Compare commits

...

60 Commits

Author SHA1 Message Date
Andy Lee
4e9e2f3da0 CI: add build venv scripts path for wheel repair 2025-09-24 01:39:35 -07:00
Andy Lee
ed167f43b0 CI: use temporary uv venv for build deps 2025-09-24 01:23:16 -07:00
Andy Lee
f9746d3fe2 CI: install build deps with uv python interpreter 2025-09-24 01:19:19 -07:00
Andy Lee
a090a3444a CI: rely on setup-uv for Python and tighten group install 2025-09-24 01:14:54 -07:00
Andy Lee
aaaba27a4f CI: use uv group install with local wheel selection 2025-09-24 01:10:16 -07:00
Andy Lee
f40f539456 CI: revert install step to match main 2025-09-24 00:50:27 -07:00
Andy Lee
576a2dcb49 CI: use matrix python venv and set macOS deployment target 2025-09-24 00:48:27 -07:00
Andy Lee
ad8ab84675 CI: handle python tag mismatches for local wheels 2025-09-23 23:24:02 -07:00
Andy Lee
58b96b64d8 CI: pick wheels matching current Python tag 2025-09-23 23:05:32 -07:00
Andy Lee
a76c3cdac4 CI: install local wheels via file paths 2025-09-23 22:53:44 -07:00
Andy Lee
520619deab CI: force local wheels in uv install step 2025-09-23 22:27:31 -07:00
Andy Lee
dea08c95b4 Merge remote-tracking branch 'origin/main' into financebench 2025-09-23 21:52:14 -07:00
Andy Lee
ec889f7ef4 Allow 'leann ask' to accept a positional question (#116) 2025-09-23 21:18:57 -07:00
Yi-Ting Chiu
322e5c162d docs: open ai api compatibility (#118) 2025-09-23 21:17:50 -07:00
Yichuan Wang
edde0cdeb2 [Feat] ColQwen intergration (#111)
* add colqwen stuff

* add colqwen stuff and pass ruff

* remove ipynb
2025-09-23 17:51:29 -07:00
Andy Lee
db7ba27ff6 feat: Add support for configurable local LLM endpoints (#115)
* feat: support configurable local llm endpoints

* docs
2025-09-23 15:12:13 -07:00
Andy Lee
5f7806e16f Introducing dynamic index update (#108)
* feat: Add GitHub PR and issue templates for better contributor experience

* simplify: Make templates more concise and user-friendly

* fix: enable is_compact=False, is_recompute=True

* feat: update when recompute

* test

* fix: real recompute

* refactor

* fix: compare with no-recompute

* fix: test
2025-09-21 22:56:27 -07:00
yichuan-w
d034e2195b fix build from source in diskann 2025-09-20 19:52:29 +00:00
yichuan520030910320
43894ff605 update submodule 2025-09-19 17:03:55 -07:00
yichuan520030910320
10311cc611 change the submodule for easy pull 2025-09-19 17:02:09 -07:00
Andy Lee
ad0d2faabc feat: Add GitHub PR and issue templates (#105)
* feat: Add GitHub PR and issue templates for better contributor experience

* simplify: Make templates more concise and user-friendly
2025-09-19 13:51:36 -07:00
Andy Lee
e93c0dec6f [Fix] Enable AST chunking when installed (package chunking utils) (#101)
* fix(core): package chunking utils for AST chunking; re-export in apps; CLI imports packaged utils

* style

* chore: fix ruff warnings (RUF059, F401)

* style
2025-09-17 18:44:00 -07:00
GitHub Actions
c5a29f849a chore: release v0.3.4 2025-09-16 20:45:22 +00:00
Andy Lee
3357d5765e fix: find links to install wheels available 2025-09-15 22:22:38 -07:00
Andy Lee
9dbd0c64cc fix(ci): run with lint only 2025-09-15 21:55:19 -07:00
Andy Lee
9c400acd7e fix(ci): should checkout modules as well since uv sync checks 2025-09-15 21:40:35 -07:00
Andy Lee
ac560964f5 chore: use http url of astchunk; use group for some dev deps 2025-09-15 21:21:09 -07:00
Andy Lee
07e4f176e1 fix(ci): only run pre-commit 2025-09-15 19:57:56 -07:00
Andy Lee
b1daf021e0 Merge remote-tracking branch 'origin/main' into financebench 2025-09-15 19:52:37 -07:00
Andy Lee
3578680cb6 fix: as package 2025-09-15 19:50:45 -07:00
Andy Lee
a0d6857faa docs: data updated 2025-09-15 19:50:02 -07:00
Yichuan Wang
3b8dc6368e Ast fork (#92) 2025-09-08 18:43:31 -07:00
Aiden Huang
e309f292de docs(mcp): add root llms.txt for MCP discovery; update MCP README to reference it; refs #76 (#91) 2025-09-07 14:39:58 -07:00
AWS Mcleod
0d9f92ea0f Add grep search functionality - Issue #86 (#87)
* Add grep search functionality to LeannSearcher

- Add use_grep parameter to search method
- Implement grep-based search on .jsonl files
- Add fallback Python regex search
- Support same SearchResult format as semantic search

Addresses issue #86

* fix: resolve linting errors

* docs: add grep search example

* docs: add grep search to README examples

* refactor: remove regex fallback, move grep example to features section

* docs: add grep search to Advanced Features with comprehensive guide
2025-09-05 13:48:07 -07:00
GitHub Actions
b0b353d279 chore: release v0.3.3 2025-09-02 21:29:56 +00:00
Andy Lee
4dffdfedbe feat: Add ARM64 Linux wheel support for leann-backend-hnsw (#83)
* feat: Add ARM64 Linux wheel support for leann-backend-hnsw

* fix: Use OpenBLAS for ARM64 Linux builds instead of Intel MKL

* fix: Configure Faiss with SVE optimization for ARM64 builds

- Set FAISS_OPT_LEVEL to "sve" for ARM64 architecture
- Disable x86-specific SIMD instructions (AVX2, AVX512, SSE4.1)
- Use ARM64-native SVE optimization as per Faiss conda build scripts
- Add architecture detection and proper configuration messages

Fixes compilation error: "xmmintrin.h: No such file or directory"
on ubuntu-24.04-arm runners.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Apply ARM64 compatibility fix directly to Faiss submodule

- Modify faiss/impl/pq.cpp to use x86-specific preprocessor conditions
- Remove patch file approach in favor of direct submodule modification
- Update CMakeLists.txt to reflect the submodule changes
- Fixes ARM64 Linux compilation by preventing x86 SIMD header inclusion

This resolves the "xmmintrin.h: No such file or directory" error
when building ARM64 Linux wheels for Docker compatibility.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* chore: Update Faiss submodule to include ARM64 compatibility fix

- Points to commit ed96ff7d with x86-specific preprocessor conditions
- Enables successful ARM64 Linux wheel builds

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* retrigger ci

* fix: Use different optimization levels for ARM64 based on platform

- Use SVE optimization only for ARM64 Linux
- Use generic optimization for ARM64 macOS to avoid clang SVE issues
- Fixes macOS ARM64 compilation errors with SVE instructions

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* feat: Update DiskANN submodule with OpenBLAS fallback support

- Points to commit 5c396c4 with ARM64 Linux OpenBLAS support
- Enables DiskANN to build on ARM64 Linux using standard BLAS libraries
- Resolves Intel MKL dependency issues for Docker ARM64 deployments

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Update DiskANN submodule with ZeroMQ polling configuration

- Points to commit 3a1016e with explicit polling method setup
- Resolves ZeroMQ autodetection issues on ARM64 Linux
- Ensures stable cross-platform ZeroMQ builds

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* retrigger ci

* fix: Update DiskANN submodule with ARM64 compiler flags fix

- Points to commit a0dc600 with architecture-specific compiler flags
- Removes x86 SIMD flags on ARM64 Linux to fix compilation errors
- Enables successful ARM64 Linux wheel builds

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Update DiskANN submodule with ARM64 compiler flags fix

- Points to commit 0921664 with architecture-specific compiler flags
- Removes x86 SIMD flags on ARM64 Linux to fix compilation errors
- Enables successful ARM64 Linux wheel builds

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* retrigger ci

* fix: Update DiskANN submodule with cross-platform prefetch support

- Points to commit 39192d6 with unified prefetch macros
- Replaces all Intel-specific _mm_prefetch calls with cross-platform macros
- Enables ARM64 Linux compatibility while maintaining x86 performance
- Resolves all remaining compilation errors for ARM64 builds

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Update DiskANN submodule with corrected ARM64 compatibility fixes

- Points to commit 3cb87a8 with proper x86 platform detection
- Includes ARM64 fallback for AVXDistanceInnerProductFloat function
- Resolves all remaining '__m256 was not declared' compilation errors
- Enables successful ARM64 Linux wheel builds for Docker compatibility

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Update DiskANN submodule with template type handling fix

- Points to commit d396bc3 with corrected template type handling
- Fixes DistanceInnerProduct template instantiation for int8_t/uint8_t types
- Resolves 'cannot convert const signed char* to const float*' error
- Completes ARM64 Linux compilation compatibility

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Update DiskANN submodule with DistanceFastL2::norm template fix

- Points to commit 69d9a99 with corrected template type handling
- Fixes DistanceFastL2::norm template instantiation for int8_t/uint8_t types
- Resolves another 'cannot convert const signed char* to const float*' error
- Continues ARM64 Linux compilation compatibility improvements

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Update DiskANN submodule with LAPACKE header detection

- Points to commit 64a9e01 with LAPACKE header path configuration
- Adds pkg-config based detection for LAPACKE include directories
- Resolves 'lapacke.h: No such file or directory' compilation error
- Completes OpenBLAS integration for ARM64 Linux builds

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Update DiskANN submodule with enhanced LAPACKE header detection

- Points to commit 18d0721 with fallback LAPACKE header search paths
- Checks multiple standard locations for lapacke.h on various systems
- Improves ARM64 Linux compatibility for OpenBLAS builds
- Should resolve 'lapacke.h: No such file or directory' errors

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Add liblapacke-dev package for ARM64 Linux builds

- Add liblapacke-dev to ARM64 dependencies alongside libopenblas-dev
- Provides lapacke.h header file needed for LAPACK C interface
- Fixes 'lapacke.h: No such file or directory' compilation error
- Enables complete OpenBLAS + LAPACKE support for ARM64 wheel builds

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Update DiskANN submodule with cosine_similarity.h x86 intrinsics fix

- Points to commit dbb17eb with corrected conditional compilation
- Fixes immintrin.h inclusion for ARM64 compatibility in cosine_similarity.h
- Resolves 'immintrin.h: No such file or directory' error
- Continues systematic ARM64 Linux compilation fixes

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: Update DiskANN submodule with LAPACKE library linking fix

- Points to commit 19f9603 with explicit LAPACKE library discovery and linking
- Resolves 'undefined symbol: LAPACKE_sgesdd' runtime error on ARM64 Linux
- Completes ARM64 Linux wheel build compatibility for Docker deployments

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-09-02 14:27:06 -07:00
Yichuan Wang
d41e467df9 [CLI] More robust leann list and leann build (#84)
* chore(submodule): bump faiss to latest storage-efficient build

* [chore] add slack to share use case

* [cli] better gitignore / better leann list

* [cli] fix # 81
2025-09-01 18:36:27 -07:00
yichuan520030910320
4ca0489cb1 [chore] add slack to share use case 2025-09-01 13:31:16 -07:00
yichuan520030910320
e83a671918 chore(submodule): bump faiss to latest storage-efficient build 2025-09-01 13:31:12 -07:00
Andy Lee
d7011bbea0 docs: data 2025-08-25 16:25:59 -07:00
Andy Lee
ef4c69d128 chore(ci): remove paru-bin submodule and config to fix checkout --recurse-submodules 2025-08-25 16:08:16 -07:00
Andy Lee
75c8aeee5f style: format 2025-08-25 15:48:04 -07:00
Andy Lee
3d79741f9c experiments for running DiskANN & BM25 on Arch 4090 2025-08-25 15:46:48 -07:00
Andy Lee
df34c84bd3 feat: enron email bench 2025-08-24 23:06:57 -07:00
Andy Lee
8dfd2f015c fix: resolve ruff linting errors
- Remove unused variables in benchmark scripts
- Rename unused loop variables to follow convention
2025-08-22 13:53:30 -07:00
Andy Lee
ed72232bab style: format 2025-08-22 13:51:10 -07:00
Andy Lee
26d961bfc5 style: format 2025-08-22 13:44:26 -07:00
Andy Lee
722bda4ebb Merge remote-tracking branch 'origin/main' into financebench 2025-08-22 13:39:08 -07:00
Andy Lee
a7c7e8801d feat: laion, also required idmaps support 2025-08-22 13:32:33 -07:00
Andy Lee
069bce558b feat: fix financebench 2025-08-22 13:32:23 -07:00
yichuan520030910320
4e5b73ce7b fix bug introduce in #58 2025-08-22 02:35:09 -07:00
Andy Lee
772894012e Merge branch 'main' into financebench 2025-08-20 20:40:27 -07:00
Gabriel Dehan
31b4973141 Metadata filtering feature (#75)
* Metadata filtering initial version

* Metadata filtering initial version

* Fixes linter issues

* Cleanup code

* Clean up and readme

* Fix after review

* Use UV in example

* Merge main into feature/metadata-filtering
2025-08-20 19:57:56 -07:00
Yichuan Wang
dde2221513 [EXP] Update the benchmark code (#71)
* chore(hnsw): reorder imports to satisfy ruff I001

* chore: sync changes; fix Ruff import order; update examples, benchmarks, and dependencies

- Fix import order in packages/leann-backend-hnsw/leann_backend_hnsw/hnsw_backend.py (Ruff I001)

- Update benchmarks/run_evaluation.py

- Update apps/base_rag_example.py and leann-core API usage

- Add benchmarks/data/README.md

- Update uv.lock

- Misc cleanup

- Note: added paru-bin as an embedded git repo; consider making it a submodule (git rm --cached paru-bin) if unintended

* chore: remove unintended embedded repo paru-bin and ignore it

Fix CI: avoid missing .gitmodules entry by removing gitlink and adding to .gitignore.

* ci: retrigger after removing unintended gitlink (paru-bin)

* feat(benchmarks): add --batch-size option and plumb through to HNSW search (default 0)

* feat(hnsw): add batch_size to LeannSearcher.search and LeannChat.ask; forward only for HNSW backend

* chore(logging): surface recompute and batching params; enable INFO logging in benchmark

* feat(embeddings): add optional manual tokenization path (HF tokenizer+model) with mean pooling; default remains SentenceTransformer.encode

* fix micro bench and fix pre commit

* update readme

---------

Co-authored-by: yichuan-w <yichuan-w@users.noreply.github.com>
2025-08-20 17:31:46 -07:00
Andy Lee
6d11e86e71 Run Evaluation RPJ Wiki on Arch Linux (#74)
* chore: ignore benchmark data

* perf: avoid merging offset dicts for lower mem usage

* style: format

* docs: rpj_wiki
2025-08-20 12:25:54 -07:00
Gabriel Dehan
13bb561aad Add AST-aware code chunking for better code understanding (#58)
* feat(core): Add AST-aware code chunking with astchunk integration

This PR introduces intelligent code chunking that preserves semantic boundaries
(functions, classes, methods) for better code understanding in RAG applications.

Key Features:
- AST-aware chunking for Python, Java, C#, TypeScript files
- Graceful fallback to traditional chunking for unsupported languages
- New specialized code RAG application for repositories
- Enhanced CLI with --use-ast-chunking flag
- Comprehensive test suite with integration tests

Technical Implementation:
- New chunking_utils.py module with enhanced chunking logic
- Extended base RAG framework with AST chunking arguments
- Updated document RAG with --enable-code-chunking flag
- CLI integration with proper error handling and fallback

Benefits:
- Better semantic understanding of code structure
- Improved search quality for code-related queries
- Maintains backward compatibility with existing workflows
- Supports mixed content (code + documentation) seamlessly

Dependencies:
- Added astchunk and tree-sitter parsers to pyproject.toml
- All dependencies are optional - fallback works without them

Testing:
- Comprehensive test suite in test_astchunk_integration.py
- Integration tests with document RAG
- Error handling and edge case coverage

Documentation:
- Updated README.md with AST chunking highlights
- Added ASTCHUNK_INTEGRATION.md with complete guide
- Updated features.md with new capabilities

* Refactored chunk utils

* Remove useless import

* Update README.md

* Update apps/chunking/utils.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* Update apps/code_rag.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* Fix issue

* apply suggestion from @Copilot

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* Fixes after pr review

* Fix tests not passing

* Fix linter error for documentation files

* Update .gitignore with unwanted files

---------

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: Andy Lee <andylizf@outlook.com>
2025-08-19 23:35:31 -07:00
Andy Lee
5c163737c4 Merge remote-tracking branch 'origin/main' into financebench 2025-08-17 11:58:34 -07:00
Andy Lee
6d1d67ead7 chore: ignroe data README 2025-08-17 11:58:32 -07:00
Andy Lee
ed27ea6990 docs: results 2025-08-16 16:48:01 -07:00
Andy Lee
baf2d76e0e feat: finance bench 2025-08-16 16:22:50 -07:00
83 changed files with 15153 additions and 4098 deletions

50
.github/ISSUE_TEMPLATE/bug_report.yml vendored Normal file
View File

@@ -0,0 +1,50 @@
name: Bug Report
description: Report a bug in LEANN
labels: ["bug"]
body:
- type: textarea
id: description
attributes:
label: What happened?
description: A clear description of the bug
validations:
required: true
- type: textarea
id: reproduce
attributes:
label: How to reproduce
placeholder: |
1. Install with...
2. Run command...
3. See error
validations:
required: true
- type: textarea
id: error
attributes:
label: Error message
description: Paste any error messages
render: shell
- type: input
id: version
attributes:
label: LEANN Version
placeholder: "0.1.0"
validations:
required: true
- type: dropdown
id: os
attributes:
label: Operating System
options:
- macOS
- Linux
- Windows
- Docker
validations:
required: true

8
.github/ISSUE_TEMPLATE/config.yml vendored Normal file
View File

@@ -0,0 +1,8 @@
blank_issues_enabled: true
contact_links:
- name: Documentation
url: https://github.com/LEANN-RAG/LEANN-RAG/tree/main/docs
about: Read the docs first
- name: Discussions
url: https://github.com/LEANN-RAG/LEANN-RAG/discussions
about: Ask questions and share ideas

View File

@@ -0,0 +1,27 @@
name: Feature Request
description: Suggest a new feature for LEANN
labels: ["enhancement"]
body:
- type: textarea
id: problem
attributes:
label: What problem does this solve?
description: Describe the problem or need
validations:
required: true
- type: textarea
id: solution
attributes:
label: Proposed solution
description: How would you like this to work?
validations:
required: true
- type: textarea
id: example
attributes:
label: Example usage
description: Show how the API might look
render: python

13
.github/pull_request_template.md vendored Normal file
View File

@@ -0,0 +1,13 @@
## What does this PR do?
<!-- Brief description of your changes -->
## Related Issues
Fixes #
## Checklist
- [ ] Tests pass (`uv run pytest`)
- [ ] Code formatted (`ruff format` and `ruff check`)
- [ ] Pre-commit hooks pass (`pre-commit run --all-files`)

View File

@@ -17,26 +17,17 @@ jobs:
- uses: actions/checkout@v4
with:
ref: ${{ inputs.ref }}
submodules: recursive
- name: Setup Python
uses: actions/setup-python@v5
- name: Install uv and Python
uses: astral-sh/setup-uv@v6
with:
python-version: '3.11'
- name: Install uv
uses: astral-sh/setup-uv@v4
- name: Install ruff
- name: Run pre-commit with only lint group (no project deps)
run: |
uv tool install ruff
uv run --only-group lint pre-commit run --all-files --show-diff-on-failure
- name: Run ruff check
run: |
ruff check .
- name: Run ruff format check
run: |
ruff format --check .
build:
needs: lint
@@ -54,6 +45,17 @@ jobs:
python: '3.12'
- os: ubuntu-22.04
python: '3.13'
# ARM64 Linux builds
- os: ubuntu-24.04-arm
python: '3.9'
- os: ubuntu-24.04-arm
python: '3.10'
- os: ubuntu-24.04-arm
python: '3.11'
- os: ubuntu-24.04-arm
python: '3.12'
- os: ubuntu-24.04-arm
python: '3.13'
- os: macos-14
python: '3.9'
- os: macos-14
@@ -92,14 +94,11 @@ jobs:
ref: ${{ inputs.ref }}
submodules: recursive
- name: Setup Python
uses: actions/setup-python@v5
- name: Install uv and Python
uses: astral-sh/setup-uv@v6
with:
python-version: ${{ matrix.python }}
- name: Install uv
uses: astral-sh/setup-uv@v6
- name: Install system dependencies (Ubuntu)
if: runner.os == 'Linux'
run: |
@@ -108,13 +107,46 @@ jobs:
pkg-config libabsl-dev libaio-dev libprotobuf-dev \
patchelf
# Install Intel MKL for DiskANN
wget -q https://registrationcenter-download.intel.com/akdlm/IRC_NAS/79153e0f-74d7-45af-b8c2-258941adf58a/intel-onemkl-2025.0.0.940.sh
sudo sh intel-onemkl-2025.0.0.940.sh -a --components intel.oneapi.lin.mkl.devel --action install --eula accept -s
source /opt/intel/oneapi/setvars.sh
echo "MKLROOT=/opt/intel/oneapi/mkl/latest" >> $GITHUB_ENV
echo "LD_LIBRARY_PATH=/opt/intel/oneapi/compiler/latest/linux/compiler/lib/intel64_lin" >> $GITHUB_ENV
echo "LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/intel/oneapi/mkl/latest/lib/intel64" >> $GITHUB_ENV
# Debug: Show system information
echo "🔍 System Information:"
echo "Architecture: $(uname -m)"
echo "OS: $(uname -a)"
echo "CPU info: $(lscpu | head -5)"
# Install math library based on architecture
ARCH=$(uname -m)
echo "🔍 Setting up math library for architecture: $ARCH"
if [[ "$ARCH" == "x86_64" ]]; then
# Install Intel MKL for DiskANN on x86_64
echo "📦 Installing Intel MKL for x86_64..."
wget -q https://registrationcenter-download.intel.com/akdlm/IRC_NAS/79153e0f-74d7-45af-b8c2-258941adf58a/intel-onemkl-2025.0.0.940.sh
sudo sh intel-onemkl-2025.0.0.940.sh -a --components intel.oneapi.lin.mkl.devel --action install --eula accept -s
source /opt/intel/oneapi/setvars.sh
echo "MKLROOT=/opt/intel/oneapi/mkl/latest" >> $GITHUB_ENV
echo "LD_LIBRARY_PATH=/opt/intel/oneapi/compiler/latest/linux/compiler/lib/intel64_lin" >> $GITHUB_ENV
echo "LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/intel/oneapi/mkl/latest/lib/intel64" >> $GITHUB_ENV
echo "✅ Intel MKL installed for x86_64"
# Debug: Check MKL installation
echo "🔍 MKL Installation Check:"
ls -la /opt/intel/oneapi/mkl/latest/ || echo "MKL directory not found"
ls -la /opt/intel/oneapi/mkl/latest/lib/ || echo "MKL lib directory not found"
elif [[ "$ARCH" == "aarch64" ]]; then
# Use OpenBLAS for ARM64 (MKL installer not compatible with ARM64)
echo "📦 Installing OpenBLAS for ARM64..."
sudo apt-get install -y libopenblas-dev liblapack-dev liblapacke-dev
echo "✅ OpenBLAS installed for ARM64"
# Debug: Check OpenBLAS installation
echo "🔍 OpenBLAS Installation Check:"
dpkg -l | grep openblas || echo "OpenBLAS package not found"
ls -la /usr/lib/aarch64-linux-gnu/openblas/ || echo "OpenBLAS directory not found"
fi
# Debug: Show final library paths
echo "🔍 Final LD_LIBRARY_PATH: $LD_LIBRARY_PATH"
- name: Install system dependencies (macOS)
if: runner.os == 'macOS'
@@ -124,11 +156,24 @@ jobs:
- name: Install build dependencies
run: |
uv pip install --system scikit-build-core numpy swig Cython pybind11
if [[ "$RUNNER_OS" == "Linux" ]]; then
uv pip install --system auditwheel
uv python install ${{ matrix.python }}
uv venv --python ${{ matrix.python }} .uv-build
if [[ "$RUNNER_OS" == "Windows" ]]; then
BUILD_PY=".uv-build\\Scripts\\python.exe"
else
uv pip install --system delocate
BUILD_PY=".uv-build/bin/python"
fi
uv pip install --python "$BUILD_PY" scikit-build-core numpy swig Cython pybind11
if [[ "$RUNNER_OS" == "Linux" ]]; then
uv pip install --python "$BUILD_PY" auditwheel
else
uv pip install --python "$BUILD_PY" delocate
fi
if [[ "$RUNNER_OS" == "Windows" ]]; then
echo "$(pwd)\\.uv-build\\Scripts" >> $GITHUB_PATH
else
echo "$(pwd)/.uv-build/bin" >> $GITHUB_PATH
fi
- name: Set macOS environment variables
@@ -264,18 +309,66 @@ jobs:
- name: Install built packages for testing
run: |
# Create a virtual environment with the correct Python version
# Create uv-managed virtual environment with the requested interpreter
uv python install ${{ matrix.python }}
uv venv --python ${{ matrix.python }}
source .venv/bin/activate || source .venv/Scripts/activate
# Install packages using --find-links to prioritize local builds
uv pip install --find-links packages/leann-core/dist --find-links packages/leann-backend-hnsw/dist --find-links packages/leann-backend-diskann/dist packages/leann-core/dist/*.whl || uv pip install --find-links packages/leann-core/dist packages/leann-core/dist/*.tar.gz
uv pip install --find-links packages/leann-core/dist packages/leann-backend-hnsw/dist/*.whl
uv pip install --find-links packages/leann-core/dist packages/leann-backend-diskann/dist/*.whl
uv pip install packages/leann/dist/*.whl || uv pip install packages/leann/dist/*.tar.gz
if [[ "$RUNNER_OS" == "Windows" ]]; then
UV_PY=".venv\\Scripts\\python.exe"
else
UV_PY=".venv/bin/python"
fi
# Install test dependencies using extras
uv pip install -e ".[test]"
# Install test dependency group only (avoids reinstalling project package)
uv pip install --python "$UV_PY" --group test
# Install core wheel built in this job
CORE_WHL=$(find packages/leann-core/dist -maxdepth 1 -name "*.whl" -print -quit)
if [[ -n "$CORE_WHL" ]]; then
uv pip install --python "$UV_PY" "$CORE_WHL"
else
uv pip install --python "$UV_PY" packages/leann-core/dist/*.tar.gz
fi
PY_TAG=$($UV_PY -c "import sys; print(f'cp{sys.version_info[0]}{sys.version_info[1]}')")
if [[ "$RUNNER_OS" == "macOS" ]]; then
if [[ "${{ matrix.os }}" == "macos-13" ]]; then
export MACOSX_DEPLOYMENT_TARGET=13.3
elif [[ "${{ matrix.os }}" == "macos-14" ]]; then
export MACOSX_DEPLOYMENT_TARGET=14.0
elif [[ "${{ matrix.os }}" == "macos-15" ]]; then
export MACOSX_DEPLOYMENT_TARGET=15.0
fi
fi
HNSW_WHL=$(find packages/leann-backend-hnsw/dist -maxdepth 1 -name "*-${PY_TAG}-*.whl" -print -quit)
if [[ -z "$HNSW_WHL" ]]; then
HNSW_WHL=$(find packages/leann-backend-hnsw/dist -maxdepth 1 -name "*-py3-*.whl" -print -quit)
fi
if [[ -n "$HNSW_WHL" ]]; then
uv pip install --python "$UV_PY" "$HNSW_WHL"
else
uv pip install --python "$UV_PY" ./packages/leann-backend-hnsw
fi
DISKANN_WHL=$(find packages/leann-backend-diskann/dist -maxdepth 1 -name "*-${PY_TAG}-*.whl" -print -quit)
if [[ -z "$DISKANN_WHL" ]]; then
DISKANN_WHL=$(find packages/leann-backend-diskann/dist -maxdepth 1 -name "*-py3-*.whl" -print -quit)
fi
if [[ -n "$DISKANN_WHL" ]]; then
uv pip install --python "$UV_PY" "$DISKANN_WHL"
else
uv pip install --python "$UV_PY" ./packages/leann-backend-diskann
fi
LEANN_WHL=$(find packages/leann/dist -maxdepth 1 -name "*.whl" -print -quit)
if [[ -n "$LEANN_WHL" ]]; then
uv pip install --python "$UV_PY" "$LEANN_WHL"
else
uv pip install --python "$UV_PY" packages/leann/dist/*.tar.gz
fi
- name: Run tests with pytest
env:

6
.gitignore vendored
View File

@@ -18,10 +18,12 @@ demo/experiment_results/**/*.json
*.eml
*.emlx
*.json
*.png
!.vscode/*.json
*.sh
*.txt
!CMakeLists.txt
!llms.txt
latency_breakdown*.json
experiment_results/eval_results/diskann/*.json
aws/
@@ -93,3 +95,7 @@ packages/leann-backend-diskann/third_party/DiskANN/_deps/
batchtest.py
tests/__pytest_cache__/
tests/__pycache__/
benchmarks/data/
## multi vector
apps/multimodal/vision-based-pdf-multi-vector/multi-vector-colpali-native-weaviate.py

3
.gitmodules vendored
View File

@@ -14,3 +14,6 @@
[submodule "packages/leann-backend-hnsw/third_party/libzmq"]
path = packages/leann-backend-hnsw/third_party/libzmq
url = https://github.com/zeromq/libzmq.git
[submodule "packages/astchunk-leann"]
path = packages/astchunk-leann
url = https://github.com/yichuan-w/astchunk-leann.git

View File

@@ -13,4 +13,5 @@ repos:
rev: v0.12.7 # Fixed version to match pyproject.toml
hooks:
- id: ruff
args: [--fix, --exit-non-zero-on-fix]
- id: ruff-format

143
README.md
View File

@@ -8,6 +8,8 @@
<img src="https://img.shields.io/badge/Platform-Ubuntu%20%26%20Arch%20%26%20WSL%20%7C%20macOS%20(ARM64%2FIntel)-lightgrey" alt="Platform">
<img src="https://img.shields.io/badge/License-MIT-green.svg" alt="MIT License">
<img src="https://img.shields.io/badge/MCP-Native%20Integration-blue" alt="MCP Integration">
<a href="https://join.slack.com/t/leann-e2u9779/shared_invite/zt-3ckd2f6w1-OX08~NN4gkWhh10PRVBj1Q"><img src="https://img.shields.io/badge/Slack-Join-4A154B?logo=slack&logoColor=white" alt="Join Slack">
<a href="assets/wechat_user_group.JPG" title="Join WeChat group"><img src="https://img.shields.io/badge/WeChat-Join-2DC100?logo=wechat&logoColor=white" alt="Join WeChat group"></a>
</p>
<h2 align="center" tabindex="-1" class="heading-element" dir="auto">
@@ -176,9 +178,14 @@ response = chat.ask("How much storage does LEANN save?", top_k=1)
LEANN supports RAG on various data sources including documents (`.pdf`, `.txt`, `.md`), Apple Mail, Google Search History, WeChat, and more.
### Generation Model Setup
LEANN supports multiple LLM providers for text generation (OpenAI API, HuggingFace, Ollama).
#### LLM Backend
LEANN supports many LLM providers for text generation (HuggingFace, Ollama, and Any OpenAI compatible API).
<details>
<summary><strong>🔑 OpenAI API Setup (Default)</strong></summary>
@@ -189,6 +196,68 @@ Set your OpenAI API key as an environment variable:
export OPENAI_API_KEY="your-api-key-here"
```
Make sure to use `--llm openai` flag when using the CLI.
You can also specify the model name with `--llm-model <model-name>` flag.
</details>
<details>
<summary><strong>🛠️ Supported LLM & Embedding Providers (via OpenAI Compatibility)</strong></summary>
Thanks to the widespread adoption of the OpenAI API format, LEANN is compatible out-of-the-box with a vast array of LLM and embedding providers. Simply set the `OPENAI_BASE_URL` and `OPENAI_API_KEY` environment variables to connect to your preferred service.
```sh
export OPENAI_API_KEY="xxx"
export OPENAI_BASE_URL="http://localhost:1234/v1" # base url of the provider
```
To use OpenAI compatible endpoint with the CLI interface:
If you are using it for text generation, make sure to use `--llm openai` flag and specify the model name with `--llm-model <model-name>` flag.
If you are using it for embedding, set the `--embedding-mode openai` flag and specify the model name with `--embedding-model <MODEL>`.
-----
Below is a list of base URLs for common providers to get you started.
### 🖥️ Local Inference Engines (Recommended for full privacy)
| Provider | Sample Base URL |
| ---------------- | --------------------------- |
| **Ollama** | `http://localhost:11434/v1` |
| **LM Studio** | `http://localhost:1234/v1` |
| **vLLM** | `http://localhost:8000/v1` |
| **llama.cpp** | `http://localhost:8080/v1` |
| **SGLang** | `http://localhost:30000/v1` |
| **LiteLLM** | `http://localhost:4000` |
-----
### ☁️ Cloud Providers
> **🚨 A Note on Privacy:** Before choosing a cloud provider, carefully review their privacy and data retention policies. Depending on their terms, your data may be used for their own purposes, including but not limited to human reviews and model training, which can lead to serious consequences if not handled properly.
| Provider | Base URL |
| ---------------- | ---------------------------------------------------------- |
| **OpenAI** | `https://api.openai.com/v1` |
| **OpenRouter** | `https://openrouter.ai/api/v1` |
| **Gemini** | `https://generativelanguage.googleapis.com/v1beta/openai/` |
| **x.AI (Grok)** | `https://api.x.ai/v1` |
| **Groq AI** | `https://api.groq.com/openai/v1` |
| **DeepSeek** | `https://api.deepseek.com/v1` |
| **SiliconFlow** | `https://api.siliconflow.cn/v1` |
| **Zhipu (BigModel)** | `https://open.bigmodel.cn/api/paas/v4/` |
| **Mistral AI** | `https://api.mistral.ai/v1` |
If your provider isn't on this list, don't worry! Check their documentation for an OpenAI-compatible endpoint—chances are, it's OpenAI Compatible too!
</details>
<details>
@@ -218,7 +287,8 @@ ollama pull llama3.2:1b
</details>
### ⭐ Flexible Configuration
## ⭐ Flexible Configuration
LEANN provides flexible parameters for embedding models, search strategies, and data processing to fit your specific needs.
@@ -294,6 +364,12 @@ python -m apps.document_rag --data-dir "~/Documents/Papers" --chunk-size 1024
# Filter only markdown and Python files with smaller chunks
python -m apps.document_rag --data-dir "./docs" --chunk-size 256 --file-types .md .py
# Enable AST-aware chunking for code files
python -m apps.document_rag --enable-code-chunking --data-dir "./my_project"
# Or use the specialized code RAG for better code understanding
python -m apps.code_rag --repo-dir "./my_codebase" --query "How does authentication work?"
```
</details>
@@ -468,10 +544,20 @@ Once the index is built, you can ask questions like:
### 🚀 Claude Code Integration: Transform Your Development Workflow!
<details>
<summary><strong>NEW!! ASTAware Code Chunking</strong></summary>
LEANN features intelligent code chunking that preserves semantic boundaries (functions, classes, methods) for Python, Java, C#, and TypeScript, improving code understanding compared to text-based chunking.
📖 Read the [AST Chunking Guide →](docs/ast_chunking_guide.md)
</details>
**The future of code assistance is here.** Transform your development workflow with LEANN's native MCP integration for Claude Code. Index your entire codebase and get intelligent code assistance directly in your IDE.
**Key features:**
- 🔍 **Semantic code search** across your entire project, fully local index and lightweight
- 🧠 **AST-aware chunking** preserves code structure (functions, classes)
- 📚 **Context-aware assistance** for debugging and development
- 🚀 **Zero-config setup** with automatic language detection
@@ -525,6 +611,9 @@ leann search my-docs "machine learning concepts"
# Interactive chat with your documents
leann ask my-docs --interactive
# Ask a single question (non-interactive)
leann ask my-docs "Where are prompts configured?"
# List all your indexes
leann list
@@ -534,7 +623,8 @@ leann remove my-docs
**Key CLI features:**
- Auto-detects document formats (PDF, TXT, MD, DOCX, PPTX + code files)
- Smart text chunking with overlap
- **🧠 AST-aware chunking** for Python, Java, C#, TypeScript files
- Smart text chunking with overlap for all other content
- Multiple LLM providers (Ollama, OpenAI, HuggingFace)
- Organized index storage in `.leann/indexes/` (project-local)
- Support for advanced search parameters
@@ -607,6 +697,46 @@ Options:
</details>
## 🚀 Advanced Features
### 🎯 Metadata Filtering
LEANN supports a simple metadata filtering system to enable sophisticated use cases like document filtering by date/type, code search by file extension, and content management based on custom criteria.
```python
# Add metadata during indexing
builder.add_text(
"def authenticate_user(token): ...",
metadata={"file_extension": ".py", "lines_of_code": 25}
)
# Search with filters
results = searcher.search(
query="authentication function",
metadata_filters={
"file_extension": {"==": ".py"},
"lines_of_code": {"<": 100}
}
)
```
**Supported operators**: `==`, `!=`, `<`, `<=`, `>`, `>=`, `in`, `not_in`, `contains`, `starts_with`, `ends_with`, `is_true`, `is_false`
📖 **[Complete Metadata filtering guide →](docs/metadata_filtering.md)**
### 🔍 Grep Search
For exact text matching instead of semantic search, use the `use_grep` parameter:
```python
# Exact text search
results = searcher.search("bananacrocodile", use_grep=True, top_k=1)
```
**Use cases**: Finding specific code patterns, error messages, function names, or exact phrases where semantic similarity isn't needed.
📖 **[Complete grep search guide →](docs/grep_search.md)**
## 🏗️ Architecture & How It Works
<p align="center">
@@ -644,8 +774,8 @@ Options:
## Reproduce Our Results
```bash
uv pip install -e ".[dev]" # Install dev dependencies
python benchmarks/run_evaluation.py # Will auto-download evaluation data and run benchmarks
uv run benchmarks/run_evaluation.py # Will auto-download evaluation data and run benchmarks
uv run benchmarks/run_evaluation.py benchmarks/data/indices/rpj_wiki/rpj_wiki --num-queries 2000 # After downloading data, you can run the benchmark with our biggest index
```
The evaluation script downloads data automatically on first run. The last three results were tested with partial personal data, and you can reproduce them with your own data!
@@ -685,6 +815,9 @@ MIT License - see [LICENSE](LICENSE) for details.
Core Contributors: [Yichuan Wang](https://yichuan-w.github.io/) & [Zhifei Li](https://github.com/andylizf).
Active Contributors: [Gabriel Dehan](https://github.com/gabriel-dehan)
We welcome more contributors! Feel free to open issues or submit PRs.
This work is done at [**Berkeley Sky Computing Lab**](https://sky.cs.berkeley.edu/).

View File

@@ -11,7 +11,7 @@ from typing import Any
import dotenv
from leann.api import LeannBuilder, LeannChat
from leann.registry import register_project_directory
from llama_index.core.node_parser import SentenceSplitter
from leann.settings import resolve_ollama_host, resolve_openai_api_key, resolve_openai_base_url
dotenv.load_dotenv()
@@ -79,6 +79,24 @@ class BaseRAGExample(ABC):
choices=["sentence-transformers", "openai", "mlx", "ollama"],
help="Embedding backend mode (default: sentence-transformers), we provide sentence-transformers, openai, mlx, or ollama",
)
embedding_group.add_argument(
"--embedding-host",
type=str,
default=None,
help="Override Ollama-compatible embedding host",
)
embedding_group.add_argument(
"--embedding-api-base",
type=str,
default=None,
help="Base URL for OpenAI-compatible embedding services",
)
embedding_group.add_argument(
"--embedding-api-key",
type=str,
default=None,
help="API key for embedding service (defaults to OPENAI_API_KEY)",
)
# LLM parameters
llm_group = parser.add_argument_group("LLM Parameters")
@@ -98,8 +116,8 @@ class BaseRAGExample(ABC):
llm_group.add_argument(
"--llm-host",
type=str,
default="http://localhost:11434",
help="Host for Ollama API (default: http://localhost:11434)",
default=None,
help="Host for Ollama-compatible APIs (defaults to LEANN_OLLAMA_HOST/OLLAMA_HOST)",
)
llm_group.add_argument(
"--thinking-budget",
@@ -108,6 +126,50 @@ class BaseRAGExample(ABC):
default=None,
help="Thinking budget for reasoning models (low/medium/high). Supported by GPT-Oss:20b and other reasoning models.",
)
llm_group.add_argument(
"--llm-api-base",
type=str,
default=None,
help="Base URL for OpenAI-compatible APIs",
)
llm_group.add_argument(
"--llm-api-key",
type=str,
default=None,
help="API key for OpenAI-compatible APIs (defaults to OPENAI_API_KEY)",
)
# AST Chunking parameters
ast_group = parser.add_argument_group("AST Chunking Parameters")
ast_group.add_argument(
"--use-ast-chunking",
action="store_true",
help="Enable AST-aware chunking for code files (requires astchunk)",
)
ast_group.add_argument(
"--ast-chunk-size",
type=int,
default=512,
help="Maximum characters per AST chunk (default: 512)",
)
ast_group.add_argument(
"--ast-chunk-overlap",
type=int,
default=64,
help="Overlap between AST chunks (default: 64)",
)
ast_group.add_argument(
"--code-file-extensions",
nargs="+",
default=None,
help="Additional code file extensions to process with AST chunking (e.g., .py .java .cs .ts)",
)
ast_group.add_argument(
"--ast-fallback-traditional",
action="store_true",
default=True,
help="Fall back to traditional chunking if AST chunking fails (default: True)",
)
# Search parameters
search_group = parser.add_argument_group("Search Parameters")
@@ -174,9 +236,13 @@ class BaseRAGExample(ABC):
if args.llm == "openai":
config["model"] = args.llm_model or "gpt-4o"
config["base_url"] = resolve_openai_base_url(args.llm_api_base)
resolved_key = resolve_openai_api_key(args.llm_api_key)
if resolved_key:
config["api_key"] = resolved_key
elif args.llm == "ollama":
config["model"] = args.llm_model or "llama3.2:1b"
config["host"] = args.llm_host
config["host"] = resolve_ollama_host(args.llm_host)
elif args.llm == "hf":
config["model"] = args.llm_model or "Qwen/Qwen2.5-1.5B-Instruct"
elif args.llm == "simulated":
@@ -192,10 +258,20 @@ class BaseRAGExample(ABC):
print(f"\n[Building Index] Creating {self.name} index...")
print(f"Total text chunks: {len(texts)}")
embedding_options: dict[str, Any] = {}
if args.embedding_mode == "ollama":
embedding_options["host"] = resolve_ollama_host(args.embedding_host)
elif args.embedding_mode == "openai":
embedding_options["base_url"] = resolve_openai_base_url(args.embedding_api_base)
resolved_embedding_key = resolve_openai_api_key(args.embedding_api_key)
if resolved_embedding_key:
embedding_options["api_key"] = resolved_embedding_key
builder = LeannBuilder(
backend_name=args.backend_name,
embedding_model=args.embedding_model,
embedding_mode=args.embedding_mode,
embedding_options=embedding_options or None,
graph_degree=args.graph_degree,
complexity=args.build_complexity,
is_compact=not args.no_compact,
@@ -268,7 +344,6 @@ class BaseRAGExample(ABC):
chat = LeannChat(
index_path,
llm_config=self.get_llm_config(args),
system_prompt=f"You are a helpful assistant that answers questions about {self.name} data.",
complexity=args.search_complexity,
)
@@ -310,21 +385,3 @@ class BaseRAGExample(ABC):
await self.run_single_query(args, index_path, args.query)
else:
await self.run_interactive_chat(args, index_path)
def create_text_chunks(documents, chunk_size=256, chunk_overlap=25) -> list[str]:
"""Helper function to create text chunks from documents."""
node_parser = SentenceSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
separator=" ",
paragraph_separator="\n\n",
)
all_texts = []
for doc in documents:
nodes = node_parser.get_nodes_from_documents([doc])
if nodes:
all_texts.extend(node.get_content() for node in nodes)
return all_texts

View File

@@ -10,7 +10,8 @@ from pathlib import Path
# Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent))
from base_rag_example import BaseRAGExample, create_text_chunks
from base_rag_example import BaseRAGExample
from chunking import create_text_chunks
from .history_data.history import ChromeHistoryReader

44
apps/chunking/__init__.py Normal file
View File

@@ -0,0 +1,44 @@
"""Unified chunking utilities facade.
This module re-exports the packaged utilities from `leann.chunking_utils` so
that both repo apps (importing `chunking`) and installed wheels share one
single implementation. When running from the repo without installation, it
adds the `packages/leann-core/src` directory to `sys.path` as a fallback.
"""
import sys
from pathlib import Path
try:
from leann.chunking_utils import (
CODE_EXTENSIONS,
create_ast_chunks,
create_text_chunks,
create_traditional_chunks,
detect_code_files,
get_language_from_extension,
)
except Exception: # pragma: no cover - best-effort fallback for dev environment
repo_root = Path(__file__).resolve().parents[2]
leann_src = repo_root / "packages" / "leann-core" / "src"
if leann_src.exists():
sys.path.insert(0, str(leann_src))
from leann.chunking_utils import (
CODE_EXTENSIONS,
create_ast_chunks,
create_text_chunks,
create_traditional_chunks,
detect_code_files,
get_language_from_extension,
)
else:
raise
__all__ = [
"CODE_EXTENSIONS",
"create_ast_chunks",
"create_text_chunks",
"create_traditional_chunks",
"detect_code_files",
"get_language_from_extension",
]

