recompute=True (final rerank): {t_diskann_r:.3f}s")
|
||||
print(f" search recompute=False (PQ only): {t_diskann_nr:.3f}s")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -62,7 +62,7 @@ def test_faiss_hnsw():
|
||||
|
||||
try:
|
||||
result = subprocess.run(
|
||||
[sys.executable, "examples/faiss_only.py"],
|
||||
[sys.executable, "benchmarks/faiss_only.py"],
|
||||
capture_output=True,
|
||||
text=True,
|
||||
timeout=300,
|
||||
@@ -115,7 +115,7 @@ def test_leann_hnsw():
|
||||
|
||||
# Load and parse documents
|
||||
documents = SimpleDirectoryReader(
|
||||
"examples/data",
|
||||
"data",
|
||||
recursive=True,
|
||||
encoding="utf-8",
|
||||
required_exts=[".pdf", ".txt", ".md"],
|
||||
0
data/README.md → benchmarks/data/README.md
Normal file → Executable file
0
data/README.md → benchmarks/data/README.md
Normal file → Executable file
286
benchmarks/diskann_vs_hnsw_speed_comparison.py
Normal file
286
benchmarks/diskann_vs_hnsw_speed_comparison.py
Normal file
@@ -0,0 +1,286 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
DiskANN vs HNSW Search Performance Comparison
|
||||
|
||||
This benchmark compares search performance between DiskANN and HNSW backends:
|
||||
- DiskANN: With graph partitioning enabled (is_recompute=True)
|
||||
- HNSW: With recompute enabled (is_recompute=True)
|
||||
- Tests performance across different dataset sizes
|
||||
- Measures search latency, recall, and index size
|
||||
"""
|
||||
|
||||
import gc
|
||||
import multiprocessing as mp
|
||||
import tempfile
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
|
||||
# Prefer 'fork' start method to avoid POSIX semaphore leaks on macOS
|
||||
try:
|
||||
mp.set_start_method("fork", force=True)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
|
||||
def create_test_texts(n_docs: int) -> list[str]:
|
||||
"""Create synthetic test documents for benchmarking."""
|
||||
np.random.seed(42)
|
||||
topics = [
|
||||
"machine learning and artificial intelligence",
|
||||
"natural language processing and text analysis",
|
||||
"computer vision and image recognition",
|
||||
"data science and statistical analysis",
|
||||
"deep learning and neural networks",
|
||||
"information retrieval and search engines",
|
||||
"database systems and data management",
|
||||
"software engineering and programming",
|
||||
"cybersecurity and network protection",
|
||||
"cloud computing and distributed systems",
|
||||
]
|
||||
|
||||
texts = []
|
||||
for i in range(n_docs):
|
||||
topic = topics[i % len(topics)]
|
||||
variation = np.random.randint(1, 100)
|
||||
text = (
|
||||
f"This is document {i} about {topic}. Content variation {variation}. "
|
||||
f"Additional information about {topic} with details and examples. "
|
||||
f"Technical discussion of {topic} including implementation aspects."
|
||||
)
|
||||
texts.append(text)
|
||||
|
||||
return texts
|
||||
|
||||
|
||||
def benchmark_backend(
|
||||
backend_name: str, texts: list[str], test_queries: list[str], backend_kwargs: dict[str, Any]
|
||||
) -> dict[str, float]:
|
||||
"""Benchmark a specific backend with the given configuration."""
|
||||
from leann.api import LeannBuilder, LeannSearcher
|
||||
|
||||
print(f"\n🔧 Testing {backend_name.upper()} backend...")
|
||||
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
index_path = str(Path(temp_dir) / f"benchmark_{backend_name}.leann")
|
||||
|
||||
# Build index
|
||||
print(f"📦 Building {backend_name} index with {len(texts)} documents...")
|
||||
start_time = time.time()
|
||||
|
||||
builder = LeannBuilder(
|
||||
backend_name=backend_name,
|
||||
embedding_model="facebook/contriever",
|
||||
embedding_mode="sentence-transformers",
|
||||
**backend_kwargs,
|
||||
)
|
||||
|
||||
for text in texts:
|
||||
builder.add_text(text)
|
||||
|
||||
builder.build_index(index_path)
|
||||
build_time = time.time() - start_time
|
||||
|
||||
# Measure index size
|
||||
index_dir = Path(index_path).parent
|
||||
index_files = list(index_dir.glob(f"{Path(index_path).stem}.*"))
|
||||
total_size = sum(f.stat().st_size for f in index_files if f.is_file())
|
||||
size_mb = total_size / (1024 * 1024)
|
||||
|
||||
print(f" ✅ Build completed in {build_time:.2f}s, index size: {size_mb:.1f}MB")
|
||||
|
||||
# Search benchmark
|
||||
print("🔍 Running search benchmark...")
|
||||
searcher = LeannSearcher(index_path)
|
||||
|
||||
search_times = []
|
||||
all_results = []
|
||||
|
||||
for query in test_queries:
|
||||
start_time = time.time()
|
||||
results = searcher.search(query, top_k=5)
|
||||
search_time = time.time() - start_time
|
||||
search_times.append(search_time)
|
||||
all_results.append(results)
|
||||
|
||||
avg_search_time = np.mean(search_times) * 1000 # Convert to ms
|
||||
print(f" ✅ Average search time: {avg_search_time:.1f}ms")
|
||||
|
||||
# Check for valid scores (detect -inf issues)
|
||||
all_scores = [
|
||||
result.score
|
||||
for results in all_results
|
||||
for result in results
|
||||
if result.score is not None
|
||||
]
|
||||
valid_scores = [
|
||||
score for score in all_scores if score != float("-inf") and score != float("inf")
|
||||
]
|
||||
score_validity_rate = len(valid_scores) / len(all_scores) if all_scores else 0
|
||||
|
||||
# Clean up (ensure embedding server shutdown and object GC)
|
||||
try:
|
||||
if hasattr(searcher, "cleanup"):
|
||||
searcher.cleanup()
|
||||
del searcher
|
||||
del builder
|
||||
gc.collect()
|
||||
except Exception as e:
|
||||
print(f"⚠️ Warning: Resource cleanup error: {e}")
|
||||
|
||||
return {
|
||||
"build_time": build_time,
|
||||
"avg_search_time_ms": avg_search_time,
|
||||
"index_size_mb": size_mb,
|
||||
"score_validity_rate": score_validity_rate,
|
||||
}
|
||||
|
||||
|
||||
def run_comparison(n_docs: int = 500, n_queries: int = 10):
|
||||
"""Run performance comparison between DiskANN and HNSW."""
|
||||
print("🚀 Starting DiskANN vs HNSW Performance Comparison")
|
||||
print(f"📊 Dataset: {n_docs} documents, {n_queries} test queries")
|
||||
|
||||
# Create test data
|
||||
texts = create_test_texts(n_docs)
|
||||
test_queries = [
|
||||
"machine learning algorithms",
|
||||
"natural language processing",
|
||||
"computer vision techniques",
|
||||
"data analysis methods",
|
||||
"neural network architectures",
|
||||
"database query optimization",
|
||||
"software development practices",
|
||||
"security vulnerabilities",
|
||||
"cloud infrastructure",
|
||||
"distributed computing",
|
||||
][:n_queries]
|
||||
|
||||
# HNSW benchmark
|
||||
hnsw_results = benchmark_backend(
|
||||
backend_name="hnsw",
|
||||
texts=texts,
|
||||
test_queries=test_queries,
|
||||
backend_kwargs={
|
||||
"is_recompute": True, # Enable recompute for fair comparison
|
||||
"M": 16,
|
||||
"efConstruction": 200,
|
||||
},
|
||||
)
|
||||
|
||||
# DiskANN benchmark
|
||||
diskann_results = benchmark_backend(
|
||||
backend_name="diskann",
|
||||
texts=texts,
|
||||
test_queries=test_queries,
|
||||
backend_kwargs={
|
||||
"is_recompute": True, # Enable graph partitioning
|
||||
"num_neighbors": 32,
|
||||
"search_list_size": 50,
|
||||
},
|
||||
)
|
||||
|
||||
# Performance comparison
|
||||
print("\n📈 Performance Comparison Results")
|
||||
print(f"{'=' * 60}")
|
||||
print(f"{'Metric':<25} {'HNSW':<15} {'DiskANN':<15} {'Speedup':<10}")
|
||||
print(f"{'-' * 60}")
|
||||
|
||||
# Build time comparison
|
||||
build_speedup = hnsw_results["build_time"] / diskann_results["build_time"]
|
||||
print(
|
||||
f"{'Build Time (s)':<25} {hnsw_results['build_time']:<15.2f} {diskann_results['build_time']:<15.2f} {build_speedup:<10.2f}x"
|
||||
)
|
||||
|
||||
# Search time comparison
|
||||
search_speedup = hnsw_results["avg_search_time_ms"] / diskann_results["avg_search_time_ms"]
|
||||
print(
|
||||
f"{'Search Time (ms)':<25} {hnsw_results['avg_search_time_ms']:<15.1f} {diskann_results['avg_search_time_ms']:<15.1f} {search_speedup:<10.2f}x"
|
||||
)
|
||||
|
||||
# Index size comparison
|
||||
size_ratio = diskann_results["index_size_mb"] / hnsw_results["index_size_mb"]
|
||||
print(
|
||||
f"{'Index Size (MB)':<25} {hnsw_results['index_size_mb']:<15.1f} {diskann_results['index_size_mb']:<15.1f} {size_ratio:<10.2f}x"
|
||||
)
|
||||
|
||||
# Score validity
|
||||
print(
|
||||
f"{'Score Validity (%)':<25} {hnsw_results['score_validity_rate'] * 100:<15.1f} {diskann_results['score_validity_rate'] * 100:<15.1f}"
|
||||
)
|
||||
|
||||
print(f"{'=' * 60}")
|
||||
print("\n🎯 Summary:")
|
||||
if search_speedup > 1:
|
||||
print(f" DiskANN is {search_speedup:.2f}x faster than HNSW for search")
|
||||
else:
|
||||
print(f" HNSW is {1 / search_speedup:.2f}x faster than DiskANN for search")
|
||||
|
||||
if size_ratio > 1:
|
||||
print(f" DiskANN uses {size_ratio:.2f}x more storage than HNSW")
|
||||
else:
|
||||
print(f" DiskANN uses {1 / size_ratio:.2f}x less storage than HNSW")
|
||||
|
||||
print(
|
||||
f" Both backends achieved {min(hnsw_results['score_validity_rate'], diskann_results['score_validity_rate']) * 100:.1f}% score validity"
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import sys
|
||||
|
||||
try:
|
||||
# Handle help request
|
||||
if len(sys.argv) > 1 and sys.argv[1] in ["-h", "--help", "help"]:
|
||||
print("DiskANN vs HNSW Performance Comparison")
|
||||
print("=" * 50)
|
||||
print(f"Usage: python {sys.argv[0]} [n_docs] [n_queries]")
|
||||
print()
|
||||
print("Arguments:")
|
||||
print(" n_docs Number of documents to index (default: 500)")
|
||||
print(" n_queries Number of test queries to run (default: 10)")
|
||||
print()
|
||||
print("Examples:")
|
||||
print(" python benchmarks/diskann_vs_hnsw_speed_comparison.py")
|
||||
print(" python benchmarks/diskann_vs_hnsw_speed_comparison.py 1000")
|
||||
print(" python benchmarks/diskann_vs_hnsw_speed_comparison.py 2000 20")
|
||||
sys.exit(0)
|
||||
|
||||
# Parse command line arguments
|
||||
n_docs = int(sys.argv[1]) if len(sys.argv) > 1 else 500
|
||||
n_queries = int(sys.argv[2]) if len(sys.argv) > 2 else 10
|
||||
|
||||
print("DiskANN vs HNSW Performance Comparison")
|
||||
print("=" * 50)
|
||||
print(f"Dataset: {n_docs} documents, {n_queries} queries")
|
||||
print()
|
||||
|
||||
run_comparison(n_docs=n_docs, n_queries=n_queries)
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print("\n⚠️ Benchmark interrupted by user")
|
||||
sys.exit(130)
|
||||
except Exception as e:
|
||||
print(f"\n❌ Benchmark failed: {e}")
|
||||
sys.exit(1)
|
||||
finally:
|
||||
# Ensure clean exit (forceful to prevent rare hangs from atexit/threads)
|
||||
try:
|
||||
gc.collect()
|
||||
print("\n🧹 Cleanup completed")
|
||||
# Flush stdio to ensure message is visible before hard-exit
|
||||
try:
|
||||
import sys as _sys
|
||||
|
||||
_sys.stdout.flush()
|
||||
_sys.stderr.flush()
|
||||
except Exception:
|
||||
pass
|
||||
except Exception:
|
||||
pass
|
||||
# Use os._exit to bypass atexit handlers that may hang in rare cases
|
||||
import os as _os
|
||||
|
||||
_os._exit(0)
|
||||
@@ -65,7 +65,7 @@ def main():
|
||||
tracker.checkpoint("After Faiss index creation")
|
||||
|
||||
documents = SimpleDirectoryReader(
|
||||
"examples/data",
|
||||
"data",
|
||||
recursive=True,
|
||||
encoding="utf-8",
|
||||
required_exts=[".pdf", ".txt", ".md"],
|
||||
@@ -12,7 +12,7 @@ import time
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
from leann.api import LeannBuilder, LeannSearcher
|
||||
from leann.api import LeannBuilder, LeannChat, LeannSearcher
|
||||
|
||||
|
||||
def download_data_if_needed(data_root: Path, download_embeddings: bool = False):
|
||||
@@ -197,13 +197,32 @@ def main():
|
||||
parser.add_argument(
|
||||
"--ef-search", type=int, default=120, help="The 'efSearch' parameter for HNSW."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch-size",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Batch size for HNSW batched search (0 disables batching)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--llm-type",
|
||||
type=str,
|
||||
choices=["ollama", "hf", "openai", "gemini", "simulated"],
|
||||
default="ollama",
|
||||
help="LLM backend type to optionally query during evaluation (default: ollama)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--llm-model",
|
||||
type=str,
|
||||
default="qwen3:1.7b",
|
||||
help="LLM model identifier for the chosen backend (default: qwen3:1.7b)",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
# --- Path Configuration ---
|
||||
# Assumes a project structure where the script is in 'examples/'
|
||||
# and data is in 'data/' at the project root.
|
||||
project_root = Path(__file__).resolve().parent.parent
|
||||
data_root = project_root / "data"
|
||||
# Assumes a project structure where the script is in 'benchmarks/'
|
||||
# and evaluation data is in 'benchmarks/data/'.
|
||||
script_dir = Path(__file__).resolve().parent
|
||||
data_root = script_dir / "data"
|
||||
|
||||
# Download data based on mode
|
||||
if args.mode == "build":
|
||||
@@ -279,7 +298,9 @@ def main():
|
||||
|
||||
if not args.index_path:
|
||||
print("No indices found. The data download should have included pre-built indices.")
|
||||
print("Please check the data/indices/ directory or provide --index-path manually.")
|
||||
print(
|
||||
"Please check the benchmarks/data/indices/ directory or provide --index-path manually."
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
# Detect dataset type from index path to select the correct ground truth
|
||||
@@ -316,9 +337,24 @@ def main():
|
||||
|
||||
for i in range(num_eval_queries):
|
||||
start_time = time.time()
|
||||
new_results = searcher.search(queries[i], top_k=args.top_k, ef=args.ef_search)
|
||||
new_results = searcher.search(
|
||||
queries[i],
|
||||
top_k=args.top_k,
|
||||
complexity=args.ef_search,
|
||||
batch_size=args.batch_size,
|
||||
)
|
||||
search_times.append(time.time() - start_time)
|
||||
|
||||
# Optional: also call the LLM with configurable backend/model (does not affect recall)
|
||||
llm_config = {"type": args.llm_type, "model": args.llm_model}
|
||||
chat = LeannChat(args.index_path, llm_config=llm_config, searcher=searcher)
|
||||
answer = chat.ask(
|
||||
queries[i],
|
||||
top_k=args.top_k,
|
||||
complexity=args.ef_search,
|
||||
batch_size=args.batch_size,
|
||||
)
|
||||
print(f"Answer: {answer}")
|
||||
# Correct Recall Calculation: Based on TEXT content
|
||||
new_texts = {result.text for result in new_results}
|
||||
|
||||
@@ -20,7 +20,7 @@ except ImportError:
|
||||
|
||||
@dataclass
|
||||
class BenchmarkConfig:
|
||||
model_path: str = "facebook/contriever"
|
||||
model_path: str = "facebook/contriever-msmarco"
|
||||
batch_sizes: list[int] = None
|
||||
seq_length: int = 256
|
||||
num_runs: int = 5
|
||||
@@ -34,7 +34,7 @@ class BenchmarkConfig:
|
||||
|
||||
def __post_init__(self):
|
||||
if self.batch_sizes is None:
|
||||
self.batch_sizes = [1, 2, 4, 8, 16, 32, 64]
|
||||
self.batch_sizes = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
|
||||
|
||||
|
||||
class MLXBenchmark:
|
||||
@@ -179,10 +179,16 @@ class Benchmark:
|
||||
|
||||
def _run_inference(self, input_ids: torch.Tensor) -> float:
|
||||
attention_mask = torch.ones_like(input_ids)
|
||||
|
||||
# print shape of input_ids and attention_mask
|
||||
print(f"input_ids shape: {input_ids.shape}")
|
||||
print(f"attention_mask shape: {attention_mask.shape}")
|
||||
start_time = time.time()
|
||||
with torch.no_grad():
|
||||
self.model(input_ids=input_ids, attention_mask=attention_mask)
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.synchronize()
|
||||
if torch.backends.mps.is_available():
|
||||
torch.mps.synchronize()
|
||||
end_time = time.time()
|
||||
|
||||
return end_time - start_time
|
||||
82
data/.gitattributes
vendored
82
data/.gitattributes
vendored
@@ -1,82 +0,0 @@
|
||||
*.7z filter=lfs diff=lfs merge=lfs -text
|
||||
*.arrow filter=lfs diff=lfs merge=lfs -text
|
||||
*.bin filter=lfs diff=lfs merge=lfs -text
|
||||
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
||||
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
||||
*.ftz filter=lfs diff=lfs merge=lfs -text
|
||||
*.gz filter=lfs diff=lfs merge=lfs -text
|
||||
*.h5 filter=lfs diff=lfs merge=lfs -text
|
||||
*.joblib filter=lfs diff=lfs merge=lfs -text
|
||||
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
||||
*.lz4 filter=lfs diff=lfs merge=lfs -text
|
||||
*.mds filter=lfs diff=lfs merge=lfs -text
|
||||
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
||||
*.model filter=lfs diff=lfs merge=lfs -text
|
||||
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
||||
*.npy filter=lfs diff=lfs merge=lfs -text
|
||||
*.npz filter=lfs diff=lfs merge=lfs -text
|
||||
*.onnx filter=lfs diff=lfs merge=lfs -text
|
||||
*.ot filter=lfs diff=lfs merge=lfs -text
|
||||
*.parquet filter=lfs diff=lfs merge=lfs -text
|
||||
*.pb filter=lfs diff=lfs merge=lfs -text
|
||||
*.pickle filter=lfs diff=lfs merge=lfs -text
|
||||
*.pkl filter=lfs diff=lfs merge=lfs -text
|
||||
*.pt filter=lfs diff=lfs merge=lfs -text
|
||||
*.pth filter=lfs diff=lfs merge=lfs -text
|
||||
*.rar filter=lfs diff=lfs merge=lfs -text
|
||||
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
||||
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
||||
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
||||
*.tar filter=lfs diff=lfs merge=lfs -text
|
||||
*.tflite filter=lfs diff=lfs merge=lfs -text
|
||||
*.tgz filter=lfs diff=lfs merge=lfs -text
|
||||
*.wasm filter=lfs diff=lfs merge=lfs -text
|
||||
*.xz filter=lfs diff=lfs merge=lfs -text
|
||||
*.zip filter=lfs diff=lfs merge=lfs -text
|
||||
*.zst filter=lfs diff=lfs merge=lfs -text
|
||||
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
||||
# Audio files - uncompressed
|
||||
*.pcm filter=lfs diff=lfs merge=lfs -text
|
||||
*.sam filter=lfs diff=lfs merge=lfs -text
|
||||
*.raw filter=lfs diff=lfs merge=lfs -text
|
||||
# Audio files - compressed
|
||||
*.aac filter=lfs diff=lfs merge=lfs -text
|
||||
*.flac filter=lfs diff=lfs merge=lfs -text
|
||||
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
||||
*.ogg filter=lfs diff=lfs merge=lfs -text
|
||||
*.wav filter=lfs diff=lfs merge=lfs -text
|
||||
# Image files - uncompressed
|
||||
*.bmp filter=lfs diff=lfs merge=lfs -text
|
||||
*.gif filter=lfs diff=lfs merge=lfs -text
|
||||
*.png filter=lfs diff=lfs merge=lfs -text
|
||||
*.tiff filter=lfs diff=lfs merge=lfs -text
|
||||
# Image files - compressed
|
||||
*.jpg filter=lfs diff=lfs merge=lfs -text
|
||||
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
||||
*.webp filter=lfs diff=lfs merge=lfs -text
|
||||
# Video files - compressed
|
||||
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
||||
*.webm filter=lfs diff=lfs merge=lfs -text
|
||||
ground_truth/dpr/id_map.json filter=lfs diff=lfs merge=lfs -text
|
||||
indices/dpr/dpr_diskann.passages.idx filter=lfs diff=lfs merge=lfs -text
|
||||
indices/dpr/dpr_diskann.passages.jsonl filter=lfs diff=lfs merge=lfs -text
|
||||
indices/dpr/dpr_diskann_disk.index filter=lfs diff=lfs merge=lfs -text
|
||||
indices/dpr/leann.labels.map filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/leann.labels.map filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/rpj_wiki.index filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/rpj_wiki.passages.0.idx filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/rpj_wiki.passages.0.jsonl filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/rpj_wiki.passages.1.idx filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/rpj_wiki.passages.1.jsonl filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/rpj_wiki.passages.2.idx filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/rpj_wiki.passages.2.jsonl filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/rpj_wiki.passages.3.idx filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/rpj_wiki.passages.3.jsonl filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/rpj_wiki.passages.4.idx filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/rpj_wiki.passages.4.jsonl filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/rpj_wiki.passages.5.idx filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/rpj_wiki.passages.5.jsonl filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/rpj_wiki.passages.6.idx filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/rpj_wiki.passages.6.jsonl filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/rpj_wiki.passages.7.idx filter=lfs diff=lfs merge=lfs -text
|
||||
indices/rpj_wiki/rpj_wiki.passages.7.jsonl filter=lfs diff=lfs merge=lfs -text
|
||||
123
docs/THINKING_BUDGET_FEATURE.md
Normal file
123
docs/THINKING_BUDGET_FEATURE.md
Normal file
@@ -0,0 +1,123 @@
|
||||
# Thinking Budget Feature Implementation
|
||||
|
||||
## Overview
|
||||
|
||||
This document describes the implementation of the **thinking budget** feature for LEANN, which allows users to control the computational effort for reasoning models like GPT-Oss:20b.
|
||||
|
||||
## Feature Description
|
||||
|
||||
The thinking budget feature provides three levels of computational effort for reasoning models:
|
||||
- **`low`**: Fast responses, basic reasoning (default for simple queries)
|
||||
- **`medium`**: Balanced speed and reasoning depth
|
||||
- **`high`**: Maximum reasoning effort, best for complex analytical questions
|
||||
|
||||
## Implementation Details
|
||||
|
||||
### 1. Command Line Interface
|
||||
|
||||
Added `--thinking-budget` parameter to both CLI and RAG examples:
|
||||
|
||||
```bash
|
||||
# LEANN CLI
|
||||
leann ask my-index --llm ollama --model gpt-oss:20b --thinking-budget high
|
||||
|
||||
# RAG Examples
|
||||
python apps/email_rag.py --llm ollama --llm-model gpt-oss:20b --thinking-budget high
|
||||
python apps/document_rag.py --llm openai --llm-model o3 --thinking-budget medium
|
||||
```
|
||||
|
||||
### 2. LLM Backend Support
|
||||
|
||||
#### Ollama Backend (`packages/leann-core/src/leann/chat.py`)
|
||||
|
||||
```python
|
||||
def ask(self, prompt: str, **kwargs) -> str:
|
||||
# Handle thinking budget for reasoning models
|
||||
options = kwargs.copy()
|
||||
thinking_budget = kwargs.get("thinking_budget")
|
||||
if thinking_budget:
|
||||
options.pop("thinking_budget", None)
|
||||
if thinking_budget in ["low", "medium", "high"]:
|
||||
options["reasoning"] = {"effort": thinking_budget, "exclude": False}
|
||||
```
|
||||
|
||||
**API Format**: Uses Ollama's `reasoning` parameter with `effort` and `exclude` fields.
|
||||
|
||||
#### OpenAI Backend (`packages/leann-core/src/leann/chat.py`)
|
||||
|
||||
```python
|
||||
def ask(self, prompt: str, **kwargs) -> str:
|
||||
# Handle thinking budget for reasoning models
|
||||
thinking_budget = kwargs.get("thinking_budget")
|
||||
if thinking_budget and thinking_budget in ["low", "medium", "high"]:
|
||||
# Check if this is an o-series model
|
||||
o_series_models = ["o3", "o3-mini", "o4-mini", "o1", "o3-pro", "o3-deep-research"]
|
||||
if any(model in self.model for model in o_series_models):
|
||||
params["reasoning_effort"] = thinking_budget
|
||||
```
|
||||
|
||||
**API Format**: Uses OpenAI's `reasoning_effort` parameter for o-series models.
|
||||
|
||||
### 3. Parameter Propagation
|
||||
|
||||
The thinking budget parameter is properly propagated through the LEANN architecture:
|
||||
|
||||
1. **CLI** (`packages/leann-core/src/leann/cli.py`): Captures `--thinking-budget` argument
|
||||
2. **Base RAG** (`apps/base_rag_example.py`): Adds parameter to argument parser
|
||||
3. **LeannChat** (`packages/leann-core/src/leann/api.py`): Passes `llm_kwargs` to LLM
|
||||
4. **LLM Interface**: Handles the parameter in backend-specific implementations
|
||||
|
||||
## Files Modified
|
||||
|
||||
### Core Implementation
|
||||
- `packages/leann-core/src/leann/chat.py`: Added thinking budget support to OllamaChat and OpenAIChat
|
||||
- `packages/leann-core/src/leann/cli.py`: Added `--thinking-budget` argument
|
||||
- `apps/base_rag_example.py`: Added thinking budget parameter to RAG examples
|
||||
|
||||
### Documentation
|
||||
- `README.md`: Added thinking budget parameter to usage examples
|
||||
- `docs/configuration-guide.md`: Added detailed documentation and usage guidelines
|
||||
|
||||
### Examples
|
||||
- `examples/thinking_budget_demo.py`: Comprehensive demo script with usage examples
|
||||
|
||||
## Usage Examples
|
||||
|
||||
### Basic Usage
|
||||
```bash
|
||||
# High reasoning effort for complex questions
|
||||
leann ask my-index --llm ollama --model gpt-oss:20b --thinking-budget high
|
||||
|
||||
# Medium reasoning for balanced performance
|
||||
leann ask my-index --llm openai --model gpt-4o --thinking-budget medium
|
||||
|
||||
# Low reasoning for fast responses
|
||||
leann ask my-index --llm ollama --model gpt-oss:20b --thinking-budget low
|
||||
```
|
||||
|
||||
### RAG Examples
|
||||
```bash
|
||||
# Email RAG with high reasoning
|
||||
python apps/email_rag.py --llm ollama --llm-model gpt-oss:20b --thinking-budget high
|
||||
|
||||
# Document RAG with medium reasoning
|
||||
python apps/document_rag.py --llm openai --llm-model gpt-4o --thinking-budget medium
|
||||
```
|
||||
|
||||
## Supported Models
|
||||
|
||||
### Ollama Models
|
||||
- **GPT-Oss:20b**: Primary target model with reasoning capabilities
|
||||
- **Other reasoning models**: Any Ollama model that supports the `reasoning` parameter
|
||||
|
||||
### OpenAI Models
|
||||
- **o3, o3-mini, o4-mini, o1**: o-series reasoning models with `reasoning_effort` parameter
|
||||
- **GPT-OSS models**: Models that support reasoning capabilities
|
||||
|
||||
## Testing
|
||||
|
||||
The implementation includes comprehensive testing:
|
||||
- Parameter handling verification
|
||||
- Backend-specific API format validation
|
||||
- CLI argument parsing tests
|
||||
- Integration with existing LEANN architecture
|
||||
143
docs/ast_chunking_guide.md
Normal file
143
docs/ast_chunking_guide.md
Normal file
@@ -0,0 +1,143 @@
|
||||
# AST-Aware Code chunking guide
|
||||
|
||||
## Overview
|
||||
|
||||
This guide covers best practices for using AST-aware code chunking in LEANN. AST chunking provides better semantic understanding of code structure compared to traditional text-based chunking.
|
||||
|
||||
## Quick Start
|
||||
|
||||
### Basic Usage
|
||||
|
||||
```bash
|
||||
# Enable AST chunking for mixed content (code + docs)
|
||||
python -m apps.document_rag --enable-code-chunking --data-dir ./my_project
|
||||
|
||||
# Specialized code repository indexing
|
||||
python -m apps.code_rag --repo-dir ./my_codebase
|
||||
|
||||
# Global CLI with AST support
|
||||
leann build my-code-index --docs ./src --use-ast-chunking
|
||||
```
|
||||
|
||||
### Installation
|
||||
|
||||
```bash
|
||||
# Install LEANN with AST chunking support
|
||||
uv pip install -e "."
|
||||
```
|
||||
|
||||
#### For normal users (PyPI install)
|
||||
- Use `pip install leann` or `uv pip install leann`.
|
||||
- `astchunk` is pulled automatically from PyPI as a dependency; no extra steps.
|
||||
|
||||
#### For developers (from source, editable)
|
||||
```bash
|
||||
git clone https://github.com/yichuan-w/LEANN.git leann
|
||||
cd leann
|
||||
git submodule update --init --recursive
|
||||
uv sync
|
||||
```
|
||||
- This repo vendors `astchunk` as a git submodule at `packages/astchunk-leann` (our fork).
|
||||
- `[tool.uv.sources]` maps the `astchunk` package to that path in editable mode.
|
||||
- You can edit code under `packages/astchunk-leann` and Python will use your changes immediately (no separate `pip install astchunk` needed).
|
||||
|
||||
## Best Practices
|
||||
|
||||
### When to Use AST Chunking
|
||||
|
||||
✅ **Recommended for:**
|
||||
- Code repositories with multiple languages
|
||||
- Mixed documentation and code content
|
||||
- Complex codebases with deep function/class hierarchies
|
||||
- When working with Claude Code for code assistance
|
||||
|
||||
❌ **Not recommended for:**
|
||||
- Pure text documents
|
||||
- Very large files (>1MB)
|
||||
- Languages not supported by tree-sitter
|
||||
|
||||
### Optimal Configuration
|
||||
|
||||
```bash
|
||||
# Recommended settings for most codebases
|
||||
python -m apps.code_rag \
|
||||
--repo-dir ./src \
|
||||
--ast-chunk-size 768 \
|
||||
--ast-chunk-overlap 96 \
|
||||
--exclude-dirs .git __pycache__ node_modules build dist
|
||||
```
|
||||
|
||||
### Supported Languages
|
||||
|
||||
| Extension | Language | Status |
|
||||
|-----------|----------|--------|
|
||||
| `.py` | Python | ✅ Full support |
|
||||
| `.java` | Java | ✅ Full support |
|
||||
| `.cs` | C# | ✅ Full support |
|
||||
| `.ts`, `.tsx` | TypeScript | ✅ Full support |
|
||||
| `.js`, `.jsx` | JavaScript | ✅ Via TypeScript parser |
|
||||
|
||||
## Integration Examples
|
||||
|
||||
### Document RAG with Code Support
|
||||
|
||||
```python
|
||||
# Enable code chunking in document RAG
|
||||
python -m apps.document_rag \
|
||||
--enable-code-chunking \
|
||||
--data-dir ./project \
|
||||
--query "How does authentication work in the codebase?"
|
||||
```
|
||||
|
||||
### Claude Code Integration
|
||||
|
||||
When using with Claude Code MCP server, AST chunking provides better context for:
|
||||
- Code completion and suggestions
|
||||
- Bug analysis and debugging
|
||||
- Architecture understanding
|
||||
- Refactoring assistance
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Common Issues
|
||||
|
||||
1. **Fallback to Traditional Chunking**
|
||||
- Normal behavior for unsupported languages
|
||||
- Check logs for specific language support
|
||||
|
||||
2. **Performance with Large Files**
|
||||
- Adjust `--max-file-size` parameter
|
||||
- Use `--exclude-dirs` to skip unnecessary directories
|
||||
|
||||
3. **Quality Issues**
|
||||
- Try different `--ast-chunk-size` values (512, 768, 1024)
|
||||
- Adjust overlap for better context preservation
|
||||
|
||||
### Debug Mode
|
||||
|
||||
```bash
|
||||
export LEANN_LOG_LEVEL=DEBUG
|
||||
python -m apps.code_rag --repo-dir ./my_code
|
||||
```
|
||||
|
||||
## Migration from Traditional Chunking
|
||||
|
||||
Existing workflows continue to work without changes. To enable AST chunking:
|
||||
|
||||
```bash
|
||||
# Before
|
||||
python -m apps.document_rag --chunk-size 256
|
||||
|
||||
# After (maintains traditional chunking for non-code files)
|
||||
python -m apps.document_rag --enable-code-chunking --chunk-size 256 --ast-chunk-size 768
|
||||
```
|
||||
|
||||
## References
|
||||
|
||||
- [astchunk GitHub Repository](https://github.com/yilinjz/astchunk)
|
||||
- [LEANN MCP Integration](../packages/leann-mcp/README.md)
|
||||
- [Research Paper](https://arxiv.org/html/2506.15655v1)
|
||||
|
||||
---
|
||||
|
||||
**Note**: AST chunking maintains full backward compatibility while enhancing code understanding capabilities.
|
||||
384
docs/configuration-guide.md
Normal file
384
docs/configuration-guide.md
Normal file
@@ -0,0 +1,384 @@
|
||||
# LEANN Configuration Guide
|
||||
|
||||
This guide helps you optimize LEANN for different use cases and understand the trade-offs between various configuration options.
|
||||
|
||||
## Getting Started: Simple is Better
|
||||
|
||||
When first trying LEANN, start with a small dataset to quickly validate your approach:
|
||||
|
||||
**For document RAG**: The default `data/` directory works perfectly - includes 2 AI research papers, Pride and Prejudice literature, and a technical report
|
||||
```bash
|
||||
python -m apps.document_rag --query "What techniques does LEANN use?"
|
||||
```
|
||||
|
||||
**For other data sources**: Limit the dataset size for quick testing
|
||||
```bash
|
||||
# WeChat: Test with recent messages only
|
||||
python -m apps.wechat_rag --max-items 100 --query "What did we discuss about the project timeline?"
|
||||
|
||||
# Browser history: Last few days
|
||||
python -m apps.browser_rag --max-items 500 --query "Find documentation about vector databases"
|
||||
|
||||
# Email: Recent inbox
|
||||
python -m apps.email_rag --max-items 200 --query "Who sent updates about the deployment status?"
|
||||
```
|
||||
|
||||
Once validated, scale up gradually:
|
||||
- 100 documents → 1,000 → 10,000 → full dataset (`--max-items -1`)
|
||||
- This helps identify issues early before committing to long processing times
|
||||
|
||||
## Embedding Model Selection: Understanding the Trade-offs
|
||||
|
||||
Based on our experience developing LEANN, embedding models fall into three categories:
|
||||
|
||||
### Small Models (< 100M parameters)
|
||||
**Example**: `sentence-transformers/all-MiniLM-L6-v2` (22M params)
|
||||
- **Pros**: Lightweight, fast for both indexing and inference
|
||||
- **Cons**: Lower semantic understanding, may miss nuanced relationships
|
||||
- **Use when**: Speed is critical, handling simple queries, interactive mode, or just experimenting with LEANN. If time is not a constraint, consider using a larger/better embedding model
|
||||
|
||||
### Medium Models (100M-500M parameters)
|
||||
**Example**: `facebook/contriever` (110M params), `BAAI/bge-base-en-v1.5` (110M params)
|
||||
- **Pros**: Balanced performance, good multilingual support, reasonable speed
|
||||
- **Cons**: Requires more compute than small models
|
||||
- **Use when**: Need quality results without extreme compute requirements, general-purpose RAG applications
|
||||
|
||||
### Large Models (500M+ parameters)
|
||||
**Example**: `Qwen/Qwen3-Embedding-0.6B` (600M params), `intfloat/multilingual-e5-large` (560M params)
|
||||
- **Pros**: Best semantic understanding, captures complex relationships, excellent multilingual support. **Qwen3-Embedding-0.6B achieves nearly OpenAI API performance!**
|
||||
- **Cons**: Slower inference, longer index build times
|
||||
- **Use when**: Quality is paramount and you have sufficient compute resources. **Highly recommended** for production use
|
||||
|
||||
### Quick Start: Cloud and Local Embedding Options
|
||||
|
||||
**OpenAI Embeddings (Fastest Setup)**
|
||||
For immediate testing without local model downloads(also if you [do not have GPU](https://github.com/yichuan-w/LEANN/issues/43) and do not care that much about your document leak, you should use this, we compute the embedding and recompute using openai API):
|
||||
```bash
|
||||
# Set OpenAI embeddings (requires OPENAI_API_KEY)
|
||||
--embedding-mode openai --embedding-model text-embedding-3-small
|
||||
```
|
||||
|
||||
**Ollama Embeddings (Privacy-Focused)**
|
||||
For local embeddings with complete privacy:
|
||||
```bash
|
||||
# First, pull an embedding model
|
||||
ollama pull nomic-embed-text
|
||||
|
||||
# Use Ollama embeddings
|
||||
--embedding-mode ollama --embedding-model nomic-embed-text
|
||||
```
|
||||
|
||||
<details>
|
||||
<summary><strong>Cloud vs Local Trade-offs</strong></summary>
|
||||
|
||||
**OpenAI Embeddings** (`text-embedding-3-small/large`)
|
||||
- **Pros**: No local compute needed, consistently fast, high quality
|
||||
- **Cons**: Requires API key, costs money, data leaves your system, [known limitations with certain languages](https://yichuan-w.github.io/blog/lessons_learned_in_dev_leann/)
|
||||
- **When to use**: Prototyping, non-sensitive data, need immediate results
|
||||
|
||||
**Local Embeddings**
|
||||
- **Pros**: Complete privacy, no ongoing costs, full control, can sometimes outperform OpenAI embeddings
|
||||
- **Cons**: Slower than cloud APIs, requires local compute resources
|
||||
- **When to use**: Production systems, sensitive data, cost-sensitive applications
|
||||
|
||||
</details>
|
||||
|
||||
## Index Selection: Matching Your Scale
|
||||
|
||||
### HNSW (Hierarchical Navigable Small World)
|
||||
**Best for**: Small to medium datasets (< 10M vectors) - **Default and recommended for extreme low storage**
|
||||
- Full recomputation required
|
||||
- High memory usage during build phase
|
||||
- Excellent recall (95%+)
|
||||
|
||||
```bash
|
||||
# Optimal for most use cases
|
||||
--backend-name hnsw --graph-degree 32 --build-complexity 64
|
||||
```
|
||||
|
||||
### DiskANN
|
||||
**Best for**: Large datasets, especially when you want `recompute=True`.
|
||||
|
||||
**Key advantages:**
|
||||
- **Faster search** on large datasets (3x+ speedup vs HNSW in many cases)
|
||||
- **Smart storage**: `recompute=True` enables automatic graph partitioning for smaller indexes
|
||||
- **Better scaling**: Designed for 100k+ documents
|
||||
|
||||
**Recompute behavior:**
|
||||
- `recompute=True` (recommended): Pure PQ traversal + final reranking - faster and enables partitioning
|
||||
- `recompute=False`: PQ + partial real distances during traversal - slower but higher accuracy
|
||||
|
||||
```bash
|
||||
# Recommended for most use cases
|
||||
--backend-name diskann --graph-degree 32 --build-complexity 64
|
||||
```
|
||||
|
||||
**Performance Benchmark**: Run `uv run benchmarks/diskann_vs_hnsw_speed_comparison.py` to compare DiskANN and HNSW on your system.
|
||||
|
||||
## LLM Selection: Engine and Model Comparison
|
||||
|
||||
### LLM Engines
|
||||
|
||||
**OpenAI** (`--llm openai`)
|
||||
- **Pros**: Best quality, consistent performance, no local resources needed
|
||||
- **Cons**: Costs money ($0.15-2.5 per million tokens), requires internet, data privacy concerns
|
||||
- **Models**: `gpt-4o-mini` (fast, cheap), `gpt-4o` (best quality), `o3` (reasoning), `o3-mini` (reasoning, cheaper)
|
||||
- **Thinking Budget**: Use `--thinking-budget low/medium/high` for o-series reasoning models (o3, o3-mini, o4-mini)
|
||||
- **Note**: Our current default, but we recommend switching to Ollama for most use cases
|
||||
|
||||
**Ollama** (`--llm ollama`)
|
||||
- **Pros**: Fully local, free, privacy-preserving, good model variety
|
||||
- **Cons**: Requires local GPU/CPU resources, slower than cloud APIs, need to install extra [ollama app](https://github.com/ollama/ollama?tab=readme-ov-file#ollama) and pre-download models by `ollama pull`
|
||||
- **Models**: `qwen3:0.6b` (ultra-fast), `qwen3:1.7b` (balanced), `qwen3:4b` (good quality), `qwen3:7b` (high quality), `deepseek-r1:1.5b` (reasoning)
|
||||
- **Thinking Budget**: Use `--thinking-budget low/medium/high` for reasoning models like GPT-Oss:20b
|
||||
|
||||
**HuggingFace** (`--llm hf`)
|
||||
- **Pros**: Free tier available, huge model selection, direct model loading (vs Ollama's server-based approach)
|
||||
- **Cons**: More complex initial setup
|
||||
- **Models**: `Qwen/Qwen3-1.7B-FP8`
|
||||
|
||||
## Parameter Tuning Guide
|
||||
|
||||
### Search Complexity Parameters
|
||||
|
||||
**`--build-complexity`** (index building)
|
||||
- Controls thoroughness during index construction
|
||||
- Higher = better recall but slower build
|
||||
- Recommendations:
|
||||
- 32: Quick prototyping
|
||||
- 64: Balanced (default)
|
||||
- 128: Production systems
|
||||
- 256: Maximum quality
|
||||
|
||||
**`--search-complexity`** (query time)
|
||||
- Controls search thoroughness
|
||||
- Higher = better results but slower
|
||||
- Recommendations:
|
||||
- 16: Fast/Interactive search
|
||||
- 32: High quality with diversity
|
||||
- 64+: Maximum accuracy
|
||||
|
||||
### Top-K Selection
|
||||
|
||||
**`--top-k`** (number of retrieved chunks)
|
||||
- More chunks = better context but slower LLM processing
|
||||
- Should be always smaller than `--search-complexity`
|
||||
- Guidelines:
|
||||
- 10-20: General questions (default: 20)
|
||||
- 30+: Complex multi-hop reasoning requiring comprehensive context
|
||||
|
||||
**Trade-off formula**:
|
||||
- Retrieval time ∝ log(n) × search_complexity
|
||||
- LLM processing time ∝ top_k × chunk_size
|
||||
- Total context = top_k × chunk_size tokens
|
||||
|
||||
### Thinking Budget for Reasoning Models
|
||||
|
||||
**`--thinking-budget`** (reasoning effort level)
|
||||
- Controls the computational effort for reasoning models
|
||||
- Options: `low`, `medium`, `high`
|
||||
- Guidelines:
|
||||
- `low`: Fast responses, basic reasoning (default for simple queries)
|
||||
- `medium`: Balanced speed and reasoning depth
|
||||
- `high`: Maximum reasoning effort, best for complex analytical questions
|
||||
- **Supported Models**:
|
||||
- **Ollama**: `gpt-oss:20b`, `gpt-oss:120b`
|
||||
- **OpenAI**: `o3`, `o3-mini`, `o4-mini`, `o1` (o-series reasoning models)
|
||||
- **Note**: Models without reasoning support will show a warning and proceed without reasoning parameters
|
||||
- **Example**: `--thinking-budget high` for complex analytical questions
|
||||
|
||||
**📖 For detailed usage examples and implementation details, check out [Thinking Budget Documentation](THINKING_BUDGET_FEATURE.md)**
|
||||
|
||||
**💡 Quick Examples:**
|
||||
```bash
|
||||
# OpenAI o-series reasoning model
|
||||
python apps/document_rag.py --query "What are the main techniques LEANN explores?" \
|
||||
--index-dir hnswbuild --backend hnsw \
|
||||
--llm openai --llm-model o3 --thinking-budget medium
|
||||
|
||||
# Ollama reasoning model
|
||||
python apps/document_rag.py --query "What are the main techniques LEANN explores?" \
|
||||
--index-dir hnswbuild --backend hnsw \
|
||||
--llm ollama --llm-model gpt-oss:20b --thinking-budget high
|
||||
```
|
||||
|
||||
### Graph Degree (HNSW/DiskANN)
|
||||
|
||||
**`--graph-degree`**
|
||||
- Number of connections per node in the graph
|
||||
- Higher = better recall but more memory
|
||||
- HNSW: 16-32 (default: 32)
|
||||
- DiskANN: 32-128 (default: 64)
|
||||
|
||||
|
||||
## Performance Optimization Checklist
|
||||
|
||||
### If Embedding is Too Slow
|
||||
|
||||
1. **Switch to smaller model**:
|
||||
```bash
|
||||
# From large model
|
||||
--embedding-model Qwen/Qwen3-Embedding-0.6B
|
||||
# To small model
|
||||
--embedding-model sentence-transformers/all-MiniLM-L6-v2
|
||||
```
|
||||
|
||||
2. **Limit dataset size for testing**:
|
||||
```bash
|
||||
--max-items 1000 # Process first 1k items only
|
||||
```
|
||||
|
||||
3. **Use MLX on Apple Silicon** (optional optimization):
|
||||
```bash
|
||||
--embedding-mode mlx --embedding-model mlx-community/Qwen3-Embedding-0.6B-8bit
|
||||
```
|
||||
MLX might not be the best choice, as we tested and found that it only offers 1.3x acceleration compared to HF, so maybe using ollama is a better choice for embedding generation
|
||||
|
||||
4. **Use Ollama**
|
||||
```bash
|
||||
--embedding-mode ollama --embedding-model nomic-embed-text
|
||||
```
|
||||
To discover additional embedding models in ollama, check out https://ollama.com/search?c=embedding or read more about embedding models at https://ollama.com/blog/embedding-models, please do check the model size that works best for you
|
||||
### If Search Quality is Poor
|
||||
|
||||
1. **Increase retrieval count**:
|
||||
```bash
|
||||
--top-k 30 # Retrieve more candidates
|
||||
```
|
||||
|
||||
2. **Upgrade embedding model**:
|
||||
```bash
|
||||
# For English
|
||||
--embedding-model BAAI/bge-base-en-v1.5
|
||||
# For multilingual
|
||||
--embedding-model intfloat/multilingual-e5-large
|
||||
```
|
||||
|
||||
## Understanding the Trade-offs
|
||||
|
||||
Every configuration choice involves trade-offs:
|
||||
|
||||
| Factor | Small/Fast | Large/Quality |
|
||||
|--------|------------|---------------|
|
||||
| Embedding Model | `all-MiniLM-L6-v2` | `Qwen/Qwen3-Embedding-0.6B` |
|
||||
| Chunk Size | 512 tokens | 128 tokens |
|
||||
| Index Type | HNSW | DiskANN |
|
||||
| LLM | `qwen3:1.7b` | `gpt-4o` |
|
||||
|
||||
The key is finding the right balance for your specific use case. Start small and simple, measure performance, then scale up only where needed.