211
apps/code_rag.py Normal file
View File

@@ -0,0 +1,211 @@
"""
Code RAG example using AST-aware chunking for optimal code understanding.
Specialized for code repositories with automatic language detection and
optimized chunking parameters.
"""
import sys
from pathlib import Path
# Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent))
from base_rag_example import BaseRAGExample
from chunking import CODE_EXTENSIONS, create_text_chunks
from llama_index.core import SimpleDirectoryReader
class CodeRAG(BaseRAGExample):
"""Specialized RAG example for code repositories with AST-aware chunking."""
def __init__(self):
super().__init__(
name="Code",
description="Process and query code repositories with AST-aware chunking",
default_index_name="code_index",
)
# Override defaults for code-specific usage
self.embedding_model_default = "facebook/contriever" # Good for code
self.max_items_default = -1 # Process all code files by default
def _add_specific_arguments(self, parser):
"""Add code-specific arguments."""
code_group = parser.add_argument_group("Code Repository Parameters")
code_group.add_argument(
"--repo-dir",
type=str,
default=".",
help="Code repository directory to index (default: current directory)",
)
code_group.add_argument(
"--include-extensions",
nargs="+",
default=list(CODE_EXTENSIONS.keys()),
help="File extensions to include (default: supported code extensions)",
)
code_group.add_argument(
"--exclude-dirs",
nargs="+",
default=[
".git",
"__pycache__",
"node_modules",
"venv",
".venv",
"build",
"dist",
"target",
],
help="Directories to exclude from indexing",
)
code_group.add_argument(
"--max-file-size",
type=int,
default=1000000, # 1MB
help="Maximum file size in bytes to process (default: 1MB)",
)
code_group.add_argument(
"--include-comments",
action="store_true",
help="Include comments in chunking (useful for documentation)",
)
code_group.add_argument(
"--preserve-imports",
action="store_true",
default=True,
help="Try to preserve import statements in chunks (default: True)",
)
async def load_data(self, args) -> list[str]:
"""Load code files and convert to AST-aware chunks."""
print(f"🔍 Scanning code repository: {args.repo_dir}")
print(f"📁 Including extensions: {args.include_extensions}")
print(f"🚫 Excluding directories: {args.exclude_dirs}")
# Check if repository directory exists
repo_path = Path(args.repo_dir)
if not repo_path.exists():
raise ValueError(f"Repository directory not found: {args.repo_dir}")
# Load code files with filtering
reader_kwargs = {
"recursive": True,
"encoding": "utf-8",
"required_exts": args.include_extensions,
"exclude_hidden": True,
}
# Create exclusion filter
def file_filter(file_path: str) -> bool:
"""Filter out unwanted files and directories."""
path = Path(file_path)
# Check file size
try:
if path.stat().st_size > args.max_file_size:
print(f"⚠️ Skipping large file: {path.name} ({path.stat().st_size} bytes)")
return False
except Exception:
return False
# Check if in excluded directory
for exclude_dir in args.exclude_dirs:
if exclude_dir in path.parts:
return False
return True
try:
# Load documents with file filtering
documents = SimpleDirectoryReader(
args.repo_dir,
file_extractor=None, # Use default extractors
**reader_kwargs,
).load_data(show_progress=True)
# Apply custom filtering
filtered_docs = []
for doc in documents:
file_path = doc.metadata.get("file_path", "")
if file_filter(file_path):
filtered_docs.append(doc)
documents = filtered_docs
except Exception as e:
print(f"❌ Error loading code files: {e}")
return []
if not documents:
print(
f"❌ No code files found in {args.repo_dir} with extensions {args.include_extensions}"
)
return []
print(f"✅ Loaded {len(documents)} code files")
# Show breakdown by language/extension
ext_counts = {}
for doc in documents:
file_path = doc.metadata.get("file_path", "")
if file_path:
ext = Path(file_path).suffix.lower()
ext_counts[ext] = ext_counts.get(ext, 0) + 1
print("📊 Files by extension:")
for ext, count in sorted(ext_counts.items()):
print(f" {ext}: {count} files")
# Use AST-aware chunking by default for code
print(
f"🧠 Using AST-aware chunking (chunk_size: {args.ast_chunk_size}, overlap: {args.ast_chunk_overlap})"
)
all_texts = create_text_chunks(
documents,
chunk_size=256, # Fallback for non-code files
chunk_overlap=64,
use_ast_chunking=True, # Always use AST for code RAG
ast_chunk_size=args.ast_chunk_size,
ast_chunk_overlap=args.ast_chunk_overlap,
code_file_extensions=args.include_extensions,
ast_fallback_traditional=True,
)
# Apply max_items limit if specified
if args.max_items > 0 and len(all_texts) > args.max_items:
print(f"⏳ Limiting to {args.max_items} chunks (from {len(all_texts)})")
all_texts = all_texts[: args.max_items]
print(f"✅ Generated {len(all_texts)} code chunks")
return all_texts
if __name__ == "__main__":
import asyncio
# Example queries for code RAG
print("\n💻 Code RAG Example")
print("=" * 50)
print("\nExample queries you can try:")
print("- 'How does the embedding computation work?'")
print("- 'What are the main classes in this codebase?'")
print("- 'Show me the search implementation'")
print("- 'How is error handling implemented?'")
print("- 'What design patterns are used?'")
print("- 'Explain the chunking logic'")
print("\n🚀 Features:")
print("- ✅ AST-aware chunking preserves code structure")
print("- ✅ Automatic language detection")
print("- ✅ Smart filtering of large files and common excludes")
print("- ✅ Optimized for code understanding")
print("\nUsage examples:")
print(" python -m apps.code_rag --repo-dir ./my_project")
print(
" python -m apps.code_rag --include-extensions .py .js --query 'How does authentication work?'"
)
print("\nOr run without --query for interactive mode\n")
rag = CodeRAG()
asyncio.run(rag.run())

View File

@@ -9,7 +9,8 @@ from pathlib import Path
# Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent))
from base_rag_example import BaseRAGExample, create_text_chunks
from base_rag_example import BaseRAGExample
from chunking import create_text_chunks
from llama_index.core import SimpleDirectoryReader
@@ -44,6 +45,11 @@ class DocumentRAG(BaseRAGExample):
doc_group.add_argument(
"--chunk-overlap", type=int, default=128, help="Text chunk overlap (default: 128)"
)
doc_group.add_argument(
"--enable-code-chunking",
action="store_true",
help="Enable AST-aware chunking for code files in the data directory",
)
async def load_data(self, args) -> list[str]:
"""Load documents and convert to text chunks."""
@@ -76,9 +82,22 @@ class DocumentRAG(BaseRAGExample):
print(f"Loaded {len(documents)} documents")
# Convert to text chunks
# Determine chunking strategy
use_ast = args.enable_code_chunking or getattr(args, "use_ast_chunking", False)
if use_ast:
print("Using AST-aware chunking for code files")
# Convert to text chunks with optional AST support
all_texts = create_text_chunks(
documents, chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
documents,
chunk_size=args.chunk_size,
chunk_overlap=args.chunk_overlap,
use_ast_chunking=use_ast,
ast_chunk_size=getattr(args, "ast_chunk_size", 512),
ast_chunk_overlap=getattr(args, "ast_chunk_overlap", 64),
code_file_extensions=getattr(args, "code_file_extensions", None),
ast_fallback_traditional=getattr(args, "ast_fallback_traditional", True),
)
# Apply max_items limit if specified
@@ -102,6 +121,10 @@ if __name__ == "__main__":
print(
"- 'What is the problem of developing pan gu model Huawei meets? (盘古大模型开发中遇到什么问题?)'"
)
print("\n🚀 NEW: Code-aware chunking available!")
print("- Use --enable-code-chunking to enable AST-aware chunking for code files")
print("- Supports Python, Java, C#, TypeScript files")
print("- Better semantic understanding of code structure")
print("\nOr run without --query for interactive mode\n")
rag = DocumentRAG()

View File

@@ -9,7 +9,8 @@ from pathlib import Path
# Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent))
from base_rag_example import BaseRAGExample, create_text_chunks
from base_rag_example import BaseRAGExample
from chunking import create_text_chunks
from .email_data.LEANN_email_reader import EmlxReader

View File

@@ -74,7 +74,7 @@ class ChromeHistoryReader(BaseReader):
if count >= max_count and max_count > 0:
break
last_visit, url, title, visit_count, typed_count, hidden = row
last_visit, url, title, visit_count, typed_count, _hidden = row
# Create document content with metadata embedded in text
doc_content = f"""

View File

@@ -0,0 +1,182 @@
from __future__ import annotations
import sys
from pathlib import Path
import numpy as np
def _ensure_repo_paths_importable(current_file: str) -> None:
_repo_root = Path(current_file).resolve().parents[3]
_leann_core_src = _repo_root / "packages" / "leann-core" / "src"
_leann_hnsw_pkg = _repo_root / "packages" / "leann-backend-hnsw"
if str(_leann_core_src) not in sys.path:
sys.path.append(str(_leann_core_src))
if str(_leann_hnsw_pkg) not in sys.path:
sys.path.append(str(_leann_hnsw_pkg))
_ensure_repo_paths_importable(__file__)
from leann_backend_hnsw.hnsw_backend import HNSWBuilder, HNSWSearcher # noqa: E402
class LeannMultiVector:
def __init__(
self,
index_path: str,
dim: int = 128,
distance_metric: str = "mips",
m: int = 16,
ef_construction: int = 500,
is_compact: bool = False,
is_recompute: bool = False,
embedding_model_name: str = "colvision",
) -> None:
self.index_path = index_path
self.dim = dim
self.embedding_model_name = embedding_model_name
self._pending_items: list[dict] = []
self._backend_kwargs = {
"distance_metric": distance_metric,
"M": m,
"efConstruction": ef_construction,
"is_compact": is_compact,
"is_recompute": is_recompute,
}
self._labels_meta: list[dict] = []
def _meta_dict(self) -> dict:
return {
"version": "1.0",
"backend_name": "hnsw",
"embedding_model": self.embedding_model_name,
"embedding_mode": "custom",
"dimensions": self.dim,
"backend_kwargs": self._backend_kwargs,
"is_compact": self._backend_kwargs.get("is_compact", True),
"is_pruned": self._backend_kwargs.get("is_compact", True)
and self._backend_kwargs.get("is_recompute", True),
}
def create_collection(self) -> None:
path = Path(self.index_path)
path.parent.mkdir(parents=True, exist_ok=True)
def insert(self, data: dict) -> None:
self._pending_items.append(
{
"doc_id": int(data["doc_id"]),
"filepath": data.get("filepath", ""),
"colbert_vecs": [np.asarray(v, dtype=np.float32) for v in data["colbert_vecs"]],
}
)
def _labels_path(self) -> Path:
index_path_obj = Path(self.index_path)
return index_path_obj.parent / f"{index_path_obj.name}.labels.json"
def _meta_path(self) -> Path:
index_path_obj = Path(self.index_path)
return index_path_obj.parent / f"{index_path_obj.name}.meta.json"
def create_index(self) -> None:
if not self._pending_items:
return
embeddings: list[np.ndarray] = []
labels_meta: list[dict] = []
for item in self._pending_items:
doc_id = int(item["doc_id"])
filepath = item.get("filepath", "")
colbert_vecs = item["colbert_vecs"]
for seq_id, vec in enumerate(colbert_vecs):
vec_np = np.asarray(vec, dtype=np.float32)
embeddings.append(vec_np)
labels_meta.append(
{
"id": f"{doc_id}:{seq_id}",
"doc_id": doc_id,
"seq_id": int(seq_id),
"filepath": filepath,
}
)
if not embeddings:
return
embeddings_np = np.vstack(embeddings).astype(np.float32)
# print shape of embeddings_np
print(embeddings_np.shape)
builder = HNSWBuilder(**{**self._backend_kwargs, "dimensions": self.dim})
ids = [str(i) for i in range(embeddings_np.shape[0])]
builder.build(embeddings_np, ids, self.index_path)
import json as _json
with open(self._meta_path(), "w", encoding="utf-8") as f:
_json.dump(self._meta_dict(), f, indent=2)
with open(self._labels_path(), "w", encoding="utf-8") as f:
_json.dump(labels_meta, f)
self._labels_meta = labels_meta
def _load_labels_meta_if_needed(self) -> None:
if self._labels_meta:
return
labels_path = self._labels_path()
if labels_path.exists():
import json as _json
with open(labels_path, encoding="utf-8") as f:
self._labels_meta = _json.load(f)
def search(
self, data: np.ndarray, topk: int, first_stage_k: int = 50
) -> list[tuple[float, int]]:
if data.ndim == 1:
data = data.reshape(1, -1)
if data.dtype != np.float32:
data = data.astype(np.float32)
self._load_labels_meta_if_needed()
searcher = HNSWSearcher(self.index_path, meta=self._meta_dict())
raw = searcher.search(
data,
first_stage_k,
recompute_embeddings=False,
complexity=128,
beam_width=1,
prune_ratio=0.0,
batch_size=0,
)
labels = raw.get("labels")
distances = raw.get("distances")
if labels is None or distances is None:
return []
doc_scores: dict[int, float] = {}
B = len(labels)
for b in range(B):
per_doc_best: dict[int, float] = {}
for k, sid in enumerate(labels[b]):
try:
idx = int(sid)
except Exception:
continue
if 0 <= idx < len(self._labels_meta):
doc_id = int(self._labels_meta[idx]["doc_id"]) # type: ignore[index]
else:
continue
score = float(distances[b][k])
if (doc_id not in per_doc_best) or (score > per_doc_best[doc_id]):
per_doc_best[doc_id] = score
for doc_id, best_score in per_doc_best.items():
doc_scores[doc_id] = doc_scores.get(doc_id, 0.0) + best_score
scores = sorted(((v, k) for k, v in doc_scores.items()), key=lambda x: x[0], reverse=True)
return scores[:topk] if len(scores) >= topk else scores

View File

@@ -0,0 +1,477 @@
## Jupyter-style notebook script
# %%
# uv pip install matplotlib qwen_vl_utils
import os
import re
import sys
from pathlib import Path
from typing import Any, Optional, cast
from PIL import Image
from tqdm import tqdm
def _ensure_repo_paths_importable(current_file: str) -> None:
"""Make local leann packages importable without installing (mirrors multi-vector-leann.py)."""
_repo_root = Path(current_file).resolve().parents[3]
_leann_core_src = _repo_root / "packages" / "leann-core" / "src"
_leann_hnsw_pkg = _repo_root / "packages" / "leann-backend-hnsw"
if str(_leann_core_src) not in sys.path:
sys.path.append(str(_leann_core_src))
if str(_leann_hnsw_pkg) not in sys.path:
sys.path.append(str(_leann_hnsw_pkg))
_ensure_repo_paths_importable(__file__)
from leann_multi_vector import LeannMultiVector # noqa: E402
# %%
# Config
os.environ["TOKENIZERS_PARALLELISM"] = "false"
QUERY = "How does DeepSeek-V2 compare against the LLaMA family of LLMs?"
MODEL: str = "colqwen2" # "colpali" or "colqwen2"
# Data source: set to True to use the Hugging Face dataset example (recommended)
USE_HF_DATASET: bool = True
DATASET_NAME: str = "weaviate/arXiv-AI-papers-multi-vector"
DATASET_SPLIT: str = "train"
MAX_DOCS: Optional[int] = None # limit number of pages to index; None = all
# Local pages (used when USE_HF_DATASET == False)
PDF: Optional[str] = None # e.g., "./pdfs/2004.12832v2.pdf"
PAGES_DIR: str = "./pages"
# Index + retrieval settings
INDEX_PATH: str = "./indexes/colvision.leann"
TOPK: int = 1
FIRST_STAGE_K: int = 500
REBUILD_INDEX: bool = False
# Artifacts
SAVE_TOP_IMAGE: Optional[str] = "./figures/retrieved_page.png"
SIMILARITY_MAP: bool = True
SIM_TOKEN_IDX: int = 13 # -1 means auto-select the most salient token
SIM_OUTPUT: str = "./figures/similarity_map.png"
ANSWER: bool = True
MAX_NEW_TOKENS: int = 128
# %%
# Helpers
def _natural_sort_key(name: str) -> int:
m = re.search(r"\d+", name)
return int(m.group()) if m else 0
def _load_images_from_dir(pages_dir: str) -> tuple[list[str], list[Image.Image]]:
filenames = [n for n in os.listdir(pages_dir) if n.lower().endswith((".png", ".jpg", ".jpeg"))]
filenames = sorted(filenames, key=_natural_sort_key)
filepaths = [os.path.join(pages_dir, n) for n in filenames]
images = [Image.open(p) for p in filepaths]
return filepaths, images
def _maybe_convert_pdf_to_images(pdf_path: Optional[str], pages_dir: str, dpi: int = 200) -> None:
if not pdf_path:
return
os.makedirs(pages_dir, exist_ok=True)
try:
from pdf2image import convert_from_path
except Exception as e:
raise RuntimeError(
"pdf2image is required to convert PDF to images. Install via pip install pdf2image"
) from e
images = convert_from_path(pdf_path, dpi=dpi)
for i, image in enumerate(images):
image.save(os.path.join(pages_dir, f"page_{i + 1}.png"), "PNG")
def _select_device_and_dtype():
import torch
from colpali_engine.utils.torch_utils import get_torch_device
device_str = (
"cuda"
if torch.cuda.is_available()
else (
"mps"
if getattr(torch.backends, "mps", None) and torch.backends.mps.is_available()
else "cpu"
)
)
device = get_torch_device(device_str)
# Stable dtype selection to avoid NaNs:
# - CUDA: prefer bfloat16 if supported, else float16
# - MPS: use float32 (fp16 on MPS can produce NaNs in some ops)
# - CPU: float32
if device_str == "cuda":
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
try:
torch.backends.cuda.matmul.allow_tf32 = True # Better stability/perf on Ampere+
except Exception:
pass
elif device_str == "mps":
dtype = torch.float32
else:
dtype = torch.float32
return device_str, device, dtype
def _load_colvision(model_choice: str):
import torch
from colpali_engine.models import ColPali, ColQwen2, ColQwen2Processor
from colpali_engine.models.paligemma.colpali.processing_colpali import ColPaliProcessor
from transformers.utils.import_utils import is_flash_attn_2_available
device_str, device, dtype = _select_device_and_dtype()
if model_choice == "colqwen2":
model_name = "vidore/colqwen2-v1.0"
# On CPU/MPS we must avoid flash-attn and stay eager; on CUDA prefer flash-attn if available
attn_implementation = (
"flash_attention_2"
if (device_str == "cuda" and is_flash_attn_2_available())
else "eager"
)
model = ColQwen2.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map=device,
attn_implementation=attn_implementation,
).eval()
processor = ColQwen2Processor.from_pretrained(model_name)
else:
model_name = "vidore/colpali-v1.2"
model = ColPali.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map=device,
).eval()
processor = cast(ColPaliProcessor, ColPaliProcessor.from_pretrained(model_name))
return model_name, model, processor, device_str, device, dtype
def _embed_images(model, processor, images: list[Image.Image]) -> list[Any]:
import torch
from colpali_engine.utils.torch_utils import ListDataset
from torch.utils.data import DataLoader
# Ensure deterministic eval and autocast for stability
model.eval()
dataloader = DataLoader(
dataset=ListDataset[Image.Image](images),
batch_size=1,
shuffle=False,
collate_fn=lambda x: processor.process_images(x),
)
doc_vecs: list[Any] = []
for batch_doc in dataloader:
with torch.no_grad():
batch_doc = {k: v.to(model.device) for k, v in batch_doc.items()}
# autocast on CUDA for bf16/fp16; on CPU/MPS stay in fp32
if model.device.type == "cuda":
with torch.autocast(
device_type="cuda",
dtype=model.dtype if model.dtype.is_floating_point else torch.bfloat16,
):
embeddings_doc = model(**batch_doc)
else:
embeddings_doc = model(**batch_doc)
doc_vecs.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
return doc_vecs
def _embed_queries(model, processor, queries: list[str]) -> list[Any]:
import torch
from colpali_engine.utils.torch_utils import ListDataset
from torch.utils.data import DataLoader
model.eval()
dataloader = DataLoader(
dataset=ListDataset[str](queries),
batch_size=1,
shuffle=False,
collate_fn=lambda x: processor.process_queries(x),
)
q_vecs: list[Any] = []
for batch_query in dataloader:
with torch.no_grad():
batch_query = {k: v.to(model.device) for k, v in batch_query.items()}
if model.device.type == "cuda":
with torch.autocast(
device_type="cuda",
dtype=model.dtype if model.dtype.is_floating_point else torch.bfloat16,
):
embeddings_query = model(**batch_query)
else:
embeddings_query = model(**batch_query)
q_vecs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
return q_vecs
def _build_index(index_path: str, doc_vecs: list[Any], filepaths: list[str]) -> LeannMultiVector:
dim = int(doc_vecs[0].shape[-1])
retriever = LeannMultiVector(index_path=index_path, dim=dim)
retriever.create_collection()
for i, vec in enumerate(doc_vecs):
data = {
"colbert_vecs": vec.float().numpy(),
"doc_id": i,
"filepath": filepaths[i],
}
retriever.insert(data)
retriever.create_index()
return retriever
def _load_retriever_if_index_exists(index_path: str, dim: int) -> Optional[LeannMultiVector]:
index_base = Path(index_path)
# Rough heuristic: index dir exists AND meta+labels files exist
meta = index_base.parent / f"{index_base.name}.meta.json"
labels = index_base.parent / f"{index_base.name}.labels.json"
if index_base.exists() and meta.exists() and labels.exists():
return LeannMultiVector(index_path=index_path, dim=dim)
return None
def _generate_similarity_map(
model,
processor,
image: Image.Image,
query: str,
token_idx: Optional[int] = None,
output_path: Optional[str] = None,
) -> tuple[int, float]:
import torch
from colpali_engine.interpretability import (
get_similarity_maps_from_embeddings,
plot_similarity_map,
)
batch_images = processor.process_images([image]).to(model.device)
batch_queries = processor.process_queries([query]).to(model.device)
with torch.no_grad():
image_embeddings = model.forward(**batch_images)
query_embeddings = model.forward(**batch_queries)
n_patches = processor.get_n_patches(
image_size=image.size,
spatial_merge_size=getattr(model, "spatial_merge_size", None),
)
image_mask = processor.get_image_mask(batch_images)
batched_similarity_maps = get_similarity_maps_from_embeddings(
image_embeddings=image_embeddings,
query_embeddings=query_embeddings,
n_patches=n_patches,
image_mask=image_mask,
)
similarity_maps = batched_similarity_maps[0]
# Determine token index if not provided: choose the token with highest max score
if token_idx is None:
per_token_max = similarity_maps.view(similarity_maps.shape[0], -1).max(dim=1).values
token_idx = int(per_token_max.argmax().item())
max_sim_score = similarity_maps[token_idx, :, :].max().item()
if output_path:
import matplotlib.pyplot as plt
fig, ax = plot_similarity_map(
image=image,
similarity_map=similarity_maps[token_idx],
figsize=(14, 14),
show_colorbar=False,
)
ax.set_title(f"Token #{token_idx}. MaxSim score: {max_sim_score:.2f}", fontsize=12)
os.makedirs(os.path.dirname(output_path), exist_ok=True)
plt.savefig(output_path, bbox_inches="tight")
plt.close(fig)
return token_idx, float(max_sim_score)
class QwenVL:
def __init__(self, device: str):
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
from transformers.utils.import_utils import is_flash_attn_2_available
attn_implementation = "flash_attention_2" if is_flash_attn_2_available() else "eager"
self.model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2.5-VL-3B-Instruct",
torch_dtype="auto",
device_map=device,
attn_implementation=attn_implementation,
)
min_pixels = 256 * 28 * 28
max_pixels = 1280 * 28 * 28
self.processor = AutoProcessor.from_pretrained(
"Qwen/Qwen2.5-VL-3B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels
)
def answer(self, query: str, images: list[Image.Image], max_new_tokens: int = 128) -> str:
import base64
from io import BytesIO
from qwen_vl_utils import process_vision_info
content = []
for img in images:
buffer = BytesIO()
img.save(buffer, format="jpeg")
img_base64 = base64.b64encode(buffer.getvalue()).decode("utf-8")
content.append({"type": "image", "image": f"data:image;base64,{img_base64}"})
content.append({"type": "text", "text": query})
messages = [{"role": "user", "content": content}]
text = self.processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = self.processor(
text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt"
)
inputs = inputs.to(self.model.device)
generated_ids = self.model.generate(**inputs, max_new_tokens=max_new_tokens)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
return self.processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
# %%
# Step 1: Prepare data
if USE_HF_DATASET:
from datasets import load_dataset
dataset = load_dataset(DATASET_NAME, split=DATASET_SPLIT)
N = len(dataset) if MAX_DOCS is None else min(MAX_DOCS, len(dataset))
filepaths: list[str] = []
images: list[Image.Image] = []
for i in tqdm(range(N), desc="Loading dataset"):
p = dataset[i]
# Compose a descriptive identifier for printing later
identifier = f"arXiv:{p['paper_arxiv_id']}|title:{p['paper_title']}|page:{int(p['page_number'])}|id:{p['page_id']}"
print(identifier)
filepaths.append(identifier)
images.append(p["page_image"]) # PIL Image
else:
_maybe_convert_pdf_to_images(PDF, PAGES_DIR)
filepaths, images = _load_images_from_dir(PAGES_DIR)
if not images:
raise RuntimeError(
f"No images found in {PAGES_DIR}. Provide PDF path in PDF variable or ensure images exist."
)
# %%
# Step 2: Load model and processor
model_name, model, processor, device_str, device, dtype = _load_colvision(MODEL)
print(f"Using model={model_name}, device={device_str}, dtype={dtype}")
# %%
# %%
# Step 3: Build or load index
retriever: Optional[LeannMultiVector] = None
if not REBUILD_INDEX:
try:
one_vec = _embed_images(model, processor, [images[0]])[0]
retriever = _load_retriever_if_index_exists(INDEX_PATH, dim=int(one_vec.shape[-1]))
except Exception:
retriever = None
if retriever is None:
doc_vecs = _embed_images(model, processor, images)
retriever = _build_index(INDEX_PATH, doc_vecs, filepaths)
# %%
# Step 4: Embed query and search
q_vec = _embed_queries(model, processor, [QUERY])[0]
results = retriever.search(q_vec.float().numpy(), topk=TOPK, first_stage_k=FIRST_STAGE_K)
if not results:
print("No results found.")
else:
print(f'Top {len(results)} results for query: "{QUERY}"')
top_images: list[Image.Image] = []
for rank, (score, doc_id) in enumerate(results, start=1):
path = filepaths[doc_id]
# For HF dataset, path is a descriptive identifier, not a real file path
print(f"{rank}) MaxSim: {score:.4f}, Page: {path}")
top_images.append(images[doc_id])
if SAVE_TOP_IMAGE:
from pathlib import Path as _Path
base = _Path(SAVE_TOP_IMAGE)
base.parent.mkdir(parents=True, exist_ok=True)
for rank, img in enumerate(top_images[:TOPK], start=1):
if base.suffix:
out_path = base.parent / f"{base.stem}_rank{rank}{base.suffix}"
else:
out_path = base / f"retrieved_page_rank{rank}.png"
img.save(str(out_path))
print(f"Saved retrieved page (rank {rank}) to: {out_path}")
## TODO stange results of second page of DeepSeek-V2 rather than the first page
# %%
# Step 5: Similarity maps for top-K results
if results and SIMILARITY_MAP:
token_idx = None if SIM_TOKEN_IDX < 0 else int(SIM_TOKEN_IDX)
from pathlib import Path as _Path
output_base = _Path(SIM_OUTPUT) if SIM_OUTPUT else None
for rank, img in enumerate(top_images[:TOPK], start=1):
if output_base:
if output_base.suffix:
out_dir = output_base.parent
out_name = f"{output_base.stem}_rank{rank}{output_base.suffix}"
out_path = str(out_dir / out_name)
else:
out_dir = output_base
out_dir.mkdir(parents=True, exist_ok=True)
out_path = str(out_dir / f"similarity_map_rank{rank}.png")
else:
out_path = None
chosen_idx, max_sim = _generate_similarity_map(
model=model,
processor=processor,
image=img,
query=QUERY,
token_idx=token_idx,
output_path=out_path,
)
if out_path:
print(
f"Saved similarity map for rank {rank}, token #{chosen_idx} (max={max_sim:.2f}) to: {out_path}"
)
else:
print(
f"Computed similarity map for rank {rank}, token #{chosen_idx} (max={max_sim:.2f})"
)
# %%
# Step 6: Optional answer generation
if results and ANSWER:
qwen = QwenVL(device=device_str)
response = qwen.answer(QUERY, top_images[:TOPK], max_new_tokens=MAX_NEW_TOKENS)
print("\nAnswer:")
print(response)

View File

@@ -0,0 +1,134 @@
# pip install pdf2image
# pip install pymilvus
# pip install colpali_engine
# pip install tqdm
# pip install pillow
# %%
from pdf2image import convert_from_path
pdf_path = "pdfs/2004.12832v2.pdf"
images = convert_from_path(pdf_path)
for i, image in enumerate(images):
image.save(f"pages/page_{i + 1}.png", "PNG")
# %%
import os
from pathlib import Path
# Make local leann packages importable without installing
_repo_root = Path(__file__).resolve().parents[3]
_leann_core_src = _repo_root / "packages" / "leann-core" / "src"
_leann_hnsw_pkg = _repo_root / "packages" / "leann-backend-hnsw"
import sys
if str(_leann_core_src) not in sys.path:
sys.path.append(str(_leann_core_src))
if str(_leann_hnsw_pkg) not in sys.path:
sys.path.append(str(_leann_hnsw_pkg))
from leann_multi_vector import LeannMultiVector
class LeannRetriever(LeannMultiVector):
pass
# %%
from typing import cast
import torch
from colpali_engine.models import ColPali
from colpali_engine.models.paligemma.colpali.processing_colpali import ColPaliProcessor
from colpali_engine.utils.torch_utils import ListDataset, get_torch_device
from torch.utils.data import DataLoader
# Auto-select device: CUDA > MPS (mac) > CPU
_device_str = (
"cuda"
if torch.cuda.is_available()
else (
"mps"
if getattr(torch.backends, "mps", None) and torch.backends.mps.is_available()
else "cpu"
)
)
device = get_torch_device(_device_str)
# Prefer fp16 on GPU/MPS, bfloat16 on CPU
_dtype = torch.float16 if _device_str in ("cuda", "mps") else torch.bfloat16
model_name = "vidore/colpali-v1.2"
model = ColPali.from_pretrained(
model_name,
torch_dtype=_dtype,
device_map=device,
).eval()
print(f"Using device={_device_str}, dtype={_dtype}")
queries = [
"How to end-to-end retrieval with ColBert",
"Where is ColBERT performance Table, including text representation results?",
]
processor = cast(ColPaliProcessor, ColPaliProcessor.from_pretrained(model_name))
dataloader = DataLoader(
dataset=ListDataset[str](queries),
batch_size=1,
shuffle=False,
collate_fn=lambda x: processor.process_queries(x),
)
qs: list[torch.Tensor] = []
for batch_query in dataloader:
with torch.no_grad():
batch_query = {k: v.to(model.device) for k, v in batch_query.items()}
embeddings_query = model(**batch_query)
qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
print(qs[0].shape)
# %%
import re
from PIL import Image
from tqdm import tqdm
page_filenames = sorted(os.listdir("./pages"), key=lambda n: int(re.search(r"\d+", n).group()))
images = [Image.open(os.path.join("./pages", name)) for name in page_filenames]
dataloader = DataLoader(
dataset=ListDataset[str](images),
batch_size=1,
shuffle=False,
collate_fn=lambda x: processor.process_images(x),
)
ds: list[torch.Tensor] = []
for batch_doc in tqdm(dataloader):
with torch.no_grad():
batch_doc = {k: v.to(model.device) for k, v in batch_doc.items()}
embeddings_doc = model(**batch_doc)
ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
print(ds[0].shape)
# %%
# Build HNSW index via LeannRetriever primitives and run search
index_path = "./indexes/colpali.leann"
retriever = LeannRetriever(index_path=index_path, dim=int(ds[0].shape[-1]))
retriever.create_collection()
filepaths = [os.path.join("./pages", name) for name in page_filenames]
for i in range(len(filepaths)):
data = {
"colbert_vecs": ds[i].float().numpy(),
"doc_id": i,
"filepath": filepaths[i],
}
retriever.insert(data)
retriever.create_index()
for query in qs:
query_np = query.float().numpy()
result = retriever.search(query_np, topk=1)
print(filepaths[result[0][1]])

View File

Binary file not shown.

After

Width:  |  Height:  |  Size: 152 KiB

0
benchmarks/__init__.py Normal file
View File

View File

@@ -0,0 +1,23 @@
BM25 vs DiskANN Baselines
```bash
aws s3 sync s3://powerrag-diskann-rpj-wiki-20250824-224037-194d640c/bm25_rpj_wiki/index_en_only/ benchmarks/data/indices/bm25_index/
aws s3 sync s3://powerrag-diskann-rpj-wiki-20250824-224037-194d640c/diskann_rpj_wiki/ benchmarks/data/indices/diskann_rpj_wiki/
```
- Dataset: `benchmarks/data/queries/nq_open.jsonl` (Natural Questions)
- Machine-specific; results measured locally with the current repo.
DiskANN (NQ queries, search-only)
- Command: `uv run --script benchmarks/bm25_diskann_baselines/run_diskann.py`
- Settings: `recompute_embeddings=False`, embeddings precomputed (excluded from timing), batching off, caching off (`cache_mechanism=2`, `num_nodes_to_cache=0`)
- Result: avg 0.011093 s/query, QPS 90.15 (p50 0.010731 s, p95 0.015000 s)
BM25
- Command: `uv run --script benchmarks/bm25_diskann_baselines/run_bm25.py`
- Settings: `k=10`, `k1=0.9`, `b=0.4`, queries=100
- Result: avg 0.028589 s/query, QPS 34.97 (p50 0.026060 s, p90 0.043695 s, p95 0.053260 s, p99 0.055257 s)
Notes
- DiskANN measures search-only latency on real NQ queries (embeddings computed beforehand and excluded from timing).
- Use `benchmarks/bm25_diskann_baselines/run_diskann.py` for DiskANN; `benchmarks/bm25_diskann_baselines/run_bm25.py` for BM25.

After

Width:  |  Height:  |  Size: 1.3 KiB

View File

@@ -0,0 +1,183 @@
# /// script
# dependencies = [
# "pyserini"
# ]
# ///
# sudo pacman -S jdk21-openjdk
# export JAVA_HOME=/usr/lib/jvm/java-21-openjdk
# sudo archlinux-java status
# sudo archlinux-java set java-21-openjdk
# set -Ux JAVA_HOME /usr/lib/jvm/java-21-openjdk
# fish_add_path --global $JAVA_HOME/bin
# set -Ux LD_LIBRARY_PATH $JAVA_HOME/lib/server $LD_LIBRARY_PATH
# which javac # Should be /usr/lib/jvm/java-21-openjdk/bin/javac
import argparse
import json
import os
import sys
import time
from statistics import mean
def load_queries(path: str, limit: int | None) -> list[str]:
queries: list[str] = []
# Try JSONL with a 'query' or 'text' field; fallback to plain text (one query per line)
_, ext = os.path.splitext(path)
if ext.lower() in {".jsonl", ".json"}:
with open(path, encoding="utf-8") as f:
for line in f:
line = line.strip()
if not line:
continue
try:
obj = json.loads(line)
except json.JSONDecodeError:
# Not strict JSONL? treat the whole line as the query
queries.append(line)
continue
q = obj.get("query") or obj.get("text") or obj.get("question")
if q:
queries.append(str(q))
else:
with open(path, encoding="utf-8") as f:
for line in f:
s = line.strip()
if s:
queries.append(s)
if limit is not None and limit > 0:
queries = queries[:limit]
return queries
def percentile(values: list[float], p: float) -> float:
if not values:
return 0.0
s = sorted(values)
k = (len(s) - 1) * (p / 100.0)
f = int(k)
c = min(f + 1, len(s) - 1)
if f == c:
return s[f]
return s[f] + (s[c] - s[f]) * (k - f)
def main():
ap = argparse.ArgumentParser(description="Standalone BM25 latency benchmark (Pyserini)")
ap.add_argument(
"--bm25-index",
default="benchmarks/data/indices/bm25_index",
help="Path to Pyserini Lucene index directory",
)
ap.add_argument(
"--queries",
default="benchmarks/data/queries/nq_open.jsonl",
help="Path to queries file (JSONL with 'query'/'text' or plain txt one-per-line)",
)
ap.add_argument("--k", type=int, default=10, help="Top-k to retrieve (default: 10)")
ap.add_argument("--k1", type=float, default=0.9, help="BM25 k1 (default: 0.9)")
ap.add_argument("--b", type=float, default=0.4, help="BM25 b (default: 0.4)")
ap.add_argument("--limit", type=int, default=100, help="Max queries to run (default: 100)")
ap.add_argument(
"--warmup", type=int, default=5, help="Warmup queries not counted in latency (default: 5)"
)
ap.add_argument(
"--fetch-docs", action="store_true", help="Also fetch doc contents (slower; default: off)"
)
ap.add_argument("--report", type=str, default=None, help="Optional JSON report path")
args = ap.parse_args()
try:
from pyserini.search.lucene import LuceneSearcher
except Exception:
print("Pyserini not found. Install with: pip install pyserini", file=sys.stderr)
raise
if not os.path.isdir(args.bm25_index):
print(f"Index directory not found: {args.bm25_index}", file=sys.stderr)
sys.exit(1)
queries = load_queries(args.queries, args.limit)
if not queries:
print("No queries loaded.", file=sys.stderr)
sys.exit(1)
print(f"Loaded {len(queries)} queries from {args.queries}")
print(f"Opening BM25 index: {args.bm25_index}")
searcher = LuceneSearcher(args.bm25_index)
# Some builds of pyserini require explicit set_bm25; others ignore
try:
searcher.set_bm25(k1=args.k1, b=args.b)
except Exception:
pass
latencies: list[float] = []
total_searches = 0
# Warmup
for i in range(min(args.warmup, len(queries))):
_ = searcher.search(queries[i], k=args.k)
t0 = time.time()
for i, q in enumerate(queries):
t1 = time.time()
hits = searcher.search(q, k=args.k)
t2 = time.time()
latencies.append(t2 - t1)
total_searches += 1
if args.fetch_docs:
# Optional doc fetch to include I/O time
for h in hits:
try:
_ = searcher.doc(h.docid)
except Exception:
pass
if (i + 1) % 50 == 0:
print(f"Processed {i + 1}/{len(queries)} queries")
t1 = time.time()
total_time = t1 - t0
if latencies:
avg = mean(latencies)
p50 = percentile(latencies, 50)
p90 = percentile(latencies, 90)
p95 = percentile(latencies, 95)
p99 = percentile(latencies, 99)
qps = total_searches / total_time if total_time > 0 else 0.0
else:
avg = p50 = p90 = p95 = p99 = qps = 0.0
print("BM25 Latency Report")
print(f" queries: {total_searches}")
print(f" k: {args.k}, k1: {args.k1}, b: {args.b}")
print(f" avg per query: {avg:.6f} s")
print(f" p50/p90/p95/p99: {p50:.6f}/{p90:.6f}/{p95:.6f}/{p99:.6f} s")
print(f" total time: {total_time:.3f} s, qps: {qps:.2f}")
if args.report:
payload = {
"queries": total_searches,
"k": args.k,
"k1": args.k1,
"b": args.b,
"avg_s": avg,
"p50_s": p50,
"p90_s": p90,
"p95_s": p95,
"p99_s": p99,
"total_time_s": total_time,
"qps": qps,
"index_dir": os.path.abspath(args.bm25_index),
"fetch_docs": bool(args.fetch_docs),
}
with open(args.report, "w", encoding="utf-8") as f:
json.dump(payload, f, indent=2)
print(f"Saved report to {args.report}")
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,124 @@
# /// script
# dependencies = [
# "leann-backend-diskann"
# ]
# ///
import argparse
import json
import time
from pathlib import Path
import numpy as np
def load_queries(path: Path, limit: int | None) -> list[str]:
out: list[str] = []
with open(path, encoding="utf-8") as f:
for line in f:
obj = json.loads(line)
out.append(obj["query"])
if limit and len(out) >= limit:
break
return out
def main() -> None:
ap = argparse.ArgumentParser(
description="DiskANN baseline on real NQ queries (search-only timing)"
)
ap.add_argument(
"--index-dir",
default="benchmarks/data/indices/diskann_rpj_wiki",
help="Directory containing DiskANN files",
)
ap.add_argument("--index-prefix", default="ann")
ap.add_argument("--queries-file", default="benchmarks/data/queries/nq_open.jsonl")
ap.add_argument("--num-queries", type=int, default=200)
ap.add_argument("--top-k", type=int, default=10)
ap.add_argument("--complexity", type=int, default=62)
ap.add_argument("--threads", type=int, default=1)
ap.add_argument("--beam-width", type=int, default=1)
ap.add_argument("--cache-mechanism", type=int, default=2)
ap.add_argument("--num-nodes-to-cache", type=int, default=0)
args = ap.parse_args()
index_dir = Path(args.index_dir).resolve()
if not index_dir.is_dir():
raise SystemExit(f"Index dir not found: {index_dir}")
qpath = Path(args.queries_file).resolve()
if not qpath.exists():
raise SystemExit(f"Queries file not found: {qpath}")
queries = load_queries(qpath, args.num_queries)
print(f"Loaded {len(queries)} queries from {qpath}")
# Compute embeddings once (exclude from timing)
from leann.api import compute_embeddings as _compute
embs = _compute(
queries,
model_name="facebook/contriever-msmarco",
mode="sentence-transformers",
use_server=False,
).astype(np.float32)
if embs.ndim != 2:
raise SystemExit("Embedding compute failed or returned wrong shape")
# Build searcher
from leann_backend_diskann.diskann_backend import DiskannSearcher as _DiskannSearcher
index_prefix_path = str(index_dir / args.index_prefix)
searcher = _DiskannSearcher(
index_prefix_path,
num_threads=int(args.threads),
cache_mechanism=int(args.cache_mechanism),
num_nodes_to_cache=int(args.num_nodes_to_cache),
)
# Warmup (not timed)
_ = searcher.search(
embs[0:1],
top_k=args.top_k,
complexity=args.complexity,
beam_width=args.beam_width,
prune_ratio=0.0,
recompute_embeddings=False,
batch_recompute=False,
dedup_node_dis=False,
)
# Timed loop
times: list[float] = []
for i in range(embs.shape[0]):
t0 = time.time()
_ = searcher.search(
embs[i : i + 1],
top_k=args.top_k,
complexity=args.complexity,
beam_width=args.beam_width,
prune_ratio=0.0,
recompute_embeddings=False,
batch_recompute=False,
dedup_node_dis=False,
)
times.append(time.time() - t0)
times_sorted = sorted(times)
avg = float(sum(times) / len(times))
p50 = times_sorted[len(times) // 2]
p95 = times_sorted[max(0, int(len(times) * 0.95) - 1)]
print("\nDiskANN (NQ, search-only) Report")
print(f" queries: {len(times)}")
print(
f" k: {args.top_k}, complexity: {args.complexity}, beam_width: {args.beam_width}, threads: {args.threads}"
)
print(f" avg per query: {avg:.6f} s")
print(f" p50/p95: {p50:.6f}/{p95:.6f} s")
print(f" QPS: {1.0 / avg:.2f}")
if __name__ == "__main__":
main()

View File

@@ -1,82 +0,0 @@
*.7z filter=lfs diff=lfs merge=lfs -text
*.arrow filter=lfs diff=lfs merge=lfs -text
*.bin filter=lfs diff=lfs merge=lfs -text
*.bz2 filter=lfs diff=lfs merge=lfs -text
*.ckpt filter=lfs diff=lfs merge=lfs -text
*.ftz filter=lfs diff=lfs merge=lfs -text
*.gz filter=lfs diff=lfs merge=lfs -text
*.h5 filter=lfs diff=lfs merge=lfs -text
*.joblib filter=lfs diff=lfs merge=lfs -text
*.lfs.* filter=lfs diff=lfs merge=lfs -text
*.lz4 filter=lfs diff=lfs merge=lfs -text
*.mds filter=lfs diff=lfs merge=lfs -text
*.mlmodel filter=lfs diff=lfs merge=lfs -text
*.model filter=lfs diff=lfs merge=lfs -text
*.msgpack filter=lfs diff=lfs merge=lfs -text
*.npy filter=lfs diff=lfs merge=lfs -text
*.npz filter=lfs diff=lfs merge=lfs -text
*.onnx filter=lfs diff=lfs merge=lfs -text
*.ot filter=lfs diff=lfs merge=lfs -text
*.parquet filter=lfs diff=lfs merge=lfs -text
*.pb filter=lfs diff=lfs merge=lfs -text
*.pickle filter=lfs diff=lfs merge=lfs -text
*.pkl filter=lfs diff=lfs merge=lfs -text
*.pt filter=lfs diff=lfs merge=lfs -text
*.pth filter=lfs diff=lfs merge=lfs -text
*.rar filter=lfs diff=lfs merge=lfs -text
*.safetensors filter=lfs diff=lfs merge=lfs -text
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
*.tar.* filter=lfs diff=lfs merge=lfs -text
*.tar filter=lfs diff=lfs merge=lfs -text
*.tflite filter=lfs diff=lfs merge=lfs -text
*.tgz filter=lfs diff=lfs merge=lfs -text
*.wasm filter=lfs diff=lfs merge=lfs -text
*.xz filter=lfs diff=lfs merge=lfs -text
*.zip filter=lfs diff=lfs merge=lfs -text
*.zst filter=lfs diff=lfs merge=lfs -text
*tfevents* filter=lfs diff=lfs merge=lfs -text
# Audio files - uncompressed
*.pcm filter=lfs diff=lfs merge=lfs -text
*.sam filter=lfs diff=lfs merge=lfs -text
*.raw filter=lfs diff=lfs merge=lfs -text
# Audio files - compressed
*.aac filter=lfs diff=lfs merge=lfs -text
*.flac filter=lfs diff=lfs merge=lfs -text
*.mp3 filter=lfs diff=lfs merge=lfs -text
*.ogg filter=lfs diff=lfs merge=lfs -text
*.wav filter=lfs diff=lfs merge=lfs -text
# Image files - uncompressed
*.bmp filter=lfs diff=lfs merge=lfs -text
*.gif filter=lfs diff=lfs merge=lfs -text
*.png filter=lfs diff=lfs merge=lfs -text
*.tiff filter=lfs diff=lfs merge=lfs -text
# Image files - compressed
*.jpg filter=lfs diff=lfs merge=lfs -text
*.jpeg filter=lfs diff=lfs merge=lfs -text
*.webp filter=lfs diff=lfs merge=lfs -text
# Video files - compressed
*.mp4 filter=lfs diff=lfs merge=lfs -text
*.webm filter=lfs diff=lfs merge=lfs -text
ground_truth/dpr/id_map.json filter=lfs diff=lfs merge=lfs -text
indices/dpr/dpr_diskann.passages.idx filter=lfs diff=lfs merge=lfs -text
indices/dpr/dpr_diskann.passages.jsonl filter=lfs diff=lfs merge=lfs -text
indices/dpr/dpr_diskann_disk.index filter=lfs diff=lfs merge=lfs -text
indices/dpr/leann.labels.map filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/leann.labels.map filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.index filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.0.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.0.jsonl filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.1.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.1.jsonl filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.2.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.2.jsonl filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.3.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.3.jsonl filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.4.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.4.jsonl filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.5.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.5.jsonl filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.6.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.6.jsonl filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.7.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.7.jsonl filter=lfs diff=lfs merge=lfs -text

44
benchmarks/data/README.md Executable file
View File

@@ -0,0 +1,44 @@
---
license: mit
---
# LEANN-RAG Evaluation Data
This repository contains the necessary data to run the recall evaluation scripts for the [LEANN-RAG](https://huggingface.co/LEANN-RAG) project.
## Dataset Components
This dataset is structured into three main parts:
1. **Pre-built LEANN Indices**:
* `dpr/`: A pre-built index for the DPR dataset.
* `rpj_wiki/`: A pre-built index for the RPJ-Wiki dataset.
These indices were created using the `leann-core` library and are required by the `LeannSearcher`.
2. **Ground Truth Data**:
* `ground_truth/`: Contains the ground truth files (`flat_results_nq_k3.json`) for both the DPR and RPJ-Wiki datasets. These files map queries to the original passage IDs from the Natural Questions benchmark, evaluated using the Contriever model.
3. **Queries**:
* `queries/`: Contains the `nq_open.jsonl` file with the Natural Questions queries used for the evaluation.
## Usage
To use this data, you can download it locally using the `huggingface-hub` library. First, install the library:
```bash
pip install huggingface-hub
```
Then, you can download the entire dataset to a local directory (e.g., `data/`) with the following Python script:
```python
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="LEANN-RAG/leann-rag-evaluation-data",
repo_type="dataset",
local_dir="data"
)
```
This will download all the necessary files into a local `data` folder, preserving the repository structure. The evaluation scripts in the main [LEANN-RAG Space](https://huggingface.co/LEANN-RAG) are configured to work with this data structure.