|
||||
|
||||
## Low-resource setups
|
||||
|
||||
If you don’t have a local GPU or builds/searches are too slow, use one or more of the options below.
|
||||
|
||||
### 1) Use OpenAI embeddings (no local compute)
|
||||
|
||||
Fastest path with zero local GPU requirements. Set your API key and use OpenAI embeddings during build and search:
|
||||
|
||||
```bash
|
||||
export OPENAI_API_KEY=sk-...
|
||||
|
||||
# Build with OpenAI embeddings
|
||||
leann build my-index \
|
||||
--embedding-mode openai \
|
||||
--embedding-model text-embedding-3-small
|
||||
|
||||
# Search with OpenAI embeddings (recompute at query time)
|
||||
leann search my-index "your query" \
|
||||
--recompute
|
||||
```
|
||||
|
||||
### 2) Run remote builds with SkyPilot (cloud GPU)
|
||||
|
||||
Offload embedding generation and index building to a GPU VM using [SkyPilot](https://skypilot.readthedocs.io/en/latest/). A template is provided at `sky/leann-build.yaml`.
|
||||
|
||||
```bash
|
||||
# One-time: install and configure SkyPilot
|
||||
pip install skypilot
|
||||
|
||||
# Launch with defaults (L4:1) and mount ./data to ~/leann-data; the build runs automatically
|
||||
sky launch -c leann-gpu sky/leann-build.yaml
|
||||
|
||||
# Override parameters via -e key=value (optional)
|
||||
sky launch -c leann-gpu sky/leann-build.yaml \
|
||||
-e index_name=my-index \
|
||||
-e backend=hnsw \
|
||||
-e embedding_mode=sentence-transformers \
|
||||
-e embedding_model=Qwen/Qwen3-Embedding-0.6B
|
||||
|
||||
# Copy the built index back to your local .leann (use rsync)
|
||||
rsync -Pavz leann-gpu:~/.leann/indexes/my-index ./.leann/indexes/
|
||||
```
|
||||
|
||||
### 3) Disable recomputation to trade storage for speed
|
||||
|
||||
If you need lower latency and have more storage/memory, disable recomputation. This stores full embeddings and avoids recomputing at search time.
|
||||
|
||||
```bash
|
||||
# Build without recomputation (HNSW requires non-compact in this mode)
|
||||
leann build my-index --no-recompute --no-compact
|
||||
|
||||
# Search without recomputation
|
||||
leann search my-index "your query" --no-recompute
|
||||
```
|
||||
|
||||
When to use:
|
||||
- Extreme low latency requirements (high QPS, interactive assistants)
|
||||
- Read-heavy workloads where storage is cheaper than latency
|
||||
- No always-available GPU
|
||||
|
||||
Constraints:
|
||||
- HNSW: when `--no-recompute` is set, LEANN automatically disables compact mode during build
|
||||
- DiskANN: supported; `--no-recompute` skips selective recompute during search
|
||||
|
||||
Storage impact:
|
||||
- Storing N embeddings of dimension D with float32 requires approximately N × D × 4 bytes
|
||||
- Example: 1,000,000 chunks × 768 dims × 4 bytes ≈ 2.86 GB (plus graph/metadata)
|
||||
|
||||
Converting an existing index (rebuild required):
|
||||
```bash
|
||||
# Rebuild in-place (ensure you still have original docs or can regenerate chunks)
|
||||
leann build my-index --force --no-recompute --no-compact
|
||||
```
|
||||
|
||||
Python API usage:
|
||||
```python
|
||||
from leann import LeannSearcher
|
||||
|
||||
searcher = LeannSearcher("/path/to/my-index.leann")
|
||||
results = searcher.search("your query", top_k=10, recompute_embeddings=False)
|
||||
```
|
||||
|
||||
Trade-offs:
|
||||
- Lower latency and fewer network hops at query time
|
||||
- Significantly higher storage (10–100× vs selective recomputation)
|
||||
- Slightly larger memory footprint during build and search
|
||||
|
||||
Quick benchmark results (`benchmarks/benchmark_no_recompute.py` with 5k texts, complexity=32):
|
||||
|
||||
- HNSW
|
||||
|
||||
```text
|
||||
recompute=True: search_time=0.818s, size=1.1MB
|
||||
recompute=False: search_time=0.012s, size=16.6MB
|
||||
```
|
||||
|
||||
- DiskANN
|
||||
|
||||
```text
|
||||
recompute=True: search_time=0.041s, size=5.9MB
|
||||
recompute=False: search_time=0.013s, size=24.6MB
|
||||
```
|
||||
|
||||
Conclusion:
|
||||
- **HNSW**: `no-recompute` is significantly faster (no embedding recomputation) but requires much more storage (stores all embeddings)
|
||||
- **DiskANN**: `no-recompute` uses PQ + partial real distances during traversal (slower but higher accuracy), while `recompute=True` uses pure PQ traversal + final reranking (faster traversal, enables build-time partitioning for smaller storage)
|
||||
|
||||
|
||||
|
||||
## Further Reading
|
||||
|
||||
- [Lessons Learned Developing LEANN](https://yichuan-w.github.io/blog/lessons_learned_in_dev_leann/)
|
||||
- [LEANN Technical Paper](https://arxiv.org/abs/2506.08276)
|
||||
- [DiskANN Original Paper](https://papers.nips.cc/paper/2019/file/09853c7fb1d3f8ee67a61b6bf4a7f8e6-Paper.pdf)
|
||||
- [SSD-based Graph Partitioning](https://github.com/SonglinLife/SSD_BASED_PLAN)
|
||||
@@ -3,9 +3,10 @@
|
||||
## 🔥 Core Features
|
||||
|
||||
- **🔄 Real-time Embeddings** - Eliminate heavy embedding storage with dynamic computation using optimized ZMQ servers and highly optimized search paradigm (overlapping and batching) with highly optimized embedding engine
|
||||
- **🧠 AST-Aware Code Chunking** - Intelligent code chunking that preserves semantic boundaries (functions, classes, methods) for Python, Java, C#, and TypeScript files
|
||||
- **📈 Scalable Architecture** - Handles millions of documents on consumer hardware; the larger your dataset, the more LEANN can save
|
||||
- **🎯 Graph Pruning** - Advanced techniques to minimize the storage overhead of vector search to a limited footprint
|
||||
- **🏗️ Pluggable Backends** - DiskANN, HNSW/FAISS with unified API
|
||||
- **🏗️ Pluggable Backends** - HNSW/FAISS (default), with optional DiskANN for large-scale deployments
|
||||
|
||||
## 🛠️ Technical Highlights
|
||||
- **🔄 Recompute Mode** - Highest accuracy scenarios while eliminating vector storage overhead
|
||||
@@ -13,7 +14,7 @@
|
||||
- **🚀 High-throughput Embedding Pipeline** - Optimized batched processing for maximum efficiency
|
||||
- **🎯 Two-level Search** - Novel coarse-to-fine search overlap for accelerated query processing (optional)
|
||||
- **💾 Memory-mapped Indices** - Fast startup with raw text mapping to reduce memory overhead
|
||||
- **🚀 MLX Support** - Ultra-fast recompute/build with quantized embedding models, accelerating building and search ([minimal example](test/build_mlx_index.py))
|
||||
- **🚀 MLX Support** - Ultra-fast recompute/build with quantized embedding models, accelerating building and search ([minimal example](../examples/mlx_demo.py))
|
||||
|
||||
## 🎨 Developer Experience
|
||||
|
||||
|
||||
149
docs/grep_search.md
Normal file
149
docs/grep_search.md
Normal file
@@ -0,0 +1,149 @@
|
||||
# LEANN Grep Search Usage Guide
|
||||
|
||||
## Overview
|
||||
|
||||
LEANN's grep search functionality provides exact text matching for finding specific code patterns, error messages, function names, or exact phrases in your indexed documents.
|
||||
|
||||
## Basic Usage
|
||||
|
||||
### Simple Grep Search
|
||||
|
||||
```python
|
||||
from leann.api import LeannSearcher
|
||||
|
||||
searcher = LeannSearcher("your_index_path")
|
||||
|
||||
# Exact text search
|
||||
results = searcher.search("def authenticate_user", use_grep=True, top_k=5)
|
||||
|
||||
for result in results:
|
||||
print(f"Score: {result.score}")
|
||||
print(f"Text: {result.text[:100]}...")
|
||||
print("-" * 40)
|
||||
```
|
||||
|
||||
### Comparison: Semantic vs Grep Search
|
||||
|
||||
```python
|
||||
# Semantic search - finds conceptually similar content
|
||||
semantic_results = searcher.search("machine learning algorithms", top_k=3)
|
||||
|
||||
# Grep search - finds exact text matches
|
||||
grep_results = searcher.search("def train_model", use_grep=True, top_k=3)
|
||||
```
|
||||
|
||||
## When to Use Grep Search
|
||||
|
||||
### Use Cases
|
||||
|
||||
- **Code Search**: Finding specific function definitions, class names, or variable references
|
||||
- **Error Debugging**: Locating exact error messages or stack traces
|
||||
- **Documentation**: Finding specific API endpoints or exact terminology
|
||||
|
||||
### Examples
|
||||
|
||||
```python
|
||||
# Find function definitions
|
||||
functions = searcher.search("def __init__", use_grep=True)
|
||||
|
||||
# Find import statements
|
||||
imports = searcher.search("from sklearn import", use_grep=True)
|
||||
|
||||
# Find specific error types
|
||||
errors = searcher.search("FileNotFoundError", use_grep=True)
|
||||
|
||||
# Find TODO comments
|
||||
todos = searcher.search("TODO:", use_grep=True)
|
||||
|
||||
# Find configuration entries
|
||||
configs = searcher.search("server_port=", use_grep=True)
|
||||
```
|
||||
|
||||
## Technical Details
|
||||
|
||||
### How It Works
|
||||
|
||||
1. **File Location**: Grep search operates on the raw text stored in `.jsonl` files
|
||||
2. **Command Execution**: Uses the system `grep` command with case-insensitive search
|
||||
3. **Result Processing**: Parses JSON lines and extracts text and metadata
|
||||
4. **Scoring**: Simple frequency-based scoring based on query term occurrences
|
||||
|
||||
### Search Process
|
||||
|
||||
```
|
||||
Query: "def train_model"
|
||||
↓
|
||||
grep -i -n "def train_model" documents.leann.passages.jsonl
|
||||
↓
|
||||
Parse matching JSON lines
|
||||
↓
|
||||
Calculate scores based on term frequency
|
||||
↓
|
||||
Return top_k results
|
||||
```
|
||||
|
||||
### Scoring Algorithm
|
||||
|
||||
```python
|
||||
# Term frequency in document
|
||||
score = text.lower().count(query.lower())
|
||||
```
|
||||
|
||||
Results are ranked by score (highest first), with higher scores indicating more occurrences of the search term.
|
||||
|
||||
## Error Handling
|
||||
|
||||
### Common Issues
|
||||
|
||||
#### Grep Command Not Found
|
||||
```
|
||||
RuntimeError: grep command not found. Please install grep or use semantic search.
|
||||
```
|
||||
|
||||
**Solution**: Install grep on your system:
|
||||
- **Ubuntu/Debian**: `sudo apt-get install grep`
|
||||
- **macOS**: grep is pre-installed
|
||||
- **Windows**: Use WSL or install grep via Git Bash/MSYS2
|
||||
|
||||
#### No Results Found
|
||||
```python
|
||||
# Check if your query exists in the raw data
|
||||
results = searcher.search("your_query", use_grep=True)
|
||||
if not results:
|
||||
print("No exact matches found. Try:")
|
||||
print("1. Check spelling and case")
|
||||
print("2. Use partial terms")
|
||||
print("3. Switch to semantic search")
|
||||
```
|
||||
|
||||
## Complete Example
|
||||
|
||||
```python
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Grep Search Example
|
||||
Demonstrates grep search for exact text matching.
|
||||
"""
|
||||
|
||||
from leann.api import LeannSearcher
|
||||
|
||||
def demonstrate_grep_search():
|
||||
# Initialize searcher
|
||||
searcher = LeannSearcher("my_index")
|
||||
|
||||
print("=== Function Search ===")
|
||||
functions = searcher.search("def __init__", use_grep=True, top_k=5)
|
||||
for i, result in enumerate(functions, 1):
|
||||
print(f"{i}. Score: {result.score}")
|
||||
print(f" Preview: {result.text[:60]}...")
|
||||
print()
|
||||
|
||||
print("=== Error Search ===")
|
||||
errors = searcher.search("FileNotFoundError", use_grep=True, top_k=3)
|
||||
for result in errors:
|
||||
print(f"Content: {result.text.strip()}")
|
||||
print("-" * 40)
|
||||
|
||||
if __name__ == "__main__":
|
||||
demonstrate_grep_search()
|
||||
```
|
||||
300
docs/metadata_filtering.md
Normal file
300
docs/metadata_filtering.md
Normal file
@@ -0,0 +1,300 @@
|
||||
# LEANN Metadata Filtering Usage Guide
|
||||
|
||||
## Overview
|
||||
|
||||
Leann possesses metadata filtering capabilities that allow you to filter search results based on arbitrary metadata fields set during chunking. This feature enables use cases like spoiler-free book search, document filtering by date/type, code search by file type, and potentially much more.
|
||||
|
||||
## Basic Usage
|
||||
|
||||
### Adding Metadata to Your Documents
|
||||
|
||||
When building your index, add metadata to each text chunk:
|
||||
|
||||
```python
|
||||
from leann.api import LeannBuilder
|
||||
|
||||
builder = LeannBuilder("hnsw")
|
||||
|
||||
# Add text with metadata
|
||||
builder.add_text(
|
||||
text="Chapter 1: Alice falls down the rabbit hole",
|
||||
metadata={
|
||||
"chapter": 1,
|
||||
"character": "Alice",
|
||||
"themes": ["adventure", "curiosity"],
|
||||
"word_count": 150
|
||||
}
|
||||
)
|
||||
|
||||
builder.build_index("alice_in_wonderland_index")
|
||||
```
|
||||
|
||||
### Searching with Metadata Filters
|
||||
|
||||
Use the `metadata_filters` parameter in search calls:
|
||||
|
||||
```python
|
||||
from leann.api import LeannSearcher
|
||||
|
||||
searcher = LeannSearcher("alice_in_wonderland_index")
|
||||
|
||||
# Search with filters
|
||||
results = searcher.search(
|
||||
query="What happens to Alice?",
|
||||
top_k=10,
|
||||
metadata_filters={
|
||||
"chapter": {"<=": 5}, # Only chapters 1-5
|
||||
"spoiler_level": {"!=": "high"} # No high spoilers
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
## Filter Syntax
|
||||
|
||||
### Basic Structure
|
||||
|
||||
```python
|
||||
metadata_filters = {
|
||||
"field_name": {"operator": value},
|
||||
"another_field": {"operator": value}
|
||||
}
|
||||
```
|
||||
|
||||
### Supported Operators
|
||||
|
||||
#### Comparison Operators
|
||||
- `"=="`: Equal to
|
||||
- `"!="`: Not equal to
|
||||
- `"<"`: Less than
|
||||
- `"<="`: Less than or equal
|
||||
- `">"`: Greater than
|
||||
- `">="`: Greater than or equal
|
||||
|
||||
```python
|
||||
# Examples
|
||||
{"chapter": {"==": 1}} # Exactly chapter 1
|
||||
{"page": {">": 100}} # Pages after 100
|
||||
{"rating": {">=": 4.0}} # Rating 4.0 or higher
|
||||
{"word_count": {"<": 500}} # Short passages
|
||||
```
|
||||
|
||||
#### Membership Operators
|
||||
- `"in"`: Value is in list
|
||||
- `"not_in"`: Value is not in list
|
||||
|
||||
```python
|
||||
# Examples
|
||||
{"character": {"in": ["Alice", "Bob"]}} # Alice OR Bob
|
||||
{"genre": {"not_in": ["horror", "thriller"]}} # Exclude genres
|
||||
{"tags": {"in": ["fiction", "adventure"]}} # Any of these tags
|
||||
```
|
||||
|
||||
#### String Operators
|
||||
- `"contains"`: String contains substring
|
||||
- `"starts_with"`: String starts with prefix
|
||||
- `"ends_with"`: String ends with suffix
|
||||
|
||||
```python
|
||||
# Examples
|
||||
{"title": {"contains": "alice"}} # Title contains "alice"
|
||||
{"filename": {"ends_with": ".py"}} # Python files
|
||||
{"author": {"starts_with": "Dr."}} # Authors with "Dr." prefix
|
||||
```
|
||||
|
||||
#### Boolean Operators
|
||||
- `"is_true"`: Field is truthy
|
||||
- `"is_false"`: Field is falsy
|
||||
|
||||
```python
|
||||
# Examples
|
||||
{"is_published": {"is_true": True}} # Published content
|
||||
{"is_draft": {"is_false": False}} # Not drafts
|
||||
```
|
||||
|
||||
### Multiple Operators on Same Field
|
||||
|
||||
You can apply multiple operators to the same field (AND logic):
|
||||
|
||||
```python
|
||||
metadata_filters = {
|
||||
"word_count": {
|
||||
">=": 100, # At least 100 words
|
||||
"<=": 500 # At most 500 words
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Compound Filters
|
||||
|
||||
Multiple fields are combined with AND logic:
|
||||
|
||||
```python
|
||||
metadata_filters = {
|
||||
"chapter": {"<=": 10}, # Up to chapter 10
|
||||
"character": {"==": "Alice"}, # About Alice
|
||||
"spoiler_level": {"!=": "high"} # No major spoilers
|
||||
}
|
||||
```
|
||||
|
||||
## Use Case Examples
|
||||
|
||||
### 1. Spoiler-Free Book Search
|
||||
|
||||
```python
|
||||
# Reader has only read up to chapter 5
|
||||
def search_spoiler_free(query, max_chapter):
|
||||
return searcher.search(
|
||||
query=query,
|
||||
metadata_filters={
|
||||
"chapter": {"<=": max_chapter},
|
||||
"spoiler_level": {"in": ["none", "low"]}
|
||||
}
|
||||
)
|
||||
|
||||
results = search_spoiler_free("What happens to Alice?", max_chapter=5)
|
||||
```
|
||||
|
||||
### 2. Document Management by Date
|
||||
|
||||
```python
|
||||
# Find recent documents
|
||||
recent_docs = searcher.search(
|
||||
query="project updates",
|
||||
metadata_filters={
|
||||
"date": {">=": "2024-01-01"},
|
||||
"document_type": {"==": "report"}
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
### 3. Code Search by File Type
|
||||
|
||||
```python
|
||||
# Search only Python files
|
||||
python_code = searcher.search(
|
||||
query="authentication function",
|
||||
metadata_filters={
|
||||
"file_extension": {"==": ".py"},
|
||||
"lines_of_code": {"<": 100}
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
### 4. Content Filtering by Audience
|
||||
|
||||
```python
|
||||
# Age-appropriate content
|
||||
family_content = searcher.search(
|
||||
query="adventure stories",
|
||||
metadata_filters={
|
||||
"age_rating": {"in": ["G", "PG"]},
|
||||
"content_warnings": {"not_in": ["violence", "adult_themes"]}
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
### 5. Multi-Book Series Management
|
||||
|
||||
```python
|
||||
# Search across first 3 books only
|
||||
early_series = searcher.search(
|
||||
query="character development",
|
||||
metadata_filters={
|
||||
"series": {"==": "Harry Potter"},
|
||||
"book_number": {"<=": 3}
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
## Running the Example
|
||||
|
||||
You can see metadata filtering in action with our spoiler-free book RAG example:
|
||||
|
||||
```bash
|
||||
# Don't forget to set up the environment
|
||||
uv venv
|
||||
source .venv/bin/activate
|
||||
|
||||
# Set your OpenAI API key (required for embeddings, but you can update the example locally and use ollama instead)
|
||||
export OPENAI_API_KEY="your-api-key-here"
|
||||
|
||||
# Run the spoiler-free book RAG example
|
||||
uv run examples/spoiler_free_book_rag.py
|
||||
```
|
||||
|
||||
This example demonstrates:
|
||||
- Building an index with metadata (chapter numbers, characters, themes, locations)
|
||||
- Searching with filters to avoid spoilers (e.g., only show results up to chapter 5)
|
||||
- Different scenarios for readers at various points in the book
|
||||
|
||||
The example uses Alice's Adventures in Wonderland as sample data and shows how you can search for information without revealing plot points from later chapters.
|
||||
|
||||
## Advanced Patterns
|
||||
|
||||
### Custom Chunking with metadata
|
||||
|
||||
```python
|
||||
def chunk_book_with_metadata(book_text, book_info):
|
||||
chunks = []
|
||||
|
||||
for chapter_num, chapter_text in parse_chapters(book_text):
|
||||
# Extract entities, themes, etc.
|
||||
characters = extract_characters(chapter_text)
|
||||
themes = classify_themes(chapter_text)
|
||||
spoiler_level = assess_spoiler_level(chapter_text, chapter_num)
|
||||
|
||||
# Create chunks with rich metadata
|
||||
for paragraph in split_paragraphs(chapter_text):
|
||||
chunks.append({
|
||||
"text": paragraph,
|
||||
"metadata": {
|
||||
"book_title": book_info["title"],
|
||||
"chapter": chapter_num,
|
||||
"characters": characters,
|
||||
"themes": themes,
|
||||
"spoiler_level": spoiler_level,
|
||||
"word_count": len(paragraph.split()),
|
||||
"reading_level": calculate_reading_level(paragraph)
|
||||
}
|
||||
})
|
||||
|
||||
return chunks
|
||||
```
|
||||
|
||||
## Performance Considerations
|
||||
|
||||
### Efficient Filtering Strategies
|
||||
|
||||
1. **Post-search filtering**: Applies filters after vector search, which should be efficient for typical result sets (10-100 results).
|
||||
|
||||
2. **Metadata design**: Keep metadata fields simple and avoid deeply nested structures.
|
||||
|
||||
### Best Practices
|
||||
|
||||
1. **Consistent metadata schema**: Use consistent field names and value types across your documents.
|
||||
|
||||
2. **Reasonable metadata size**: Keep metadata reasonably sized to avoid storage overhead.
|
||||
|
||||
3. **Type consistency**: Use consistent data types for the same fields (e.g., always integers for chapter numbers).
|
||||
|
||||
4. **Index multiple granularities**: Consider chunking at different levels (paragraph, section, chapter) with appropriate metadata.
|
||||
|
||||
### Adding Metadata to Existing Indices
|
||||
|
||||
To add metadata filtering to existing indices, you'll need to rebuild them with metadata:
|
||||
|
||||
```python
|
||||
# Read existing passages and add metadata
|
||||
def add_metadata_to_existing_chunks(chunks):
|
||||
for chunk in chunks:
|
||||
# Extract or assign metadata based on content
|
||||
chunk["metadata"] = extract_metadata(chunk["text"])
|
||||
return chunks
|
||||
|
||||
# Rebuild index with metadata
|
||||
enhanced_chunks = add_metadata_to_existing_chunks(existing_chunks)
|
||||
builder = LeannBuilder("hnsw")
|
||||
for chunk in enhanced_chunks:
|
||||
builder.add_text(chunk["text"], chunk["metadata"])
|
||||
builder.build_index("enhanced_index")
|
||||
```
|
||||
@@ -72,4 +72,4 @@ Using the wrong distance metric with normalized embeddings can lead to:
|
||||
- **Incorrect ranking** of search results
|
||||
- **Suboptimal performance** compared to using the correct metric
|
||||
|
||||
For more details on why this happens, see our analysis of [OpenAI embeddings with MIPS](../examples/main_cli_example.py).
|
||||
For more details on why this happens, see our analysis in the [embedding detection code](../packages/leann-core/src/leann/api.py) which automatically handles normalized embeddings and MIPS distance metric issues.
|
||||
|
||||
@@ -2,8 +2,8 @@
|
||||
|
||||
## 🎯 Q2 2025
|
||||
|
||||
- [X] DiskANN backend with MIPS/L2/Cosine support
|
||||
- [X] HNSW backend integration
|
||||
- [X] DiskANN backend with MIPS/L2/Cosine support
|
||||
- [X] Real-time embedding pipeline
|
||||
- [X] Memory-efficient graph pruning
|
||||
|
||||
|
||||
0
examples/__init__.py
Normal file
0
examples/__init__.py
Normal file
@@ -1,6 +1,6 @@
|
||||
"""
|
||||
Simple demo showing basic leann usage
|
||||
Run: uv run python examples/simple_demo.py
|
||||
Run: uv run python examples/basic_demo.py
|
||||
"""
|
||||
|
||||
import argparse
|
||||
@@ -81,7 +81,7 @@ def main():
|
||||
print()
|
||||
|
||||
print("Demo completed! Try running:")
|
||||
print(" uv run python examples/document_search.py")
|
||||
print(" uv run python apps/document_rag.py")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
@@ -1,158 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Document search demo with recompute mode
|
||||
"""
|
||||
|
||||
import shutil
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
# Import backend packages to trigger plugin registration
|
||||
try:
|
||||
import leann_backend_diskann # noqa: F401
|
||||
import leann_backend_hnsw # noqa: F401
|
||||
|
||||
print("INFO: Backend packages imported successfully.")
|
||||
except ImportError as e:
|
||||
print(f"WARNING: Could not import backend packages. Error: {e}")
|
||||
|
||||
# Import upper-level API from leann-core
|
||||
from leann.api import LeannBuilder, LeannChat, LeannSearcher
|
||||
|
||||
|
||||
def load_sample_documents():
|
||||
"""Create sample documents for demonstration"""
|
||||
docs = [
|
||||
{
|
||||
"title": "Intro to Python",
|
||||
"content": "Python is a high-level, interpreted language known for simplicity.",
|
||||
},
|
||||
{
|
||||
"title": "ML Basics",
|
||||
"content": "Machine learning builds systems that learn from data.",
|
||||
},
|
||||
{
|
||||
"title": "Data Structures",
|
||||
"content": "Data structures like arrays, lists, and graphs organize data.",
|
||||
},
|
||||
]
|
||||
return docs
|
||||
|
||||
|
||||
def main():
|
||||
print("==========================================================")
|
||||
print("=== Leann Document Search Demo (DiskANN + Recompute) ===")
|
||||
print("==========================================================")
|
||||
|
||||
INDEX_DIR = Path("./test_indices")
|
||||
INDEX_PATH = str(INDEX_DIR / "documents.diskann")
|
||||
BACKEND_TO_TEST = "diskann"
|
||||
|
||||
if INDEX_DIR.exists():
|
||||
print(f"--- Cleaning up old index directory: {INDEX_DIR} ---")
|
||||
shutil.rmtree(INDEX_DIR)
|
||||
|
||||
# --- 1. Build index ---
|
||||
print(f"\n[PHASE 1] Building index using '{BACKEND_TO_TEST}' backend...")
|
||||
|
||||
builder = LeannBuilder(backend_name=BACKEND_TO_TEST, graph_degree=32, complexity=64)
|
||||
|
||||
documents = load_sample_documents()
|
||||
print(f"Loaded {len(documents)} sample documents.")
|
||||
for doc in documents:
|
||||
builder.add_text(doc["content"], metadata={"title": doc["title"]})
|
||||
|
||||
builder.build_index(INDEX_PATH)
|
||||
print("\nIndex built!")
|
||||
|
||||
# --- 2. Basic search demo ---
|
||||
print(f"\n[PHASE 2] Basic search using '{BACKEND_TO_TEST}' backend...")
|
||||
searcher = LeannSearcher(index_path=INDEX_PATH)
|
||||
|
||||
query = "What is machine learning?"
|
||||
print(f"\nQuery: '{query}'")
|
||||
|
||||
print("\n--- Basic search mode (PQ computation) ---")
|
||||
start_time = time.time()
|
||||
results = searcher.search(query, top_k=2)
|
||||
basic_time = time.time() - start_time
|
||||
|
||||
print(f"⏱️ Basic search time: {basic_time:.3f} seconds")
|
||||
print(">>> Basic search results <<<")
|
||||
for i, res in enumerate(results, 1):
|
||||
print(
|
||||
f" {i}. ID: {res.id}, Score: {res.score:.4f}, Text: '{res.text}', Metadata: {res.metadata}"
|
||||
)
|
||||
|
||||
# --- 3. Recompute search demo ---
|
||||
print("\n[PHASE 3] Recompute search using embedding server...")
|
||||
|
||||
print("\n--- Recompute search mode (get real embeddings via network) ---")
|
||||
|
||||
# Configure recompute parameters
|
||||
recompute_params = {
|
||||
"recompute_beighbor_embeddings": True, # Enable network recomputation
|
||||
"USE_DEFERRED_FETCH": False, # Don't use deferred fetch
|
||||
"skip_search_reorder": True, # Skip search reordering
|
||||
"dedup_node_dis": True, # Enable node distance deduplication
|
||||
"prune_ratio": 0.1, # Pruning ratio 10%
|
||||
"batch_recompute": False, # Don't use batch recomputation
|
||||
"global_pruning": False, # Don't use global pruning
|
||||
"zmq_port": 5555, # ZMQ port
|
||||
"embedding_model": "sentence-transformers/all-mpnet-base-v2",
|
||||
}
|
||||
|
||||
print("Recompute parameter configuration:")
|
||||
for key, value in recompute_params.items():
|
||||
print(f" {key}: {value}")
|
||||
|
||||
print("\n🔄 Executing Recompute search...")
|
||||
try:
|
||||
start_time = time.time()
|
||||
recompute_results = searcher.search(query, top_k=2, **recompute_params)
|
||||
recompute_time = time.time() - start_time
|
||||
|
||||
print(f"⏱️ Recompute search time: {recompute_time:.3f} seconds")
|
||||
print(">>> Recompute search results <<<")
|
||||
for i, res in enumerate(recompute_results, 1):
|
||||
print(
|
||||
f" {i}. ID: {res.id}, Score: {res.score:.4f}, Text: '{res.text}', Metadata: {res.metadata}"
|
||||
)
|
||||
|
||||
# Compare results
|
||||
print("\n--- Result comparison ---")
|
||||
print(f"Basic search time: {basic_time:.3f} seconds")
|
||||
print(f"Recompute time: {recompute_time:.3f} seconds")
|
||||
|
||||
print("\nBasic search vs Recompute results:")
|
||||
for i in range(min(len(results), len(recompute_results))):
|
||||
basic_score = results[i].score
|
||||
recompute_score = recompute_results[i].score
|
||||
score_diff = abs(basic_score - recompute_score)
|
||||
print(
|
||||
f" Position {i + 1}: PQ={basic_score:.4f}, Recompute={recompute_score:.4f}, Difference={score_diff:.4f}"
|
||||
)
|
||||
|
||||
if recompute_time > basic_time:
|
||||
print("✅ Recompute mode working correctly (more accurate but slower)")
|
||||
else:
|
||||
print("i️ Recompute time is unusually fast, network recomputation may not be enabled")
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Recompute search failed: {e}")
|
||||
print("This usually indicates an embedding server connection issue")
|
||||
|
||||
# --- 4. Chat demo ---
|
||||
print("\n[PHASE 4] Starting chat session...")
|
||||
chat = LeannChat(index_path=INDEX_PATH)
|
||||
chat_response = chat.ask(query)
|
||||
print(f"You: {query}")
|
||||
print(f"Leann: {chat_response}")
|
||||
|
||||
print("\n==========================================================")
|
||||
print("✅ Demo finished successfully!")
|
||||
print("==========================================================")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
404
examples/dynamic_update_no_recompute.py
Normal file
404
examples/dynamic_update_no_recompute.py
Normal file
@@ -0,0 +1,404 @@
|
||||
"""Dynamic HNSW update demo without compact storage.
|
||||
|
||||
This script reproduces the minimal scenario we used while debugging on-the-fly
|
||||
recompute:
|
||||
|
||||
1. Build a non-compact HNSW index from the first few paragraphs of a text file.
|
||||
2. Print the top results with `recompute_embeddings=True`.
|
||||
3. Append additional paragraphs with :meth:`LeannBuilder.update_index`.
|
||||
4. Run the same query again to show the newly inserted passages.
|
||||
|
||||
Run it with ``uv`` (optionally pointing LEANN_HNSW_LOG_PATH at a file to inspect
|
||||
ZMQ activity)::
|
||||
|
||||
LEANN_HNSW_LOG_PATH=embedding_fetch.log \
|
||||
uv run -m examples.dynamic_update_no_recompute \
|
||||
--index-path .leann/examples/leann-demo.leann
|
||||
|
||||
By default the script builds an index from ``data/2501.14312v1 (1).pdf`` and
|
||||
then updates it with LEANN-related material from ``data/2506.08276v1.pdf``.
|
||||
It issues the query "What's LEANN?" before and after the update to show how the
|
||||
new passages become immediately searchable. The script uses the
|
||||
``sentence-transformers/all-MiniLM-L6-v2`` model with ``is_recompute=True`` so
|
||||
Faiss pulls existing vectors on demand via the ZMQ embedding server, while
|
||||
freshly added passages are embedded locally just like the initial build.
|
||||
|
||||
To make storage comparisons easy, the script can also build a matching
|
||||
``is_recompute=False`` baseline (enabled by default) and report the index size
|
||||
delta after the update. Disable the baseline run with
|
||||
``--skip-compare-no-recompute`` if you only need the recompute flow.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import json
|
||||
from collections.abc import Iterable
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
from leann.api import LeannBuilder, LeannSearcher
|
||||
from leann.registry import register_project_directory
|
||||
|
||||
from apps.chunking import create_text_chunks
|
||||
|
||||
REPO_ROOT = Path(__file__).resolve().parents[1]
|
||||
|
||||
DEFAULT_QUERY = "What's LEANN?"
|
||||
DEFAULT_INITIAL_FILES = [REPO_ROOT / "data" / "2501.14312v1 (1).pdf"]
|
||||
DEFAULT_UPDATE_FILES = [REPO_ROOT / "data" / "2506.08276v1.pdf"]
|
||||
|
||||
|
||||
def load_chunks_from_files(paths: list[Path]) -> list[str]:
|
||||
from llama_index.core import SimpleDirectoryReader
|
||||
|
||||
documents = []
|
||||
for path in paths:
|
||||
p = path.expanduser().resolve()
|
||||
if not p.exists():
|
||||
raise FileNotFoundError(f"Input path not found: {p}")
|
||||
if p.is_dir():
|
||||
reader = SimpleDirectoryReader(str(p), recursive=False)
|
||||
documents.extend(reader.load_data(show_progress=True))
|
||||
else:
|
||||
reader = SimpleDirectoryReader(input_files=[str(p)])
|
||||
documents.extend(reader.load_data(show_progress=True))
|
||||
|
||||
if not documents:
|
||||
return []
|
||||
|
||||
chunks = create_text_chunks(
|
||||
documents,
|
||||
chunk_size=512,
|
||||
chunk_overlap=128,
|
||||
use_ast_chunking=False,
|
||||
)
|
||||
return [c for c in chunks if isinstance(c, str) and c.strip()]
|
||||
|
||||
|
||||
def run_search(index_path: Path, query: str, top_k: int, *, recompute_embeddings: bool) -> list:
|
||||
searcher = LeannSearcher(str(index_path))
|
||||
try:
|
||||
return searcher.search(
|
||||
query=query,
|
||||
top_k=top_k,
|
||||
recompute_embeddings=recompute_embeddings,
|
||||
batch_size=16,
|
||||
)
|
||||
finally:
|
||||
searcher.cleanup()
|
||||
|
||||
|
||||
def print_results(title: str, results: Iterable) -> None:
|
||||
print(f"\n=== {title} ===")
|
||||
res_list = list(results)
|
||||
print(f"results count: {len(res_list)}")
|
||||
print("passages:")
|
||||
if not res_list:
|
||||
print(" (no passages returned)")
|
||||
for res in res_list:
|
||||
snippet = res.text.replace("\n", " ")[:120]
|
||||
print(f" - {res.id}: {snippet}... (score={res.score:.4f})")
|
||||
|
||||
|
||||
def build_initial_index(
|
||||
index_path: Path,
|
||||
paragraphs: list[str],
|
||||
model_name: str,
|
||||
embedding_mode: str,
|
||||
is_recompute: bool,
|
||||
) -> None:
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model=model_name,
|
||||
embedding_mode=embedding_mode,
|
||||
is_compact=False,
|
||||
is_recompute=is_recompute,
|
||||
)
|
||||
for idx, passage in enumerate(paragraphs):
|
||||
builder.add_text(passage, metadata={"id": str(idx)})
|
||||
builder.build_index(str(index_path))
|
||||
|
||||
|
||||
def update_index(
|
||||
index_path: Path,
|
||||
start_id: int,
|
||||
paragraphs: list[str],
|
||||
model_name: str,
|
||||
embedding_mode: str,
|
||||
is_recompute: bool,
|
||||
) -> None:
|
||||
updater = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model=model_name,
|
||||
embedding_mode=embedding_mode,
|
||||
is_compact=False,
|
||||
is_recompute=is_recompute,
|
||||
)
|
||||
for offset, passage in enumerate(paragraphs, start=start_id):
|
||||
updater.add_text(passage, metadata={"id": str(offset)})
|
||||
updater.update_index(str(index_path))
|
||||
|
||||
|
||||
def ensure_index_dir(index_path: Path) -> None:
|
||||
index_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
|
||||
def cleanup_index_files(index_path: Path) -> None:
|
||||
"""Remove leftover index artifacts for a clean rebuild."""
|
||||
|
||||
parent = index_path.parent
|
||||
if not parent.exists():
|
||||
return
|
||||
stem = index_path.stem
|
||||
for file in parent.glob(f"{stem}*"):
|
||||
if file.is_file():
|
||||
file.unlink()
|
||||
|
||||
|
||||
def index_file_size(index_path: Path) -> int:
|
||||
"""Return the size of the primary .index file for the given index path."""
|
||||
|
||||
index_file = index_path.parent / f"{index_path.stem}.index"
|
||||
return index_file.stat().st_size if index_file.exists() else 0
|
||||
|
||||
|
||||
def load_metadata_snapshot(index_path: Path) -> dict[str, Any] | None:
|
||||
meta_path = index_path.parent / f"{index_path.name}.meta.json"
|
||||
if not meta_path.exists():
|
||||
return None
|
||||
try:
|
||||
return json.loads(meta_path.read_text())
|
||||
except json.JSONDecodeError:
|
||||
return None
|
||||
|
||||
|
||||
def run_workflow(
|
||||
*,
|
||||
label: str,
|
||||
index_path: Path,
|
||||
initial_paragraphs: list[str],
|
||||
update_paragraphs: list[str],
|
||||
model_name: str,
|
||||
embedding_mode: str,
|
||||
is_recompute: bool,
|
||||
query: str,
|
||||
top_k: int,
|
||||
) -> dict[str, Any]:
|
||||
prefix = f"[{label}] " if label else ""
|
||||
|
||||
ensure_index_dir(index_path)
|
||||
cleanup_index_files(index_path)
|
||||
|
||||
print(f"{prefix}Building initial index...")
|
||||
build_initial_index(
|
||||
index_path,
|
||||
initial_paragraphs,
|
||||
model_name,
|
||||
embedding_mode,
|
||||
is_recompute=is_recompute,
|
||||
)
|
||||
|
||||
initial_size = index_file_size(index_path)
|
||||
before_results = run_search(
|
||||
index_path,
|
||||
query,
|
||||
top_k,
|
||||
recompute_embeddings=is_recompute,
|
||||
)
|
||||
|
||||
print(f"\n{prefix}Updating index with additional passages...")
|
||||
update_index(
|
||||
index_path,
|
||||
start_id=len(initial_paragraphs),
|
||||
paragraphs=update_paragraphs,
|
||||
model_name=model_name,
|
||||
embedding_mode=embedding_mode,
|
||||
is_recompute=is_recompute,
|
||||
)
|
||||
|
||||
after_results = run_search(
|
||||
index_path,
|
||||
query,
|
||||
top_k,
|
||||
recompute_embeddings=is_recompute,
|
||||
)
|
||||
updated_size = index_file_size(index_path)
|
||||
|
||||
return {
|
||||
"initial_size": initial_size,
|
||||
"updated_size": updated_size,
|
||||
"delta": updated_size - initial_size,
|
||||
"before_results": before_results,
|
||||
"after_results": after_results,
|
||||
"metadata": load_metadata_snapshot(index_path),
|
||||
}
|
||||
|
||||
|
||||
def main() -> None:
|
||||
parser = argparse.ArgumentParser(description=__doc__)
|
||||
parser.add_argument(
|
||||
"--initial-files",
|
||||
type=Path,
|
||||
nargs="+",
|
||||
default=DEFAULT_INITIAL_FILES,
|
||||
help="Initial document files (PDF/TXT) used to build the base index",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--index-path",
|
||||
type=Path,
|
||||
default=Path(".leann/examples/leann-demo.leann"),
|
||||
help="Destination index path (default: .leann/examples/leann-demo.leann)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--initial-count",
|
||||
type=int,
|
||||
default=8,
|
||||
help="Number of chunks to use from the initial documents (default: 8)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--update-files",
|
||||
type=Path,
|
||||
nargs="*",
|
||||
default=DEFAULT_UPDATE_FILES,
|
||||
help="Additional documents to add during update (PDF/TXT)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--update-count",
|
||||
type=int,
|
||||
default=4,
|
||||
help="Number of chunks to append from update documents (default: 4)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--update-text",
|
||||
type=str,
|
||||
default=(
|
||||
"LEANN (Lightweight Embedding ANN) is an indexing toolkit focused on "
|
||||
"recompute-aware HNSW graphs, allowing embeddings to be regenerated "
|
||||
"on demand to keep disk usage minimal."
|
||||
),
|
||||
help="Fallback text to append if --update-files is omitted",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--top-k",
|
||||
type=int,
|
||||
default=4,
|
||||
help="Number of results to show for each search (default: 4)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--query",
|
||||
type=str,
|
||||
default=DEFAULT_QUERY,
|
||||
help="Query to run before/after the update",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--embedding-model",
|
||||
type=str,
|
||||
default="sentence-transformers/all-MiniLM-L6-v2",
|
||||
help="Embedding model name",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--embedding-mode",
|
||||
type=str,
|
||||
default="sentence-transformers",
|
||||
choices=["sentence-transformers", "openai", "mlx", "ollama"],
|
||||
help="Embedding backend mode",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--compare-no-recompute",
|
||||
dest="compare_no_recompute",
|
||||
action="store_true",
|
||||
help="Also run a baseline with is_recompute=False and report its index growth.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--skip-compare-no-recompute",
|
||||
dest="compare_no_recompute",
|
||||
action="store_false",
|
||||
help="Skip building the no-recompute baseline.",
|
||||
)
|
||||
parser.set_defaults(compare_no_recompute=True)
|
||||
args = parser.parse_args()
|
||||
|
||||
ensure_index_dir(args.index_path)
|
||||
register_project_directory(REPO_ROOT)
|
||||
|
||||
initial_chunks = load_chunks_from_files(list(args.initial_files))
|
||||
if not initial_chunks:
|
||||
raise ValueError("No text chunks extracted from the initial files.")
|
||||
|
||||
initial = initial_chunks[: args.initial_count]
|
||||
if not initial:
|
||||
raise ValueError("Initial chunk set is empty after applying --initial-count.")
|
||||
|
||||
if args.update_files:
|
||||
update_chunks = load_chunks_from_files(list(args.update_files))
|
||||
if not update_chunks:
|
||||
raise ValueError("No text chunks extracted from the update files.")
|
||||
to_add = update_chunks[: args.update_count]
|
||||
else:
|
||||
if not args.update_text:
|
||||
raise ValueError("Provide --update-files or --update-text for the update step.")
|
||||
to_add = [args.update_text]
|
||||
if not to_add:
|
||||
raise ValueError("Update chunk set is empty after applying --update-count.")
|
||||
|
||||
recompute_stats = run_workflow(
|
||||
label="recompute",
|
||||
index_path=args.index_path,
|
||||
initial_paragraphs=initial,
|
||||
update_paragraphs=to_add,
|
||||
model_name=args.embedding_model,
|
||||
embedding_mode=args.embedding_mode,
|
||||
is_recompute=True,
|
||||
query=args.query,
|
||||
top_k=args.top_k,
|
||||
)
|
||||
|
||||
print_results("initial search", recompute_stats["before_results"])
|
||||
print_results("after update", recompute_stats["after_results"])
|
||||
print(
|
||||
f"\n[recompute] Index file size change: {recompute_stats['initial_size']} -> {recompute_stats['updated_size']} bytes"
|
||||
f" (Δ {recompute_stats['delta']})"
|
||||
)
|
||||
|
||||
if recompute_stats["metadata"]:
|
||||
meta_view = {k: recompute_stats["metadata"].get(k) for k in ("is_compact", "is_pruned")}
|
||||
print("[recompute] metadata snapshot:")
|
||||
print(json.dumps(meta_view, indent=2))
|
||||
|
||||
if args.compare_no_recompute:
|
||||
baseline_path = (
|
||||
args.index_path.parent / f"{args.index_path.stem}-norecompute{args.index_path.suffix}"
|
||||
)
|
||||
baseline_stats = run_workflow(
|
||||
label="no-recompute",
|
||||
index_path=baseline_path,
|
||||
initial_paragraphs=initial,
|
||||
update_paragraphs=to_add,
|
||||
model_name=args.embedding_model,
|
||||
embedding_mode=args.embedding_mode,
|
||||
is_recompute=False,
|
||||
query=args.query,
|
||||
top_k=args.top_k,
|
||||
)
|
||||
|
||||
print(
|
||||
f"\n[no-recompute] Index file size change: {baseline_stats['initial_size']} -> {baseline_stats['updated_size']} bytes"
|
||||
f" (Δ {baseline_stats['delta']})"
|
||||
)
|
||||
|
||||
after_texts = [res.text for res in recompute_stats["after_results"]]
|
||||
baseline_after_texts = [res.text for res in baseline_stats["after_results"]]
|
||||
if after_texts == baseline_after_texts:
|
||||
print(
|
||||
"[no-recompute] Search results match recompute baseline; see above for the shared output."
|
||||
)
|
||||
else:
|
||||
print("[no-recompute] WARNING: search results differ from recompute baseline.")
|
||||
|
||||
if baseline_stats["metadata"]:
|
||||
meta_view = {k: baseline_stats["metadata"].get(k) for k in ("is_compact", "is_pruned")}
|
||||
print("[no-recompute] metadata snapshot:")
|
||||
print(json.dumps(meta_view, indent=2))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,362 +0,0 @@
|
||||
import argparse
|
||||
import asyncio
|
||||
import os
|
||||
|
||||
try:
|
||||
import dotenv
|
||||
|
||||
dotenv.load_dotenv()
|
||||
except ModuleNotFoundError:
|
||||
# python-dotenv is not installed; skip loading environment variables
|
||||
dotenv = None
|
||||
from pathlib import Path
|
||||
|
||||
from leann.api import LeannBuilder, LeannChat
|
||||
from llama_index.core.node_parser import SentenceSplitter
|
||||
|
||||
# dotenv.load_dotenv() # handled above if python-dotenv is available
|
||||
|
||||
# Default Chrome profile path
|
||||
DEFAULT_CHROME_PROFILE = os.path.expanduser("~/Library/Application Support/Google/Chrome/Default")
|
||||
|
||||
|
||||
def create_leann_index_from_multiple_chrome_profiles(
|
||||
profile_dirs: list[Path],
|
||||
index_path: str = "chrome_history_index.leann",
|
||||
max_count: int = -1,
|
||||
embedding_model: str = "facebook/contriever",
|
||||
embedding_mode: str = "sentence-transformers",
|
||||
):
|
||||
"""
|
||||
Create LEANN index from multiple Chrome profile data sources.
|
||||
|
||||
Args:
|
||||
profile_dirs: List of Path objects pointing to Chrome profile directories
|
||||
index_path: Path to save the LEANN index
|
||||
max_count: Maximum number of history entries to process per profile
|
||||
embedding_model: The embedding model to use
|
||||
embedding_mode: The embedding backend mode
|
||||
"""
|
||||
print("Creating LEANN index from multiple Chrome profile data sources...")
|
||||
|
||||
# Load documents using ChromeHistoryReader from history_data
|
||||
from history_data.history import ChromeHistoryReader
|
||||
|
||||
reader = ChromeHistoryReader()
|
||||
|
||||
INDEX_DIR = Path(index_path).parent
|
||||
|
||||
if not INDEX_DIR.exists():
|
||||
print("--- Index directory not found, building new index ---")
|
||||
all_documents = []
|
||||
total_processed = 0
|
||||
|
||||
# Process each Chrome profile directory
|
||||
for i, profile_dir in enumerate(profile_dirs):
|
||||
print(f"\nProcessing Chrome profile {i + 1}/{len(profile_dirs)}: {profile_dir}")
|
||||
|
||||
try:
|
||||
documents = reader.load_data(
|
||||
chrome_profile_path=str(profile_dir), max_count=max_count
|
||||
)
|
||||
if documents:
|
||||
print(f"Loaded {len(documents)} history documents from {profile_dir}")
|
||||
all_documents.extend(documents)
|
||||
total_processed += len(documents)
|
||||
|
||||
# Check if we've reached the max count
|
||||
if max_count > 0 and total_processed >= max_count:
|
||||
print(f"Reached max count of {max_count} documents")
|
||||
break
|
||||
else:
|
||||
print(f"No documents loaded from {profile_dir}")
|
||||
except Exception as e:
|
||||
print(f"Error processing {profile_dir}: {e}")
|
||||
continue
|
||||
|
||||
if not all_documents:
|
||||
print("No documents loaded from any source. Exiting.")
|
||||
# highlight info that you need to close all chrome browser before running this script and high light the instruction!!
|
||||
print(
|
||||
"\033[91mYou need to close or quit all chrome browser before running this script\033[0m"
|
||||
)
|
||||
return None
|
||||
|
||||
print(
|
||||
f"\nTotal loaded {len(all_documents)} history documents from {len(profile_dirs)} profiles"
|
||||
)
|
||||
|
||||
# Create text splitter with 256 chunk size
|
||||
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=128)
|
||||
|
||||
# Convert Documents to text strings and chunk them
|
||||
all_texts = []
|
||||
for doc in all_documents:
|
||||
# Split the document into chunks
|
||||
nodes = text_splitter.get_nodes_from_documents([doc])
|
||||
for node in nodes:
|
||||
text = node.get_content()
|
||||
# text = '[Title] ' + doc.metadata["title"] + '\n' + text
|
||||
all_texts.append(text)
|
||||
|
||||
print(f"Created {len(all_texts)} text chunks from {len(all_documents)} documents")
|
||||
|
||||
# Create LEANN index directory
|
||||
print("--- Index directory not found, building new index ---")
|
||||
INDEX_DIR.mkdir(exist_ok=True)
|
||||
|
||||
print("--- Building new LEANN index ---")
|
||||
|
||||
print("\n[PHASE 1] Building Leann index...")
|
||||
|
||||
# Use HNSW backend for better macOS compatibility
|
||||
# LeannBuilder will automatically detect normalized embeddings and set appropriate distance metric
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model=embedding_model,
|
||||
embedding_mode=embedding_mode,
|
||||
graph_degree=32,
|
||||
complexity=64,
|
||||
is_compact=True,
|
||||
is_recompute=True,
|
||||
num_threads=1, # Force single-threaded mode
|
||||
)
|
||||
|
||||
print(f"Adding {len(all_texts)} history chunks to index...")
|
||||
for chunk_text in all_texts:
|
||||
builder.add_text(chunk_text)
|
||||
|
||||
builder.build_index(index_path)
|
||||
print(f"\nLEANN index built at {index_path}!")
|
||||
else:
|
||||
print(f"--- Using existing index at {INDEX_DIR} ---")
|
||||
|
||||
return index_path
|
||||
|
||||
|
||||
def create_leann_index(
|
||||
profile_path: str | None = None,
|
||||
index_path: str = "chrome_history_index.leann",
|
||||
max_count: int = 1000,
|
||||
embedding_model: str = "facebook/contriever",
|
||||
embedding_mode: str = "sentence-transformers",
|
||||
):
|
||||
"""
|
||||
Create LEANN index from Chrome history data.
|
||||
|
||||
Args:
|
||||
profile_path: Path to the Chrome profile directory (optional, uses default if None)
|
||||
index_path: Path to save the LEANN index
|
||||
max_count: Maximum number of history entries to process
|
||||
embedding_model: The embedding model to use
|
||||
embedding_mode: The embedding backend mode
|
||||
"""
|
||||
print("Creating LEANN index from Chrome history data...")
|
||||
INDEX_DIR = Path(index_path).parent
|
||||
|
||||
if not INDEX_DIR.exists():
|
||||
print("--- Index directory not found, building new index ---")
|
||||
INDEX_DIR.mkdir(exist_ok=True)
|
||||
|
||||
print("--- Building new LEANN index ---")
|
||||
|
||||
print("\n[PHASE 1] Building Leann index...")
|
||||
|
||||
# Load documents using ChromeHistoryReader from history_data
|
||||
from history_data.history import ChromeHistoryReader
|
||||
|
||||
reader = ChromeHistoryReader()
|
||||
|
||||
documents = reader.load_data(chrome_profile_path=profile_path, max_count=max_count)
|
||||
|
||||
if not documents:
|
||||
print("No documents loaded. Exiting.")
|
||||
return None
|
||||
|
||||
print(f"Loaded {len(documents)} history documents")
|
||||
|
||||
# Create text splitter with 256 chunk size
|
||||
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25)
|
||||
|
||||
# Convert Documents to text strings and chunk them
|
||||
all_texts = []
|
||||
for doc in documents:
|
||||
# Split the document into chunks
|
||||
nodes = text_splitter.get_nodes_from_documents([doc])
|
||||
for node in nodes:
|
||||
all_texts.append(node.get_content())
|
||||
|
||||
print(f"Created {len(all_texts)} text chunks from {len(documents)} documents")
|
||||
|
||||
# Create LEANN index directory
|
||||
print("--- Index directory not found, building new index ---")
|
||||
INDEX_DIR.mkdir(exist_ok=True)
|
||||
|
||||
print("--- Building new LEANN index ---")
|
||||
|
||||
print("\n[PHASE 1] Building Leann index...")
|
||||
|
||||
# Use HNSW backend for better macOS compatibility
|
||||
# LeannBuilder will automatically detect normalized embeddings and set appropriate distance metric
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model=embedding_model,
|
||||
embedding_mode=embedding_mode,
|
||||
graph_degree=32,
|
||||
complexity=64,
|
||||
is_compact=True,
|
||||
is_recompute=True,
|
||||
num_threads=1, # Force single-threaded mode
|
||||
)
|
||||
|
||||
print(f"Adding {len(all_texts)} history chunks to index...")
|
||||
for chunk_text in all_texts:
|
||||
builder.add_text(chunk_text)
|
||||
|
||||
builder.build_index(index_path)
|
||||
print(f"\nLEANN index built at {index_path}!")
|
||||
else:
|
||||
print(f"--- Using existing index at {INDEX_DIR} ---")
|
||||
|
||||
return index_path
|
||||
|
||||
|
||||
async def query_leann_index(index_path: str, query: str):
|
||||
"""
|
||||
Query the LEANN index.
|
||||
|
||||
Args:
|
||||
index_path: Path to the LEANN index
|
||||
query: The query string
|
||||
"""
|
||||
print("\n[PHASE 2] Starting Leann chat session...")
|
||||
chat = LeannChat(index_path=index_path)
|
||||
|
||||
print(f"You: {query}")
|
||||
chat_response = chat.ask(
|
||||
query,
|
||||
top_k=10,
|
||||
recompute_beighbor_embeddings=True,
|
||||
complexity=32,
|
||||
beam_width=1,
|
||||
llm_config={
|
||||
"type": "openai",
|
||||
"model": "gpt-4o",
|
||||
"api_key": os.getenv("OPENAI_API_KEY"),
|
||||
},
|
||||
llm_kwargs={"temperature": 0.0, "max_tokens": 1000},
|
||||
)
|
||||
|
||||
print(f"Leann chat response: \033[36m{chat_response}\033[0m")
|
||||
|
||||
|
||||
async def main():
|
||||
# Parse command line arguments
|
||||
parser = argparse.ArgumentParser(
|
||||
description="LEANN Chrome History Reader - Create and query browser history index"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--chrome-profile",
|
||||
type=str,
|
||||
default=DEFAULT_CHROME_PROFILE,
|
||||
help=f"Path to Chrome profile directory (default: {DEFAULT_CHROME_PROFILE}), usually you dont need to change this",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--index-dir",
|
||||
type=str,
|
||||
default="./google_history_index",
|
||||
help="Directory to store the LEANN index (default: ./chrome_history_index_leann_test)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-entries",
|
||||
type=int,
|
||||
default=1000,
|
||||
help="Maximum number of history entries to process (default: 1000)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--query",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Single query to run (default: runs example queries)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--auto-find-profiles",
|
||||
action="store_true",
|
||||
default=True,
|
||||
help="Automatically find all Chrome profiles (default: True)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--embedding-model",
|
||||
type=str,
|
||||
default="facebook/contriever",
|
||||
help="The embedding model to use (e.g., 'facebook/contriever', 'text-embedding-3-small')",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--embedding-mode",
|
||||
type=str,
|
||||
default="sentence-transformers",
|
||||
choices=["sentence-transformers", "openai", "mlx"],
|
||||
help="The embedding backend mode",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--use-existing-index",
|
||||
action="store_true",
|
||||
help="Use existing index without rebuilding",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
INDEX_DIR = Path(args.index_dir)
|
||||
INDEX_PATH = str(INDEX_DIR / "chrome_history.leann")
|
||||
|
||||
print(f"Using Chrome profile: {args.chrome_profile}")
|
||||
print(f"Index directory: {INDEX_DIR}")
|
||||
print(f"Max entries: {args.max_entries}")
|
||||
|
||||
if args.use_existing_index:
|
||||
# Use existing index without rebuilding
|
||||
if not Path(INDEX_PATH).exists():
|
||||
print(f"Error: Index file not found at {INDEX_PATH}")
|
||||
return
|
||||
print(f"Using existing index at {INDEX_PATH}")
|
||||
index_path = INDEX_PATH
|
||||
else:
|
||||
# Find Chrome profile directories
|
||||
from history_data.history import ChromeHistoryReader
|
||||
|
||||
if args.auto_find_profiles:
|
||||
profile_dirs = ChromeHistoryReader.find_chrome_profiles()
|
||||
if not profile_dirs:
|
||||
print("No Chrome profiles found automatically. Exiting.")
|
||||
return
|
||||
else:
|
||||
# Use single specified profile
|
||||
profile_path = Path(args.chrome_profile)
|
||||
if not profile_path.exists():
|
||||
print(f"Chrome profile not found: {profile_path}")
|
||||
return
|
||||
profile_dirs = [profile_path]
|
||||
|
||||
# Create or load the LEANN index from all sources
|
||||
index_path = create_leann_index_from_multiple_chrome_profiles(
|
||||
profile_dirs, INDEX_PATH, args.max_entries, args.embedding_model, args.embedding_mode
|
||||
)
|
||||
|
||||
if index_path:
|
||||
if args.query:
|
||||
# Run single query
|
||||
await query_leann_index(index_path, args.query)
|
||||
else:
|
||||
# Example queries
|
||||
queries = [
|
||||
"What websites did I visit about machine learning?",
|
||||
"Find my search history about programming",
|
||||
]
|
||||
|
||||
for query in queries:
|
||||
print("\n" + "=" * 60)
|
||||
await query_leann_index(index_path, query)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
35
examples/grep_search_example.py
Normal file
35
examples/grep_search_example.py
Normal file
@@ -0,0 +1,35 @@
|
||||
"""
|
||||
Grep Search Example
|
||||
|
||||
Shows how to use grep-based text search instead of semantic search.
|
||||
Useful when you need exact text matches rather than meaning-based results.
|
||||
"""
|
||||
|
||||
from leann import LeannSearcher
|
||||
|
||||
# Load your index
|
||||
searcher = LeannSearcher("my-documents.leann")
|
||||
|
||||
# Regular semantic search
|
||||
print("=== Semantic Search ===")
|
||||
results = searcher.search("machine learning algorithms", top_k=3)
|
||||
for result in results:
|
||||
print(f"Score: {result.score:.3f}")
|
||||
print(f"Text: {result.text[:80]}...")
|
||||
print()
|
||||
|
||||
# Grep-based search for exact text matches
|
||||
print("=== Grep Search ===")
|
||||
results = searcher.search("def train_model", top_k=3, use_grep=True)
|
||||
for result in results:
|
||||
print(f"Score: {result.score}")
|
||||
print(f"Text: {result.text[:80]}...")
|
||||
print()
|
||||
|
||||
# Find specific error messages
|
||||
error_results = searcher.search("FileNotFoundError", use_grep=True)
|
||||
print(f"Found {len(error_results)} files mentioning FileNotFoundError")
|
||||
|
||||
# Search for function definitions
|
||||
func_results = searcher.search("class SearchResult", use_grep=True, top_k=5)
|
||||
print(f"Found {len(func_results)} class definitions")
|
||||
@@ -1,342 +0,0 @@
|
||||
import argparse
|
||||
import asyncio
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import dotenv
|
||||
|
||||
# Add the project root to Python path so we can import from examples
|
||||
project_root = Path(__file__).parent.parent
|
||||
sys.path.insert(0, str(project_root))
|
||||
|
||||
from leann.api import LeannBuilder, LeannChat
|
||||
from llama_index.core.node_parser import SentenceSplitter
|
||||
|
||||
dotenv.load_dotenv()
|
||||
|
||||
|
||||
# Auto-detect user's mail path
|
||||
def get_mail_path():
|
||||
"""Get the mail path for the current user"""
|
||||
home_dir = os.path.expanduser("~")
|
||||
return os.path.join(home_dir, "Library", "Mail")
|
||||
|
||||
|
||||
# Default mail path for macOS
|
||||
DEFAULT_MAIL_PATH = "/Users/yichuan/Library/Mail/V10/0FCA0879-FD8C-4B7E-83BF-FDDA930791C5/[Gmail].mbox/All Mail.mbox/78BA5BE1-8819-4F9A-9613-EB63772F1DD0/Data"
|
||||
|
||||
|
||||
def create_leann_index_from_multiple_sources(
|
||||
messages_dirs: list[Path],
|
||||
index_path: str = "mail_index.leann",
|
||||
max_count: int = -1,
|
||||
include_html: bool = False,
|
||||
embedding_model: str = "facebook/contriever",
|
||||
):
|
||||
"""
|
||||
Create LEANN index from multiple mail data sources.
|
||||
|
||||
Args:
|
||||
messages_dirs: List of Path objects pointing to Messages directories
|
||||
index_path: Path to save the LEANN index
|
||||
max_count: Maximum number of emails to process per directory
|
||||
include_html: Whether to include HTML content in email processing
|
||||
"""
|
||||
print("Creating LEANN index from multiple mail data sources...")
|
||||
|
||||
# Load documents using EmlxReader from LEANN_email_reader
|
||||
from examples.email_data.LEANN_email_reader import EmlxReader
|
||||
|
||||
reader = EmlxReader(include_html=include_html)
|
||||
# from email_data.email import EmlxMboxReader
|
||||
# from pathlib import Path
|
||||
# reader = EmlxMboxReader()
|
||||
INDEX_DIR = Path(index_path).parent
|
||||
|
||||
if not INDEX_DIR.exists():
|
||||
print("--- Index directory not found, building new index ---")
|
||||
all_documents = []
|
||||
total_processed = 0
|
||||
|
||||
# Process each Messages directory
|
||||
for i, messages_dir in enumerate(messages_dirs):
|
||||
print(f"\nProcessing Messages directory {i + 1}/{len(messages_dirs)}: {messages_dir}")
|
||||
|
||||
try:
|
||||
documents = reader.load_data(messages_dir)
|
||||
if documents:
|
||||
print(f"Loaded {len(documents)} email documents from {messages_dir}")
|
||||
all_documents.extend(documents)
|
||||
total_processed += len(documents)
|
||||
|
||||
# Check if we've reached the max count
|
||||
if max_count > 0 and total_processed >= max_count:
|
||||
print(f"Reached max count of {max_count} documents")
|
||||
break
|
||||
else:
|
||||
print(f"No documents loaded from {messages_dir}")
|
||||
except Exception as e:
|
||||
print(f"Error processing {messages_dir}: {e}")
|
||||
continue
|
||||
|
||||
if not all_documents:
|
||||
print("No documents loaded from any source. Exiting.")
|
||||
return None
|
||||
|
||||
print(
|
||||
f"\nTotal loaded {len(all_documents)} email documents from {len(messages_dirs)} directories and starting to split them into chunks"
|
||||
)
|
||||
|
||||
# Create text splitter with 256 chunk size
|
||||
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25)
|
||||
|
||||
# Convert Documents to text strings and chunk them
|
||||
all_texts = []
|
||||
for doc in all_documents:
|
||||
# Split the document into chunks
|
||||
nodes = text_splitter.get_nodes_from_documents([doc])
|
||||
for node in nodes:
|
||||
text = node.get_content()
|
||||
# text = '[subject] ' + doc.metadata["subject"] + '\n' + text
|
||||
all_texts.append(text)
|
||||
|
||||
print(
|
||||
f"Finished splitting {len(all_documents)} documents into {len(all_texts)} text chunks"
|
||||
)
|
||||
|
||||
# Create LEANN index directory
|
||||
|
||||
print("--- Index directory not found, building new index ---")
|
||||
INDEX_DIR.mkdir(exist_ok=True)
|
||||
|
||||
print("--- Building new LEANN index ---")
|
||||
|
||||
print("\n[PHASE 1] Building Leann index...")
|
||||
|
||||
# Use HNSW backend for better macOS compatibility
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model=embedding_model,
|
||||
graph_degree=32,
|
||||
complexity=64,
|
||||
is_compact=True,
|
||||
is_recompute=True,
|
||||
num_threads=1, # Force single-threaded mode
|
||||
)
|
||||
|
||||
print(f"Adding {len(all_texts)} email chunks to index...")
|
||||
for chunk_text in all_texts:
|
||||
builder.add_text(chunk_text)
|
||||
|
||||
builder.build_index(index_path)
|
||||
print(f"\nLEANN index built at {index_path}!")
|
||||
else:
|
||||
print(f"--- Using existing index at {INDEX_DIR} ---")
|
||||
|
||||
return index_path
|
||||
|
||||
|
||||
def create_leann_index(
|
||||
mail_path: str,
|
||||
index_path: str = "mail_index.leann",
|
||||
max_count: int = 1000,
|
||||
include_html: bool = False,
|
||||
embedding_model: str = "facebook/contriever",
|
||||
):
|
||||
"""
|
||||
Create LEANN index from mail data.
|
||||
|
||||
Args:
|
||||
mail_path: Path to the mail directory
|
||||
index_path: Path to save the LEANN index
|
||||
max_count: Maximum number of emails to process
|
||||
include_html: Whether to include HTML content in email processing
|
||||
"""
|
||||
print("Creating LEANN index from mail data...")
|
||||
INDEX_DIR = Path(index_path).parent
|
||||
|
||||
if not INDEX_DIR.exists():
|
||||
print("--- Index directory not found, building new index ---")
|
||||
INDEX_DIR.mkdir(exist_ok=True)
|
||||
|
||||
print("--- Building new LEANN index ---")
|
||||
|
||||
print("\n[PHASE 1] Building Leann index...")
|
||||
|
||||
# Load documents using EmlxReader from LEANN_email_reader
|
||||
from examples.email_data.LEANN_email_reader import EmlxReader
|
||||
|
||||
reader = EmlxReader(include_html=include_html)
|
||||
# from email_data.email import EmlxMboxReader
|
||||
# from pathlib import Path
|
||||
# reader = EmlxMboxReader()
|
||||
documents = reader.load_data(Path(mail_path))
|
||||
|
||||
if not documents:
|
||||
print("No documents loaded. Exiting.")
|
||||
return None
|
||||
|
||||
print(f"Loaded {len(documents)} email documents")
|
||||
|
||||
# Create text splitter with 256 chunk size
|
||||
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=128)
|
||||
|
||||
# Convert Documents to text strings and chunk them
|
||||
all_texts = []
|
||||
for doc in documents:
|
||||
# Split the document into chunks
|
||||
nodes = text_splitter.get_nodes_from_documents([doc])
|
||||
for node in nodes:
|
||||
all_texts.append(node.get_content())
|
||||
|
||||
print(f"Created {len(all_texts)} text chunks from {len(documents)} documents")
|
||||
|
||||
# Create LEANN index directory
|
||||
|
||||
print("--- Index directory not found, building new index ---")
|
||||
INDEX_DIR.mkdir(exist_ok=True)
|
||||
|
||||
print("--- Building new LEANN index ---")
|
||||
|
||||
print("\n[PHASE 1] Building Leann index...")
|
||||
|
||||
# Use HNSW backend for better macOS compatibility
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model=embedding_model,
|
||||
graph_degree=32,
|
||||
complexity=64,
|
||||
is_compact=True,
|
||||
is_recompute=True,
|
||||
num_threads=1, # Force single-threaded mode
|
||||
)
|
||||
|
||||
print(f"Adding {len(all_texts)} email chunks to index...")
|
||||
for chunk_text in all_texts:
|
||||
builder.add_text(chunk_text)
|
||||
|
||||
builder.build_index(index_path)
|
||||
print(f"\nLEANN index built at {index_path}!")
|
||||
else:
|
||||
print(f"--- Using existing index at {INDEX_DIR} ---")
|
||||
|
||||
return index_path
|
||||
|
||||
|
||||
async def query_leann_index(index_path: str, query: str):
|
||||
"""
|
||||
Query the LEANN index.
|
||||
|
||||
Args:
|
||||
index_path: Path to the LEANN index
|
||||
query: The query string
|
||||
"""
|
||||
print("\n[PHASE 2] Starting Leann chat session...")
|
||||
chat = LeannChat(index_path=index_path, llm_config={"type": "openai", "model": "gpt-4o"})
|
||||
|
||||
print(f"You: {query}")
|
||||
import time
|
||||
|
||||
time.time()
|
||||
chat_response = chat.ask(
|
||||
query,
|
||||
top_k=20,
|
||||
recompute_beighbor_embeddings=True,
|
||||
complexity=32,
|
||||
beam_width=1,
|
||||
)
|
||||
time.time()
|
||||
# print(f"Time taken: {end_time - start_time} seconds")
|
||||
# highlight the answer
|
||||
print(f"Leann chat response: \033[36m{chat_response}\033[0m")
|
||||
|
||||
|
||||
async def main():
|
||||
# Parse command line arguments
|
||||
parser = argparse.ArgumentParser(description="LEANN Mail Reader - Create and query email index")
|
||||
# Remove --mail-path argument and auto-detect all Messages directories
|
||||
# Remove DEFAULT_MAIL_PATH
|
||||
parser.add_argument(
|
||||
"--index-dir",
|
||||
type=str,
|
||||
default="./mail_index",
|
||||
help="Directory to store the LEANN index (default: ./mail_index_leann_raw_text_all_dicts)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-emails",
|
||||
type=int,
|
||||
default=1000,
|
||||
help="Maximum number of emails to process (-1 means all)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--query",
|
||||
type=str,
|
||||
default="Give me some funny advertisement about apple or other companies",
|
||||
help="Single query to run (default: runs example queries)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--include-html",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Include HTML content in email processing (default: False)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--embedding-model",
|
||||
type=str,
|
||||
default="facebook/contriever",
|
||||
help="Embedding model to use (default: facebook/contriever)",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
print(f"args: {args}")
|
||||
|
||||
# Automatically find all Messages directories under the current user's Mail directory
|
||||
from examples.email_data.LEANN_email_reader import find_all_messages_directories
|
||||
|
||||
mail_path = get_mail_path()
|
||||
print(f"Searching for email data in: {mail_path}")
|
||||
messages_dirs = find_all_messages_directories(mail_path)
|
||||
# messages_dirs = find_all_messages_directories(DEFAULT_MAIL_PATH)
|
||||
# messages_dirs = [DEFAULT_MAIL_PATH]
|
||||
# messages_dirs = messages_dirs[:1]
|
||||
|
||||
print("len(messages_dirs): ", len(messages_dirs))
|
||||
|
||||
if not messages_dirs:
|
||||
print("No Messages directories found. Exiting.")
|
||||
return
|
||||
|
||||
INDEX_DIR = Path(args.index_dir)
|
||||
INDEX_PATH = str(INDEX_DIR / "mail_documents.leann")
|
||||
print(f"Index directory: {INDEX_DIR}")
|
||||
print(f"Found {len(messages_dirs)} Messages directories.")
|
||||
|
||||
# Create or load the LEANN index from all sources
|
||||
index_path = create_leann_index_from_multiple_sources(
|
||||
messages_dirs,
|
||||
INDEX_PATH,
|
||||
args.max_emails,
|
||||
args.include_html,
|
||||
args.embedding_model,
|
||||
)
|
||||
|
||||
if index_path:
|
||||
if args.query:
|
||||
# Run single query
|
||||
await query_leann_index(index_path, args.query)
|
||||
else:
|
||||
# Example queries
|
||||
queries = [
|
||||
"Hows Berkeley Graduate Student Instructor",
|
||||
"how's the icloud related advertisement saying",
|
||||
"Whats the number of class recommend to take per semester for incoming EECS students",
|
||||
]
|
||||
for query in queries:
|
||||
print("\n" + "=" * 60)
|
||||
await query_leann_index(index_path, query)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
@@ -1,135 +0,0 @@
|
||||
import argparse
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
# Add the project root to Python path so we can import from examples
|
||||
project_root = Path(__file__).parent.parent
|
||||
sys.path.insert(0, str(project_root))
|
||||
|
||||
import torch
|
||||
from llama_index.core import StorageContext, VectorStoreIndex
|
||||
from llama_index.core.node_parser import SentenceSplitter
|
||||
|
||||
# --- EMBEDDING MODEL ---
|
||||
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
||||
|
||||
# --- END EMBEDDING MODEL ---
|
||||
# Import EmlxReader from the new module
|
||||
from examples.email_data.LEANN_email_reader import EmlxReader
|
||||
|
||||
|
||||
def create_and_save_index(
|
||||
mail_path: str,
|
||||
save_dir: str = "mail_index_embedded",
|
||||
max_count: int = 1000,
|
||||
include_html: bool = False,
|
||||
):
|
||||
print("Creating index from mail data with embedded metadata...")
|
||||
documents = EmlxReader(include_html=include_html).load_data(mail_path, max_count=max_count)
|
||||
if not documents:
|
||||
print("No documents loaded. Exiting.")
|
||||
return None
|
||||
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25)
|
||||
# Use facebook/contriever as the embedder
|
||||
embed_model = HuggingFaceEmbedding(model_name="facebook/contriever")
|
||||
# set on device
|
||||
|
||||
if torch.cuda.is_available():
|
||||
embed_model._model.to("cuda")
|
||||
# set mps
|
||||
elif torch.backends.mps.is_available():
|
||||
embed_model._model.to("mps")
|
||||
else:
|
||||
embed_model._model.to("cpu")
|
||||
index = VectorStoreIndex.from_documents(
|
||||
documents, transformations=[text_splitter], embed_model=embed_model
|
||||
)
|
||||
os.makedirs(save_dir, exist_ok=True)
|
||||
index.storage_context.persist(persist_dir=save_dir)
|
||||
print(f"Index saved to {save_dir}")
|
||||
return index
|
||||
|
||||
|
||||
def load_index(save_dir: str = "mail_index_embedded"):
|
||||
try:
|
||||
storage_context = StorageContext.from_defaults(persist_dir=save_dir)
|
||||
index = VectorStoreIndex.from_vector_store(
|
||||
storage_context.vector_store, storage_context=storage_context
|
||||
)
|
||||
print(f"Index loaded from {save_dir}")
|
||||
return index
|
||||
except Exception as e:
|
||||
print(f"Error loading index: {e}")
|
||||
return None
|
||||
|
||||
|
||||
def query_index(index, query: str):
|
||||
if index is None:
|
||||
print("No index available for querying.")
|
||||
return
|
||||
query_engine = index.as_query_engine()
|
||||
response = query_engine.query(query)
|
||||
print(f"Query: {query}")
|
||||
print(f"Response: {response}")
|
||||
|
||||
|
||||
def main():
|
||||
# Parse command line arguments
|
||||
parser = argparse.ArgumentParser(
|
||||
description="LlamaIndex Mail Reader - Create and query email index"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--mail-path",
|
||||
type=str,
|
||||
default="/Users/yichuan/Library/Mail/V10/0FCA0879-FD8C-4B7E-83BF-FDDA930791C5/[Gmail].mbox/All Mail.mbox/78BA5BE1-8819-4F9A-9613-EB63772F1DD0/Data/9/Messages",
|
||||
help="Path to mail data directory",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--save-dir",
|
||||
type=str,
|
||||
default="mail_index_embedded",
|
||||
help="Directory to store the index (default: mail_index_embedded)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-emails",
|
||||
type=int,
|
||||
default=10000,
|
||||
help="Maximum number of emails to process",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--include-html",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Include HTML content in email processing (default: False)",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
mail_path = args.mail_path
|
||||
save_dir = args.save_dir
|
||||
|
||||
if os.path.exists(save_dir) and os.path.exists(os.path.join(save_dir, "vector_store.json")):
|
||||
print("Loading existing index...")
|
||||
index = load_index(save_dir)
|
||||
else:
|
||||
print("Creating new index...")
|
||||
index = create_and_save_index(
|
||||
mail_path,
|
||||
save_dir,
|
||||
max_count=args.max_emails,
|
||||
include_html=args.include_html,
|
||||
)
|
||||
if index:
|
||||
queries = [
|
||||
"Hows Berkeley Graduate Student Instructor",
|
||||
"how's the icloud related advertisement saying",
|
||||
"Whats the number of class recommend to take per semester for incoming EECS students",
|
||||
]
|
||||
for query in queries:
|
||||
print("\n" + "=" * 50)
|
||||
query_index(index, query)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,136 +0,0 @@
|
||||
import argparse
|
||||
import asyncio
|
||||
from pathlib import Path
|
||||
|
||||
import dotenv
|
||||
from leann.api import LeannBuilder, LeannChat
|
||||
from llama_index.core import SimpleDirectoryReader
|
||||
from llama_index.core.node_parser import SentenceSplitter
|
||||
|
||||
dotenv.load_dotenv()
|
||||
|
||||
|
||||
async def main(args):
|
||||
INDEX_DIR = Path(args.index_dir)
|
||||
INDEX_PATH = str(INDEX_DIR / "pdf_documents.leann")
|
||||
|
||||
if not INDEX_DIR.exists():
|
||||
node_parser = SentenceSplitter(
|
||||
chunk_size=256, chunk_overlap=128, separator=" ", paragraph_separator="\n\n"
|
||||
)
|
||||
|
||||
print("Loading documents...")
|
||||
documents = SimpleDirectoryReader(
|
||||
args.data_dir,
|
||||
recursive=True,
|
||||
encoding="utf-8",
|
||||
required_exts=[".pdf", ".txt", ".md"],
|
||||
).load_data(show_progress=True)
|
||||
print("Documents loaded.")
|
||||
all_texts = []
|
||||
for doc in documents:
|
||||
nodes = node_parser.get_nodes_from_documents([doc])
|
||||
if nodes:
|
||||
all_texts.extend(node.get_content() for node in nodes)
|
||||
|
||||
print("--- Index directory not found, building new index ---")
|
||||
|
||||
print("\n[PHASE 1] Building Leann index...")
|
||||
|
||||
# LeannBuilder now automatically detects normalized embeddings and sets appropriate distance metric
|
||||
print(f"Using {args.embedding_model} with {args.embedding_mode} mode")
|
||||
|
||||
# Use HNSW backend for better macOS compatibility
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model=args.embedding_model,
|
||||
embedding_mode=args.embedding_mode,
|
||||
# distance_metric is automatically set based on embedding model
|
||||
graph_degree=32,
|
||||
complexity=64,
|
||||
is_compact=True,
|
||||
is_recompute=True,
|
||||
num_threads=1, # Force single-threaded mode
|
||||
)
|
||||
|
||||
print(f"Loaded {len(all_texts)} text chunks from documents.")
|
||||
for chunk_text in all_texts:
|
||||
builder.add_text(chunk_text)
|
||||
|
||||
builder.build_index(INDEX_PATH)
|
||||
print(f"\nLeann index built at {INDEX_PATH}!")
|
||||
else:
|
||||
print(f"--- Using existing index at {INDEX_DIR} ---")
|
||||
|
||||
print("\n[PHASE 2] Starting Leann chat session...")
|
||||
|
||||
llm_config = {"type": "hf", "model": "Qwen/Qwen3-4B"}
|
||||
llm_config = {"type": "ollama", "model": "qwen3:8b"}
|
||||
llm_config = {"type": "openai", "model": "gpt-4o"}
|
||||
|
||||
chat = LeannChat(index_path=INDEX_PATH, llm_config=llm_config)
|
||||
# query = (
|
||||
# "什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发"
|
||||
# )
|
||||
query = args.query
|
||||
|
||||
print(f"You: {query}")
|
||||
chat_response = chat.ask(query, top_k=20, recompute_embeddings=True, complexity=32)
|
||||
print(f"Leann chat response: \033[36m{chat_response}\033[0m")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run Leann Chat with various LLM backends.")
|
||||
parser.add_argument(
|
||||
"--llm",
|
||||
type=str,
|
||||
default="hf",
|
||||
choices=["simulated", "ollama", "hf", "openai"],
|
||||
help="The LLM backend to use.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model",
|
||||
type=str,
|
||||
default="Qwen/Qwen3-0.6B",
|
||||
help="The model name to use (e.g., 'llama3:8b' for ollama, 'deepseek-ai/deepseek-llm-7b-chat' for hf, 'gpt-4o' for openai).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--embedding-model",
|
||||
type=str,
|
||||
default="facebook/contriever",
|
||||
help="The embedding model to use (e.g., 'facebook/contriever', 'text-embedding-3-small').",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--embedding-mode",
|
||||
type=str,
|
||||
default="sentence-transformers",
|
||||
choices=["sentence-transformers", "openai", "mlx"],
|
||||
help="The embedding backend mode.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--host",
|
||||
type=str,
|
||||
default="http://localhost:11434",
|
||||
help="The host for the Ollama API.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--index-dir",
|
||||
type=str,
|
||||
default="./test_doc_files",
|
||||
help="Directory where the Leann index will be stored.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--data-dir",
|
||||
type=str,
|
||||
default="examples/data",
|
||||
help="Directory containing documents to index (PDF, TXT, MD files).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--query",
|
||||
type=str,
|
||||
default="Based on the paper, what are the main techniques LEANN explores to reduce the storage overhead and DLPM explore to achieve Fairness and Efiiciency trade-off?",
|
||||
help="The query to ask the Leann chat system.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
asyncio.run(main(args))
|
||||
@@ -1,360 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Multi-Vector Aggregator for Fat Embeddings
|
||||
==========================================
|
||||
|
||||
This module implements aggregation strategies for multi-vector embeddings,
|
||||
similar to ColPali's approach where multiple patch vectors represent a single document.
|
||||
|
||||
Key features:
|
||||
- MaxSim aggregation (take maximum similarity across patches)
|
||||
- Voting-based aggregation (count patch matches)
|
||||
- Weighted aggregation (attention-score weighted)
|
||||
- Spatial clustering of matching patches
|
||||
- Document-level result consolidation
|
||||
"""
|
||||
|
||||
from collections import defaultdict
|
||||
from dataclasses import dataclass
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
@dataclass
|
||||
class PatchResult:
|
||||
"""Represents a single patch search result."""
|
||||
|
||||
patch_id: int
|
||||
image_name: str
|
||||
image_path: str
|
||||
coordinates: tuple[int, int, int, int] # (x1, y1, x2, y2)
|
||||
score: float
|
||||
attention_score: float
|
||||
scale: float
|
||||
metadata: dict[str, Any]
|
||||
|
||||
|
||||
@dataclass
|
||||
class AggregatedResult:
|
||||
"""Represents an aggregated document-level result."""
|
||||
|
||||
image_name: str
|
||||
image_path: str
|
||||
doc_score: float
|
||||
patch_count: int
|
||||
best_patch: PatchResult
|
||||
all_patches: list[PatchResult]
|
||||
aggregation_method: str
|
||||
spatial_clusters: list[list[PatchResult]] | None = None
|
||||
|
||||
|
||||
class MultiVectorAggregator:
|
||||
"""
|
||||
Aggregates multiple patch-level results into document-level results.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
aggregation_method: str = "maxsim",
|
||||
spatial_clustering: bool = True,
|
||||
cluster_distance_threshold: float = 100.0,
|
||||
):
|
||||
"""
|
||||
Initialize the aggregator.
|
||||
|
||||
Args:
|
||||
aggregation_method: "maxsim", "voting", "weighted", or "mean"
|
||||
spatial_clustering: Whether to cluster spatially close patches
|
||||
cluster_distance_threshold: Distance threshold for spatial clustering
|
||||
"""
|
||||
self.aggregation_method = aggregation_method
|
||||
self.spatial_clustering = spatial_clustering
|
||||
self.cluster_distance_threshold = cluster_distance_threshold
|
||||
|
||||
def aggregate_results(
|
||||
self, search_results: list[dict[str, Any]], top_k: int = 10
|
||||
) -> list[AggregatedResult]:
|
||||
"""
|
||||
Aggregate patch-level search results into document-level results.
|
||||
|
||||
Args:
|
||||
search_results: List of search results from LeannSearcher
|
||||
top_k: Number of top documents to return
|
||||
|
||||
Returns:
|
||||
List of aggregated document results
|
||||
"""
|
||||
# Group results by image
|
||||
image_groups = defaultdict(list)
|
||||
|
||||
for result in search_results:
|
||||
metadata = result.metadata
|
||||
if "image_name" in metadata and "patch_id" in metadata:
|
||||
patch_result = PatchResult(
|
||||
patch_id=metadata["patch_id"],
|
||||
image_name=metadata["image_name"],
|
||||
image_path=metadata["image_path"],
|
||||
coordinates=tuple(metadata["coordinates"]),
|
||||
score=result.score,
|
||||
attention_score=metadata.get("attention_score", 0.0),
|
||||
scale=metadata.get("scale", 1.0),
|
||||
metadata=metadata,
|
||||
)
|
||||
image_groups[metadata["image_name"]].append(patch_result)
|
||||
|
||||
# Aggregate each image group
|
||||
aggregated_results = []
|
||||
for image_name, patches in image_groups.items():
|
||||
if len(patches) == 0:
|
||||
continue
|
||||
|
||||
agg_result = self._aggregate_image_patches(image_name, patches)
|
||||
aggregated_results.append(agg_result)
|
||||
|
||||
# Sort by aggregated score and return top-k
|
||||
aggregated_results.sort(key=lambda x: x.doc_score, reverse=True)
|
||||
return aggregated_results[:top_k]
|
||||
|
||||
def _aggregate_image_patches(
|
||||
self, image_name: str, patches: list[PatchResult]
|
||||
) -> AggregatedResult:
|
||||
"""Aggregate patches for a single image."""
|
||||
|
||||
if self.aggregation_method == "maxsim":
|
||||
doc_score = max(patch.score for patch in patches)
|
||||
best_patch = max(patches, key=lambda p: p.score)
|
||||
|
||||
elif self.aggregation_method == "voting":
|
||||
# Count patches above threshold
|
||||
threshold = np.percentile([p.score for p in patches], 75)
|
||||
doc_score = sum(1 for patch in patches if patch.score >= threshold)
|
||||
best_patch = max(patches, key=lambda p: p.score)
|
||||
|
||||
elif self.aggregation_method == "weighted":
|
||||
# Weight by attention scores
|
||||
total_weighted_score = sum(p.score * p.attention_score for p in patches)
|
||||
total_weights = sum(p.attention_score for p in patches)
|
||||
doc_score = total_weighted_score / max(total_weights, 1e-8)
|
||||
best_patch = max(patches, key=lambda p: p.score * p.attention_score)
|
||||
|
||||
elif self.aggregation_method == "mean":
|
||||
doc_score = np.mean([patch.score for patch in patches])
|
||||
best_patch = max(patches, key=lambda p: p.score)
|
||||
|
||||
else:
|
||||
raise ValueError(f"Unknown aggregation method: {self.aggregation_method}")
|
||||
|
||||
# Spatial clustering if enabled
|
||||
spatial_clusters = None
|
||||
if self.spatial_clustering:
|
||||
spatial_clusters = self._cluster_patches_spatially(patches)
|
||||
|
||||
return AggregatedResult(
|
||||
image_name=image_name,
|
||||
image_path=patches[0].image_path,
|
||||
doc_score=float(doc_score),
|
||||
patch_count=len(patches),
|
||||
best_patch=best_patch,
|
||||
all_patches=sorted(patches, key=lambda p: p.score, reverse=True),
|
||||
aggregation_method=self.aggregation_method,
|
||||
spatial_clusters=spatial_clusters,
|
||||
)
|
||||
|
||||
def _cluster_patches_spatially(self, patches: list[PatchResult]) -> list[list[PatchResult]]:
|
||||
"""Cluster patches that are spatially close to each other."""
|
||||
if len(patches) <= 1:
|
||||
return [patches]
|
||||
|
||||
clusters = []
|
||||
remaining_patches = patches.copy()
|
||||
|
||||
while remaining_patches:
|
||||
# Start new cluster with highest scoring remaining patch
|
||||
seed_patch = max(remaining_patches, key=lambda p: p.score)
|
||||
current_cluster = [seed_patch]
|
||||
remaining_patches.remove(seed_patch)
|
||||
|
||||
# Add nearby patches to cluster
|
||||
added_to_cluster = True
|
||||
while added_to_cluster:
|
||||
added_to_cluster = False
|
||||
for patch in remaining_patches.copy():
|
||||
if self._is_patch_nearby(patch, current_cluster):
|
||||
current_cluster.append(patch)
|
||||
remaining_patches.remove(patch)
|
||||
added_to_cluster = True
|
||||
|
||||
clusters.append(current_cluster)
|
||||
|
||||
return sorted(clusters, key=lambda cluster: max(p.score for p in cluster), reverse=True)
|
||||
|
||||
def _is_patch_nearby(self, patch: PatchResult, cluster: list[PatchResult]) -> bool:
|
||||
"""Check if a patch is spatially close to any patch in the cluster."""
|
||||
patch_center = self._get_patch_center(patch.coordinates)
|
||||
|
||||
for cluster_patch in cluster:
|
||||
cluster_center = self._get_patch_center(cluster_patch.coordinates)
|
||||
distance = np.sqrt(
|
||||
(patch_center[0] - cluster_center[0]) ** 2
|
||||
+ (patch_center[1] - cluster_center[1]) ** 2
|
||||
)
|
||||
|
||||
if distance <= self.cluster_distance_threshold:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def _get_patch_center(self, coordinates: tuple[int, int, int, int]) -> tuple[float, float]:
|
||||
"""Get center point of a patch."""
|
||||
x1, y1, x2, y2 = coordinates
|
||||
return ((x1 + x2) / 2, (y1 + y2) / 2)
|
||||
|
||||
def print_aggregated_results(
|
||||
self, results: list[AggregatedResult], max_patches_per_doc: int = 3
|
||||
):
|
||||
"""Pretty print aggregated results."""
|
||||
print(f"\n🔍 Aggregated Results (method: {self.aggregation_method})")
|
||||
print("=" * 80)
|
||||
|
||||
for i, result in enumerate(results):
|
||||
print(f"\n{i + 1}. {result.image_name}")
|
||||
print(f" Doc Score: {result.doc_score:.4f} | Patches: {result.patch_count}")
|
||||
print(f" Path: {result.image_path}")
|
||||
|
||||
# Show best patch
|
||||
best = result.best_patch
|
||||
print(
|
||||
f" 🌟 Best Patch: #{best.patch_id} at {best.coordinates} (score: {best.score:.4f})"
|
||||
)
|
||||
|
||||
# Show top patches
|
||||
print(" 📍 Top Patches:")
|
||||
for j, patch in enumerate(result.all_patches[:max_patches_per_doc]):
|
||||
print(
|
||||
f" {j + 1}. Patch #{patch.patch_id}: {patch.score:.4f} at {patch.coordinates}"
|
||||
)
|
||||
|
||||
# Show spatial clusters if available
|
||||
if result.spatial_clusters and len(result.spatial_clusters) > 1:
|
||||
print(f" 🗂️ Spatial Clusters: {len(result.spatial_clusters)}")
|
||||
for j, cluster in enumerate(result.spatial_clusters[:2]): # Show top 2 clusters
|
||||
cluster_score = max(p.score for p in cluster)
|
||||
print(
|
||||
f" Cluster {j + 1}: {len(cluster)} patches (best: {cluster_score:.4f})"
|
||||
)
|
||||
|
||||
|
||||
def demo_aggregation():
|
||||
"""Demonstrate the multi-vector aggregation functionality."""
|
||||
print("=== Multi-Vector Aggregation Demo ===")
|
||||
|
||||
# Simulate some patch-level search results
|
||||
# In real usage, these would come from LeannSearcher.search()
|
||||
|
||||
class MockResult:
|
||||
def __init__(self, score, metadata):
|
||||
self.score = score
|
||||
self.metadata = metadata
|
||||
|
||||
# Simulate results for 2 images with multiple patches each
|
||||
mock_results = [
|
||||
# Image 1: cats_and_kitchen.jpg - 4 patches
|
||||
MockResult(
|
||||
0.85,
|
||||
{
|
||||
"image_name": "cats_and_kitchen.jpg",
|
||||
"image_path": "/path/to/cats_and_kitchen.jpg",
|
||||
"patch_id": 3,
|
||||
"coordinates": [100, 50, 224, 174], # Kitchen area
|
||||
"attention_score": 0.92,
|
||||
"scale": 1.0,
|
||||
},
|
||||
),
|
||||
MockResult(
|
||||
0.78,
|
||||
{
|
||||
"image_name": "cats_and_kitchen.jpg",
|
||||
"image_path": "/path/to/cats_and_kitchen.jpg",
|
||||
"patch_id": 7,
|
||||
"coordinates": [200, 300, 324, 424], # Cat area
|
||||
"attention_score": 0.88,
|
||||
"scale": 1.0,
|
||||
},
|
||||
),
|
||||
MockResult(
|
||||
0.72,
|
||||
{
|
||||
"image_name": "cats_and_kitchen.jpg",
|
||||
"image_path": "/path/to/cats_and_kitchen.jpg",
|
||||
"patch_id": 12,
|
||||
"coordinates": [150, 100, 274, 224], # Appliances
|
||||
"attention_score": 0.75,
|
||||
"scale": 1.0,
|
||||
},
|
||||
),
|
||||
MockResult(
|
||||
0.65,
|
||||
{
|
||||
"image_name": "cats_and_kitchen.jpg",
|
||||
"image_path": "/path/to/cats_and_kitchen.jpg",
|
||||
"patch_id": 15,
|
||||
"coordinates": [50, 250, 174, 374], # Furniture
|
||||
"attention_score": 0.70,
|
||||
"scale": 1.0,
|
||||
},
|
||||
),
|
||||
# Image 2: city_street.jpg - 3 patches
|
||||
MockResult(
|
||||
0.68,
|
||||
{
|
||||
"image_name": "city_street.jpg",
|
||||
"image_path": "/path/to/city_street.jpg",
|
||||
"patch_id": 2,
|
||||
"coordinates": [300, 100, 424, 224], # Buildings
|
||||
"attention_score": 0.80,
|
||||
"scale": 1.0,
|
||||
},
|
||||
),
|
||||
MockResult(
|
||||
0.62,
|
||||
{
|
||||
"image_name": "city_street.jpg",
|
||||
"image_path": "/path/to/city_street.jpg",
|
||||
"patch_id": 8,
|
||||
"coordinates": [100, 350, 224, 474], # Street level
|
||||
"attention_score": 0.75,
|
||||
"scale": 1.0,
|
||||
},
|
||||
),
|
||||
MockResult(
|
||||
0.55,
|
||||
{
|
||||
"image_name": "city_street.jpg",
|
||||
"image_path": "/path/to/city_street.jpg",
|
||||
"patch_id": 11,
|
||||
"coordinates": [400, 200, 524, 324], # Sky area
|
||||
"attention_score": 0.60,
|
||||
"scale": 1.0,
|
||||
},
|
||||
),
|
||||
]
|
||||
|
||||
# Test different aggregation methods
|
||||
methods = ["maxsim", "voting", "weighted", "mean"]
|
||||
|
||||
for method in methods:
|
||||
print(f"\n{'=' * 20} {method.upper()} AGGREGATION {'=' * 20}")
|
||||
|
||||
aggregator = MultiVectorAggregator(
|
||||
aggregation_method=method,
|
||||
spatial_clustering=True,
|
||||
cluster_distance_threshold=100.0,
|
||||
)
|
||||
|
||||
aggregated = aggregator.aggregate_results(mock_results, top_k=5)
|
||||
aggregator.print_aggregated_results(aggregated)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
demo_aggregation()
|
||||
@@ -1,113 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
OpenAI Embedding Example
|
||||
|
||||
Complete example showing how to build and search with OpenAI embeddings using HNSW backend.
|
||||
"""
|
||||
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import dotenv
|
||||
from leann.api import LeannBuilder, LeannSearcher
|
||||
|
||||
# Load environment variables
|
||||
dotenv.load_dotenv()
|
||||
|
||||
|
||||
def main():
|
||||
# Check if OpenAI API key is available
|
||||
api_key = os.getenv("OPENAI_API_KEY")
|
||||
if not api_key:
|
||||
print("ERROR: OPENAI_API_KEY environment variable not set")
|
||||
return False
|
||||
|
||||
print(f"✅ OpenAI API key found: {api_key[:10]}...")
|
||||
|
||||
# Sample texts
|
||||
sample_texts = [
|
||||
"Machine learning is a powerful technology that enables computers to learn from data.",
|
||||
"Natural language processing helps computers understand and generate human language.",
|
||||
"Deep learning uses neural networks with multiple layers to solve complex problems.",
|
||||
"Computer vision allows machines to interpret and understand visual information.",
|
||||
"Reinforcement learning trains agents to make decisions through trial and error.",
|
||||
"Data science combines statistics, math, and programming to extract insights from data.",
|
||||
"Artificial intelligence aims to create machines that can perform human-like tasks.",
|
||||
"Python is a popular programming language used extensively in data science and AI.",
|
||||
"Neural networks are inspired by the structure and function of the human brain.",
|
||||
"Big data refers to extremely large datasets that require special tools to process.",
|
||||
]
|
||||
|
||||
INDEX_DIR = Path("./simple_openai_test_index")
|
||||
INDEX_PATH = str(INDEX_DIR / "simple_test.leann")
|
||||
|
||||
print("\n=== Building Index with OpenAI Embeddings ===")
|
||||
print(f"Index path: {INDEX_PATH}")
|
||||
|
||||
try:
|
||||
# Use proper configuration for OpenAI embeddings
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model="text-embedding-3-small",
|
||||
embedding_mode="openai",
|
||||
# HNSW settings for OpenAI embeddings
|
||||
M=16, # Smaller graph degree
|
||||
efConstruction=64, # Smaller construction complexity
|
||||
is_compact=True, # Enable compact storage for recompute
|
||||
is_recompute=True, # MUST enable for OpenAI embeddings
|
||||
num_threads=1,
|
||||
)
|
||||
|
||||
print(f"Adding {len(sample_texts)} texts to the index...")
|
||||
for i, text in enumerate(sample_texts):
|
||||
metadata = {"id": f"doc_{i}", "topic": "AI"}
|
||||
builder.add_text(text, metadata)
|
||||
|
||||
print("Building index...")
|
||||
builder.build_index(INDEX_PATH)
|
||||
print("✅ Index built successfully!")