View File

@@ -0,0 +1,141 @@
# Enron Emails Benchmark
A comprehensive RAG benchmark for evaluating LEANN search and generation on the Enron email corpus. It mirrors the structure and CLI of the existing FinanceBench and LAION benches, using stage-based evaluation with Recall@3 and generation timing.
- Dataset: Enron email CSV (e.g., Kaggle wcukierski/enron-email-dataset) for passages
- Queries: corbt/enron_emails_sample_questions (filtered for realistic questions)
- Metrics: Recall@3 vs FAISS Flat baseline + Generation evaluation with Qwen3-8B
## Layout
benchmarks/enron_emails/
- setup_enron_emails.py: Prepare passages, build LEANN index, build FAISS baseline
- evaluate_enron_emails.py: Evaluate retrieval recall (Stages 2-5) + generation with Qwen3-8B
- data/: Generated passages, queries, embeddings-related files
- baseline/: FAISS Flat baseline files
- llm_utils.py: LLM utilities for Qwen3-8B generation (in parent directory)
## Quickstart
1) Prepare the data and index
cd benchmarks/enron_emails
python setup_enron_emails.py --data-dir data
Notes:
- If `--emails-csv` is omitted, the script attempts to download from Kaggle dataset `wcukierski/enron-email-dataset` using Kaggle API (requires `KAGGLE_USERNAME` and `KAGGLE_KEY`).
Alternatively, pass a local path to `--emails-csv`.
Notes:
- The script parses emails, chunks header/body into passages, builds a compact LEANN index, and then builds a FAISS Flat baseline from the same passages and embedding model.
- Optionally, it will also create evaluation queries from HuggingFace dataset `corbt/enron_emails_sample_questions`.
2) Run recall evaluation (Stage 2)
python evaluate_enron_emails.py --index data/enron_index_hnsw.leann --stage 2
3) Complexity sweep (Stage 3)
python evaluate_enron_emails.py --index data/enron_index_hnsw.leann --stage 3 --target-recall 0.90 --max-queries 200
Stage 3 uses binary search over complexity to find the minimal value achieving the target Recall@3 (assumes recall is non-decreasing with complexity). The search expands the upper bound as needed and snaps complexity to multiples of 8.
4) Index comparison (Stage 4)
python evaluate_enron_emails.py --index data/enron_index_hnsw.leann --stage 4 --complexity 88 --max-queries 100 --output results.json
5) Generation evaluation (Stage 5)
python evaluate_enron_emails.py --index data/enron_index_hnsw.leann --stage 5 --complexity 88 --llm-backend hf --model-name Qwen/Qwen3-8B
6) Combined index + generation evaluation (Stages 4+5, recommended)
python evaluate_enron_emails.py --index data/enron_index_hnsw.leann --stage 45 --complexity 88 --llm-backend hf
Notes:
- Minimal CLI: you can run from repo root with only `--index`, defaults match financebench/laion patterns:
- `--stage` defaults to `all` (runs 2, 3, 4, 5)
- `--baseline-dir` defaults to `baseline`
- `--queries` defaults to `data/evaluation_queries.jsonl` (or falls back to the index directory)
- `--llm-backend` defaults to `hf` (HuggingFace), can use `vllm`
- `--model-name` defaults to `Qwen/Qwen3-8B`
- Fail-fast behavior: no silent fallbacks. If compact index cannot run with recompute, it errors out.
- Stage 5 requires Stage 4 retrieval results. Use `--stage 45` to run both efficiently.
Optional flags:
- --queries data/evaluation_queries.jsonl (custom queries file)
- --baseline-dir baseline (where FAISS baseline lives)
- --complexity 88 (LEANN complexity parameter, optimal for 90% recall)
- --llm-backend hf|vllm (LLM backend for generation)
- --model-name Qwen/Qwen3-8B (LLM model for generation)
- --max-queries 1000 (limit number of queries for evaluation)
## Files Produced
- data/enron_passages_preview.jsonl: Small preview of passages used (for inspection)
- data/enron_index_hnsw.leann.*: LEANN index files
- baseline/faiss_flat.index + baseline/metadata.pkl: FAISS baseline with passage IDs
- data/evaluation_queries.jsonl: Query file (id + query; includes GT IDs for reference)
## Notes
- Evaluates both retrieval Recall@3 and generation timing with Qwen3-8B thinking model.
- The emails CSV must contain a column named "message" (raw RFC822 email) and a column named "file" for source identifier. Message-ID headers are parsed as canonical message IDs when present.
- Qwen3-8B requires special handling for thinking models with chat templates and <think></think> tag processing.
## Stages Summary
- Stage 2 (Recall@3):
- Compares LEANN vs FAISS Flat baseline on Recall@3.
- Compact index runs with `recompute_embeddings=True`.
- Stage 3 (Binary Search for Complexity):
- Builds a non-compact index (`<index>_noncompact.leann`) and runs binary search with `recompute_embeddings=False` to find the minimal complexity achieving target Recall@3 (default 90%).
- Stage 4 (Index Comparison):
- Reports .index-only sizes for compact vs non-compact.
- Measures timings on queries by default: non-compact (no recompute) vs compact (with recompute).
- Stores retrieval results for Stage 5 generation evaluation.
- Fails fast if compact recompute cannot run.
- If `--complexity` is not provided, the script tries to use the best complexity from Stage 3:
- First from the current run (when running `--stage all`), otherwise
- From `enron_stage3_results.json` saved next to the index during the last Stage 3 run.
- If neither exists, Stage 4 will error and ask you to run Stage 3 or pass `--complexity`.
- Stage 5 (Generation Evaluation):
- Uses Qwen3-8B thinking model for RAG generation on retrieved documents from Stage 4.
- Supports HuggingFace (`hf`) and vLLM (`vllm`) backends.
- Measures generation timing separately from search timing.
- Requires Stage 4 results (no additional searching performed).
## Example Results
These are sample results obtained on Enron data using all-mpnet-base-v2 and Qwen3-8B.
- Stage 3 (Binary Search):
- Minimal complexity achieving 90% Recall@3: 88
- Sampled points:
- C=8 → 59.9% Recall@3
- C=72 → 89.4% Recall@3
- C=88 → 90.2% Recall@3
- C=96 → 90.7% Recall@3
- C=112 → 91.1% Recall@3
- C=136 → 91.3% Recall@3
- C=256 → 92.0% Recall@3
- Stage 4 (Index Sizes, .index only):
- Compact: ~2.2 MB
- Non-compact: ~82.0 MB
- Storage saving by compact: ~97.3%
- Stage 4 (Search Timing, 988 queries, complexity=88):
- Non-compact (no recompute): ~0.0075 s avg per query
- Compact (with recompute): ~1.981 s avg per query
- Speed ratio (non-compact/compact): ~0.0038x
- Stage 5 (RAG Generation, 988 queries, Qwen3-8B):
- Average generation time: ~22.302 s per query
- Total queries processed: 988
- LLM backend: HuggingFace transformers
- Model: Qwen/Qwen3-8B (thinking model with <think></think> processing)
Full JSON output is saved by the script (see `--output`), e.g.:
`benchmarks/enron_emails/results_enron_stage45.json`.

View File

@@ -0,0 +1 @@
downloads/

View File

@@ -0,0 +1,614 @@
"""
Enron Emails Benchmark Evaluation - Retrieval Recall@3 (Stages 2/3/4)
Follows the style of FinanceBench/LAION: Stage 2 recall vs FAISS baseline,
Stage 3 complexity sweep to target recall, Stage 4 index comparison.
On errors, fail fast without fallbacks.
"""
import argparse
import json
import logging
import os
import pickle
from pathlib import Path
import numpy as np
from leann import LeannBuilder, LeannSearcher
from leann_backend_hnsw import faiss
from ..llm_utils import generate_hf, generate_vllm, load_hf_model, load_vllm_model
# Setup logging to reduce verbose output
logging.basicConfig(level=logging.WARNING)
logging.getLogger("leann.api").setLevel(logging.WARNING)
logging.getLogger("leann_backend_hnsw").setLevel(logging.WARNING)
class RecallEvaluator:
"""Stage 2: Evaluate Recall@3 (LEANN vs FAISS)"""
def __init__(self, index_path: str, baseline_dir: str):
self.index_path = index_path
self.baseline_dir = baseline_dir
self.searcher = LeannSearcher(index_path)
baseline_index_path = os.path.join(baseline_dir, "faiss_flat.index")
metadata_path = os.path.join(baseline_dir, "metadata.pkl")
self.faiss_index = faiss.read_index(baseline_index_path)
with open(metadata_path, "rb") as f:
self.passage_ids = pickle.load(f)
print(f"📚 Loaded FAISS flat baseline with {self.faiss_index.ntotal} vectors")
# No fallbacks here; if embedding server is needed but fails, the caller will see the error.
def evaluate_recall_at_3(
self, queries: list[str], complexity: int = 64, recompute_embeddings: bool = True
) -> float:
"""Evaluate recall@3 using FAISS Flat as ground truth"""
from leann.api import compute_embeddings
recompute_str = "with recompute" if recompute_embeddings else "no recompute"
print(f"🔍 Evaluating recall@3 with complexity={complexity} ({recompute_str})...")
total_recall = 0.0
for i, query in enumerate(queries):
# Compute query embedding with the same model/mode as the index
q_emb = compute_embeddings(
[query],
self.searcher.embedding_model,
mode=self.searcher.embedding_mode,
use_server=False,
).astype(np.float32)
# Search FAISS Flat ground truth
n = q_emb.shape[0]
k = 3
distances = np.zeros((n, k), dtype=np.float32)
labels = np.zeros((n, k), dtype=np.int64)
self.faiss_index.search(
n,
faiss.swig_ptr(q_emb),
k,
faiss.swig_ptr(distances),
faiss.swig_ptr(labels),
)
baseline_ids = {self.passage_ids[idx] for idx in labels[0]}
# Search with LEANN (may require embedding server depending on index configuration)
results = self.searcher.search(
query,
top_k=3,
complexity=complexity,
recompute_embeddings=recompute_embeddings,
)
test_ids = {r.id for r in results}
intersection = test_ids.intersection(baseline_ids)
recall = len(intersection) / 3.0
total_recall += recall
if i < 3:
print(f" Q{i + 1}: '{query[:60]}...' -> Recall@3: {recall:.3f}")
print(f" FAISS: {list(baseline_ids)}")
print(f" LEANN: {list(test_ids)}")
print(f" ∩: {list(intersection)}")
avg = total_recall / max(1, len(queries))
print(f"📊 Average Recall@3: {avg:.3f} ({avg * 100:.1f}%)")
return avg
def cleanup(self):
if hasattr(self, "searcher"):
self.searcher.cleanup()
class EnronEvaluator:
def __init__(self, index_path: str):
self.index_path = index_path
self.searcher = LeannSearcher(index_path)
def load_queries(self, queries_file: str) -> list[str]:
queries: list[str] = []
with open(queries_file, encoding="utf-8") as f:
for line in f:
if not line.strip():
continue
data = json.loads(line)
if "query" in data:
queries.append(data["query"])
print(f"📊 Loaded {len(queries)} queries from {queries_file}")
return queries
def cleanup(self):
if self.searcher:
self.searcher.cleanup()
def analyze_index_sizes(self) -> dict:
"""Analyze index sizes (.index only), similar to LAION bench."""
print("📏 Analyzing index sizes (.index only)...")
index_path = Path(self.index_path)
index_dir = index_path.parent
index_name = index_path.stem
sizes: dict[str, float] = {}
index_file = index_dir / f"{index_name}.index"
meta_file = index_dir / f"{index_path.name}.meta.json"
passages_file = index_dir / f"{index_path.name}.passages.jsonl"
passages_idx_file = index_dir / f"{index_path.name}.passages.idx"
sizes["index_only_mb"] = (
index_file.stat().st_size / (1024 * 1024) if index_file.exists() else 0.0
)
sizes["metadata_mb"] = (
meta_file.stat().st_size / (1024 * 1024) if meta_file.exists() else 0.0
)
sizes["passages_text_mb"] = (
passages_file.stat().st_size / (1024 * 1024) if passages_file.exists() else 0.0
)
sizes["passages_index_mb"] = (
passages_idx_file.stat().st_size / (1024 * 1024) if passages_idx_file.exists() else 0.0
)
print(f" 📁 .index size: {sizes['index_only_mb']:.1f} MB")
return sizes
def create_non_compact_index_for_comparison(self, non_compact_index_path: str) -> dict:
"""Create a non-compact index for comparison using current passages and embeddings."""
current_index_path = Path(self.index_path)
current_index_dir = current_index_path.parent
current_index_name = current_index_path.name
# Read metadata to get passage source and embedding model
meta_path = current_index_dir / f"{current_index_name}.meta.json"
with open(meta_path, encoding="utf-8") as f:
meta = json.load(f)
passage_source = meta["passage_sources"][0]
passage_file = passage_source["path"]
# Convert relative path to absolute
if not Path(passage_file).is_absolute():
passage_file = current_index_dir / Path(passage_file).name
# Load all passages and ids
ids: list[str] = []
texts: list[str] = []
with open(passage_file, encoding="utf-8") as f:
for line in f:
if line.strip():
data = json.loads(line)
ids.append(str(data["id"]))
texts.append(data["text"])
# Compute embeddings using the same method as LEANN
from leann.api import compute_embeddings
embeddings = compute_embeddings(
texts,
meta["embedding_model"],
mode=meta.get("embedding_mode", "sentence-transformers"),
use_server=False,
).astype(np.float32)
# Build non-compact index with same passages and embeddings
builder = LeannBuilder(
backend_name="hnsw",
embedding_model=meta["embedding_model"],
embedding_mode=meta.get("embedding_mode", "sentence-transformers"),
is_recompute=False,
is_compact=False,
**{
k: v
for k, v in meta.get("backend_kwargs", {}).items()
if k not in ["is_recompute", "is_compact"]
},
)
# Persist a pickle for build_index_from_embeddings
pkl_path = current_index_dir / f"{Path(non_compact_index_path).stem}_embeddings.pkl"
with open(pkl_path, "wb") as pf:
pickle.dump((ids, embeddings), pf)
print(
f"🔨 Building non-compact index at {non_compact_index_path} from precomputed embeddings..."
)
builder.build_index_from_embeddings(non_compact_index_path, str(pkl_path))
# Analyze the non-compact index size
temp_evaluator = EnronEvaluator(non_compact_index_path)
non_compact_sizes = temp_evaluator.analyze_index_sizes()
non_compact_sizes["index_type"] = "non_compact"
return non_compact_sizes
def compare_index_performance(
self, non_compact_path: str, compact_path: str, test_queries: list[str], complexity: int
) -> dict:
"""Compare search speed for non-compact vs compact indexes."""
import time
results: dict = {
"non_compact": {"search_times": []},
"compact": {"search_times": []},
"avg_search_times": {},
"speed_ratio": 0.0,
"retrieval_results": [], # Store retrieval results for Stage 5
}
print("⚡ Comparing search performance between indexes...")
# Non-compact (no recompute)
print(" 🔍 Testing non-compact index (no recompute)...")
non_compact_searcher = LeannSearcher(non_compact_path)
for q in test_queries:
t0 = time.time()
_ = non_compact_searcher.search(
q, top_k=3, complexity=complexity, recompute_embeddings=False
)
results["non_compact"]["search_times"].append(time.time() - t0)
# Compact (with recompute). Fail fast if it cannot run.
print(" 🔍 Testing compact index (with recompute)...")
compact_searcher = LeannSearcher(compact_path)
for q in test_queries:
t0 = time.time()
docs = compact_searcher.search(
q, top_k=3, complexity=complexity, recompute_embeddings=True
)
results["compact"]["search_times"].append(time.time() - t0)
# Store retrieval results for Stage 5
results["retrieval_results"].append(
{"query": q, "retrieved_docs": [{"id": doc.id, "text": doc.text} for doc in docs]}
)
compact_searcher.cleanup()
if results["non_compact"]["search_times"]:
results["avg_search_times"]["non_compact"] = sum(
results["non_compact"]["search_times"]
) / len(results["non_compact"]["search_times"])
if results["compact"]["search_times"]:
results["avg_search_times"]["compact"] = sum(results["compact"]["search_times"]) / len(
results["compact"]["search_times"]
)
if results["avg_search_times"].get("compact", 0) > 0:
results["speed_ratio"] = (
results["avg_search_times"]["non_compact"] / results["avg_search_times"]["compact"]
)
else:
results["speed_ratio"] = 0.0
non_compact_searcher.cleanup()
return results
def evaluate_complexity(
self,
recall_eval: "RecallEvaluator",
queries: list[str],
target: float = 0.90,
c_min: int = 8,
c_max: int = 256,
max_iters: int = 10,
recompute: bool = False,
) -> dict:
"""Binary search minimal complexity achieving target recall (monotonic assumption)."""
def round_c(x: int) -> int:
# snap to multiple of 8 like other benches typically do
return max(1, int((x + 7) // 8) * 8)
metrics: list[dict] = []
lo = round_c(c_min)
hi = round_c(c_max)
print(
f"🧪 Binary search complexity in [{lo}, {hi}] for target Recall@3>={int(target * 100)}%..."
)
# Ensure upper bound can reach target; expand if needed (up to a cap)
r_lo = recall_eval.evaluate_recall_at_3(
queries, complexity=lo, recompute_embeddings=recompute
)
metrics.append({"complexity": lo, "recall_at_3": r_lo})
r_hi = recall_eval.evaluate_recall_at_3(
queries, complexity=hi, recompute_embeddings=recompute
)
metrics.append({"complexity": hi, "recall_at_3": r_hi})
cap = 1024
while r_hi < target and hi < cap:
lo = hi
r_lo = r_hi
hi = round_c(hi * 2)
r_hi = recall_eval.evaluate_recall_at_3(
queries, complexity=hi, recompute_embeddings=recompute
)
metrics.append({"complexity": hi, "recall_at_3": r_hi})
if r_hi < target:
print(f"⚠️ Max complexity {hi} did not reach target recall {target:.2f}.")
print("📈 Observations:")
for m in metrics:
print(f" C={m['complexity']:>4} -> Recall@3={m['recall_at_3'] * 100:.1f}%")
return {"metrics": metrics, "best_complexity": None, "target_recall": target}
# Binary search within [lo, hi]
best = hi
iters = 0
while lo < hi and iters < max_iters:
mid = round_c((lo + hi) // 2)
r_mid = recall_eval.evaluate_recall_at_3(
queries, complexity=mid, recompute_embeddings=recompute
)
metrics.append({"complexity": mid, "recall_at_3": r_mid})
if r_mid >= target:
best = mid
hi = mid
else:
lo = mid + 8 # move past mid, respecting multiple-of-8 step
iters += 1
print("📈 Binary search results (sampled points):")
# Print unique complexity entries ordered by complexity
for m in sorted(
{m["complexity"]: m for m in metrics}.values(), key=lambda x: x["complexity"]
):
print(f" C={m['complexity']:>4} -> Recall@3={m['recall_at_3'] * 100:.1f}%")
print(f"✅ Minimal complexity achieving {int(target * 100)}% recall: {best}")
return {"metrics": metrics, "best_complexity": best, "target_recall": target}
def main():
parser = argparse.ArgumentParser(description="Enron Emails Benchmark Evaluation")
parser.add_argument("--index", required=True, help="Path to LEANN index")
parser.add_argument(
"--queries", default="data/evaluation_queries.jsonl", help="Path to evaluation queries"
)
parser.add_argument(
"--stage",
choices=["2", "3", "4", "5", "all", "45"],
default="all",
help="Which stage to run (2=recall, 3=complexity, 4=index comparison, 5=generation)",
)
parser.add_argument("--complexity", type=int, default=None, help="LEANN search complexity")
parser.add_argument("--baseline-dir", default="baseline", help="Baseline output directory")
parser.add_argument(
"--max-queries", type=int, help="Limit number of queries to evaluate", default=1000
)
parser.add_argument(
"--target-recall", type=float, default=0.90, help="Target Recall@3 for Stage 3"
)
parser.add_argument("--output", help="Save results to JSON file")
parser.add_argument("--llm-backend", choices=["hf", "vllm"], default="hf", help="LLM backend")
parser.add_argument("--model-name", default="Qwen/Qwen3-8B", help="Model name")
args = parser.parse_args()
# Resolve queries file: if default path not found, fall back to index's directory
if not os.path.exists(args.queries):
from pathlib import Path
idx_dir = Path(args.index).parent
fallback_q = idx_dir / "evaluation_queries.jsonl"
if fallback_q.exists():
args.queries = str(fallback_q)
baseline_index_path = os.path.join(args.baseline_dir, "faiss_flat.index")
if not os.path.exists(baseline_index_path):
print(f"❌ FAISS baseline not found at {baseline_index_path}")
print("💡 Please run setup_enron_emails.py first to build the baseline")
raise SystemExit(1)
results_out: dict = {}
if args.stage in ("2", "all"):
print("🚀 Starting Stage 2: Recall@3 evaluation")
evaluator = RecallEvaluator(args.index, args.baseline_dir)
enron_eval = EnronEvaluator(args.index)
queries = enron_eval.load_queries(args.queries)
queries = queries[:10]
print(f"🧪 Using first {len(queries)} queries")
complexity = args.complexity or 64
r = evaluator.evaluate_recall_at_3(queries, complexity)
results_out["stage2"] = {"complexity": complexity, "recall_at_3": r}
evaluator.cleanup()
enron_eval.cleanup()
print("✅ Stage 2 completed!\n")
if args.stage in ("3", "all"):
print("🚀 Starting Stage 3: Binary search for target recall (no recompute)")
enron_eval = EnronEvaluator(args.index)
queries = enron_eval.load_queries(args.queries)
queries = queries[: args.max_queries]
print(f"🧪 Using first {len(queries)} queries")
# Build non-compact index for fast binary search (recompute_embeddings=False)
from pathlib import Path
index_path = Path(args.index)
non_compact_index_path = str(index_path.parent / f"{index_path.stem}_noncompact.leann")
enron_eval.create_non_compact_index_for_comparison(non_compact_index_path)
# Use non-compact evaluator for binary search with recompute=False
evaluator_nc = RecallEvaluator(non_compact_index_path, args.baseline_dir)
sweep = enron_eval.evaluate_complexity(
evaluator_nc, queries, target=args.target_recall, recompute=False
)
results_out["stage3"] = sweep
# Persist default stage 3 results near the index for Stage 4 auto-pickup
from pathlib import Path
default_stage3_path = Path(args.index).parent / "enron_stage3_results.json"
with open(default_stage3_path, "w", encoding="utf-8") as f:
json.dump({"stage3": sweep}, f, indent=2)
print(f"📝 Saved Stage 3 summary to {default_stage3_path}")
evaluator_nc.cleanup()
enron_eval.cleanup()
print("✅ Stage 3 completed!\n")
if args.stage in ("4", "all", "45"):
print("🚀 Starting Stage 4: Index size + performance comparison")
evaluator = RecallEvaluator(args.index, args.baseline_dir)
enron_eval = EnronEvaluator(args.index)
queries = enron_eval.load_queries(args.queries)
test_q = queries[: min(args.max_queries, len(queries))]
current_sizes = enron_eval.analyze_index_sizes()
# Build non-compact index for comparison (no fallback)
from pathlib import Path
index_path = Path(args.index)
non_compact_path = str(index_path.parent / f"{index_path.stem}_noncompact.leann")
non_compact_sizes = enron_eval.create_non_compact_index_for_comparison(non_compact_path)
nc_eval = EnronEvaluator(non_compact_path)
if (
current_sizes.get("index_only_mb", 0) > 0
and non_compact_sizes.get("index_only_mb", 0) > 0
):
storage_saving_percent = max(
0.0,
100.0 * (1.0 - current_sizes["index_only_mb"] / non_compact_sizes["index_only_mb"]),
)
else:
storage_saving_percent = 0.0
if args.complexity is None:
# Prefer in-session Stage 3 result
if "stage3" in results_out and results_out["stage3"].get("best_complexity") is not None:
complexity = results_out["stage3"]["best_complexity"]
print(f"📥 Using best complexity from Stage 3 in-session: {complexity}")
else:
# Try to load last saved Stage 3 result near index
default_stage3_path = Path(args.index).parent / "enron_stage3_results.json"
if default_stage3_path.exists():
with open(default_stage3_path, encoding="utf-8") as f:
prev = json.load(f)
complexity = prev.get("stage3", {}).get("best_complexity")
if complexity is None:
raise SystemExit(
"❌ Stage 4: No --complexity and no best_complexity found in saved Stage 3 results"
)
print(f"📥 Using best complexity from saved Stage 3: {complexity}")
else:
raise SystemExit(
"❌ Stage 4 requires --complexity if Stage 3 hasn't been run. Run stage 3 first or pass --complexity."
)
else:
complexity = args.complexity
comp = enron_eval.compare_index_performance(
non_compact_path, args.index, test_q, complexity=complexity
)
results_out["stage4"] = {
"current_index": current_sizes,
"non_compact_index": non_compact_sizes,
"storage_saving_percent": storage_saving_percent,
"performance_comparison": comp,
}
nc_eval.cleanup()
evaluator.cleanup()
enron_eval.cleanup()
print("✅ Stage 4 completed!\n")
if args.stage in ("5", "all"):
print("🚀 Starting Stage 5: Generation evaluation with Qwen3-8B")
# Check if Stage 4 results exist
if "stage4" not in results_out or "performance_comparison" not in results_out["stage4"]:
print("❌ Stage 5 requires Stage 4 retrieval results")
print("💡 Run Stage 4 first or use --stage all")
raise SystemExit(1)
retrieval_results = results_out["stage4"]["performance_comparison"]["retrieval_results"]
if not retrieval_results:
print("❌ No retrieval results found from Stage 4")
raise SystemExit(1)
print(f"📁 Using {len(retrieval_results)} retrieval results from Stage 4")
# Load LLM
try:
if args.llm_backend == "hf":
tokenizer, model = load_hf_model(args.model_name)
def llm_func(prompt):
return generate_hf(tokenizer, model, prompt)
else: # vllm
llm, sampling_params = load_vllm_model(args.model_name)
def llm_func(prompt):
return generate_vllm(llm, sampling_params, prompt)
# Run generation using stored retrieval results
import time
from llm_utils import create_prompt
generation_times = []
responses = []
print("🤖 Running generation on pre-retrieved results...")
for i, item in enumerate(retrieval_results):
query = item["query"]
retrieved_docs = item["retrieved_docs"]
# Prepare context from retrieved docs
context = "\n\n".join([doc["text"] for doc in retrieved_docs])
prompt = create_prompt(context, query, "emails")
# Time generation only
gen_start = time.time()
response = llm_func(prompt)
gen_time = time.time() - gen_start
generation_times.append(gen_time)
responses.append(response)
if i < 3:
print(f" Q{i + 1}: Gen={gen_time:.3f}s")
avg_gen_time = sum(generation_times) / len(generation_times)
print("\n📊 Generation Results:")
print(f" Total Queries: {len(retrieval_results)}")
print(f" Avg Generation Time: {avg_gen_time:.3f}s")
print(" (Search time from Stage 4)")
results_out["stage5"] = {
"total_queries": len(retrieval_results),
"avg_generation_time": avg_gen_time,
"generation_times": generation_times,
"responses": responses,
}
# Show sample results
print("\n📝 Sample Results:")
for i in range(min(3, len(retrieval_results))):
query = retrieval_results[i]["query"]
response = responses[i]
print(f" Q{i + 1}: {query[:60]}...")
print(f" A{i + 1}: {response[:100]}...")
print()
except Exception as e:
print(f"❌ Generation evaluation failed: {e}")
print("💡 Make sure transformers/vllm is installed and model is available")
print("✅ Stage 5 completed!\n")
if args.output and results_out:
with open(args.output, "w", encoding="utf-8") as f:
json.dump(results_out, f, indent=2)
print(f"📝 Saved results to {args.output}")
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,359 @@
"""
Enron Emails Benchmark Setup Script
Prepares passages from emails.csv, builds LEANN index, and FAISS Flat baseline
"""
import argparse
import csv
import json
import os
import re
from collections.abc import Iterable
from email import message_from_string
from email.policy import default
from pathlib import Path
from typing import Optional
from leann import LeannBuilder
class EnronSetup:
def __init__(self, data_dir: str = "data"):
self.data_dir = Path(data_dir)
self.data_dir.mkdir(parents=True, exist_ok=True)
self.passages_preview = self.data_dir / "enron_passages_preview.jsonl"
self.index_path = self.data_dir / "enron_index_hnsw.leann"
self.queries_file = self.data_dir / "evaluation_queries.jsonl"
self.downloads_dir = self.data_dir / "downloads"
self.downloads_dir.mkdir(parents=True, exist_ok=True)
# ----------------------------
# Dataset acquisition
# ----------------------------
def ensure_emails_csv(self, emails_csv: Optional[str]) -> str:
"""Return a path to emails.csv, downloading from Kaggle if needed."""
if emails_csv:
p = Path(emails_csv)
if not p.exists():
raise FileNotFoundError(f"emails.csv not found: {emails_csv}")
return str(p)
print(
"📥 Trying to download Enron emails.csv from Kaggle (wcukierski/enron-email-dataset)..."
)
try:
from kaggle.api.kaggle_api_extended import KaggleApi
api = KaggleApi()
api.authenticate()
api.dataset_download_files(
"wcukierski/enron-email-dataset", path=str(self.downloads_dir), unzip=True
)
candidate = self.downloads_dir / "emails.csv"
if candidate.exists():
print(f"✅ Downloaded emails.csv: {candidate}")
return str(candidate)
else:
raise FileNotFoundError(
f"emails.csv was not found in {self.downloads_dir} after Kaggle download"
)
except Exception as e:
print(
"❌ Could not download via Kaggle automatically. Provide --emails-csv or configure Kaggle API."
)
print(
" Set KAGGLE_USERNAME and KAGGLE_KEY env vars, or place emails.csv locally and pass --emails-csv."
)
raise e
# ----------------------------
# Data preparation
# ----------------------------
@staticmethod
def _extract_message_id(raw_email: str) -> str:
msg = message_from_string(raw_email, policy=default)
val = msg.get("Message-ID", "")
if val.startswith("<") and val.endswith(">"):
val = val[1:-1]
return val or ""
@staticmethod
def _split_header_body(raw_email: str) -> tuple[str, str]:
parts = raw_email.split("\n\n", 1)
if len(parts) == 2:
return parts[0].strip(), parts[1].strip()
# Heuristic fallback
first_lines = raw_email.splitlines()
if first_lines and ":" in first_lines[0]:
return raw_email.strip(), ""
return "", raw_email.strip()
@staticmethod
def _split_fixed_words(text: str, chunk_words: int, keep_last: bool) -> list[str]:
text = (text or "").strip()
if not text:
return []
if chunk_words <= 0:
return [text]
words = text.split()
if not words:
return []
limit = len(words)
if not keep_last:
limit = (len(words) // chunk_words) * chunk_words
if limit == 0:
return []
chunks = [" ".join(words[i : i + chunk_words]) for i in range(0, limit, chunk_words)]
return [c for c in (s.strip() for s in chunks) if c]
def _iter_passages_from_csv(
self,
emails_csv: Path,
chunk_words: int = 256,
keep_last_header: bool = True,
keep_last_body: bool = True,
max_emails: int | None = None,
) -> Iterable[dict]:
with open(emails_csv, encoding="utf-8") as f:
reader = csv.DictReader(f)
count = 0
for i, row in enumerate(reader):
if max_emails is not None and count >= max_emails:
break
raw_message = row.get("message", "")
email_file_id = row.get("file", "")
if not raw_message.strip():
continue
message_id = self._extract_message_id(raw_message)
if not message_id:
# Fallback ID based on CSV position and file path
safe_file = re.sub(r"[^A-Za-z0-9_.-]", "_", email_file_id)
message_id = f"enron_{i}_{safe_file}"
header, body = self._split_header_body(raw_message)
# Header chunks
for chunk in self._split_fixed_words(header, chunk_words, keep_last_header):
yield {
"text": chunk,
"metadata": {
"message_id": message_id,
"is_header": True,
"email_file_id": email_file_id,
},
}
# Body chunks
for chunk in self._split_fixed_words(body, chunk_words, keep_last_body):
yield {
"text": chunk,
"metadata": {
"message_id": message_id,
"is_header": False,
"email_file_id": email_file_id,
},
}
count += 1
# ----------------------------
# Build LEANN index and FAISS baseline
# ----------------------------
def build_leann_index(
self,
emails_csv: Optional[str],
backend: str = "hnsw",
embedding_model: str = "sentence-transformers/all-mpnet-base-v2",
chunk_words: int = 256,
max_emails: int | None = None,
) -> str:
emails_csv_path = self.ensure_emails_csv(emails_csv)
print(f"🏗️ Building LEANN index from {emails_csv_path}...")
builder = LeannBuilder(
backend_name=backend,
embedding_model=embedding_model,
embedding_mode="sentence-transformers",
graph_degree=32,
complexity=64,
is_recompute=True,
is_compact=True,
num_threads=4,
)
# Stream passages and add to builder
preview_written = 0
with open(self.passages_preview, "w", encoding="utf-8") as preview_out:
for p in self._iter_passages_from_csv(
Path(emails_csv_path), chunk_words=chunk_words, max_emails=max_emails
):
builder.add_text(p["text"], metadata=p["metadata"])
if preview_written < 200:
preview_out.write(json.dumps({"text": p["text"][:200], **p["metadata"]}) + "\n")
preview_written += 1
print(f"🔨 Building index at {self.index_path}...")
builder.build_index(str(self.index_path))
print("✅ LEANN index built!")
return str(self.index_path)
def build_faiss_flat_baseline(self, index_path: str, output_dir: str = "baseline") -> str:
print("🔨 Building FAISS Flat baseline from LEANN passages...")
import pickle
import numpy as np
from leann.api import compute_embeddings
from leann_backend_hnsw import faiss
os.makedirs(output_dir, exist_ok=True)
baseline_path = os.path.join(output_dir, "faiss_flat.index")
metadata_path = os.path.join(output_dir, "metadata.pkl")
if os.path.exists(baseline_path) and os.path.exists(metadata_path):
print(f"✅ Baseline already exists at {baseline_path}")
return baseline_path
# Read meta for passage source and embedding model
meta_path = f"{index_path}.meta.json"
with open(meta_path, encoding="utf-8") as f:
meta = json.load(f)
embedding_model = meta["embedding_model"]
passage_source = meta["passage_sources"][0]
passage_file = passage_source["path"]
if not os.path.isabs(passage_file):
index_dir = os.path.dirname(index_path)
passage_file = os.path.join(index_dir, os.path.basename(passage_file))
# Load passages from builder output so IDs match LEANN
passages: list[str] = []
passage_ids: list[str] = []
with open(passage_file, encoding="utf-8") as f:
for line in f:
if not line.strip():
continue
data = json.loads(line)
passages.append(data["text"])
passage_ids.append(data["id"]) # builder-assigned ID
print(f"📄 Loaded {len(passages)} passages for baseline")
print(f"🤖 Embedding model: {embedding_model}")
embeddings = compute_embeddings(
passages,
embedding_model,
mode="sentence-transformers",
use_server=False,
)
# Build FAISS IndexFlatIP
dim = embeddings.shape[1]
index = faiss.IndexFlatIP(dim)
emb_f32 = embeddings.astype(np.float32)
index.add(emb_f32.shape[0], faiss.swig_ptr(emb_f32))
faiss.write_index(index, baseline_path)
with open(metadata_path, "wb") as pf:
pickle.dump(passage_ids, pf)
print(f"✅ FAISS baseline saved: {baseline_path}")
print(f"✅ Metadata saved: {metadata_path}")
print(f"📊 Total vectors: {index.ntotal}")
return baseline_path
# ----------------------------
# Queries (optional): prepare evaluation queries file
# ----------------------------
def prepare_queries(self, min_realism: float = 0.85) -> Path:
print(
"📝 Preparing evaluation queries from HuggingFace dataset corbt/enron_emails_sample_questions ..."
)
try:
from datasets import load_dataset
ds = load_dataset("corbt/enron_emails_sample_questions", split="train")
except Exception as e:
print(f"⚠️ Failed to load dataset: {e}")
return self.queries_file
kept = 0
with open(self.queries_file, "w", encoding="utf-8") as out:
for i, item in enumerate(ds):
how_realistic = float(item.get("how_realistic", 0.0))
if how_realistic < min_realism:
continue
qid = str(item.get("id", f"enron_q_{i}"))
query = item.get("question", "")
if not query:
continue
record = {
"id": qid,
"query": query,
# For reference only, not used in recall metric below
"gt_message_ids": item.get("message_ids", []),
}
out.write(json.dumps(record) + "\n")
kept += 1
print(f"✅ Wrote {kept} queries to {self.queries_file}")
return self.queries_file
def main():
parser = argparse.ArgumentParser(description="Setup Enron Emails Benchmark")
parser.add_argument(
"--emails-csv",
help="Path to emails.csv (Enron dataset). If omitted, attempt Kaggle download.",
)
parser.add_argument("--data-dir", default="data", help="Data directory")
parser.add_argument("--backend", choices=["hnsw", "diskann"], default="hnsw")
parser.add_argument(
"--embedding-model",
default="sentence-transformers/all-mpnet-base-v2",
help="Embedding model for LEANN",
)
parser.add_argument("--chunk-words", type=int, default=256, help="Fixed word chunk size")
parser.add_argument("--max-emails", type=int, help="Limit number of emails to process")
parser.add_argument("--skip-queries", action="store_true", help="Skip creating queries file")
parser.add_argument("--skip-build", action="store_true", help="Skip building LEANN index")
args = parser.parse_args()
setup = EnronSetup(args.data_dir)
# Build index
if not args.skip_build:
index_path = setup.build_leann_index(
emails_csv=args.emails_csv,
backend=args.backend,
embedding_model=args.embedding_model,
chunk_words=args.chunk_words,
max_emails=args.max_emails,
)
# Build FAISS baseline from the same passages & embeddings
setup.build_faiss_flat_baseline(index_path)
else:
print("⏭️ Skipping LEANN index build and baseline")
# Queries file (optional)
if not args.skip_queries:
setup.prepare_queries()
else:
print("⏭️ Skipping query preparation")
print("\n🎉 Enron Emails setup completed!")
print(f"📁 Data directory: {setup.data_dir.absolute()}")
print("Next steps:")
print(
"1) Evaluate recall: python evaluate_enron_emails.py --index data/enron_index_hnsw.leann --stage 2"
)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,115 @@
# FinanceBench Benchmark for LEANN-RAG
FinanceBench is a benchmark for evaluating retrieval-augmented generation (RAG) systems on financial document question-answering tasks.
## Dataset
- **Source**: [PatronusAI/financebench](https://huggingface.co/datasets/PatronusAI/financebench)
- **Questions**: 150 financial Q&A examples
- **Documents**: 368 PDF files (10-K, 10-Q, 8-K, earnings reports)
- **Companies**: Major public companies (3M, Apple, Microsoft, Amazon, etc.)
- **Paper**: [FinanceBench: A New Benchmark for Financial Question Answering](https://arxiv.org/abs/2311.11944)
## Structure
```
benchmarks/financebench/
├── setup_financebench.py # Downloads PDFs and builds index
├── evaluate_financebench.py # Intelligent evaluation script
├── data/
│ ├── financebench_merged.jsonl # Q&A dataset
│ ├── pdfs/ # Downloaded financial documents
│ └── index/ # LEANN indexes
│ └── financebench_full_hnsw.leann
└── README.md
```
## Usage
### 1. Setup (Download & Build Index)
```bash
cd benchmarks/financebench
python setup_financebench.py
```
This will:
- Download the 150 Q&A examples
- Download all 368 PDF documents (parallel processing)
- Build a LEANN index from 53K+ text chunks
- Verify setup with test query
### 2. Evaluation
```bash
# Basic retrieval evaluation
python evaluate_financebench.py --index data/index/financebench_full_hnsw.leann
# RAG generation evaluation with Qwen3-8B
python evaluate_financebench.py --index data/index/financebench_full_hnsw.leann --stage 4 --complexity 64 --llm-backend hf --model-name Qwen/Qwen3-8B --output results_qwen3.json
```
## Evaluation Methods
### Retrieval Evaluation
Uses intelligent matching with three strategies:
1. **Exact text overlap** - Direct substring matches
2. **Number matching** - Key financial figures ($1,577, 1.2B, etc.)
3. **Semantic similarity** - Word overlap with 20% threshold
### QA Evaluation
LLM-based answer evaluation using GPT-4o:
- Handles numerical rounding and equivalent representations
- Considers fractions, percentages, and decimal equivalents
- Evaluates semantic meaning rather than exact text match
## Benchmark Results
### LEANN-RAG Performance (sentence-transformers/all-mpnet-base-v2)
**Retrieval Metrics:**
- **Question Coverage**: 100.0% (all questions retrieve relevant docs)
- **Exact Match Rate**: 0.7% (substring overlap with evidence)
- **Number Match Rate**: 120.7% (key financial figures matched)*
- **Semantic Match Rate**: 4.7% (word overlap ≥20%)
- **Average Search Time**: 0.097s
**QA Metrics:**
- **Accuracy**: 42.7% (LLM-evaluated answer correctness)
- **Average QA Time**: 4.71s (end-to-end response time)
**System Performance:**
- **Index Size**: 53,985 chunks from 368 PDFs
- **Build Time**: ~5-10 minutes with sentence-transformers/all-mpnet-base-v2
*Note: Number match rate >100% indicates multiple retrieved documents contain the same financial figures, which is expected behavior for financial data appearing across multiple document sections.
### LEANN-RAG Generation Performance (Qwen3-8B)
- **Stage 4 (Index Comparison):**
- Compact Index: 5.0 MB
- Non-compact Index: 172.2 MB
- **Storage Saving**: 97.1%
- **Search Performance**:
- Non-compact (no recompute): 0.009s avg per query
- Compact (with recompute): 2.203s avg per query
- Speed ratio: 0.004x
**Generation Evaluation (20 queries, complexity=64):**
- **Average Search Time**: 1.638s per query
- **Average Generation Time**: 45.957s per query
- **LLM Backend**: HuggingFace transformers
- **Model**: Qwen/Qwen3-8B (thinking model with <think></think> processing)
- **Total Questions Processed**: 20
## Options
```bash
# Use different backends
python setup_financebench.py --backend diskann
python evaluate_financebench.py --index data/index/financebench_full_diskann.leann
# Use different embedding models
python setup_financebench.py --embedding-model facebook/contriever
```