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Error building index: {e}")
|
||||
import traceback
|
||||
|
||||
traceback.print_exc()
|
||||
return False
|
||||
|
||||
print("\n=== Testing Search ===")
|
||||
|
||||
try:
|
||||
searcher = LeannSearcher(INDEX_PATH)
|
||||
|
||||
test_queries = [
|
||||
"What is machine learning?",
|
||||
"How do neural networks work?",
|
||||
"Programming languages for data science",
|
||||
]
|
||||
|
||||
for query in test_queries:
|
||||
print(f"\n🔍 Query: '{query}'")
|
||||
results = searcher.search(query, top_k=3)
|
||||
|
||||
print(f" Found {len(results)} results:")
|
||||
for i, result in enumerate(results):
|
||||
print(f" {i + 1}. Score: {result.score:.4f}")
|
||||
print(f" Text: {result.text[:80]}...")
|
||||
|
||||
print("\n✅ Search test completed successfully!")
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Error during search: {e}")
|
||||
import traceback
|
||||
|
||||
traceback.print_exc()
|
||||
return False
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
success = main()
|
||||
if success:
|
||||
print("\n🎉 Simple OpenAI index test completed successfully!")
|
||||
else:
|
||||
print("\n💥 Simple OpenAI index test failed!")
|
||||
@@ -1,23 +0,0 @@
|
||||
import asyncio
|
||||
from pathlib import Path
|
||||
|
||||
from leann.api import LeannChat
|
||||
|
||||
INDEX_DIR = Path("./test_pdf_index_huawei")
|
||||
INDEX_PATH = str(INDEX_DIR / "pdf_documents.leann")
|
||||
|
||||
|
||||
async def main():
|
||||
print("\n[PHASE 2] Starting Leann chat session...")
|
||||
chat = LeannChat(index_path=INDEX_PATH)
|
||||
query = "What is the main idea of RL and give me 5 exapmle of classic RL algorithms?"
|
||||
query = "Based on the paper, what are the main techniques LEANN explores to reduce the storage overhead and DLPM explore to achieve Fairness and Efiiciency trade-off?"
|
||||
# query = "什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发"
|
||||
response = chat.ask(
|
||||
query, top_k=20, recompute_beighbor_embeddings=True, complexity=32, beam_width=1
|
||||
)
|
||||
print(f"\n[PHASE 2] Response: {response}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
250
examples/spoiler_free_book_rag.py
Normal file
250
examples/spoiler_free_book_rag.py
Normal file
@@ -0,0 +1,250 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Spoiler-Free Book RAG Example using LEANN Metadata Filtering
|
||||
|
||||
This example demonstrates how to use LEANN's metadata filtering to create
|
||||
a spoiler-free book RAG system where users can search for information
|
||||
up to a specific chapter they've read.
|
||||
|
||||
Usage:
|
||||
python spoiler_free_book_rag.py
|
||||
"""
|
||||
|
||||
import os
|
||||
import sys
|
||||
from typing import Any, Optional
|
||||
|
||||
# Add LEANN to path (adjust path as needed)
|
||||
sys.path.insert(0, os.path.join(os.path.dirname(__file__), "../packages/leann-core/src"))
|
||||
|
||||
from leann.api import LeannBuilder, LeannSearcher
|
||||
|
||||
|
||||
def chunk_book_with_metadata(book_title: str = "Sample Book") -> list[dict[str, Any]]:
|
||||
"""
|
||||
Create sample book chunks with metadata for demonstration.
|
||||
|
||||
In a real implementation, this would parse actual book files (epub, txt, etc.)
|
||||
and extract chapter boundaries, character mentions, etc.
|
||||
|
||||
Args:
|
||||
book_title: Title of the book
|
||||
|
||||
Returns:
|
||||
List of chunk dictionaries with text and metadata
|
||||
"""
|
||||
# Sample book chunks with metadata
|
||||
# In practice, you'd use proper text processing libraries
|
||||
|
||||
sample_chunks = [
|
||||
{
|
||||
"text": "Alice was beginning to get very tired of sitting by her sister on the bank, and of having nothing to do.",
|
||||
"metadata": {
|
||||
"book": book_title,
|
||||
"chapter": 1,
|
||||
"page": 1,
|
||||
"characters": ["Alice", "Sister"],
|
||||
"themes": ["boredom", "curiosity"],
|
||||
"location": "riverbank",
|
||||
},
|
||||
},
|
||||
{
|
||||
"text": "So she was considering in her own mind (as well as she could, for the hot day made her feel very sleepy and stupid), whether the pleasure of making a daisy-chain would be worth the trouble of getting up and picking the daisies, when suddenly a White Rabbit with pink eyes ran close by her.",
|
||||
"metadata": {
|
||||
"book": book_title,
|
||||
"chapter": 1,
|
||||
"page": 2,
|
||||
"characters": ["Alice", "White Rabbit"],
|
||||
"themes": ["decision", "surprise", "magic"],
|
||||
"location": "riverbank",
|
||||
},
|
||||
},
|
||||
{
|
||||
"text": "Alice found herself falling down a very deep well. Either the well was very deep, or she fell very slowly, for she had plenty of time as she fell to look about her and to wonder what was going to happen next.",
|
||||
"metadata": {
|
||||
"book": book_title,
|
||||
"chapter": 2,
|
||||
"page": 15,
|
||||
"characters": ["Alice"],
|
||||
"themes": ["falling", "wonder", "transformation"],
|
||||
"location": "rabbit hole",
|
||||
},
|
||||
},
|
||||
{
|
||||
"text": "Alice meets the Cheshire Cat, who tells her that everyone in Wonderland is mad, including Alice herself.",
|
||||
"metadata": {
|
||||
"book": book_title,
|
||||
"chapter": 6,
|
||||
"page": 85,
|
||||
"characters": ["Alice", "Cheshire Cat"],
|
||||
"themes": ["madness", "philosophy", "identity"],
|
||||
"location": "Duchess's house",
|
||||
},
|
||||
},
|
||||
{
|
||||
"text": "At the Queen's croquet ground, Alice witnesses the absurd trial that reveals the arbitrary nature of Wonderland's justice system.",
|
||||
"metadata": {
|
||||
"book": book_title,
|
||||
"chapter": 8,
|
||||
"page": 120,
|
||||
"characters": ["Alice", "Queen of Hearts", "King of Hearts"],
|
||||
"themes": ["justice", "absurdity", "authority"],
|
||||
"location": "Queen's court",
|
||||
},
|
||||
},
|
||||
{
|
||||
"text": "Alice realizes that Wonderland was all a dream, even the Rabbit, as she wakes up on the riverbank next to her sister.",
|
||||
"metadata": {
|
||||
"book": book_title,
|
||||
"chapter": 12,
|
||||
"page": 180,
|
||||
"characters": ["Alice", "Sister", "Rabbit"],
|
||||
"themes": ["revelation", "reality", "growth"],
|
||||
"location": "riverbank",
|
||||
},
|
||||
},
|
||||
]
|
||||
|
||||
return sample_chunks
|
||||
|
||||
|
||||
def build_spoiler_free_index(book_chunks: list[dict[str, Any]], index_name: str) -> str:
|
||||
"""
|
||||
Build a LEANN index with book chunks that include spoiler metadata.
|
||||
|
||||
Args:
|
||||
book_chunks: List of book chunks with metadata
|
||||
index_name: Name for the index
|
||||
|
||||
Returns:
|
||||
Path to the built index
|
||||
"""
|
||||
print(f"📚 Building spoiler-free book index: {index_name}")
|
||||
|
||||
# Initialize LEANN builder
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw", embedding_model="text-embedding-3-small", embedding_mode="openai"
|
||||
)
|
||||
|
||||
# Add each chunk with its metadata
|
||||
for chunk in book_chunks:
|
||||
builder.add_text(text=chunk["text"], metadata=chunk["metadata"])
|
||||
|
||||
# Build the index
|
||||
index_path = f"{index_name}_book_index"
|
||||
builder.build_index(index_path)
|
||||
|
||||
print(f"✅ Index built successfully: {index_path}")
|
||||
return index_path
|
||||
|
||||
|
||||
def spoiler_free_search(
|
||||
index_path: str,
|
||||
query: str,
|
||||
max_chapter: int,
|
||||
character_filter: Optional[list[str]] = None,
|
||||
) -> list[dict[str, Any]]:
|
||||
"""
|
||||
Perform a spoiler-free search on the book index.
|
||||
|
||||
Args:
|
||||
index_path: Path to the LEANN index
|
||||
query: Search query
|
||||
max_chapter: Maximum chapter number to include
|
||||
character_filter: Optional list of characters to focus on
|
||||
|
||||
Returns:
|
||||
List of search results safe for the reader
|
||||
"""
|
||||
print(f"🔍 Searching: '{query}' (up to chapter {max_chapter})")
|
||||
|
||||
searcher = LeannSearcher(index_path)
|
||||
|
||||
metadata_filters = {"chapter": {"<=": max_chapter}}
|
||||
|
||||
if character_filter:
|
||||
metadata_filters["characters"] = {"contains": character_filter[0]}
|
||||
|
||||
results = searcher.search(query=query, top_k=10, metadata_filters=metadata_filters)
|
||||
|
||||
return results
|
||||
|
||||
|
||||
def demo_spoiler_free_rag():
|
||||
"""
|
||||
Demonstrate the spoiler-free book RAG system.
|
||||
"""
|
||||
print("🎭 Spoiler-Free Book RAG Demo")
|
||||
print("=" * 40)
|
||||
|
||||
# Step 1: Prepare book data
|
||||
book_title = "Alice's Adventures in Wonderland"
|
||||
book_chunks = chunk_book_with_metadata(book_title)
|
||||
|
||||
print(f"📖 Loaded {len(book_chunks)} chunks from '{book_title}'")
|
||||
|
||||
# Step 2: Build the index (in practice, this would be done once)
|
||||
try:
|
||||
index_path = build_spoiler_free_index(book_chunks, "alice_wonderland")
|
||||
except Exception as e:
|
||||
print(f"❌ Failed to build index (likely missing dependencies): {e}")
|
||||
print(
|
||||
"💡 This demo shows the filtering logic - actual indexing requires LEANN dependencies"
|
||||
)
|
||||
return
|
||||
|
||||
# Step 3: Demonstrate various spoiler-free searches
|
||||
search_scenarios = [
|
||||
{
|
||||
"description": "Reader who has only read Chapter 1",
|
||||
"query": "What can you tell me about the rabbit?",
|
||||
"max_chapter": 1,
|
||||
},
|
||||
{
|
||||
"description": "Reader who has read up to Chapter 5",
|
||||
"query": "Tell me about Alice's adventures",
|
||||
"max_chapter": 5,
|
||||
},
|
||||
{
|
||||
"description": "Reader who has read most of the book",
|
||||
"query": "What does the Cheshire Cat represent?",
|
||||
"max_chapter": 10,
|
||||
},
|
||||
{
|
||||
"description": "Reader who has read the whole book",
|
||||
"query": "What can you tell me about the rabbit?",
|
||||
"max_chapter": 12,
|
||||
},
|
||||
]
|
||||
|
||||
for scenario in search_scenarios:
|
||||
print(f"\n📚 Scenario: {scenario['description']}")
|
||||
print(f" Query: {scenario['query']}")
|
||||
|
||||
try:
|
||||
results = spoiler_free_search(
|
||||
index_path=index_path,
|
||||
query=scenario["query"],
|
||||
max_chapter=scenario["max_chapter"],
|
||||
)
|
||||
|
||||
print(f" 📄 Found {len(results)} results:")
|
||||
for i, result in enumerate(results[:3], 1): # Show top 3
|
||||
chapter = result.metadata.get("chapter", "?")
|
||||
location = result.metadata.get("location", "?")
|
||||
print(f" {i}. Chapter {chapter} ({location}): {result.text[:80]}...")
|
||||
|
||||
except Exception as e:
|
||||
print(f" ❌ Search failed: {e}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print("📚 LEANN Spoiler-Free Book RAG Example")
|
||||
print("=====================================")
|
||||
|
||||
try:
|
||||
demo_spoiler_free_rag()
|
||||
except ImportError as e:
|
||||
print(f"❌ Cannot run demo due to missing dependencies: {e}")
|
||||
except Exception as e:
|
||||
print(f"❌ Error running demo: {e}")
|
||||
@@ -1,320 +0,0 @@
|
||||
import argparse
|
||||
import asyncio
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import dotenv
|
||||
from leann.api import LeannBuilder, LeannChat
|
||||
from llama_index.core.node_parser import SentenceSplitter
|
||||
|
||||
dotenv.load_dotenv()
|
||||
|
||||
# Default WeChat export directory
|
||||
DEFAULT_WECHAT_EXPORT_DIR = "./wechat_export_direct"
|
||||
|
||||
|
||||
def create_leann_index_from_multiple_wechat_exports(
|
||||
export_dirs: list[Path],
|
||||
index_path: str = "wechat_history_index.leann",
|
||||
max_count: int = -1,
|
||||
):
|
||||
"""
|
||||
Create LEANN index from multiple WeChat export data sources.
|
||||
|
||||
Args:
|
||||
export_dirs: List of Path objects pointing to WeChat export directories
|
||||
index_path: Path to save the LEANN index
|
||||
max_count: Maximum number of chat entries to process per export
|
||||
"""
|
||||
print("Creating LEANN index from multiple WeChat export data sources...")
|
||||
|
||||
# Load documents using WeChatHistoryReader from history_data
|
||||
from history_data.wechat_history import WeChatHistoryReader
|
||||
|
||||
reader = WeChatHistoryReader()
|
||||
|
||||
INDEX_DIR = Path(index_path).parent
|
||||
|
||||
if not INDEX_DIR.exists():
|
||||
print("--- Index directory not found, building new index ---")
|
||||
all_documents = []
|
||||
total_processed = 0
|
||||
|
||||
# Process each WeChat export directory
|
||||
for i, export_dir in enumerate(export_dirs):
|
||||
print(f"\nProcessing WeChat export {i + 1}/{len(export_dirs)}: {export_dir}")
|
||||
|
||||
try:
|
||||
documents = reader.load_data(
|
||||
wechat_export_dir=str(export_dir),
|
||||
max_count=max_count,
|
||||
concatenate_messages=True, # Disable concatenation - one message per document
|
||||
)
|
||||
if documents:
|
||||
print(f"Loaded {len(documents)} chat documents from {export_dir}")
|
||||
all_documents.extend(documents)
|
||||
total_processed += len(documents)
|
||||
|
||||
# Check if we've reached the max count
|
||||
if max_count > 0 and total_processed >= max_count:
|
||||
print(f"Reached max count of {max_count} documents")
|
||||
break
|
||||
else:
|
||||
print(f"No documents loaded from {export_dir}")
|
||||
except Exception as e:
|
||||
print(f"Error processing {export_dir}: {e}")
|
||||
continue
|
||||
|
||||
if not all_documents:
|
||||
print("No documents loaded from any source. Exiting.")
|
||||
return None
|
||||
|
||||
print(
|
||||
f"\nTotal loaded {len(all_documents)} chat documents from {len(export_dirs)} exports and starting to split them into chunks"
|
||||
)
|
||||
|
||||
# Create text splitter with 256 chunk size
|
||||
text_splitter = SentenceSplitter(chunk_size=192, chunk_overlap=64)
|
||||
|
||||
# Convert Documents to text strings and chunk them
|
||||
all_texts = []
|
||||
for doc in all_documents:
|
||||
# Split the document into chunks
|
||||
nodes = text_splitter.get_nodes_from_documents([doc])
|
||||
for node in nodes:
|
||||
text = (
|
||||
"[Contact] means the message is from: "
|
||||
+ doc.metadata["contact_name"]
|
||||
+ "\n"
|
||||
+ node.get_content()
|
||||
)
|
||||
all_texts.append(text)
|
||||
|
||||
print(
|
||||
f"Finished splitting {len(all_documents)} documents into {len(all_texts)} text chunks"
|
||||
)
|
||||
|
||||
# Create LEANN index directory
|
||||
print("--- Index directory not found, building new index ---")
|
||||
INDEX_DIR.mkdir(exist_ok=True)
|
||||
|
||||
print("--- Building new LEANN index ---")
|
||||
|
||||
print("\n[PHASE 1] Building Leann index...")
|
||||
|
||||
# Use HNSW backend for better macOS compatibility
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model="Qwen/Qwen3-Embedding-0.6B",
|
||||
graph_degree=32,
|
||||
complexity=64,
|
||||
is_compact=True,
|
||||
is_recompute=True,
|
||||
num_threads=1, # Force single-threaded mode
|
||||
)
|
||||
|
||||
print(f"Adding {len(all_texts)} chat chunks to index...")
|
||||
for chunk_text in all_texts:
|
||||
builder.add_text(chunk_text)
|
||||
|
||||
builder.build_index(index_path)
|
||||
print(f"\nLEANN index built at {index_path}!")
|
||||
else:
|
||||
print(f"--- Using existing index at {INDEX_DIR} ---")
|
||||
|
||||
return index_path
|
||||
|
||||
|
||||
def create_leann_index(
|
||||
export_dir: str | None = None,
|
||||
index_path: str = "wechat_history_index.leann",
|
||||
max_count: int = 1000,
|
||||
):
|
||||
"""
|
||||
Create LEANN index from WeChat chat history data.
|
||||
|
||||
Args:
|
||||
export_dir: Path to the WeChat export directory (optional, uses default if None)
|
||||
index_path: Path to save the LEANN index
|
||||
max_count: Maximum number of chat entries to process
|
||||
"""
|
||||
print("Creating LEANN index from WeChat chat history data...")
|
||||
INDEX_DIR = Path(index_path).parent
|
||||
|
||||
if not INDEX_DIR.exists():
|
||||
print("--- Index directory not found, building new index ---")
|
||||
INDEX_DIR.mkdir(exist_ok=True)
|
||||
|
||||
print("--- Building new LEANN index ---")
|
||||
|
||||
print("\n[PHASE 1] Building Leann index...")
|
||||
|
||||
# Load documents using WeChatHistoryReader from history_data
|
||||
from history_data.wechat_history import WeChatHistoryReader
|
||||
|
||||
reader = WeChatHistoryReader()
|
||||
|
||||
documents = reader.load_data(
|
||||
wechat_export_dir=export_dir,
|
||||
max_count=max_count,
|
||||
concatenate_messages=False, # Disable concatenation - one message per document
|
||||
)
|
||||
|
||||
if not documents:
|
||||
print("No documents loaded. Exiting.")
|
||||
return None
|
||||
|
||||
print(f"Loaded {len(documents)} chat documents")
|
||||
|
||||
# Create text splitter with 256 chunk size
|
||||
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25)
|
||||
|
||||
# Convert Documents to text strings and chunk them
|
||||
all_texts = []
|
||||
for doc in documents:
|
||||
# Split the document into chunks
|
||||
nodes = text_splitter.get_nodes_from_documents([doc])
|
||||
for node in nodes:
|
||||
all_texts.append(node.get_content())
|
||||
|
||||
print(f"Created {len(all_texts)} text chunks from {len(documents)} documents")
|
||||
|
||||
# Create LEANN index directory
|
||||
print("--- Index directory not found, building new index ---")
|
||||
INDEX_DIR.mkdir(exist_ok=True)
|
||||
|
||||
print("--- Building new LEANN index ---")
|
||||
|
||||
print("\n[PHASE 1] Building Leann index...")
|
||||
|
||||
# Use HNSW backend for better macOS compatibility
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model="mlx-community/Qwen3-Embedding-0.6B-4bit-DWQ", # MLX-optimized model
|
||||
graph_degree=32,
|
||||
complexity=64,
|
||||
is_compact=True,
|
||||
is_recompute=True,
|
||||
num_threads=1, # Force single-threaded mode
|
||||
)
|
||||
|
||||
print(f"Adding {len(all_texts)} chat chunks to index...")
|
||||
for chunk_text in all_texts:
|
||||
builder.add_text(chunk_text)
|
||||
|
||||
builder.build_index(index_path)
|
||||
print(f"\nLEANN index built at {index_path}!")
|
||||
else:
|
||||
print(f"--- Using existing index at {INDEX_DIR} ---")
|
||||
|
||||
return index_path
|
||||
|
||||
|
||||
async def query_leann_index(index_path: str, query: str):
|
||||
"""
|
||||
Query the LEANN index.
|
||||
|
||||
Args:
|
||||
index_path: Path to the LEANN index
|
||||
query: The query string
|
||||
"""
|
||||
print("\n[PHASE 2] Starting Leann chat session...")
|
||||
chat = LeannChat(index_path=index_path)
|
||||
|
||||
print(f"You: {query}")
|
||||
chat_response = chat.ask(
|
||||
query,
|
||||
top_k=20,
|
||||
recompute_beighbor_embeddings=True,
|
||||
complexity=16,
|
||||
beam_width=1,
|
||||
llm_config={
|
||||
"type": "openai",
|
||||
"model": "gpt-4o",
|
||||
"api_key": os.getenv("OPENAI_API_KEY"),
|
||||
},
|
||||
llm_kwargs={"temperature": 0.0, "max_tokens": 1000},
|
||||
)
|
||||
print(f"Leann chat response: \033[36m{chat_response}\033[0m")
|
||||
|
||||
|
||||
async def main():
|
||||
"""Main function with integrated WeChat export functionality."""
|
||||
|
||||
# Parse command line arguments
|
||||
parser = argparse.ArgumentParser(
|
||||
description="LEANN WeChat History Reader - Create and query WeChat chat history index"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--export-dir",
|
||||
type=str,
|
||||
default=DEFAULT_WECHAT_EXPORT_DIR,
|
||||
help=f"Directory to store WeChat exports (default: {DEFAULT_WECHAT_EXPORT_DIR})",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--index-dir",
|
||||
type=str,
|
||||
default="./wechat_history_magic_test_11Debug_new",
|
||||
help="Directory to store the LEANN index (default: ./wechat_history_index_leann_test)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-entries",
|
||||
type=int,
|
||||
default=50,
|
||||
help="Maximum number of chat entries to process (default: 5000)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--query",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Single query to run (default: runs example queries)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--force-export",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Force re-export of WeChat data even if exports exist",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
INDEX_DIR = Path(args.index_dir)
|
||||
INDEX_PATH = str(INDEX_DIR / "wechat_history.leann")
|
||||
|
||||
print(f"Using WeChat export directory: {args.export_dir}")
|
||||
print(f"Index directory: {INDEX_DIR}")
|
||||
print(f"Max entries: {args.max_entries}")
|
||||
|
||||
# Initialize WeChat reader with export capabilities
|
||||
from history_data.wechat_history import WeChatHistoryReader
|
||||
|
||||
reader = WeChatHistoryReader()
|
||||
|
||||
# Find existing exports or create new ones using the centralized method
|
||||
export_dirs = reader.find_or_export_wechat_data(args.export_dir)
|
||||
if not export_dirs:
|
||||
print("Failed to find or export WeChat data. Exiting.")
|
||||
return
|
||||
|
||||
# Create or load the LEANN index from all sources
|
||||
index_path = create_leann_index_from_multiple_wechat_exports(
|
||||
export_dirs, INDEX_PATH, max_count=args.max_entries
|
||||
)
|
||||
|
||||
if index_path:
|
||||
if args.query:
|
||||
# Run single query
|
||||
await query_leann_index(index_path, args.query)
|
||||
else:
|
||||
# Example queries
|
||||
queries = [
|
||||
"我想买魔术师约翰逊的球衣,给我一些对应聊天记录?",
|
||||
]
|
||||
|
||||
for query in queries:
|
||||
print("\n" + "=" * 60)
|
||||
await query_leann_index(index_path, query)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
28
llms.txt
Normal file
28
llms.txt
Normal file
@@ -0,0 +1,28 @@
|
||||
# llms.txt — LEANN MCP and Agent Integration
|
||||
product: LEANN
|
||||
homepage: https://github.com/yichuan-w/LEANN
|
||||
contact: https://github.com/yichuan-w/LEANN/issues
|
||||
|
||||
# Installation
|
||||
install: uv tool install leann-core --with leann
|
||||
|
||||
# MCP Server Entry Point
|
||||
mcp.server: leann_mcp
|
||||
mcp.protocol_version: 2024-11-05
|
||||
|
||||
# Tools
|
||||
mcp.tools: leann_list, leann_search
|
||||
|
||||
mcp.tool.leann_list.description: List available LEANN indexes
|
||||
mcp.tool.leann_list.input: {}
|
||||
|
||||
mcp.tool.leann_search.description: Semantic search across a named LEANN index
|
||||
mcp.tool.leann_search.input.index_name: string, required
|
||||
mcp.tool.leann_search.input.query: string, required
|
||||
mcp.tool.leann_search.input.top_k: integer, optional, default=5, min=1, max=20
|
||||
mcp.tool.leann_search.input.complexity: integer, optional, default=32, min=16, max=128
|
||||
|
||||
# Notes
|
||||
note: Build indexes with `leann build <name> --docs <files...>` before searching.
|
||||
example.add: claude mcp add --scope user leann-server -- leann_mcp
|
||||
example.verify: claude mcp list | cat
|
||||
1
packages/astchunk-leann
Submodule
1
packages/astchunk-leann
Submodule
Submodule packages/astchunk-leann added at ad9afa07b9
@@ -1,8 +0,0 @@
|
||||
# packages/leann-backend-diskann/CMakeLists.txt (simplified version)
|
||||
|
||||
cmake_minimum_required(VERSION 3.20)
|
||||
project(leann_backend_diskann_wrapper)
|
||||
|
||||
# Tell CMake to directly enter the DiskANN submodule and execute its own CMakeLists.txt
|
||||
# DiskANN will handle everything itself, including compiling Python bindings
|
||||
add_subdirectory(src/third_party/DiskANN)
|
||||
@@ -1 +1,7 @@
|
||||
from . import diskann_backend as diskann_backend
|
||||
from . import graph_partition
|
||||
|
||||
# Export main classes and functions
|
||||
from .graph_partition import GraphPartitioner, partition_graph
|
||||
|
||||
__all__ = ["GraphPartitioner", "diskann_backend", "graph_partition", "partition_graph"]
|
||||
|
||||
@@ -4,9 +4,10 @@ import os
|
||||
import struct
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any, Literal
|
||||
from typing import Any, Literal, Optional
|
||||
|
||||
import numpy as np
|
||||
import psutil
|
||||
from leann.interface import (
|
||||
LeannBackendBuilderInterface,
|
||||
LeannBackendFactoryInterface,
|
||||
@@ -21,6 +22,11 @@ logger = logging.getLogger(__name__)
|
||||
@contextlib.contextmanager
|
||||
def suppress_cpp_output_if_needed():
|
||||
"""Suppress C++ stdout/stderr based on LEANN_LOG_LEVEL"""
|
||||
# In CI we avoid fiddling with low-level file descriptors to prevent aborts
|
||||
if os.getenv("CI") == "true":
|
||||
yield
|
||||
return
|
||||
|
||||
log_level = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
|
||||
|
||||
# Only suppress if log level is WARNING or higher (ERROR, CRITICAL)
|
||||
@@ -84,6 +90,43 @@ def _write_vectors_to_bin(data: np.ndarray, file_path: Path):
|
||||
f.write(data.tobytes())
|
||||
|
||||
|
||||
def _calculate_smart_memory_config(data: np.ndarray) -> tuple[float, float]:
|
||||
"""
|
||||
Calculate smart memory configuration for DiskANN based on data size and system specs.
|
||||
|
||||
Args:
|
||||
data: The embedding data array
|
||||
|
||||
Returns:
|
||||
tuple: (search_memory_maximum, build_memory_maximum) in GB
|
||||
"""
|
||||
num_vectors, dim = data.shape
|
||||
|
||||
# Calculate embedding storage size
|
||||
embedding_size_bytes = num_vectors * dim * 4 # float32 = 4 bytes
|
||||
embedding_size_gb = embedding_size_bytes / (1024**3)
|
||||
|
||||
# search_memory_maximum: 1/10 of embedding size for optimal PQ compression
|
||||
# This controls Product Quantization size - smaller means more compression
|
||||
search_memory_gb = max(0.1, embedding_size_gb / 10) # At least 100MB
|
||||
|
||||
# build_memory_maximum: Based on available system RAM for sharding control
|
||||
# This controls how much memory DiskANN uses during index construction
|
||||
available_memory_gb = psutil.virtual_memory().available / (1024**3)
|
||||
total_memory_gb = psutil.virtual_memory().total / (1024**3)
|
||||
|
||||
# Use 50% of available memory, but at least 2GB and at most 75% of total
|
||||
build_memory_gb = max(2.0, min(available_memory_gb * 0.5, total_memory_gb * 0.75))
|
||||
|
||||
logger.info(
|
||||
f"Smart memory config - Data: {embedding_size_gb:.2f}GB, "
|
||||
f"Search mem: {search_memory_gb:.2f}GB (PQ control), "
|
||||
f"Build mem: {build_memory_gb:.2f}GB (sharding control)"
|
||||
)
|
||||
|
||||
return search_memory_gb, build_memory_gb
|
||||
|
||||
|
||||
@register_backend("diskann")
|
||||
class DiskannBackend(LeannBackendFactoryInterface):
|
||||
@staticmethod
|
||||
@@ -99,6 +142,71 @@ class DiskannBuilder(LeannBackendBuilderInterface):
|
||||
def __init__(self, **kwargs):
|
||||
self.build_params = kwargs
|
||||
|
||||
def _safe_cleanup_after_partition(self, index_dir: Path, index_prefix: str):
|
||||
"""
|
||||
Safely cleanup files after partition.
|
||||
In partition mode, C++ doesn't read _disk.index content,
|
||||
so we can delete it if all derived files exist.
|
||||
"""
|
||||
disk_index_file = index_dir / f"{index_prefix}_disk.index"
|
||||
beam_search_file = index_dir / f"{index_prefix}_disk_beam_search.index"
|
||||
|
||||
# Required files that C++ partition mode needs
|
||||
# Note: C++ generates these with _disk.index suffix
|
||||
disk_suffix = "_disk.index"
|
||||
required_files = [
|
||||
f"{index_prefix}{disk_suffix}_medoids.bin", # Critical: assert fails if missing
|
||||
# Note: _centroids.bin is not created in single-shot build - C++ handles this automatically
|
||||
f"{index_prefix}_pq_pivots.bin", # PQ table
|
||||
f"{index_prefix}_pq_compressed.bin", # PQ compressed vectors
|
||||
]
|
||||
|
||||
# Check if all required files exist
|
||||
missing_files = []
|
||||
for filename in required_files:
|
||||
file_path = index_dir / filename
|
||||
if not file_path.exists():
|
||||
missing_files.append(filename)
|
||||
|
||||
if missing_files:
|
||||
logger.warning(
|
||||
f"Cannot safely delete _disk.index - missing required files: {missing_files}"
|
||||
)
|
||||
logger.info("Keeping all original files for safety")
|
||||
return
|
||||
|
||||
# Calculate space savings
|
||||
space_saved = 0
|
||||
files_to_delete = []
|
||||
|
||||
if disk_index_file.exists():
|
||||
space_saved += disk_index_file.stat().st_size
|
||||
files_to_delete.append(disk_index_file)
|
||||
|
||||
if beam_search_file.exists():
|
||||
space_saved += beam_search_file.stat().st_size
|
||||
files_to_delete.append(beam_search_file)
|
||||
|
||||
# Safe to delete!
|
||||
for file_to_delete in files_to_delete:
|
||||
try:
|
||||
os.remove(file_to_delete)
|
||||
logger.info(f"✅ Safely deleted: {file_to_delete.name}")
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to delete {file_to_delete.name}: {e}")
|
||||
|
||||
if space_saved > 0:
|
||||
space_saved_mb = space_saved / (1024 * 1024)
|
||||
logger.info(f"💾 Space saved: {space_saved_mb:.1f} MB")
|
||||
|
||||
# Show what files are kept
|
||||
logger.info("📁 Kept essential files for partition mode:")
|
||||
for filename in required_files:
|
||||
file_path = index_dir / filename
|
||||
if file_path.exists():
|
||||
size_mb = file_path.stat().st_size / (1024 * 1024)
|
||||
logger.info(f" - {filename} ({size_mb:.1f} MB)")
|
||||
|
||||
def build(self, data: np.ndarray, ids: list[str], index_path: str, **kwargs):
|
||||
path = Path(index_path)
|
||||
index_dir = path.parent
|
||||
@@ -113,6 +221,17 @@ class DiskannBuilder(LeannBackendBuilderInterface):
|
||||
_write_vectors_to_bin(data, index_dir / data_filename)
|
||||
|
||||
build_kwargs = {**self.build_params, **kwargs}
|
||||
|
||||
# Extract is_recompute from nested backend_kwargs if needed
|
||||
is_recompute = build_kwargs.get("is_recompute", False)
|
||||
if not is_recompute and "backend_kwargs" in build_kwargs:
|
||||
is_recompute = build_kwargs["backend_kwargs"].get("is_recompute", False)
|
||||
|
||||
# Flatten all backend_kwargs parameters to top level for compatibility
|
||||
if "backend_kwargs" in build_kwargs:
|
||||
nested_params = build_kwargs.pop("backend_kwargs")
|
||||
build_kwargs.update(nested_params)
|
||||
|
||||
metric_enum = _get_diskann_metrics().get(
|
||||
build_kwargs.get("distance_metric", "mips").lower()
|
||||
)
|
||||
@@ -121,6 +240,16 @@ class DiskannBuilder(LeannBackendBuilderInterface):
|
||||
f"Unsupported distance_metric '{build_kwargs.get('distance_metric', 'unknown')}'."
|
||||
)
|
||||
|
||||
# Calculate smart memory configuration if not explicitly provided
|
||||
if (
|
||||
"search_memory_maximum" not in build_kwargs
|
||||
or "build_memory_maximum" not in build_kwargs
|
||||
):
|
||||
smart_search_mem, smart_build_mem = _calculate_smart_memory_config(data)
|
||||
else:
|
||||
smart_search_mem = build_kwargs.get("search_memory_maximum", 4.0)
|
||||
smart_build_mem = build_kwargs.get("build_memory_maximum", 8.0)
|
||||
|
||||
try:
|
||||
from . import _diskannpy as diskannpy # type: ignore
|
||||
|
||||
@@ -131,12 +260,36 @@ class DiskannBuilder(LeannBackendBuilderInterface):
|
||||
index_prefix,
|
||||
build_kwargs.get("complexity", 64),
|
||||
build_kwargs.get("graph_degree", 32),
|
||||
build_kwargs.get("search_memory_maximum", 4.0),
|
||||
build_kwargs.get("build_memory_maximum", 8.0),
|
||||
build_kwargs.get("search_memory_maximum", smart_search_mem),
|
||||
build_kwargs.get("build_memory_maximum", smart_build_mem),
|
||||
build_kwargs.get("num_threads", 8),
|
||||
build_kwargs.get("pq_disk_bytes", 0),
|
||||
"",
|
||||
)
|
||||
|
||||
# Auto-partition if is_recompute is enabled
|
||||
if build_kwargs.get("is_recompute", False):
|
||||
logger.info("is_recompute=True, starting automatic graph partitioning...")
|
||||
from .graph_partition import partition_graph
|
||||
|
||||
# Partition the index using absolute paths
|
||||
# Convert to absolute paths to avoid issues with working directory changes
|
||||
absolute_index_dir = Path(index_dir).resolve()
|
||||
absolute_index_prefix_path = str(absolute_index_dir / index_prefix)
|
||||
disk_graph_path, partition_bin_path = partition_graph(
|
||||
index_prefix_path=absolute_index_prefix_path,
|
||||
output_dir=str(absolute_index_dir),
|
||||
partition_prefix=index_prefix,
|
||||
)
|
||||
|
||||
# Safe cleanup: In partition mode, C++ doesn't read _disk.index content
|
||||
# but still needs the derived files (_medoids.bin, _centroids.bin, etc.)
|
||||
self._safe_cleanup_after_partition(index_dir, index_prefix)
|
||||
|
||||
logger.info("✅ Graph partitioning completed successfully!")
|
||||
logger.info(f" - Disk graph: {disk_graph_path}")
|
||||
logger.info(f" - Partition file: {partition_bin_path}")
|
||||
|
||||
finally:
|
||||
temp_data_file = index_dir / data_filename
|
||||
if temp_data_file.exists():
|
||||
@@ -165,7 +318,26 @@ class DiskannSearcher(BaseSearcher):
|
||||
|
||||
# For DiskANN, we need to reinitialize the index when zmq_port changes
|
||||
# Store the initialization parameters for later use
|
||||
full_index_prefix = str(self.index_dir / self.index_path.stem)
|
||||
# Note: C++ load method expects the BASE path (without _disk.index suffix)
|
||||
# C++ internally constructs: index_prefix + "_disk.index"
|
||||
index_name = self.index_path.stem # "simple_test.leann" -> "simple_test"
|
||||
diskann_index_prefix = str(self.index_dir / index_name) # /path/to/simple_test
|
||||
full_index_prefix = diskann_index_prefix # /path/to/simple_test (base path)
|
||||
|
||||
# Auto-detect partition files and set partition_prefix
|
||||
partition_graph_file = self.index_dir / f"{index_name}_disk_graph.index"
|
||||
partition_bin_file = self.index_dir / f"{index_name}_partition.bin"
|
||||
|
||||
partition_prefix = ""
|
||||
if partition_graph_file.exists() and partition_bin_file.exists():
|
||||
# C++ expects full path prefix, not just filename
|
||||
partition_prefix = str(self.index_dir / index_name) # /path/to/simple_test
|
||||
logger.info(
|
||||
f"✅ Detected partition files, using partition_prefix='{partition_prefix}'"
|
||||
)
|
||||
else:
|
||||
logger.debug("No partition files detected, using standard index files")
|
||||
|
||||
self._init_params = {
|
||||
"metric_enum": metric_enum,
|
||||
"full_index_prefix": full_index_prefix,
|
||||
@@ -173,8 +345,14 @@ class DiskannSearcher(BaseSearcher):
|
||||
"num_nodes_to_cache": kwargs.get("num_nodes_to_cache", 0),
|
||||
"cache_mechanism": 1,
|
||||
"pq_prefix": "",
|
||||
"partition_prefix": "",
|
||||
"partition_prefix": partition_prefix,
|
||||
}
|
||||
|
||||
# Log partition configuration for debugging
|
||||
if partition_prefix:
|
||||
logger.info(
|
||||
f"✅ Detected partition files, using partition_prefix='{partition_prefix}'"
|
||||
)
|
||||
self._diskannpy = diskannpy
|
||||
self._current_zmq_port = None
|
||||
self._index = None
|
||||
@@ -211,7 +389,7 @@ class DiskannSearcher(BaseSearcher):
|
||||
prune_ratio: float = 0.0,
|
||||
recompute_embeddings: bool = False,
|
||||
pruning_strategy: Literal["global", "local", "proportional"] = "global",
|
||||
zmq_port: int | None = None,
|
||||
zmq_port: Optional[int] = None,
|
||||
batch_recompute: bool = False,
|
||||
dedup_node_dis: bool = False,
|
||||
**kwargs,
|
||||
@@ -263,7 +441,14 @@ class DiskannSearcher(BaseSearcher):
|
||||
else: # "global"
|
||||
use_global_pruning = True
|
||||
|
||||
# Perform search with suppressed C++ output based on log level
|
||||
# Strategy:
|
||||
# - Traversal always uses PQ distances
|
||||
# - If recompute_embeddings=True, do a single final rerank via deferred fetch
|
||||
# (fetch embeddings for the final candidate set only)
|
||||
# - Do not recompute neighbor distances along the path
|
||||
use_deferred_fetch = True if recompute_embeddings else False
|
||||
recompute_neighors = False # Expected typo. For backward compatibility.
|
||||
|
||||
with suppress_cpp_output_if_needed():
|
||||
labels, distances = self._index.batch_search(
|
||||
query,
|
||||
@@ -272,9 +457,9 @@ class DiskannSearcher(BaseSearcher):
|
||||
complexity,
|
||||
beam_width,
|
||||
self.num_threads,
|
||||
kwargs.get("USE_DEFERRED_FETCH", False),
|
||||
use_deferred_fetch,
|
||||
kwargs.get("skip_search_reorder", False),
|
||||
recompute_embeddings,
|
||||
recompute_neighors,
|
||||
dedup_node_dis,
|
||||
prune_ratio,
|
||||
batch_recompute,
|
||||
|
||||
@@ -10,6 +10,7 @@ import sys
|
||||
import threading
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
import numpy as np
|
||||
import zmq
|
||||
@@ -32,10 +33,11 @@ if not logger.handlers:
|
||||
|
||||
|
||||
def create_diskann_embedding_server(
|
||||
passages_file: str | None = None,
|
||||
passages_file: Optional[str] = None,
|
||||
zmq_port: int = 5555,
|
||||
model_name: str = "sentence-transformers/all-mpnet-base-v2",
|
||||
embedding_mode: str = "sentence-transformers",
|
||||
distance_metric: str = "l2",
|
||||
):
|
||||
"""
|
||||
Create and start a ZMQ-based embedding server for DiskANN backend.
|
||||
@@ -79,10 +81,9 @@ def create_diskann_embedding_server(
|
||||
with open(passages_file) as f:
|
||||
meta = json.load(f)
|
||||
|
||||
passages = PassageManager(meta["passage_sources"])
|
||||
logger.info(
|
||||
f"Loaded PassageManager with {len(passages.global_offset_map)} passages from metadata"
|
||||
)
|
||||
logger.info(f"Loading PassageManager with metadata_file_path: {passages_file}")
|
||||
passages = PassageManager(meta["passage_sources"], metadata_file_path=passages_file)
|
||||
logger.info(f"Loaded PassageManager with {len(passages)} passages from metadata")
|
||||
|
||||
# Import protobuf after ensuring the path is correct
|
||||
try:
|
||||
@@ -100,8 +101,9 @@ def create_diskann_embedding_server(
|
||||
socket.bind(f"tcp://*:{zmq_port}")
|
||||
logger.info(f"DiskANN ZMQ REP server listening on port {zmq_port}")
|
||||
|
||||
socket.setsockopt(zmq.RCVTIMEO, 300000)
|
||||
socket.setsockopt(zmq.SNDTIMEO, 300000)
|
||||
socket.setsockopt(zmq.RCVTIMEO, 1000)
|
||||
socket.setsockopt(zmq.SNDTIMEO, 1000)
|
||||
socket.setsockopt(zmq.LINGER, 0)
|
||||
|
||||
while True:
|
||||
try:
|
||||
@@ -218,30 +220,217 @@ def create_diskann_embedding_server(
|
||||
traceback.print_exc()
|
||||
raise
|
||||
|
||||
zmq_thread = threading.Thread(target=zmq_server_thread, daemon=True)
|
||||
def zmq_server_thread_with_shutdown(shutdown_event):
|
||||
"""ZMQ server thread that respects shutdown signal.
|
||||
|
||||
This creates its own REP socket, binds to zmq_port, and periodically
|
||||
checks shutdown_event using recv timeouts to exit cleanly.
|
||||
"""
|
||||
logger.info("DiskANN ZMQ server thread started with shutdown support")
|
||||
|
||||
context = zmq.Context()
|
||||
rep_socket = context.socket(zmq.REP)
|
||||
rep_socket.bind(f"tcp://*:{zmq_port}")
|
||||
logger.info(f"DiskANN ZMQ REP server listening on port {zmq_port}")
|
||||
|
||||
# Set receive timeout so we can check shutdown_event periodically
|
||||
rep_socket.setsockopt(zmq.RCVTIMEO, 1000) # 1 second timeout
|
||||
rep_socket.setsockopt(zmq.SNDTIMEO, 1000)
|
||||
rep_socket.setsockopt(zmq.LINGER, 0)
|
||||
|
||||
try:
|
||||
while not shutdown_event.is_set():
|
||||
try:
|
||||
e2e_start = time.time()
|
||||
# REP socket receives single-part messages
|
||||
message = rep_socket.recv()
|
||||
|
||||
# Check for empty messages - REP socket requires response to every request
|
||||
if not message:
|
||||
logger.warning("Received empty message, sending empty response")
|
||||
rep_socket.send(b"")
|
||||
continue
|
||||
|
||||
# Try protobuf first (same logic as original)
|
||||
texts = []
|
||||
is_text_request = False
|
||||
|
||||
try:
|
||||
req_proto = embedding_pb2.NodeEmbeddingRequest()
|
||||
req_proto.ParseFromString(message)
|
||||
node_ids = list(req_proto.node_ids)
|
||||
|
||||
# Look up texts by node IDs
|
||||
for nid in node_ids:
|
||||
try:
|
||||
passage_data = passages.get_passage(str(nid))
|
||||
txt = passage_data["text"]
|
||||
if not txt:
|
||||
raise RuntimeError(f"FATAL: Empty text for passage ID {nid}")
|
||||
texts.append(txt)
|
||||
except KeyError:
|
||||
raise RuntimeError(f"FATAL: Passage with ID {nid} not found")
|
||||
|
||||
logger.info(f"ZMQ received protobuf request for {len(node_ids)} node IDs")
|
||||
except Exception:
|
||||
# Fallback to msgpack for text requests
|
||||
try:
|
||||
import msgpack
|
||||
|
||||
request = msgpack.unpackb(message)
|
||||
if isinstance(request, list) and all(
|
||||
isinstance(item, str) for item in request
|
||||
):
|
||||
texts = request
|
||||
is_text_request = True
|
||||
logger.info(
|
||||
f"ZMQ received msgpack text request for {len(texts)} texts"
|
||||
)
|
||||
else:
|
||||
raise ValueError("Not a valid msgpack text request")
|
||||
except Exception:
|
||||
logger.error("Both protobuf and msgpack parsing failed!")
|
||||
# Send error response
|
||||
resp_proto = embedding_pb2.NodeEmbeddingResponse()
|
||||
rep_socket.send(resp_proto.SerializeToString())
|
||||
continue
|
||||
|
||||
# Process the request
|
||||
embeddings = compute_embeddings(texts, model_name, mode=embedding_mode)
|
||||
logger.info(f"Computed embeddings shape: {embeddings.shape}")
|
||||
|
||||
# Validation
|
||||
if np.isnan(embeddings).any() or np.isinf(embeddings).any():
|
||||
logger.error("NaN or Inf detected in embeddings!")
|
||||
# Send error response
|
||||
if is_text_request:
|
||||
import msgpack
|
||||
|
||||
response_data = msgpack.packb([])
|
||||
else:
|
||||
resp_proto = embedding_pb2.NodeEmbeddingResponse()
|
||||
response_data = resp_proto.SerializeToString()
|
||||
rep_socket.send(response_data)
|
||||
continue
|
||||
|
||||
# Prepare response based on request type
|
||||
if is_text_request:
|
||||
# For direct text requests, return msgpack
|
||||
import msgpack
|
||||
|
||||
response_data = msgpack.packb(embeddings.tolist())
|
||||
else:
|
||||
# For protobuf requests, return protobuf
|
||||
resp_proto = embedding_pb2.NodeEmbeddingResponse()
|
||||
hidden_contiguous = np.ascontiguousarray(embeddings, dtype=np.float32)
|
||||
|
||||
resp_proto.embeddings_data = hidden_contiguous.tobytes()
|
||||
resp_proto.dimensions.append(hidden_contiguous.shape[0])
|
||||
resp_proto.dimensions.append(hidden_contiguous.shape[1])
|
||||
|
||||
response_data = resp_proto.SerializeToString()
|
||||
|
||||
# Send response back to the client
|
||||
rep_socket.send(response_data)
|
||||
|
||||
e2e_end = time.time()
|
||||
logger.info(f"⏱️ ZMQ E2E time: {e2e_end - e2e_start:.6f}s")
|
||||
|
||||
except zmq.Again:
|
||||
# Timeout - check shutdown_event and continue
|
||||
continue
|
||||
except Exception as e:
|
||||
if not shutdown_event.is_set():
|
||||
logger.error(f"Error in ZMQ server loop: {e}")
|
||||
try:
|
||||
# Send error response for REP socket
|
||||
resp_proto = embedding_pb2.NodeEmbeddingResponse()
|
||||
rep_socket.send(resp_proto.SerializeToString())
|
||||
except Exception:
|
||||
pass
|
||||
else:
|
||||
logger.info("Shutdown in progress, ignoring ZMQ error")
|
||||
break
|
||||
finally:
|
||||
try:
|
||||
rep_socket.close(0)
|
||||
except Exception:
|
||||
pass
|
||||
try:
|
||||
context.term()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
logger.info("DiskANN ZMQ server thread exiting gracefully")
|
||||
|
||||
# Add shutdown coordination
|
||||
shutdown_event = threading.Event()
|
||||
|
||||
def shutdown_zmq_server():
|
||||
"""Gracefully shutdown ZMQ server."""
|
||||
logger.info("Initiating graceful shutdown...")
|
||||
shutdown_event.set()
|
||||
|
||||
if zmq_thread.is_alive():
|
||||
logger.info("Waiting for ZMQ thread to finish...")
|
||||
zmq_thread.join(timeout=5)
|
||||
if zmq_thread.is_alive():
|
||||
logger.warning("ZMQ thread did not finish in time")
|
||||
|
||||
# Clean up ZMQ resources
|
||||
try:
|
||||
# Note: socket and context are cleaned up by thread exit
|
||||
logger.info("ZMQ resources cleaned up")
|
||||
except Exception as e:
|
||||
logger.warning(f"Error cleaning ZMQ resources: {e}")
|
||||
|
||||
# Clean up other resources
|
||||
try:
|
||||
import gc
|
||||
|
||||
gc.collect()
|
||||
logger.info("Additional resources cleaned up")
|
||||
except Exception as e:
|
||||
logger.warning(f"Error cleaning additional resources: {e}")
|
||||
|
||||
logger.info("Graceful shutdown completed")
|
||||
sys.exit(0)
|
||||
|
||||
# Register signal handlers within this function scope
|
||||
import signal
|
||||
|
||||
def signal_handler(sig, frame):
|
||||
logger.info(f"Received signal {sig}, shutting down gracefully...")
|
||||
shutdown_zmq_server()
|
||||
|
||||
signal.signal(signal.SIGTERM, signal_handler)
|
||||
signal.signal(signal.SIGINT, signal_handler)
|
||||
|
||||
# Start ZMQ thread (NOT daemon!)
|
||||
zmq_thread = threading.Thread(
|
||||
target=lambda: zmq_server_thread_with_shutdown(shutdown_event),
|
||||
daemon=False, # Not daemon - we want to wait for it
|
||||
)
|
||||
zmq_thread.start()
|
||||
logger.info(f"Started DiskANN ZMQ server thread on port {zmq_port}")
|
||||
|
||||
# Keep the main thread alive
|
||||
try:
|
||||
while True:
|
||||
time.sleep(1)
|
||||
while not shutdown_event.is_set():
|
||||
time.sleep(0.1) # Check shutdown more frequently
|
||||
except KeyboardInterrupt:
|
||||
logger.info("DiskANN Server shutting down...")
|
||||
shutdown_zmq_server()
|
||||
return
|
||||
|
||||
# If we reach here, shutdown was triggered by signal
|
||||
logger.info("Main loop exited, process should be shutting down")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import signal
|
||||
import sys
|
||||
|
||||
def signal_handler(sig, frame):
|
||||
logger.info(f"Received signal {sig}, shutting down gracefully...")
|
||||
sys.exit(0)
|
||||
|
||||
# Register signal handlers for graceful shutdown
|
||||
signal.signal(signal.SIGTERM, signal_handler)
|
||||
signal.signal(signal.SIGINT, signal_handler)
|
||||
# Signal handlers are now registered within create_diskann_embedding_server
|
||||
|
||||
parser = argparse.ArgumentParser(description="DiskANN Embedding service")
|
||||
parser.add_argument("--zmq-port", type=int, default=5555, help="ZMQ port to run on")
|
||||
@@ -260,9 +449,16 @@ if __name__ == "__main__":
|
||||
"--embedding-mode",
|
||||
type=str,
|
||||
default="sentence-transformers",
|
||||
choices=["sentence-transformers", "openai", "mlx"],
|
||||
choices=["sentence-transformers", "openai", "mlx", "ollama"],
|
||||
help="Embedding backend mode",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--distance-metric",
|
||||
type=str,
|
||||
default="l2",
|
||||
choices=["l2", "mips", "cosine"],
|
||||
help="Distance metric for similarity computation",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
@@ -272,4 +468,5 @@ if __name__ == "__main__":
|
||||
zmq_port=args.zmq_port,
|
||||
model_name=args.model_name,
|
||||
embedding_mode=args.embedding_mode,
|
||||
distance_metric=args.distance_metric,
|
||||
)
|
||||
|
||||
@@ -0,0 +1,299 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Graph Partition Module for LEANN DiskANN Backend
|
||||
|
||||
This module provides Python bindings for the graph partition functionality
|
||||
of DiskANN, allowing users to partition disk-based indices for better
|
||||
performance.
|
||||
"""
|
||||
|
||||
import os
|
||||
import shutil
|
||||
import subprocess
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
|
||||
class GraphPartitioner:
|
||||
"""
|
||||
A Python interface for DiskANN's graph partition functionality.
|
||||
|
||||
This class provides methods to partition disk-based indices for improved
|
||||
search performance and memory efficiency.
|
||||
"""
|
||||
|
||||
def __init__(self, build_type: str = "release"):
|
||||
"""
|
||||
Initialize the GraphPartitioner.
|
||||
|
||||
Args:
|
||||
build_type: Build type for the executables ("debug" or "release")
|
||||
"""
|
||||
self.build_type = build_type
|
||||
self._ensure_executables()
|
||||
|
||||
def _get_executable_path(self, name: str) -> str:
|
||||
"""Get the path to a graph partition executable."""
|
||||
# Get the directory where this Python module is located
|
||||
module_dir = Path(__file__).parent
|
||||
# Navigate to the graph_partition directory
|
||||
graph_partition_dir = module_dir.parent / "third_party" / "DiskANN" / "graph_partition"
|
||||
executable_path = graph_partition_dir / "build" / self.build_type / "graph_partition" / name
|
||||
|
||||
if not executable_path.exists():
|
||||
raise FileNotFoundError(f"Executable {name} not found at {executable_path}")
|
||||
|
||||
return str(executable_path)
|
||||
|
||||
def _ensure_executables(self):
|
||||
"""Ensure that the required executables are built."""
|
||||
try:
|
||||
self._get_executable_path("partitioner")
|
||||
self._get_executable_path("index_relayout")
|
||||
except FileNotFoundError:
|
||||
# Try to build the executables automatically
|
||||
print("Executables not found, attempting to build them...")
|
||||
self._build_executables()
|
||||
|
||||
def _build_executables(self):
|
||||
"""Build the required executables."""
|
||||
graph_partition_dir = (
|
||||
Path(__file__).parent.parent / "third_party" / "DiskANN" / "graph_partition"
|
||||
)
|
||||
original_dir = os.getcwd()
|
||||
|
||||
try:
|
||||
os.chdir(graph_partition_dir)
|
||||
|
||||
# Clean any existing build
|
||||
if (graph_partition_dir / "build").exists():
|
||||
shutil.rmtree(graph_partition_dir / "build")
|
||||
|
||||
# Run the build script
|
||||
cmd = ["./build.sh", self.build_type, "split_graph", "/tmp/dummy"]
|
||||
subprocess.run(cmd, capture_output=True, text=True, cwd=graph_partition_dir)
|
||||
|
||||
# Check if executables were created
|
||||
partitioner_path = self._get_executable_path("partitioner")
|
||||
relayout_path = self._get_executable_path("index_relayout")
|
||||
|
||||
print(f"✅ Built partitioner: {partitioner_path}")
|
||||
print(f"✅ Built index_relayout: {relayout_path}")
|
||||
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"Failed to build executables: {e}")
|
||||
finally:
|
||||
os.chdir(original_dir)
|
||||
|
||||
def partition_graph(
|
||||
self,
|
||||
index_prefix_path: str,
|
||||
output_dir: Optional[str] = None,
|
||||
partition_prefix: Optional[str] = None,
|
||||
**kwargs,
|
||||
) -> tuple[str, str]:
|
||||
"""
|
||||
Partition a disk-based index for improved performance.
|
||||
|
||||
Args:
|
||||
index_prefix_path: Path to the index prefix (e.g., "/path/to/index")
|
||||
output_dir: Output directory for results (defaults to parent of index_prefix_path)
|
||||
partition_prefix: Prefix for output files (defaults to basename of index_prefix_path)
|
||||
**kwargs: Additional parameters for graph partitioning:
|
||||
- gp_times: Number of LDG partition iterations (default: 10)
|
||||
- lock_nums: Number of lock nodes (default: 10)
|
||||
- cut: Cut adjacency list degree (default: 100)
|
||||
- scale_factor: Scale factor (default: 1)
|
||||
- data_type: Data type (default: "float")
|
||||
- thread_nums: Number of threads (default: 10)
|
||||
|
||||
Returns:
|
||||
Tuple of (disk_graph_index_path, partition_bin_path)
|
||||
|
||||
Raises:
|
||||
RuntimeError: If the partitioning process fails
|
||||
"""
|
||||
# Set default parameters
|
||||
params = {
|
||||
"gp_times": 10,
|
||||
"lock_nums": 10,
|
||||
"cut": 100,
|
||||
"scale_factor": 1,
|
||||
"data_type": "float",
|
||||
"thread_nums": 10,
|
||||
**kwargs,
|
||||
}
|
||||
|
||||
# Determine output directory
|
||||
if output_dir is None:
|
||||
output_dir = str(Path(index_prefix_path).parent)
|
||||
|
||||
# Create output directory if it doesn't exist
|
||||
Path(output_dir).mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Determine partition prefix
|
||||
if partition_prefix is None:
|
||||
partition_prefix = Path(index_prefix_path).name
|
||||
|
||||
# Get executable paths
|
||||
partitioner_path = self._get_executable_path("partitioner")
|
||||
relayout_path = self._get_executable_path("index_relayout")
|
||||
|
||||
# Create temporary directory for processing
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
# Change to the graph_partition directory for temporary files
|
||||
graph_partition_dir = (
|
||||
Path(__file__).parent.parent / "third_party" / "DiskANN" / "graph_partition"
|
||||
)
|
||||
original_dir = os.getcwd()
|
||||
|
||||
try:
|
||||
os.chdir(graph_partition_dir)
|
||||
|
||||
# Create temporary data directory
|
||||
temp_data_dir = Path(temp_dir) / "data"
|
||||
temp_data_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Set up paths for temporary files
|
||||
graph_path = temp_data_dir / "starling" / "_M_R_L_B" / "GRAPH"
|
||||
graph_gp_path = (
|
||||
graph_path
|
||||
/ f"GP_TIMES_{params['gp_times']}_LOCK_{params['lock_nums']}_GP_USE_FREQ0_CUT{params['cut']}_SCALE{params['scale_factor']}"
|
||||
)
|
||||
graph_gp_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Find input index file
|
||||
old_index_file = f"{index_prefix_path}_disk_beam_search.index"
|
||||
if not os.path.exists(old_index_file):
|
||||
old_index_file = f"{index_prefix_path}_disk.index"
|
||||
|
||||
if not os.path.exists(old_index_file):
|
||||
raise RuntimeError(f"Index file not found: {old_index_file}")
|
||||
|
||||
# Run partitioner
|
||||
gp_file_path = graph_gp_path / "_part.bin"
|
||||
partitioner_cmd = [
|
||||
partitioner_path,
|
||||
"--index_file",
|
||||
old_index_file,
|
||||
"--data_type",
|
||||
params["data_type"],
|
||||
"--gp_file",
|
||||
str(gp_file_path),
|
||||
"-T",
|
||||
str(params["thread_nums"]),
|
||||
"--ldg_times",
|
||||
str(params["gp_times"]),
|
||||
"--scale",
|
||||
str(params["scale_factor"]),
|
||||
"--mode",
|
||||
"1",
|
||||
]
|
||||
|
||||
print(f"Running partitioner: {' '.join(partitioner_cmd)}")
|
||||
result = subprocess.run(
|
||||
partitioner_cmd, capture_output=True, text=True, cwd=graph_partition_dir
|
||||
)
|
||||
|
||||
if result.returncode != 0:
|
||||
raise RuntimeError(
|
||||
f"Partitioner failed with return code {result.returncode}.\n"
|
||||
f"stdout: {result.stdout}\n"
|
||||
f"stderr: {result.stderr}"
|
||||
)
|
||||
|
||||
# Run relayout
|
||||
part_tmp_index = graph_gp_path / "_part_tmp.index"
|
||||
relayout_cmd = [
|
||||
relayout_path,
|
||||
old_index_file,
|
||||
str(gp_file_path),
|
||||
params["data_type"],
|
||||
"1",
|
||||
]
|
||||
|
||||
print(f"Running relayout: {' '.join(relayout_cmd)}")
|
||||
result = subprocess.run(
|
||||
relayout_cmd, capture_output=True, text=True, cwd=graph_partition_dir
|
||||
)
|
||||
|
||||
if result.returncode != 0:
|
||||
raise RuntimeError(
|
||||
f"Relayout failed with return code {result.returncode}.\n"
|
||||
f"stdout: {result.stdout}\n"
|
||||
f"stderr: {result.stderr}"
|
||||
)
|
||||
|
||||
# Copy results to output directory
|
||||
disk_graph_path = Path(output_dir) / f"{partition_prefix}_disk_graph.index"
|
||||
partition_bin_path = Path(output_dir) / f"{partition_prefix}_partition.bin"
|
||||
|
||||
shutil.copy2(part_tmp_index, disk_graph_path)
|
||||
shutil.copy2(gp_file_path, partition_bin_path)
|
||||
|
||||
print(f"Results copied to: {output_dir}")
|
||||
return str(disk_graph_path), str(partition_bin_path)
|
||||
|
||||
finally:
|
||||
os.chdir(original_dir)
|
||||
|
||||
def get_partition_info(self, partition_bin_path: str) -> dict:
|
||||
"""
|
||||
Get information about a partition file.
|
||||
|
||||
Args:
|
||||
partition_bin_path: Path to the partition binary file
|
||||
|
||||
Returns:
|
||||
Dictionary containing partition information
|
||||
"""
|
||||
if not os.path.exists(partition_bin_path):
|
||||
raise FileNotFoundError(f"Partition file not found: {partition_bin_path}")
|
||||
|
||||
# For now, return basic file information
|
||||
# In the future, this could parse the binary file for detailed info
|
||||
stat = os.stat(partition_bin_path)
|
||||
return {
|
||||
"file_size": stat.st_size,
|
||||
"file_path": partition_bin_path,
|
||||
"modified_time": stat.st_mtime,
|
||||
}
|
||||
|
||||
|
||||
def partition_graph(
|
||||
index_prefix_path: str,
|
||||
output_dir: Optional[str] = None,
|
||||
partition_prefix: Optional[str] = None,
|
||||
build_type: str = "release",
|
||||
**kwargs,
|
||||
) -> tuple[str, str]:
|
||||
"""
|
||||
Convenience function to partition a graph index.
|
||||
|
||||
Args:
|
||||
index_prefix_path: Path to the index prefix
|
||||
output_dir: Output directory (defaults to parent of index_prefix_path)
|
||||
partition_prefix: Prefix for output files (defaults to basename of index_prefix_path)
|
||||
build_type: Build type for executables ("debug" or "release")
|
||||
**kwargs: Additional parameters for graph partitioning
|
||||
|
||||
Returns:
|
||||
Tuple of (disk_graph_index_path, partition_bin_path)
|
||||
"""
|
||||
partitioner = GraphPartitioner(build_type=build_type)
|
||||
return partitioner.partition_graph(index_prefix_path, output_dir, partition_prefix, **kwargs)
|
||||
|
||||
|
||||
# Example usage:
|
||||
if __name__ == "__main__":
|
||||
# Example: partition an index
|
||||
try:
|
||||
disk_graph_path, partition_bin_path = partition_graph(
|
||||
"/path/to/your/index_prefix", gp_times=10, lock_nums=10, cut=100
|
||||
)
|
||||
print("Partitioning completed successfully!")
|
||||
print(f"Disk graph index: {disk_graph_path}")
|
||||
print(f"Partition binary: {partition_bin_path}")
|
||||
except Exception as e:
|
||||
print(f"Partitioning failed: {e}")
|
||||
@@ -1,11 +1,11 @@
|
||||
[build-system]
|
||||
requires = ["scikit-build-core>=0.10", "pybind11>=2.12.0", "numpy"]
|
||||
requires = ["scikit-build-core>=0.10", "pybind11>=2.12.0", "numpy", "cmake>=3.30"]
|
||||
build-backend = "scikit_build_core.build"
|
||||
|
||||
[project]
|
||||
name = "leann-backend-diskann"
|
||||
version = "0.1.15"
|
||||
dependencies = ["leann-core==0.1.15", "numpy", "protobuf>=3.19.0"]
|
||||
version = "0.3.4"
|
||||
dependencies = ["leann-core==0.3.4", "numpy", "protobuf>=3.19.0"]
|
||||
|
||||
[tool.scikit-build]
|
||||
# Key: simplified CMake path
|
||||
@@ -17,3 +17,5 @@ editable.mode = "redirect"
|
||||
cmake.build-type = "Release"
|
||||
build.verbose = true
|
||||
build.tool-args = ["-j8"]
|
||||
# Let CMake find packages via Homebrew prefix
|
||||
cmake.define = {CMAKE_PREFIX_PATH = {env = "CMAKE_PREFIX_PATH"}, OpenMP_ROOT = {env = "OpenMP_ROOT"}}
|
||||
|
||||
Submodule packages/leann-backend-diskann/third_party/DiskANN updated: af2a26481e...19f9603c72
@@ -5,11 +5,28 @@ set(CMAKE_CXX_COMPILER_WORKS 1)
|
||||
|
||||
# Set OpenMP path for macOS
|
||||
if(APPLE)
|
||||
set(OpenMP_C_FLAGS "-Xpreprocessor -fopenmp -I/opt/homebrew/opt/libomp/include")
|
||||
set(OpenMP_CXX_FLAGS "-Xpreprocessor -fopenmp -I/opt/homebrew/opt/libomp/include")
|
||||
# Detect Homebrew installation path (Apple Silicon vs Intel)
|
||||
if(EXISTS "/opt/homebrew/opt/libomp")
|
||||
set(HOMEBREW_PREFIX "/opt/homebrew")
|
||||
elseif(EXISTS "/usr/local/opt/libomp")
|
||||
set(HOMEBREW_PREFIX "/usr/local")
|
||||
else()
|
||||
message(FATAL_ERROR "Could not find libomp installation. Please install with: brew install libomp")
|
||||
endif()
|
||||
|
||||
set(OpenMP_C_FLAGS "-Xpreprocessor -fopenmp -I${HOMEBREW_PREFIX}/opt/libomp/include")
|
||||
set(OpenMP_CXX_FLAGS "-Xpreprocessor -fopenmp -I${HOMEBREW_PREFIX}/opt/libomp/include")
|
||||
set(OpenMP_C_LIB_NAMES "omp")
|
||||
set(OpenMP_CXX_LIB_NAMES "omp")
|
||||
set(OpenMP_omp_LIBRARY "/opt/homebrew/opt/libomp/lib/libomp.dylib")
|
||||
set(OpenMP_omp_LIBRARY "${HOMEBREW_PREFIX}/opt/libomp/lib/libomp.dylib")
|
||||
|
||||
# Force use of system libc++ to avoid version mismatch
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -stdlib=libc++")
|
||||
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -stdlib=libc++")
|
||||
set(CMAKE_SHARED_LINKER_FLAGS "${CMAKE_SHARED_LINKER_FLAGS} -stdlib=libc++")
|
||||
|
||||
# Set minimum macOS version for better compatibility
|
||||
set(CMAKE_OSX_DEPLOYMENT_TARGET "11.0" CACHE STRING "Minimum macOS version")
|
||||
endif()
|
||||
|
||||
# Use system ZeroMQ instead of building from source
|
||||
@@ -32,9 +49,28 @@ set(BUILD_TESTING OFF CACHE BOOL "" FORCE)
|
||||
set(FAISS_ENABLE_C_API OFF CACHE BOOL "" FORCE)
|
||||
set(FAISS_OPT_LEVEL "generic" CACHE STRING "" FORCE)
|
||||
|
||||
# Disable additional SIMD versions to speed up compilation
|
||||
# Disable x86-specific SIMD optimizations (important for ARM64 compatibility)
|
||||
set(FAISS_ENABLE_AVX2 OFF CACHE BOOL "" FORCE)
|
||||
set(FAISS_ENABLE_AVX512 OFF CACHE BOOL "" FORCE)
|
||||
set(FAISS_ENABLE_SSE4_1 OFF CACHE BOOL "" FORCE)
|
||||
|
||||
# ARM64-specific configuration
|
||||
if(CMAKE_SYSTEM_PROCESSOR MATCHES "aarch64|arm64")
|
||||
message(STATUS "Configuring Faiss for ARM64 architecture")
|
||||
|
||||
if(CMAKE_SYSTEM_NAME STREQUAL "Linux")
|
||||
# Use SVE optimization level for ARM64 Linux (as seen in Faiss conda build)
|
||||
set(FAISS_OPT_LEVEL "sve" CACHE STRING "" FORCE)
|
||||
message(STATUS "Setting FAISS_OPT_LEVEL to 'sve' for ARM64 Linux")
|
||||
else()
|
||||
# Use generic optimization for other ARM64 platforms (like macOS)
|
||||
set(FAISS_OPT_LEVEL "generic" CACHE STRING "" FORCE)
|
||||
message(STATUS "Setting FAISS_OPT_LEVEL to 'generic' for ARM64 ${CMAKE_SYSTEM_NAME}")
|
||||
endif()
|
||||
|
||||
# ARM64 compatibility: Faiss submodule has been modified to fix x86 header inclusion
|
||||
message(STATUS "Using ARM64-compatible Faiss submodule")
|
||||
endif()
|
||||
|
||||
# Additional optimization options from INSTALL.md
|
||||
set(CMAKE_BUILD_TYPE "Release" CACHE STRING "" FORCE)
|
||||
|
||||
@@ -1,12 +1,21 @@
|
||||
import argparse
|
||||
import gc # Import garbage collector interface
|
||||
import logging
|
||||
import os
|
||||
import struct
|
||||
import sys
|
||||
import time
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Optional
|
||||
|
||||
import numpy as np
|
||||
|
||||
# Set up logging to avoid print buffer issues
|
||||
logger = logging.getLogger(__name__)
|
||||
LOG_LEVEL = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
|
||||
log_level = getattr(logging, LOG_LEVEL, logging.WARNING)
|
||||
logger.setLevel(log_level)
|
||||
|
||||
# --- FourCCs (add more if needed) ---
|
||||
INDEX_HNSW_FLAT_FOURCC = int.from_bytes(b"IHNf", "little")
|
||||
# Add other HNSW fourccs if you expect different storage types inside HNSW
|
||||
@@ -230,6 +239,288 @@ def write_compact_format(
|
||||
f_out.write(storage_data)
|
||||
|
||||
|
||||
@dataclass
|
||||
class HNSWComponents:
|
||||
original_hnsw_data: dict[str, Any]
|
||||
assign_probas_np: np.ndarray
|
||||
cum_nneighbor_per_level_np: np.ndarray
|
||||
levels_np: np.ndarray
|
||||
is_compact: bool
|
||||
compact_level_ptr: Optional[np.ndarray] = None
|
||||
compact_node_offsets_np: Optional[np.ndarray] = None
|
||||
compact_neighbors_data: Optional[list[int]] = None
|
||||
offsets_np: Optional[np.ndarray] = None
|
||||
neighbors_np: Optional[np.ndarray] = None
|
||||
storage_fourcc: int = NULL_INDEX_FOURCC
|
||||
storage_data: bytes = b""
|
||||
|
||||
|
||||
def _read_hnsw_structure(f) -> HNSWComponents:
|
||||
original_hnsw_data: dict[str, Any] = {}
|
||||
|
||||
hnsw_index_fourcc = read_struct(f, "<I")
|
||||
if hnsw_index_fourcc not in EXPECTED_HNSW_FOURCCS:
|
||||
raise ValueError(
|
||||
f"Unexpected HNSW FourCC: {hnsw_index_fourcc:08x}. Expected one of {EXPECTED_HNSW_FOURCCS}."
|
||||
)
|
||||
|
||||
original_hnsw_data["index_fourcc"] = hnsw_index_fourcc
|
||||
original_hnsw_data["d"] = read_struct(f, "<i")
|
||||
original_hnsw_data["ntotal"] = read_struct(f, "<q")
|
||||
original_hnsw_data["dummy1"] = read_struct(f, "<q")
|
||||
original_hnsw_data["dummy2"] = read_struct(f, "<q")
|
||||
original_hnsw_data["is_trained"] = read_struct(f, "?")
|
||||
original_hnsw_data["metric_type"] = read_struct(f, "<i")
|
||||
original_hnsw_data["metric_arg"] = 0.0
|
||||
if original_hnsw_data["metric_type"] > 1:
|
||||
original_hnsw_data["metric_arg"] = read_struct(f, "<f")
|
||||
|
||||
assign_probas_np = read_numpy_vector(f, np.float64, "d")
|
||||
cum_nneighbor_per_level_np = read_numpy_vector(f, np.int32, "i")
|
||||
levels_np = read_numpy_vector(f, np.int32, "i")
|
||||
|
||||
ntotal = len(levels_np)
|
||||
if ntotal != original_hnsw_data["ntotal"]:
|
||||
original_hnsw_data["ntotal"] = ntotal
|
||||
|
||||
pos_before_compact = f.tell()
|
||||
is_compact_flag = None
|
||||
try:
|
||||
is_compact_flag = read_struct(f, "<?")
|
||||
except EOFError:
|
||||
is_compact_flag = None
|
||||
|
||||
if is_compact_flag:
|
||||
compact_level_ptr = read_numpy_vector(f, np.uint64, "Q")
|
||||
compact_node_offsets_np = read_numpy_vector(f, np.uint64, "Q")
|
||||
|
||||
original_hnsw_data["entry_point"] = read_struct(f, "<i")
|
||||
original_hnsw_data["max_level"] = read_struct(f, "<i")
|
||||
original_hnsw_data["efConstruction"] = read_struct(f, "<i")
|
||||
original_hnsw_data["efSearch"] = read_struct(f, "<i")
|
||||
original_hnsw_data["dummy_upper_beam"] = read_struct(f, "<i")
|
||||
|
||||
storage_fourcc = read_struct(f, "<I")
|
||||
compact_neighbors_data_np = read_numpy_vector(f, np.int32, "i")
|
||||
compact_neighbors_data = compact_neighbors_data_np.tolist()
|
||||
storage_data = f.read()
|
||||
|
||||
return HNSWComponents(
|
||||
original_hnsw_data=original_hnsw_data,
|
||||
assign_probas_np=assign_probas_np,
|
||||
cum_nneighbor_per_level_np=cum_nneighbor_per_level_np,
|
||||
levels_np=levels_np,
|
||||
is_compact=True,
|
||||
compact_level_ptr=compact_level_ptr,
|
||||
compact_node_offsets_np=compact_node_offsets_np,
|
||||
compact_neighbors_data=compact_neighbors_data,
|
||||
storage_fourcc=storage_fourcc,
|
||||
storage_data=storage_data,
|
||||
)
|
||||
|
||||
# Non-compact case
|
||||
f.seek(pos_before_compact)
|
||||
|
||||
pos_before_probe = f.tell()
|
||||
try:
|
||||
suspected_flag = read_struct(f, "<B")
|
||||
if suspected_flag != 0x00:
|
||||
f.seek(pos_before_probe)
|
||||
except EOFError:
|
||||
f.seek(pos_before_probe)
|
||||
|
||||
offsets_np = read_numpy_vector(f, np.uint64, "Q")
|
||||
neighbors_np = read_numpy_vector(f, np.int32, "i")
|
||||
|
||||
original_hnsw_data["entry_point"] = read_struct(f, "<i")
|
||||
original_hnsw_data["max_level"] = read_struct(f, "<i")
|
||||
original_hnsw_data["efConstruction"] = read_struct(f, "<i")
|
||||
original_hnsw_data["efSearch"] = read_struct(f, "<i")
|
||||
original_hnsw_data["dummy_upper_beam"] = read_struct(f, "<i")
|
||||
|
||||
storage_fourcc = NULL_INDEX_FOURCC
|
||||
storage_data = b""
|
||||
try:
|
||||
storage_fourcc = read_struct(f, "<I")
|
||||
storage_data = f.read()
|
||||
except EOFError:
|
||||
storage_fourcc = NULL_INDEX_FOURCC
|
||||
|
||||
return HNSWComponents(
|
||||
original_hnsw_data=original_hnsw_data,
|
||||
assign_probas_np=assign_probas_np,
|
||||
cum_nneighbor_per_level_np=cum_nneighbor_per_level_np,
|
||||
levels_np=levels_np,
|
||||
is_compact=False,
|
||||
offsets_np=offsets_np,
|
||||
neighbors_np=neighbors_np,
|
||||
storage_fourcc=storage_fourcc,
|
||||
storage_data=storage_data,
|
||||
)
|
||||
|
||||
|
||||
def _read_hnsw_structure_from_file(path: str) -> HNSWComponents:
|
||||
with open(path, "rb") as f:
|
||||
return _read_hnsw_structure(f)
|
||||
|
||||
|
||||
def write_original_format(
|
||||
f_out,
|
||||
original_hnsw_data,
|
||||
assign_probas_np,
|
||||
cum_nneighbor_per_level_np,
|
||||
levels_np,
|
||||
offsets_np,
|
||||
neighbors_np,
|
||||
storage_fourcc,
|
||||
storage_data,
|
||||
):
|
||||
"""Write non-compact HNSW data in original FAISS order."""
|
||||
|
||||
f_out.write(struct.pack("<I", original_hnsw_data["index_fourcc"]))
|
||||
f_out.write(struct.pack("<i", original_hnsw_data["d"]))
|
||||
f_out.write(struct.pack("<q", original_hnsw_data["ntotal"]))
|
||||
f_out.write(struct.pack("<q", original_hnsw_data["dummy1"]))
|
||||
f_out.write(struct.pack("<q", original_hnsw_data["dummy2"]))
|
||||
f_out.write(struct.pack("<?", original_hnsw_data["is_trained"]))
|
||||
f_out.write(struct.pack("<i", original_hnsw_data["metric_type"]))
|
||||
if original_hnsw_data["metric_type"] > 1:
|
||||
f_out.write(struct.pack("<f", original_hnsw_data["metric_arg"]))
|
||||
|
||||
write_numpy_vector(f_out, assign_probas_np, "d")
|
||||
write_numpy_vector(f_out, cum_nneighbor_per_level_np, "i")
|
||||
write_numpy_vector(f_out, levels_np, "i")
|
||||
|
||||
write_numpy_vector(f_out, offsets_np, "Q")
|
||||
write_numpy_vector(f_out, neighbors_np, "i")
|
||||
|
||||
f_out.write(struct.pack("<i", original_hnsw_data["entry_point"]))
|
||||
f_out.write(struct.pack("<i", original_hnsw_data["max_level"]))
|
||||
f_out.write(struct.pack("<i", original_hnsw_data["efConstruction"]))
|
||||
f_out.write(struct.pack("<i", original_hnsw_data["efSearch"]))
|
||||
f_out.write(struct.pack("<i", original_hnsw_data["dummy_upper_beam"]))
|
||||
|
||||
f_out.write(struct.pack("<I", storage_fourcc))
|
||||
if storage_fourcc != NULL_INDEX_FOURCC and storage_data:
|
||||
f_out.write(storage_data)
|
||||
|
||||
|
||||
def prune_hnsw_embeddings(input_filename: str, output_filename: str) -> bool:
|
||||
"""Rewrite an HNSW index while dropping the embedded storage section."""
|
||||
|
||||
start_time = time.time()
|
||||
try:
|
||||
with open(input_filename, "rb") as f_in, open(output_filename, "wb") as f_out:
|
||||
original_hnsw_data: dict[str, Any] = {}
|
||||
|
||||
hnsw_index_fourcc = read_struct(f_in, "<I")
|
||||
if hnsw_index_fourcc not in EXPECTED_HNSW_FOURCCS:
|
||||
print(
|
||||
f"Error: Expected HNSW Index FourCC ({list(EXPECTED_HNSW_FOURCCS)}), got {hnsw_index_fourcc:08x}.",
|
||||
file=sys.stderr,
|
||||
)
|
||||
return False
|
||||
|
||||
original_hnsw_data["index_fourcc"] = hnsw_index_fourcc
|
||||
original_hnsw_data["d"] = read_struct(f_in, "<i")
|
||||
original_hnsw_data["ntotal"] = read_struct(f_in, "<q")
|
||||
original_hnsw_data["dummy1"] = read_struct(f_in, "<q")
|
||||
original_hnsw_data["dummy2"] = read_struct(f_in, "<q")
|
||||
original_hnsw_data["is_trained"] = read_struct(f_in, "?")
|
||||
original_hnsw_data["metric_type"] = read_struct(f_in, "<i")
|
||||
original_hnsw_data["metric_arg"] = 0.0
|
||||
if original_hnsw_data["metric_type"] > 1:
|
||||
original_hnsw_data["metric_arg"] = read_struct(f_in, "<f")
|
||||
|
||||
assign_probas_np = read_numpy_vector(f_in, np.float64, "d")
|
||||
cum_nneighbor_per_level_np = read_numpy_vector(f_in, np.int32, "i")
|
||||
levels_np = read_numpy_vector(f_in, np.int32, "i")
|
||||
|
||||
ntotal = len(levels_np)
|
||||
if ntotal != original_hnsw_data["ntotal"]:
|
||||
original_hnsw_data["ntotal"] = ntotal
|
||||
|
||||
pos_before_compact = f_in.tell()
|
||||
is_compact_flag = None
|
||||
try:
|
||||
is_compact_flag = read_struct(f_in, "<?")
|
||||
except EOFError:
|
||||
is_compact_flag = None
|
||||
|
||||
if is_compact_flag:
|
||||
compact_level_ptr = read_numpy_vector(f_in, np.uint64, "Q")
|
||||
compact_node_offsets_np = read_numpy_vector(f_in, np.uint64, "Q")
|
||||
|
||||
original_hnsw_data["entry_point"] = read_struct(f_in, "<i")
|
||||
original_hnsw_data["max_level"] = read_struct(f_in, "<i")
|
||||
original_hnsw_data["efConstruction"] = read_struct(f_in, "<i")
|
||||
original_hnsw_data["efSearch"] = read_struct(f_in, "<i")
|
||||
original_hnsw_data["dummy_upper_beam"] = read_struct(f_in, "<i")
|
||||
|
||||
_storage_fourcc = read_struct(f_in, "<I")
|
||||
compact_neighbors_data_np = read_numpy_vector(f_in, np.int32, "i")
|
||||
compact_neighbors_data = compact_neighbors_data_np.tolist()
|
||||
_storage_data = f_in.read()
|
||||
|
||||
write_compact_format(
|
||||
f_out,
|
||||
original_hnsw_data,
|
||||
assign_probas_np,
|
||||
cum_nneighbor_per_level_np,
|
||||
levels_np,
|
||||
compact_level_ptr,
|
||||
compact_node_offsets_np,
|
||||
compact_neighbors_data,
|
||||
NULL_INDEX_FOURCC,
|
||||
b"",
|
||||
)
|
||||
else:
|
||||
f_in.seek(pos_before_compact)
|
||||
|
||||
pos_before_probe = f_in.tell()
|
||||
try:
|
||||
suspected_flag = read_struct(f_in, "<B")
|
||||
if suspected_flag != 0x00:
|
||||
f_in.seek(pos_before_probe)
|
||||
except EOFError:
|
||||
f_in.seek(pos_before_probe)
|
||||
|
||||
offsets_np = read_numpy_vector(f_in, np.uint64, "Q")
|
||||
neighbors_np = read_numpy_vector(f_in, np.int32, "i")
|
||||
|
||||
original_hnsw_data["entry_point"] = read_struct(f_in, "<i")
|
||||
original_hnsw_data["max_level"] = read_struct(f_in, "<i")
|
||||
original_hnsw_data["efConstruction"] = read_struct(f_in, "<i")
|
||||
original_hnsw_data["efSearch"] = read_struct(f_in, "<i")
|
||||
original_hnsw_data["dummy_upper_beam"] = read_struct(f_in, "<i")
|
||||
|
||||
_storage_fourcc = None
|
||||
_storage_data = b""
|
||||
try:
|
||||
_storage_fourcc = read_struct(f_in, "<I")
|
||||
_storage_data = f_in.read()
|
||||
except EOFError:
|
||||
_storage_fourcc = NULL_INDEX_FOURCC
|
||||
|
||||
write_original_format(
|
||||
f_out,
|
||||
original_hnsw_data,
|
||||
assign_probas_np,
|
||||
cum_nneighbor_per_level_np,
|
||||
levels_np,
|
||||
offsets_np,
|
||||
neighbors_np,
|
||||
NULL_INDEX_FOURCC,
|
||||
b"",
|
||||
)
|
||||
|
||||
print(f"[{time.time() - start_time:.2f}s] Pruned embeddings from {input_filename}")
|
||||
return True
|
||||
except Exception as exc:
|
||||
print(f"Failed to prune embeddings: {exc}", file=sys.stderr)
|
||||
return False
|
||||
|
||||
|
||||
# --- Main Conversion Logic ---
|
||||
|
||||
|
||||
@@ -243,6 +534,8 @@ def convert_hnsw_graph_to_csr(input_filename, output_filename, prune_embeddings=
|
||||
output_filename: Output CSR index file
|
||||
prune_embeddings: Whether to prune embedding storage (write NULL storage marker)
|
||||
"""
|
||||
# Keep prints simple; rely on CI runner to flush output as needed
|
||||
|
||||
print(f"Starting conversion: {input_filename} -> {output_filename}")
|
||||
start_time = time.time()
|
||||
original_hnsw_data = {}
|
||||
@@ -691,6 +984,29 @@ def convert_hnsw_graph_to_csr(input_filename, output_filename, prune_embeddings=
|
||||
pass
|
||||
|
||||
|
||||
def prune_hnsw_embeddings_inplace(index_filename: str) -> bool:
|
||||
"""Convenience wrapper to prune embeddings in-place."""
|
||||
|
||||
temp_path = f"{index_filename}.prune.tmp"
|
||||
success = prune_hnsw_embeddings(index_filename, temp_path)
|
||||
if success:
|
||||
try:
|
||||
os.replace(temp_path, index_filename)
|
||||
except Exception as exc: # pragma: no cover - defensive
|
||||
logger.error(f"Failed to replace original index with pruned version: {exc}")
|
||||
try:
|
||||
os.remove(temp_path)
|
||||
except OSError:
|
||||
pass
|
||||
return False
|
||||
else:
|
||||
try:
|
||||
os.remove(temp_path)
|
||||
except OSError:
|
||||
pass
|
||||
return success
|
||||
|
||||
|
||||
# --- Script Execution ---
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
|
||||
@@ -1,8 +1,9 @@
|
||||
import logging
|
||||
import os
|
||||
import shutil
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import Any, Literal
|
||||
from typing import Any, Literal, Optional
|
||||
|
||||
import numpy as np
|
||||
from leann.interface import (
|
||||
@@ -13,7 +14,7 @@ from leann.interface import (
|
||||
from leann.registry import register_backend
|
||||
from leann.searcher_base import BaseSearcher
|
||||
|
||||
from .convert_to_csr import convert_hnsw_graph_to_csr
|
||||
from .convert_to_csr import convert_hnsw_graph_to_csr, prune_hnsw_embeddings_inplace
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -54,12 +55,13 @@ class HNSWBuilder(LeannBackendBuilderInterface):
|
||||
self.efConstruction = self.build_params.setdefault("efConstruction", 200)
|
||||
self.distance_metric = self.build_params.setdefault("distance_metric", "mips")
|
||||
self.dimensions = self.build_params.get("dimensions")
|
||||
if not self.is_recompute:
|
||||
if self.is_compact:
|
||||
# TODO: support this case @andy
|
||||
raise ValueError(
|
||||
"is_recompute is False, but is_compact is True. This is not compatible now. change is compact to False and you can use the original HNSW index."
|
||||
)
|
||||
if not self.is_recompute and self.is_compact:
|
||||
# Auto-correct: non-recompute requires non-compact storage for HNSW
|
||||
logger.warning(
|
||||
"is_recompute=False requires non-compact HNSW. Forcing is_compact=False."
|
||||
)
|
||||
self.is_compact = False
|
||||
self.build_params["is_compact"] = False
|
||||
|
||||
def build(self, data: np.ndarray, ids: list[str], index_path: str, **kwargs):
|
||||
from . import faiss # type: ignore
|
||||
@@ -90,6 +92,8 @@ class HNSWBuilder(LeannBackendBuilderInterface):
|
||||
|
||||
if self.is_compact:
|
||||
self._convert_to_csr(index_file)
|
||||
elif self.is_recompute:
|
||||
prune_hnsw_embeddings_inplace(str(index_file))
|
||||
|
||||
def _convert_to_csr(self, index_file: Path):
|
||||
"""Convert built index to CSR format"""
|
||||
@@ -131,10 +135,10 @@ class HNSWSearcher(BaseSearcher):
|
||||
if metric_enum is None:
|
||||
raise ValueError(f"Unsupported distance_metric '{self.distance_metric}'.")
|
||||
|
||||
self.is_compact, self.is_pruned = (
|
||||
self.meta.get("is_compact", True),
|
||||
self.meta.get("is_pruned", True),
|
||||
)
|
||||
backend_meta_kwargs = self.meta.get("backend_kwargs", {})
|
||||
self.is_compact = self.meta.get("is_compact", backend_meta_kwargs.get("is_compact", True))
|
||||
default_pruned = backend_meta_kwargs.get("is_recompute", self.is_compact)
|
||||
self.is_pruned = bool(self.meta.get("is_pruned", default_pruned))
|
||||
|
||||
index_file = self.index_dir / f"{self.index_path.stem}.index"
|
||||
if not index_file.exists():
|
||||
@@ -152,7 +156,7 @@ class HNSWSearcher(BaseSearcher):
|
||||
self,
|
||||
query: np.ndarray,
|
||||
top_k: int,
|
||||
zmq_port: int | None = None,
|
||||
zmq_port: Optional[int] = None,
|
||||
complexity: int = 64,
|
||||
beam_width: int = 1,
|
||||
prune_ratio: float = 0.0,
|
||||
@@ -184,9 +188,11 @@ class HNSWSearcher(BaseSearcher):
|
||||
"""
|
||||
from . import faiss # type: ignore
|
||||
|
||||
if not recompute_embeddings:
|
||||
if self.is_pruned:
|
||||
raise RuntimeError("Recompute is required for pruned index.")
|
||||
if not recompute_embeddings and self.is_pruned:
|
||||
raise RuntimeError(
|
||||
"Recompute is required for pruned/compact HNSW index. "
|
||||
"Re-run search with --recompute, or rebuild with --no-recompute and --no-compact."