View File

@@ -0,0 +1,923 @@
"""
FinanceBench Evaluation Script - Modular Recall-based Evaluation
"""
import argparse
import json
import logging
import os
import pickle
import time
from pathlib import Path
from typing import Optional
import numpy as np
import openai
from leann import LeannChat, LeannSearcher
from leann_backend_hnsw import faiss
from ..llm_utils import evaluate_rag, generate_hf, generate_vllm, load_hf_model, load_vllm_model
# Setup logging to reduce verbose output
logging.basicConfig(level=logging.WARNING)
logging.getLogger("leann.api").setLevel(logging.WARNING)
logging.getLogger("leann_backend_hnsw").setLevel(logging.WARNING)
class RecallEvaluator:
"""Stage 2: Evaluate Recall@3 (searcher vs baseline)"""
def __init__(self, index_path: str, baseline_dir: str):
self.index_path = index_path
self.baseline_dir = baseline_dir
self.searcher = LeannSearcher(index_path)
# Load FAISS flat baseline
baseline_index_path = os.path.join(baseline_dir, "faiss_flat.index")
metadata_path = os.path.join(baseline_dir, "metadata.pkl")
self.faiss_index = faiss.read_index(baseline_index_path)
with open(metadata_path, "rb") as f:
self.passage_ids = pickle.load(f)
print(f"📚 Loaded FAISS flat baseline with {self.faiss_index.ntotal} vectors")
def evaluate_recall_at_3(
self, queries: list[str], complexity: int = 64, recompute_embeddings: bool = True
) -> float:
"""Evaluate recall@3 for given queries at specified complexity"""
recompute_str = "with recompute" if recompute_embeddings else "no recompute"
print(f"🔍 Evaluating recall@3 with complexity={complexity} ({recompute_str})...")
total_recall = 0.0
num_queries = len(queries)
for i, query in enumerate(queries):
# Get ground truth: search with FAISS flat
from leann.api import compute_embeddings
query_embedding = compute_embeddings(
[query],
self.searcher.embedding_model,
mode=self.searcher.embedding_mode,
use_server=False,
).astype(np.float32)
# Search FAISS flat for ground truth using LEANN's modified faiss API
n = query_embedding.shape[0] # Number of queries
k = 3 # Number of nearest neighbors
distances = np.zeros((n, k), dtype=np.float32)
labels = np.zeros((n, k), dtype=np.int64)
self.faiss_index.search(
n,
faiss.swig_ptr(query_embedding),
k,
faiss.swig_ptr(distances),
faiss.swig_ptr(labels),
)
# Extract the results
baseline_ids = {self.passage_ids[idx] for idx in labels[0]}
# Search with LEANN at specified complexity
test_results = self.searcher.search(
query,
top_k=3,
complexity=complexity,
recompute_embeddings=recompute_embeddings,
)
test_ids = {result.id for result in test_results}
# Calculate recall@3 = |intersection| / |ground_truth|
intersection = test_ids.intersection(baseline_ids)
recall = len(intersection) / 3.0 # Ground truth size is 3
total_recall += recall
if i < 3: # Show first few examples
print(f" Query {i + 1}: '{query[:50]}...' -> Recall@3: {recall:.3f}")
print(f" FAISS ground truth: {list(baseline_ids)}")
print(f" LEANN results (C={complexity}, {recompute_str}): {list(test_ids)}")
print(f" Intersection: {list(intersection)}")
avg_recall = total_recall / num_queries
print(f"📊 Average Recall@3: {avg_recall:.3f} ({avg_recall * 100:.1f}%)")
return avg_recall
def cleanup(self):
"""Cleanup resources"""
if hasattr(self, "searcher"):
self.searcher.cleanup()
class FinanceBenchEvaluator:
def __init__(self, index_path: str, openai_api_key: Optional[str] = None):
self.index_path = index_path
self.openai_client = openai.OpenAI(api_key=openai_api_key) if openai_api_key else None
self.searcher = LeannSearcher(index_path)
self.chat = LeannChat(index_path) if openai_api_key else None
def load_dataset(self, dataset_path: str = "data/financebench_merged.jsonl"):
"""Load FinanceBench dataset"""
data = []
with open(dataset_path, encoding="utf-8") as f:
for line in f:
if line.strip():
data.append(json.loads(line))
print(f"📊 Loaded {len(data)} FinanceBench examples")
return data
def analyze_index_sizes(self) -> dict:
"""Analyze index sizes with and without embeddings"""
print("📏 Analyzing index sizes...")
# Get all index-related files
index_path = Path(self.index_path)
index_dir = index_path.parent
index_name = index_path.stem # Remove .leann extension
sizes = {}
total_with_embeddings = 0
# Core index files
index_file = index_dir / f"{index_name}.index"
meta_file = index_dir / f"{index_path.name}.meta.json" # Keep .leann for meta file
passages_file = index_dir / f"{index_path.name}.passages.jsonl" # Keep .leann for passages
passages_idx_file = index_dir / f"{index_path.name}.passages.idx" # Keep .leann for idx
for file_path, name in [
(index_file, "index"),
(meta_file, "metadata"),
(passages_file, "passages_text"),
(passages_idx_file, "passages_index"),
]:
if file_path.exists():
size_mb = file_path.stat().st_size / (1024 * 1024)
sizes[name] = size_mb
total_with_embeddings += size_mb
else:
sizes[name] = 0
sizes["total_with_embeddings"] = total_with_embeddings
sizes["index_only_mb"] = sizes["index"] # Just the .index file for fair comparison
print(f" 📁 Total index size: {total_with_embeddings:.1f} MB")
print(f" 📁 Index file only: {sizes['index']:.1f} MB")
return sizes
def create_compact_index_for_comparison(self, compact_index_path: str) -> dict:
"""Create a compact index for comparison purposes"""
print("🏗️ Building compact index from existing passages...")
# Load existing passages from current index
from leann import LeannBuilder
current_index_path = Path(self.index_path)
current_index_dir = current_index_path.parent
current_index_name = current_index_path.name
# Read metadata to get passage source
meta_path = current_index_dir / f"{current_index_name}.meta.json"
with open(meta_path) as f:
import json
meta = json.load(f)
passage_source = meta["passage_sources"][0]
passage_file = passage_source["path"]
# Convert relative path to absolute
if not Path(passage_file).is_absolute():
passage_file = current_index_dir / Path(passage_file).name
print(f"📄 Loading passages from {passage_file}...")
# Build compact index with same passages
builder = LeannBuilder(
backend_name="hnsw",
embedding_model=meta["embedding_model"],
embedding_mode=meta.get("embedding_mode", "sentence-transformers"),
is_recompute=True, # Enable recompute (no stored embeddings)
is_compact=True, # Enable compact storage
**meta.get("backend_kwargs", {}),
)
# Load all passages
with open(passage_file, encoding="utf-8") as f:
for line in f:
if line.strip():
data = json.loads(line)
builder.add_text(data["text"], metadata=data.get("metadata", {}))
print(f"🔨 Building compact index at {compact_index_path}...")
builder.build_index(compact_index_path)
# Analyze the compact index size
temp_evaluator = FinanceBenchEvaluator(compact_index_path)
compact_sizes = temp_evaluator.analyze_index_sizes()
compact_sizes["index_type"] = "compact"
return compact_sizes
def create_non_compact_index_for_comparison(self, non_compact_index_path: str) -> dict:
"""Create a non-compact index for comparison purposes"""
print("🏗️ Building non-compact index from existing passages...")
# Load existing passages from current index
from leann import LeannBuilder
current_index_path = Path(self.index_path)
current_index_dir = current_index_path.parent
current_index_name = current_index_path.name
# Read metadata to get passage source
meta_path = current_index_dir / f"{current_index_name}.meta.json"
with open(meta_path) as f:
import json
meta = json.load(f)
passage_source = meta["passage_sources"][0]
passage_file = passage_source["path"]
# Convert relative path to absolute
if not Path(passage_file).is_absolute():
passage_file = current_index_dir / Path(passage_file).name
print(f"📄 Loading passages from {passage_file}...")
# Build non-compact index with same passages
builder = LeannBuilder(
backend_name="hnsw",
embedding_model=meta["embedding_model"],
embedding_mode=meta.get("embedding_mode", "sentence-transformers"),
is_recompute=False, # Disable recompute (store embeddings)
is_compact=False, # Disable compact storage
**{
k: v
for k, v in meta.get("backend_kwargs", {}).items()
if k not in ["is_recompute", "is_compact"]
},
)
# Load all passages
with open(passage_file, encoding="utf-8") as f:
for line in f:
if line.strip():
data = json.loads(line)
builder.add_text(data["text"], metadata=data.get("metadata", {}))
print(f"🔨 Building non-compact index at {non_compact_index_path}...")
builder.build_index(non_compact_index_path)
# Analyze the non-compact index size
temp_evaluator = FinanceBenchEvaluator(non_compact_index_path)
non_compact_sizes = temp_evaluator.analyze_index_sizes()
non_compact_sizes["index_type"] = "non_compact"
return non_compact_sizes
def compare_index_performance(
self, non_compact_path: str, compact_path: str, test_data: list, complexity: int
) -> dict:
"""Compare performance between non-compact and compact indexes"""
print("⚡ Comparing search performance between indexes...")
import time
from leann import LeannSearcher
# Test queries
test_queries = [item["question"] for item in test_data[:5]]
results = {
"non_compact": {"search_times": []},
"compact": {"search_times": []},
"avg_search_times": {},
"speed_ratio": 0.0,
}
# Test non-compact index (no recompute)
print(" 🔍 Testing non-compact index (no recompute)...")
non_compact_searcher = LeannSearcher(non_compact_path)
for query in test_queries:
start_time = time.time()
_ = non_compact_searcher.search(
query, top_k=3, complexity=complexity, recompute_embeddings=False
)
search_time = time.time() - start_time
results["non_compact"]["search_times"].append(search_time)
# Test compact index (with recompute)
print(" 🔍 Testing compact index (with recompute)...")
compact_searcher = LeannSearcher(compact_path)
for query in test_queries:
start_time = time.time()
_ = compact_searcher.search(
query, top_k=3, complexity=complexity, recompute_embeddings=True
)
search_time = time.time() - start_time
results["compact"]["search_times"].append(search_time)
# Calculate averages
results["avg_search_times"]["non_compact"] = sum(
results["non_compact"]["search_times"]
) / len(results["non_compact"]["search_times"])
results["avg_search_times"]["compact"] = sum(results["compact"]["search_times"]) / len(
results["compact"]["search_times"]
)
# Performance ratio
if results["avg_search_times"]["compact"] > 0:
results["speed_ratio"] = (
results["avg_search_times"]["non_compact"] / results["avg_search_times"]["compact"]
)
else:
results["speed_ratio"] = float("inf")
print(
f" Non-compact (no recompute): {results['avg_search_times']['non_compact']:.3f}s avg"
)
print(f" Compact (with recompute): {results['avg_search_times']['compact']:.3f}s avg")
print(f" Speed ratio: {results['speed_ratio']:.2f}x")
# Cleanup
non_compact_searcher.cleanup()
compact_searcher.cleanup()
return results
def evaluate_timing_breakdown(
self, data: list[dict], max_samples: Optional[int] = None
) -> dict:
"""Evaluate timing breakdown and accuracy by hacking LeannChat.ask() for separated timing"""
if not self.chat or not self.openai_client:
print("⚠️ Skipping timing evaluation (no OpenAI API key provided)")
return {
"total_questions": 0,
"avg_search_time": 0.0,
"avg_generation_time": 0.0,
"avg_total_time": 0.0,
"accuracy": 0.0,
}
print("🔍🤖 Evaluating timing breakdown and accuracy (search + generation)...")
if max_samples:
data = data[:max_samples]
print(f"📝 Using first {max_samples} samples for timing evaluation")
search_times = []
generation_times = []
total_times = []
correct_answers = 0
for i, item in enumerate(data):
question = item["question"]
ground_truth = item["answer"]
try:
# Hack: Monkey-patch the ask method to capture internal timing
original_ask = self.chat.ask
captured_search_time = None
captured_generation_time = None
def patched_ask(*args, **kwargs):
nonlocal captured_search_time, captured_generation_time
# Time the search part
search_start = time.time()
results = self.chat.searcher.search(args[0], top_k=3, complexity=64)
captured_search_time = time.time() - search_start
# Time the generation part
context = "\n\n".join([r.text for r in results])
prompt = (
"Here is some retrieved context that might help answer your question:\n\n"
f"{context}\n\n"
f"Question: {args[0]}\n\n"
"Please provide the best answer you can based on this context and your knowledge."
)
generation_start = time.time()
answer = self.chat.llm.ask(prompt)
captured_generation_time = time.time() - generation_start
return answer
# Apply the patch
self.chat.ask = patched_ask
# Time the total QA
total_start = time.time()
generated_answer = self.chat.ask(question)
total_time = time.time() - total_start
# Restore original method
self.chat.ask = original_ask
# Store the timings
search_times.append(captured_search_time)
generation_times.append(captured_generation_time)
total_times.append(total_time)
# Check accuracy using LLM as judge
is_correct = self._check_answer_accuracy(generated_answer, ground_truth, question)
if is_correct:
correct_answers += 1
status = "" if is_correct else ""
print(
f"Question {i + 1}/{len(data)}: {status} Search={captured_search_time:.3f}s, Gen={captured_generation_time:.3f}s, Total={total_time:.3f}s"
)
print(f" GT: {ground_truth}")
print(f" Gen: {generated_answer[:100]}...")
except Exception as e:
print(f" ❌ Error: {e}")
search_times.append(0.0)
generation_times.append(0.0)
total_times.append(0.0)
accuracy = correct_answers / len(data) if data else 0.0
metrics = {
"total_questions": len(data),
"avg_search_time": sum(search_times) / len(search_times) if search_times else 0.0,
"avg_generation_time": sum(generation_times) / len(generation_times)
if generation_times
else 0.0,
"avg_total_time": sum(total_times) / len(total_times) if total_times else 0.0,
"accuracy": accuracy,
"correct_answers": correct_answers,
"search_times": search_times,
"generation_times": generation_times,
"total_times": total_times,
}
return metrics
def _check_answer_accuracy(
self, generated_answer: str, ground_truth: str, question: str
) -> bool:
"""Check if generated answer matches ground truth using LLM as judge"""
judge_prompt = f"""You are an expert judge evaluating financial question answering.
Question: {question}
Ground Truth Answer: {ground_truth}
Generated Answer: {generated_answer}
Task: Determine if the generated answer is factually correct compared to the ground truth. Focus on:
1. Numerical accuracy (exact values, units, currency)
2. Key financial concepts and terminology
3. Overall factual correctness
For financial data, small formatting differences are OK (e.g., "$1,577" vs "1577 million" vs "$1.577 billion"), but the core numerical value must match.
Respond with exactly one word: "CORRECT" if the generated answer is factually accurate, or "INCORRECT" if it's wrong or significantly different."""
try:
judge_response = self.openai_client.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": judge_prompt}],
max_tokens=10,
temperature=0,
)
judgment = judge_response.choices[0].message.content.strip().upper()
return judgment == "CORRECT"
except Exception as e:
print(f" ⚠️ Judge error: {e}, falling back to string matching")
# Fallback to simple string matching
gen_clean = generated_answer.strip().lower().replace("$", "").replace(",", "")
gt_clean = ground_truth.strip().lower().replace("$", "").replace(",", "")
return gt_clean in gen_clean
def _print_results(self, timing_metrics: dict):
"""Print evaluation results"""
print("\n🎯 EVALUATION RESULTS")
print("=" * 50)
# Index comparison analysis
if "current_index" in timing_metrics and "non_compact_index" in timing_metrics:
print("\n📏 Index Comparison Analysis:")
current = timing_metrics["current_index"]
non_compact = timing_metrics["non_compact_index"]
print(f" Compact index (current): {current.get('total_with_embeddings', 0):.1f} MB")
print(
f" Non-compact index (with embeddings): {non_compact.get('total_with_embeddings', 0):.1f} MB"
)
print(
f" Storage saving by compact: {timing_metrics.get('storage_saving_percent', 0):.1f}%"
)
print(" Component breakdown (non-compact):")
print(f" - Main index: {non_compact.get('index', 0):.1f} MB")
print(f" - Passages text: {non_compact.get('passages_text', 0):.1f} MB")
print(f" - Passages index: {non_compact.get('passages_index', 0):.1f} MB")
print(f" - Metadata: {non_compact.get('metadata', 0):.1f} MB")
# Performance comparison
if "performance_comparison" in timing_metrics:
perf = timing_metrics["performance_comparison"]
print("\n⚡ Performance Comparison:")
print(
f" Non-compact (no recompute): {perf.get('avg_search_times', {}).get('non_compact', 0):.3f}s avg"
)
print(
f" Compact (with recompute): {perf.get('avg_search_times', {}).get('compact', 0):.3f}s avg"
)
print(f" Speed ratio: {perf.get('speed_ratio', 0):.2f}x")
# Legacy single index analysis (fallback)
if "total_with_embeddings" in timing_metrics and "current_index" not in timing_metrics:
print("\n📏 Index Size Analysis:")
print(f" Total index size: {timing_metrics.get('total_with_embeddings', 0):.1f} MB")
print("\n📊 Accuracy:")
print(f" Accuracy: {timing_metrics.get('accuracy', 0) * 100:.1f}%")
print(
f" Correct Answers: {timing_metrics.get('correct_answers', 0)}/{timing_metrics.get('total_questions', 0)}"
)
print("\n📊 Timing Breakdown:")
print(f" Total Questions: {timing_metrics.get('total_questions', 0)}")
print(f" Avg Search Time: {timing_metrics.get('avg_search_time', 0):.3f}s")
print(f" Avg Generation Time: {timing_metrics.get('avg_generation_time', 0):.3f}s")
print(f" Avg Total Time: {timing_metrics.get('avg_total_time', 0):.3f}s")
if timing_metrics.get("avg_total_time", 0) > 0:
search_pct = (
timing_metrics.get("avg_search_time", 0)
/ timing_metrics.get("avg_total_time", 1)
* 100
)
gen_pct = (
timing_metrics.get("avg_generation_time", 0)
/ timing_metrics.get("avg_total_time", 1)
* 100
)
print("\n📈 Time Distribution:")
print(f" Search: {search_pct:.1f}%")
print(f" Generation: {gen_pct:.1f}%")
def cleanup(self):
"""Cleanup resources"""
if self.searcher:
self.searcher.cleanup()
def main():
parser = argparse.ArgumentParser(description="Modular FinanceBench Evaluation")
parser.add_argument("--index", required=True, help="Path to LEANN index")
parser.add_argument("--dataset", default="data/financebench_merged.jsonl", help="Dataset path")
parser.add_argument(
"--stage",
choices=["2", "3", "4", "all"],
default="all",
help="Which stage to run (2=recall, 3=complexity, 4=generation)",
)
parser.add_argument("--complexity", type=int, default=None, help="Complexity for search")
parser.add_argument("--baseline-dir", default="baseline", help="Baseline output directory")
parser.add_argument("--openai-api-key", help="OpenAI API key for generation evaluation")
parser.add_argument("--output", help="Save results to JSON file")
parser.add_argument(
"--llm-backend", choices=["openai", "hf", "vllm"], default="openai", help="LLM backend"
)
parser.add_argument("--model-name", default="Qwen3-8B", help="Model name for HF/vLLM")
args = parser.parse_args()
try:
# Check if baseline exists
baseline_index_path = os.path.join(args.baseline_dir, "faiss_flat.index")
if not os.path.exists(baseline_index_path):
print(f"❌ FAISS baseline not found at {baseline_index_path}")
print("💡 Please run setup_financebench.py first to build the baseline")
exit(1)
if args.stage == "2" or args.stage == "all":
# Stage 2: Recall@3 evaluation
print("🚀 Starting Stage 2: Recall@3 evaluation")
evaluator = RecallEvaluator(args.index, args.baseline_dir)
# Load FinanceBench queries for testing
print("📖 Loading FinanceBench dataset...")
queries = []
with open(args.dataset, encoding="utf-8") as f:
for line in f:
if line.strip():
data = json.loads(line)
queries.append(data["question"])
# Test with more queries for robust measurement
test_queries = queries[:2000]
print(f"🧪 Testing with {len(test_queries)} queries")
# Test with complexity 64
complexity = 64
recall = evaluator.evaluate_recall_at_3(test_queries, complexity)
print(f"📈 Recall@3 at complexity {complexity}: {recall * 100:.1f}%")
evaluator.cleanup()
print("✅ Stage 2 completed!\n")
# Shared non-compact index path for Stage 3 and 4
non_compact_index_path = args.index.replace(".leann", "_noncompact.leann")
complexity = args.complexity
if args.stage == "3" or args.stage == "all":
# Stage 3: Binary search for 90% recall complexity (using non-compact index for speed)
print("🚀 Starting Stage 3: Binary search for 90% recall complexity")
print(
"💡 Creating non-compact index for fast binary search with recompute_embeddings=False"
)
# Create non-compact index for binary search (will be reused in Stage 4)
print("🏗️ Creating non-compact index for binary search...")
evaluator = FinanceBenchEvaluator(args.index)
evaluator.create_non_compact_index_for_comparison(non_compact_index_path)
# Use non-compact index for binary search
binary_search_evaluator = RecallEvaluator(non_compact_index_path, args.baseline_dir)
# Load queries for testing
print("📖 Loading FinanceBench dataset...")
queries = []
with open(args.dataset, encoding="utf-8") as f:
for line in f:
if line.strip():
data = json.loads(line)
queries.append(data["question"])
# Use more queries for robust measurement
test_queries = queries[:200]
print(f"🧪 Testing with {len(test_queries)} queries")
# Binary search for 90% recall complexity (without recompute for speed)
target_recall = 0.9
min_complexity, max_complexity = 1, 32
print(f"🔍 Binary search for {target_recall * 100}% recall complexity...")
print(f"Search range: {min_complexity} to {max_complexity}")
best_complexity = None
best_recall = 0.0
while min_complexity <= max_complexity:
mid_complexity = (min_complexity + max_complexity) // 2
print(
f"\n🧪 Testing complexity {mid_complexity} (no recompute, non-compact index)..."
)
# Use recompute_embeddings=False on non-compact index for fast binary search
recall = binary_search_evaluator.evaluate_recall_at_3(
test_queries, mid_complexity, recompute_embeddings=False
)
print(
f" Complexity {mid_complexity}: Recall@3 = {recall:.3f} ({recall * 100:.1f}%)"
)
if recall >= target_recall:
best_complexity = mid_complexity
best_recall = recall
max_complexity = mid_complexity - 1
print(" ✅ Target reached! Searching for lower complexity...")
else:
min_complexity = mid_complexity + 1
print(" ❌ Below target. Searching for higher complexity...")
if best_complexity is not None:
print("\n🎯 Optimal complexity found!")
print(f" Complexity: {best_complexity}")
print(f" Recall@3: {best_recall:.3f} ({best_recall * 100:.1f}%)")
# Test a few complexities around the optimal one for verification
print("\n🔬 Verification test around optimal complexity:")
verification_complexities = [
max(1, best_complexity - 2),
max(1, best_complexity - 1),
best_complexity,
best_complexity + 1,
best_complexity + 2,
]
for complexity in verification_complexities:
if complexity <= 512: # reasonable upper bound
recall = binary_search_evaluator.evaluate_recall_at_3(
test_queries, complexity, recompute_embeddings=False
)
status = "" if recall >= target_recall else ""
print(f" {status} Complexity {complexity:3d}: {recall * 100:5.1f}%")
# Now test the optimal complexity with compact index and recompute for comparison
print(
f"\n🔄 Testing optimal complexity {best_complexity} on compact index WITH recompute..."
)
compact_evaluator = RecallEvaluator(args.index, args.baseline_dir)
recall_with_recompute = compact_evaluator.evaluate_recall_at_3(
test_queries[:10], best_complexity, recompute_embeddings=True
)
print(
f" ✅ Complexity {best_complexity} (compact index with recompute): {recall_with_recompute * 100:.1f}%"
)
complexity = best_complexity
print(
f" 📊 Recall difference: {abs(best_recall - recall_with_recompute) * 100:.2f}%"
)
compact_evaluator.cleanup()
else:
print(f"\n❌ Could not find complexity achieving {target_recall * 100}% recall")
print("All tested complexities were below target.")
# Cleanup evaluators (keep non-compact index for Stage 4)
binary_search_evaluator.cleanup()
evaluator.cleanup()
print("✅ Stage 3 completed! Non-compact index saved for Stage 4.\n")
if args.stage == "4" or args.stage == "all":
# Stage 4: Comprehensive evaluation with dual index comparison
print("🚀 Starting Stage 4: Comprehensive evaluation with dual index comparison")
# Use FinanceBench evaluator for QA evaluation
evaluator = FinanceBenchEvaluator(
args.index, args.openai_api_key if args.llm_backend == "openai" else None
)
print("📖 Loading FinanceBench dataset...")
data = evaluator.load_dataset(args.dataset)
# Step 1: Analyze current (compact) index
print("\n📏 Analyzing current index (compact, pruned)...")
compact_size_metrics = evaluator.analyze_index_sizes()
compact_size_metrics["index_type"] = "compact"
# Step 2: Use existing non-compact index or create if needed
from pathlib import Path
if Path(non_compact_index_path).exists():
print(
f"\n📁 Using existing non-compact index from Stage 3: {non_compact_index_path}"
)
temp_evaluator = FinanceBenchEvaluator(non_compact_index_path)
non_compact_size_metrics = temp_evaluator.analyze_index_sizes()
non_compact_size_metrics["index_type"] = "non_compact"
else:
print("\n🏗️ Creating non-compact index (with embeddings) for comparison...")
non_compact_size_metrics = evaluator.create_non_compact_index_for_comparison(
non_compact_index_path
)
# Step 3: Compare index sizes
print("\n📊 Index size comparison:")
print(
f" Compact index (current): {compact_size_metrics['total_with_embeddings']:.1f} MB"
)
print(
f" Non-compact index: {non_compact_size_metrics['total_with_embeddings']:.1f} MB"
)
print("\n📊 Index-only size comparison (.index file only):")
print(f" Compact index: {compact_size_metrics['index_only_mb']:.1f} MB")
print(f" Non-compact index: {non_compact_size_metrics['index_only_mb']:.1f} MB")
# Use index-only size for fair comparison (same as Enron emails)
storage_saving = (
(non_compact_size_metrics["index_only_mb"] - compact_size_metrics["index_only_mb"])
/ non_compact_size_metrics["index_only_mb"]
* 100
)
print(f" Storage saving by compact: {storage_saving:.1f}%")
# Step 4: Performance comparison between the two indexes
if complexity is None:
raise ValueError("Complexity is required for performance comparison")
print("\n⚡ Performance comparison between indexes...")
performance_metrics = evaluator.compare_index_performance(
non_compact_index_path, args.index, data[:10], complexity=complexity
)
# Step 5: Generation evaluation
test_samples = 20
print(f"\n🧪 Testing with first {test_samples} samples for generation analysis")
if args.llm_backend == "openai" and args.openai_api_key:
print("🔍🤖 Running OpenAI-based generation evaluation...")
evaluation_start = time.time()
timing_metrics = evaluator.evaluate_timing_breakdown(data[:test_samples])
evaluation_time = time.time() - evaluation_start
else:
print(
f"🔍🤖 Running {args.llm_backend} generation evaluation with {args.model_name}..."
)
try:
# Load LLM
if args.llm_backend == "hf":
tokenizer, model = load_hf_model(args.model_name)
def llm_func(prompt):
return generate_hf(tokenizer, model, prompt)
else: # vllm
llm, sampling_params = load_vllm_model(args.model_name)
def llm_func(prompt):
return generate_vllm(llm, sampling_params, prompt)
# Simple generation evaluation
queries = [item["question"] for item in data[:test_samples]]
gen_results = evaluate_rag(
evaluator.searcher,
llm_func,
queries,
domain="finance",
complexity=complexity,
)
timing_metrics = {
"total_questions": len(queries),
"avg_search_time": gen_results["avg_search_time"],
"avg_generation_time": gen_results["avg_generation_time"],
"results": gen_results["results"],
}
evaluation_time = time.time()
except Exception as e:
print(f"❌ Generation evaluation failed: {e}")
timing_metrics = {
"total_questions": 0,
"avg_search_time": 0,
"avg_generation_time": 0,
}
evaluation_time = 0
# Combine all metrics
combined_metrics = {
**timing_metrics,
"total_evaluation_time": evaluation_time,
"current_index": compact_size_metrics,
"non_compact_index": non_compact_size_metrics,
"performance_comparison": performance_metrics,
"storage_saving_percent": storage_saving,
}
# Print results
print("\n📊 Generation Results:")
print(f" Total Questions: {timing_metrics.get('total_questions', 0)}")
print(f" Avg Search Time: {timing_metrics.get('avg_search_time', 0):.3f}s")
print(f" Avg Generation Time: {timing_metrics.get('avg_generation_time', 0):.3f}s")
# Save results if requested
if args.output:
print(f"\n💾 Saving results to {args.output}...")
with open(args.output, "w") as f:
json.dump(combined_metrics, f, indent=2, default=str)
print(f"✅ Results saved to {args.output}")
evaluator.cleanup()
print("✅ Stage 4 completed!\n")
if args.stage == "all":
print("🎉 All evaluation stages completed successfully!")
print("\n📋 Summary:")
print(" Stage 2: ✅ Recall@3 evaluation completed")
print(" Stage 3: ✅ Optimal complexity found")
print(" Stage 4: ✅ Generation accuracy & timing evaluation completed")
print("\n🔧 Recommended next steps:")
print(" - Use optimal complexity for best speed/accuracy balance")
print(" - Review accuracy and timing breakdown for performance optimization")
print(" - Run full evaluation on complete dataset if needed")
# Clean up non-compact index after all stages complete
print("\n🧹 Cleaning up temporary non-compact index...")
from pathlib import Path
if Path(non_compact_index_path).exists():
temp_index_dir = Path(non_compact_index_path).parent
temp_index_name = Path(non_compact_index_path).name
for temp_file in temp_index_dir.glob(f"{temp_index_name}*"):
temp_file.unlink()
print(f"✅ Cleaned up {non_compact_index_path}")
else:
print("📝 No temporary index to clean up")
except KeyboardInterrupt:
print("\n⚠️ Evaluation interrupted by user")
exit(1)
except Exception as e:
print(f"\n❌ Stage {args.stage} failed: {e}")
exit(1)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,462 @@
#!/usr/bin/env python3
"""
FinanceBench Complete Setup Script
Downloads all PDFs and builds full LEANN datastore
"""
import argparse
import os
import re
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
from pathlib import Path
from threading import Lock
import pymupdf
import requests
from leann import LeannBuilder, LeannSearcher
from tqdm import tqdm
class FinanceBenchSetup:
def __init__(self, data_dir: str = "data"):
self.base_dir = Path(__file__).parent # benchmarks/financebench/
self.data_dir = self.base_dir / data_dir
self.pdf_dir = self.data_dir / "pdfs"
self.dataset_file = self.data_dir / "financebench_merged.jsonl"
self.index_dir = self.data_dir / "index"
self.download_lock = Lock()
def download_dataset(self):
"""Download the main FinanceBench dataset"""
print("📊 Downloading FinanceBench dataset...")
self.data_dir.mkdir(parents=True, exist_ok=True)
if self.dataset_file.exists():
print(f"✅ Dataset already exists: {self.dataset_file}")
return
url = "https://huggingface.co/datasets/PatronusAI/financebench/raw/main/financebench_merged.jsonl"
response = requests.get(url, stream=True)
response.raise_for_status()
with open(self.dataset_file, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
print(f"✅ Dataset downloaded: {self.dataset_file}")
def get_pdf_list(self):
"""Get list of all PDF files from GitHub"""
print("📋 Fetching PDF list from GitHub...")
response = requests.get(
"https://api.github.com/repos/patronus-ai/financebench/contents/pdfs"
)
response.raise_for_status()
pdf_files = response.json()
print(f"Found {len(pdf_files)} PDF files")
return pdf_files
def download_single_pdf(self, pdf_info, position):
"""Download a single PDF file"""
pdf_name = pdf_info["name"]
pdf_path = self.pdf_dir / pdf_name
# Skip if already downloaded
if pdf_path.exists() and pdf_path.stat().st_size > 0:
return f"{pdf_name} (cached)"
try:
# Download PDF
response = requests.get(pdf_info["download_url"], timeout=60)
response.raise_for_status()
# Write to file
with self.download_lock:
with open(pdf_path, "wb") as f:
f.write(response.content)
return f"{pdf_name} ({len(response.content) // 1024}KB)"
except Exception as e:
return f"{pdf_name}: {e!s}"
def download_all_pdfs(self, max_workers: int = 5):
"""Download all PDF files with parallel processing"""
self.pdf_dir.mkdir(parents=True, exist_ok=True)
pdf_files = self.get_pdf_list()
print(f"📥 Downloading {len(pdf_files)} PDFs with {max_workers} workers...")
with ThreadPoolExecutor(max_workers=max_workers) as executor:
# Submit all download tasks
future_to_pdf = {
executor.submit(self.download_single_pdf, pdf_info, i): pdf_info["name"]
for i, pdf_info in enumerate(pdf_files)
}
# Process completed downloads with progress bar
with tqdm(total=len(pdf_files), desc="Downloading PDFs") as pbar:
for future in as_completed(future_to_pdf):
result = future.result()
pbar.set_postfix_str(result.split()[-1] if "" in result else "Error")
pbar.update(1)
# Verify downloads
downloaded_pdfs = list(self.pdf_dir.glob("*.pdf"))
print(f"✅ Successfully downloaded {len(downloaded_pdfs)}/{len(pdf_files)} PDFs")
# Show any failures
missing_pdfs = []
for pdf_info in pdf_files:
pdf_path = self.pdf_dir / pdf_info["name"]
if not pdf_path.exists() or pdf_path.stat().st_size == 0:
missing_pdfs.append(pdf_info["name"])
if missing_pdfs:
print(f"⚠️ Failed to download {len(missing_pdfs)} PDFs:")
for pdf in missing_pdfs[:5]: # Show first 5
print(f" - {pdf}")
if len(missing_pdfs) > 5:
print(f" ... and {len(missing_pdfs) - 5} more")
def build_leann_index(
self,
backend: str = "hnsw",
embedding_model: str = "sentence-transformers/all-mpnet-base-v2",
):
"""Build LEANN index from all PDFs"""
print(f"🏗️ Building LEANN index with {backend} backend...")
# Check if we have PDFs
pdf_files = list(self.pdf_dir.glob("*.pdf"))
if not pdf_files:
raise RuntimeError("No PDF files found! Run download first.")
print(f"Found {len(pdf_files)} PDF files to process")
start_time = time.time()
# Initialize builder with standard compact configuration
builder = LeannBuilder(
backend_name=backend,
embedding_model=embedding_model,
embedding_mode="sentence-transformers",
graph_degree=32,
complexity=64,
is_recompute=True, # Enable recompute (no stored embeddings)
is_compact=True, # Enable compact storage (pruned)
num_threads=4,
)
# Process PDFs and extract text
total_chunks = 0
failed_pdfs = []
for pdf_path in tqdm(pdf_files, desc="Processing PDFs"):
try:
chunks = self.extract_pdf_text(pdf_path)
for chunk in chunks:
builder.add_text(chunk["text"], metadata=chunk["metadata"])
total_chunks += 1
except Exception as e:
print(f"❌ Failed to process {pdf_path.name}: {e}")
failed_pdfs.append(pdf_path.name)
continue
# Build index in index directory
self.index_dir.mkdir(parents=True, exist_ok=True)
index_path = self.index_dir / f"financebench_full_{backend}.leann"
print(f"🔨 Building index: {index_path}")
builder.build_index(str(index_path))
build_time = time.time() - start_time
print("✅ Index built successfully!")
print(f" 📁 Index path: {index_path}")
print(f" 📊 Total chunks: {total_chunks:,}")
print(f" 📄 Processed PDFs: {len(pdf_files) - len(failed_pdfs)}/{len(pdf_files)}")
print(f" ⏱️ Build time: {build_time:.1f}s")
if failed_pdfs:
print(f" ⚠️ Failed PDFs: {failed_pdfs}")
return str(index_path)
def build_faiss_flat_baseline(self, index_path: str, output_dir: str = "baseline"):
"""Build FAISS flat baseline using the same embeddings as LEANN index"""
print("🔨 Building FAISS Flat baseline...")
import os
import pickle
import numpy as np
from leann.api import compute_embeddings
from leann_backend_hnsw import faiss
os.makedirs(output_dir, exist_ok=True)
baseline_path = os.path.join(output_dir, "faiss_flat.index")
metadata_path = os.path.join(output_dir, "metadata.pkl")
if os.path.exists(baseline_path) and os.path.exists(metadata_path):
print(f"✅ Baseline already exists at {baseline_path}")
return baseline_path
# Read metadata from the built index
meta_path = f"{index_path}.meta.json"
with open(meta_path) as f:
import json
meta = json.loads(f.read())
embedding_model = meta["embedding_model"]
passage_source = meta["passage_sources"][0]
passage_file = passage_source["path"]
# Convert relative path to absolute
if not os.path.isabs(passage_file):
index_dir = os.path.dirname(index_path)
passage_file = os.path.join(index_dir, os.path.basename(passage_file))
print(f"📊 Loading passages from {passage_file}...")
print(f"🤖 Using embedding model: {embedding_model}")
# Load all passages for baseline
passages = []
passage_ids = []
with open(passage_file, encoding="utf-8") as f:
for line in f:
if line.strip():
data = json.loads(line)
passages.append(data["text"])
passage_ids.append(data["id"])
print(f"📄 Loaded {len(passages)} passages")
# Compute embeddings using the same method as LEANN
print("🧮 Computing embeddings...")
embeddings = compute_embeddings(
passages,
embedding_model,
mode="sentence-transformers",
use_server=False,
)
print(f"📐 Embedding shape: {embeddings.shape}")
# Build FAISS flat index
print("🏗️ Building FAISS IndexFlatIP...")
dimension = embeddings.shape[1]
index = faiss.IndexFlatIP(dimension)
# Add embeddings to flat index
embeddings_f32 = embeddings.astype(np.float32)
index.add(embeddings_f32.shape[0], faiss.swig_ptr(embeddings_f32))
# Save index and metadata
faiss.write_index(index, baseline_path)
with open(metadata_path, "wb") as f:
pickle.dump(passage_ids, f)
print(f"✅ FAISS baseline saved to {baseline_path}")
print(f"✅ Metadata saved to {metadata_path}")
print(f"📊 Total vectors: {index.ntotal}")
return baseline_path
def extract_pdf_text(self, pdf_path: Path) -> list[dict]:
"""Extract and chunk text from a PDF file"""
chunks = []
doc = pymupdf.open(pdf_path)
for page_num in range(len(doc)):
page = doc[page_num]
text = page.get_text() # type: ignore
if not text.strip():
continue
# Create metadata
metadata = {
"source_file": pdf_path.name,
"page_number": page_num + 1,
"document_type": "10K" if "10K" in pdf_path.name else "10Q",
"company": pdf_path.name.split("_")[0],
"doc_period": self.extract_year_from_filename(pdf_path.name),
}
# Use recursive character splitting like LangChain
if len(text.split()) > 500:
# Split by double newlines (paragraphs)
paragraphs = [p.strip() for p in text.split("\n\n") if p.strip()]
current_chunk = ""
for para in paragraphs:
# If adding this paragraph would make chunk too long, save current chunk
if current_chunk and len((current_chunk + " " + para).split()) > 300:
if current_chunk.strip():
chunks.append(
{
"text": current_chunk.strip(),
"metadata": {
**metadata,
"chunk_id": f"page_{page_num + 1}_chunk_{len(chunks)}",
},
}
)
current_chunk = para
else:
current_chunk = (current_chunk + " " + para).strip()
# Add the last chunk
if current_chunk.strip():
chunks.append(
{
"text": current_chunk.strip(),
"metadata": {
**metadata,
"chunk_id": f"page_{page_num + 1}_chunk_{len(chunks)}",
},
}
)
else:
# Page is short enough, use as single chunk
chunks.append(
{
"text": text.strip(),
"metadata": {**metadata, "chunk_id": f"page_{page_num + 1}"},
}
)
doc.close()
return chunks
def extract_year_from_filename(self, filename: str) -> str:
"""Extract year from PDF filename"""
# Try to find 4-digit year in filename
match = re.search(r"(\d{4})", filename)
return match.group(1) if match else "unknown"
def verify_setup(self, index_path: str):
"""Verify the setup by testing a simple query"""
print("🧪 Verifying setup with test query...")
try:
searcher = LeannSearcher(index_path)
# Test query
test_query = "What is the capital expenditure for 3M in 2018?"
results = searcher.search(test_query, top_k=3)
print(f"✅ Test query successful! Found {len(results)} results:")
for i, result in enumerate(results, 1):
company = result.metadata.get("company", "Unknown")
year = result.metadata.get("doc_period", "Unknown")
page = result.metadata.get("page_number", "Unknown")
print(f" {i}. {company} {year} (page {page}) - Score: {result.score:.3f}")
print(f" {result.text[:100]}...")
searcher.cleanup()
print("✅ Setup verification completed successfully!")
except Exception as e:
print(f"❌ Setup verification failed: {e}")
raise
def main():
parser = argparse.ArgumentParser(description="Setup FinanceBench with full PDF datastore")
parser.add_argument("--data-dir", default="data", help="Data directory")
parser.add_argument(
"--backend", choices=["hnsw", "diskann"], default="hnsw", help="LEANN backend"
)
parser.add_argument(
"--embedding-model",
default="sentence-transformers/all-mpnet-base-v2",
help="Embedding model",
)
parser.add_argument("--max-workers", type=int, default=5, help="Parallel download workers")
parser.add_argument("--skip-download", action="store_true", help="Skip PDF download")
parser.add_argument("--skip-build", action="store_true", help="Skip index building")
parser.add_argument(
"--build-baseline-only",
action="store_true",
help="Only build FAISS baseline from existing index",
)
args = parser.parse_args()
print("🏦 FinanceBench Complete Setup")
print("=" * 50)
setup = FinanceBenchSetup(args.data_dir)
try:
if args.build_baseline_only:
# Only build baseline from existing index
index_path = setup.index_dir / f"financebench_full_{args.backend}"
index_file = f"{index_path}.index"
meta_file = f"{index_path}.leann.meta.json"
if not os.path.exists(index_file) or not os.path.exists(meta_file):
print("❌ Index files not found:")
print(f" Index: {index_file}")
print(f" Meta: {meta_file}")
print("💡 Run without --build-baseline-only to build the index first")
exit(1)
print(f"🔨 Building baseline from existing index: {index_path}")
baseline_path = setup.build_faiss_flat_baseline(str(index_path))
print(f"✅ Baseline built at {baseline_path}")
return
# Step 1: Download dataset
setup.download_dataset()
# Step 2: Download PDFs
if not args.skip_download:
setup.download_all_pdfs(max_workers=args.max_workers)
else:
print("⏭️ Skipping PDF download")
# Step 3: Build LEANN index
if not args.skip_build:
index_path = setup.build_leann_index(
backend=args.backend, embedding_model=args.embedding_model
)
# Step 4: Build FAISS flat baseline
print("\n🔨 Building FAISS flat baseline...")
baseline_path = setup.build_faiss_flat_baseline(index_path)
print(f"✅ Baseline built at {baseline_path}")
# Step 5: Verify setup
setup.verify_setup(index_path)
else:
print("⏭️ Skipping index building")
print("\n🎉 FinanceBench setup completed!")
print(f"📁 Data directory: {setup.data_dir.absolute()}")
print("\nNext steps:")
print(
"1. Run evaluation: python evaluate_financebench.py --index data/index/financebench_full_hnsw.leann"
)
print(
"2. Or test manually: python -c \"from leann import LeannSearcher; s = LeannSearcher('data/index/financebench_full_hnsw.leann'); print(s.search('3M capital expenditure 2018'))\""
)
except KeyboardInterrupt:
print("\n⚠️ Setup interrupted by user")
exit(1)
except Exception as e:
print(f"\n❌ Setup failed: {e}")
exit(1)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,214 @@
#!/usr/bin/env python3
# /// script
# requires-python = ">=3.9"
# dependencies = [
# "faiss-cpu",
# "numpy",
# "sentence-transformers",
# "torch",
# "tqdm",
# ]
# ///
"""
Independent recall verification script using standard FAISS.
Creates two indexes (HNSW and Flat) and compares recall@3 at different complexities.
"""
import json
import time
from pathlib import Path
import faiss
import numpy as np
from sentence_transformers import SentenceTransformer
from tqdm import tqdm
def compute_embeddings_direct(chunks: list[str], model_name: str) -> np.ndarray:
"""
Direct embedding computation using sentence-transformers.
Copied logic to avoid dependency issues.
"""
print(f"Loading model: {model_name}")
model = SentenceTransformer(model_name)
print(f"Computing embeddings for {len(chunks)} chunks...")
embeddings = model.encode(
chunks,
show_progress_bar=True,
batch_size=32,
convert_to_numpy=True,
normalize_embeddings=False,
)
return embeddings.astype(np.float32)
def load_financebench_queries(dataset_path: str, max_queries: int = 200) -> list[str]:
"""Load FinanceBench queries from dataset"""
queries = []
with open(dataset_path, encoding="utf-8") as f:
for line in f:
if line.strip():
data = json.loads(line)
queries.append(data["question"])
if len(queries) >= max_queries:
break
return queries
def load_passages_from_leann_index(index_path: str) -> tuple[list[str], list[str]]:
"""Load passages from LEANN index structure"""
meta_path = f"{index_path}.meta.json"
with open(meta_path) as f:
meta = json.load(f)
passage_source = meta["passage_sources"][0]
passage_file = passage_source["path"]
# Convert relative path to absolute
if not Path(passage_file).is_absolute():
index_dir = Path(index_path).parent
passage_file = index_dir / Path(passage_file).name
print(f"Loading passages from {passage_file}")
passages = []
passage_ids = []
with open(passage_file, encoding="utf-8") as f:
for line in tqdm(f, desc="Loading passages"):
if line.strip():
data = json.loads(line)
passages.append(data["text"])
passage_ids.append(data["id"])
print(f"Loaded {len(passages)} passages")
return passages, passage_ids
def build_faiss_indexes(embeddings: np.ndarray) -> tuple[faiss.Index, faiss.Index]:
"""Build FAISS indexes: Flat (ground truth) and HNSW"""
dimension = embeddings.shape[1]
# Build Flat index (ground truth)
print("Building FAISS IndexFlatIP (ground truth)...")
flat_index = faiss.IndexFlatIP(dimension)
flat_index.add(embeddings)
# Build HNSW index
print("Building FAISS IndexHNSWFlat...")
M = 32 # Same as LEANN default
hnsw_index = faiss.IndexHNSWFlat(dimension, M, faiss.METRIC_INNER_PRODUCT)
hnsw_index.hnsw.efConstruction = 200 # Same as LEANN default
hnsw_index.add(embeddings)
print(f"Built indexes with {flat_index.ntotal} vectors, dimension {dimension}")
return flat_index, hnsw_index
def evaluate_recall_at_k(
query_embeddings: np.ndarray,
flat_index: faiss.Index,
hnsw_index: faiss.Index,
passage_ids: list[str],
k: int = 3,
ef_search: int = 64,
) -> float:
"""Evaluate recall@k comparing HNSW vs Flat"""
# Set search parameters for HNSW
hnsw_index.hnsw.efSearch = ef_search
total_recall = 0.0
num_queries = query_embeddings.shape[0]
for i in range(num_queries):
query = query_embeddings[i : i + 1] # Keep 2D shape
# Get ground truth from Flat index (standard FAISS API)
flat_distances, flat_indices = flat_index.search(query, k)
ground_truth_ids = {passage_ids[idx] for idx in flat_indices[0]}
# Get results from HNSW index (standard FAISS API)
hnsw_distances, hnsw_indices = hnsw_index.search(query, k)
hnsw_ids = {passage_ids[idx] for idx in hnsw_indices[0]}
# Calculate recall
intersection = ground_truth_ids.intersection(hnsw_ids)
recall = len(intersection) / k
total_recall += recall
if i < 3: # Show first few examples
print(f" Query {i + 1}: Recall@{k} = {recall:.3f}")
print(f" Flat: {list(ground_truth_ids)}")
print(f" HNSW: {list(hnsw_ids)}")
print(f" Intersection: {list(intersection)}")
avg_recall = total_recall / num_queries
return avg_recall
def main():
# Configuration
dataset_path = "data/financebench_merged.jsonl"
index_path = "data/index/financebench_full_hnsw.leann"
embedding_model = "sentence-transformers/all-mpnet-base-v2"
print("🔍 FAISS Recall Verification")
print("=" * 50)
# Check if files exist
if not Path(dataset_path).exists():
print(f"❌ Dataset not found: {dataset_path}")
return
if not Path(f"{index_path}.meta.json").exists():
print(f"❌ Index metadata not found: {index_path}.meta.json")
return
# Load data
print("📖 Loading FinanceBench queries...")
queries = load_financebench_queries(dataset_path, max_queries=50)
print(f"Loaded {len(queries)} queries")
print("📄 Loading passages from LEANN index...")
passages, passage_ids = load_passages_from_leann_index(index_path)
# Compute embeddings
print("🧮 Computing passage embeddings...")
passage_embeddings = compute_embeddings_direct(passages, embedding_model)
print("🧮 Computing query embeddings...")
query_embeddings = compute_embeddings_direct(queries, embedding_model)
# Build FAISS indexes
print("🏗️ Building FAISS indexes...")
flat_index, hnsw_index = build_faiss_indexes(passage_embeddings)
# Test different efSearch values (equivalent to LEANN complexity)
print("\n📊 Evaluating Recall@3 at different efSearch values...")
ef_search_values = [16, 32, 64, 128, 256]
for ef_search in ef_search_values:
print(f"\n🧪 Testing efSearch = {ef_search}")
start_time = time.time()
recall = evaluate_recall_at_k(
query_embeddings, flat_index, hnsw_index, passage_ids, k=3, ef_search=ef_search
)
elapsed = time.time() - start_time
print(
f"📈 efSearch {ef_search}: Recall@3 = {recall:.3f} ({recall * 100:.1f}%) in {elapsed:.2f}s"
)
print("\n✅ Verification completed!")
print("\n📋 Summary:")
print(" - Built independent FAISS Flat and HNSW indexes")
print(" - Compared recall@3 at different efSearch values")
print(" - Used same embedding model as LEANN")
print(" - This validates LEANN's recall measurements")
if __name__ == "__main__":
main()

1
benchmarks/laion/.gitignore vendored Normal file
View File

@@ -0,0 +1 @@
data/

199
benchmarks/laion/README.md Normal file
View File

@@ -0,0 +1,199 @@
# LAION Multimodal Benchmark
A multimodal benchmark for evaluating image retrieval and generation performance using LEANN with CLIP embeddings and Qwen2.5-VL for multimodal generation on LAION dataset subset.
## Overview
This benchmark evaluates:
- **Image retrieval timing** using caption-based queries
- **Recall@K performance** for image search
- **Complexity analysis** across different search parameters
- **Index size and storage efficiency**
- **Multimodal generation** with Qwen2.5-VL for image understanding and description
## Dataset Configuration
- **Dataset**: LAION-400M subset (10,000 images)
- **Embeddings**: Pre-computed CLIP ViT-B/32 (512 dimensions)
- **Queries**: 200 random captions from the dataset
- **Ground Truth**: Self-recall (query caption → original image)
## Quick Start
### 1. Setup the benchmark
```bash
cd benchmarks/laion
python setup_laion.py --num-samples 10000 --num-queries 200
```
This will:
- Create dummy LAION data (10K samples)
- Generate CLIP embeddings (512-dim)
- Build LEANN index with HNSW backend
- Create 200 evaluation queries
### 2. Run evaluation
```bash
# Run all evaluation stages
python evaluate_laion.py --index data/laion_index.leann
# Run specific stages
python evaluate_laion.py --index data/laion_index.leann --stage 2 # Recall evaluation
python evaluate_laion.py --index data/laion_index.leann --stage 3 # Complexity analysis
python evaluate_laion.py --index data/laion_index.leann --stage 4 # Index comparison
python evaluate_laion.py --index data/laion_index.leann --stage 5 # Multimodal generation
# Multimodal generation with Qwen2.5-VL
python evaluate_laion.py --index data/laion_index.leann --stage 5 --model-name Qwen/Qwen2.5-VL-7B-Instruct
```
### 3. Save results
```bash
python evaluate_laion.py --index data/laion_index.leann --output results.json
```
## Configuration Options
### Setup Options
```bash
python setup_laion.py \
--num-samples 10000 \
--num-queries 200 \
--index-path data/laion_index.leann \
--backend hnsw
```
### Evaluation Options
```bash
python evaluate_laion.py \
--index data/laion_index.leann \
--queries data/evaluation_queries.jsonl \
--complexity 64 \
--top-k 3 \
--num-samples 100 \
--stage all
```
## Evaluation Stages
### Stage 2: Recall Evaluation
- Evaluates Recall@3 for multimodal retrieval
- Compares LEANN vs FAISS baseline performance
- Self-recall: query caption should retrieve original image
### Stage 3: Complexity Analysis
- Binary search for optimal complexity (90% recall target)
- Tests performance across different complexity levels
- Analyzes speed vs. accuracy tradeoffs
### Stage 4: Index Comparison
- Compares compact vs non-compact index sizes
- Measures search performance differences
- Reports storage efficiency and speed ratios
### Stage 5: Multimodal Generation
- Uses Qwen2.5-VL for image understanding and description
- Retrieval-Augmented Generation (RAG) with multimodal context
- Measures both search and generation timing
## Output Metrics
### Timing Metrics
- Average/median/min/max search time
- Standard deviation
- Searches per second
- Latency in milliseconds
### Recall Metrics
- Recall@3 percentage for image retrieval
- Number of queries with ground truth
### Index Metrics
- Total index size (MB)
- Component breakdown (index, passages, metadata)
- Storage savings (compact vs non-compact)
- Backend and embedding model info
### Generation Metrics (Stage 5)
- Average search time per query
- Average generation time per query
- Time distribution (search vs generation)
- Sample multimodal responses
- Model: Qwen2.5-VL performance
## Benchmark Results
### LEANN-RAG Performance (CLIP ViT-L/14 + Qwen2.5-VL)
**Stage 3: Optimal Complexity Analysis**
- **Optimal Complexity**: 85 (achieving 90% Recall@3)
- **Binary Search Range**: 1-128
- **Target Recall**: 90%
- **Index Type**: Non-compact (for fast binary search)
**Stage 5: Multimodal Generation Performance (Qwen2.5-VL)**
- **Total Queries**: 20
- **Average Search Time**: 1.200s per query
- **Average Generation Time**: 6.558s per query
- **Time Distribution**: Search 15.5%, Generation 84.5%
- **LLM Backend**: HuggingFace transformers
- **Model**: Qwen/Qwen2.5-VL-7B-Instruct
- **Optimal Complexity**: 85
**System Performance:**
- **Index Size**: ~10,000 image embeddings from LAION subset
- **Embedding Model**: CLIP ViT-L/14 (768 dimensions)
- **Backend**: HNSW with cosine distance
### Example Results
```
🎯 LAION MULTIMODAL BENCHMARK RESULTS
============================================================
📊 Multimodal Generation Results:
Total Queries: 20
Avg Search Time: 1.200s
Avg Generation Time: 6.558s
Time Distribution: Search 15.5%, Generation 84.5%
LLM Backend: HuggingFace transformers
Model: Qwen/Qwen2.5-VL-7B-Instruct
⚙️ Optimal Complexity Analysis:
Target Recall: 90%
Optimal Complexity: 85
Binary Search Range: 1-128
Non-compact Index (fast search, no recompute)
🚀 Performance Summary:
Multimodal RAG: 7.758s total per query
Search: 15.5% of total time
Generation: 84.5% of total time
```
## Directory Structure
```
benchmarks/laion/
├── setup_laion.py # Setup script
├── evaluate_laion.py # Evaluation script
├── README.md # This file
└── data/ # Generated data
├── laion_images/ # Image files (placeholder)
├── laion_metadata.jsonl # Image metadata
├── laion_passages.jsonl # LEANN passages
├── laion_embeddings.npy # CLIP embeddings
├── evaluation_queries.jsonl # Evaluation queries
└── laion_index.leann/ # LEANN index files
```
## Notes
- Current implementation uses dummy data for demonstration
- For real LAION data, implement actual download logic in `setup_laion.py`
- CLIP embeddings are randomly generated - replace with real CLIP model for production
- Adjust `num_samples` and `num_queries` based on available resources
- Consider using `--num-samples` during evaluation for faster testing

View File

@@ -0,0 +1,725 @@
"""
LAION Multimodal Benchmark Evaluation Script - Modular Recall-based Evaluation
"""
import argparse
import json
import logging
import os
import pickle
import time
from pathlib import Path
import numpy as np
from leann import LeannSearcher
from leann_backend_hnsw import faiss
from sentence_transformers import SentenceTransformer
from ..llm_utils import evaluate_multimodal_rag, load_qwen_vl_model
# Setup logging to reduce verbose output
logging.basicConfig(level=logging.WARNING)
logging.getLogger("leann.api").setLevel(logging.WARNING)
logging.getLogger("leann_backend_hnsw").setLevel(logging.WARNING)
class RecallEvaluator:
"""Stage 2: Evaluate Recall@3 (LEANN vs FAISS baseline for multimodal retrieval)"""
def __init__(self, index_path: str, baseline_dir: str):
self.index_path = index_path
self.baseline_dir = baseline_dir
self.searcher = LeannSearcher(index_path)
# Load FAISS flat baseline (image embeddings)
baseline_index_path = os.path.join(baseline_dir, "faiss_flat.index")
metadata_path = os.path.join(baseline_dir, "metadata.pkl")
self.faiss_index = faiss.read_index(baseline_index_path)
with open(metadata_path, "rb") as f:
self.image_ids = pickle.load(f)
print(f"📚 Loaded FAISS flat baseline with {self.faiss_index.ntotal} image vectors")
# Load sentence-transformers CLIP for text embedding (ViT-L/14)
self.st_clip = SentenceTransformer("clip-ViT-L-14")
def evaluate_recall_at_3(
self, captions: list[str], complexity: int = 64, recompute_embeddings: bool = True
) -> float:
"""Evaluate recall@3 for multimodal retrieval: caption queries -> image results"""
recompute_str = "with recompute" if recompute_embeddings else "no recompute"
print(f"🔍 Evaluating recall@3 with complexity={complexity} ({recompute_str})...")
total_recall = 0.0
num_queries = len(captions)
for i, caption in enumerate(captions):
# Get ground truth: search with FAISS flat using caption text embedding
# Generate CLIP text embedding for caption via sentence-transformers (normalized)
query_embedding = self.st_clip.encode(
[caption], convert_to_numpy=True, normalize_embeddings=True, show_progress_bar=False
).astype(np.float32)
# Search FAISS flat for ground truth using LEANN's modified faiss API
n = query_embedding.shape[0] # Number of queries
k = 3 # Number of nearest neighbors
distances = np.zeros((n, k), dtype=np.float32)
labels = np.zeros((n, k), dtype=np.int64)
self.faiss_index.search(
n,
faiss.swig_ptr(query_embedding),
k,
faiss.swig_ptr(distances),
faiss.swig_ptr(labels),
)
# Extract the results (image IDs from FAISS)
baseline_ids = {self.image_ids[idx] for idx in labels[0]}
# Search with LEANN at specified complexity (using caption as text query)
test_results = self.searcher.search(
caption,
top_k=3,
complexity=complexity,
recompute_embeddings=recompute_embeddings,
)
test_ids = {result.id for result in test_results}
# Calculate recall@3 = |intersection| / |ground_truth|
intersection = test_ids.intersection(baseline_ids)
recall = len(intersection) / 3.0 # Ground truth size is 3
total_recall += recall
if i < 3: # Show first few examples
print(f" Query {i + 1}: '{caption[:50]}...' -> Recall@3: {recall:.3f}")
print(f" FAISS ground truth: {list(baseline_ids)}")
print(f" LEANN results (C={complexity}, {recompute_str}): {list(test_ids)}")
print(f" Intersection: {list(intersection)}")
avg_recall = total_recall / num_queries
print(f"📊 Average Recall@3: {avg_recall:.3f} ({avg_recall * 100:.1f}%)")
return avg_recall
def cleanup(self):
"""Cleanup resources"""
if hasattr(self, "searcher"):
self.searcher.cleanup()
class LAIONEvaluator:
def __init__(self, index_path: str):
self.index_path = index_path
self.searcher = LeannSearcher(index_path)
def load_queries(self, queries_file: str) -> list[str]:
"""Load caption queries from evaluation file"""
captions = []
with open(queries_file, encoding="utf-8") as f:
for line in f:
if line.strip():
query_data = json.loads(line)
captions.append(query_data["query"])
print(f"📊 Loaded {len(captions)} caption queries")
return captions
def analyze_index_sizes(self) -> dict:
"""Analyze index sizes, emphasizing .index only (exclude passages)."""
print("📏 Analyzing index sizes (.index only)...")
# Get all index-related files
index_path = Path(self.index_path)
index_dir = index_path.parent
index_name = index_path.stem # Remove .leann extension
sizes: dict[str, float] = {}
# Core index files
index_file = index_dir / f"{index_name}.index"
meta_file = index_dir / f"{index_path.name}.meta.json" # Keep .leann for meta file
passages_file = index_dir / f"{index_path.name}.passages.jsonl" # Keep .leann for passages
passages_idx_file = index_dir / f"{index_path.name}.passages.idx" # Keep .leann for idx
# Core index size (.index only)
index_mb = index_file.stat().st_size / (1024 * 1024) if index_file.exists() else 0.0
sizes["index_only_mb"] = index_mb
# Other files for reference (not counted in index_only_mb)
sizes["metadata_mb"] = (
meta_file.stat().st_size / (1024 * 1024) if meta_file.exists() else 0.0
)
sizes["passages_text_mb"] = (
passages_file.stat().st_size / (1024 * 1024) if passages_file.exists() else 0.0
)
sizes["passages_index_mb"] = (
passages_idx_file.stat().st_size / (1024 * 1024) if passages_idx_file.exists() else 0.0
)
print(f" 📁 .index size: {index_mb:.1f} MB")
if sizes["metadata_mb"]:
print(f" 🧾 metadata: {sizes['metadata_mb']:.3f} MB")
if sizes["passages_text_mb"] or sizes["passages_index_mb"]:
print(
f" (passages excluded) text: {sizes['passages_text_mb']:.1f} MB, idx: {sizes['passages_index_mb']:.1f} MB"
)
return sizes
def create_non_compact_index_for_comparison(self, non_compact_index_path: str) -> dict:
"""Create a non-compact index for comparison purposes"""
print("🏗️ Building non-compact index from existing passages...")
# Load existing passages from current index
from leann import LeannBuilder
current_index_path = Path(self.index_path)
current_index_dir = current_index_path.parent
current_index_name = current_index_path.name
# Read metadata to get passage source
meta_path = current_index_dir / f"{current_index_name}.meta.json"
with open(meta_path) as f:
meta = json.load(f)
passage_source = meta["passage_sources"][0]
passage_file = passage_source["path"]
# Convert relative path to absolute
if not Path(passage_file).is_absolute():
passage_file = current_index_dir / Path(passage_file).name
print(f"📄 Loading passages from {passage_file}...")
# Load CLIP embeddings
embeddings_file = current_index_dir / "clip_image_embeddings.npy"
embeddings = np.load(embeddings_file)
print(f"📐 Loaded embeddings shape: {embeddings.shape}")
# Build non-compact index with same passages and embeddings
builder = LeannBuilder(
backend_name="hnsw",
# Use CLIP text encoder (ViT-L/14) to match image embeddings (768-dim)
embedding_model="clip-ViT-L-14",
embedding_mode="sentence-transformers",
is_recompute=False, # Disable recompute (store embeddings)
is_compact=False, # Disable compact storage
distance_metric="cosine",
**{
k: v
for k, v in meta.get("backend_kwargs", {}).items()
if k not in ["is_recompute", "is_compact", "distance_metric"]
},
)
# Prepare ids and add passages
ids: list[str] = []
with open(passage_file, encoding="utf-8") as f:
for line in f:
if line.strip():
data = json.loads(line)
ids.append(str(data["id"]))
# Ensure metadata contains the id used by the vector index
metadata = {**data.get("metadata", {}), "id": data["id"]}
builder.add_text(text=data["text"], metadata=metadata)
if len(ids) != embeddings.shape[0]:
raise ValueError(
f"IDs count ({len(ids)}) does not match embeddings ({embeddings.shape[0]})."
)
# Persist a pickle for build_index_from_embeddings
pkl_path = current_index_dir / "clip_image_embeddings.pkl"
with open(pkl_path, "wb") as pf:
pickle.dump((ids, embeddings.astype(np.float32)), pf)
print(
f"🔨 Building non-compact index at {non_compact_index_path} from precomputed embeddings..."
)
builder.build_index_from_embeddings(non_compact_index_path, str(pkl_path))
# Analyze the non-compact index size
temp_evaluator = LAIONEvaluator(non_compact_index_path)
non_compact_sizes = temp_evaluator.analyze_index_sizes()
non_compact_sizes["index_type"] = "non_compact"
return non_compact_sizes
def compare_index_performance(
self, non_compact_path: str, compact_path: str, test_captions: list, complexity: int
) -> dict:
"""Compare performance between non-compact and compact indexes"""
print("⚡ Comparing search performance between indexes...")
# Test queries
test_queries = test_captions[:5]
results = {
"non_compact": {"search_times": []},
"compact": {"search_times": []},
"avg_search_times": {},
"speed_ratio": 0.0,
}
# Test non-compact index (no recompute)
print(" 🔍 Testing non-compact index (no recompute)...")
non_compact_searcher = LeannSearcher(non_compact_path)
for caption in test_queries:
start_time = time.time()
_ = non_compact_searcher.search(
caption, top_k=3, complexity=complexity, recompute_embeddings=False
)
search_time = time.time() - start_time
results["non_compact"]["search_times"].append(search_time)
# Test compact index (with recompute)
print(" 🔍 Testing compact index (with recompute)...")
compact_searcher = LeannSearcher(compact_path)
for caption in test_queries:
start_time = time.time()
_ = compact_searcher.search(
caption, top_k=3, complexity=complexity, recompute_embeddings=True
)
search_time = time.time() - start_time
results["compact"]["search_times"].append(search_time)
# Calculate averages
results["avg_search_times"]["non_compact"] = sum(
results["non_compact"]["search_times"]
) / len(results["non_compact"]["search_times"])
results["avg_search_times"]["compact"] = sum(results["compact"]["search_times"]) / len(
results["compact"]["search_times"]
)
# Performance ratio
if results["avg_search_times"]["compact"] > 0:
results["speed_ratio"] = (
results["avg_search_times"]["non_compact"] / results["avg_search_times"]["compact"]
)
else:
results["speed_ratio"] = float("inf")
print(
f" Non-compact (no recompute): {results['avg_search_times']['non_compact']:.3f}s avg"
)
print(f" Compact (with recompute): {results['avg_search_times']['compact']:.3f}s avg")
print(f" Speed ratio: {results['speed_ratio']:.2f}x")
# Cleanup
non_compact_searcher.cleanup()
compact_searcher.cleanup()
return results
def _print_results(self, timing_metrics: dict):
"""Print evaluation results"""
print("\n🎯 LAION MULTIMODAL BENCHMARK RESULTS")
print("=" * 60)
# Index comparison analysis (prefer .index-only view if present)
if "current_index" in timing_metrics and "non_compact_index" in timing_metrics:
current = timing_metrics["current_index"]
non_compact = timing_metrics["non_compact_index"]
if "index_only_mb" in current and "index_only_mb" in non_compact:
print("\n📏 Index Comparison Analysis (.index only):")
print(f" Compact index (current): {current.get('index_only_mb', 0):.1f} MB")
print(f" Non-compact index: {non_compact.get('index_only_mb', 0):.1f} MB")
print(
f" Storage saving by compact: {timing_metrics.get('storage_saving_percent', 0):.1f}%"
)
# Show excluded components for reference if available
if any(
k in non_compact
for k in ("passages_text_mb", "passages_index_mb", "metadata_mb")
):
print(" (passages excluded in totals, shown for reference):")
print(
f" - Passages text: {non_compact.get('passages_text_mb', 0):.1f} MB, "
f"Passages index: {non_compact.get('passages_index_mb', 0):.1f} MB, "
f"Metadata: {non_compact.get('metadata_mb', 0):.3f} MB"
)
else:
# Fallback to legacy totals if running with older metrics
print("\n📏 Index Comparison Analysis:")
print(
f" Compact index (current): {current.get('total_with_embeddings', 0):.1f} MB"
)
print(
f" Non-compact index (with embeddings): {non_compact.get('total_with_embeddings', 0):.1f} MB"
)
print(
f" Storage saving by compact: {timing_metrics.get('storage_saving_percent', 0):.1f}%"
)
print(" Component breakdown (non-compact):")
print(f" - Main index: {non_compact.get('index', 0):.1f} MB")
print(f" - Passages text: {non_compact.get('passages_text', 0):.1f} MB")
print(f" - Passages index: {non_compact.get('passages_index', 0):.1f} MB")
print(f" - Metadata: {non_compact.get('metadata', 0):.1f} MB")
# Performance comparison
if "performance_comparison" in timing_metrics:
perf = timing_metrics["performance_comparison"]
print("\n⚡ Performance Comparison:")
print(
f" Non-compact (no recompute): {perf.get('avg_search_times', {}).get('non_compact', 0):.3f}s avg"
)
print(
f" Compact (with recompute): {perf.get('avg_search_times', {}).get('compact', 0):.3f}s avg"
)
print(f" Speed ratio: {perf.get('speed_ratio', 0):.2f}x")
# Legacy single index analysis (fallback)
if "total_with_embeddings" in timing_metrics and "current_index" not in timing_metrics:
print("\n📏 Index Size Analysis:")
print(
f" Index with embeddings: {timing_metrics.get('total_with_embeddings', 0):.1f} MB"
)
print(
f" Estimated pruned index: {timing_metrics.get('total_without_embeddings', 0):.1f} MB"
)
print(f" Compression ratio: {timing_metrics.get('compression_ratio', 0):.2f}x")
def cleanup(self):
"""Cleanup resources"""
if self.searcher:
self.searcher.cleanup()
def main():
parser = argparse.ArgumentParser(description="LAION Multimodal Benchmark Evaluation")
parser.add_argument("--index", required=True, help="Path to LEANN index")
parser.add_argument(
"--queries", default="data/evaluation_queries.jsonl", help="Path to evaluation queries"
)
parser.add_argument(
"--stage",
choices=["2", "3", "4", "5", "all"],
default="all",
help="Which stage to run (2=recall, 3=complexity, 4=index comparison, 5=generation)",
)
parser.add_argument("--complexity", type=int, default=None, help="Complexity for search")
parser.add_argument("--baseline-dir", default="baseline", help="Baseline output directory")
parser.add_argument("--output", help="Save results to JSON file")
parser.add_argument(
"--llm-backend",
choices=["hf"],
default="hf",
help="LLM backend (Qwen2.5-VL only supports HF)",
)
parser.add_argument(
"--model-name", default="Qwen/Qwen2.5-VL-7B-Instruct", help="Multimodal model name"
)
args = parser.parse_args()
try:
# Check if baseline exists
baseline_index_path = os.path.join(args.baseline_dir, "faiss_flat.index")
if not os.path.exists(baseline_index_path):
print(f"❌ FAISS baseline not found at {baseline_index_path}")
print("💡 Please run setup_laion.py first to build the baseline")
exit(1)
if args.stage == "2" or args.stage == "all":
# Stage 2: Recall@3 evaluation
print("🚀 Starting Stage 2: Recall@3 evaluation for multimodal retrieval")
evaluator = RecallEvaluator(args.index, args.baseline_dir)
# Load caption queries for testing
laion_evaluator = LAIONEvaluator(args.index)
captions = laion_evaluator.load_queries(args.queries)
# Test with queries for robust measurement
test_captions = captions[:100] # Use subset for speed
print(f"🧪 Testing with {len(test_captions)} caption queries")
# Test with complexity 64
complexity = 64
recall = evaluator.evaluate_recall_at_3(test_captions, complexity)
print(f"📈 Recall@3 at complexity {complexity}: {recall * 100:.1f}%")
evaluator.cleanup()
print("✅ Stage 2 completed!\n")
# Shared non-compact index path for Stage 3 and 4
non_compact_index_path = args.index.replace(".leann", "_noncompact.leann")
complexity = args.complexity
if args.stage == "3" or args.stage == "all":
# Stage 3: Binary search for 90% recall complexity
print("🚀 Starting Stage 3: Binary search for 90% recall complexity")
print(
"💡 Creating non-compact index for fast binary search with recompute_embeddings=False"
)
# Create non-compact index for binary search
print("🏗️ Creating non-compact index for binary search...")
evaluator = LAIONEvaluator(args.index)
evaluator.create_non_compact_index_for_comparison(non_compact_index_path)
# Use non-compact index for binary search
binary_search_evaluator = RecallEvaluator(non_compact_index_path, args.baseline_dir)
# Load caption queries for testing
captions = evaluator.load_queries(args.queries)
# Use subset for robust measurement
test_captions = captions[:50] # Smaller subset for binary search speed
print(f"🧪 Testing with {len(test_captions)} caption queries")
# Binary search for 90% recall complexity
target_recall = 0.9
min_complexity, max_complexity = 1, 128
print(f"🔍 Binary search for {target_recall * 100}% recall complexity...")
print(f"Search range: {min_complexity} to {max_complexity}")
best_complexity = None
best_recall = 0.0
while min_complexity <= max_complexity:
mid_complexity = (min_complexity + max_complexity) // 2
print(
f"\n🧪 Testing complexity {mid_complexity} (no recompute, non-compact index)..."
)
# Use recompute_embeddings=False on non-compact index for fast binary search
recall = binary_search_evaluator.evaluate_recall_at_3(
test_captions, mid_complexity, recompute_embeddings=False
)
print(
f" Complexity {mid_complexity}: Recall@3 = {recall:.3f} ({recall * 100:.1f}%)"
)
if recall >= target_recall:
best_complexity = mid_complexity
best_recall = recall
max_complexity = mid_complexity - 1
print(" ✅ Target reached! Searching for lower complexity...")
else:
min_complexity = mid_complexity + 1
print(" ❌ Below target. Searching for higher complexity...")
if best_complexity is not None:
print("\n🎯 Optimal complexity found!")
print(f" Complexity: {best_complexity}")
print(f" Recall@3: {best_recall:.3f} ({best_recall * 100:.1f}%)")
# Test a few complexities around the optimal one for verification
print("\n🔬 Verification test around optimal complexity:")
verification_complexities = [
max(1, best_complexity - 2),
max(1, best_complexity - 1),
best_complexity,
best_complexity + 1,
best_complexity + 2,
]
for complexity in verification_complexities:
if complexity <= 512: # reasonable upper bound
recall = binary_search_evaluator.evaluate_recall_at_3(
test_captions, complexity, recompute_embeddings=False
)
status = "" if recall >= target_recall else ""
print(f" {status} Complexity {complexity:3d}: {recall * 100:5.1f}%")
# Now test the optimal complexity with compact index and recompute for comparison
print(
f"\n🔄 Testing optimal complexity {best_complexity} on compact index WITH recompute..."
)
compact_evaluator = RecallEvaluator(args.index, args.baseline_dir)
recall_with_recompute = compact_evaluator.evaluate_recall_at_3(
test_captions[:10], best_complexity, recompute_embeddings=True
)
print(
f" ✅ Complexity {best_complexity} (compact index with recompute): {recall_with_recompute * 100:.1f}%"
)
complexity = best_complexity
print(
f" 📊 Recall difference: {abs(best_recall - recall_with_recompute) * 100:.2f}%"
)
compact_evaluator.cleanup()
else:
print(f"\n❌ Could not find complexity achieving {target_recall * 100}% recall")
print("All tested complexities were below target.")
# Cleanup evaluators (keep non-compact index for Stage 4)
binary_search_evaluator.cleanup()
evaluator.cleanup()
print("✅ Stage 3 completed! Non-compact index saved for Stage 4.\n")
if args.stage == "4" or args.stage == "all":
# Stage 4: Index comparison (without LLM generation)
print("🚀 Starting Stage 4: Index comparison analysis")
# Use LAION evaluator for index comparison
evaluator = LAIONEvaluator(args.index)
# Load caption queries
captions = evaluator.load_queries(args.queries)
# Step 1: Analyze current (compact) index
print("\n📏 Analyzing current index (compact, pruned)...")
compact_size_metrics = evaluator.analyze_index_sizes()
compact_size_metrics["index_type"] = "compact"
# Step 2: Use existing non-compact index or create if needed
if Path(non_compact_index_path).exists():
print(
f"\n📁 Using existing non-compact index from Stage 3: {non_compact_index_path}"
)
temp_evaluator = LAIONEvaluator(non_compact_index_path)
non_compact_size_metrics = temp_evaluator.analyze_index_sizes()
non_compact_size_metrics["index_type"] = "non_compact"
else:
print("\n🏗️ Creating non-compact index (with embeddings) for comparison...")
non_compact_size_metrics = evaluator.create_non_compact_index_for_comparison(
non_compact_index_path
)
# Step 3: Compare index sizes (.index only)
print("\n📊 Index size comparison (.index only):")
print(
f" Compact index (current): {compact_size_metrics.get('index_only_mb', 0):.1f} MB"
)
print(f" Non-compact index: {non_compact_size_metrics.get('index_only_mb', 0):.1f} MB")
storage_saving = 0.0
if non_compact_size_metrics.get("index_only_mb", 0) > 0:
storage_saving = (
(
non_compact_size_metrics.get("index_only_mb", 0)
- compact_size_metrics.get("index_only_mb", 0)
)
/ non_compact_size_metrics.get("index_only_mb", 1)
* 100
)
print(f" Storage saving by compact: {storage_saving:.1f}%")
# Step 4: Performance comparison between the two indexes
if complexity is None:
raise ValueError("Complexity is required for index comparison")
print("\n⚡ Performance comparison between indexes...")
performance_metrics = evaluator.compare_index_performance(
non_compact_index_path, args.index, captions[:10], complexity=complexity
)
# Combine all metrics
combined_metrics = {
"current_index": compact_size_metrics,
"non_compact_index": non_compact_size_metrics,
"performance_comparison": performance_metrics,
"storage_saving_percent": storage_saving,
}
# Print comprehensive results
evaluator._print_results(combined_metrics)
# Save results if requested
if args.output:
print(f"\n💾 Saving results to {args.output}...")
with open(args.output, "w") as f:
json.dump(combined_metrics, f, indent=2, default=str)
print(f"✅ Results saved to {args.output}")
evaluator.cleanup()
print("✅ Stage 4 completed!\n")
if args.stage in ("5", "all"):
print("🚀 Starting Stage 5: Multimodal generation with Qwen2.5-VL")
evaluator = LAIONEvaluator(args.index)
captions = evaluator.load_queries(args.queries)
test_captions = captions[: min(20, len(captions))] # Use subset for generation
print(f"🧪 Testing multimodal generation with {len(test_captions)} queries")
# Load Qwen2.5-VL model
try:
print("Loading Qwen2.5-VL model...")
processor, model = load_qwen_vl_model(args.model_name)
# Run multimodal generation evaluation
complexity = args.complexity or 64
gen_results = evaluate_multimodal_rag(
evaluator.searcher,
test_captions,
processor=processor,
model=model,
complexity=complexity,
)
print("\n📊 Multimodal Generation Results:")
print(f" Total Queries: {len(test_captions)}")
print(f" Avg Search Time: {gen_results['avg_search_time']:.3f}s")
print(f" Avg Generation Time: {gen_results['avg_generation_time']:.3f}s")
total_time = gen_results["avg_search_time"] + gen_results["avg_generation_time"]
search_pct = (gen_results["avg_search_time"] / total_time) * 100
gen_pct = (gen_results["avg_generation_time"] / total_time) * 100
print(f" Time Distribution: Search {search_pct:.1f}%, Generation {gen_pct:.1f}%")
print(" LLM Backend: HuggingFace transformers")
print(f" Model: {args.model_name}")
# Show sample results
print("\n📝 Sample Multimodal Generations:")
for i, response in enumerate(gen_results["results"][:3]):
# Handle both string and dict formats for captions
if isinstance(test_captions[i], dict):
caption_text = test_captions[i].get("query", str(test_captions[i]))
else:
caption_text = str(test_captions[i])
print(f" Query {i + 1}: {caption_text[:60]}...")
print(f" Response {i + 1}: {response[:100]}...")
print()
except Exception as e:
print(f"❌ Multimodal generation evaluation failed: {e}")
print("💡 Make sure transformers and Qwen2.5-VL are installed")
import traceback
traceback.print_exc()
evaluator.cleanup()
print("✅ Stage 5 completed!\n")
if args.stage == "all":
print("🎉 All evaluation stages completed successfully!")
print("\n📋 Summary:")
print(" Stage 2: ✅ Multimodal Recall@3 evaluation completed")
print(" Stage 3: ✅ Optimal complexity found")
print(" Stage 4: ✅ Index comparison analysis completed")
print(" Stage 5: ✅ Multimodal generation evaluation completed")
print("\n🔧 Recommended next steps:")
print(" - Use optimal complexity for best speed/accuracy balance")
print(" - Review index comparison for storage vs performance tradeoffs")
# Clean up non-compact index after all stages complete
print("\n🧹 Cleaning up temporary non-compact index...")
if Path(non_compact_index_path).exists():
temp_index_dir = Path(non_compact_index_path).parent
temp_index_name = Path(non_compact_index_path).name
for temp_file in temp_index_dir.glob(f"{temp_index_name}*"):
temp_file.unlink()
print(f"✅ Cleaned up {non_compact_index_path}")
else:
print("📝 No temporary index to clean up")
except KeyboardInterrupt:
print("\n⚠️ Evaluation interrupted by user")
exit(1)
except Exception as e:
print(f"\n❌ Stage {args.stage} failed: {e}")
import traceback
traceback.print_exc()
exit(1)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,576 @@
"""
LAION Multimodal Benchmark Setup Script
Downloads LAION subset and builds LEANN index with sentence embeddings
"""
import argparse
import asyncio
import io
import json
import os
import pickle
import time
from pathlib import Path
import aiohttp
import numpy as np
from datasets import load_dataset
from leann import LeannBuilder
from PIL import Image
from sentence_transformers import SentenceTransformer
from tqdm import tqdm
class LAIONSetup:
def __init__(self, data_dir: str = "data"):
self.data_dir = Path(data_dir)
self.images_dir = self.data_dir / "laion_images"
self.metadata_file = self.data_dir / "laion_metadata.jsonl"
# Create directories
self.data_dir.mkdir(exist_ok=True)
self.images_dir.mkdir(exist_ok=True)
async def download_single_image(self, session, sample_data, semaphore, progress_bar):
"""Download a single image asynchronously"""
async with semaphore: # Limit concurrent downloads
try:
image_url = sample_data["url"]
image_path = sample_data["image_path"]
# Skip if already exists
if os.path.exists(image_path):
progress_bar.update(1)
return sample_data
async with session.get(image_url, timeout=10) as response:
if response.status == 200:
content = await response.read()
# Verify it's a valid image
try:
img = Image.open(io.BytesIO(content))
img = img.convert("RGB")
img.save(image_path, "JPEG")
progress_bar.update(1)
return sample_data
except Exception:
progress_bar.update(1)
return None # Skip invalid images
else:
progress_bar.update(1)
return None
except Exception:
progress_bar.update(1)
return None
def download_laion_subset(self, num_samples: int = 1000):
"""Download LAION subset from HuggingFace datasets with async parallel downloading"""
print(f"📥 Downloading LAION subset ({num_samples} samples)...")
# Load LAION-400M subset from HuggingFace
print("🤗 Loading from HuggingFace datasets...")
dataset = load_dataset("laion/laion400m", split="train", streaming=True)
# Collect sample metadata first (fast)
print("📋 Collecting sample metadata...")
candidates = []
for sample in dataset:
if len(candidates) >= num_samples * 3: # Get 3x more candidates in case some fail
break
image_url = sample.get("url", "")
caption = sample.get("caption", "")
if not image_url or not caption:
continue
image_filename = f"laion_{len(candidates):06d}.jpg"
image_path = self.images_dir / image_filename
candidate = {
"id": f"laion_{len(candidates):06d}",
"url": image_url,
"caption": caption,
"image_path": str(image_path),
"width": sample.get("original_width", 512),
"height": sample.get("original_height", 512),
"similarity": sample.get("similarity", 0.0),
}
candidates.append(candidate)
print(
f"📊 Collected {len(candidates)} candidates, downloading {num_samples} in parallel..."
)
# Download images in parallel
async def download_batch():
semaphore = asyncio.Semaphore(20) # Limit to 20 concurrent downloads
connector = aiohttp.TCPConnector(limit=100, limit_per_host=20)
timeout = aiohttp.ClientTimeout(total=30)
progress_bar = tqdm(total=len(candidates[: num_samples * 2]), desc="Downloading images")
async with aiohttp.ClientSession(connector=connector, timeout=timeout) as session:
tasks = []
for candidate in candidates[: num_samples * 2]: # Try 2x more than needed
task = self.download_single_image(session, candidate, semaphore, progress_bar)
tasks.append(task)
# Wait for all downloads
results = await asyncio.gather(*tasks, return_exceptions=True)
progress_bar.close()
# Filter successful downloads
successful = [r for r in results if r is not None and not isinstance(r, Exception)]
return successful[:num_samples]
# Run async download
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
samples = loop.run_until_complete(download_batch())
finally:
loop.close()
# Save metadata
with open(self.metadata_file, "w", encoding="utf-8") as f:
for sample in samples:
f.write(json.dumps(sample) + "\n")
print(f"✅ Downloaded {len(samples)} real LAION samples with async parallel downloading")
return samples
def generate_clip_image_embeddings(self, samples: list[dict]):
"""Generate CLIP image embeddings for downloaded images"""
print("🔍 Generating CLIP image embeddings...")
# Load sentence-transformers CLIP (ViT-L/14, 768-dim) for image embeddings
# This single model can encode both images and text.
model = SentenceTransformer("clip-ViT-L-14")
embeddings = []
valid_samples = []
for sample in tqdm(samples, desc="Processing images"):
try:
# Load image
image_path = sample["image_path"]
image = Image.open(image_path).convert("RGB")
# Encode image to 768-dim embedding via sentence-transformers (normalized)
vec = model.encode(
[image],
convert_to_numpy=True,
normalize_embeddings=True,
batch_size=1,
show_progress_bar=False,
)[0]
embeddings.append(vec.astype(np.float32))
valid_samples.append(sample)
except Exception as e:
print(f" ⚠️ Failed to process {sample['id']}: {e}")
# Skip invalid images
embeddings = np.array(embeddings, dtype=np.float32)
# Save embeddings
embeddings_file = self.data_dir / "clip_image_embeddings.npy"
np.save(embeddings_file, embeddings)
print(f"✅ Generated {len(embeddings)} image embeddings, shape: {embeddings.shape}")
return embeddings, valid_samples
def build_faiss_baseline(
self, embeddings: np.ndarray, samples: list[dict], output_dir: str = "baseline"
):
"""Build FAISS flat baseline using CLIP image embeddings"""
print("🔨 Building FAISS Flat baseline...")
from leann_backend_hnsw import faiss
os.makedirs(output_dir, exist_ok=True)
baseline_path = os.path.join(output_dir, "faiss_flat.index")
metadata_path = os.path.join(output_dir, "metadata.pkl")
if os.path.exists(baseline_path) and os.path.exists(metadata_path):
print(f"✅ Baseline already exists at {baseline_path}")
return baseline_path
# Extract image IDs (must be present)
if not samples or "id" not in samples[0]:
raise KeyError("samples missing 'id' field for FAISS baseline")
image_ids: list[str] = [str(sample["id"]) for sample in samples]
print(f"📐 Embedding shape: {embeddings.shape}")
print(f"📄 Processing {len(image_ids)} images")
# Build FAISS flat index
print("🏗️ Building FAISS IndexFlatIP...")
dimension = embeddings.shape[1]
index = faiss.IndexFlatIP(dimension)
# Add embeddings to flat index
embeddings_f32 = embeddings.astype(np.float32)
index.add(embeddings_f32.shape[0], faiss.swig_ptr(embeddings_f32))
# Save index and metadata
faiss.write_index(index, baseline_path)
with open(metadata_path, "wb") as f:
pickle.dump(image_ids, f)
print(f"✅ FAISS baseline saved to {baseline_path}")
print(f"✅ Metadata saved to {metadata_path}")
print(f"📊 Total vectors: {index.ntotal}")
return baseline_path
def create_leann_passages(self, samples: list[dict]):
"""Create LEANN-compatible passages from LAION data"""
print("📝 Creating LEANN passages...")
passages_file = self.data_dir / "laion_passages.jsonl"
with open(passages_file, "w", encoding="utf-8") as f:
for i, sample in enumerate(samples):
passage = {
"id": sample["id"],
"text": sample["caption"], # Use caption as searchable text
"metadata": {
"image_url": sample["url"],
"image_path": sample.get("image_path", ""),
"width": sample["width"],
"height": sample["height"],
"similarity": sample["similarity"],
"image_index": i, # Index for embedding lookup
},
}
f.write(json.dumps(passage) + "\n")
print(f"✅ Created {len(samples)} passages")
return passages_file
def build_compact_index(
self, passages_file: Path, embeddings: np.ndarray, index_path: str, backend: str = "hnsw"
):
"""Build compact LEANN index with CLIP embeddings (recompute=True, compact=True)"""
print(f"🏗️ Building compact LEANN index with {backend} backend...")
start_time = time.time()
# Save CLIP embeddings (npy) and also a pickle with (ids, embeddings)
npy_path = self.data_dir / "clip_image_embeddings.npy"
np.save(npy_path, embeddings)
print(f"💾 Saved CLIP embeddings to {npy_path}")
# Prepare ids in the same order as passages_file (matches embeddings order)
ids: list[str] = []
with open(passages_file, encoding="utf-8") as f:
for line in f:
if line.strip():
rec = json.loads(line)
ids.append(str(rec["id"]))
if len(ids) != embeddings.shape[0]:
raise ValueError(
f"IDs count ({len(ids)}) does not match embeddings ({embeddings.shape[0]})."
)
pkl_path = self.data_dir / "clip_image_embeddings.pkl"
with open(pkl_path, "wb") as pf:
pickle.dump((ids, embeddings.astype(np.float32)), pf)
print(f"💾 Saved (ids, embeddings) pickle to {pkl_path}")
# Initialize builder - compact with recompute
# Note: For multimodal case, we need to handle embeddings differently
# Let's try using sentence-transformers mode but with custom embeddings
builder = LeannBuilder(
backend_name=backend,
# Use CLIP text encoder (ViT-L/14) to match image space (768-dim)
embedding_model="clip-ViT-L-14",
embedding_mode="sentence-transformers",
# HNSW params (or forwarded to chosen backend)
graph_degree=32,
complexity=64,
# Compact/pruned with recompute at query time
is_recompute=True,
is_compact=True,
distance_metric="cosine", # CLIP uses normalized vectors; cosine is appropriate
num_threads=4,
)
# Add passages (text + metadata)
print("📚 Adding passages...")
self._add_passages_with_embeddings(builder, passages_file, embeddings)
print(f"🔨 Building compact index at {index_path} from precomputed embeddings...")
builder.build_index_from_embeddings(index_path, str(pkl_path))
build_time = time.time() - start_time
print(f"✅ Compact index built in {build_time:.2f}s")
# Analyze index size
self._analyze_index_size(index_path)
return index_path
def build_non_compact_index(
self, passages_file: Path, embeddings: np.ndarray, index_path: str, backend: str = "hnsw"
):
"""Build non-compact LEANN index with CLIP embeddings (recompute=False, compact=False)"""
print(f"🏗️ Building non-compact LEANN index with {backend} backend...")
start_time = time.time()
# Ensure embeddings are saved (npy + pickle)
npy_path = self.data_dir / "clip_image_embeddings.npy"
if not npy_path.exists():
np.save(npy_path, embeddings)
print(f"💾 Saved CLIP embeddings to {npy_path}")
# Prepare ids in same order as passages_file
ids: list[str] = []
with open(passages_file, encoding="utf-8") as f:
for line in f:
if line.strip():
rec = json.loads(line)
ids.append(str(rec["id"]))
if len(ids) != embeddings.shape[0]:
raise ValueError(
f"IDs count ({len(ids)}) does not match embeddings ({embeddings.shape[0]})."
)
pkl_path = self.data_dir / "clip_image_embeddings.pkl"
if not pkl_path.exists():
with open(pkl_path, "wb") as pf:
pickle.dump((ids, embeddings.astype(np.float32)), pf)
print(f"💾 Saved (ids, embeddings) pickle to {pkl_path}")
# Initialize builder - non-compact without recompute
builder = LeannBuilder(
backend_name=backend,
embedding_model="clip-ViT-L-14",
embedding_mode="sentence-transformers",
graph_degree=32,
complexity=64,
is_recompute=False, # Store embeddings (no recompute needed)
is_compact=False, # Store full index (not pruned)
distance_metric="cosine",
num_threads=4,
)
# Add passages - embeddings will be loaded from file
print("📚 Adding passages...")
self._add_passages_with_embeddings(builder, passages_file, embeddings)
print(f"🔨 Building non-compact index at {index_path} from precomputed embeddings...")
builder.build_index_from_embeddings(index_path, str(pkl_path))
build_time = time.time() - start_time
print(f"✅ Non-compact index built in {build_time:.2f}s")
# Analyze index size
self._analyze_index_size(index_path)
return index_path
def _add_passages_with_embeddings(self, builder, passages_file: Path, embeddings: np.ndarray):
"""Helper to add passages with pre-computed CLIP embeddings"""
with open(passages_file, encoding="utf-8") as f:
for line in tqdm(f, desc="Adding passages"):
if line.strip():
passage = json.loads(line)
# Add image metadata - LEANN will handle embeddings separately
# Note: We store image metadata and caption text for searchability
# Important: ensure passage ID in metadata matches vector ID
builder.add_text(
text=passage["text"], # Image caption for searchability
metadata={**passage["metadata"], "id": passage["id"]},
)
def _analyze_index_size(self, index_path: str):
"""Analyze index file sizes"""
print("📏 Analyzing index sizes...")
index_path = Path(index_path)
index_dir = index_path.parent
index_name = index_path.name # e.g., laion_index.leann
index_prefix = index_path.stem # e.g., laion_index
files = [
(f"{index_prefix}.index", ".index", "core"),
(f"{index_name}.meta.json", ".meta.json", "core"),
(f"{index_name}.ids.txt", ".ids.txt", "core"),
(f"{index_name}.passages.jsonl", ".passages.jsonl", "passages"),
(f"{index_name}.passages.idx", ".passages.idx", "passages"),
]
def _fmt_size(bytes_val: int) -> str:
if bytes_val < 1024:
return f"{bytes_val} B"
kb = bytes_val / 1024
if kb < 1024:
return f"{kb:.1f} KB"
mb = kb / 1024
if mb < 1024:
return f"{mb:.2f} MB"
gb = mb / 1024
return f"{gb:.2f} GB"
total_index_only_mb = 0.0
total_all_mb = 0.0
for filename, label, group in files:
file_path = index_dir / filename
if file_path.exists():
size_bytes = file_path.stat().st_size
print(f" {label}: {_fmt_size(size_bytes)}")
size_mb = size_bytes / (1024 * 1024)
total_all_mb += size_mb
if group == "core":
total_index_only_mb += size_mb
else:
print(f" {label}: (missing)")
print(f" Total (index only, exclude passages): {total_index_only_mb:.2f} MB")
print(f" Total (including passages): {total_all_mb:.2f} MB")
def create_evaluation_queries(self, samples: list[dict], num_queries: int = 200):
"""Create evaluation queries from captions"""
print(f"📝 Creating {num_queries} evaluation queries...")
# Sample random captions as queries
import random
random.seed(42) # For reproducibility
query_samples = random.sample(samples, min(num_queries, len(samples)))
queries_file = self.data_dir / "evaluation_queries.jsonl"
with open(queries_file, "w", encoding="utf-8") as f:
for sample in query_samples:
query = {
"id": sample["id"],
"query": sample["caption"],
"ground_truth_id": sample["id"], # For potential recall evaluation
}
f.write(json.dumps(query) + "\n")
print(f"✅ Created {len(query_samples)} evaluation queries")
return queries_file
def main():
parser = argparse.ArgumentParser(description="Setup LAION Multimodal Benchmark")
parser.add_argument("--data-dir", default="data", help="Data directory")
parser.add_argument("--num-samples", type=int, default=1000, help="Number of LAION samples")
parser.add_argument("--num-queries", type=int, default=50, help="Number of evaluation queries")
parser.add_argument("--index-path", default="data/laion_index.leann", help="Output index path")
parser.add_argument(
"--backend", default="hnsw", choices=["hnsw", "diskann"], help="LEANN backend"
)
parser.add_argument("--skip-download", action="store_true", help="Skip LAION dataset download")
parser.add_argument("--skip-build", action="store_true", help="Skip index building")
args = parser.parse_args()
print("🚀 Setting up LAION Multimodal Benchmark")
print("=" * 50)
try:
# Initialize setup
setup = LAIONSetup(args.data_dir)
# Step 1: Download LAION subset
if not args.skip_download:
print("\n📦 Step 1: Download LAION subset")
samples = setup.download_laion_subset(args.num_samples)
# Step 2: Generate CLIP image embeddings
print("\n🔍 Step 2: Generate CLIP image embeddings")
embeddings, valid_samples = setup.generate_clip_image_embeddings(samples)
# Step 3: Create LEANN passages (image metadata with embeddings)
print("\n📝 Step 3: Create LEANN passages")
passages_file = setup.create_leann_passages(valid_samples)
else:
print("⏭️ Skipping LAION dataset download")
# Load existing data
passages_file = setup.data_dir / "laion_passages.jsonl"
embeddings_file = setup.data_dir / "clip_image_embeddings.npy"
if not passages_file.exists() or not embeddings_file.exists():
raise FileNotFoundError(
"Passages or embeddings file not found. Run without --skip-download first."
)
embeddings = np.load(embeddings_file)
print(f"📊 Loaded {len(embeddings)} embeddings from {embeddings_file}")
# Step 4: Build LEANN indexes (both compact and non-compact)
if not args.skip_build:
print("\n🏗️ Step 4: Build LEANN indexes with CLIP image embeddings")
# Build compact index (production mode - small, recompute required)
compact_index_path = args.index_path
print(f"Building compact index: {compact_index_path}")
setup.build_compact_index(passages_file, embeddings, compact_index_path, args.backend)
# Build non-compact index (comparison mode - large, fast search)
non_compact_index_path = args.index_path.replace(".leann", "_noncompact.leann")
print(f"Building non-compact index: {non_compact_index_path}")
setup.build_non_compact_index(
passages_file, embeddings, non_compact_index_path, args.backend
)
# Step 5: Build FAISS flat baseline
print("\n🔨 Step 5: Build FAISS flat baseline")
if not args.skip_download:
baseline_path = setup.build_faiss_baseline(embeddings, valid_samples)
else:
# Load valid_samples from passages file for FAISS baseline
valid_samples = []
with open(passages_file, encoding="utf-8") as f:
for line in f:
if line.strip():
passage = json.loads(line)
valid_samples.append({"id": passage["id"], "caption": passage["text"]})
baseline_path = setup.build_faiss_baseline(embeddings, valid_samples)
# Step 6: Create evaluation queries
print("\n📝 Step 6: Create evaluation queries")
queries_file = setup.create_evaluation_queries(valid_samples, args.num_queries)
else:
print("⏭️ Skipping index building")
baseline_path = "data/baseline/faiss_index.bin"
queries_file = setup.data_dir / "evaluation_queries.jsonl"
print("\n🎉 Setup completed successfully!")
print("📊 Summary:")
if not args.skip_download:
print(f" Downloaded samples: {len(samples)}")
print(f" Valid samples with embeddings: {len(valid_samples)}")
else:
print(f" Loaded {len(embeddings)} embeddings")
if not args.skip_build:
print(f" Compact index: {compact_index_path}")
print(f" Non-compact index: {non_compact_index_path}")
print(f" FAISS baseline: {baseline_path}")
print(f" Queries: {queries_file}")
print("\n🔧 Next steps:")
print(f" Run evaluation: python evaluate_laion.py --index {compact_index_path}")
print(f" Or compare with: python evaluate_laion.py --index {non_compact_index_path}")
else:
print(" Skipped building indexes")
except KeyboardInterrupt:
print("\n⚠️ Setup interrupted by user")
exit(1)
except Exception as e:
print(f"\n❌ Setup failed: {e}")
exit(1)
if __name__ == "__main__":
main()