|
||||
)
|
||||
if recompute_embeddings:
|
||||
if zmq_port is None:
|
||||
raise ValueError("zmq_port must be provided if recompute_embeddings is True")
|
||||
@@ -233,6 +239,7 @@ class HNSWSearcher(BaseSearcher):
|
||||
distances = np.empty((batch_size_query, top_k), dtype=np.float32)
|
||||
labels = np.empty((batch_size_query, top_k), dtype=np.int64)
|
||||
|
||||
search_time = time.time()
|
||||
self._index.search(
|
||||
query.shape[0],
|
||||
faiss.swig_ptr(query),
|
||||
@@ -241,7 +248,8 @@ class HNSWSearcher(BaseSearcher):
|
||||
faiss.swig_ptr(labels),
|
||||
params,
|
||||
)
|
||||
|
||||
search_time = time.time() - search_time
|
||||
logger.info(f" Search time in HNSWSearcher.search() backend: {search_time} seconds")
|
||||
string_labels = [[str(int_label) for int_label in batch_labels] for batch_labels in labels]
|
||||
|
||||
return {"labels": string_labels, "distances": distances}
|
||||
|
||||
@@ -10,6 +10,7 @@ import sys
|
||||
import threading
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
import msgpack
|
||||
import numpy as np
|
||||
@@ -23,17 +24,30 @@ logger = logging.getLogger(__name__)
|
||||
log_level = getattr(logging, LOG_LEVEL, logging.WARNING)
|
||||
logger.setLevel(log_level)
|
||||
|
||||
# Ensure we have a handler if none exists
|
||||
# Ensure we have handlers if none exist
|
||||
if not logger.handlers:
|
||||
handler = logging.StreamHandler()
|
||||
stream_handler = logging.StreamHandler()
|
||||
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
|
||||
handler.setFormatter(formatter)
|
||||
logger.addHandler(handler)
|
||||
logger.propagate = False
|
||||
stream_handler.setFormatter(formatter)
|
||||
logger.addHandler(stream_handler)
|
||||
|
||||
log_path = os.getenv("LEANN_HNSW_LOG_PATH")
|
||||
if log_path:
|
||||
try:
|
||||
file_handler = logging.FileHandler(log_path, mode="a", encoding="utf-8")
|
||||
file_formatter = logging.Formatter(
|
||||
"%(asctime)s - %(levelname)s - [pid=%(process)d] %(message)s"
|
||||
)
|
||||
file_handler.setFormatter(file_formatter)
|
||||
logger.addHandler(file_handler)
|
||||
except Exception as exc: # pragma: no cover - best effort logging
|
||||
logger.warning(f"Failed to attach file handler for log path {log_path}: {exc}")
|
||||
|
||||
logger.propagate = False
|
||||
|
||||
|
||||
def create_hnsw_embedding_server(
|
||||
passages_file: str | None = None,
|
||||
passages_file: Optional[str] = None,
|
||||
zmq_port: int = 5555,
|
||||
model_name: str = "sentence-transformers/all-mpnet-base-v2",
|
||||
distance_metric: str = "mips",
|
||||
@@ -81,199 +95,315 @@ def create_hnsw_embedding_server(
|
||||
with open(passages_file) as f:
|
||||
meta = json.load(f)
|
||||
|
||||
# Convert relative paths to absolute paths based on metadata file location
|
||||
metadata_dir = Path(passages_file).parent.parent # Go up one level from the metadata file
|
||||
passage_sources = []
|
||||
for source in meta["passage_sources"]:
|
||||
source_copy = source.copy()
|
||||
# Convert relative paths to absolute paths
|
||||
if not Path(source_copy["path"]).is_absolute():
|
||||
source_copy["path"] = str(metadata_dir / source_copy["path"])
|
||||
if not Path(source_copy["index_path"]).is_absolute():
|
||||
source_copy["index_path"] = str(metadata_dir / source_copy["index_path"])
|
||||
passage_sources.append(source_copy)
|
||||
# Let PassageManager handle path resolution uniformly. It supports fallback order:
|
||||
# 1) path/index_path; 2) *_relative; 3) standard siblings next to meta
|
||||
passages = PassageManager(meta["passage_sources"], metadata_file_path=passages_file)
|
||||
# Dimension from metadata for shaping responses
|
||||
try:
|
||||
embedding_dim: int = int(meta.get("dimensions", 0))
|
||||
except Exception:
|
||||
embedding_dim = 0
|
||||
logger.info(f"Loaded PassageManager with {len(passages)} passages from metadata")
|
||||
|
||||
passages = PassageManager(passage_sources)
|
||||
logger.info(
|
||||
f"Loaded PassageManager with {len(passages.global_offset_map)} passages from metadata"
|
||||
)
|
||||
# (legacy ZMQ thread removed; using shutdown-capable server only)
|
||||
|
||||
def zmq_server_thread_with_shutdown(shutdown_event):
|
||||
"""ZMQ server thread that respects shutdown signal.
|
||||
|
||||
Creates its own REP socket bound to zmq_port and polls with timeouts
|
||||
to allow graceful shutdown.
|
||||
"""
|
||||
logger.info("ZMQ server thread started with shutdown support")
|
||||
|
||||
def zmq_server_thread():
|
||||
"""ZMQ server thread"""
|
||||
context = zmq.Context()
|
||||
socket = context.socket(zmq.REP)
|
||||
socket.bind(f"tcp://*:{zmq_port}")
|
||||
logger.info(f"HNSW ZMQ server listening on port {zmq_port}")
|
||||
rep_socket = context.socket(zmq.REP)
|
||||
rep_socket.bind(f"tcp://*:{zmq_port}")
|
||||
logger.info(f"HNSW ZMQ REP server listening on port {zmq_port}")
|
||||
rep_socket.setsockopt(zmq.RCVTIMEO, 1000)
|
||||
# Keep sends from blocking during shutdown; fail fast and drop on close
|
||||
rep_socket.setsockopt(zmq.SNDTIMEO, 1000)
|
||||
rep_socket.setsockopt(zmq.LINGER, 0)
|
||||
|
||||
socket.setsockopt(zmq.RCVTIMEO, 300000)
|
||||
socket.setsockopt(zmq.SNDTIMEO, 300000)
|
||||
# Track last request type/length for shape-correct fallbacks
|
||||
last_request_type = "unknown" # 'text' | 'distance' | 'embedding' | 'unknown'
|
||||
last_request_length = 0
|
||||
|
||||
while True:
|
||||
try:
|
||||
message_bytes = socket.recv()
|
||||
logger.debug(f"Received ZMQ request of size {len(message_bytes)} bytes")
|
||||
try:
|
||||
while not shutdown_event.is_set():
|
||||
try:
|
||||
e2e_start = time.time()
|
||||
logger.debug("🔍 Waiting for ZMQ message...")
|
||||
request_bytes = rep_socket.recv()
|
||||
|
||||
e2e_start = time.time()
|
||||
request_payload = msgpack.unpackb(message_bytes)
|
||||
# Rest of the processing logic (same as original)
|
||||
request = msgpack.unpackb(request_bytes)
|
||||
|
||||
# Handle direct text embedding request
|
||||
if isinstance(request_payload, list) and len(request_payload) > 0:
|
||||
# Check if this is a direct text request (list of strings)
|
||||
if all(isinstance(item, str) for item in request_payload):
|
||||
logger.info(
|
||||
f"Processing direct text embedding request for {len(request_payload)} texts in {embedding_mode} mode"
|
||||
)
|
||||
if len(request) == 1 and request[0] == "__QUERY_MODEL__":
|
||||
response_bytes = msgpack.packb([model_name])
|
||||
rep_socket.send(response_bytes)
|
||||
continue
|
||||
|
||||
# Use unified embedding computation (now with model caching)
|
||||
embeddings = compute_embeddings(
|
||||
request_payload, model_name, mode=embedding_mode
|
||||
)
|
||||
|
||||
response = embeddings.tolist()
|
||||
socket.send(msgpack.packb(response))
|
||||
# Handle direct text embedding request
|
||||
if (
|
||||
isinstance(request, list)
|
||||
and request
|
||||
and all(isinstance(item, str) for item in request)
|
||||
):
|
||||
last_request_type = "text"
|
||||
last_request_length = len(request)
|
||||
embeddings = compute_embeddings(request, model_name, mode=embedding_mode)
|
||||
rep_socket.send(msgpack.packb(embeddings.tolist()))
|
||||
e2e_end = time.time()
|
||||
logger.info(f"⏱️ Text embedding E2E time: {e2e_end - e2e_start:.6f}s")
|
||||
continue
|
||||
|
||||
# Handle distance calculation requests
|
||||
if (
|
||||
isinstance(request_payload, list)
|
||||
and len(request_payload) == 2
|
||||
and isinstance(request_payload[0], list)
|
||||
and isinstance(request_payload[1], list)
|
||||
):
|
||||
node_ids = request_payload[0]
|
||||
query_vector = np.array(request_payload[1], dtype=np.float32)
|
||||
# Handle distance calculation request: [[ids], [query_vector]]
|
||||
if (
|
||||
isinstance(request, list)
|
||||
and len(request) == 2
|
||||
and isinstance(request[0], list)
|
||||
and isinstance(request[1], list)
|
||||
):
|
||||
node_ids = request[0]
|
||||
# Handle nested [[ids]] shape defensively
|
||||
if len(node_ids) == 1 and isinstance(node_ids[0], list):
|
||||
node_ids = node_ids[0]
|
||||
query_vector = np.array(request[1], dtype=np.float32)
|
||||
last_request_type = "distance"
|
||||
last_request_length = len(node_ids)
|
||||
|
||||
logger.debug("Distance calculation request received")
|
||||
logger.debug(f" Node IDs: {node_ids}")
|
||||
logger.debug(f" Query vector dim: {len(query_vector)}")
|
||||
logger.debug("Distance calculation request received")
|
||||
logger.debug(f" Node IDs: {node_ids}")
|
||||
logger.debug(f" Query vector dim: {len(query_vector)}")
|
||||
|
||||
# Get embeddings for node IDs
|
||||
texts = []
|
||||
for nid in node_ids:
|
||||
# Gather texts for found ids
|
||||
texts: list[str] = []
|
||||
found_indices: list[int] = []
|
||||
for idx, nid in enumerate(node_ids):
|
||||
try:
|
||||
passage_data = passages.get_passage(str(nid))
|
||||
txt = passage_data.get("text", "")
|
||||
if isinstance(txt, str) and len(txt) > 0:
|
||||
texts.append(txt)
|
||||
found_indices.append(idx)
|
||||
else:
|
||||
logger.error(f"Empty text for passage ID {nid}")
|
||||
except KeyError:
|
||||
logger.error(f"Passage ID {nid} not found")
|
||||
except Exception as e:
|
||||
logger.error(f"Exception looking up passage ID {nid}: {e}")
|
||||
|
||||
# Prepare full-length response with large sentinel values
|
||||
large_distance = 1e9
|
||||
response_distances = [large_distance] * len(node_ids)
|
||||
|
||||
if texts:
|
||||
try:
|
||||
embeddings = compute_embeddings(
|
||||
texts, model_name, mode=embedding_mode
|
||||
)
|
||||
logger.info(
|
||||
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
|
||||
)
|
||||
if distance_metric == "l2":
|
||||
partial = np.sum(
|
||||
np.square(embeddings - query_vector.reshape(1, -1)), axis=1
|
||||
)
|
||||
else: # mips or cosine
|
||||
partial = -np.dot(embeddings, query_vector)
|
||||
|
||||
for pos, dval in zip(found_indices, partial.flatten().tolist()):
|
||||
response_distances[pos] = float(dval)
|
||||
except Exception as e:
|
||||
logger.error(f"Distance computation error, using sentinels: {e}")
|
||||
|
||||
# Send response in expected shape [[distances]]
|
||||
rep_socket.send(msgpack.packb([response_distances], use_single_float=True))
|
||||
e2e_end = time.time()
|
||||
logger.info(f"⏱️ Distance calculation E2E time: {e2e_end - e2e_start:.6f}s")
|
||||
continue
|
||||
|
||||
# Fallback: treat as embedding-by-id request
|
||||
if (
|
||||
isinstance(request, list)
|
||||
and len(request) == 1
|
||||
and isinstance(request[0], list)
|
||||
):
|
||||
node_ids = request[0]
|
||||
elif isinstance(request, list):
|
||||
node_ids = request
|
||||
else:
|
||||
node_ids = []
|
||||
last_request_type = "embedding"
|
||||
last_request_length = len(node_ids)
|
||||
logger.info(f"ZMQ received {len(node_ids)} node IDs for embedding fetch")
|
||||
|
||||
# Preallocate zero-filled flat data for robustness
|
||||
if embedding_dim <= 0:
|
||||
dims = [0, 0]
|
||||
flat_data: list[float] = []
|
||||
else:
|
||||
dims = [len(node_ids), embedding_dim]
|
||||
flat_data = [0.0] * (dims[0] * dims[1])
|
||||
|
||||
# Collect texts for found ids
|
||||
texts: list[str] = []
|
||||
found_indices: list[int] = []
|
||||
for idx, nid in enumerate(node_ids):
|
||||
try:
|
||||
passage_data = passages.get_passage(str(nid))
|
||||
txt = passage_data["text"]
|
||||
texts.append(txt)
|
||||
txt = passage_data.get("text", "")
|
||||
if isinstance(txt, str) and len(txt) > 0:
|
||||
texts.append(txt)
|
||||
found_indices.append(idx)
|
||||
else:
|
||||
logger.error(f"Empty text for passage ID {nid}")
|
||||
except KeyError:
|
||||
logger.error(f"Passage ID {nid} not found")
|
||||
raise RuntimeError(f"FATAL: Passage with ID {nid} not found")
|
||||
logger.error(f"Passage with ID {nid} not found")
|
||||
except Exception as e:
|
||||
logger.error(f"Exception looking up passage ID {nid}: {e}")
|
||||
raise
|
||||
|
||||
# Process embeddings
|
||||
embeddings = compute_embeddings(texts, model_name, mode=embedding_mode)
|
||||
logger.info(
|
||||
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
|
||||
)
|
||||
if texts:
|
||||
try:
|
||||
embeddings = compute_embeddings(texts, model_name, mode=embedding_mode)
|
||||
logger.info(
|
||||
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
|
||||
)
|
||||
|
||||
# Calculate distances
|
||||
if distance_metric == "l2":
|
||||
distances = np.sum(
|
||||
np.square(embeddings - query_vector.reshape(1, -1)), axis=1
|
||||
)
|
||||
else: # mips or cosine
|
||||
distances = -np.dot(embeddings, query_vector)
|
||||
if np.isnan(embeddings).any() or np.isinf(embeddings).any():
|
||||
logger.error(
|
||||
f"NaN or Inf detected in embeddings! Requested IDs: {node_ids[:5]}..."
|
||||
)
|
||||
dims = [0, embedding_dim]
|
||||
flat_data = []
|
||||
else:
|
||||
emb_f32 = np.ascontiguousarray(embeddings, dtype=np.float32)
|
||||
flat = emb_f32.flatten().tolist()
|
||||
for j, pos in enumerate(found_indices):
|
||||
start = pos * embedding_dim
|
||||
end = start + embedding_dim
|
||||
if end <= len(flat_data):
|
||||
flat_data[start:end] = flat[
|
||||
j * embedding_dim : (j + 1) * embedding_dim
|
||||
]
|
||||
except Exception as e:
|
||||
logger.error(f"Embedding computation error, returning zeros: {e}")
|
||||
|
||||
response_payload = distances.flatten().tolist()
|
||||
response_bytes = msgpack.packb([response_payload], use_single_float=True)
|
||||
logger.debug(f"Sending distance response with {len(distances)} distances")
|
||||
response_payload = [dims, flat_data]
|
||||
response_bytes = msgpack.packb(response_payload, use_single_float=True)
|
||||
|
||||
socket.send(response_bytes)
|
||||
rep_socket.send(response_bytes)
|
||||
e2e_end = time.time()
|
||||
logger.info(f"⏱️ Distance calculation E2E time: {e2e_end - e2e_start:.6f}s")
|
||||
logger.info(f"⏱️ ZMQ E2E time: {e2e_end - e2e_start:.6f}s")
|
||||
|
||||
except zmq.Again:
|
||||
# Timeout - check shutdown_event and continue
|
||||
continue
|
||||
except Exception as e:
|
||||
if not shutdown_event.is_set():
|
||||
logger.error(f"Error in ZMQ server loop: {e}")
|
||||
# Shape-correct fallback
|
||||
try:
|
||||
if last_request_type == "distance":
|
||||
large_distance = 1e9
|
||||
fallback_len = max(0, int(last_request_length))
|
||||
safe = [[large_distance] * fallback_len]
|
||||
elif last_request_type == "embedding":
|
||||
bsz = max(0, int(last_request_length))
|
||||
dim = max(0, int(embedding_dim))
|
||||
safe = (
|
||||
[[bsz, dim], [0.0] * (bsz * dim)] if dim > 0 else [[0, 0], []]
|
||||
)
|
||||
elif last_request_type == "text":
|
||||
safe = [] # direct text embeddings expectation is a flat list
|
||||
else:
|
||||
safe = [[0, int(embedding_dim) if embedding_dim > 0 else 0], []]
|
||||
rep_socket.send(msgpack.packb(safe, use_single_float=True))
|
||||
except Exception:
|
||||
pass
|
||||
else:
|
||||
logger.info("Shutdown in progress, ignoring ZMQ error")
|
||||
break
|
||||
finally:
|
||||
try:
|
||||
rep_socket.close(0)
|
||||
except Exception:
|
||||
pass
|
||||
try:
|
||||
context.term()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
# Standard embedding request (passage ID lookup)
|
||||
if (
|
||||
not isinstance(request_payload, list)
|
||||
or len(request_payload) != 1
|
||||
or not isinstance(request_payload[0], list)
|
||||
):
|
||||
logger.error(
|
||||
f"Invalid MessagePack request format. Expected [[ids...]] or [texts...], got: {type(request_payload)}"
|
||||
)
|
||||
socket.send(msgpack.packb([[], []]))
|
||||
continue
|
||||
logger.info("ZMQ server thread exiting gracefully")
|
||||
|
||||
node_ids = request_payload[0]
|
||||
logger.debug(f"Request for {len(node_ids)} node embeddings")
|
||||
# Add shutdown coordination
|
||||
shutdown_event = threading.Event()
|
||||
|
||||
# Look up texts by node IDs
|
||||
texts = []
|
||||
for nid in node_ids:
|
||||
try:
|
||||
passage_data = passages.get_passage(str(nid))
|
||||
txt = passage_data["text"]
|
||||
if not txt:
|
||||
raise RuntimeError(f"FATAL: Empty text for passage ID {nid}")
|
||||
texts.append(txt)
|
||||
except KeyError:
|
||||
raise RuntimeError(f"FATAL: Passage with ID {nid} not found")
|
||||
except Exception as e:
|
||||
logger.error(f"Exception looking up passage ID {nid}: {e}")
|
||||
raise
|
||||
def shutdown_zmq_server():
|
||||
"""Gracefully shutdown ZMQ server."""
|
||||
logger.info("Initiating graceful shutdown...")
|
||||
shutdown_event.set()
|
||||
|
||||
# Process embeddings
|
||||
embeddings = compute_embeddings(texts, model_name, mode=embedding_mode)
|
||||
logger.info(
|
||||
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
|
||||
)
|
||||
if zmq_thread.is_alive():
|
||||
logger.info("Waiting for ZMQ thread to finish...")
|
||||
zmq_thread.join(timeout=5)
|
||||
if zmq_thread.is_alive():
|
||||
logger.warning("ZMQ thread did not finish in time")
|
||||
|
||||
# Serialization and response
|
||||
if np.isnan(embeddings).any() or np.isinf(embeddings).any():
|
||||
logger.error(
|
||||
f"NaN or Inf detected in embeddings! Requested IDs: {node_ids[:5]}..."
|
||||
)
|
||||
raise AssertionError()
|
||||
# Clean up ZMQ resources
|
||||
try:
|
||||
# Note: socket and context are cleaned up by thread exit
|
||||
logger.info("ZMQ resources cleaned up")
|
||||
except Exception as e:
|
||||
logger.warning(f"Error cleaning ZMQ resources: {e}")
|
||||
|
||||
hidden_contiguous_f32 = np.ascontiguousarray(embeddings, dtype=np.float32)
|
||||
response_payload = [
|
||||
list(hidden_contiguous_f32.shape),
|
||||
hidden_contiguous_f32.flatten().tolist(),
|
||||
]
|
||||
response_bytes = msgpack.packb(response_payload, use_single_float=True)
|
||||
# Clean up other resources
|
||||
try:
|
||||
import gc
|
||||
|
||||
socket.send(response_bytes)
|
||||
e2e_end = time.time()
|
||||
logger.info(f"⏱️ ZMQ E2E time: {e2e_end - e2e_start:.6f}s")
|
||||
gc.collect()
|
||||
logger.info("Additional resources cleaned up")
|
||||
except Exception as e:
|
||||
logger.warning(f"Error cleaning additional resources: {e}")
|
||||
|
||||
except zmq.Again:
|
||||
logger.debug("ZMQ socket timeout, continuing to listen")
|
||||
continue
|
||||
except Exception as e:
|
||||
logger.error(f"Error in ZMQ server loop: {e}")
|
||||
import traceback
|
||||
logger.info("Graceful shutdown completed")
|
||||
sys.exit(0)
|
||||
|
||||
traceback.print_exc()
|
||||
socket.send(msgpack.packb([[], []]))
|
||||
# Register signal handlers within this function scope
|
||||
import signal
|
||||
|
||||
zmq_thread = threading.Thread(target=zmq_server_thread, daemon=True)
|
||||
def signal_handler(sig, frame):
|
||||
logger.info(f"Received signal {sig}, shutting down gracefully...")
|
||||
shutdown_zmq_server()
|
||||
|
||||
signal.signal(signal.SIGTERM, signal_handler)
|
||||
signal.signal(signal.SIGINT, signal_handler)
|
||||
|
||||
# Pass shutdown_event to ZMQ thread
|
||||
zmq_thread = threading.Thread(
|
||||
target=lambda: zmq_server_thread_with_shutdown(shutdown_event),
|
||||
daemon=False, # Not daemon - we want to wait for it
|
||||
)
|
||||
zmq_thread.start()
|
||||
logger.info(f"Started HNSW ZMQ server thread on port {zmq_port}")
|
||||
|
||||
# Keep the main thread alive
|
||||
try:
|
||||
while True:
|
||||
time.sleep(1)
|
||||
while not shutdown_event.is_set():
|
||||
time.sleep(0.1) # Check shutdown more frequently
|
||||
except KeyboardInterrupt:
|
||||
logger.info("HNSW Server shutting down...")
|
||||
shutdown_zmq_server()
|
||||
return
|
||||
|
||||
# If we reach here, shutdown was triggered by signal
|
||||
logger.info("Main loop exited, process should be shutting down")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import signal
|
||||
import sys
|
||||
|
||||
def signal_handler(sig, frame):
|
||||
logger.info(f"Received signal {sig}, shutting down gracefully...")
|
||||
sys.exit(0)
|
||||
|
||||
# Register signal handlers for graceful shutdown
|
||||
signal.signal(signal.SIGTERM, signal_handler)
|
||||
signal.signal(signal.SIGINT, signal_handler)
|
||||
# Signal handlers are now registered within create_hnsw_embedding_server
|
||||
|
||||
parser = argparse.ArgumentParser(description="HNSW Embedding service")
|
||||
parser.add_argument("--zmq-port", type=int, default=5555, help="ZMQ port to run on")
|
||||
@@ -295,7 +425,7 @@ if __name__ == "__main__":
|
||||
"--embedding-mode",
|
||||
type=str,
|
||||
default="sentence-transformers",
|
||||
choices=["sentence-transformers", "openai", "mlx"],
|
||||
choices=["sentence-transformers", "openai", "mlx", "ollama"],
|
||||
help="Embedding backend mode",
|
||||
)
|
||||
|
||||
|
||||
@@ -6,10 +6,10 @@ build-backend = "scikit_build_core.build"
|
||||
|
||||
[project]
|
||||
name = "leann-backend-hnsw"
|
||||
version = "0.1.15"
|
||||
version = "0.3.4"
|
||||
description = "Custom-built HNSW (Faiss) backend for the Leann toolkit."
|
||||
dependencies = [
|
||||
"leann-core==0.1.15",
|
||||
"leann-core==0.3.4",
|
||||
"numpy",
|
||||
"pyzmq>=23.0.0",
|
||||
"msgpack>=1.0.0",
|
||||
@@ -22,6 +22,8 @@ cmake.build-type = "Release"
|
||||
build.verbose = true
|
||||
build.tool-args = ["-j8"]
|
||||
|
||||
# CMake definitions to optimize compilation
|
||||
# CMake definitions to optimize compilation and find Homebrew packages
|
||||
[tool.scikit-build.cmake.define]
|
||||
CMAKE_BUILD_PARALLEL_LEVEL = "8"
|
||||
CMAKE_PREFIX_PATH = {env = "CMAKE_PREFIX_PATH"}
|
||||
OpenMP_ROOT = {env = "OpenMP_ROOT"}
|
||||
|
||||
Submodule packages/leann-backend-hnsw/third_party/faiss updated: ff22e2c86b...1d51f0c074
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
||||
|
||||
[project]
|
||||
name = "leann-core"
|
||||
version = "0.1.15"
|
||||
version = "0.3.4"
|
||||
description = "Core API and plugin system for LEANN"
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.9"
|
||||
@@ -31,8 +31,10 @@ dependencies = [
|
||||
"PyPDF2>=3.0.0",
|
||||
"pymupdf>=1.23.0",
|
||||
"pdfplumber>=0.10.0",
|
||||
"mlx>=0.26.3; sys_platform == 'darwin'",
|
||||
"mlx-lm>=0.26.0; sys_platform == 'darwin'",
|
||||
"nbconvert>=7.0.0", # For .ipynb file support
|
||||
"gitignore-parser>=0.1.12", # For proper .gitignore handling
|
||||
"mlx>=0.26.3; sys_platform == 'darwin' and platform_machine == 'arm64'",
|
||||
"mlx-lm>=0.26.0; sys_platform == 'darwin' and platform_machine == 'arm64'",
|
||||
]
|
||||
|
||||
[project.optional-dependencies]
|
||||
@@ -44,6 +46,7 @@ colab = [
|
||||
|
||||
[project.scripts]
|
||||
leann = "leann.cli:main"
|
||||
leann_mcp = "leann.mcp:main"
|
||||
|
||||
[tool.setuptools.packages.find]
|
||||
where = ["src"]
|
||||
|
||||
@@ -8,6 +8,10 @@ if platform.system() == "Darwin":
|
||||
os.environ["MKL_NUM_THREADS"] = "1"
|
||||
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
|
||||
os.environ["KMP_BLOCKTIME"] = "0"
|
||||
# Additional fixes for PyTorch/sentence-transformers on macOS ARM64 only in CI
|
||||
if os.environ.get("CI") == "true":
|
||||
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "0"
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||
|
||||
from .api import LeannBuilder, LeannChat, LeannSearcher
|
||||
from .registry import BACKEND_REGISTRY, autodiscover_backends
|
||||
|
||||
@@ -6,29 +6,38 @@ with the correct, original embedding logic from the user's reference code.
|
||||
import json
|
||||
import logging
|
||||
import pickle
|
||||
import re
|
||||
import subprocess
|
||||
import time
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from pathlib import Path
|
||||
from typing import Any, Literal
|
||||
from typing import Any, Literal, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
from leann_backend_hnsw.convert_to_csr import prune_hnsw_embeddings_inplace
|
||||
|
||||
from leann.interface import LeannBackendSearcherInterface
|
||||
|
||||
from .chat import get_llm
|
||||
from .interface import LeannBackendFactoryInterface
|
||||
from .metadata_filter import MetadataFilterEngine
|
||||
from .registry import BACKEND_REGISTRY
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def get_registered_backends() -> list[str]:
|
||||
"""Get list of registered backend names."""
|
||||
return list(BACKEND_REGISTRY.keys())
|
||||
|
||||
|
||||
def compute_embeddings(
|
||||
chunks: list[str],
|
||||
model_name: str,
|
||||
mode: str = "sentence-transformers",
|
||||
use_server: bool = True,
|
||||
port: int | None = None,
|
||||
port: Optional[int] = None,
|
||||
is_build=False,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
@@ -41,6 +50,7 @@ def compute_embeddings(
|
||||
- "sentence-transformers": Use sentence-transformers library (default)
|
||||
- "mlx": Use MLX backend for Apple Silicon
|
||||
- "openai": Use OpenAI embedding API
|
||||
- "gemini": Use Google Gemini embedding API
|
||||
use_server: Whether to use embedding server (True for search, False for build)
|
||||
|
||||
Returns:
|
||||
@@ -110,54 +120,180 @@ class SearchResult:
|
||||
|
||||
|
||||
class PassageManager:
|
||||
def __init__(self, passage_sources: list[dict[str, Any]]):
|
||||
self.offset_maps = {}
|
||||
self.passage_files = {}
|
||||
self.global_offset_map = {} # Combined map for fast lookup
|
||||
def __init__(
|
||||
self, passage_sources: list[dict[str, Any]], metadata_file_path: Optional[str] = None
|
||||
):
|
||||
self.offset_maps: dict[str, dict[str, int]] = {}
|
||||
self.passage_files: dict[str, str] = {}
|
||||
# Avoid materializing a single gigantic global map to reduce memory
|
||||
# footprint on very large corpora (e.g., 60M+ passages). Instead, keep
|
||||
# per-shard maps and do a lightweight per-shard lookup on demand.
|
||||
self._total_count: int = 0
|
||||
self.filter_engine = MetadataFilterEngine() # Initialize filter engine
|
||||
|
||||
# Derive index base name for standard sibling fallbacks, e.g., <index_name>.passages.*
|
||||
index_name_base = None
|
||||
if metadata_file_path:
|
||||
meta_name = Path(metadata_file_path).name
|
||||
if meta_name.endswith(".meta.json"):
|
||||
index_name_base = meta_name[: -len(".meta.json")]
|
||||
|
||||
for source in passage_sources:
|
||||
assert source["type"] == "jsonl", "only jsonl is supported"
|
||||
passage_file = source["path"]
|
||||
index_file = source["index_path"] # .idx file
|
||||
passage_file = source.get("path", "")
|
||||
index_file = source.get("index_path", "") # .idx file
|
||||
|
||||
# Fix path resolution for Colab and other environments
|
||||
if not Path(index_file).is_absolute():
|
||||
# If relative path, try to resolve it properly
|
||||
index_file = str(Path(index_file).resolve())
|
||||
# Fix path resolution - relative paths should be relative to metadata file directory
|
||||
def _resolve_candidates(
|
||||
primary: str,
|
||||
relative_key: str,
|
||||
default_name: Optional[str],
|
||||
source_dict: dict[str, Any],
|
||||
) -> list[Path]:
|
||||
"""
|
||||
Build an ordered list of candidate paths. For relative paths specified in
|
||||
metadata, prefer resolution relative to the metadata file directory first,
|
||||
then fall back to CWD-based resolution, and finally to conventional
|
||||
sibling defaults (e.g., <index_base>.passages.idx / .jsonl).
|
||||
"""
|
||||
candidates: list[Path] = []
|
||||
# 1) Primary path
|
||||
if primary:
|
||||
p = Path(primary)
|
||||
if p.is_absolute():
|
||||
candidates.append(p)
|
||||
else:
|
||||
# Prefer metadata-relative resolution for relative paths
|
||||
if metadata_file_path:
|
||||
candidates.append(Path(metadata_file_path).parent / p)
|
||||
# Also consider CWD-relative as a fallback for legacy layouts
|
||||
candidates.append(Path.cwd() / p)
|
||||
# 2) metadata-relative explicit relative key (if present)
|
||||
if metadata_file_path and source_dict.get(relative_key):
|
||||
candidates.append(Path(metadata_file_path).parent / source_dict[relative_key])
|
||||
# 3) metadata-relative standard sibling filename
|
||||
if metadata_file_path and default_name:
|
||||
candidates.append(Path(metadata_file_path).parent / default_name)
|
||||
return candidates
|
||||
|
||||
# Build candidate lists and pick first existing; otherwise keep last candidate for error message
|
||||
idx_default = f"{index_name_base}.passages.idx" if index_name_base else None
|
||||
idx_candidates = _resolve_candidates(
|
||||
index_file, "index_path_relative", idx_default, source
|
||||
)
|
||||
pas_default = f"{index_name_base}.passages.jsonl" if index_name_base else None
|
||||
pas_candidates = _resolve_candidates(passage_file, "path_relative", pas_default, source)
|
||||
|
||||
def _pick_existing(cands: list[Path]) -> str:
|
||||
for c in cands:
|
||||
if c.exists():
|
||||
return str(c.resolve())
|
||||
# Fallback to last candidate (best guess) even if not exists; will error below
|
||||
return str(cands[-1].resolve()) if cands else ""
|
||||
|
||||
index_file = _pick_existing(idx_candidates)
|
||||
passage_file = _pick_existing(pas_candidates)
|
||||
|
||||
if not Path(index_file).exists():
|
||||
raise FileNotFoundError(f"Passage index file not found: {index_file}")
|
||||
|
||||
with open(index_file, "rb") as f:
|
||||
offset_map = pickle.load(f)
|
||||
offset_map: dict[str, int] = pickle.load(f)
|
||||
self.offset_maps[passage_file] = offset_map
|
||||
self.passage_files[passage_file] = passage_file
|
||||
|
||||
# Build global map for O(1) lookup
|
||||
for passage_id, offset in offset_map.items():
|
||||
self.global_offset_map[passage_id] = (passage_file, offset)
|
||||
self._total_count += len(offset_map)
|
||||
|
||||
def get_passage(self, passage_id: str) -> dict[str, Any]:
|
||||
if passage_id in self.global_offset_map:
|
||||
passage_file, offset = self.global_offset_map[passage_id]
|
||||
# Lazy file opening - only open when needed
|
||||
with open(passage_file, encoding="utf-8") as f:
|
||||
f.seek(offset)
|
||||
return json.loads(f.readline())
|
||||
# Fast path: check each shard map (there are typically few shards).
|
||||
# This avoids building a massive combined dict while keeping lookups
|
||||
# bounded by the number of shards.
|
||||
for passage_file, offset_map in self.offset_maps.items():
|
||||
try:
|
||||
offset = offset_map[passage_id]
|
||||
with open(passage_file, encoding="utf-8") as f:
|
||||
f.seek(offset)
|
||||
return json.loads(f.readline())
|
||||
except KeyError:
|
||||
continue
|
||||
raise KeyError(f"Passage ID not found: {passage_id}")
|
||||
|
||||
def filter_search_results(
|
||||
self,
|
||||
search_results: list[SearchResult],
|
||||
metadata_filters: Optional[dict[str, dict[str, Union[str, int, float, bool, list]]]],
|
||||
) -> list[SearchResult]:
|
||||
"""
|
||||
Apply metadata filters to search results.
|
||||
|
||||
Args:
|
||||
search_results: List of SearchResult objects
|
||||
metadata_filters: Filter specifications to apply
|
||||
|
||||
Returns:
|
||||
Filtered list of SearchResult objects
|
||||
"""
|
||||
if not metadata_filters:
|
||||
return search_results
|
||||
|
||||
logger.debug(f"Applying metadata filters to {len(search_results)} results")
|
||||
|
||||
# Convert SearchResult objects to dictionaries for the filter engine
|
||||
result_dicts = []
|
||||
for result in search_results:
|
||||
result_dicts.append(
|
||||
{
|
||||
"id": result.id,
|
||||
"score": result.score,
|
||||
"text": result.text,
|
||||
"metadata": result.metadata,
|
||||
}
|
||||
)
|
||||
|
||||
# Apply filters using the filter engine
|
||||
filtered_dicts = self.filter_engine.apply_filters(result_dicts, metadata_filters)
|
||||
|
||||
# Convert back to SearchResult objects
|
||||
filtered_results = []
|
||||
for result_dict in filtered_dicts:
|
||||
filtered_results.append(
|
||||
SearchResult(
|
||||
id=result_dict["id"],
|
||||
score=result_dict["score"],
|
||||
text=result_dict["text"],
|
||||
metadata=result_dict["metadata"],
|
||||
)
|
||||
)
|
||||
|
||||
logger.debug(f"Filtered results: {len(filtered_results)} remaining")
|
||||
return filtered_results
|
||||
|
||||
def __len__(self) -> int:
|
||||
return self._total_count
|
||||
|
||||
|
||||
class LeannBuilder:
|
||||
def __init__(
|
||||
self,
|
||||
backend_name: str,
|
||||
embedding_model: str = "facebook/contriever",
|
||||
dimensions: int | None = None,
|
||||
dimensions: Optional[int] = None,
|
||||
embedding_mode: str = "sentence-transformers",
|
||||
**backend_kwargs,
|
||||
):
|
||||
self.backend_name = backend_name
|
||||
backend_factory: LeannBackendFactoryInterface | None = BACKEND_REGISTRY.get(backend_name)
|
||||
# Normalize incompatible combinations early (for consistent metadata)
|
||||
if backend_name == "hnsw":
|
||||
is_recompute = backend_kwargs.get("is_recompute", True)
|
||||
is_compact = backend_kwargs.get("is_compact", True)
|
||||
if is_recompute is False and is_compact is True:
|
||||
warnings.warn(
|
||||
"HNSW with is_recompute=False requires non-compact storage. Forcing is_compact=False.",
|
||||
UserWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
backend_kwargs["is_compact"] = False
|
||||
|
||||
backend_factory: Optional[LeannBackendFactoryInterface] = BACKEND_REGISTRY.get(backend_name)
|
||||
if backend_factory is None:
|
||||
raise ValueError(f"Backend '{backend_name}' not found or not registered.")
|
||||
self.backend_factory = backend_factory
|
||||
@@ -237,7 +373,7 @@ class LeannBuilder:
|
||||
self.backend_kwargs = backend_kwargs
|
||||
self.chunks: list[dict[str, Any]] = []
|
||||
|
||||
def add_text(self, text: str, metadata: dict[str, Any] | None = None):
|
||||
def add_text(self, text: str, metadata: Optional[dict[str, Any]] = None):
|
||||
if metadata is None:
|
||||
metadata = {}
|
||||
passage_id = metadata.get("id", str(len(self.chunks)))
|
||||
@@ -247,6 +383,23 @@ class LeannBuilder:
|
||||
def build_index(self, index_path: str):
|
||||
if not self.chunks:
|
||||
raise ValueError("No chunks added.")
|
||||
|
||||
# Filter out invalid/empty text chunks early to keep passage and embedding counts aligned
|
||||
valid_chunks: list[dict[str, Any]] = []
|
||||
skipped = 0
|
||||
for chunk in self.chunks:
|
||||
text = chunk.get("text", "")
|
||||
if isinstance(text, str) and text.strip():
|
||||
valid_chunks.append(chunk)
|
||||
else:
|
||||
skipped += 1
|
||||
if skipped > 0:
|
||||
print(
|
||||
f"Warning: Skipping {skipped} empty/invalid text chunk(s). Processing {len(valid_chunks)} valid chunks"
|
||||
)
|
||||
self.chunks = valid_chunks
|
||||
if not self.chunks:
|
||||
raise ValueError("All provided chunks are empty or invalid. Nothing to index.")
|
||||
if self.dimensions is None:
|
||||
self.dimensions = len(
|
||||
compute_embeddings(
|
||||
@@ -309,8 +462,12 @@ class LeannBuilder:
|
||||
"passage_sources": [
|
||||
{
|
||||
"type": "jsonl",
|
||||
"path": str(passages_file),
|
||||
"index_path": str(offset_file),
|
||||
# Preserve existing relative file names (backward-compatible)
|
||||
"path": passages_file.name,
|
||||
"index_path": offset_file.name,
|
||||
# Add optional redundant relative keys for remote build portability (non-breaking)
|
||||
"path_relative": passages_file.name,
|
||||
"index_path_relative": offset_file.name,
|
||||
}
|
||||
],
|
||||
}
|
||||
@@ -320,9 +477,7 @@ class LeannBuilder:
|
||||
is_compact = self.backend_kwargs.get("is_compact", True)
|
||||
is_recompute = self.backend_kwargs.get("is_recompute", True)
|
||||
meta_data["is_compact"] = is_compact
|
||||
meta_data["is_pruned"] = (
|
||||
is_compact and is_recompute
|
||||
) # Pruned only if compact and recompute
|
||||
meta_data["is_pruned"] = bool(is_recompute)
|
||||
with open(leann_meta_path, "w", encoding="utf-8") as f:
|
||||
json.dump(meta_data, f, indent=2)
|
||||
|
||||
@@ -425,8 +580,12 @@ class LeannBuilder:
|
||||
"passage_sources": [
|
||||
{
|
||||
"type": "jsonl",
|
||||
"path": str(passages_file),
|
||||
"index_path": str(offset_file),
|
||||
# Preserve existing relative file names (backward-compatible)
|
||||
"path": passages_file.name,
|
||||
"index_path": offset_file.name,
|
||||
# Add optional redundant relative keys for remote build portability (non-breaking)
|
||||
"path_relative": passages_file.name,
|
||||
"index_path_relative": offset_file.name,
|
||||
}
|
||||
],
|
||||
"built_from_precomputed_embeddings": True,
|
||||
@@ -438,13 +597,157 @@ class LeannBuilder:
|
||||
is_compact = self.backend_kwargs.get("is_compact", True)
|
||||
is_recompute = self.backend_kwargs.get("is_recompute", True)
|
||||
meta_data["is_compact"] = is_compact
|
||||
meta_data["is_pruned"] = is_compact and is_recompute
|
||||
meta_data["is_pruned"] = bool(is_recompute)
|
||||
|
||||
with open(leann_meta_path, "w", encoding="utf-8") as f:
|
||||
json.dump(meta_data, f, indent=2)
|
||||
|
||||
logger.info(f"Index built successfully from precomputed embeddings: {index_path}")
|
||||
|
||||
def update_index(self, index_path: str):
|
||||
"""Append new passages and vectors to an existing HNSW index."""
|
||||
if not self.chunks:
|
||||
raise ValueError("No new chunks provided for update.")
|
||||
|
||||
path = Path(index_path)
|
||||
index_dir = path.parent
|
||||
index_name = path.name
|
||||
index_prefix = path.stem
|
||||
|
||||
meta_path = index_dir / f"{index_name}.meta.json"
|
||||
passages_file = index_dir / f"{index_name}.passages.jsonl"
|
||||
offset_file = index_dir / f"{index_name}.passages.idx"
|
||||
index_file = index_dir / f"{index_prefix}.index"
|
||||
|
||||
if not meta_path.exists() or not passages_file.exists() or not offset_file.exists():
|
||||
raise FileNotFoundError("Index metadata or passage files are missing; cannot update.")
|
||||
if not index_file.exists():
|
||||
raise FileNotFoundError(f"HNSW index file not found: {index_file}")
|
||||
|
||||
with open(meta_path, encoding="utf-8") as f:
|
||||
meta = json.load(f)
|
||||
backend_name = meta.get("backend_name")
|
||||
if backend_name != self.backend_name:
|
||||
raise ValueError(
|
||||
f"Index was built with backend '{backend_name}', cannot update with '{self.backend_name}'."
|
||||
)
|
||||
|
||||
meta_backend_kwargs = meta.get("backend_kwargs", {})
|
||||
index_is_compact = meta.get("is_compact", meta_backend_kwargs.get("is_compact", True))
|
||||
if index_is_compact:
|
||||
raise ValueError(
|
||||
"Compact HNSW indices do not support in-place updates. Rebuild required."
|
||||
)
|
||||
|
||||
distance_metric = meta_backend_kwargs.get(
|
||||
"distance_metric", self.backend_kwargs.get("distance_metric", "mips")
|
||||
).lower()
|
||||
needs_recompute = bool(
|
||||
meta.get("is_pruned")
|
||||
or meta_backend_kwargs.get("is_recompute")
|
||||
or self.backend_kwargs.get("is_recompute")
|
||||
)
|
||||
|
||||
with open(offset_file, "rb") as f:
|
||||
offset_map: dict[str, int] = pickle.load(f)
|
||||
existing_ids = set(offset_map.keys())
|
||||
|
||||
valid_chunks: list[dict[str, Any]] = []
|
||||
for chunk in self.chunks:
|
||||
text = chunk.get("text", "")
|
||||
if not isinstance(text, str) or not text.strip():
|
||||
continue
|
||||
metadata = chunk.setdefault("metadata", {})
|
||||
passage_id = chunk.get("id") or metadata.get("id")
|
||||
if passage_id and passage_id in existing_ids:
|
||||
raise ValueError(f"Passage ID '{passage_id}' already exists in the index.")
|
||||
valid_chunks.append(chunk)
|
||||
|
||||
if not valid_chunks:
|
||||
raise ValueError("No valid chunks to append.")
|
||||
|
||||
texts_to_embed = [chunk["text"] for chunk in valid_chunks]
|
||||
embeddings = compute_embeddings(
|
||||
texts_to_embed,
|
||||
self.embedding_model,
|
||||
self.embedding_mode,
|
||||
use_server=False,
|
||||
is_build=True,
|
||||
)
|
||||
|
||||
embedding_dim = embeddings.shape[1]
|
||||
expected_dim = meta.get("dimensions")
|
||||
if expected_dim is not None and expected_dim != embedding_dim:
|
||||
raise ValueError(
|
||||
f"Dimension mismatch during update: existing index uses {expected_dim}, got {embedding_dim}."
|
||||
)
|
||||
|
||||
from leann_backend_hnsw import faiss # type: ignore
|
||||
|
||||
embeddings = np.ascontiguousarray(embeddings, dtype=np.float32)
|
||||
if distance_metric == "cosine":
|
||||
norms = np.linalg.norm(embeddings, axis=1, keepdims=True)
|
||||
norms[norms == 0] = 1
|
||||
embeddings = embeddings / norms
|
||||
|
||||
index = faiss.read_index(str(index_file))
|
||||
if hasattr(index, "is_recompute"):
|
||||
index.is_recompute = needs_recompute
|
||||
if getattr(index, "storage", None) is None:
|
||||
if index.metric_type == faiss.METRIC_INNER_PRODUCT:
|
||||
storage_index = faiss.IndexFlatIP(index.d)
|
||||
else:
|
||||
storage_index = faiss.IndexFlatL2(index.d)
|
||||
index.storage = storage_index
|
||||
index.own_fields = True
|
||||
if index.d != embedding_dim:
|
||||
raise ValueError(
|
||||
f"Existing index dimension ({index.d}) does not match new embeddings ({embedding_dim})."
|
||||
)
|
||||
|
||||
base_id = index.ntotal
|
||||
for offset, chunk in enumerate(valid_chunks):
|
||||
new_id = str(base_id + offset)
|
||||
chunk.setdefault("metadata", {})["id"] = new_id
|
||||
chunk["id"] = new_id
|
||||
|
||||
index.add(embeddings.shape[0], faiss.swig_ptr(embeddings))
|
||||
faiss.write_index(index, str(index_file))
|
||||
|
||||
with open(passages_file, "a", encoding="utf-8") as f:
|
||||
for chunk in valid_chunks:
|
||||
offset = f.tell()
|
||||
json.dump(
|
||||
{
|
||||
"id": chunk["id"],
|
||||
"text": chunk["text"],
|
||||
"metadata": chunk.get("metadata", {}),
|
||||
},
|
||||
f,
|
||||
ensure_ascii=False,
|
||||
)
|
||||
f.write("\n")
|
||||
offset_map[chunk["id"]] = offset
|
||||
|
||||
with open(offset_file, "wb") as f:
|
||||
pickle.dump(offset_map, f)
|
||||
|
||||
meta["total_passages"] = len(offset_map)
|
||||
with open(meta_path, "w", encoding="utf-8") as f:
|
||||
json.dump(meta, f, indent=2)
|
||||
|
||||
logger.info(
|
||||
"Appended %d passages to index '%s'. New total: %d",
|
||||
len(valid_chunks),
|
||||
index_path,
|
||||
len(offset_map),
|
||||
)
|
||||
|
||||
self.chunks.clear()
|
||||
|
||||
if needs_recompute:
|
||||
prune_hnsw_embeddings_inplace(str(index_file))
|
||||
|
||||
|
||||
class LeannSearcher:
|
||||
def __init__(self, index_path: str, enable_warmup: bool = False, **backend_kwargs):
|
||||
@@ -454,14 +757,26 @@ class LeannSearcher:
|
||||
|
||||
self.meta_path_str = f"{index_path}.meta.json"
|
||||
if not Path(self.meta_path_str).exists():
|
||||
raise FileNotFoundError(f"Leann metadata file not found at {self.meta_path_str}")
|
||||
parent_dir = Path(index_path).parent
|
||||
print(
|
||||
f"Leann metadata file not found at {self.meta_path_str}, and you may need to rm -rf {parent_dir}"
|
||||
)
|
||||
# highlight in red the filenotfound error
|
||||
raise FileNotFoundError(
|
||||
f"Leann metadata file not found at {self.meta_path_str}, \033[91m you may need to rm -rf {parent_dir}\033[0m"
|
||||
)
|
||||
with open(self.meta_path_str, encoding="utf-8") as f:
|
||||
self.meta_data = json.load(f)
|
||||
backend_name = self.meta_data["backend_name"]
|
||||
self.embedding_model = self.meta_data["embedding_model"]
|
||||
# Support both old and new format
|
||||
self.embedding_mode = self.meta_data.get("embedding_mode", "sentence-transformers")
|
||||
self.passage_manager = PassageManager(self.meta_data.get("passage_sources", []))
|
||||
# Delegate portability handling to PassageManager
|
||||
self.passage_manager = PassageManager(
|
||||
self.meta_data.get("passage_sources", []), metadata_file_path=self.meta_path_str
|
||||
)
|
||||
# Preserve backend name for conditional parameter forwarding
|
||||
self.backend_name = backend_name
|
||||
backend_factory = BACKEND_REGISTRY.get(backend_name)
|
||||
if backend_factory is None:
|
||||
raise ValueError(f"Backend '{backend_name}' not found.")