301
benchmarks/llm_utils.py Normal file
View File

@@ -0,0 +1,301 @@
"""
LLM utils for RAG benchmarks with Qwen3-8B and Qwen2.5-VL (multimodal)
"""
import time
try:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
HF_AVAILABLE = True
except ImportError:
HF_AVAILABLE = False
try:
from vllm import LLM, SamplingParams
VLLM_AVAILABLE = True
except ImportError:
VLLM_AVAILABLE = False
def is_qwen3_model(model_name):
"""Check if model is Qwen3"""
return "Qwen3" in model_name or "qwen3" in model_name.lower()
def is_qwen_vl_model(model_name):
"""Check if model is Qwen2.5-VL"""
return "Qwen2.5-VL" in model_name or "qwen2.5-vl" in model_name.lower()
def apply_qwen3_chat_template(tokenizer, prompt):
"""Apply Qwen3 chat template with thinking enabled"""
messages = [{"role": "user", "content": prompt}]
return tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True,
)
def extract_thinking_answer(response):
"""Extract final answer from Qwen3 thinking model response"""
if "<think>" in response and "</think>" in response:
try:
think_end = response.index("</think>") + len("</think>")
final_answer = response[think_end:].strip()
return final_answer
except (ValueError, IndexError):
pass
return response.strip()
def load_hf_model(model_name="Qwen/Qwen3-8B"):
"""Load HuggingFace model"""
if not HF_AVAILABLE:
raise ImportError("transformers not available")
print(f"Loading HF: {model_name}")
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto",
trust_remote_code=True,
)
return tokenizer, model
def load_vllm_model(model_name="Qwen/Qwen3-8B"):
"""Load vLLM model"""
if not VLLM_AVAILABLE:
raise ImportError("vllm not available")
print(f"Loading vLLM: {model_name}")
llm = LLM(model=model_name, trust_remote_code=True)
# Qwen3 specific config
if is_qwen3_model(model_name):
stop_tokens = ["<|im_end|>", "<|end_of_text|>"]
max_tokens = 2048
else:
stop_tokens = None
max_tokens = 1024
sampling_params = SamplingParams(temperature=0.7, max_tokens=max_tokens, stop=stop_tokens)
return llm, sampling_params
def generate_hf(tokenizer, model, prompt, max_tokens=None):
"""Generate with HF - supports Qwen3 thinking models"""
model_name = getattr(model, "name_or_path", "unknown")
is_qwen3 = is_qwen3_model(model_name)
# Apply chat template for Qwen3
if is_qwen3:
prompt = apply_qwen3_chat_template(tokenizer, prompt)
max_tokens = max_tokens or 2048
else:
max_tokens = max_tokens or 1024
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=max_tokens,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
response = response[len(prompt) :].strip()
# Extract final answer for thinking models
if is_qwen3:
return extract_thinking_answer(response)
return response
def generate_vllm(llm, sampling_params, prompt):
"""Generate with vLLM - supports Qwen3 thinking models"""
outputs = llm.generate([prompt], sampling_params)
response = outputs[0].outputs[0].text.strip()
# Extract final answer for Qwen3 thinking models
model_name = str(llm.llm_engine.model_config.model)
if is_qwen3_model(model_name):
return extract_thinking_answer(response)
return response
def create_prompt(context, query, domain="default"):
"""Create RAG prompt"""
if domain == "emails":
return f"Email content:\n{context}\n\nQuestion: {query}\n\nAnswer:"
elif domain == "finance":
return f"Financial content:\n{context}\n\nQuestion: {query}\n\nAnswer:"
elif domain == "multimodal":
return f"Image context:\n{context}\n\nQuestion: {query}\n\nAnswer:"
else:
return f"Context: {context}\n\nQuestion: {query}\n\nAnswer:"
def evaluate_rag(searcher, llm_func, queries, domain="default", top_k=3, complexity=64):
"""Simple RAG evaluation with timing"""
search_times = []
gen_times = []
results = []
for i, query in enumerate(queries):
# Search
start = time.time()
docs = searcher.search(query, top_k=top_k, complexity=complexity)
search_time = time.time() - start
# Generate
context = "\n\n".join([doc.text for doc in docs])
prompt = create_prompt(context, query, domain)
start = time.time()
response = llm_func(prompt)
gen_time = time.time() - start
search_times.append(search_time)
gen_times.append(gen_time)
results.append(response)
if i < 3:
print(f"Q{i + 1}: Search={search_time:.3f}s, Gen={gen_time:.3f}s")
return {
"avg_search_time": sum(search_times) / len(search_times),
"avg_generation_time": sum(gen_times) / len(gen_times),
"results": results,
}
def load_qwen_vl_model(model_name="Qwen/Qwen2.5-VL-7B-Instruct"):
"""Load Qwen2.5-VL multimodal model"""
if not HF_AVAILABLE:
raise ImportError("transformers not available")
print(f"Loading Qwen2.5-VL: {model_name}")
try:
from transformers import AutoModelForVision2Seq, AutoProcessor
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForVision2Seq.from_pretrained(
model_name, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True
)
return processor, model
except Exception as e:
print(f"Failed to load with AutoModelForVision2Seq, trying specific class: {e}")
# Fallback to specific class
try:
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
model = Qwen2VLForConditionalGeneration.from_pretrained(
model_name, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True
)
return processor, model
except Exception as e2:
raise ImportError(f"Failed to load Qwen2.5-VL model: {e2}")
def generate_qwen_vl(processor, model, prompt, image_path=None, max_tokens=512):
"""Generate with Qwen2.5-VL multimodal model"""
from PIL import Image
# Prepare inputs
if image_path:
image = Image.open(image_path)
inputs = processor(text=prompt, images=image, return_tensors="pt").to(model.device)
else:
inputs = processor(text=prompt, return_tensors="pt").to(model.device)
# Generate
with torch.no_grad():
generated_ids = model.generate(
**inputs, max_new_tokens=max_tokens, do_sample=False, temperature=0.1
)
# Decode response
generated_ids = generated_ids[:, inputs["input_ids"].shape[1] :]
response = processor.decode(generated_ids[0], skip_special_tokens=True)
return response
def create_multimodal_prompt(context, query, image_descriptions, task_type="images"):
"""Create prompt for multimodal RAG"""
if task_type == "images":
return f"""Based on the retrieved images and their descriptions, answer the following question.
Retrieved Image Descriptions:
{context}
Question: {query}
Provide a detailed answer based on the visual content described above."""
return f"Context: {context}\nQuestion: {query}\nAnswer:"
def evaluate_multimodal_rag(searcher, queries, processor=None, model=None, complexity=64):
"""Evaluate multimodal RAG with Qwen2.5-VL"""
search_times = []
gen_times = []
results = []
for i, query_item in enumerate(queries):
# Handle both string and dict formats for queries
if isinstance(query_item, dict):
query = query_item.get("query", "")
image_path = query_item.get("image_path") # Optional reference image
else:
query = str(query_item)
image_path = None
# Search
start_time = time.time()
search_results = searcher.search(query, top_k=3, complexity=complexity)
search_time = time.time() - start_time
search_times.append(search_time)
# Prepare context from search results
context_parts = []
for result in search_results:
context_parts.append(f"- {result.text}")
context = "\n".join(context_parts)
# Generate with multimodal model
start_time = time.time()
if processor and model:
prompt = create_multimodal_prompt(context, query, context_parts)
response = generate_qwen_vl(processor, model, prompt, image_path)
else:
response = f"Context: {context}"
gen_time = time.time() - start_time
gen_times.append(gen_time)
results.append(response)
if i < 3:
print(f"Q{i + 1}: Search={search_time:.3f}s, Gen={gen_time:.3f}s")
return {
"avg_search_time": sum(search_times) / len(search_times),
"avg_generation_time": sum(gen_times) / len(gen_times),
"results": results,
}

View File

@@ -12,7 +12,7 @@ import time
from pathlib import Path
import numpy as np
from leann.api import LeannBuilder, LeannSearcher
from leann.api import LeannBuilder, LeannChat, LeannSearcher
def download_data_if_needed(data_root: Path, download_embeddings: bool = False):
@@ -53,7 +53,7 @@ def download_data_if_needed(data_root: Path, download_embeddings: bool = False):
print(
"Error: huggingface_hub is not installed. Please install it to download the data:"
)
print("uv pip install -e '.[dev]'")
print("uv sync --only-group dev")
sys.exit(1)
except Exception as e:
print(f"An error occurred during data download: {e}")
@@ -197,6 +197,25 @@ def main():
parser.add_argument(
"--ef-search", type=int, default=120, help="The 'efSearch' parameter for HNSW."
)
parser.add_argument(
"--batch-size",
type=int,
default=0,
help="Batch size for HNSW batched search (0 disables batching)",
)
parser.add_argument(
"--llm-type",
type=str,
choices=["ollama", "hf", "openai", "gemini", "simulated"],
default="ollama",
help="LLM backend type to optionally query during evaluation (default: ollama)",
)
parser.add_argument(
"--llm-model",
type=str,
default="qwen3:1.7b",
help="LLM model identifier for the chosen backend (default: qwen3:1.7b)",
)
args = parser.parse_args()
# --- Path Configuration ---
@@ -318,9 +337,24 @@ def main():
for i in range(num_eval_queries):
start_time = time.time()
new_results = searcher.search(queries[i], top_k=args.top_k, ef=args.ef_search)
new_results = searcher.search(
queries[i],
top_k=args.top_k,
complexity=args.ef_search,
batch_size=args.batch_size,
)
search_times.append(time.time() - start_time)
# Optional: also call the LLM with configurable backend/model (does not affect recall)
llm_config = {"type": args.llm_type, "model": args.llm_model}
chat = LeannChat(args.index_path, llm_config=llm_config, searcher=searcher)
answer = chat.ask(
queries[i],
top_k=args.top_k,
complexity=args.ef_search,
batch_size=args.batch_size,
)
print(f"Answer: {answer}")
# Correct Recall Calculation: Based on TEXT content
new_texts = {result.text for result in new_results}

View File

@@ -20,7 +20,7 @@ except ImportError:
@dataclass
class BenchmarkConfig:
model_path: str = "facebook/contriever"
model_path: str = "facebook/contriever-msmarco"
batch_sizes: list[int] = None
seq_length: int = 256
num_runs: int = 5
@@ -34,7 +34,7 @@ class BenchmarkConfig:
def __post_init__(self):
if self.batch_sizes is None:
self.batch_sizes = [1, 2, 4, 8, 16, 32, 64]
self.batch_sizes = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
class MLXBenchmark:
@@ -179,11 +179,14 @@ class Benchmark:
def _run_inference(self, input_ids: torch.Tensor) -> float:
attention_mask = torch.ones_like(input_ids)
# print shape of input_ids and attention_mask
print(f"input_ids shape: {input_ids.shape}")
print(f"attention_mask shape: {attention_mask.shape}")
start_time = time.time()
with torch.no_grad():
self.model(input_ids=input_ids, attention_mask=attention_mask)
# mps sync
if torch.cuda.is_available():
torch.cuda.synchronize()
if torch.backends.mps.is_available():
torch.mps.synchronize()
end_time = time.time()

View File

@@ -53,9 +53,9 @@ We use pre-commit hooks to ensure code quality and consistency. This runs automa
### Setup Pre-commit
1. **Install pre-commit** (already included when you run `uv sync`):
1. **Install pre-commit tools**:
```bash
uv pip install pre-commit
uv sync lint
```
2. **Install the git hooks**:
@@ -65,7 +65,7 @@ We use pre-commit hooks to ensure code quality and consistency. This runs automa
3. **Run pre-commit manually** (optional):
```bash
pre-commit run --all-files
uv run pre-commit run --all-files
```
### Pre-commit Checks
@@ -85,6 +85,9 @@ Our pre-commit configuration includes:
### Running Tests
```bash
# Install test tools only (no project runtime)
uv sync --group test
# Run all tests
uv run pytest

143
docs/ast_chunking_guide.md Normal file
View File

@@ -0,0 +1,143 @@
# AST-Aware Code chunking guide
## Overview
This guide covers best practices for using AST-aware code chunking in LEANN. AST chunking provides better semantic understanding of code structure compared to traditional text-based chunking.
## Quick Start
### Basic Usage
```bash
# Enable AST chunking for mixed content (code + docs)
python -m apps.document_rag --enable-code-chunking --data-dir ./my_project
# Specialized code repository indexing
python -m apps.code_rag --repo-dir ./my_codebase
# Global CLI with AST support
leann build my-code-index --docs ./src --use-ast-chunking
```
### Installation
```bash
# Install LEANN with AST chunking support
uv pip install -e "."
```
#### For normal users (PyPI install)
- Use `pip install leann` or `uv pip install leann`.
- `astchunk` is pulled automatically from PyPI as a dependency; no extra steps.
#### For developers (from source, editable)
```bash
git clone https://github.com/yichuan-w/LEANN.git leann
cd leann
git submodule update --init --recursive
uv sync
```
- This repo vendors `astchunk` as a git submodule at `packages/astchunk-leann` (our fork).
- `[tool.uv.sources]` maps the `astchunk` package to that path in editable mode.
- You can edit code under `packages/astchunk-leann` and Python will use your changes immediately (no separate `pip install astchunk` needed).
## Best Practices
### When to Use AST Chunking
**Recommended for:**
- Code repositories with multiple languages
- Mixed documentation and code content
- Complex codebases with deep function/class hierarchies
- When working with Claude Code for code assistance
**Not recommended for:**
- Pure text documents
- Very large files (>1MB)
- Languages not supported by tree-sitter
### Optimal Configuration
```bash
# Recommended settings for most codebases
python -m apps.code_rag \
--repo-dir ./src \
--ast-chunk-size 768 \
--ast-chunk-overlap 96 \
--exclude-dirs .git __pycache__ node_modules build dist
```
### Supported Languages
| Extension | Language | Status |
|-----------|----------|--------|
| `.py` | Python | ✅ Full support |
| `.java` | Java | ✅ Full support |
| `.cs` | C# | ✅ Full support |
| `.ts`, `.tsx` | TypeScript | ✅ Full support |
| `.js`, `.jsx` | JavaScript | ✅ Via TypeScript parser |
## Integration Examples
### Document RAG with Code Support
```python
# Enable code chunking in document RAG
python -m apps.document_rag \
--enable-code-chunking \
--data-dir ./project \
--query "How does authentication work in the codebase?"
```
### Claude Code Integration
When using with Claude Code MCP server, AST chunking provides better context for:
- Code completion and suggestions
- Bug analysis and debugging
- Architecture understanding
- Refactoring assistance
## Troubleshooting
### Common Issues
1. **Fallback to Traditional Chunking**
- Normal behavior for unsupported languages
- Check logs for specific language support
2. **Performance with Large Files**
- Adjust `--max-file-size` parameter
- Use `--exclude-dirs` to skip unnecessary directories
3. **Quality Issues**
- Try different `--ast-chunk-size` values (512, 768, 1024)
- Adjust overlap for better context preservation
### Debug Mode
```bash
export LEANN_LOG_LEVEL=DEBUG
python -m apps.code_rag --repo-dir ./my_code
```
## Migration from Traditional Chunking
Existing workflows continue to work without changes. To enable AST chunking:
```bash
# Before
python -m apps.document_rag --chunk-size 256
# After (maintains traditional chunking for non-code files)
python -m apps.document_rag --enable-code-chunking --chunk-size 256 --ast-chunk-size 768
```
## References
- [astchunk GitHub Repository](https://github.com/yilinjz/astchunk)
- [LEANN MCP Integration](../packages/leann-mcp/README.md)
- [Research Paper](https://arxiv.org/html/2506.15655v1)
---
**Note**: AST chunking maintains full backward compatibility while enhancing code understanding capabilities.

View File

@@ -83,6 +83,81 @@ ollama pull nomic-embed-text
</details>
## Local & Remote Inference Endpoints
> Applies to both LLMs (`leann ask`) and embeddings (`leann build`).
LEANN now treats Ollama, LM Studio, and other OpenAI-compatible runtimes as first-class providers. You can point LEANN at any compatible endpoint either on the same machine or across the network with a couple of flags or environment variables.
### One-Time Environment Setup
```bash
# Works for OpenAI-compatible runtimes such as LM Studio, vLLM, SGLang, llamafile, etc.
export OPENAI_API_KEY="your-key" # or leave unset for local servers that do not check keys
export OPENAI_BASE_URL="http://localhost:1234/v1"
# Ollama-compatible runtimes (Ollama, Ollama on another host, llamacpp-server, etc.)
export LEANN_OLLAMA_HOST="http://localhost:11434" # falls back to OLLAMA_HOST or LOCAL_LLM_ENDPOINT
```
LEANN also recognises `LEANN_LOCAL_LLM_HOST` (highest priority), `LEANN_OPENAI_BASE_URL`, and `LOCAL_OPENAI_BASE_URL`, so existing scripts continue to work.
### Passing Hosts Per Command
```bash
# Build an index with a remote embedding server
leann build my-notes \
--docs ./notes \
--embedding-mode openai \
--embedding-model text-embedding-qwen3-embedding-0.6b \
--embedding-api-base http://192.168.1.50:1234/v1 \
--embedding-api-key local-dev-key
# Query using a local LM Studio instance via OpenAI-compatible API
leann ask my-notes \
--llm openai \
--llm-model qwen3-8b \
--api-base http://localhost:1234/v1 \
--api-key local-dev-key
# Query an Ollama instance running on another box
leann ask my-notes \
--llm ollama \
--llm-model qwen3:14b \
--host http://192.168.1.101:11434
```
⚠️ **Make sure the endpoint is reachable**: when your inference server runs on a home/workstation and the index/search job runs in the cloud, the server must be able to reach the host you configured. Typical options include:
- Expose a public IP (and open the relevant port) on the machine that hosts LM Studio/Ollama.
- Configure router or cloud provider port forwarding.
- Tunnel traffic through tools like `tailscale`, `cloudflared`, or `ssh -R`.
When you set these options while building an index, LEANN stores them in `meta.json`. Any subsequent `leann ask` or searcher process automatically reuses the same provider settings even when we spawn background embedding servers. This makes the “server without GPU talking to my local workstation” workflow from [issue #80](https://github.com/yichuan-w/LEANN/issues/80#issuecomment-2287230548) work out-of-the-box.
**Tip:** If your runtime does not require an API key (many local stacks dont), leave `--api-key` unset. LEANN will skip injecting credentials.
### Python API Usage
You can pass the same configuration from Python:
```python
from leann.api import LeannBuilder
builder = LeannBuilder(
backend_name="hnsw",
embedding_mode="openai",
embedding_model="text-embedding-qwen3-embedding-0.6b",
embedding_options={
"base_url": "http://192.168.1.50:1234/v1",
"api_key": "local-dev-key",
},
)
builder.build_index("./indexes/my-notes", chunks)
```
`embedding_options` is persisted to the index `meta.json`, so subsequent `LeannSearcher` or `LeannChat` sessions automatically reuse the same provider settings (the embedding server manager forwards them to the provider for you).
## Index Selection: Matching Your Scale
### HNSW (Hierarchical Navigable Small World)

View File

@@ -3,6 +3,7 @@
## 🔥 Core Features
- **🔄 Real-time Embeddings** - Eliminate heavy embedding storage with dynamic computation using optimized ZMQ servers and highly optimized search paradigm (overlapping and batching) with highly optimized embedding engine
- **🧠 AST-Aware Code Chunking** - Intelligent code chunking that preserves semantic boundaries (functions, classes, methods) for Python, Java, C#, and TypeScript files
- **📈 Scalable Architecture** - Handles millions of documents on consumer hardware; the larger your dataset, the more LEANN can save
- **🎯 Graph Pruning** - Advanced techniques to minimize the storage overhead of vector search to a limited footprint
- **🏗️ Pluggable Backends** - HNSW/FAISS (default), with optional DiskANN for large-scale deployments

149
docs/grep_search.md Normal file
View File

@@ -0,0 +1,149 @@
# LEANN Grep Search Usage Guide
## Overview
LEANN's grep search functionality provides exact text matching for finding specific code patterns, error messages, function names, or exact phrases in your indexed documents.
## Basic Usage
### Simple Grep Search
```python
from leann.api import LeannSearcher
searcher = LeannSearcher("your_index_path")
# Exact text search
results = searcher.search("def authenticate_user", use_grep=True, top_k=5)
for result in results:
print(f"Score: {result.score}")
print(f"Text: {result.text[:100]}...")
print("-" * 40)
```
### Comparison: Semantic vs Grep Search
```python
# Semantic search - finds conceptually similar content
semantic_results = searcher.search("machine learning algorithms", top_k=3)
# Grep search - finds exact text matches
grep_results = searcher.search("def train_model", use_grep=True, top_k=3)
```
## When to Use Grep Search
### Use Cases
- **Code Search**: Finding specific function definitions, class names, or variable references
- **Error Debugging**: Locating exact error messages or stack traces
- **Documentation**: Finding specific API endpoints or exact terminology
### Examples
```python
# Find function definitions
functions = searcher.search("def __init__", use_grep=True)
# Find import statements
imports = searcher.search("from sklearn import", use_grep=True)
# Find specific error types
errors = searcher.search("FileNotFoundError", use_grep=True)
# Find TODO comments
todos = searcher.search("TODO:", use_grep=True)
# Find configuration entries
configs = searcher.search("server_port=", use_grep=True)
```
## Technical Details
### How It Works
1. **File Location**: Grep search operates on the raw text stored in `.jsonl` files
2. **Command Execution**: Uses the system `grep` command with case-insensitive search
3. **Result Processing**: Parses JSON lines and extracts text and metadata
4. **Scoring**: Simple frequency-based scoring based on query term occurrences
### Search Process
```
Query: "def train_model"
grep -i -n "def train_model" documents.leann.passages.jsonl
Parse matching JSON lines
Calculate scores based on term frequency
Return top_k results
```
### Scoring Algorithm
```python
# Term frequency in document
score = text.lower().count(query.lower())
```
Results are ranked by score (highest first), with higher scores indicating more occurrences of the search term.
## Error Handling
### Common Issues
#### Grep Command Not Found
```
RuntimeError: grep command not found. Please install grep or use semantic search.
```
**Solution**: Install grep on your system:
- **Ubuntu/Debian**: `sudo apt-get install grep`
- **macOS**: grep is pre-installed
- **Windows**: Use WSL or install grep via Git Bash/MSYS2
#### No Results Found
```python
# Check if your query exists in the raw data
results = searcher.search("your_query", use_grep=True)
if not results:
print("No exact matches found. Try:")
print("1. Check spelling and case")
print("2. Use partial terms")
print("3. Switch to semantic search")
```
## Complete Example
```python
#!/usr/bin/env python3
"""
Grep Search Example
Demonstrates grep search for exact text matching.
"""
from leann.api import LeannSearcher
def demonstrate_grep_search():
# Initialize searcher
searcher = LeannSearcher("my_index")
print("=== Function Search ===")
functions = searcher.search("def __init__", use_grep=True, top_k=5)
for i, result in enumerate(functions, 1):
print(f"{i}. Score: {result.score}")
print(f" Preview: {result.text[:60]}...")
print()
print("=== Error Search ===")
errors = searcher.search("FileNotFoundError", use_grep=True, top_k=3)
for result in errors:
print(f"Content: {result.text.strip()}")
print("-" * 40)
if __name__ == "__main__":
demonstrate_grep_search()
```

300
docs/metadata_filtering.md Normal file
View File

@@ -0,0 +1,300 @@
# LEANN Metadata Filtering Usage Guide
## Overview
Leann possesses metadata filtering capabilities that allow you to filter search results based on arbitrary metadata fields set during chunking. This feature enables use cases like spoiler-free book search, document filtering by date/type, code search by file type, and potentially much more.
## Basic Usage
### Adding Metadata to Your Documents
When building your index, add metadata to each text chunk:
```python
from leann.api import LeannBuilder
builder = LeannBuilder("hnsw")
# Add text with metadata
builder.add_text(
text="Chapter 1: Alice falls down the rabbit hole",
metadata={
"chapter": 1,
"character": "Alice",
"themes": ["adventure", "curiosity"],
"word_count": 150
}
)
builder.build_index("alice_in_wonderland_index")
```
### Searching with Metadata Filters
Use the `metadata_filters` parameter in search calls:
```python
from leann.api import LeannSearcher
searcher = LeannSearcher("alice_in_wonderland_index")
# Search with filters
results = searcher.search(
query="What happens to Alice?",
top_k=10,
metadata_filters={
"chapter": {"<=": 5}, # Only chapters 1-5
"spoiler_level": {"!=": "high"} # No high spoilers
}
)
```
## Filter Syntax
### Basic Structure
```python
metadata_filters = {
"field_name": {"operator": value},
"another_field": {"operator": value}
}
```
### Supported Operators
#### Comparison Operators
- `"=="`: Equal to
- `"!="`: Not equal to
- `"<"`: Less than
- `"<="`: Less than or equal
- `">"`: Greater than
- `">="`: Greater than or equal
```python
# Examples
{"chapter": {"==": 1}} # Exactly chapter 1
{"page": {">": 100}} # Pages after 100
{"rating": {">=": 4.0}} # Rating 4.0 or higher
{"word_count": {"<": 500}} # Short passages
```
#### Membership Operators
- `"in"`: Value is in list
- `"not_in"`: Value is not in list
```python
# Examples
{"character": {"in": ["Alice", "Bob"]}} # Alice OR Bob
{"genre": {"not_in": ["horror", "thriller"]}} # Exclude genres
{"tags": {"in": ["fiction", "adventure"]}} # Any of these tags
```
#### String Operators
- `"contains"`: String contains substring
- `"starts_with"`: String starts with prefix
- `"ends_with"`: String ends with suffix
```python
# Examples
{"title": {"contains": "alice"}} # Title contains "alice"
{"filename": {"ends_with": ".py"}} # Python files
{"author": {"starts_with": "Dr."}} # Authors with "Dr." prefix
```
#### Boolean Operators
- `"is_true"`: Field is truthy
- `"is_false"`: Field is falsy
```python
# Examples
{"is_published": {"is_true": True}} # Published content
{"is_draft": {"is_false": False}} # Not drafts
```
### Multiple Operators on Same Field
You can apply multiple operators to the same field (AND logic):
```python
metadata_filters = {
"word_count": {
">=": 100, # At least 100 words
"<=": 500 # At most 500 words
}
}
```
### Compound Filters
Multiple fields are combined with AND logic:
```python
metadata_filters = {
"chapter": {"<=": 10}, # Up to chapter 10
"character": {"==": "Alice"}, # About Alice
"spoiler_level": {"!=": "high"} # No major spoilers
}
```
## Use Case Examples
### 1. Spoiler-Free Book Search
```python
# Reader has only read up to chapter 5
def search_spoiler_free(query, max_chapter):
return searcher.search(
query=query,
metadata_filters={
"chapter": {"<=": max_chapter},
"spoiler_level": {"in": ["none", "low"]}
}
)
results = search_spoiler_free("What happens to Alice?", max_chapter=5)
```
### 2. Document Management by Date
```python
# Find recent documents
recent_docs = searcher.search(
query="project updates",
metadata_filters={
"date": {">=": "2024-01-01"},
"document_type": {"==": "report"}
}
)
```
### 3. Code Search by File Type
```python
# Search only Python files
python_code = searcher.search(
query="authentication function",
metadata_filters={
"file_extension": {"==": ".py"},
"lines_of_code": {"<": 100}
}
)
```
### 4. Content Filtering by Audience
```python
# Age-appropriate content
family_content = searcher.search(
query="adventure stories",
metadata_filters={
"age_rating": {"in": ["G", "PG"]},
"content_warnings": {"not_in": ["violence", "adult_themes"]}
}
)
```
### 5. Multi-Book Series Management
```python
# Search across first 3 books only
early_series = searcher.search(
query="character development",
metadata_filters={
"series": {"==": "Harry Potter"},
"book_number": {"<=": 3}
}
)
```
## Running the Example
You can see metadata filtering in action with our spoiler-free book RAG example:
```bash
# Don't forget to set up the environment
uv venv
source .venv/bin/activate
# Set your OpenAI API key (required for embeddings, but you can update the example locally and use ollama instead)
export OPENAI_API_KEY="your-api-key-here"
# Run the spoiler-free book RAG example
uv run examples/spoiler_free_book_rag.py
```
This example demonstrates:
- Building an index with metadata (chapter numbers, characters, themes, locations)
- Searching with filters to avoid spoilers (e.g., only show results up to chapter 5)
- Different scenarios for readers at various points in the book
The example uses Alice's Adventures in Wonderland as sample data and shows how you can search for information without revealing plot points from later chapters.
## Advanced Patterns
### Custom Chunking with metadata
```python
def chunk_book_with_metadata(book_text, book_info):
chunks = []
for chapter_num, chapter_text in parse_chapters(book_text):
# Extract entities, themes, etc.
characters = extract_characters(chapter_text)
themes = classify_themes(chapter_text)
spoiler_level = assess_spoiler_level(chapter_text, chapter_num)
# Create chunks with rich metadata
for paragraph in split_paragraphs(chapter_text):
chunks.append({
"text": paragraph,
"metadata": {
"book_title": book_info["title"],
"chapter": chapter_num,
"characters": characters,
"themes": themes,
"spoiler_level": spoiler_level,
"word_count": len(paragraph.split()),
"reading_level": calculate_reading_level(paragraph)
}
})
return chunks
```
## Performance Considerations
### Efficient Filtering Strategies
1. **Post-search filtering**: Applies filters after vector search, which should be efficient for typical result sets (10-100 results).
2. **Metadata design**: Keep metadata fields simple and avoid deeply nested structures.
### Best Practices
1. **Consistent metadata schema**: Use consistent field names and value types across your documents.
2. **Reasonable metadata size**: Keep metadata reasonably sized to avoid storage overhead.
3. **Type consistency**: Use consistent data types for the same fields (e.g., always integers for chapter numbers).
4. **Index multiple granularities**: Consider chunking at different levels (paragraph, section, chapter) with appropriate metadata.
### Adding Metadata to Existing Indices
To add metadata filtering to existing indices, you'll need to rebuild them with metadata:
```python
# Read existing passages and add metadata
def add_metadata_to_existing_chunks(chunks):
for chunk in chunks:
# Extract or assign metadata based on content
chunk["metadata"] = extract_metadata(chunk["text"])
return chunks
# Rebuild index with metadata
enhanced_chunks = add_metadata_to_existing_chunks(existing_chunks)
builder = LeannBuilder("hnsw")
for chunk in enhanced_chunks:
builder.add_text(chunk["text"], chunk["metadata"])
builder.build_index("enhanced_index")
```

0
examples/__init__.py Normal file
View File

View File

@@ -0,0 +1,404 @@
"""Dynamic HNSW update demo without compact storage.
This script reproduces the minimal scenario we used while debugging on-the-fly
recompute:
1. Build a non-compact HNSW index from the first few paragraphs of a text file.
2. Print the top results with `recompute_embeddings=True`.
3. Append additional paragraphs with :meth:`LeannBuilder.update_index`.
4. Run the same query again to show the newly inserted passages.
Run it with ``uv`` (optionally pointing LEANN_HNSW_LOG_PATH at a file to inspect
ZMQ activity)::
LEANN_HNSW_LOG_PATH=embedding_fetch.log \
uv run -m examples.dynamic_update_no_recompute \
--index-path .leann/examples/leann-demo.leann
By default the script builds an index from ``data/2501.14312v1 (1).pdf`` and
then updates it with LEANN-related material from ``data/2506.08276v1.pdf``.
It issues the query "What's LEANN?" before and after the update to show how the
new passages become immediately searchable. The script uses the
``sentence-transformers/all-MiniLM-L6-v2`` model with ``is_recompute=True`` so
Faiss pulls existing vectors on demand via the ZMQ embedding server, while
freshly added passages are embedded locally just like the initial build.
To make storage comparisons easy, the script can also build a matching
``is_recompute=False`` baseline (enabled by default) and report the index size
delta after the update. Disable the baseline run with
``--skip-compare-no-recompute`` if you only need the recompute flow.
"""
import argparse
import json
from collections.abc import Iterable
from pathlib import Path
from typing import Any
from leann.api import LeannBuilder, LeannSearcher
from leann.registry import register_project_directory
from apps.chunking import create_text_chunks
REPO_ROOT = Path(__file__).resolve().parents[1]
DEFAULT_QUERY = "What's LEANN?"
DEFAULT_INITIAL_FILES = [REPO_ROOT / "data" / "2501.14312v1 (1).pdf"]
DEFAULT_UPDATE_FILES = [REPO_ROOT / "data" / "2506.08276v1.pdf"]
def load_chunks_from_files(paths: list[Path]) -> list[str]:
from llama_index.core import SimpleDirectoryReader
documents = []
for path in paths:
p = path.expanduser().resolve()
if not p.exists():
raise FileNotFoundError(f"Input path not found: {p}")
if p.is_dir():
reader = SimpleDirectoryReader(str(p), recursive=False)
documents.extend(reader.load_data(show_progress=True))
else:
reader = SimpleDirectoryReader(input_files=[str(p)])
documents.extend(reader.load_data(show_progress=True))
if not documents:
return []
chunks = create_text_chunks(
documents,
chunk_size=512,
chunk_overlap=128,
use_ast_chunking=False,
)
return [c for c in chunks if isinstance(c, str) and c.strip()]
def run_search(index_path: Path, query: str, top_k: int, *, recompute_embeddings: bool) -> list:
searcher = LeannSearcher(str(index_path))
try:
return searcher.search(
query=query,
top_k=top_k,
recompute_embeddings=recompute_embeddings,
batch_size=16,
)
finally:
searcher.cleanup()
def print_results(title: str, results: Iterable) -> None:
print(f"\n=== {title} ===")
res_list = list(results)
print(f"results count: {len(res_list)}")
print("passages:")
if not res_list:
print(" (no passages returned)")
for res in res_list:
snippet = res.text.replace("\n", " ")[:120]
print(f" - {res.id}: {snippet}... (score={res.score:.4f})")
def build_initial_index(
index_path: Path,
paragraphs: list[str],
model_name: str,
embedding_mode: str,
is_recompute: bool,
) -> None:
builder = LeannBuilder(
backend_name="hnsw",
embedding_model=model_name,
embedding_mode=embedding_mode,
is_compact=False,
is_recompute=is_recompute,
)
for idx, passage in enumerate(paragraphs):
builder.add_text(passage, metadata={"id": str(idx)})
builder.build_index(str(index_path))
def update_index(
index_path: Path,
start_id: int,
paragraphs: list[str],
model_name: str,
embedding_mode: str,
is_recompute: bool,
) -> None:
updater = LeannBuilder(
backend_name="hnsw",
embedding_model=model_name,
embedding_mode=embedding_mode,
is_compact=False,
is_recompute=is_recompute,
)
for offset, passage in enumerate(paragraphs, start=start_id):
updater.add_text(passage, metadata={"id": str(offset)})
updater.update_index(str(index_path))
def ensure_index_dir(index_path: Path) -> None:
index_path.parent.mkdir(parents=True, exist_ok=True)
def cleanup_index_files(index_path: Path) -> None:
"""Remove leftover index artifacts for a clean rebuild."""
parent = index_path.parent
if not parent.exists():
return
stem = index_path.stem
for file in parent.glob(f"{stem}*"):
if file.is_file():
file.unlink()
def index_file_size(index_path: Path) -> int:
"""Return the size of the primary .index file for the given index path."""
index_file = index_path.parent / f"{index_path.stem}.index"
return index_file.stat().st_size if index_file.exists() else 0
def load_metadata_snapshot(index_path: Path) -> dict[str, Any] | None:
meta_path = index_path.parent / f"{index_path.name}.meta.json"
if not meta_path.exists():
return None
try:
return json.loads(meta_path.read_text())
except json.JSONDecodeError:
return None
def run_workflow(
*,
label: str,
index_path: Path,
initial_paragraphs: list[str],
update_paragraphs: list[str],
model_name: str,
embedding_mode: str,
is_recompute: bool,
query: str,
top_k: int,
) -> dict[str, Any]:
prefix = f"[{label}] " if label else ""
ensure_index_dir(index_path)
cleanup_index_files(index_path)
print(f"{prefix}Building initial index...")
build_initial_index(
index_path,
initial_paragraphs,
model_name,
embedding_mode,
is_recompute=is_recompute,
)
initial_size = index_file_size(index_path)
before_results = run_search(
index_path,
query,
top_k,
recompute_embeddings=is_recompute,
)
print(f"\n{prefix}Updating index with additional passages...")
update_index(
index_path,
start_id=len(initial_paragraphs),
paragraphs=update_paragraphs,
model_name=model_name,
embedding_mode=embedding_mode,
is_recompute=is_recompute,
)
after_results = run_search(
index_path,
query,
top_k,
recompute_embeddings=is_recompute,
)
updated_size = index_file_size(index_path)
return {
"initial_size": initial_size,
"updated_size": updated_size,
"delta": updated_size - initial_size,
"before_results": before_results,
"after_results": after_results,
"metadata": load_metadata_snapshot(index_path),
}
def main() -> None:
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--initial-files",
type=Path,
nargs="+",
default=DEFAULT_INITIAL_FILES,
help="Initial document files (PDF/TXT) used to build the base index",
)
parser.add_argument(
"--index-path",
type=Path,
default=Path(".leann/examples/leann-demo.leann"),
help="Destination index path (default: .leann/examples/leann-demo.leann)",
)
parser.add_argument(
"--initial-count",
type=int,
default=8,
help="Number of chunks to use from the initial documents (default: 8)",
)
parser.add_argument(
"--update-files",
type=Path,
nargs="*",
default=DEFAULT_UPDATE_FILES,
help="Additional documents to add during update (PDF/TXT)",
)
parser.add_argument(
"--update-count",
type=int,
default=4,
help="Number of chunks to append from update documents (default: 4)",
)
parser.add_argument(
"--update-text",
type=str,
default=(
"LEANN (Lightweight Embedding ANN) is an indexing toolkit focused on "
"recompute-aware HNSW graphs, allowing embeddings to be regenerated "
"on demand to keep disk usage minimal."
),
help="Fallback text to append if --update-files is omitted",
)
parser.add_argument(
"--top-k",
type=int,
default=4,
help="Number of results to show for each search (default: 4)",
)
parser.add_argument(
"--query",
type=str,
default=DEFAULT_QUERY,
help="Query to run before/after the update",
)
parser.add_argument(
"--embedding-model",
type=str,
default="sentence-transformers/all-MiniLM-L6-v2",
help="Embedding model name",
)
parser.add_argument(
"--embedding-mode",
type=str,
default="sentence-transformers",
choices=["sentence-transformers", "openai", "mlx", "ollama"],
help="Embedding backend mode",
)
parser.add_argument(
"--compare-no-recompute",
dest="compare_no_recompute",
action="store_true",
help="Also run a baseline with is_recompute=False and report its index growth.",
)
parser.add_argument(
"--skip-compare-no-recompute",
dest="compare_no_recompute",
action="store_false",
help="Skip building the no-recompute baseline.",
)
parser.set_defaults(compare_no_recompute=True)
args = parser.parse_args()
ensure_index_dir(args.index_path)
register_project_directory(REPO_ROOT)
initial_chunks = load_chunks_from_files(list(args.initial_files))
if not initial_chunks:
raise ValueError("No text chunks extracted from the initial files.")
initial = initial_chunks[: args.initial_count]
if not initial:
raise ValueError("Initial chunk set is empty after applying --initial-count.")
if args.update_files:
update_chunks = load_chunks_from_files(list(args.update_files))
if not update_chunks:
raise ValueError("No text chunks extracted from the update files.")
to_add = update_chunks[: args.update_count]
else:
if not args.update_text:
raise ValueError("Provide --update-files or --update-text for the update step.")
to_add = [args.update_text]
if not to_add:
raise ValueError("Update chunk set is empty after applying --update-count.")
recompute_stats = run_workflow(
label="recompute",
index_path=args.index_path,
initial_paragraphs=initial,
update_paragraphs=to_add,
model_name=args.embedding_model,
embedding_mode=args.embedding_mode,
is_recompute=True,
query=args.query,
top_k=args.top_k,
)
print_results("initial search", recompute_stats["before_results"])
print_results("after update", recompute_stats["after_results"])
print(
f"\n[recompute] Index file size change: {recompute_stats['initial_size']} -> {recompute_stats['updated_size']} bytes"
f"{recompute_stats['delta']})"
)
if recompute_stats["metadata"]:
meta_view = {k: recompute_stats["metadata"].get(k) for k in ("is_compact", "is_pruned")}
print("[recompute] metadata snapshot:")
print(json.dumps(meta_view, indent=2))
if args.compare_no_recompute:
baseline_path = (
args.index_path.parent / f"{args.index_path.stem}-norecompute{args.index_path.suffix}"
)
baseline_stats = run_workflow(
label="no-recompute",
index_path=baseline_path,
initial_paragraphs=initial,
update_paragraphs=to_add,
model_name=args.embedding_model,
embedding_mode=args.embedding_mode,
is_recompute=False,
query=args.query,
top_k=args.top_k,
)
print(
f"\n[no-recompute] Index file size change: {baseline_stats['initial_size']} -> {baseline_stats['updated_size']} bytes"
f"{baseline_stats['delta']})"
)
after_texts = [res.text for res in recompute_stats["after_results"]]
baseline_after_texts = [res.text for res in baseline_stats["after_results"]]
if after_texts == baseline_after_texts:
print(
"[no-recompute] Search results match recompute baseline; see above for the shared output."
)
else:
print("[no-recompute] WARNING: search results differ from recompute baseline.")
if baseline_stats["metadata"]:
meta_view = {k: baseline_stats["metadata"].get(k) for k in ("is_compact", "is_pruned")}
print("[no-recompute] metadata snapshot:")
print(json.dumps(meta_view, indent=2))
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,35 @@
"""
Grep Search Example
Shows how to use grep-based text search instead of semantic search.
Useful when you need exact text matches rather than meaning-based results.
"""
from leann import LeannSearcher
# Load your index
searcher = LeannSearcher("my-documents.leann")
# Regular semantic search
print("=== Semantic Search ===")
results = searcher.search("machine learning algorithms", top_k=3)
for result in results:
print(f"Score: {result.score:.3f}")
print(f"Text: {result.text[:80]}...")
print()
# Grep-based search for exact text matches
print("=== Grep Search ===")
results = searcher.search("def train_model", top_k=3, use_grep=True)
for result in results:
print(f"Score: {result.score}")
print(f"Text: {result.text[:80]}...")
print()
# Find specific error messages
error_results = searcher.search("FileNotFoundError", use_grep=True)
print(f"Found {len(error_results)} files mentioning FileNotFoundError")
# Search for function definitions
func_results = searcher.search("class SearchResult", use_grep=True, top_k=5)
print(f"Found {len(func_results)} class definitions")

View File

@@ -0,0 +1,250 @@
#!/usr/bin/env python3
"""
Spoiler-Free Book RAG Example using LEANN Metadata Filtering
This example demonstrates how to use LEANN's metadata filtering to create
a spoiler-free book RAG system where users can search for information
up to a specific chapter they've read.
Usage:
python spoiler_free_book_rag.py
"""
import os
import sys
from typing import Any, Optional
# Add LEANN to path (adjust path as needed)
sys.path.insert(0, os.path.join(os.path.dirname(__file__), "../packages/leann-core/src"))
from leann.api import LeannBuilder, LeannSearcher
def chunk_book_with_metadata(book_title: str = "Sample Book") -> list[dict[str, Any]]:
"""
Create sample book chunks with metadata for demonstration.
In a real implementation, this would parse actual book files (epub, txt, etc.)
and extract chapter boundaries, character mentions, etc.
Args:
book_title: Title of the book
Returns:
List of chunk dictionaries with text and metadata
"""
# Sample book chunks with metadata
# In practice, you'd use proper text processing libraries
sample_chunks = [
{
"text": "Alice was beginning to get very tired of sitting by her sister on the bank, and of having nothing to do.",
"metadata": {
"book": book_title,
"chapter": 1,
"page": 1,
"characters": ["Alice", "Sister"],
"themes": ["boredom", "curiosity"],
"location": "riverbank",
},
},
{
"text": "So she was considering in her own mind (as well as she could, for the hot day made her feel very sleepy and stupid), whether the pleasure of making a daisy-chain would be worth the trouble of getting up and picking the daisies, when suddenly a White Rabbit with pink eyes ran close by her.",
"metadata": {
"book": book_title,
"chapter": 1,
"page": 2,
"characters": ["Alice", "White Rabbit"],
"themes": ["decision", "surprise", "magic"],
"location": "riverbank",
},
},
{
"text": "Alice found herself falling down a very deep well. Either the well was very deep, or she fell very slowly, for she had plenty of time as she fell to look about her and to wonder what was going to happen next.",
"metadata": {
"book": book_title,
"chapter": 2,
"page": 15,
"characters": ["Alice"],
"themes": ["falling", "wonder", "transformation"],
"location": "rabbit hole",
},
},
{
"text": "Alice meets the Cheshire Cat, who tells her that everyone in Wonderland is mad, including Alice herself.",
"metadata": {
"book": book_title,
"chapter": 6,
"page": 85,
"characters": ["Alice", "Cheshire Cat"],
"themes": ["madness", "philosophy", "identity"],
"location": "Duchess's house",
},
},
{
"text": "At the Queen's croquet ground, Alice witnesses the absurd trial that reveals the arbitrary nature of Wonderland's justice system.",
"metadata": {
"book": book_title,
"chapter": 8,
"page": 120,
"characters": ["Alice", "Queen of Hearts", "King of Hearts"],
"themes": ["justice", "absurdity", "authority"],
"location": "Queen's court",
},
},
{
"text": "Alice realizes that Wonderland was all a dream, even the Rabbit, as she wakes up on the riverbank next to her sister.",
"metadata": {
"book": book_title,
"chapter": 12,
"page": 180,
"characters": ["Alice", "Sister", "Rabbit"],
"themes": ["revelation", "reality", "growth"],
"location": "riverbank",
},
},
]
return sample_chunks
def build_spoiler_free_index(book_chunks: list[dict[str, Any]], index_name: str) -> str:
"""
Build a LEANN index with book chunks that include spoiler metadata.
Args:
book_chunks: List of book chunks with metadata
index_name: Name for the index
Returns:
Path to the built index
"""
print(f"📚 Building spoiler-free book index: {index_name}")
# Initialize LEANN builder
builder = LeannBuilder(
backend_name="hnsw", embedding_model="text-embedding-3-small", embedding_mode="openai"
)
# Add each chunk with its metadata
for chunk in book_chunks:
builder.add_text(text=chunk["text"], metadata=chunk["metadata"])
# Build the index
index_path = f"{index_name}_book_index"
builder.build_index(index_path)
print(f"✅ Index built successfully: {index_path}")
return index_path
def spoiler_free_search(
index_path: str,
query: str,
max_chapter: int,
character_filter: Optional[list[str]] = None,
) -> list[dict[str, Any]]:
"""
Perform a spoiler-free search on the book index.
Args:
index_path: Path to the LEANN index
query: Search query
max_chapter: Maximum chapter number to include
character_filter: Optional list of characters to focus on
Returns:
List of search results safe for the reader
"""
print(f"🔍 Searching: '{query}' (up to chapter {max_chapter})")
searcher = LeannSearcher(index_path)
metadata_filters = {"chapter": {"<=": max_chapter}}
if character_filter:
metadata_filters["characters"] = {"contains": character_filter[0]}
results = searcher.search(query=query, top_k=10, metadata_filters=metadata_filters)
return results
def demo_spoiler_free_rag():
"""
Demonstrate the spoiler-free book RAG system.
"""
print("🎭 Spoiler-Free Book RAG Demo")
print("=" * 40)
# Step 1: Prepare book data
book_title = "Alice's Adventures in Wonderland"
book_chunks = chunk_book_with_metadata(book_title)
print(f"📖 Loaded {len(book_chunks)} chunks from '{book_title}'")
# Step 2: Build the index (in practice, this would be done once)
try:
index_path = build_spoiler_free_index(book_chunks, "alice_wonderland")
except Exception as e:
print(f"❌ Failed to build index (likely missing dependencies): {e}")
print(
"💡 This demo shows the filtering logic - actual indexing requires LEANN dependencies"
)
return
# Step 3: Demonstrate various spoiler-free searches
search_scenarios = [
{
"description": "Reader who has only read Chapter 1",
"query": "What can you tell me about the rabbit?",
"max_chapter": 1,
},
{
"description": "Reader who has read up to Chapter 5",
"query": "Tell me about Alice's adventures",
"max_chapter": 5,
},
{
"description": "Reader who has read most of the book",
"query": "What does the Cheshire Cat represent?",
"max_chapter": 10,
},
{
"description": "Reader who has read the whole book",
"query": "What can you tell me about the rabbit?",
"max_chapter": 12,
},
]
for scenario in search_scenarios:
print(f"\n📚 Scenario: {scenario['description']}")
print(f" Query: {scenario['query']}")
try:
results = spoiler_free_search(
index_path=index_path,
query=scenario["query"],
max_chapter=scenario["max_chapter"],
)
print(f" 📄 Found {len(results)} results:")
for i, result in enumerate(results[:3], 1): # Show top 3
chapter = result.metadata.get("chapter", "?")
location = result.metadata.get("location", "?")
print(f" {i}. Chapter {chapter} ({location}): {result.text[:80]}...")
except Exception as e:
print(f" ❌ Search failed: {e}")
if __name__ == "__main__":
print("📚 LEANN Spoiler-Free Book RAG Example")
print("=====================================")
try:
demo_spoiler_free_rag()
except ImportError as e:
print(f"❌ Cannot run demo due to missing dependencies: {e}")
except Exception as e:
print(f"❌ Error running demo: {e}")

28
llms.txt Normal file
View File

@@ -0,0 +1,28 @@
# llms.txt — LEANN MCP and Agent Integration
product: LEANN
homepage: https://github.com/yichuan-w/LEANN
contact: https://github.com/yichuan-w/LEANN/issues
# Installation
install: uv tool install leann-core --with leann
# MCP Server Entry Point
mcp.server: leann_mcp
mcp.protocol_version: 2024-11-05
# Tools
mcp.tools: leann_list, leann_search
mcp.tool.leann_list.description: List available LEANN indexes
mcp.tool.leann_list.input: {}
mcp.tool.leann_search.description: Semantic search across a named LEANN index
mcp.tool.leann_search.input.index_name: string, required
mcp.tool.leann_search.input.query: string, required
mcp.tool.leann_search.input.top_k: integer, optional, default=5, min=1, max=20
mcp.tool.leann_search.input.complexity: integer, optional, default=32, min=16, max=128
# Notes
note: Build indexes with `leann build <name> --docs <files...>` before searching.
example.add: claude mcp add --scope user leann-server -- leann_mcp
example.verify: claude mcp list | cat

View File

@@ -343,7 +343,8 @@ class DiskannSearcher(BaseSearcher):
"full_index_prefix": full_index_prefix,
"num_threads": self.num_threads,
"num_nodes_to_cache": kwargs.get("num_nodes_to_cache", 0),
"cache_mechanism": 1,
# 1 -> initialize cache using sample_data; 2 -> ready cache without init; others disable cache
"cache_mechanism": kwargs.get("cache_mechanism", 1),
"pq_prefix": "",
"partition_prefix": partition_prefix,
}

View File

@@ -10,7 +10,7 @@ import sys
import threading
import time
from pathlib import Path
from typing import Optional
from typing import Any, Optional
import numpy as np
import zmq
@@ -32,6 +32,16 @@ if not logger.handlers:
logger.propagate = False
_RAW_PROVIDER_OPTIONS = os.getenv("LEANN_EMBEDDING_OPTIONS")
try:
PROVIDER_OPTIONS: dict[str, Any] = (
json.loads(_RAW_PROVIDER_OPTIONS) if _RAW_PROVIDER_OPTIONS else {}
)
except json.JSONDecodeError:
logger.warning("Failed to parse LEANN_EMBEDDING_OPTIONS; ignoring provider options")
PROVIDER_OPTIONS = {}
def create_diskann_embedding_server(
passages_file: Optional[str] = None,
zmq_port: int = 5555,
@@ -83,9 +93,7 @@ def create_diskann_embedding_server(
logger.info(f"Loading PassageManager with metadata_file_path: {passages_file}")
passages = PassageManager(meta["passage_sources"], metadata_file_path=passages_file)
logger.info(
f"Loaded PassageManager with {len(passages.global_offset_map)} passages from metadata"
)
logger.info(f"Loaded PassageManager with {len(passages)} passages from metadata")
# Import protobuf after ensuring the path is correct
try:
@@ -183,7 +191,12 @@ def create_diskann_embedding_server(
logger.debug(f"Text lengths: {[len(t) for t in texts[:5]]}") # Show first 5
# Process embeddings using unified computation
embeddings = compute_embeddings(texts, model_name, mode=embedding_mode)
embeddings = compute_embeddings(
texts,
model_name,
mode=embedding_mode,
provider_options=PROVIDER_OPTIONS,
)
logger.info(
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
)
@@ -298,7 +311,12 @@ def create_diskann_embedding_server(
continue
# Process the request
embeddings = compute_embeddings(texts, model_name, mode=embedding_mode)
embeddings = compute_embeddings(
texts,
model_name,
mode=embedding_mode,
provider_options=PROVIDER_OPTIONS,
)
logger.info(f"Computed embeddings shape: {embeddings.shape}")
# Validation

View File

@@ -1,11 +1,11 @@
[build-system]
requires = ["scikit-build-core>=0.10", "pybind11>=2.12.0", "numpy"]
requires = ["scikit-build-core>=0.10", "pybind11>=2.12.0", "numpy", "cmake>=3.30"]
build-backend = "scikit_build_core.build"
[project]
name = "leann-backend-diskann"
version = "0.3.2"
dependencies = ["leann-core==0.3.2", "numpy", "protobuf>=3.19.0"]
version = "0.3.4"
dependencies = ["leann-core==0.3.4", "numpy", "protobuf>=3.19.0"]
[tool.scikit-build]
# Key: simplified CMake path

View File

@@ -49,9 +49,28 @@ set(BUILD_TESTING OFF CACHE BOOL "" FORCE)
set(FAISS_ENABLE_C_API OFF CACHE BOOL "" FORCE)
set(FAISS_OPT_LEVEL "generic" CACHE STRING "" FORCE)
# Disable additional SIMD versions to speed up compilation
# Disable x86-specific SIMD optimizations (important for ARM64 compatibility)
set(FAISS_ENABLE_AVX2 OFF CACHE BOOL "" FORCE)
set(FAISS_ENABLE_AVX512 OFF CACHE BOOL "" FORCE)
set(FAISS_ENABLE_SSE4_1 OFF CACHE BOOL "" FORCE)
# ARM64-specific configuration
if(CMAKE_SYSTEM_PROCESSOR MATCHES "aarch64|arm64")
message(STATUS "Configuring Faiss for ARM64 architecture")
if(CMAKE_SYSTEM_NAME STREQUAL "Linux")
# Use SVE optimization level for ARM64 Linux (as seen in Faiss conda build)
set(FAISS_OPT_LEVEL "sve" CACHE STRING "" FORCE)
message(STATUS "Setting FAISS_OPT_LEVEL to 'sve' for ARM64 Linux")
else()
# Use generic optimization for other ARM64 platforms (like macOS)
set(FAISS_OPT_LEVEL "generic" CACHE STRING "" FORCE)
message(STATUS "Setting FAISS_OPT_LEVEL to 'generic' for ARM64 ${CMAKE_SYSTEM_NAME}")
endif()
# ARM64 compatibility: Faiss submodule has been modified to fix x86 header inclusion
message(STATUS "Using ARM64-compatible Faiss submodule")
endif()
# Additional optimization options from INSTALL.md
set(CMAKE_BUILD_TYPE "Release" CACHE STRING "" FORCE)

View File

@@ -5,6 +5,8 @@ import os
import struct
import sys
import time
from dataclasses import dataclass
from typing import Any, Optional
import numpy as np
@@ -237,6 +239,288 @@ def write_compact_format(
f_out.write(storage_data)
@dataclass
class HNSWComponents:
original_hnsw_data: dict[str, Any]
assign_probas_np: np.ndarray
cum_nneighbor_per_level_np: np.ndarray
levels_np: np.ndarray
is_compact: bool
compact_level_ptr: Optional[np.ndarray] = None
compact_node_offsets_np: Optional[np.ndarray] = None
compact_neighbors_data: Optional[list[int]] = None
offsets_np: Optional[np.ndarray] = None
neighbors_np: Optional[np.ndarray] = None
storage_fourcc: int = NULL_INDEX_FOURCC
storage_data: bytes = b""
def _read_hnsw_structure(f) -> HNSWComponents:
original_hnsw_data: dict[str, Any] = {}
hnsw_index_fourcc = read_struct(f, "<I")
if hnsw_index_fourcc not in EXPECTED_HNSW_FOURCCS:
raise ValueError(
f"Unexpected HNSW FourCC: {hnsw_index_fourcc:08x}. Expected one of {EXPECTED_HNSW_FOURCCS}."
)
original_hnsw_data["index_fourcc"] = hnsw_index_fourcc
original_hnsw_data["d"] = read_struct(f, "<i")
original_hnsw_data["ntotal"] = read_struct(f, "<q")
original_hnsw_data["dummy1"] = read_struct(f, "<q")
original_hnsw_data["dummy2"] = read_struct(f, "<q")
original_hnsw_data["is_trained"] = read_struct(f, "?")
original_hnsw_data["metric_type"] = read_struct(f, "<i")
original_hnsw_data["metric_arg"] = 0.0
if original_hnsw_data["metric_type"] > 1:
original_hnsw_data["metric_arg"] = read_struct(f, "<f")
assign_probas_np = read_numpy_vector(f, np.float64, "d")
cum_nneighbor_per_level_np = read_numpy_vector(f, np.int32, "i")
levels_np = read_numpy_vector(f, np.int32, "i")
ntotal = len(levels_np)
if ntotal != original_hnsw_data["ntotal"]:
original_hnsw_data["ntotal"] = ntotal
pos_before_compact = f.tell()
is_compact_flag = None
try:
is_compact_flag = read_struct(f, "<?")
except EOFError:
is_compact_flag = None
if is_compact_flag:
compact_level_ptr = read_numpy_vector(f, np.uint64, "Q")
compact_node_offsets_np = read_numpy_vector(f, np.uint64, "Q")
original_hnsw_data["entry_point"] = read_struct(f, "<i")
original_hnsw_data["max_level"] = read_struct(f, "<i")
original_hnsw_data["efConstruction"] = read_struct(f, "<i")
original_hnsw_data["efSearch"] = read_struct(f, "<i")
original_hnsw_data["dummy_upper_beam"] = read_struct(f, "<i")
storage_fourcc = read_struct(f, "<I")
compact_neighbors_data_np = read_numpy_vector(f, np.int32, "i")
compact_neighbors_data = compact_neighbors_data_np.tolist()
storage_data = f.read()
return HNSWComponents(
original_hnsw_data=original_hnsw_data,
assign_probas_np=assign_probas_np,
cum_nneighbor_per_level_np=cum_nneighbor_per_level_np,
levels_np=levels_np,
is_compact=True,
compact_level_ptr=compact_level_ptr,
compact_node_offsets_np=compact_node_offsets_np,
compact_neighbors_data=compact_neighbors_data,
storage_fourcc=storage_fourcc,
storage_data=storage_data,
)
# Non-compact case
f.seek(pos_before_compact)
pos_before_probe = f.tell()
try:
suspected_flag = read_struct(f, "<B")
if suspected_flag != 0x00:
f.seek(pos_before_probe)
except EOFError:
f.seek(pos_before_probe)
offsets_np = read_numpy_vector(f, np.uint64, "Q")
neighbors_np = read_numpy_vector(f, np.int32, "i")
original_hnsw_data["entry_point"] = read_struct(f, "<i")
original_hnsw_data["max_level"] = read_struct(f, "<i")
original_hnsw_data["efConstruction"] = read_struct(f, "<i")
original_hnsw_data["efSearch"] = read_struct(f, "<i")
original_hnsw_data["dummy_upper_beam"] = read_struct(f, "<i")
storage_fourcc = NULL_INDEX_FOURCC
storage_data = b""
try:
storage_fourcc = read_struct(f, "<I")
storage_data = f.read()
except EOFError:
storage_fourcc = NULL_INDEX_FOURCC
return HNSWComponents(
original_hnsw_data=original_hnsw_data,
assign_probas_np=assign_probas_np,
cum_nneighbor_per_level_np=cum_nneighbor_per_level_np,
levels_np=levels_np,
is_compact=False,
offsets_np=offsets_np,
neighbors_np=neighbors_np,
storage_fourcc=storage_fourcc,
storage_data=storage_data,
)
def _read_hnsw_structure_from_file(path: str) -> HNSWComponents:
with open(path, "rb") as f:
return _read_hnsw_structure(f)
def write_original_format(
f_out,
original_hnsw_data,
assign_probas_np,
cum_nneighbor_per_level_np,
levels_np,
offsets_np,
neighbors_np,
storage_fourcc,
storage_data,
):
"""Write non-compact HNSW data in original FAISS order."""
f_out.write(struct.pack("<I", original_hnsw_data["index_fourcc"]))
f_out.write(struct.pack("<i", original_hnsw_data["d"]))
f_out.write(struct.pack("<q", original_hnsw_data["ntotal"]))
f_out.write(struct.pack("<q", original_hnsw_data["dummy1"]))
f_out.write(struct.pack("<q", original_hnsw_data["dummy2"]))
f_out.write(struct.pack("<?", original_hnsw_data["is_trained"]))
f_out.write(struct.pack("<i", original_hnsw_data["metric_type"]))
if original_hnsw_data["metric_type"] > 1:
f_out.write(struct.pack("<f", original_hnsw_data["metric_arg"]))
write_numpy_vector(f_out, assign_probas_np, "d")
write_numpy_vector(f_out, cum_nneighbor_per_level_np, "i")
write_numpy_vector(f_out, levels_np, "i")
write_numpy_vector(f_out, offsets_np, "Q")
write_numpy_vector(f_out, neighbors_np, "i")
f_out.write(struct.pack("<i", original_hnsw_data["entry_point"]))
f_out.write(struct.pack("<i", original_hnsw_data["max_level"]))
f_out.write(struct.pack("<i", original_hnsw_data["efConstruction"]))
f_out.write(struct.pack("<i", original_hnsw_data["efSearch"]))
f_out.write(struct.pack("<i", original_hnsw_data["dummy_upper_beam"]))
f_out.write(struct.pack("<I", storage_fourcc))
if storage_fourcc != NULL_INDEX_FOURCC and storage_data:
f_out.write(storage_data)
def prune_hnsw_embeddings(input_filename: str, output_filename: str) -> bool:
"""Rewrite an HNSW index while dropping the embedded storage section."""
start_time = time.time()
try:
with open(input_filename, "rb") as f_in, open(output_filename, "wb") as f_out:
original_hnsw_data: dict[str, Any] = {}
hnsw_index_fourcc = read_struct(f_in, "<I")
if hnsw_index_fourcc not in EXPECTED_HNSW_FOURCCS:
print(
f"Error: Expected HNSW Index FourCC ({list(EXPECTED_HNSW_FOURCCS)}), got {hnsw_index_fourcc:08x}.",
file=sys.stderr,
)
return False
original_hnsw_data["index_fourcc"] = hnsw_index_fourcc
original_hnsw_data["d"] = read_struct(f_in, "<i")
original_hnsw_data["ntotal"] = read_struct(f_in, "<q")
original_hnsw_data["dummy1"] = read_struct(f_in, "<q")
original_hnsw_data["dummy2"] = read_struct(f_in, "<q")
original_hnsw_data["is_trained"] = read_struct(f_in, "?")
original_hnsw_data["metric_type"] = read_struct(f_in, "<i")
original_hnsw_data["metric_arg"] = 0.0
if original_hnsw_data["metric_type"] > 1:
original_hnsw_data["metric_arg"] = read_struct(f_in, "<f")
assign_probas_np = read_numpy_vector(f_in, np.float64, "d")
cum_nneighbor_per_level_np = read_numpy_vector(f_in, np.int32, "i")
levels_np = read_numpy_vector(f_in, np.int32, "i")
ntotal = len(levels_np)
if ntotal != original_hnsw_data["ntotal"]:
original_hnsw_data["ntotal"] = ntotal
pos_before_compact = f_in.tell()
is_compact_flag = None
try:
is_compact_flag = read_struct(f_in, "<?")
except EOFError:
is_compact_flag = None
if is_compact_flag:
compact_level_ptr = read_numpy_vector(f_in, np.uint64, "Q")
compact_node_offsets_np = read_numpy_vector(f_in, np.uint64, "Q")
original_hnsw_data["entry_point"] = read_struct(f_in, "<i")
original_hnsw_data["max_level"] = read_struct(f_in, "<i")
original_hnsw_data["efConstruction"] = read_struct(f_in, "<i")
original_hnsw_data["efSearch"] = read_struct(f_in, "<i")
original_hnsw_data["dummy_upper_beam"] = read_struct(f_in, "<i")
_storage_fourcc = read_struct(f_in, "<I")
compact_neighbors_data_np = read_numpy_vector(f_in, np.int32, "i")
compact_neighbors_data = compact_neighbors_data_np.tolist()
_storage_data = f_in.read()
write_compact_format(
f_out,
original_hnsw_data,
assign_probas_np,
cum_nneighbor_per_level_np,
levels_np,
compact_level_ptr,
compact_node_offsets_np,
compact_neighbors_data,
NULL_INDEX_FOURCC,
b"",
)
else:
f_in.seek(pos_before_compact)
pos_before_probe = f_in.tell()
try:
suspected_flag = read_struct(f_in, "<B")
if suspected_flag != 0x00:
f_in.seek(pos_before_probe)
except EOFError:
f_in.seek(pos_before_probe)
offsets_np = read_numpy_vector(f_in, np.uint64, "Q")
neighbors_np = read_numpy_vector(f_in, np.int32, "i")
original_hnsw_data["entry_point"] = read_struct(f_in, "<i")
original_hnsw_data["max_level"] = read_struct(f_in, "<i")
original_hnsw_data["efConstruction"] = read_struct(f_in, "<i")
original_hnsw_data["efSearch"] = read_struct(f_in, "<i")
original_hnsw_data["dummy_upper_beam"] = read_struct(f_in, "<i")
_storage_fourcc = None
_storage_data = b""
try:
_storage_fourcc = read_struct(f_in, "<I")
_storage_data = f_in.read()
except EOFError:
_storage_fourcc = NULL_INDEX_FOURCC
write_original_format(
f_out,
original_hnsw_data,
assign_probas_np,
cum_nneighbor_per_level_np,
levels_np,
offsets_np,
neighbors_np,
NULL_INDEX_FOURCC,
b"",
)
print(f"[{time.time() - start_time:.2f}s] Pruned embeddings from {input_filename}")
return True
except Exception as exc:
print(f"Failed to prune embeddings: {exc}", file=sys.stderr)
return False
# --- Main Conversion Logic ---
@@ -700,6 +984,29 @@ def convert_hnsw_graph_to_csr(input_filename, output_filename, prune_embeddings=
pass
def prune_hnsw_embeddings_inplace(index_filename: str) -> bool:
"""Convenience wrapper to prune embeddings in-place."""
temp_path = f"{index_filename}.prune.tmp"
success = prune_hnsw_embeddings(index_filename, temp_path)
if success:
try:
os.replace(temp_path, index_filename)
except Exception as exc: # pragma: no cover - defensive
logger.error(f"Failed to replace original index with pruned version: {exc}")
try:
os.remove(temp_path)
except OSError:
pass
return False
else:
try:
os.remove(temp_path)
except OSError:
pass
return success
# --- Script Execution ---
if __name__ == "__main__":
parser = argparse.ArgumentParser(

View File

@@ -1,6 +1,7 @@
import logging
import os
import shutil
import time
from pathlib import Path
from typing import Any, Literal, Optional
@@ -13,7 +14,7 @@ from leann.interface import (
from leann.registry import register_backend
from leann.searcher_base import BaseSearcher
from .convert_to_csr import convert_hnsw_graph_to_csr
from .convert_to_csr import convert_hnsw_graph_to_csr, prune_hnsw_embeddings_inplace
logger = logging.getLogger(__name__)
@@ -89,8 +90,19 @@ class HNSWBuilder(LeannBackendBuilderInterface):
index_file = index_dir / f"{index_prefix}.index"
faiss.write_index(index, str(index_file))
# Persist ID map so searcher can map FAISS integer labels back to passage IDs
try:
idmap_file = index_dir / f"{index_prefix}.ids.txt"
with open(idmap_file, "w", encoding="utf-8") as f:
for id_str in ids:
f.write(str(id_str) + "\n")
except Exception as e:
logger.warning(f"Failed to write ID map: {e}")
if self.is_compact:
self._convert_to_csr(index_file)
elif self.is_recompute:
prune_hnsw_embeddings_inplace(str(index_file))
def _convert_to_csr(self, index_file: Path):
"""Convert built index to CSR format"""
@@ -132,10 +144,10 @@ class HNSWSearcher(BaseSearcher):
if metric_enum is None:
raise ValueError(f"Unsupported distance_metric '{self.distance_metric}'.")
self.is_compact, self.is_pruned = (
self.meta.get("is_compact", True),
self.meta.get("is_pruned", True),
)
backend_meta_kwargs = self.meta.get("backend_kwargs", {})
self.is_compact = self.meta.get("is_compact", backend_meta_kwargs.get("is_compact", True))
default_pruned = backend_meta_kwargs.get("is_recompute", self.is_compact)
self.is_pruned = bool(self.meta.get("is_pruned", default_pruned))
index_file = self.index_dir / f"{self.index_path.stem}.index"
if not index_file.exists():
@@ -149,6 +161,16 @@ class HNSWSearcher(BaseSearcher):
self._index = faiss.read_index(str(index_file), faiss.IO_FLAG_MMAP, hnsw_config)
# Load ID map if available
self._id_map: list[str] = []
try:
idmap_file = self.index_dir / f"{self.index_path.stem}.ids.txt"
if idmap_file.exists():
with open(idmap_file, encoding="utf-8") as f:
self._id_map = [line.rstrip("\n") for line in f]
except Exception as e:
logger.warning(f"Failed to load ID map: {e}")
def search(
self,
query: np.ndarray,
@@ -236,6 +258,7 @@ class HNSWSearcher(BaseSearcher):
distances = np.empty((batch_size_query, top_k), dtype=np.float32)
labels = np.empty((batch_size_query, top_k), dtype=np.int64)
search_time = time.time()
self._index.search(
query.shape[0],
faiss.swig_ptr(query),
@@ -244,7 +267,21 @@ class HNSWSearcher(BaseSearcher):
faiss.swig_ptr(labels),
params,
)
search_time = time.time() - search_time
logger.info(f" Search time in HNSWSearcher.search() backend: {search_time} seconds")
if self._id_map:
string_labels = [[str(int_label) for int_label in batch_labels] for batch_labels in labels]
def map_label(x: int) -> str:
if 0 <= x < len(self._id_map):
return self._id_map[x]
return str(x)
string_labels = [
[map_label(int(label)) for label in batch_labels] for batch_labels in labels
]
else:
string_labels = [
[str(int_label) for int_label in batch_labels] for batch_labels in labels
]
return {"labels": string_labels, "distances": distances}

View File

@@ -10,7 +10,7 @@ import sys
import threading
import time
from pathlib import Path
from typing import Optional
from typing import Any, Optional
import msgpack
import numpy as np
@@ -24,13 +24,35 @@ logger = logging.getLogger(__name__)
log_level = getattr(logging, LOG_LEVEL, logging.WARNING)
logger.setLevel(log_level)
# Ensure we have a handler if none exists
# Ensure we have handlers if none exist
if not logger.handlers:
handler = logging.StreamHandler()
stream_handler = logging.StreamHandler()
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.propagate = False
stream_handler.setFormatter(formatter)
logger.addHandler(stream_handler)
log_path = os.getenv("LEANN_HNSW_LOG_PATH")
if log_path:
try:
file_handler = logging.FileHandler(log_path, mode="a", encoding="utf-8")
file_formatter = logging.Formatter(
"%(asctime)s - %(levelname)s - [pid=%(process)d] %(message)s"
)
file_handler.setFormatter(file_formatter)
logger.addHandler(file_handler)
except Exception as exc: # pragma: no cover - best effort logging
logger.warning(f"Failed to attach file handler for log path {log_path}: {exc}")
logger.propagate = False
_RAW_PROVIDER_OPTIONS = os.getenv("LEANN_EMBEDDING_OPTIONS")
try:
PROVIDER_OPTIONS: dict[str, Any] = (
json.loads(_RAW_PROVIDER_OPTIONS) if _RAW_PROVIDER_OPTIONS else {}
)
except json.JSONDecodeError:
logger.warning("Failed to parse LEANN_EMBEDDING_OPTIONS; ignoring provider options")
PROVIDER_OPTIONS = {}
def create_hnsw_embedding_server(
@@ -90,9 +112,36 @@ def create_hnsw_embedding_server(
embedding_dim: int = int(meta.get("dimensions", 0))
except Exception:
embedding_dim = 0
logger.info(
f"Loaded PassageManager with {len(passages.global_offset_map)} passages from metadata"
)
logger.info(f"Loaded PassageManager with {len(passages)} passages from metadata")
# Attempt to load ID map (maps FAISS integer labels -> passage IDs)
id_map: list[str] = []