|
||||
@@ -481,13 +796,57 @@ class LeannSearcher:
|
||||
recompute_embeddings: bool = True,
|
||||
pruning_strategy: Literal["global", "local", "proportional"] = "global",
|
||||
expected_zmq_port: int = 5557,
|
||||
metadata_filters: Optional[dict[str, dict[str, Union[str, int, float, bool, list]]]] = None,
|
||||
batch_size: int = 0,
|
||||
use_grep: bool = False,
|
||||
**kwargs,
|
||||
) -> list[SearchResult]:
|
||||
"""
|
||||
Search for nearest neighbors with optional metadata filtering.
|
||||
|
||||
Args:
|
||||
query: Text query to search for
|
||||
top_k: Number of nearest neighbors to return
|
||||
complexity: Search complexity/candidate list size, higher = more accurate but slower
|
||||
beam_width: Number of parallel search paths/IO requests per iteration
|
||||
prune_ratio: Ratio of neighbors to prune via approximate distance (0.0-1.0)
|
||||
recompute_embeddings: Whether to fetch fresh embeddings from server vs use stored codes
|
||||
pruning_strategy: Candidate selection strategy - "global" (default), "local", or "proportional"
|
||||
expected_zmq_port: ZMQ port for embedding server communication
|
||||
metadata_filters: Optional filters to apply to search results based on metadata.
|
||||
Format: {"field_name": {"operator": value}}
|
||||
Supported operators:
|
||||
- Comparison: "==", "!=", "<", "<=", ">", ">="
|
||||
- Membership: "in", "not_in"
|
||||
- String: "contains", "starts_with", "ends_with"
|
||||
Example: {"chapter": {"<=": 5}, "tags": {"in": ["fiction", "drama"]}}
|
||||
**kwargs: Backend-specific parameters
|
||||
|
||||
Returns:
|
||||
List of SearchResult objects with text, metadata, and similarity scores
|
||||
"""
|
||||
# Handle grep search
|
||||
if use_grep:
|
||||
return self._grep_search(query, top_k)
|
||||
|
||||
logger.info("🔍 LeannSearcher.search() called:")
|
||||
logger.info(f" Query: '{query}'")
|
||||
logger.info(f" Top_k: {top_k}")
|
||||
logger.info(f" Metadata filters: {metadata_filters}")
|
||||
logger.info(f" Additional kwargs: {kwargs}")
|
||||
|
||||
# Smart top_k detection and adjustment
|
||||
# Use PassageManager length (sum of shard sizes) to avoid
|
||||
# depending on a massive combined map
|
||||
total_docs = len(self.passage_manager)
|
||||
original_top_k = top_k
|
||||
if top_k > total_docs:
|
||||
top_k = total_docs
|
||||
logger.warning(
|
||||
f" ⚠️ Requested top_k ({original_top_k}) exceeds total documents ({total_docs})"
|
||||
)
|
||||
logger.warning(f" ✅ Auto-adjusted top_k to {top_k} to match available documents")
|
||||
|
||||
zmq_port = None
|
||||
|
||||
start_time = time.time()
|
||||
@@ -508,31 +867,41 @@ class LeannSearcher:
|
||||
use_server_if_available=recompute_embeddings,
|
||||
zmq_port=zmq_port,
|
||||
)
|
||||
# logger.info(f" Generated embedding shape: {query_embedding.shape}")
|
||||
time.time() - start_time
|
||||
# logger.info(f" Embedding time: {embedding_time} seconds")
|
||||
logger.info(f" Generated embedding shape: {query_embedding.shape}")
|
||||
embedding_time = time.time() - start_time
|
||||
logger.info(f" Embedding time: {embedding_time} seconds")
|
||||
|
||||
start_time = time.time()
|
||||
backend_search_kwargs: dict[str, Any] = {
|
||||
"complexity": complexity,
|
||||
"beam_width": beam_width,
|
||||
"prune_ratio": prune_ratio,
|
||||
"recompute_embeddings": recompute_embeddings,
|
||||
"pruning_strategy": pruning_strategy,
|
||||
"zmq_port": zmq_port,
|
||||
}
|
||||
# Only HNSW supports batching; forward conditionally
|
||||
if self.backend_name == "hnsw":
|
||||
backend_search_kwargs["batch_size"] = batch_size
|
||||
|
||||
# Merge any extra kwargs last
|
||||
backend_search_kwargs.update(kwargs)
|
||||
|
||||
results = self.backend_impl.search(
|
||||
query_embedding,
|
||||
top_k,
|
||||
complexity=complexity,
|
||||
beam_width=beam_width,
|
||||
prune_ratio=prune_ratio,
|
||||
recompute_embeddings=recompute_embeddings,
|
||||
pruning_strategy=pruning_strategy,
|
||||
zmq_port=zmq_port,
|
||||
**kwargs,
|
||||
**backend_search_kwargs,
|
||||
)
|
||||
time.time() - start_time
|
||||
# logger.info(f" Search time: {search_time} seconds")
|
||||
search_time = time.time() - start_time
|
||||
logger.info(f" Search time in search() LEANN searcher: {search_time} seconds")
|
||||
logger.info(f" Backend returned: labels={len(results.get('labels', [[]])[0])} results")
|
||||
|
||||
enriched_results = []
|
||||
if "labels" in results and "distances" in results:
|
||||
logger.info(f" Processing {len(results['labels'][0])} passage IDs:")
|
||||
# Python 3.9 does not support zip(strict=...); lengths are expected to match
|
||||
for i, (string_id, dist) in enumerate(
|
||||
zip(results["labels"][0], results["distances"][0], strict=False)
|
||||
zip(results["labels"][0], results["distances"][0])
|
||||
):
|
||||
try:
|
||||
passage_data = self.passage_manager.get_passage(string_id)
|
||||
@@ -558,23 +927,154 @@ class LeannSearcher:
|
||||
)
|
||||
except KeyError:
|
||||
RED = "\033[91m"
|
||||
RESET = "\033[0m"
|
||||
logger.error(
|
||||
f" {RED}✗{RESET} [{i + 1:2d}] ID: '{string_id}' -> {RED}ERROR: Passage not found!{RESET}"
|
||||
)
|
||||
|
||||
# Apply metadata filters if specified
|
||||
if metadata_filters:
|
||||
logger.info(f" 🔍 Applying metadata filters: {metadata_filters}")
|
||||
enriched_results = self.passage_manager.filter_search_results(
|
||||
enriched_results, metadata_filters
|
||||
)
|
||||
|
||||
# Define color codes outside the loop for final message
|
||||
GREEN = "\033[92m"
|
||||
RESET = "\033[0m"
|
||||
logger.info(f" {GREEN}✓ Final enriched results: {len(enriched_results)} passages{RESET}")
|
||||
return enriched_results
|
||||
|
||||
def _find_jsonl_file(self) -> Optional[str]:
|
||||
"""Find the .jsonl file containing raw passages for grep search"""
|
||||
index_path = Path(self.meta_path_str).parent
|
||||
potential_files = [
|
||||
index_path / "documents.leann.passages.jsonl",
|
||||
index_path.parent / "documents.leann.passages.jsonl",
|
||||
]
|
||||
|
||||
for file_path in potential_files:
|
||||
if file_path.exists():
|
||||
return str(file_path)
|
||||
return None
|
||||
|
||||
def _grep_search(self, query: str, top_k: int = 5) -> list[SearchResult]:
|
||||
"""Perform grep-based search on raw passages"""
|
||||
jsonl_file = self._find_jsonl_file()
|
||||
if not jsonl_file:
|
||||
raise FileNotFoundError("No .jsonl passages file found for grep search")
|
||||
|
||||
try:
|
||||
cmd = ["grep", "-i", "-n", query, jsonl_file]
|
||||
result = subprocess.run(cmd, capture_output=True, text=True, check=False)
|
||||
|
||||
if result.returncode == 1:
|
||||
return []
|
||||
elif result.returncode != 0:
|
||||
raise RuntimeError(f"Grep failed: {result.stderr}")
|
||||
|
||||
matches = []
|
||||
for line in result.stdout.strip().split("\n"):
|
||||
if not line:
|
||||
continue
|
||||
parts = line.split(":", 1)
|
||||
if len(parts) != 2:
|
||||
continue
|
||||
|
||||
try:
|
||||
data = json.loads(parts[1])
|
||||
text = data.get("text", "")
|
||||
score = text.lower().count(query.lower())
|
||||
|
||||
matches.append(
|
||||
SearchResult(
|
||||
id=data.get("id", parts[0]),
|
||||
text=text,
|
||||
metadata=data.get("metadata", {}),
|
||||
score=float(score),
|
||||
)
|
||||
)
|
||||
except json.JSONDecodeError:
|
||||
continue
|
||||
|
||||
matches.sort(key=lambda x: x.score, reverse=True)
|
||||
return matches[:top_k]
|
||||
|
||||
except FileNotFoundError:
|
||||
raise RuntimeError(
|
||||
"grep command not found. Please install grep or use semantic search."
|
||||
)
|
||||
|
||||
def _python_regex_search(self, query: str, top_k: int = 5) -> list[SearchResult]:
|
||||
"""Fallback regex search"""
|
||||
jsonl_file = self._find_jsonl_file()
|
||||
if not jsonl_file:
|
||||
raise FileNotFoundError("No .jsonl file found")
|
||||
|
||||
pattern = re.compile(re.escape(query), re.IGNORECASE)
|
||||
matches = []
|
||||
|
||||
with open(jsonl_file, encoding="utf-8") as f:
|
||||
for line_num, line in enumerate(f, 1):
|
||||
if pattern.search(line):
|
||||
try:
|
||||
data = json.loads(line.strip())
|
||||
matches.append(
|
||||
SearchResult(
|
||||
id=data.get("id", str(line_num)),
|
||||
text=data.get("text", ""),
|
||||
metadata=data.get("metadata", {}),
|
||||
score=float(len(pattern.findall(data.get("text", "")))),
|
||||
)
|
||||
)
|
||||
except json.JSONDecodeError:
|
||||
continue
|
||||
|
||||
matches.sort(key=lambda x: x.score, reverse=True)
|
||||
return matches[:top_k]
|
||||
|
||||
def cleanup(self):
|
||||
"""Explicitly cleanup embedding server resources.
|
||||
This method should be called after you're done using the searcher,
|
||||
especially in test environments or batch processing scenarios.
|
||||
"""
|
||||
backend = getattr(self.backend_impl, "embedding_server_manager", None)
|
||||
if backend is not None:
|
||||
backend.stop_server()
|
||||
|
||||
# Enable automatic cleanup patterns
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc, tb):
|
||||
try:
|
||||
self.cleanup()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
def __del__(self):
|
||||
try:
|
||||
self.cleanup()
|
||||
except Exception:
|
||||
# Avoid noisy errors during interpreter shutdown
|
||||
pass
|
||||
|
||||
|
||||
class LeannChat:
|
||||
def __init__(
|
||||
self,
|
||||
index_path: str,
|
||||
llm_config: dict[str, Any] | None = None,
|
||||
llm_config: Optional[dict[str, Any]] = None,
|
||||
enable_warmup: bool = False,
|
||||
searcher: Optional[LeannSearcher] = None,
|
||||
**kwargs,
|
||||
):
|
||||
self.searcher = LeannSearcher(index_path, enable_warmup=enable_warmup, **kwargs)
|
||||
if searcher is None:
|
||||
self.searcher = LeannSearcher(index_path, enable_warmup=enable_warmup, **kwargs)
|
||||
self._owns_searcher = True
|
||||
else:
|
||||
self.searcher = searcher
|
||||
self._owns_searcher = False
|
||||
self.llm = get_llm(llm_config)
|
||||
|
||||
def ask(
|
||||
@@ -586,8 +1086,11 @@ class LeannChat:
|
||||
prune_ratio: float = 0.0,
|
||||
recompute_embeddings: bool = True,
|
||||
pruning_strategy: Literal["global", "local", "proportional"] = "global",
|
||||
llm_kwargs: dict[str, Any] | None = None,
|
||||
llm_kwargs: Optional[dict[str, Any]] = None,
|
||||
expected_zmq_port: int = 5557,
|
||||
metadata_filters: Optional[dict[str, dict[str, Union[str, int, float, bool, list]]]] = None,
|
||||
batch_size: int = 0,
|
||||
use_grep: bool = False,
|
||||
**search_kwargs,
|
||||
):
|
||||
if llm_kwargs is None:
|
||||
@@ -602,10 +1105,12 @@ class LeannChat:
|
||||
recompute_embeddings=recompute_embeddings,
|
||||
pruning_strategy=pruning_strategy,
|
||||
expected_zmq_port=expected_zmq_port,
|
||||
metadata_filters=metadata_filters,
|
||||
batch_size=batch_size,
|
||||
**search_kwargs,
|
||||
)
|
||||
search_time = time.time() - search_time
|
||||
# logger.info(f" Search time: {search_time} seconds")
|
||||
logger.info(f" Search time: {search_time} seconds")
|
||||
context = "\n\n".join([r.text for r in results])
|
||||
prompt = (
|
||||
"Here is some retrieved context that might help answer your question:\n\n"
|
||||
@@ -614,7 +1119,10 @@ class LeannChat:
|
||||
"Please provide the best answer you can based on this context and your knowledge."
|
||||
)
|
||||
|
||||
ask_time = time.time()
|
||||
ans = self.llm.ask(prompt, **llm_kwargs)
|
||||
ask_time = time.time() - ask_time
|
||||
logger.info(f" Ask time: {ask_time} seconds")
|
||||
return ans
|
||||
|
||||
def start_interactive(self):
|
||||
@@ -631,3 +1139,30 @@ class LeannChat:
|
||||
except (KeyboardInterrupt, EOFError):
|
||||
print("\nGoodbye!")
|
||||
break
|
||||
|
||||
def cleanup(self):
|
||||
"""Explicitly cleanup embedding server resources.
|
||||
|
||||
This method should be called after you're done using the chat interface,
|
||||
especially in test environments or batch processing scenarios.
|
||||
"""
|
||||
# Only stop the embedding server if this LeannChat instance created the searcher.
|
||||
# When a shared searcher is passed in, avoid shutting down the server to enable reuse.
|
||||
if getattr(self, "_owns_searcher", False) and hasattr(self.searcher, "cleanup"):
|
||||
self.searcher.cleanup()
|
||||
|
||||
# Enable automatic cleanup patterns
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc, tb):
|
||||
try:
|
||||
self.cleanup()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
def __del__(self):
|
||||
try:
|
||||
self.cleanup()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
@@ -8,7 +8,7 @@ import difflib
|
||||
import logging
|
||||
import os
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any
|
||||
from typing import Any, Optional
|
||||
|
||||
import torch
|
||||
|
||||
@@ -17,12 +17,12 @@ logging.basicConfig(level=logging.INFO)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def check_ollama_models() -> list[str]:
|
||||
def check_ollama_models(host: str) -> list[str]:
|
||||
"""Check available Ollama models and return a list"""
|
||||
try:
|
||||
import requests
|
||||
|
||||
response = requests.get("http://localhost:11434/api/tags", timeout=5)
|
||||
response = requests.get(f"{host}/api/tags", timeout=5)
|
||||
if response.status_code == 200:
|
||||
data = response.json()
|
||||
return [model["name"] for model in data.get("models", [])]
|
||||
@@ -309,10 +309,12 @@ def search_hf_models(query: str, limit: int = 10) -> list[str]:
|
||||
return search_hf_models_fuzzy(query, limit)
|
||||
|
||||
|
||||
def validate_model_and_suggest(model_name: str, llm_type: str) -> str | None:
|
||||
def validate_model_and_suggest(
|
||||
model_name: str, llm_type: str, host: str = "http://localhost:11434"
|
||||
) -> Optional[str]:
|
||||
"""Validate model name and provide suggestions if invalid"""
|
||||
if llm_type == "ollama":
|
||||
available_models = check_ollama_models()
|
||||
available_models = check_ollama_models(host)
|
||||
if available_models and model_name not in available_models:
|
||||
error_msg = f"Model '{model_name}' not found in your local Ollama installation."
|
||||
|
||||
@@ -358,7 +360,11 @@ def validate_model_and_suggest(model_name: str, llm_type: str) -> str | None:
|
||||
error_msg += f"\n\nModel '{model_name}' was not found in Ollama's library."
|
||||
|
||||
if suggestions:
|
||||
error_msg += "\n\nDid you mean one of these installed models?\n"
|
||||
error_msg += (
|
||||
"\n\nDid you mean one of these installed models?\n"
|
||||
+ "\nTry to use ollama pull to install the model you need\n"
|
||||
)
|
||||
|
||||
for i, suggestion in enumerate(suggestions, 1):
|
||||
error_msg += f" {i}. {suggestion}\n"
|
||||
else:
|
||||
@@ -416,7 +422,6 @@ class LLMInterface(ABC):
|
||||
top_k=10,
|
||||
complexity=64,
|
||||
beam_width=8,
|
||||
USE_DEFERRED_FETCH=True,
|
||||
skip_search_reorder=True,
|
||||
recompute_beighbor_embeddings=True,
|
||||
dedup_node_dis=True,
|
||||
@@ -428,7 +433,6 @@ class LLMInterface(ABC):
|
||||
Supported kwargs:
|
||||
- complexity (int): Search complexity parameter (default: 32)
|
||||
- beam_width (int): Beam width for search (default: 4)
|
||||
- USE_DEFERRED_FETCH (bool): Enable deferred fetch mode (default: False)
|
||||
- skip_search_reorder (bool): Skip search reorder step (default: False)
|
||||
- recompute_beighbor_embeddings (bool): Enable ZMQ embedding server for neighbor recomputation (default: False)
|
||||
- dedup_node_dis (bool): Deduplicate nodes by distance (default: False)
|
||||
@@ -465,7 +469,7 @@ class OllamaChat(LLMInterface):
|
||||
requests.get(host)
|
||||
|
||||
# Pre-check model availability with helpful suggestions
|
||||
model_error = validate_model_and_suggest(model, "ollama")
|
||||
model_error = validate_model_and_suggest(model, "ollama", host)
|
||||
if model_error:
|
||||
raise ValueError(model_error)
|
||||
|
||||
@@ -485,11 +489,35 @@ class OllamaChat(LLMInterface):
|
||||
import requests
|
||||
|
||||
full_url = f"{self.host}/api/generate"
|
||||
|
||||
# Handle thinking budget for reasoning models
|
||||
options = kwargs.copy()
|
||||
thinking_budget = kwargs.get("thinking_budget")
|
||||
if thinking_budget:
|
||||
# Remove thinking_budget from options as it's not a standard Ollama option
|
||||
options.pop("thinking_budget", None)
|
||||
# Only apply reasoning parameters to models that support it
|
||||
reasoning_supported_models = [
|
||||
"gpt-oss:20b",
|
||||
"gpt-oss:120b",
|
||||
"deepseek-r1",
|
||||
"deepseek-coder",
|
||||
]
|
||||
|
||||
if thinking_budget in ["low", "medium", "high"]:
|
||||
if any(model in self.model.lower() for model in reasoning_supported_models):
|
||||
options["reasoning"] = {"effort": thinking_budget, "exclude": False}
|
||||
logger.info(f"Applied reasoning effort={thinking_budget} to model {self.model}")
|
||||
else:
|
||||
logger.warning(
|
||||
f"Thinking budget '{thinking_budget}' requested but model '{self.model}' may not support reasoning parameters. Proceeding without reasoning."
|
||||
)
|
||||
|
||||
payload = {
|
||||
"model": self.model,
|
||||
"prompt": prompt,
|
||||
"stream": False, # Keep it simple for now
|
||||
"options": kwargs,
|
||||
"options": options,
|
||||
}
|
||||
logger.debug(f"Sending request to Ollama: {payload}")
|
||||
try:
|
||||
@@ -542,14 +570,41 @@ class HFChat(LLMInterface):
|
||||
self.device = "cpu"
|
||||
logger.info("No GPU detected. Using CPU.")
|
||||
|
||||
# Load tokenizer and model
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
torch_dtype=torch.float16 if self.device != "cpu" else torch.float32,
|
||||
device_map="auto" if self.device != "cpu" else None,
|
||||
trust_remote_code=True,
|
||||
)
|
||||
# Load tokenizer and model with timeout protection
|
||||
try:
|
||||
import signal
|
||||
|
||||
def timeout_handler(signum, frame):
|
||||
raise TimeoutError("Model download/loading timed out")
|
||||
|
||||
# Set timeout for model loading (60 seconds)
|
||||
old_handler = signal.signal(signal.SIGALRM, timeout_handler)
|
||||
signal.alarm(60)
|
||||
|
||||
try:
|
||||
logger.info(f"Loading tokenizer for {model_name}...")
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
|
||||
logger.info(f"Loading model {model_name}...")
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
torch_dtype=torch.float16 if self.device != "cpu" else torch.float32,
|
||||
device_map="auto" if self.device != "cpu" else None,
|
||||
trust_remote_code=True,
|
||||
)
|
||||
logger.info(f"Successfully loaded {model_name}")
|
||||
finally:
|
||||
signal.alarm(0) # Cancel the alarm
|
||||
signal.signal(signal.SIGALRM, old_handler) # Restore old handler
|
||||
|
||||
except TimeoutError:
|
||||
logger.error(f"Model loading timed out for {model_name}")
|
||||
raise RuntimeError(
|
||||
f"Model loading timed out for {model_name}. Please check your internet connection or try a smaller model."
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to load model {model_name}: {e}")
|
||||
raise
|
||||
|
||||
# Move model to device if not using device_map
|
||||
if self.device != "cpu" and "device_map" not in str(self.model):
|
||||
@@ -625,10 +680,64 @@ class HFChat(LLMInterface):
|
||||
return response.strip()
|
||||
|
||||
|
||||
class GeminiChat(LLMInterface):
|
||||
"""LLM interface for Google Gemini models."""
|
||||
|
||||
def __init__(self, model: str = "gemini-2.5-flash", api_key: Optional[str] = None):
|
||||
self.model = model
|
||||
self.api_key = api_key or os.getenv("GEMINI_API_KEY")
|
||||
|
||||
if not self.api_key:
|
||||
raise ValueError(
|
||||
"Gemini API key is required. Set GEMINI_API_KEY environment variable or pass api_key parameter."
|
||||
)
|
||||
|
||||
logger.info(f"Initializing Gemini Chat with model='{model}'")
|
||||
|
||||
try:
|
||||
import google.genai as genai
|
||||
|
||||
self.client = genai.Client(api_key=self.api_key)
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"The 'google-genai' library is required for Gemini models. Please install it with 'uv pip install google-genai'."
|
||||
)
|
||||
|
||||
def ask(self, prompt: str, **kwargs) -> str:
|
||||
logger.info(f"Sending request to Gemini with model {self.model}")
|
||||
|
||||
try:
|
||||
from google.genai.types import GenerateContentConfig
|
||||
|
||||
generation_config = GenerateContentConfig(
|
||||
temperature=kwargs.get("temperature", 0.7),
|
||||
max_output_tokens=kwargs.get("max_tokens", 1000),
|
||||
)
|
||||
|
||||
# Handle top_p parameter
|
||||
if "top_p" in kwargs:
|
||||
generation_config.top_p = kwargs["top_p"]
|
||||
|
||||
response = self.client.models.generate_content(
|
||||
model=self.model,
|
||||
contents=prompt,
|
||||
config=generation_config,
|
||||
)
|
||||
# Handle potential None response text
|
||||
response_text = response.text
|
||||
if response_text is None:
|
||||
logger.warning("Gemini returned None response text")
|
||||
return ""
|
||||
return response_text.strip()
|
||||
except Exception as e:
|
||||
logger.error(f"Error communicating with Gemini: {e}")
|
||||
return f"Error: Could not get a response from Gemini. Details: {e}"
|
||||
|
||||
|
||||
class OpenAIChat(LLMInterface):
|
||||
"""LLM interface for OpenAI models."""
|
||||
|
||||
def __init__(self, model: str = "gpt-4o", api_key: str | None = None):
|
||||
def __init__(self, model: str = "gpt-4o", api_key: Optional[str] = None):
|
||||
self.model = model
|
||||
self.api_key = api_key or os.getenv("OPENAI_API_KEY")
|
||||
|
||||
@@ -653,11 +762,38 @@ class OpenAIChat(LLMInterface):
|
||||
params = {
|
||||
"model": self.model,
|
||||
"messages": [{"role": "user", "content": prompt}],
|
||||
"max_tokens": kwargs.get("max_tokens", 1000),
|
||||
"temperature": kwargs.get("temperature", 0.7),
|
||||
**{k: v for k, v in kwargs.items() if k not in ["max_tokens", "temperature"]},
|
||||
}
|
||||
|
||||
# Handle max_tokens vs max_completion_tokens based on model
|
||||
max_tokens = kwargs.get("max_tokens", 1000)
|
||||
if "o3" in self.model or "o4" in self.model or "o1" in self.model:
|
||||
# o-series models use max_completion_tokens
|
||||
params["max_completion_tokens"] = max_tokens
|
||||
params["temperature"] = 1.0
|
||||
else:
|
||||
# Other models use max_tokens
|
||||
params["max_tokens"] = max_tokens
|
||||
|
||||
# Handle thinking budget for reasoning models
|
||||
thinking_budget = kwargs.get("thinking_budget")
|
||||
if thinking_budget and thinking_budget in ["low", "medium", "high"]:
|
||||
# Check if this is an o-series model (partial match for model names)
|
||||
o_series_models = ["o3", "o3-mini", "o4-mini", "o1", "o3-pro", "o3-deep-research"]
|
||||
if any(model in self.model for model in o_series_models):
|
||||
# Use the correct OpenAI reasoning parameter format
|
||||
params["reasoning_effort"] = thinking_budget
|
||||
logger.info(f"Applied reasoning_effort={thinking_budget} to model {self.model}")
|
||||
else:
|
||||
logger.warning(
|
||||
f"Thinking budget '{thinking_budget}' requested but model '{self.model}' may not support reasoning parameters. Proceeding without reasoning."
|
||||
)
|
||||
|
||||
# Add other kwargs (excluding thinking_budget as it's handled above)
|
||||
for k, v in kwargs.items():
|
||||
if k not in ["max_tokens", "temperature", "thinking_budget"]:
|
||||
params[k] = v
|
||||
|
||||
logger.info(f"Sending request to OpenAI with model {self.model}")
|
||||
|
||||
try:
|
||||
@@ -677,7 +813,7 @@ class SimulatedChat(LLMInterface):
|
||||
return "This is a simulated answer from the LLM based on the retrieved context."
|
||||
|
||||
|
||||
def get_llm(llm_config: dict[str, Any] | None = None) -> LLMInterface:
|
||||
def get_llm(llm_config: Optional[dict[str, Any]] = None) -> LLMInterface:
|
||||
"""
|
||||
Factory function to get an LLM interface based on configuration.
|
||||
|
||||
@@ -711,6 +847,8 @@ def get_llm(llm_config: dict[str, Any] | None = None) -> LLMInterface:
|
||||
return HFChat(model_name=model or "deepseek-ai/deepseek-llm-7b-chat")
|
||||
elif llm_type == "openai":
|
||||
return OpenAIChat(model=model or "gpt-4o", api_key=llm_config.get("api_key"))
|
||||
elif llm_type == "gemini":
|
||||
return GeminiChat(model=model or "gemini-2.5-flash", api_key=llm_config.get("api_key"))
|
||||
elif llm_type == "simulated":
|
||||
return SimulatedChat()
|
||||
else:
|
||||
|
||||
220
packages/leann-core/src/leann/chunking_utils.py
Normal file
220
packages/leann-core/src/leann/chunking_utils.py
Normal file
@@ -0,0 +1,220 @@
|
||||
"""
|
||||
Enhanced chunking utilities with AST-aware code chunking support.
|
||||
Packaged within leann-core so installed wheels can import it reliably.
|
||||
"""
|
||||
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
from llama_index.core.node_parser import SentenceSplitter
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Code file extensions supported by astchunk
|
||||
CODE_EXTENSIONS = {
|
||||
".py": "python",
|
||||
".java": "java",
|
||||
".cs": "csharp",
|
||||
".ts": "typescript",
|
||||
".tsx": "typescript",
|
||||
".js": "typescript",
|
||||
".jsx": "typescript",
|
||||
}
|
||||
|
||||
|
||||
def detect_code_files(documents, code_extensions=None) -> tuple[list, list]:
|
||||
"""Separate documents into code files and regular text files."""
|
||||
if code_extensions is None:
|
||||
code_extensions = CODE_EXTENSIONS
|
||||
|
||||
code_docs = []
|
||||
text_docs = []
|
||||
|
||||
for doc in documents:
|
||||
file_path = doc.metadata.get("file_path", "") or doc.metadata.get("file_name", "")
|
||||
if file_path:
|
||||
file_ext = Path(file_path).suffix.lower()
|
||||
if file_ext in code_extensions:
|
||||
doc.metadata["language"] = code_extensions[file_ext]
|
||||
doc.metadata["is_code"] = True
|
||||
code_docs.append(doc)
|
||||
else:
|
||||
doc.metadata["is_code"] = False
|
||||
text_docs.append(doc)
|
||||
else:
|
||||
doc.metadata["is_code"] = False
|
||||
text_docs.append(doc)
|
||||
|
||||
logger.info(f"Detected {len(code_docs)} code files and {len(text_docs)} text files")
|
||||
return code_docs, text_docs
|
||||
|
||||
|
||||
def get_language_from_extension(file_path: str) -> Optional[str]:
|
||||
"""Return language string from a filename/extension using CODE_EXTENSIONS."""
|
||||
ext = Path(file_path).suffix.lower()
|
||||
return CODE_EXTENSIONS.get(ext)
|
||||
|
||||
|
||||
def create_ast_chunks(
|
||||
documents,
|
||||
max_chunk_size: int = 512,
|
||||
chunk_overlap: int = 64,
|
||||
metadata_template: str = "default",
|
||||
) -> list[str]:
|
||||
"""Create AST-aware chunks from code documents using astchunk.
|
||||
|
||||
Falls back to traditional chunking if astchunk is unavailable.
|
||||
"""
|
||||
try:
|
||||
from astchunk import ASTChunkBuilder # optional dependency
|
||||
except ImportError as e:
|
||||
logger.error(f"astchunk not available: {e}")
|
||||
logger.info("Falling back to traditional chunking for code files")
|
||||
return create_traditional_chunks(documents, max_chunk_size, chunk_overlap)
|
||||
|
||||
all_chunks = []
|
||||
for doc in documents:
|
||||
language = doc.metadata.get("language")
|
||||
if not language:
|
||||
logger.warning("No language detected; falling back to traditional chunking")
|
||||
all_chunks.extend(create_traditional_chunks([doc], max_chunk_size, chunk_overlap))
|
||||
continue
|
||||
|
||||
try:
|
||||
configs = {
|
||||
"max_chunk_size": max_chunk_size,
|
||||
"language": language,
|
||||
"metadata_template": metadata_template,
|
||||
"chunk_overlap": chunk_overlap if chunk_overlap > 0 else 0,
|
||||
}
|
||||
|
||||
repo_metadata = {
|
||||
"file_path": doc.metadata.get("file_path", ""),
|
||||
"file_name": doc.metadata.get("file_name", ""),
|
||||
"creation_date": doc.metadata.get("creation_date", ""),
|
||||
"last_modified_date": doc.metadata.get("last_modified_date", ""),
|
||||
}
|
||||
configs["repo_level_metadata"] = repo_metadata
|
||||
|
||||
chunk_builder = ASTChunkBuilder(**configs)
|
||||
code_content = doc.get_content()
|
||||
if not code_content or not code_content.strip():
|
||||
logger.warning("Empty code content, skipping")
|
||||
continue
|
||||
|
||||
chunks = chunk_builder.chunkify(code_content)
|
||||
for chunk in chunks:
|
||||
if hasattr(chunk, "text"):
|
||||
chunk_text = chunk.text
|
||||
elif isinstance(chunk, dict) and "text" in chunk:
|
||||
chunk_text = chunk["text"]
|
||||
elif isinstance(chunk, str):
|
||||
chunk_text = chunk
|
||||
else:
|
||||
chunk_text = str(chunk)
|
||||
|
||||
if chunk_text and chunk_text.strip():
|
||||
all_chunks.append(chunk_text.strip())
|
||||
|
||||
logger.info(
|
||||
f"Created {len(chunks)} AST chunks from {language} file: {doc.metadata.get('file_name', 'unknown')}"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(f"AST chunking failed for {language} file: {e}")
|
||||
logger.info("Falling back to traditional chunking")
|
||||
all_chunks.extend(create_traditional_chunks([doc], max_chunk_size, chunk_overlap))
|
||||
|
||||
return all_chunks
|
||||
|
||||
|
||||
def create_traditional_chunks(
|
||||
documents, chunk_size: int = 256, chunk_overlap: int = 128
|
||||
) -> list[str]:
|
||||
"""Create traditional text chunks using LlamaIndex SentenceSplitter."""
|
||||
if chunk_size <= 0:
|
||||
logger.warning(f"Invalid chunk_size={chunk_size}, using default value of 256")
|
||||
chunk_size = 256
|
||||
if chunk_overlap < 0:
|
||||
chunk_overlap = 0
|
||||
if chunk_overlap >= chunk_size:
|
||||
chunk_overlap = chunk_size // 2
|
||||
|
||||
node_parser = SentenceSplitter(
|
||||
chunk_size=chunk_size,
|
||||
chunk_overlap=chunk_overlap,
|
||||
separator=" ",
|
||||
paragraph_separator="\n\n",
|
||||
)
|
||||
|
||||
all_texts = []
|
||||
for doc in documents:
|
||||
try:
|
||||
nodes = node_parser.get_nodes_from_documents([doc])
|
||||
if nodes:
|
||||
all_texts.extend(node.get_content() for node in nodes)
|
||||
except Exception as e:
|
||||
logger.error(f"Traditional chunking failed for document: {e}")
|
||||
content = doc.get_content()
|
||||
if content and content.strip():
|
||||
all_texts.append(content.strip())
|
||||
|
||||
return all_texts
|
||||
|
||||
|
||||
def create_text_chunks(
|
||||
documents,
|
||||
chunk_size: int = 256,
|
||||
chunk_overlap: int = 128,
|
||||
use_ast_chunking: bool = False,
|
||||
ast_chunk_size: int = 512,
|
||||
ast_chunk_overlap: int = 64,
|
||||
code_file_extensions: Optional[list[str]] = None,
|
||||
ast_fallback_traditional: bool = True,
|
||||
) -> list[str]:
|
||||
"""Create text chunks from documents with optional AST support for code files."""
|
||||
if not documents:
|
||||
logger.warning("No documents provided for chunking")
|
||||
return []
|
||||
|
||||
local_code_extensions = CODE_EXTENSIONS.copy()
|
||||
if code_file_extensions:
|
||||
ext_mapping = {
|
||||
".py": "python",
|
||||
".java": "java",
|
||||
".cs": "c_sharp",
|
||||
".ts": "typescript",
|
||||
".tsx": "typescript",
|
||||
}
|
||||
for ext in code_file_extensions:
|
||||
if ext.lower() not in local_code_extensions:
|
||||
if ext.lower() in ext_mapping:
|
||||
local_code_extensions[ext.lower()] = ext_mapping[ext.lower()]
|
||||
else:
|
||||
logger.warning(f"Unsupported extension {ext}, will use traditional chunking")
|
||||
|
||||
all_chunks = []
|
||||
if use_ast_chunking:
|
||||
code_docs, text_docs = detect_code_files(documents, local_code_extensions)
|
||||
if code_docs:
|
||||
try:
|
||||
all_chunks.extend(
|
||||
create_ast_chunks(
|
||||
code_docs, max_chunk_size=ast_chunk_size, chunk_overlap=ast_chunk_overlap
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"AST chunking failed: {e}")
|
||||
if ast_fallback_traditional:
|
||||
all_chunks.extend(
|
||||
create_traditional_chunks(code_docs, chunk_size, chunk_overlap)
|
||||
)
|
||||
else:
|
||||
raise
|
||||
if text_docs:
|
||||
all_chunks.extend(create_traditional_chunks(text_docs, chunk_size, chunk_overlap))
|
||||
else:
|
||||
all_chunks = create_traditional_chunks(documents, chunk_size, chunk_overlap)
|
||||
|
||||
logger.info(f"Total chunks created: {len(all_chunks)}")
|
||||
return all_chunks
|
||||
File diff suppressed because it is too large
Load Diff
@@ -6,6 +6,7 @@ Preserves all optimization parameters to ensure performance
|
||||
|
||||
import logging
|
||||
import os
|
||||
import time
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
@@ -28,6 +29,8 @@ def compute_embeddings(
|
||||
is_build: bool = False,
|
||||
batch_size: int = 32,
|
||||
adaptive_optimization: bool = True,
|
||||
manual_tokenize: bool = False,
|
||||
max_length: int = 512,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Unified embedding computation entry point
|
||||
@@ -35,7 +38,7 @@ def compute_embeddings(
|
||||
Args:
|
||||
texts: List of texts to compute embeddings for
|
||||
model_name: Model name
|
||||
mode: Computation mode ('sentence-transformers', 'openai', 'mlx')
|
||||
mode: Computation mode ('sentence-transformers', 'openai', 'mlx', 'ollama')
|
||||
is_build: Whether this is a build operation (shows progress bar)
|
||||
batch_size: Batch size for processing
|
||||
adaptive_optimization: Whether to use adaptive optimization based on batch size
|
||||
@@ -50,11 +53,17 @@ def compute_embeddings(
|
||||
is_build=is_build,
|
||||
batch_size=batch_size,
|
||||
adaptive_optimization=adaptive_optimization,
|
||||
manual_tokenize=manual_tokenize,
|
||||
max_length=max_length,
|
||||
)
|
||||
elif mode == "openai":
|
||||
return compute_embeddings_openai(texts, model_name)
|
||||
elif mode == "mlx":
|
||||
return compute_embeddings_mlx(texts, model_name)
|
||||
elif mode == "ollama":
|
||||
return compute_embeddings_ollama(texts, model_name, is_build=is_build)
|
||||
elif mode == "gemini":
|
||||
return compute_embeddings_gemini(texts, model_name, is_build=is_build)
|
||||
else:
|
||||
raise ValueError(f"Unsupported embedding mode: {mode}")
|
||||
|
||||
@@ -67,6 +76,8 @@ def compute_embeddings_sentence_transformers(
|
||||
batch_size: int = 32,
|
||||
is_build: bool = False,
|
||||
adaptive_optimization: bool = True,
|
||||
manual_tokenize: bool = False,
|
||||
max_length: int = 512,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Compute embeddings using SentenceTransformer with model caching and adaptive optimization
|
||||
@@ -210,20 +221,130 @@ def compute_embeddings_sentence_transformers(
|
||||
logger.info(f"Model cached: {cache_key}")
|
||||
|
||||
# Compute embeddings with optimized inference mode
|
||||
logger.info(f"Starting embedding computation... (batch_size: {batch_size})")
|
||||
logger.info(
|
||||
f"Starting embedding computation... (batch_size: {batch_size}, manual_tokenize={manual_tokenize})"
|
||||
)
|
||||
|
||||
# Use torch.inference_mode for optimal performance
|
||||
with torch.inference_mode():
|
||||
embeddings = model.encode(
|
||||
texts,
|
||||
batch_size=batch_size,
|
||||
show_progress_bar=is_build, # Don't show progress bar in server environment
|
||||
convert_to_numpy=True,
|
||||
normalize_embeddings=False,
|
||||
device=device,
|
||||
)
|
||||
start_time = time.time()
|
||||
if not manual_tokenize:
|
||||
# Use SentenceTransformer's optimized encode path (default)
|
||||
with torch.inference_mode():
|
||||
embeddings = model.encode(
|
||||
texts,
|
||||
batch_size=batch_size,
|
||||
show_progress_bar=is_build, # Don't show progress bar in server environment
|
||||
convert_to_numpy=True,
|
||||
normalize_embeddings=False,
|
||||
device=device,
|
||||
)
|
||||
# Synchronize if CUDA to measure accurate wall time
|
||||
try:
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.synchronize()
|
||||
except Exception:
|
||||
pass
|
||||
else:
|
||||
# Manual tokenization + forward pass using HF AutoTokenizer/AutoModel
|
||||
try:
|
||||
from transformers import AutoModel, AutoTokenizer # type: ignore
|
||||
except Exception as e:
|
||||
raise ImportError(f"transformers is required for manual_tokenize=True: {e}")
|
||||
|
||||
# Cache tokenizer and model
|
||||
tok_cache_key = f"hf_tokenizer_{model_name}"
|
||||
mdl_cache_key = f"hf_model_{model_name}_{device}_{use_fp16}"
|
||||
if tok_cache_key in _model_cache and mdl_cache_key in _model_cache:
|
||||
hf_tokenizer = _model_cache[tok_cache_key]
|
||||
hf_model = _model_cache[mdl_cache_key]
|
||||
logger.info("Using cached HF tokenizer/model for manual path")
|
||||
else:
|
||||
logger.info("Loading HF tokenizer/model for manual tokenization path")
|
||||
hf_tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
||||
torch_dtype = torch.float16 if (use_fp16 and device == "cuda") else torch.float32
|
||||
hf_model = AutoModel.from_pretrained(model_name, torch_dtype=torch_dtype)
|
||||
hf_model.to(device)
|
||||
hf_model.eval()
|
||||
# Optional compile on supported devices
|
||||
if device in ["cuda", "mps"]:
|
||||
try:
|
||||
hf_model = torch.compile(hf_model, mode="reduce-overhead", dynamic=True) # type: ignore
|
||||
except Exception:
|
||||
pass
|
||||
_model_cache[tok_cache_key] = hf_tokenizer
|
||||
_model_cache[mdl_cache_key] = hf_model
|
||||
|
||||
all_embeddings: list[np.ndarray] = []
|
||||
# Progress bar when building or for large inputs
|
||||
show_progress = is_build or len(texts) > 32
|
||||
try:
|
||||
if show_progress:
|
||||
from tqdm import tqdm # type: ignore
|
||||
|
||||
batch_iter = tqdm(
|
||||
range(0, len(texts), batch_size),
|
||||
desc="Embedding (manual)",
|
||||
unit="batch",
|
||||
)
|
||||
else:
|
||||
batch_iter = range(0, len(texts), batch_size)
|
||||
except Exception:
|
||||
batch_iter = range(0, len(texts), batch_size)
|
||||
|
||||
start_time_manual = time.time()
|
||||
with torch.inference_mode():
|
||||
for start_index in batch_iter:
|
||||
end_index = min(start_index + batch_size, len(texts))
|
||||
batch_texts = texts[start_index:end_index]
|
||||
tokenize_start_time = time.time()
|
||||
inputs = hf_tokenizer(
|
||||
batch_texts,
|
||||
padding=True,
|
||||
truncation=True,
|
||||
max_length=max_length,
|
||||
return_tensors="pt",
|
||||
)
|
||||
tokenize_end_time = time.time()
|
||||
logger.info(
|
||||
f"Tokenize time taken: {tokenize_end_time - tokenize_start_time} seconds"
|
||||
)
|
||||
# Print shapes of all input tensors for debugging
|
||||
for k, v in inputs.items():
|
||||
print(f"inputs[{k!r}] shape: {getattr(v, 'shape', type(v))}")
|
||||
to_device_start_time = time.time()
|
||||
inputs = {k: v.to(device) for k, v in inputs.items()}
|
||||
to_device_end_time = time.time()
|
||||
logger.info(
|
||||
f"To device time taken: {to_device_end_time - to_device_start_time} seconds"
|
||||
)
|
||||
forward_start_time = time.time()
|
||||
outputs = hf_model(**inputs)
|
||||
forward_end_time = time.time()
|
||||
logger.info(f"Forward time taken: {forward_end_time - forward_start_time} seconds")
|
||||
last_hidden_state = outputs.last_hidden_state # (B, L, H)
|
||||
attention_mask = inputs.get("attention_mask")
|
||||
if attention_mask is None:
|
||||
# Fallback: assume all tokens are valid
|
||||
pooled = last_hidden_state.mean(dim=1)
|
||||
else:
|
||||
mask = attention_mask.unsqueeze(-1).to(last_hidden_state.dtype)
|
||||
masked = last_hidden_state * mask
|
||||
lengths = mask.sum(dim=1).clamp(min=1)
|
||||
pooled = masked.sum(dim=1) / lengths
|
||||
# Move to CPU float32
|
||||
batch_embeddings = pooled.detach().to("cpu").float().numpy()
|
||||
all_embeddings.append(batch_embeddings)
|
||||
|
||||
embeddings = np.vstack(all_embeddings).astype(np.float32, copy=False)
|
||||
try:
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.synchronize()
|
||||
except Exception:
|
||||
pass
|
||||
end_time = time.time()
|
||||
logger.info(f"Manual tokenize time taken: {end_time - start_time_manual} seconds")
|
||||
end_time = time.time()
|
||||
logger.info(f"Generated {len(embeddings)} embeddings, dimension: {embeddings.shape[1]}")
|
||||
logger.info(f"Time taken: {end_time - start_time} seconds")
|
||||
|
||||
# Validate results
|
||||
if np.isnan(embeddings).any() or np.isinf(embeddings).any():
|
||||
@@ -242,6 +363,16 @@ def compute_embeddings_openai(texts: list[str], model_name: str) -> np.ndarray:
|
||||
except ImportError as e:
|
||||
raise ImportError(f"OpenAI package not installed: {e}")
|
||||
|
||||
# Validate input list
|
||||
if not texts:
|
||||
raise ValueError("Cannot compute embeddings for empty text list")
|
||||
# Extra validation: abort early if any item is empty/whitespace
|
||||
invalid_count = sum(1 for t in texts if not isinstance(t, str) or not t.strip())
|
||||
if invalid_count > 0:
|
||||
raise ValueError(
|
||||
f"Found {invalid_count} empty/invalid text(s) in input. Upstream should filter before calling OpenAI."
|
||||
)
|
||||
|
||||
api_key = os.getenv("OPENAI_API_KEY")
|
||||
if not api_key:
|
||||
raise RuntimeError("OPENAI_API_KEY environment variable not set")
|
||||
@@ -261,8 +392,16 @@ def compute_embeddings_openai(texts: list[str], model_name: str) -> np.ndarray:
|
||||
print(f"len of texts: {len(texts)}")
|
||||
|
||||
# OpenAI has limits on batch size and input length
|
||||
max_batch_size = 1000 # Conservative batch size
|
||||
max_batch_size = 800 # Conservative batch size because the token limit is 300K
|
||||
all_embeddings = []
|
||||
# get the avg len of texts
|
||||
avg_len = sum(len(text) for text in texts) / len(texts)
|
||||
print(f"avg len of texts: {avg_len}")
|
||||
# if avg len is less than 1000, use the max batch size
|
||||
if avg_len > 300:
|
||||
max_batch_size = 500
|
||||
|
||||
# if avg len is less than 1000, use the max batch size
|
||||
|
||||
try:
|
||||
from tqdm import tqdm
|
||||
@@ -365,3 +504,366 @@ def compute_embeddings_mlx(chunks: list[str], model_name: str, batch_size: int =
|
||||
|
||||
# Stack numpy arrays
|
||||
return np.stack(all_embeddings)
|
||||
|
||||
|
||||
def compute_embeddings_ollama(
|
||||
texts: list[str], model_name: str, is_build: bool = False, host: str = "http://localhost:11434"
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Compute embeddings using Ollama API with simplified batch processing.
|
||||
|
||||
Uses batch size of 32 for MPS/CPU and 128 for CUDA to optimize performance.
|
||||
|
||||
Args:
|
||||
texts: List of texts to compute embeddings for
|
||||
model_name: Ollama model name (e.g., "nomic-embed-text", "mxbai-embed-large")
|
||||
is_build: Whether this is a build operation (shows progress bar)
|
||||
host: Ollama host URL (default: http://localhost:11434)
|
||||
|
||||
Returns:
|
||||
Normalized embeddings array, shape: (len(texts), embedding_dim)
|
||||
"""
|
||||
try:
|
||||
import requests
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"The 'requests' library is required for Ollama embeddings. Install with: uv pip install requests"
|
||||
)
|
||||
|
||||
if not texts:
|
||||
raise ValueError("Cannot compute embeddings for empty text list")
|
||||
|
||||
logger.info(
|
||||
f"Computing embeddings for {len(texts)} texts using Ollama API, model: '{model_name}'"
|
||||
)
|
||||
|
||||
# Check if Ollama is running
|
||||
try:
|
||||
response = requests.get(f"{host}/api/version", timeout=5)
|
||||
response.raise_for_status()
|
||||
except requests.exceptions.ConnectionError:
|
||||
error_msg = (
|
||||
f"❌ Could not connect to Ollama at {host}.\n\n"
|
||||
"Please ensure Ollama is running:\n"
|
||||
" • macOS/Linux: ollama serve\n"
|
||||
" • Windows: Make sure Ollama is running in the system tray\n\n"
|
||||
"Installation: https://ollama.com/download"
|
||||
)
|
||||
raise RuntimeError(error_msg)
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"Unexpected error connecting to Ollama: {e}")
|
||||
|
||||
# Check if model exists and provide helpful suggestions
|
||||
try:
|
||||
response = requests.get(f"{host}/api/tags", timeout=5)
|
||||
response.raise_for_status()
|
||||
models = response.json()
|
||||
model_names = [model["name"] for model in models.get("models", [])]
|
||||
|
||||
# Filter for embedding models (models that support embeddings)
|
||||
embedding_models = []
|
||||
suggested_embedding_models = [
|
||||
"nomic-embed-text",
|
||||
"mxbai-embed-large",
|
||||
"bge-m3",
|
||||
"all-minilm",
|
||||
"snowflake-arctic-embed",
|
||||
]
|
||||
|
||||
for model in model_names:
|
||||
# Check if it's an embedding model (by name patterns or known models)
|
||||
base_name = model.split(":")[0]
|
||||
if any(emb in base_name for emb in ["embed", "bge", "minilm", "e5"]):
|
||||
embedding_models.append(model)
|
||||
|
||||
# Check if model exists (handle versioned names) and resolve to full name
|
||||
resolved_model_name = None
|
||||
for name in model_names:
|
||||
# Exact match
|
||||
if model_name == name:
|
||||
resolved_model_name = name
|
||||
break
|
||||
# Match without version tag (use the versioned name)
|
||||
elif model_name == name.split(":")[0]:
|
||||
resolved_model_name = name
|
||||
break
|
||||
|
||||
if not resolved_model_name:
|
||||
error_msg = f"❌ Model '{model_name}' not found in local Ollama.\n\n"
|
||||
|
||||
# Suggest pulling the model
|
||||
error_msg += "📦 To install this embedding model:\n"
|
||||
error_msg += f" ollama pull {model_name}\n\n"
|
||||
|
||||
# Show available embedding models
|
||||
if embedding_models:
|
||||
error_msg += "✅ Available embedding models:\n"
|
||||
for model in embedding_models[:5]:
|
||||
error_msg += f" • {model}\n"
|
||||
if len(embedding_models) > 5:
|
||||
error_msg += f" ... and {len(embedding_models) - 5} more\n"
|
||||
else:
|
||||
error_msg += "💡 Popular embedding models to install:\n"
|
||||
for model in suggested_embedding_models[:3]:
|
||||
error_msg += f" • ollama pull {model}\n"
|
||||
|
||||
error_msg += "\n📚 Browse more: https://ollama.com/library"
|
||||
raise ValueError(error_msg)
|
||||
|
||||
# Use the resolved model name for all subsequent operations
|
||||
if resolved_model_name != model_name:
|
||||
logger.info(f"Resolved model name '{model_name}' to '{resolved_model_name}'")
|
||||
model_name = resolved_model_name
|
||||
|
||||
# Verify the model supports embeddings by testing it
|
||||
try:
|
||||
test_response = requests.post(
|
||||
f"{host}/api/embeddings", json={"model": model_name, "prompt": "test"}, timeout=10
|
||||
)
|
||||
if test_response.status_code != 200:
|
||||
error_msg = (
|
||||
f"⚠️ Model '{model_name}' exists but may not support embeddings.\n\n"
|
||||
f"Please use an embedding model like:\n"
|
||||
)
|
||||
for model in suggested_embedding_models[:3]:
|
||||
error_msg += f" • {model}\n"
|
||||
raise ValueError(error_msg)
|
||||
except requests.exceptions.RequestException:
|
||||
# If test fails, continue anyway - model might still work
|
||||
pass
|
||||
|
||||
except requests.exceptions.RequestException as e:
|
||||
logger.warning(f"Could not verify model existence: {e}")
|
||||
|
||||
# Determine batch size based on device availability
|
||||
# Check for CUDA/MPS availability using torch if available
|
||||
batch_size = 32 # Default for MPS/CPU
|
||||
try:
|
||||
import torch
|
||||
|
||||
if torch.cuda.is_available():
|
||||
batch_size = 128 # CUDA gets larger batch size
|
||||
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
||||
batch_size = 32 # MPS gets smaller batch size
|
||||
except ImportError:
|
||||
# If torch is not available, use conservative batch size
|
||||
batch_size = 32
|
||||
|
||||
logger.info(f"Using batch size: {batch_size}")
|
||||
|
||||
def get_batch_embeddings(batch_texts):
|
||||
"""Get embeddings for a batch of texts."""
|
||||
all_embeddings = []
|
||||
failed_indices = []
|
||||
|
||||
for i, text in enumerate(batch_texts):
|
||||
max_retries = 3
|
||||
retry_count = 0
|
||||
|
||||
# Truncate very long texts to avoid API issues
|
||||
truncated_text = text[:8000] if len(text) > 8000 else text
|
||||
while retry_count < max_retries:
|
||||
try:
|
||||
response = requests.post(
|
||||
f"{host}/api/embeddings",
|
||||
json={"model": model_name, "prompt": truncated_text},
|
||||
timeout=30,
|
||||
)
|
||||
response.raise_for_status()
|
||||
|
||||
result = response.json()
|
||||
embedding = result.get("embedding")
|
||||
|
||||
if embedding is None:
|
||||
raise ValueError(f"No embedding returned for text {i}")
|
||||
|
||||
if not isinstance(embedding, list) or len(embedding) == 0:
|
||||
raise ValueError(f"Invalid embedding format for text {i}")
|
||||
|
||||
all_embeddings.append(embedding)
|
||||
break
|
||||
|
||||
except requests.exceptions.Timeout:
|
||||
retry_count += 1
|
||||
if retry_count >= max_retries:
|
||||
logger.warning(f"Timeout for text {i} after {max_retries} retries")
|
||||
failed_indices.append(i)
|
||||
all_embeddings.append(None)
|
||||
break
|
||||
|
||||
except Exception as e:
|
||||
retry_count += 1
|
||||
if retry_count >= max_retries:
|
||||
logger.error(f"Failed to get embedding for text {i}: {e}")
|
||||
failed_indices.append(i)
|
||||
all_embeddings.append(None)
|
||||
break
|
||||
return all_embeddings, failed_indices
|
||||
|
||||
# Process texts in batches
|
||||
all_embeddings = []
|
||||
all_failed_indices = []
|
||||
|
||||
# Setup progress bar if needed
|
||||
show_progress = is_build or len(texts) > 10
|
||||
try:
|
||||
if show_progress:
|
||||
from tqdm import tqdm
|
||||
except ImportError:
|
||||
show_progress = False
|
||||
|
||||
# Process batches
|
||||
num_batches = (len(texts) + batch_size - 1) // batch_size
|
||||
|
||||
if show_progress:
|
||||
batch_iterator = tqdm(range(num_batches), desc="Computing Ollama embeddings")
|
||||
else:
|
||||
batch_iterator = range(num_batches)
|
||||
|
||||
for batch_idx in batch_iterator:
|
||||
start_idx = batch_idx * batch_size
|
||||
end_idx = min(start_idx + batch_size, len(texts))
|
||||
batch_texts = texts[start_idx:end_idx]
|
||||
|
||||
batch_embeddings, batch_failed = get_batch_embeddings(batch_texts)
|
||||
|
||||
# Adjust failed indices to global indices
|
||||
global_failed = [start_idx + idx for idx in batch_failed]
|
||||
all_failed_indices.extend(global_failed)
|
||||
all_embeddings.extend(batch_embeddings)
|
||||
|
||||
# Handle failed embeddings
|
||||
if all_failed_indices:
|
||||
if len(all_failed_indices) == len(texts):
|
||||
raise RuntimeError("Failed to compute any embeddings")
|
||||
|
||||
logger.warning(
|
||||
f"Failed to compute embeddings for {len(all_failed_indices)}/{len(texts)} texts"
|
||||
)
|
||||
|
||||
# Use zero embeddings as fallback for failed ones
|
||||
valid_embedding = next((e for e in all_embeddings if e is not None), None)
|
||||
if valid_embedding:
|
||||
embedding_dim = len(valid_embedding)
|
||||
for i, embedding in enumerate(all_embeddings):
|
||||
if embedding is None:
|
||||
all_embeddings[i] = [0.0] * embedding_dim
|
||||
|
||||
# Remove None values
|
||||
all_embeddings = [e for e in all_embeddings if e is not None]
|
||||
|
||||
if not all_embeddings:
|
||||
raise RuntimeError("No valid embeddings were computed")
|
||||
|
||||
# Validate embedding dimensions
|
||||
expected_dim = len(all_embeddings[0])
|
||||
inconsistent_dims = []
|
||||
for i, embedding in enumerate(all_embeddings):
|
||||
if len(embedding) != expected_dim:
|
||||
inconsistent_dims.append((i, len(embedding)))
|
||||
|
||||
if inconsistent_dims:
|
||||
error_msg = f"Ollama returned inconsistent embedding dimensions. Expected {expected_dim}, but got:\n"
|
||||
for idx, dim in inconsistent_dims[:10]: # Show first 10 inconsistent ones
|
||||
error_msg += f" - Text {idx}: {dim} dimensions\n"
|
||||
if len(inconsistent_dims) > 10:
|
||||
error_msg += f" ... and {len(inconsistent_dims) - 10} more\n"
|
||||
error_msg += f"\nThis is likely an Ollama API bug with model '{model_name}'. Please try:\n"
|
||||
error_msg += "1. Restart Ollama service: 'ollama serve'\n"
|
||||
error_msg += f"2. Re-pull the model: 'ollama pull {model_name}'\n"
|
||||
error_msg += (
|
||||
"3. Use sentence-transformers instead: --embedding-mode sentence-transformers\n"
|
||||
)
|
||||
error_msg += "4. Report this issue to Ollama: https://github.com/ollama/ollama/issues"
|
||||
raise ValueError(error_msg)
|
||||
|
||||
# Convert to numpy array and normalize
|
||||
embeddings = np.array(all_embeddings, dtype=np.float32)
|
||||
|
||||
# Normalize embeddings (L2 normalization)
|
||||
norms = np.linalg.norm(embeddings, axis=1, keepdims=True)
|
||||
embeddings = embeddings / (norms + 1e-8) # Add small epsilon to avoid division by zero
|
||||
|
||||
logger.info(f"Generated {len(embeddings)} embeddings, dimension: {embeddings.shape[1]}")
|
||||
|
||||
return embeddings
|
||||
|
||||
|
||||
def compute_embeddings_gemini(
|
||||
texts: list[str], model_name: str = "text-embedding-004", is_build: bool = False
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Compute embeddings using Google Gemini API.
|
||||
|
||||
Args:
|
||||
texts: List of texts to compute embeddings for
|
||||
model_name: Gemini model name (default: "text-embedding-004")
|
||||
is_build: Whether this is a build operation (shows progress bar)
|
||||
|
||||
Returns:
|
||||
Embeddings array, shape: (len(texts), embedding_dim)
|
||||
"""
|
||||
try:
|
||||
import os
|
||||
|
||||
import google.genai as genai
|
||||
except ImportError as e:
|
||||
raise ImportError(f"Google GenAI package not installed: {e}")
|
||||
|
||||
api_key = os.getenv("GEMINI_API_KEY")
|
||||
if not api_key:
|
||||
raise RuntimeError("GEMINI_API_KEY environment variable not set")
|
||||
|
||||
# Cache Gemini client
|
||||
cache_key = "gemini_client"
|
||||
if cache_key in _model_cache:
|
||||
client = _model_cache[cache_key]
|
||||
else:
|
||||
client = genai.Client(api_key=api_key)
|
||||
_model_cache[cache_key] = client
|
||||
logger.info("Gemini client cached")
|
||||
|
||||
logger.info(
|
||||
f"Computing embeddings for {len(texts)} texts using Gemini API, model: '{model_name}'"
|
||||
)
|
||||
|
||||
# Gemini supports batch embedding
|
||||
max_batch_size = 100 # Conservative batch size for Gemini
|
||||
all_embeddings = []
|
||||
|
||||
try:
|
||||
from tqdm import tqdm
|
||||
|
||||
total_batches = (len(texts) + max_batch_size - 1) // max_batch_size
|
||||
batch_range = range(0, len(texts), max_batch_size)
|
||||
batch_iterator = tqdm(
|
||||
batch_range, desc="Computing embeddings", unit="batch", total=total_batches
|
||||
)
|
||||
except ImportError:
|
||||
# Fallback when tqdm is not available
|
||||
batch_iterator = range(0, len(texts), max_batch_size)
|
||||
|
||||
for i in batch_iterator:
|
||||
batch_texts = texts[i : i + max_batch_size]
|
||||
|
||||
try:
|
||||
# Use the embed_content method from the new Google GenAI SDK
|
||||
response = client.models.embed_content(
|
||||
model=model_name,
|
||||
contents=batch_texts,
|
||||
config=genai.types.EmbedContentConfig(
|
||||
task_type="RETRIEVAL_DOCUMENT" # For document embedding
|
||||
),
|
||||
)
|
||||
|
||||
# Extract embeddings from response
|
||||
for embedding_data in response.embeddings:
|
||||
all_embeddings.append(embedding_data.values)
|
||||
except Exception as e:
|
||||
logger.error(f"Batch {i} failed: {e}")
|
||||
raise
|
||||
|
||||
embeddings = np.array(all_embeddings, dtype=np.float32)
|
||||
logger.info(f"Generated {len(embeddings)} embeddings, dimension: {embeddings.shape[1]}")
|
||||
|
||||
return embeddings
|
||||
|
||||
@@ -6,8 +6,9 @@ import subprocess
|
||||
import sys
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
import psutil
|
||||
# Lightweight, self-contained server manager with no cross-process inspection
|
||||
|
||||
# Set up logging based on environment variable
|
||||
LOG_LEVEL = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
|
||||
@@ -42,130 +43,7 @@ def _check_port(port: int) -> bool:
|
||||
return s.connect_ex(("localhost", port)) == 0
|
||||
|
||||
|
||||
def _check_process_matches_config(
|
||||
port: int, expected_model: str, expected_passages_file: str
|
||||
) -> bool:
|
||||
"""
|
||||
Check if the process using the port matches our expected model and passages file.
|
||||
Returns True if matches, False otherwise.
|
||||
"""
|
||||
try:
|
||||
for proc in psutil.process_iter(["pid", "cmdline"]):
|
||||
if not _is_process_listening_on_port(proc, port):
|
||||
continue
|
||||
|
||||
cmdline = proc.info["cmdline"]
|
||||
if not cmdline:
|
||||
continue
|
||||
|
||||
return _check_cmdline_matches_config(
|
||||
cmdline, port, expected_model, expected_passages_file
|
||||
)
|
||||
|
||||
logger.debug(f"No process found listening on port {port}")
|
||||
return False
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"Could not check process on port {port}: {e}")
|
||||
return False
|
||||
|
||||
|
||||
def _is_process_listening_on_port(proc, port: int) -> bool:
|
||||
"""Check if a process is listening on the given port."""
|
||||
try:
|
||||
connections = proc.net_connections()
|
||||
for conn in connections:
|
||||
if conn.laddr.port == port and conn.status == psutil.CONN_LISTEN:
|
||||
return True
|
||||
return False
|
||||
except (psutil.NoSuchProcess, psutil.AccessDenied, psutil.ZombieProcess):
|
||||
return False
|
||||
|
||||
|
||||
def _check_cmdline_matches_config(
|
||||
cmdline: list, port: int, expected_model: str, expected_passages_file: str
|
||||
) -> bool:
|
||||
"""Check if command line matches our expected configuration."""
|
||||
cmdline_str = " ".join(cmdline)
|
||||
logger.debug(f"Found process on port {port}: {cmdline_str}")
|
||||
|
||||
# Check if it's our embedding server
|
||||
is_embedding_server = any(
|
||||
server_type in cmdline_str
|
||||
for server_type in [
|
||||
"embedding_server",
|
||||
"leann_backend_diskann.embedding_server",
|
||||
"leann_backend_hnsw.hnsw_embedding_server",
|
||||
]
|
||||
)
|
||||
|
||||
if not is_embedding_server:
|
||||
logger.debug(f"Process on port {port} is not our embedding server")
|
||||
return False
|
||||
|
||||
# Check model name
|
||||
model_matches = _check_model_in_cmdline(cmdline, expected_model)
|
||||
|
||||
# Check passages file if provided
|
||||
passages_matches = _check_passages_in_cmdline(cmdline, expected_passages_file)
|
||||
|
||||
result = model_matches and passages_matches
|
||||
logger.debug(
|
||||
f"model_matches: {model_matches}, passages_matches: {passages_matches}, overall: {result}"
|
||||
)
|
||||
return result
|
||||
|
||||
|
||||
def _check_model_in_cmdline(cmdline: list, expected_model: str) -> bool:
|
||||
"""Check if the command line contains the expected model."""
|
||||
if "--model-name" not in cmdline:
|
||||
return False
|
||||
|
||||
model_idx = cmdline.index("--model-name")
|
||||
if model_idx + 1 >= len(cmdline):
|
||||
return False
|
||||
|
||||
actual_model = cmdline[model_idx + 1]
|
||||
return actual_model == expected_model
|
||||
|
||||
|
||||
def _check_passages_in_cmdline(cmdline: list, expected_passages_file: str) -> bool:
|
||||
"""Check if the command line contains the expected passages file."""
|
||||
if "--passages-file" not in cmdline:
|
||||
return False # Expected but not found
|
||||
|
||||
passages_idx = cmdline.index("--passages-file")
|
||||
if passages_idx + 1 >= len(cmdline):
|
||||
return False
|
||||
|
||||
actual_passages = cmdline[passages_idx + 1]
|
||||
expected_path = Path(expected_passages_file).resolve()
|
||||
actual_path = Path(actual_passages).resolve()
|
||||
return actual_path == expected_path
|
||||
|
||||
|
||||
def _find_compatible_port_or_next_available(
|
||||
start_port: int, model_name: str, passages_file: str, max_attempts: int = 100
|
||||
) -> tuple[int, bool]:
|
||||
"""
|
||||
Find a port that either has a compatible server or is available.
|
||||
Returns (port, is_compatible) where is_compatible indicates if we found a matching server.
|
||||
"""
|
||||
for port in range(start_port, start_port + max_attempts):
|
||||
if not _check_port(port):
|
||||
# Port is available
|
||||
return port, False
|
||||
|
||||
# Port is in use, check if it's compatible
|
||||
if _check_process_matches_config(port, model_name, passages_file):
|
||||
logger.info(f"Found compatible server on port {port}")
|
||||
return port, True
|
||||
else:
|
||||
logger.info(f"Port {port} has incompatible server, trying next port...")
|
||||
|
||||
raise RuntimeError(
|
||||
f"Could not find compatible or available port in range {start_port}-{start_port + max_attempts}"
|
||||
)
|
||||
# Note: All cross-process scanning helpers removed for simplicity
|
||||
|
||||
|
||||
class EmbeddingServerManager:
|
||||
@@ -182,9 +60,18 @@ class EmbeddingServerManager:
|
||||
e.g., "leann_backend_diskann.embedding_server"
|
||||
"""
|
||||
self.backend_module_name = backend_module_name
|
||||
self.server_process: subprocess.Popen | None = None
|
||||
self.server_port: int | None = None
|
||||
self.server_process: Optional[subprocess.Popen] = None
|
||||
self.server_port: Optional[int] = None
|
||||
# Track last-started config for in-process reuse only
|
||||
self._server_config: Optional[dict] = None
|
||||
self._atexit_registered = False
|
||||
# Also register a weakref finalizer to ensure cleanup when manager is GC'ed
|
||||
try:
|
||||
import weakref
|
||||
|
||||
self._finalizer = weakref.finalize(self, self._finalize_process)
|
||||
except Exception:
|
||||
self._finalizer = None
|
||||
|
||||
def start_server(
|
||||
self,
|
||||
@@ -194,26 +81,24 @@ class EmbeddingServerManager:
|
||||
**kwargs,
|
||||
) -> tuple[bool, int]:
|
||||
"""Start the embedding server."""
|
||||
passages_file = kwargs.get("passages_file")
|
||||
# passages_file may be present in kwargs for server CLI, but we don't need it here
|
||||
|
||||
# Check if we have a compatible server already running
|
||||
if self._has_compatible_running_server(model_name, passages_file):
|
||||
logger.info("Found compatible running server!")
|
||||
return True, port
|
||||
# If this manager already has a live server, just reuse it
|
||||
if self.server_process and self.server_process.poll() is None and self.server_port:
|
||||
logger.info("Reusing in-process server")
|
||||
return True, self.server_port
|
||||
|
||||
# For Colab environment, use a different strategy
|
||||
if _is_colab_environment():
|
||||
logger.info("Detected Colab environment, using alternative startup strategy")
|
||||
return self._start_server_colab(port, model_name, embedding_mode, **kwargs)
|
||||
|
||||
# Find a compatible port or next available
|
||||
actual_port, is_compatible = _find_compatible_port_or_next_available(
|
||||
port, model_name, passages_file
|
||||
)
|
||||
|
||||
if is_compatible:
|
||||
logger.info(f"Found compatible server on port {actual_port}")
|
||||
return True, actual_port
|
||||
# Always pick a fresh available port
|
||||
try:
|
||||
actual_port = _get_available_port(port)
|
||||
except RuntimeError:
|
||||
logger.error("No available ports found")
|
||||
return False, port
|
||||
|
||||
# Start a new server
|
||||
return self._start_new_server(actual_port, model_name, embedding_mode, **kwargs)
|
||||
@@ -246,17 +131,7 @@ class EmbeddingServerManager:
|
||||
logger.error(f"Failed to start embedding server in Colab: {e}")
|
||||
return False, actual_port
|
||||
|
||||
def _has_compatible_running_server(self, model_name: str, passages_file: str) -> bool:
|
||||
"""Check if we have a compatible running server."""
|
||||
if not (self.server_process and self.server_process.poll() is None and self.server_port):
|
||||
return False
|
||||
|
||||
if _check_process_matches_config(self.server_port, model_name, passages_file):
|
||||
logger.info(f"Existing server process (PID {self.server_process.pid}) is compatible")
|
||||
return True
|
||||
|
||||
logger.info("Existing server process is incompatible. Should start a new server.")
|
||||
return False
|
||||
# Note: No compatibility check needed; manager is per-searcher and configs are stable per instance
|
||||
|
||||
def _start_new_server(
|
||||
self, port: int, model_name: str, embedding_mode: str, **kwargs
|
||||
@@ -303,22 +178,62 @@ class EmbeddingServerManager:
|
||||
project_root = Path(__file__).parent.parent.parent.parent.parent
|
||||
logger.info(f"Command: {' '.join(command)}")
|
||||
|
||||
# Let server output go directly to console
|
||||
# The server will respect LEANN_LOG_LEVEL environment variable
|
||||
# In CI environment, redirect stdout to avoid buffer deadlock but keep stderr for debugging
|
||||
# Embedding servers use many print statements that can fill stdout buffers
|
||||
is_ci = os.environ.get("CI") == "true"
|
||||
if is_ci:
|
||||
stdout_target = subprocess.DEVNULL
|
||||
stderr_target = None # Keep stderr for error debugging in CI
|
||||
logger.info(
|
||||
"CI environment detected, redirecting embedding server stdout to DEVNULL, keeping stderr"
|
||||
)
|
||||
else:
|
||||
stdout_target = None # Direct to console for visible logs
|
||||
stderr_target = None # Direct to console for visible logs
|
||||
|
||||
# Start embedding server subprocess
|
||||
logger.info(f"Starting server process with command: {' '.join(command)}")
|
||||
self.server_process = subprocess.Popen(
|
||||
command,
|
||||
cwd=project_root,
|
||||
stdout=None, # Direct to console
|
||||
stderr=None, # Direct to console
|
||||
stdout=stdout_target,
|
||||
stderr=stderr_target,
|
||||
)
|
||||
self.server_port = port
|
||||
# Record config for in-process reuse
|
||||
try:
|
||||
self._server_config = {
|
||||
"model_name": command[command.index("--model-name") + 1]
|
||||
if "--model-name" in command
|
||||
else "",
|
||||
"passages_file": command[command.index("--passages-file") + 1]
|
||||
if "--passages-file" in command
|
||||
else "",
|
||||
"embedding_mode": command[command.index("--embedding-mode") + 1]
|
||||
if "--embedding-mode" in command
|
||||
else "sentence-transformers",
|
||||
}
|
||||
except Exception:
|
||||
self._server_config = {
|
||||
"model_name": "",
|
||||
"passages_file": "",
|
||||
"embedding_mode": "sentence-transformers",
|
||||
}
|
||||
logger.info(f"Server process started with PID: {self.server_process.pid}")
|
||||
|
||||
# Register atexit callback only when we actually start a process
|
||||
if not self._atexit_registered:
|
||||
# Use a lambda to avoid issues with bound methods
|
||||
atexit.register(lambda: self.stop_server() if self.server_process else None)
|
||||
# Always attempt best-effort finalize at interpreter exit
|
||||
atexit.register(self._finalize_process)
|
||||
self._atexit_registered = True
|
||||
# Touch finalizer so it knows there is a live process
|
||||
if getattr(self, "_finalizer", None) is not None and not self._finalizer.alive:
|
||||
try:
|
||||
import weakref
|
||||
|
||||
self._finalizer = weakref.finalize(self, self._finalize_process)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
def _wait_for_server_ready(self, port: int) -> tuple[bool, int]:
|
||||
"""Wait for the server to be ready."""
|
||||
@@ -343,32 +258,69 @@ class EmbeddingServerManager:
|
||||
if not self.server_process:
|
||||
return
|
||||
|
||||
if self.server_process.poll() is not None:
|
||||
if self.server_process and self.server_process.poll() is not None:
|
||||
# Process already terminated
|
||||
self.server_process = None
|
||||
self.server_port = None
|
||||
self._server_config = None
|
||||
return
|
||||
|
||||
logger.info(
|
||||
f"Terminating server process (PID: {self.server_process.pid}) for backend {self.backend_module_name}..."
|
||||
)
|
||||
self.server_process.terminate()
|
||||
|
||||
# Use simple termination first; if the server installed signal handlers,
|
||||
# it will exit cleanly. Otherwise escalate to kill after a short wait.
|
||||
try:
|
||||
self.server_process.wait(timeout=5)
|
||||
logger.info(f"Server process {self.server_process.pid} terminated.")
|
||||
except subprocess.TimeoutExpired:
|
||||
logger.warning(
|
||||
f"Server process {self.server_process.pid} did not terminate gracefully, killing it."
|
||||
)
|
||||
self.server_process.kill()
|
||||
|
||||
# Clean up process resources to prevent resource tracker warnings
|
||||
try:
|
||||
self.server_process.wait() # Ensure process is fully cleaned up
|
||||
self.server_process.terminate()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
self.server_process = None
|
||||
try:
|
||||
self.server_process.wait(timeout=5) # Give more time for graceful shutdown
|
||||
logger.info(f"Server process {self.server_process.pid} terminated gracefully.")
|
||||
except subprocess.TimeoutExpired:
|
||||
logger.warning(
|
||||
f"Server process {self.server_process.pid} did not terminate within 5 seconds, force killing..."
|
||||
)
|
||||
try:
|
||||
self.server_process.kill()
|
||||
except Exception:
|
||||
pass
|
||||
try:
|
||||
self.server_process.wait(timeout=2)
|
||||
logger.info(f"Server process {self.server_process.pid} killed successfully.")
|
||||
except subprocess.TimeoutExpired:
|
||||
logger.error(
|
||||
f"Failed to kill server process {self.server_process.pid} - it may be hung"
|
||||
)
|
||||
|
||||
# Clean up process resources with timeout to avoid CI hang
|
||||
try:
|
||||
# Use shorter timeout in CI environments
|
||||
is_ci = os.environ.get("CI") == "true"
|
||||
timeout = 3 if is_ci else 10
|
||||
self.server_process.wait(timeout=timeout)
|
||||
logger.info(f"Server process {self.server_process.pid} cleanup completed")
|
||||
except subprocess.TimeoutExpired:
|
||||
logger.warning(f"Process cleanup timeout after {timeout}s, proceeding anyway")
|
||||
except Exception as e:
|
||||
logger.warning(f"Error during process cleanup: {e}")
|
||||
finally:
|
||||
self.server_process = None
|
||||
self.server_port = None
|
||||
self._server_config = None
|
||||
|
||||
def _finalize_process(self) -> None:
|
||||
"""Best-effort cleanup used by weakref.finalize/atexit."""
|
||||
try:
|
||||
self.stop_server()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
def _adopt_existing_server(self, *args, **kwargs) -> None:
|
||||
# Removed: cross-process adoption no longer supported
|
||||
return
|
||||
|
||||
def _launch_server_process_colab(self, command: list, port: int) -> None:
|
||||
"""Launch the server process with Colab-specific settings."""
|
||||
@@ -384,10 +336,16 @@ class EmbeddingServerManager:
|
||||
self.server_port = port
|
||||
logger.info(f"Colab server process started with PID: {self.server_process.pid}")
|
||||
|
||||
# Register atexit callback
|
||||
# Register atexit callback (unified)
|
||||
if not self._atexit_registered:
|
||||
atexit.register(lambda: self.stop_server() if self.server_process else None)
|
||||
atexit.register(self._finalize_process)
|
||||
self._atexit_registered = True
|
||||
# Record config for in-process reuse is best-effort in Colab mode
|
||||
self._server_config = {
|
||||
"model_name": "",
|
||||
"passages_file": "",
|
||||
"embedding_mode": "sentence-transformers",
|
||||
}
|
||||
|
||||
def _wait_for_server_ready_colab(self, port: int) -> tuple[bool, int]:
|
||||
"""Wait for the server to be ready with Colab-specific timeout."""
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any, Literal
|
||||
from typing import Any, Literal, Optional
|
||||
|
||||
import numpy as np
|
||||
|
||||
@@ -34,7 +34,9 @@ class LeannBackendSearcherInterface(ABC):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def _ensure_server_running(self, passages_source_file: str, port: int | None, **kwargs) -> int:
|
||||
def _ensure_server_running(
|
||||
self, passages_source_file: str, port: Optional[int], **kwargs
|
||||
) -> int:
|
||||
"""Ensure server is running"""
|
||||
pass
|
||||
|
||||
@@ -48,7 +50,7 @@ class LeannBackendSearcherInterface(ABC):
|
||||
prune_ratio: float = 0.0,
|
||||
recompute_embeddings: bool = False,
|
||||
pruning_strategy: Literal["global", "local", "proportional"] = "global",
|
||||
zmq_port: int | None = None,
|
||||
zmq_port: Optional[int] = None,
|
||||
**kwargs,
|
||||
) -> dict[str, Any]:
|
||||
"""Search for nearest neighbors
|
||||
@@ -74,7 +76,7 @@ class LeannBackendSearcherInterface(ABC):
|
||||
self,
|
||||
query: str,
|
||||
use_server_if_available: bool = True,
|
||||
zmq_port: int | None = None,
|
||||
zmq_port: Optional[int] = None,
|
||||
) -> np.ndarray:
|
||||
"""Compute embedding for a query string
|
||||
|
||||
|
||||
154
packages/leann-core/src/leann/mcp.py
Executable file
154
packages/leann-core/src/leann/mcp.py
Executable file
@@ -0,0 +1,154 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import json
|
||||
import subprocess
|
||||
import sys
|
||||
|
||||
|
||||
def handle_request(request):
|
||||
if request.get("method") == "initialize":
|
||||
return {
|
||||
"jsonrpc": "2.0",
|
||||
"id": request.get("id"),
|
||||
"result": {
|
||||
"capabilities": {"tools": {}},
|
||||
"protocolVersion": "2024-11-05",
|
||||
"serverInfo": {"name": "leann-mcp", "version": "1.0.0"},
|
||||
},
|
||||
}
|
||||
|
||||
elif request.get("method") == "tools/list":
|
||||
return {
|
||||
"jsonrpc": "2.0",
|
||||
"id": request.get("id"),
|
||||
"result": {
|
||||
"tools": [
|
||||
{
|
||||
"name": "leann_search",
|
||||
"description": """🔍 Search code using natural language - like having a coding assistant who knows your entire codebase!
|
||||
|
||||
🎯 **Perfect for**:
|
||||
- "How does authentication work?" → finds auth-related code
|
||||
- "Error handling patterns" → locates try-catch blocks and error logic
|
||||
- "Database connection setup" → finds DB initialization code
|
||||
- "API endpoint definitions" → locates route handlers
|
||||
- "Configuration management" → finds config files and usage
|
||||
|
||||
💡 **Pro tip**: Use this before making any changes to understand existing patterns and conventions.""",
|
||||
"inputSchema": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"index_name": {
|
||||
"type": "string",
|
||||
"description": "Name of the LEANN index to search. Use 'leann_list' first to see available indexes.",
|
||||
},
|
||||
"query": {
|
||||
"type": "string",
|
||||
"description": "Search query - can be natural language (e.g., 'how to handle errors') or technical terms (e.g., 'async function definition')",
|
||||
},
|
||||
"top_k": {
|
||||
"type": "integer",
|
||||
"default": 5,
|
||||
"minimum": 1,
|
||||
"maximum": 20,
|
||||
"description": "Number of search results to return. Use 5-10 for focused results, 15-20 for comprehensive exploration.",
|
||||
},
|
||||
"complexity": {
|
||||
"type": "integer",
|
||||
"default": 32,
|
||||
"minimum": 16,
|
||||
"maximum": 128,
|
||||
"description": "Search complexity level. Use 16-32 for fast searches (recommended), 64+ for higher precision when needed.",
|
||||
},
|
||||
},
|
||||
"required": ["index_name", "query"],
|
||||
},
|
||||
},
|
||||
{
|
||||
"name": "leann_list",
|
||||
"description": "📋 Show all your indexed codebases - your personal code library! Use this to see what's available for search.",
|
||||
"inputSchema": {"type": "object", "properties": {}},
|
||||
},
|
||||
]
|
||||
},
|
||||
}
|
||||
|
||||
elif request.get("method") == "tools/call":
|
||||
tool_name = request["params"]["name"]
|
||||
args = request["params"].get("arguments", {})
|
||||
|
||||
try:
|
||||
if tool_name == "leann_search":
|
||||
# Validate required parameters
|
||||
if not args.get("index_name") or not args.get("query"):
|
||||
return {
|
||||
"jsonrpc": "2.0",
|
||||
"id": request.get("id"),
|
||||
"result": {
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "Error: Both index_name and query are required",
|
||||
}
|
||||
]
|
||||
},
|
||||
}
|
||||
|
||||
# Build simplified command with non-interactive flag for MCP compatibility
|
||||
cmd = [
|
||||
"leann",
|
||||
"search",
|
||||
args["index_name"],
|
||||
args["query"],
|
||||
f"--top-k={args.get('top_k', 5)}",
|
||||
f"--complexity={args.get('complexity', 32)}",
|
||||
"--non-interactive",
|
||||
]
|
||||
result = subprocess.run(cmd, capture_output=True, text=True)
|
||||
|
||||
elif tool_name == "leann_list":
|
||||
result = subprocess.run(["leann", "list"], capture_output=True, text=True)
|
||||
|
||||
return {
|
||||
"jsonrpc": "2.0",
|
||||
"id": request.get("id"),
|
||||
"result": {
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": result.stdout
|
||||
if result.returncode == 0
|
||||
else f"Error: {result.stderr}",
|
||||
}
|
||||
]
|
||||
},
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
return {
|
||||
"jsonrpc": "2.0",
|
||||
"id": request.get("id"),
|
||||
"error": {"code": -1, "message": str(e)},
|
||||
}
|
||||
|
||||
|
||||
def main():
|
||||
for line in sys.stdin:
|
||||
try:
|
||||
request = json.loads(line.strip())
|
||||
response = handle_request(request)
|
||||
if response:
|
||||
print(json.dumps(response))
|
||||
sys.stdout.flush()
|
||||
except Exception as e:
|
||||
error_response = {
|
||||
"jsonrpc": "2.0",
|
||||
"id": None,
|
||||
"error": {"code": -1, "message": str(e)},
|
||||
}
|
||||
print(json.dumps(error_response))
|
||||
sys.stdout.flush()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
240
packages/leann-core/src/leann/metadata_filter.py
Normal file
240
packages/leann-core/src/leann/metadata_filter.py
Normal file
@@ -0,0 +1,240 @@
|
||||
"""
|
||||
Metadata filtering engine for LEANN search results.
|
||||
|
||||
This module provides generic metadata filtering capabilities that can be applied
|
||||
to search results from any LEANN backend. The filtering supports various
|
||||
operators for different data types including numbers, strings, booleans, and lists.
|
||||
"""
|
||||
|
||||
import logging
|
||||
from typing import Any, Union
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Type alias for filter specifications
|
||||
FilterValue = Union[str, int, float, bool, list]
|
||||
FilterSpec = dict[str, FilterValue]
|
||||
MetadataFilters = dict[str, FilterSpec]
|
||||
|
||||
|
||||
class MetadataFilterEngine:
|
||||
"""
|
||||
Engine for evaluating metadata filters against search results.
|
||||
|
||||
Supports various operators for filtering based on metadata fields:
|
||||
- Comparison: ==, !=, <, <=, >, >=
|
||||
- Membership: in, not_in
|
||||
- String operations: contains, starts_with, ends_with
|
||||
- Boolean operations: is_true, is_false
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
"""Initialize the filter engine with supported operators."""
|
||||
self.operators = {
|
||||
"==": self._equals,
|
||||
"!=": self._not_equals,
|
||||
"<": self._less_than,
|
||||
"<=": self._less_than_or_equal,
|
||||
">": self._greater_than,
|
||||
">=": self._greater_than_or_equal,
|
||||
"in": self._in,
|
||||
"not_in": self._not_in,
|
||||
"contains": self._contains,
|
||||
"starts_with": self._starts_with,
|
||||
"ends_with": self._ends_with,
|
||||
"is_true": self._is_true,
|
||||
"is_false": self._is_false,
|
||||
}
|
||||
|
||||
def apply_filters(
|
||||
self, search_results: list[dict[str, Any]], metadata_filters: MetadataFilters
|
||||
) -> list[dict[str, Any]]:
|
||||
"""
|
||||
Apply metadata filters to a list of search results.
|
||||
|
||||
Args:
|
||||
search_results: List of result dictionaries, each containing 'metadata' field
|
||||
metadata_filters: Dictionary of filter specifications
|
||||
Format: {"field_name": {"operator": value}}
|
||||
|
||||
Returns:
|
||||
Filtered list of search results
|
||||
"""
|
||||
if not metadata_filters:
|
||||
return search_results
|
||||
|
||||
logger.debug(f"Applying filters: {metadata_filters}")
|
||||
logger.debug(f"Input results count: {len(search_results)}")
|
||||
|
||||
filtered_results = []
|
||||
for result in search_results:
|
||||
if self._evaluate_filters(result, metadata_filters):
|
||||
filtered_results.append(result)
|
||||
|
||||
logger.debug(f"Filtered results count: {len(filtered_results)}")
|
||||
return filtered_results
|
||||
|
||||
def _evaluate_filters(self, result: dict[str, Any], filters: MetadataFilters) -> bool:
|
||||
"""
|
||||
Evaluate all filters against a single search result.
|
||||
|
||||
All filters must pass (AND logic) for the result to be included.
|
||||
|
||||
Args:
|
||||
result: Full search result dictionary (including metadata, text, etc.)
|
||||
filters: Filter specifications to evaluate
|
||||
|
||||
Returns:
|
||||
True if all filters pass, False otherwise
|
||||
"""
|
||||
for field_name, filter_spec in filters.items():
|
||||
if not self._evaluate_field_filter(result, field_name, filter_spec):
|
||||
return False
|
||||
return True
|
||||
|
||||
def _evaluate_field_filter(
|
||||
self, result: dict[str, Any], field_name: str, filter_spec: FilterSpec
|
||||
) -> bool:
|
||||
"""
|
||||
Evaluate a single field filter against a search result.
|
||||
|
||||
Args:
|
||||
result: Full search result dictionary
|
||||
field_name: Name of the field to filter on
|
||||
filter_spec: Filter specification for this field
|
||||
|
||||
Returns:
|
||||
True if the filter passes, False otherwise
|
||||
"""
|
||||
# First check top-level fields, then check metadata
|
||||
field_value = result.get(field_name)
|
||||
if field_value is None:
|
||||
# Try to get from metadata if not found at top level
|
||||
metadata = result.get("metadata", {})
|
||||
field_value = metadata.get(field_name)
|
||||
|
||||
# Handle missing fields - they fail all filters except existence checks
|
||||
if field_value is None:
|
||||
logger.debug(f"Field '{field_name}' not found in result or metadata")
|
||||
return False
|
||||
|
||||
# Evaluate each operator in the filter spec
|
||||
for operator, expected_value in filter_spec.items():
|
||||
if operator not in self.operators:
|
||||
logger.warning(f"Unsupported operator: {operator}")
|
||||
return False
|
||||
|
||||
try:
|
||||
if not self.operators[operator](field_value, expected_value):
|
||||
logger.debug(
|
||||
f"Filter failed: {field_name} {operator} {expected_value} "
|
||||
f"(actual: {field_value})"
|
||||
)
|
||||
return False
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
f"Error evaluating filter {field_name} {operator} {expected_value}: {e}"
|
||||
)
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
# Comparison operators
|
||||
def _equals(self, field_value: Any, expected_value: Any) -> bool:
|
||||
"""Check if field value equals expected value."""
|
||||
return field_value == expected_value
|
||||
|
||||
def _not_equals(self, field_value: Any, expected_value: Any) -> bool:
|
||||
"""Check if field value does not equal expected value."""
|
||||
return field_value != expected_value
|
||||
|
||||
def _less_than(self, field_value: Any, expected_value: Any) -> bool:
|
||||
"""Check if field value is less than expected value."""
|
||||
return self._numeric_compare(field_value, expected_value, lambda a, b: a < b)
|
||||
|
||||
def _less_than_or_equal(self, field_value: Any, expected_value: Any) -> bool:
|
||||
"""Check if field value is less than or equal to expected value."""
|
||||
return self._numeric_compare(field_value, expected_value, lambda a, b: a <= b)
|
||||
|
||||
def _greater_than(self, field_value: Any, expected_value: Any) -> bool:
|
||||
"""Check if field value is greater than expected value."""
|
||||
return self._numeric_compare(field_value, expected_value, lambda a, b: a > b)
|
||||
|
||||
def _greater_than_or_equal(self, field_value: Any, expected_value: Any) -> bool:
|
||||
"""Check if field value is greater than or equal to expected value."""
|
||||
return self._numeric_compare(field_value, expected_value, lambda a, b: a >= b)
|
||||
|
||||
# Membership operators
|
||||
def _in(self, field_value: Any, expected_value: Any) -> bool:
|
||||
"""Check if field value is in the expected list/collection."""
|
||||
if not isinstance(expected_value, (list, tuple, set)):
|
||||
raise ValueError("'in' operator requires a list, tuple, or set")
|
||||
return field_value in expected_value
|
||||
|
||||
def _not_in(self, field_value: Any, expected_value: Any) -> bool:
|
||||
"""Check if field value is not in the expected list/collection."""
|
||||
if not isinstance(expected_value, (list, tuple, set)):
|
||||
raise ValueError("'not_in' operator requires a list, tuple, or set")
|
||||
return field_value not in expected_value
|
||||
|
||||
# String operators
|
||||
def _contains(self, field_value: Any, expected_value: Any) -> bool:
|
||||
"""Check if field value contains the expected substring."""
|
||||
field_str = str(field_value)
|
||||
expected_str = str(expected_value)
|
||||
return expected_str in field_str
|
||||
|
||||
def _starts_with(self, field_value: Any, expected_value: Any) -> bool:
|
||||
"""Check if field value starts with the expected prefix."""
|
||||
field_str = str(field_value)
|
||||
expected_str = str(expected_value)
|
||||
return field_str.startswith(expected_str)
|
||||
|
||||
def _ends_with(self, field_value: Any, expected_value: Any) -> bool:
|
||||
"""Check if field value ends with the expected suffix."""
|
||||
field_str = str(field_value)
|
||||
expected_str = str(expected_value)
|
||||
return field_str.endswith(expected_str)
|
||||
|
||||
# Boolean operators
|
||||
def _is_true(self, field_value: Any, expected_value: Any) -> bool:
|
||||
"""Check if field value is truthy."""
|
||||
return bool(field_value)
|
||||
|
||||
def _is_false(self, field_value: Any, expected_value: Any) -> bool:
|
||||
"""Check if field value is falsy."""
|
||||
return not bool(field_value)
|
||||
|
||||
# Helper methods
|
||||
def _numeric_compare(self, field_value: Any, expected_value: Any, compare_func) -> bool:
|
||||
"""
|
||||
Helper for numeric comparisons with type coercion.
|
||||
|
||||
Args:
|
||||
field_value: Value from metadata
|
||||
expected_value: Value to compare against
|
||||
compare_func: Comparison function to apply
|
||||
|
||||
Returns:
|
||||
Result of comparison
|
||||
"""
|
||||
try:
|
||||
# Try to convert both values to numbers for comparison
|
||||
if isinstance(field_value, str) and isinstance(expected_value, str):
|
||||
# String comparison if both are strings
|
||||
return compare_func(field_value, expected_value)
|
||||
|
||||
# Numeric comparison - attempt to convert to float
|
||||
field_num = (
|
||||
float(field_value) if not isinstance(field_value, (int, float)) else field_value
|
||||
)
|
||||
expected_num = (
|
||||
float(expected_value)
|
||||
if not isinstance(expected_value, (int, float))
|
||||
else expected_value
|
||||
)
|
||||
|
||||
return compare_func(field_num, expected_num)
|
||||
except (ValueError, TypeError):
|
||||
# Fall back to string comparison if numeric conversion fails
|
||||
return compare_func(str(field_value), str(expected_value))
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user