try:
meta_path = Path(passages_file)
base = meta_path.name
if base.endswith(".meta.json"):
base = base[: -len(".meta.json")] # e.g., laion_index.leann
if base.endswith(".leann"):
base = base[: -len(".leann")] # e.g., laion_index
idmap_file = meta_path.parent / f"{base}.ids.txt"
if idmap_file.exists():
with open(idmap_file, encoding="utf-8") as f:
id_map = [line.rstrip("\n") for line in f]
logger.info(f"Loaded ID map with {len(id_map)} entries from {idmap_file}")
else:
logger.warning(f"ID map file not found at {idmap_file}; will use raw labels")
except Exception as e:
logger.warning(f"Failed to load ID map: {e}")
def _map_node_id(nid) -> str:
try:
if id_map is not None and len(id_map) > 0 and isinstance(nid, (int, np.integer)):
idx = int(nid)
if 0 <= idx < len(id_map):
return id_map[idx]
except Exception:
pass
return str(nid)
# (legacy ZMQ thread removed; using shutdown-capable server only)
@@ -140,7 +189,12 @@ def create_hnsw_embedding_server(
):
last_request_type = "text"
last_request_length = len(request)
embeddings = compute_embeddings(request, model_name, mode=embedding_mode)
embeddings = compute_embeddings(
request,
model_name,
mode=embedding_mode,
provider_options=PROVIDER_OPTIONS,
)
rep_socket.send(msgpack.packb(embeddings.tolist()))
e2e_end = time.time()
logger.info(f"⏱️ Text embedding E2E time: {e2e_end - e2e_start:.6f}s")
@@ -170,13 +224,14 @@ def create_hnsw_embedding_server(
found_indices: list[int] = []
for idx, nid in enumerate(node_ids):
try:
passage_data = passages.get_passage(str(nid))
passage_id = _map_node_id(nid)
passage_data = passages.get_passage(passage_id)
txt = passage_data.get("text", "")
if isinstance(txt, str) and len(txt) > 0:
texts.append(txt)
found_indices.append(idx)
else:
logger.error(f"Empty text for passage ID {nid}")
logger.error(f"Empty text for passage ID {passage_id}")
except KeyError:
logger.error(f"Passage ID {nid} not found")
except Exception as e:
@@ -189,7 +244,10 @@ def create_hnsw_embedding_server(
if texts:
try:
embeddings = compute_embeddings(
texts, model_name, mode=embedding_mode
texts,
model_name,
mode=embedding_mode,
provider_options=PROVIDER_OPTIONS,
)
logger.info(
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
@@ -240,13 +298,14 @@ def create_hnsw_embedding_server(
found_indices: list[int] = []
for idx, nid in enumerate(node_ids):
try:
passage_data = passages.get_passage(str(nid))
passage_id = _map_node_id(nid)
passage_data = passages.get_passage(passage_id)
txt = passage_data.get("text", "")
if isinstance(txt, str) and len(txt) > 0:
texts.append(txt)
found_indices.append(idx)
else:
logger.error(f"Empty text for passage ID {nid}")
logger.error(f"Empty text for passage ID {passage_id}")
except KeyError:
logger.error(f"Passage with ID {nid} not found")
except Exception as e:
@@ -254,7 +313,12 @@ def create_hnsw_embedding_server(
if texts:
try:
embeddings = compute_embeddings(texts, model_name, mode=embedding_mode)
embeddings = compute_embeddings(
texts,
model_name,
mode=embedding_mode,
provider_options=PROVIDER_OPTIONS,
)
logger.info(
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
)

View File

@@ -6,10 +6,10 @@ build-backend = "scikit_build_core.build"
[project]
name = "leann-backend-hnsw"
version = "0.3.2"
version = "0.3.4"
description = "Custom-built HNSW (Faiss) backend for the Leann toolkit."
dependencies = [
"leann-core==0.3.2",
"leann-core==0.3.4",
"numpy",
"pyzmq>=23.0.0",
"msgpack>=1.0.0",

View File

@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
[project]
name = "leann-core"
version = "0.3.2"
version = "0.3.4"
description = "Core API and plugin system for LEANN"
readme = "README.md"
requires-python = ">=3.9"

View File

@@ -6,18 +6,22 @@ with the correct, original embedding logic from the user's reference code.
import json
import logging
import pickle
import re
import subprocess
import time
import warnings
from dataclasses import dataclass, field
from pathlib import Path
from typing import Any, Literal, Optional
from typing import Any, Literal, Optional, Union
import numpy as np
from leann_backend_hnsw.convert_to_csr import prune_hnsw_embeddings_inplace
from leann.interface import LeannBackendSearcherInterface
from .chat import get_llm
from .interface import LeannBackendFactoryInterface
from .metadata_filter import MetadataFilterEngine
from .registry import BACKEND_REGISTRY
logger = logging.getLogger(__name__)
@@ -35,6 +39,7 @@ def compute_embeddings(
use_server: bool = True,
port: Optional[int] = None,
is_build=False,
provider_options: Optional[dict[str, Any]] = None,
) -> np.ndarray:
"""
Computes embeddings using different backends.
@@ -68,6 +73,7 @@ def compute_embeddings(
model_name,
mode=mode,
is_build=is_build,
provider_options=provider_options,
)
@@ -119,9 +125,13 @@ class PassageManager:
def __init__(
self, passage_sources: list[dict[str, Any]], metadata_file_path: Optional[str] = None
):
self.offset_maps = {}
self.passage_files = {}
self.global_offset_map = {} # Combined map for fast lookup
self.offset_maps: dict[str, dict[str, int]] = {}
self.passage_files: dict[str, str] = {}
# Avoid materializing a single gigantic global map to reduce memory
# footprint on very large corpora (e.g., 60M+ passages). Instead, keep
# per-shard maps and do a lightweight per-shard lookup on demand.
self._total_count: int = 0
self.filter_engine = MetadataFilterEngine() # Initialize filter engine
# Derive index base name for standard sibling fallbacks, e.g., <index_name>.passages.*
index_name_base = None
@@ -142,12 +152,25 @@ class PassageManager:
default_name: Optional[str],
source_dict: dict[str, Any],
) -> list[Path]:
"""
Build an ordered list of candidate paths. For relative paths specified in
metadata, prefer resolution relative to the metadata file directory first,
then fall back to CWD-based resolution, and finally to conventional
sibling defaults (e.g., <index_base>.passages.idx / .jsonl).
"""
candidates: list[Path] = []
# 1) Primary as-is (absolute or relative)
# 1) Primary path
if primary:
p = Path(primary)
candidates.append(p if p.is_absolute() else (Path.cwd() / p))
# 2) metadata-relative explicit relative key
if p.is_absolute():
candidates.append(p)
else:
# Prefer metadata-relative resolution for relative paths
if metadata_file_path:
candidates.append(Path(metadata_file_path).parent / p)
# Also consider CWD-relative as a fallback for legacy layouts
candidates.append(Path.cwd() / p)
# 2) metadata-relative explicit relative key (if present)
if metadata_file_path and source_dict.get(relative_key):
candidates.append(Path(metadata_file_path).parent / source_dict[relative_key])
# 3) metadata-relative standard sibling filename
@@ -177,23 +200,78 @@ class PassageManager:
raise FileNotFoundError(f"Passage index file not found: {index_file}")
with open(index_file, "rb") as f:
offset_map = pickle.load(f)
offset_map: dict[str, int] = pickle.load(f)
self.offset_maps[passage_file] = offset_map
self.passage_files[passage_file] = passage_file
# Build global map for O(1) lookup
for passage_id, offset in offset_map.items():
self.global_offset_map[passage_id] = (passage_file, offset)
self._total_count += len(offset_map)
def get_passage(self, passage_id: str) -> dict[str, Any]:
if passage_id in self.global_offset_map:
passage_file, offset = self.global_offset_map[passage_id]
# Lazy file opening - only open when needed
with open(passage_file, encoding="utf-8") as f:
f.seek(offset)
return json.loads(f.readline())
# Fast path: check each shard map (there are typically few shards).
# This avoids building a massive combined dict while keeping lookups
# bounded by the number of shards.
for passage_file, offset_map in self.offset_maps.items():
try:
offset = offset_map[passage_id]
with open(passage_file, encoding="utf-8") as f:
f.seek(offset)
return json.loads(f.readline())
except KeyError:
continue
raise KeyError(f"Passage ID not found: {passage_id}")
def filter_search_results(
self,
search_results: list[SearchResult],
metadata_filters: Optional[dict[str, dict[str, Union[str, int, float, bool, list]]]],
) -> list[SearchResult]:
"""
Apply metadata filters to search results.
Args:
search_results: List of SearchResult objects
metadata_filters: Filter specifications to apply
Returns:
Filtered list of SearchResult objects
"""
if not metadata_filters:
return search_results
logger.debug(f"Applying metadata filters to {len(search_results)} results")
# Convert SearchResult objects to dictionaries for the filter engine
result_dicts = []
for result in search_results:
result_dicts.append(
{
"id": result.id,
"score": result.score,
"text": result.text,
"metadata": result.metadata,
}
)
# Apply filters using the filter engine
filtered_dicts = self.filter_engine.apply_filters(result_dicts, metadata_filters)
# Convert back to SearchResult objects
filtered_results = []
for result_dict in filtered_dicts:
filtered_results.append(
SearchResult(
id=result_dict["id"],
score=result_dict["score"],
text=result_dict["text"],
metadata=result_dict["metadata"],
)
)
logger.debug(f"Filtered results: {len(filtered_results)} remaining")
return filtered_results
def __len__(self) -> int:
return self._total_count
class LeannBuilder:
def __init__(
@@ -202,6 +280,7 @@ class LeannBuilder:
embedding_model: str = "facebook/contriever",
dimensions: Optional[int] = None,
embedding_mode: str = "sentence-transformers",
embedding_options: Optional[dict[str, Any]] = None,
**backend_kwargs,
):
self.backend_name = backend_name
@@ -224,6 +303,7 @@ class LeannBuilder:
self.embedding_model = embedding_model
self.dimensions = dimensions
self.embedding_mode = embedding_mode
self.embedding_options = embedding_options or {}
# Check if we need to use cosine distance for normalized embeddings
normalized_embeddings_models = {
@@ -331,6 +411,7 @@ class LeannBuilder:
self.embedding_model,
self.embedding_mode,
use_server=False,
provider_options=self.embedding_options,
)[0]
)
path = Path(index_path)
@@ -370,8 +451,20 @@ class LeannBuilder:
self.embedding_mode,
use_server=False,
is_build=True,
provider_options=self.embedding_options,
)
string_ids = [chunk["id"] for chunk in self.chunks]
# Persist ID map alongside index so backends that return integer labels can remap to passage IDs
try:
idmap_file = (
index_dir
/ f"{index_name[: -len('.leann')] if index_name.endswith('.leann') else index_name}.ids.txt"
)
with open(idmap_file, "w", encoding="utf-8") as f:
for sid in string_ids:
f.write(str(sid) + "\n")
except Exception:
pass
current_backend_kwargs = {**self.backend_kwargs, "dimensions": self.dimensions}
builder_instance = self.backend_factory.builder(**current_backend_kwargs)
builder_instance.build(embeddings, string_ids, index_path, **current_backend_kwargs)
@@ -396,14 +489,15 @@ class LeannBuilder:
],
}
if self.embedding_options:
meta_data["embedding_options"] = self.embedding_options
# Add storage status flags for HNSW backend
if self.backend_name == "hnsw":
is_compact = self.backend_kwargs.get("is_compact", True)
is_recompute = self.backend_kwargs.get("is_recompute", True)
meta_data["is_compact"] = is_compact
meta_data["is_pruned"] = (
is_compact and is_recompute
) # Pruned only if compact and recompute
meta_data["is_pruned"] = bool(is_recompute)
with open(leann_meta_path, "w", encoding="utf-8") as f:
json.dump(meta_data, f, indent=2)
@@ -490,6 +584,17 @@ class LeannBuilder:
# Build the vector index using precomputed embeddings
string_ids = [str(id_val) for id_val in ids]
# Persist ID map (order == embeddings order)
try:
idmap_file = (
index_dir
/ f"{index_name[: -len('.leann')] if index_name.endswith('.leann') else index_name}.ids.txt"
)
with open(idmap_file, "w", encoding="utf-8") as f:
for sid in string_ids:
f.write(str(sid) + "\n")
except Exception:
pass
current_backend_kwargs = {**self.backend_kwargs, "dimensions": self.dimensions}
builder_instance = self.backend_factory.builder(**current_backend_kwargs)
builder_instance.build(embeddings, string_ids, index_path)
@@ -518,18 +623,166 @@ class LeannBuilder:
"embeddings_source": str(embeddings_file),
}
if self.embedding_options:
meta_data["embedding_options"] = self.embedding_options
# Add storage status flags for HNSW backend
if self.backend_name == "hnsw":
is_compact = self.backend_kwargs.get("is_compact", True)
is_recompute = self.backend_kwargs.get("is_recompute", True)
meta_data["is_compact"] = is_compact
meta_data["is_pruned"] = is_compact and is_recompute
meta_data["is_pruned"] = bool(is_recompute)
with open(leann_meta_path, "w", encoding="utf-8") as f:
json.dump(meta_data, f, indent=2)
logger.info(f"Index built successfully from precomputed embeddings: {index_path}")
def update_index(self, index_path: str):
"""Append new passages and vectors to an existing HNSW index."""
if not self.chunks:
raise ValueError("No new chunks provided for update.")
path = Path(index_path)
index_dir = path.parent
index_name = path.name
index_prefix = path.stem
meta_path = index_dir / f"{index_name}.meta.json"
passages_file = index_dir / f"{index_name}.passages.jsonl"
offset_file = index_dir / f"{index_name}.passages.idx"
index_file = index_dir / f"{index_prefix}.index"
if not meta_path.exists() or not passages_file.exists() or not offset_file.exists():
raise FileNotFoundError("Index metadata or passage files are missing; cannot update.")
if not index_file.exists():
raise FileNotFoundError(f"HNSW index file not found: {index_file}")
with open(meta_path, encoding="utf-8") as f:
meta = json.load(f)
backend_name = meta.get("backend_name")
if backend_name != self.backend_name:
raise ValueError(
f"Index was built with backend '{backend_name}', cannot update with '{self.backend_name}'."
)
meta_backend_kwargs = meta.get("backend_kwargs", {})
index_is_compact = meta.get("is_compact", meta_backend_kwargs.get("is_compact", True))
if index_is_compact:
raise ValueError(
"Compact HNSW indices do not support in-place updates. Rebuild required."
)
distance_metric = meta_backend_kwargs.get(
"distance_metric", self.backend_kwargs.get("distance_metric", "mips")
).lower()
needs_recompute = bool(
meta.get("is_pruned")
or meta_backend_kwargs.get("is_recompute")
or self.backend_kwargs.get("is_recompute")
)
with open(offset_file, "rb") as f:
offset_map: dict[str, int] = pickle.load(f)
existing_ids = set(offset_map.keys())
valid_chunks: list[dict[str, Any]] = []
for chunk in self.chunks:
text = chunk.get("text", "")
if not isinstance(text, str) or not text.strip():
continue
metadata = chunk.setdefault("metadata", {})
passage_id = chunk.get("id") or metadata.get("id")
if passage_id and passage_id in existing_ids:
raise ValueError(f"Passage ID '{passage_id}' already exists in the index.")
valid_chunks.append(chunk)
if not valid_chunks:
raise ValueError("No valid chunks to append.")
texts_to_embed = [chunk["text"] for chunk in valid_chunks]
embeddings = compute_embeddings(
texts_to_embed,
self.embedding_model,
self.embedding_mode,
use_server=False,
is_build=True,
provider_options=self.embedding_options,
)
embedding_dim = embeddings.shape[1]
expected_dim = meta.get("dimensions")
if expected_dim is not None and expected_dim != embedding_dim:
raise ValueError(
f"Dimension mismatch during update: existing index uses {expected_dim}, got {embedding_dim}."
)
from leann_backend_hnsw import faiss # type: ignore
embeddings = np.ascontiguousarray(embeddings, dtype=np.float32)
if distance_metric == "cosine":
norms = np.linalg.norm(embeddings, axis=1, keepdims=True)
norms[norms == 0] = 1
embeddings = embeddings / norms
index = faiss.read_index(str(index_file))
if hasattr(index, "is_recompute"):
index.is_recompute = needs_recompute
if getattr(index, "storage", None) is None:
if index.metric_type == faiss.METRIC_INNER_PRODUCT:
storage_index = faiss.IndexFlatIP(index.d)
else:
storage_index = faiss.IndexFlatL2(index.d)
index.storage = storage_index
index.own_fields = True
if index.d != embedding_dim:
raise ValueError(
f"Existing index dimension ({index.d}) does not match new embeddings ({embedding_dim})."
)
base_id = index.ntotal
for offset, chunk in enumerate(valid_chunks):
new_id = str(base_id + offset)
chunk.setdefault("metadata", {})["id"] = new_id
chunk["id"] = new_id
index.add(embeddings.shape[0], faiss.swig_ptr(embeddings))
faiss.write_index(index, str(index_file))
with open(passages_file, "a", encoding="utf-8") as f:
for chunk in valid_chunks:
offset = f.tell()
json.dump(
{
"id": chunk["id"],
"text": chunk["text"],
"metadata": chunk.get("metadata", {}),
},
f,
ensure_ascii=False,
)
f.write("\n")
offset_map[chunk["id"]] = offset
with open(offset_file, "wb") as f:
pickle.dump(offset_map, f)
meta["total_passages"] = len(offset_map)
with open(meta_path, "w", encoding="utf-8") as f:
json.dump(meta, f, indent=2)
logger.info(
"Appended %d passages to index '%s'. New total: %d",
len(valid_chunks),
index_path,
len(offset_map),
)
self.chunks.clear()
if needs_recompute:
prune_hnsw_embeddings_inplace(str(index_file))
class LeannSearcher:
def __init__(self, index_path: str, enable_warmup: bool = False, **backend_kwargs):
@@ -553,15 +806,20 @@ class LeannSearcher:
self.embedding_model = self.meta_data["embedding_model"]
# Support both old and new format
self.embedding_mode = self.meta_data.get("embedding_mode", "sentence-transformers")
self.embedding_options = self.meta_data.get("embedding_options", {})
# Delegate portability handling to PassageManager
self.passage_manager = PassageManager(
self.meta_data.get("passage_sources", []), metadata_file_path=self.meta_path_str
)
# Preserve backend name for conditional parameter forwarding
self.backend_name = backend_name
backend_factory = BACKEND_REGISTRY.get(backend_name)
if backend_factory is None:
raise ValueError(f"Backend '{backend_name}' not found.")
final_kwargs = {**self.meta_data.get("backend_kwargs", {}), **backend_kwargs}
final_kwargs["enable_warmup"] = enable_warmup
if self.embedding_options:
final_kwargs.setdefault("embedding_options", self.embedding_options)
self.backend_impl: LeannBackendSearcherInterface = backend_factory.searcher(
index_path, **final_kwargs
)
@@ -576,15 +834,49 @@ class LeannSearcher:
recompute_embeddings: bool = True,
pruning_strategy: Literal["global", "local", "proportional"] = "global",
expected_zmq_port: int = 5557,
metadata_filters: Optional[dict[str, dict[str, Union[str, int, float, bool, list]]]] = None,
batch_size: int = 0,
use_grep: bool = False,
**kwargs,
) -> list[SearchResult]:
"""
Search for nearest neighbors with optional metadata filtering.
Args:
query: Text query to search for
top_k: Number of nearest neighbors to return
complexity: Search complexity/candidate list size, higher = more accurate but slower
beam_width: Number of parallel search paths/IO requests per iteration
prune_ratio: Ratio of neighbors to prune via approximate distance (0.0-1.0)
recompute_embeddings: Whether to fetch fresh embeddings from server vs use stored codes
pruning_strategy: Candidate selection strategy - "global" (default), "local", or "proportional"
expected_zmq_port: ZMQ port for embedding server communication
metadata_filters: Optional filters to apply to search results based on metadata.
Format: {"field_name": {"operator": value}}
Supported operators:
- Comparison: "==", "!=", "<", "<=", ">", ">="
- Membership: "in", "not_in"
- String: "contains", "starts_with", "ends_with"
Example: {"chapter": {"<=": 5}, "tags": {"in": ["fiction", "drama"]}}
**kwargs: Backend-specific parameters
Returns:
List of SearchResult objects with text, metadata, and similarity scores
"""
# Handle grep search
if use_grep:
return self._grep_search(query, top_k)
logger.info("🔍 LeannSearcher.search() called:")
logger.info(f" Query: '{query}'")
logger.info(f" Top_k: {top_k}")
logger.info(f" Metadata filters: {metadata_filters}")
logger.info(f" Additional kwargs: {kwargs}")
# Smart top_k detection and adjustment
total_docs = len(self.passage_manager.global_offset_map)
# Use PassageManager length (sum of shard sizes) to avoid
# depending on a massive combined map
total_docs = len(self.passage_manager)
original_top_k = top_k
if top_k > total_docs:
top_k = total_docs
@@ -613,23 +905,33 @@ class LeannSearcher:
use_server_if_available=recompute_embeddings,
zmq_port=zmq_port,
)
# logger.info(f" Generated embedding shape: {query_embedding.shape}")
# time.time() - start_time
# logger.info(f" Embedding time: {embedding_time} seconds")
logger.info(f" Generated embedding shape: {query_embedding.shape}")
embedding_time = time.time() - start_time
logger.info(f" Embedding time: {embedding_time} seconds")
start_time = time.time()
backend_search_kwargs: dict[str, Any] = {
"complexity": complexity,
"beam_width": beam_width,
"prune_ratio": prune_ratio,
"recompute_embeddings": recompute_embeddings,
"pruning_strategy": pruning_strategy,
"zmq_port": zmq_port,
}
# Only HNSW supports batching; forward conditionally
if self.backend_name == "hnsw":
backend_search_kwargs["batch_size"] = batch_size
# Merge any extra kwargs last
backend_search_kwargs.update(kwargs)
results = self.backend_impl.search(
query_embedding,
top_k,
complexity=complexity,
beam_width=beam_width,
prune_ratio=prune_ratio,
recompute_embeddings=recompute_embeddings,
pruning_strategy=pruning_strategy,
zmq_port=zmq_port,
**kwargs,
**backend_search_kwargs,
)
# logger.info(f" Search time: {search_time} seconds")
search_time = time.time() - start_time
logger.info(f" Search time in search() LEANN searcher: {search_time} seconds")
logger.info(f" Backend returned: labels={len(results.get('labels', [[]])[0])} results")
enriched_results = []
@@ -668,15 +970,109 @@ class LeannSearcher:
f" {RED}{RESET} [{i + 1:2d}] ID: '{string_id}' -> {RED}ERROR: Passage not found!{RESET}"
)
# Apply metadata filters if specified
if metadata_filters:
logger.info(f" 🔍 Applying metadata filters: {metadata_filters}")
enriched_results = self.passage_manager.filter_search_results(
enriched_results, metadata_filters
)
# Define color codes outside the loop for final message
GREEN = "\033[92m"
RESET = "\033[0m"
logger.info(f" {GREEN}✓ Final enriched results: {len(enriched_results)} passages{RESET}")
return enriched_results
def _find_jsonl_file(self) -> Optional[str]:
"""Find the .jsonl file containing raw passages for grep search"""
index_path = Path(self.meta_path_str).parent
potential_files = [
index_path / "documents.leann.passages.jsonl",
index_path.parent / "documents.leann.passages.jsonl",
]
for file_path in potential_files:
if file_path.exists():
return str(file_path)
return None
def _grep_search(self, query: str, top_k: int = 5) -> list[SearchResult]:
"""Perform grep-based search on raw passages"""
jsonl_file = self._find_jsonl_file()
if not jsonl_file:
raise FileNotFoundError("No .jsonl passages file found for grep search")
try:
cmd = ["grep", "-i", "-n", query, jsonl_file]
result = subprocess.run(cmd, capture_output=True, text=True, check=False)
if result.returncode == 1:
return []
elif result.returncode != 0:
raise RuntimeError(f"Grep failed: {result.stderr}")
matches = []
for line in result.stdout.strip().split("\n"):
if not line:
continue
parts = line.split(":", 1)
if len(parts) != 2:
continue
try:
data = json.loads(parts[1])
text = data.get("text", "")
score = text.lower().count(query.lower())
matches.append(
SearchResult(
id=data.get("id", parts[0]),
text=text,
metadata=data.get("metadata", {}),
score=float(score),
)
)
except json.JSONDecodeError:
continue
matches.sort(key=lambda x: x.score, reverse=True)
return matches[:top_k]
except FileNotFoundError:
raise RuntimeError(
"grep command not found. Please install grep or use semantic search."
)
def _python_regex_search(self, query: str, top_k: int = 5) -> list[SearchResult]:
"""Fallback regex search"""
jsonl_file = self._find_jsonl_file()
if not jsonl_file:
raise FileNotFoundError("No .jsonl file found")
pattern = re.compile(re.escape(query), re.IGNORECASE)
matches = []
with open(jsonl_file, encoding="utf-8") as f:
for line_num, line in enumerate(f, 1):
if pattern.search(line):
try:
data = json.loads(line.strip())
matches.append(
SearchResult(
id=data.get("id", str(line_num)),
text=data.get("text", ""),
metadata=data.get("metadata", {}),
score=float(len(pattern.findall(data.get("text", "")))),
)
)
except json.JSONDecodeError:
continue
matches.sort(key=lambda x: x.score, reverse=True)
return matches[:top_k]
def cleanup(self):
"""Explicitly cleanup embedding server resources.
This method should be called after you're done using the searcher,
especially in test environments or batch processing scenarios.
"""
@@ -708,9 +1104,15 @@ class LeannChat:
index_path: str,
llm_config: Optional[dict[str, Any]] = None,
enable_warmup: bool = False,
searcher: Optional[LeannSearcher] = None,
**kwargs,
):
self.searcher = LeannSearcher(index_path, enable_warmup=enable_warmup, **kwargs)
if searcher is None:
self.searcher = LeannSearcher(index_path, enable_warmup=enable_warmup, **kwargs)
self._owns_searcher = True
else:
self.searcher = searcher
self._owns_searcher = False
self.llm = get_llm(llm_config)
def ask(
@@ -724,6 +1126,9 @@ class LeannChat:
pruning_strategy: Literal["global", "local", "proportional"] = "global",
llm_kwargs: Optional[dict[str, Any]] = None,
expected_zmq_port: int = 5557,
metadata_filters: Optional[dict[str, dict[str, Union[str, int, float, bool, list]]]] = None,
batch_size: int = 0,
use_grep: bool = False,
**search_kwargs,
):
if llm_kwargs is None:
@@ -738,10 +1143,12 @@ class LeannChat:
recompute_embeddings=recompute_embeddings,
pruning_strategy=pruning_strategy,
expected_zmq_port=expected_zmq_port,
metadata_filters=metadata_filters,
batch_size=batch_size,
**search_kwargs,
)
search_time = time.time() - search_time
# logger.info(f" Search time: {search_time} seconds")
logger.info(f" Search time: {search_time} seconds")
context = "\n\n".join([r.text for r in results])
prompt = (
"Here is some retrieved context that might help answer your question:\n\n"
@@ -777,7 +1184,9 @@ class LeannChat:
This method should be called after you're done using the chat interface,
especially in test environments or batch processing scenarios.
"""
if hasattr(self.searcher, "cleanup"):
# Only stop the embedding server if this LeannChat instance created the searcher.
# When a shared searcher is passed in, avoid shutting down the server to enable reuse.
if getattr(self, "_owns_searcher", False) and hasattr(self.searcher, "cleanup"):
self.searcher.cleanup()
# Enable automatic cleanup patterns

View File

@@ -12,6 +12,8 @@ from typing import Any, Optional
import torch
from .settings import resolve_ollama_host, resolve_openai_api_key, resolve_openai_base_url
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@@ -310,11 +312,12 @@ def search_hf_models(query: str, limit: int = 10) -> list[str]:
def validate_model_and_suggest(
model_name: str, llm_type: str, host: str = "http://localhost:11434"
model_name: str, llm_type: str, host: Optional[str] = None
) -> Optional[str]:
"""Validate model name and provide suggestions if invalid"""
if llm_type == "ollama":
available_models = check_ollama_models(host)
resolved_host = resolve_ollama_host(host)
available_models = check_ollama_models(resolved_host)
if available_models and model_name not in available_models:
error_msg = f"Model '{model_name}' not found in your local Ollama installation."
@@ -457,19 +460,19 @@ class LLMInterface(ABC):
class OllamaChat(LLMInterface):
"""LLM interface for Ollama models."""
def __init__(self, model: str = "llama3:8b", host: str = "http://localhost:11434"):
def __init__(self, model: str = "llama3:8b", host: Optional[str] = None):
self.model = model
self.host = host
logger.info(f"Initializing OllamaChat with model='{model}' and host='{host}'")
self.host = resolve_ollama_host(host)
logger.info(f"Initializing OllamaChat with model='{model}' and host='{self.host}'")
try:
import requests
# Check if the Ollama server is responsive
if host:
requests.get(host)
if self.host:
requests.get(self.host)
# Pre-check model availability with helpful suggestions
model_error = validate_model_and_suggest(model, "ollama", host)
model_error = validate_model_and_suggest(model, "ollama", self.host)
if model_error:
raise ValueError(model_error)
@@ -478,9 +481,11 @@ class OllamaChat(LLMInterface):
"The 'requests' library is required for Ollama. Please install it with 'pip install requests'."
)
except requests.exceptions.ConnectionError:
logger.error(f"Could not connect to Ollama at {host}. Please ensure Ollama is running.")
logger.error(
f"Could not connect to Ollama at {self.host}. Please ensure Ollama is running."
)
raise ConnectionError(
f"Could not connect to Ollama at {host}. Please ensure Ollama is running."
f"Could not connect to Ollama at {self.host}. Please ensure Ollama is running."
)
def ask(self, prompt: str, **kwargs) -> str:
@@ -737,21 +742,31 @@ class GeminiChat(LLMInterface):
class OpenAIChat(LLMInterface):
"""LLM interface for OpenAI models."""
def __init__(self, model: str = "gpt-4o", api_key: Optional[str] = None):
def __init__(
self,
model: str = "gpt-4o",
api_key: Optional[str] = None,
base_url: Optional[str] = None,
):
self.model = model
self.api_key = api_key or os.getenv("OPENAI_API_KEY")
self.base_url = resolve_openai_base_url(base_url)
self.api_key = resolve_openai_api_key(api_key)
if not self.api_key:
raise ValueError(
"OpenAI API key is required. Set OPENAI_API_KEY environment variable or pass api_key parameter."
)
logger.info(f"Initializing OpenAI Chat with model='{model}'")
logger.info(
"Initializing OpenAI Chat with model='%s' and base_url='%s'",
model,
self.base_url,
)
try:
import openai
self.client = openai.OpenAI(api_key=self.api_key)
self.client = openai.OpenAI(api_key=self.api_key, base_url=self.base_url)
except ImportError:
raise ImportError(
"The 'openai' library is required for OpenAI models. Please install it with 'pip install openai'."
@@ -841,12 +856,16 @@ def get_llm(llm_config: Optional[dict[str, Any]] = None) -> LLMInterface:
if llm_type == "ollama":
return OllamaChat(
model=model or "llama3:8b",
host=llm_config.get("host", "http://localhost:11434"),
host=llm_config.get("host"),
)
elif llm_type == "hf":
return HFChat(model_name=model or "deepseek-ai/deepseek-llm-7b-chat")
elif llm_type == "openai":
return OpenAIChat(model=model or "gpt-4o", api_key=llm_config.get("api_key"))
return OpenAIChat(
model=model or "gpt-4o",
api_key=llm_config.get("api_key"),
base_url=llm_config.get("base_url"),
)
elif llm_type == "gemini":
return GeminiChat(model=model or "gemini-2.5-flash", api_key=llm_config.get("api_key"))
elif llm_type == "simulated":

View File

@@ -0,0 +1,220 @@
"""
Enhanced chunking utilities with AST-aware code chunking support.
Packaged within leann-core so installed wheels can import it reliably.
"""
import logging
from pathlib import Path
from typing import Optional
from llama_index.core.node_parser import SentenceSplitter
logger = logging.getLogger(__name__)
# Code file extensions supported by astchunk
CODE_EXTENSIONS = {
".py": "python",
".java": "java",
".cs": "csharp",
".ts": "typescript",
".tsx": "typescript",
".js": "typescript",
".jsx": "typescript",
}
def detect_code_files(documents, code_extensions=None) -> tuple[list, list]:
"""Separate documents into code files and regular text files."""
if code_extensions is None:
code_extensions = CODE_EXTENSIONS
code_docs = []
text_docs = []
for doc in documents:
file_path = doc.metadata.get("file_path", "") or doc.metadata.get("file_name", "")
if file_path:
file_ext = Path(file_path).suffix.lower()
if file_ext in code_extensions:
doc.metadata["language"] = code_extensions[file_ext]
doc.metadata["is_code"] = True
code_docs.append(doc)
else:
doc.metadata["is_code"] = False
text_docs.append(doc)
else:
doc.metadata["is_code"] = False
text_docs.append(doc)
logger.info(f"Detected {len(code_docs)} code files and {len(text_docs)} text files")
return code_docs, text_docs
def get_language_from_extension(file_path: str) -> Optional[str]:
"""Return language string from a filename/extension using CODE_EXTENSIONS."""
ext = Path(file_path).suffix.lower()
return CODE_EXTENSIONS.get(ext)
def create_ast_chunks(
documents,
max_chunk_size: int = 512,
chunk_overlap: int = 64,
metadata_template: str = "default",
) -> list[str]:
"""Create AST-aware chunks from code documents using astchunk.
Falls back to traditional chunking if astchunk is unavailable.
"""
try:
from astchunk import ASTChunkBuilder # optional dependency
except ImportError as e:
logger.error(f"astchunk not available: {e}")
logger.info("Falling back to traditional chunking for code files")
return create_traditional_chunks(documents, max_chunk_size, chunk_overlap)
all_chunks = []
for doc in documents:
language = doc.metadata.get("language")
if not language:
logger.warning("No language detected; falling back to traditional chunking")
all_chunks.extend(create_traditional_chunks([doc], max_chunk_size, chunk_overlap))
continue
try:
configs = {
"max_chunk_size": max_chunk_size,
"language": language,
"metadata_template": metadata_template,
"chunk_overlap": chunk_overlap if chunk_overlap > 0 else 0,
}
repo_metadata = {
"file_path": doc.metadata.get("file_path", ""),
"file_name": doc.metadata.get("file_name", ""),
"creation_date": doc.metadata.get("creation_date", ""),
"last_modified_date": doc.metadata.get("last_modified_date", ""),
}
configs["repo_level_metadata"] = repo_metadata
chunk_builder = ASTChunkBuilder(**configs)
code_content = doc.get_content()
if not code_content or not code_content.strip():
logger.warning("Empty code content, skipping")
continue
chunks = chunk_builder.chunkify(code_content)
for chunk in chunks:
if hasattr(chunk, "text"):
chunk_text = chunk.text
elif isinstance(chunk, dict) and "text" in chunk:
chunk_text = chunk["text"]
elif isinstance(chunk, str):
chunk_text = chunk
else:
chunk_text = str(chunk)
if chunk_text and chunk_text.strip():
all_chunks.append(chunk_text.strip())
logger.info(
f"Created {len(chunks)} AST chunks from {language} file: {doc.metadata.get('file_name', 'unknown')}"
)
except Exception as e:
logger.warning(f"AST chunking failed for {language} file: {e}")
logger.info("Falling back to traditional chunking")
all_chunks.extend(create_traditional_chunks([doc], max_chunk_size, chunk_overlap))
return all_chunks
def create_traditional_chunks(
documents, chunk_size: int = 256, chunk_overlap: int = 128
) -> list[str]:
"""Create traditional text chunks using LlamaIndex SentenceSplitter."""
if chunk_size <= 0:
logger.warning(f"Invalid chunk_size={chunk_size}, using default value of 256")
chunk_size = 256
if chunk_overlap < 0:
chunk_overlap = 0
if chunk_overlap >= chunk_size:
chunk_overlap = chunk_size // 2
node_parser = SentenceSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
separator=" ",
paragraph_separator="\n\n",
)
all_texts = []
for doc in documents:
try:
nodes = node_parser.get_nodes_from_documents([doc])
if nodes:
all_texts.extend(node.get_content() for node in nodes)
except Exception as e:
logger.error(f"Traditional chunking failed for document: {e}")
content = doc.get_content()
if content and content.strip():
all_texts.append(content.strip())
return all_texts
def create_text_chunks(
documents,
chunk_size: int = 256,
chunk_overlap: int = 128,
use_ast_chunking: bool = False,
ast_chunk_size: int = 512,
ast_chunk_overlap: int = 64,
code_file_extensions: Optional[list[str]] = None,
ast_fallback_traditional: bool = True,
) -> list[str]:
"""Create text chunks from documents with optional AST support for code files."""
if not documents:
logger.warning("No documents provided for chunking")
return []
local_code_extensions = CODE_EXTENSIONS.copy()
if code_file_extensions:
ext_mapping = {
".py": "python",
".java": "java",
".cs": "c_sharp",
".ts": "typescript",
".tsx": "typescript",
}
for ext in code_file_extensions:
if ext.lower() not in local_code_extensions:
if ext.lower() in ext_mapping:
local_code_extensions[ext.lower()] = ext_mapping[ext.lower()]
else:
logger.warning(f"Unsupported extension {ext}, will use traditional chunking")
all_chunks = []
if use_ast_chunking:
code_docs, text_docs = detect_code_files(documents, local_code_extensions)
if code_docs:
try:
all_chunks.extend(
create_ast_chunks(
code_docs, max_chunk_size=ast_chunk_size, chunk_overlap=ast_chunk_overlap
)
)
except Exception as e:
logger.error(f"AST chunking failed: {e}")
if ast_fallback_traditional:
all_chunks.extend(
create_traditional_chunks(code_docs, chunk_size, chunk_overlap)
)
else:
raise
if text_docs:
all_chunks.extend(create_traditional_chunks(text_docs, chunk_size, chunk_overlap))
else:
all_chunks = create_traditional_chunks(documents, chunk_size, chunk_overlap)
logger.info(f"Total chunks created: {len(all_chunks)}")
return all_chunks

View File

@@ -1,7 +1,7 @@
import argparse
import asyncio
from pathlib import Path
from typing import Optional, Union
from typing import Any, Optional, Union
from llama_index.core import SimpleDirectoryReader
from llama_index.core.node_parser import SentenceSplitter
@@ -9,6 +9,7 @@ from tqdm import tqdm
from .api import LeannBuilder, LeannChat, LeannSearcher
from .registry import register_project_directory
from .settings import resolve_ollama_host, resolve_openai_api_key, resolve_openai_base_url
def extract_pdf_text_with_pymupdf(file_path: str) -> str:
@@ -123,6 +124,24 @@ Examples:
choices=["sentence-transformers", "openai", "mlx", "ollama"],
help="Embedding backend mode (default: sentence-transformers)",
)
build_parser.add_argument(
"--embedding-host",
type=str,
default=None,
help="Override Ollama-compatible embedding host",
)
build_parser.add_argument(
"--embedding-api-base",
type=str,
default=None,
help="Base URL for OpenAI-compatible embedding services",
)
build_parser.add_argument(
"--embedding-api-key",
type=str,
default=None,
help="API key for embedding service (defaults to OPENAI_API_KEY)",
)
build_parser.add_argument(
"--force", "-f", action="store_true", help="Force rebuild existing index"
)
@@ -180,6 +199,29 @@ Examples:
default=50,
help="Code chunk overlap (default: 50)",
)
build_parser.add_argument(
"--use-ast-chunking",
action="store_true",
help="Enable AST-aware chunking for code files (requires astchunk)",
)
build_parser.add_argument(
"--ast-chunk-size",
type=int,
default=768,
help="AST chunk size in characters (default: 768)",
)
build_parser.add_argument(
"--ast-chunk-overlap",
type=int,
default=96,
help="AST chunk overlap in characters (default: 96)",
)
build_parser.add_argument(
"--ast-fallback-traditional",
action="store_true",
default=True,
help="Fall back to traditional chunking if AST chunking fails (default: True)",
)
# Search command
search_parser = subparsers.add_parser("search", help="Search documents")
@@ -215,6 +257,11 @@ Examples:
# Ask command
ask_parser = subparsers.add_parser("ask", help="Ask questions")
ask_parser.add_argument("index_name", help="Index name")
ask_parser.add_argument(
"query",
nargs="?",
help="Question to ask (omit for prompt or when using --interactive)",
)
ask_parser.add_argument(
"--llm",
type=str,
@@ -225,7 +272,12 @@ Examples:
ask_parser.add_argument(
"--model", type=str, default="qwen3:8b", help="Model name (default: qwen3:8b)"
)
ask_parser.add_argument("--host", type=str, default="http://localhost:11434")
ask_parser.add_argument(
"--host",
type=str,
default=None,
help="Override Ollama-compatible host (defaults to LEANN_OLLAMA_HOST/OLLAMA_HOST)",
)
ask_parser.add_argument(
"--interactive", "-i", action="store_true", help="Interactive chat mode"
)
@@ -254,6 +306,18 @@ Examples:
default=None,
help="Thinking budget for reasoning models (low/medium/high). Supported by GPT-Oss:20b and other reasoning models.",
)
ask_parser.add_argument(
"--api-base",
type=str,
default=None,
help="Base URL for OpenAI-compatible APIs (e.g., http://localhost:10000/v1)",
)
ask_parser.add_argument(
"--api-key",
type=str,
default=None,
help="API key for OpenAI-compatible APIs (defaults to OPENAI_API_KEY)",
)
# List command
subparsers.add_parser("list", help="List all indexes")
@@ -298,9 +362,17 @@ Examples:
return basic_matches
def _should_exclude_file(self, relative_path: Path, gitignore_matches) -> bool:
"""Check if a file should be excluded using gitignore parser."""
return gitignore_matches(str(relative_path))
def _should_exclude_file(self, file_path: Path, gitignore_matches) -> bool:
"""Check if a file should be excluded using gitignore parser.
Always match against absolute, posix-style paths for consistency with
gitignore_parser expectations.
"""
try:
absolute_path = file_path.resolve()
except Exception:
absolute_path = Path(str(file_path))
return gitignore_matches(absolute_path.as_posix())
def _is_git_submodule(self, path: Path) -> bool:
"""Check if a path is a git submodule."""
@@ -372,7 +444,9 @@ Examples:
print(f" {current_path}")
print(" " + "" * 45)
current_indexes = self._discover_indexes_in_project(current_path)
current_indexes = self._discover_indexes_in_project(
current_path, exclude_dirs=other_projects
)
if current_indexes:
for idx in current_indexes:
total_indexes += 1
@@ -411,9 +485,14 @@ Examples:
print(" leann build my-docs --docs ./documents")
else:
# Count only projects that have at least one discoverable index
projects_count = sum(
1 for p in valid_projects if len(self._discover_indexes_in_project(p)) > 0
)
projects_count = 0
for p in valid_projects:
if p == current_path:
discovered = self._discover_indexes_in_project(p, exclude_dirs=other_projects)
else:
discovered = self._discover_indexes_in_project(p)
if len(discovered) > 0:
projects_count += 1
print(f"📊 Total: {total_indexes} indexes across {projects_count} projects")
if current_indexes_count > 0:
@@ -430,9 +509,22 @@ Examples:
print("\n💡 Create your first index:")
print(" leann build my-docs --docs ./documents")
def _discover_indexes_in_project(self, project_path: Path):
"""Discover all indexes in a project directory (both CLI and apps formats)"""
def _discover_indexes_in_project(
self, project_path: Path, exclude_dirs: Optional[list[Path]] = None
):
"""Discover all indexes in a project directory (both CLI and apps formats)
exclude_dirs: when provided, skip any APP-format index files that are
located under these directories. This prevents duplicates when the
current project is a parent directory of other registered projects.
"""
indexes = []
exclude_dirs = exclude_dirs or []
# normalize to resolved paths once for comparison
try:
exclude_dirs_resolved = [p.resolve() for p in exclude_dirs]
except Exception:
exclude_dirs_resolved = exclude_dirs
# 1. CLI format: .leann/indexes/index_name/
cli_indexes_dir = project_path / ".leann" / "indexes"
@@ -471,6 +563,17 @@ Examples:
continue
except Exception:
pass
# Skip meta files that live under excluded directories
try:
meta_parent_resolved = meta_file.parent.resolve()
if any(
meta_parent_resolved.is_relative_to(ex_dir)
for ex_dir in exclude_dirs_resolved
):
continue
except Exception:
# best effort; if resolve or comparison fails, do not exclude
pass
# Use the parent directory name as the app index display name
display_name = meta_file.parent.name
# Extract file base used to store files
@@ -833,6 +936,7 @@ Examples:
docs_paths: Union[str, list],
custom_file_types: Union[str, None] = None,
include_hidden: bool = False,
args: Optional[dict[str, Any]] = None,
):
# Handle both single path (string) and multiple paths (list) for backward compatibility
if isinstance(docs_paths, str):
@@ -997,7 +1101,8 @@ Examples:
# Try to use better PDF parsers first, but only if PDFs are requested
documents = []
docs_path = Path(docs_dir)
# Use resolved absolute paths to avoid mismatches (symlinks, relative vs absolute)
docs_path = Path(docs_dir).resolve()
# Check if we should process PDFs
should_process_pdfs = custom_file_types is None or ".pdf" in custom_file_types
@@ -1006,10 +1111,15 @@ Examples:
for file_path in docs_path.rglob("*.pdf"):
# Check if file matches any exclude pattern
try:
# Ensure both paths are resolved before computing relativity
file_path_resolved = file_path.resolve()
# Determine directory scope using the non-resolved path to avoid
# misclassifying symlinked entries as outside the docs directory
relative_path = file_path.relative_to(docs_path)
if not include_hidden and _path_has_hidden_segment(relative_path):
continue
if self._should_exclude_file(relative_path, gitignore_matches):
# Use absolute path for gitignore matching
if self._should_exclude_file(file_path_resolved, gitignore_matches):
continue
except ValueError:
# Skip files that can't be made relative to docs_path
@@ -1052,10 +1162,11 @@ Examples:
) -> bool:
"""Return True if file should be included (not excluded)"""
try:
docs_path_obj = Path(docs_dir)
file_path_obj = Path(file_path)
relative_path = file_path_obj.relative_to(docs_path_obj)
return not self._should_exclude_file(relative_path, gitignore_matches)
docs_path_obj = Path(docs_dir).resolve()
file_path_obj = Path(file_path).resolve()
# Use absolute path for gitignore matching
_ = file_path_obj.relative_to(docs_path_obj) # validate scope
return not self._should_exclude_file(file_path_obj, gitignore_matches)
except (ValueError, OSError):
return True # Include files that can't be processed
@@ -1138,18 +1249,47 @@ Examples:
}
print("start chunking documents")
# Add progress bar for document chunking
for doc in tqdm(documents, desc="Chunking documents", unit="doc"):
# Check if this is a code file based on source path
source_path = doc.metadata.get("source", "")
is_code_file = any(source_path.endswith(ext) for ext in code_file_exts)
# Use appropriate parser based on file type
parser = self.code_parser if is_code_file else self.node_parser
nodes = parser.get_nodes_from_documents([doc])
# Check if AST chunking is requested
use_ast = getattr(args, "use_ast_chunking", False)
for node in nodes:
all_texts.append(node.get_content())
if use_ast:
print("🧠 Using AST-aware chunking for code files")
try:
# Import enhanced chunking utilities from packaged module
from .chunking_utils import create_text_chunks
# Use enhanced chunking with AST support
all_texts = create_text_chunks(
documents,
chunk_size=self.node_parser.chunk_size,
chunk_overlap=self.node_parser.chunk_overlap,
use_ast_chunking=True,
ast_chunk_size=getattr(args, "ast_chunk_size", 768),
ast_chunk_overlap=getattr(args, "ast_chunk_overlap", 96),
code_file_extensions=None, # Use defaults
ast_fallback_traditional=getattr(args, "ast_fallback_traditional", True),
)
except ImportError as e:
print(
f"⚠️ AST chunking utilities not available in package ({e}), falling back to traditional chunking"
)
use_ast = False
if not use_ast:
# Use traditional chunking logic
for doc in tqdm(documents, desc="Chunking documents", unit="doc"):
# Check if this is a code file based on source path
source_path = doc.metadata.get("source", "")
is_code_file = any(source_path.endswith(ext) for ext in code_file_exts)
# Use appropriate parser based on file type
parser = self.code_parser if is_code_file else self.node_parser
nodes = parser.get_nodes_from_documents([doc])
for node in nodes:
all_texts.append(node.get_content())
print(f"Loaded {len(documents)} documents, {len(all_texts)} chunks")
return all_texts
@@ -1216,7 +1356,7 @@ Examples:
)
all_texts = self.load_documents(
docs_paths, args.file_types, include_hidden=args.include_hidden
docs_paths, args.file_types, include_hidden=args.include_hidden, args=args
)
if not all_texts:
print("No documents found")
@@ -1226,10 +1366,20 @@ Examples:
print(f"Building index '{index_name}' with {args.backend} backend...")
embedding_options: dict[str, Any] = {}
if args.embedding_mode == "ollama":
embedding_options["host"] = resolve_ollama_host(args.embedding_host)
elif args.embedding_mode == "openai":
embedding_options["base_url"] = resolve_openai_base_url(args.embedding_api_base)
resolved_embedding_key = resolve_openai_api_key(args.embedding_api_key)
if resolved_embedding_key:
embedding_options["api_key"] = resolved_embedding_key
builder = LeannBuilder(
backend_name=args.backend,
embedding_model=args.embedding_model,
embedding_mode=args.embedding_mode,
embedding_options=embedding_options or None,
graph_degree=args.graph_degree,
complexity=args.complexity,
is_compact=args.compact,
@@ -1377,11 +1527,38 @@ Examples:
llm_config = {"type": args.llm, "model": args.model}
if args.llm == "ollama":
llm_config["host"] = args.host
llm_config["host"] = resolve_ollama_host(args.host)
elif args.llm == "openai":
llm_config["base_url"] = resolve_openai_base_url(args.api_base)
resolved_api_key = resolve_openai_api_key(args.api_key)
if resolved_api_key:
llm_config["api_key"] = resolved_api_key
chat = LeannChat(index_path=index_path, llm_config=llm_config)
llm_kwargs: dict[str, Any] = {}
if args.thinking_budget:
llm_kwargs["thinking_budget"] = args.thinking_budget
def _ask_once(prompt: str) -> None:
response = chat.ask(
prompt,
top_k=args.top_k,
complexity=args.complexity,
beam_width=args.beam_width,
prune_ratio=args.prune_ratio,
recompute_embeddings=args.recompute_embeddings,
pruning_strategy=args.pruning_strategy,
llm_kwargs=llm_kwargs,
)
print(f"LEANN: {response}")
initial_query = (args.query or "").strip()
if args.interactive:
if initial_query:
_ask_once(initial_query)
print("LEANN Assistant ready! Type 'quit' to exit")
print("=" * 40)
@@ -1394,41 +1571,14 @@ Examples:
if not user_input:
continue
# Prepare LLM kwargs with thinking budget if specified
llm_kwargs = {}
if args.thinking_budget:
llm_kwargs["thinking_budget"] = args.thinking_budget
response = chat.ask(
user_input,
top_k=args.top_k,
complexity=args.complexity,
beam_width=args.beam_width,
prune_ratio=args.prune_ratio,
recompute_embeddings=args.recompute_embeddings,
pruning_strategy=args.pruning_strategy,
llm_kwargs=llm_kwargs,
)
print(f"LEANN: {response}")
_ask_once(user_input)
else:
query = input("Enter your question: ").strip()
if query:
# Prepare LLM kwargs with thinking budget if specified
llm_kwargs = {}
if args.thinking_budget:
llm_kwargs["thinking_budget"] = args.thinking_budget
query = initial_query or input("Enter your question: ").strip()
if not query:
print("No question provided. Exiting.")
return
response = chat.ask(
query,
top_k=args.top_k,
complexity=args.complexity,
beam_width=args.beam_width,
prune_ratio=args.prune_ratio,
recompute_embeddings=args.recompute_embeddings,
pruning_strategy=args.pruning_strategy,
llm_kwargs=llm_kwargs,
)
print(f"LEANN: {response}")
_ask_once(query)
async def run(self, args=None):
parser = self.create_parser()

View File

@@ -6,11 +6,14 @@ Preserves all optimization parameters to ensure performance
import logging
import os
from typing import Any
import time
from typing import Any, Optional
import numpy as np
import torch
from .settings import resolve_ollama_host, resolve_openai_api_key, resolve_openai_base_url
# Set up logger with proper level
logger = logging.getLogger(__name__)
LOG_LEVEL = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
@@ -28,6 +31,9 @@ def compute_embeddings(
is_build: bool = False,
batch_size: int = 32,
adaptive_optimization: bool = True,
manual_tokenize: bool = False,
max_length: int = 512,
provider_options: Optional[dict[str, Any]] = None,
) -> np.ndarray:
"""
Unified embedding computation entry point
@@ -43,6 +49,8 @@ def compute_embeddings(
Returns:
Normalized embeddings array, shape: (len(texts), embedding_dim)
"""
provider_options = provider_options or {}
if mode == "sentence-transformers":
return compute_embeddings_sentence_transformers(
texts,
@@ -50,13 +58,25 @@ def compute_embeddings(
is_build=is_build,
batch_size=batch_size,
adaptive_optimization=adaptive_optimization,
manual_tokenize=manual_tokenize,
max_length=max_length,
)
elif mode == "openai":
return compute_embeddings_openai(texts, model_name)
return compute_embeddings_openai(
texts,
model_name,
base_url=provider_options.get("base_url"),
api_key=provider_options.get("api_key"),
)
elif mode == "mlx":
return compute_embeddings_mlx(texts, model_name)
elif mode == "ollama":
return compute_embeddings_ollama(texts, model_name, is_build=is_build)
return compute_embeddings_ollama(
texts,
model_name,
is_build=is_build,
host=provider_options.get("host"),
)
elif mode == "gemini":
return compute_embeddings_gemini(texts, model_name, is_build=is_build)
else:
@@ -71,6 +91,8 @@ def compute_embeddings_sentence_transformers(
batch_size: int = 32,
is_build: bool = False,
adaptive_optimization: bool = True,
manual_tokenize: bool = False,
max_length: int = 512,
) -> np.ndarray:
"""
Compute embeddings using SentenceTransformer with model caching and adaptive optimization
@@ -214,20 +236,130 @@ def compute_embeddings_sentence_transformers(
logger.info(f"Model cached: {cache_key}")
# Compute embeddings with optimized inference mode
logger.info(f"Starting embedding computation... (batch_size: {batch_size})")
logger.info(
f"Starting embedding computation... (batch_size: {batch_size}, manual_tokenize={manual_tokenize})"
)
# Use torch.inference_mode for optimal performance
with torch.inference_mode():
embeddings = model.encode(
texts,
batch_size=batch_size,
show_progress_bar=is_build, # Don't show progress bar in server environment
convert_to_numpy=True,
normalize_embeddings=False,
device=device,
)
start_time = time.time()
if not manual_tokenize:
# Use SentenceTransformer's optimized encode path (default)
with torch.inference_mode():
embeddings = model.encode(
texts,
batch_size=batch_size,
show_progress_bar=is_build, # Don't show progress bar in server environment
convert_to_numpy=True,
normalize_embeddings=False,
device=device,
)
# Synchronize if CUDA to measure accurate wall time
try:
if torch.cuda.is_available():
torch.cuda.synchronize()
except Exception:
pass
else:
# Manual tokenization + forward pass using HF AutoTokenizer/AutoModel
try:
from transformers import AutoModel, AutoTokenizer # type: ignore
except Exception as e:
raise ImportError(f"transformers is required for manual_tokenize=True: {e}")
# Cache tokenizer and model
tok_cache_key = f"hf_tokenizer_{model_name}"
mdl_cache_key = f"hf_model_{model_name}_{device}_{use_fp16}"
if tok_cache_key in _model_cache and mdl_cache_key in _model_cache:
hf_tokenizer = _model_cache[tok_cache_key]
hf_model = _model_cache[mdl_cache_key]
logger.info("Using cached HF tokenizer/model for manual path")
else:
logger.info("Loading HF tokenizer/model for manual tokenization path")
hf_tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
torch_dtype = torch.float16 if (use_fp16 and device == "cuda") else torch.float32
hf_model = AutoModel.from_pretrained(model_name, torch_dtype=torch_dtype)
hf_model.to(device)
hf_model.eval()
# Optional compile on supported devices
if device in ["cuda", "mps"]:
try:
hf_model = torch.compile(hf_model, mode="reduce-overhead", dynamic=True) # type: ignore
except Exception:
pass
_model_cache[tok_cache_key] = hf_tokenizer
_model_cache[mdl_cache_key] = hf_model
all_embeddings: list[np.ndarray] = []
# Progress bar when building or for large inputs
show_progress = is_build or len(texts) > 32
try:
if show_progress:
from tqdm import tqdm # type: ignore
batch_iter = tqdm(
range(0, len(texts), batch_size),
desc="Embedding (manual)",
unit="batch",
)
else:
batch_iter = range(0, len(texts), batch_size)
except Exception:
batch_iter = range(0, len(texts), batch_size)
start_time_manual = time.time()
with torch.inference_mode():
for start_index in batch_iter:
end_index = min(start_index + batch_size, len(texts))
batch_texts = texts[start_index:end_index]
tokenize_start_time = time.time()
inputs = hf_tokenizer(
batch_texts,
padding=True,
truncation=True,
max_length=max_length,
return_tensors="pt",
)
tokenize_end_time = time.time()
logger.info(
f"Tokenize time taken: {tokenize_end_time - tokenize_start_time} seconds"
)
# Print shapes of all input tensors for debugging
for k, v in inputs.items():
print(f"inputs[{k!r}] shape: {getattr(v, 'shape', type(v))}")
to_device_start_time = time.time()
inputs = {k: v.to(device) for k, v in inputs.items()}
to_device_end_time = time.time()
logger.info(
f"To device time taken: {to_device_end_time - to_device_start_time} seconds"
)
forward_start_time = time.time()
outputs = hf_model(**inputs)
forward_end_time = time.time()
logger.info(f"Forward time taken: {forward_end_time - forward_start_time} seconds")
last_hidden_state = outputs.last_hidden_state # (B, L, H)
attention_mask = inputs.get("attention_mask")
if attention_mask is None:
# Fallback: assume all tokens are valid
pooled = last_hidden_state.mean(dim=1)
else:
mask = attention_mask.unsqueeze(-1).to(last_hidden_state.dtype)
masked = last_hidden_state * mask
lengths = mask.sum(dim=1).clamp(min=1)
pooled = masked.sum(dim=1) / lengths
# Move to CPU float32
batch_embeddings = pooled.detach().to("cpu").float().numpy()
all_embeddings.append(batch_embeddings)
embeddings = np.vstack(all_embeddings).astype(np.float32, copy=False)
try:
if torch.cuda.is_available():
torch.cuda.synchronize()
except Exception:
pass
end_time = time.time()
logger.info(f"Manual tokenize time taken: {end_time - start_time_manual} seconds")
end_time = time.time()
logger.info(f"Generated {len(embeddings)} embeddings, dimension: {embeddings.shape[1]}")
logger.info(f"Time taken: {end_time - start_time} seconds")
# Validate results
if np.isnan(embeddings).any() or np.isinf(embeddings).any():
@@ -236,12 +368,15 @@ def compute_embeddings_sentence_transformers(
return embeddings
def compute_embeddings_openai(texts: list[str], model_name: str) -> np.ndarray:
def compute_embeddings_openai(
texts: list[str],
model_name: str,
base_url: Optional[str] = None,
api_key: Optional[str] = None,
) -> np.ndarray:
# TODO: @yichuan-w add progress bar only in build mode
"""Compute embeddings using OpenAI API"""
try:
import os
import openai
except ImportError as e:
raise ImportError(f"OpenAI package not installed: {e}")
@@ -256,16 +391,18 @@ def compute_embeddings_openai(texts: list[str], model_name: str) -> np.ndarray:
f"Found {invalid_count} empty/invalid text(s) in input. Upstream should filter before calling OpenAI."
)
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
resolved_base_url = resolve_openai_base_url(base_url)
resolved_api_key = resolve_openai_api_key(api_key)
if not resolved_api_key:
raise RuntimeError("OPENAI_API_KEY environment variable not set")
# Cache OpenAI client
cache_key = "openai_client"
cache_key = f"openai_client::{resolved_base_url}"
if cache_key in _model_cache:
client = _model_cache[cache_key]
else:
client = openai.OpenAI(api_key=api_key)
client = openai.OpenAI(api_key=resolved_api_key, base_url=resolved_base_url)
_model_cache[cache_key] = client
logger.info("OpenAI client cached")
@@ -390,7 +527,10 @@ def compute_embeddings_mlx(chunks: list[str], model_name: str, batch_size: int =
def compute_embeddings_ollama(
texts: list[str], model_name: str, is_build: bool = False, host: str = "http://localhost:11434"
texts: list[str],
model_name: str,
is_build: bool = False,
host: Optional[str] = None,
) -> np.ndarray:
"""
Compute embeddings using Ollama API with simplified batch processing.
@@ -401,7 +541,7 @@ def compute_embeddings_ollama(
texts: List of texts to compute embeddings for
model_name: Ollama model name (e.g., "nomic-embed-text", "mxbai-embed-large")
is_build: Whether this is a build operation (shows progress bar)
host: Ollama host URL (default: http://localhost:11434)
host: Ollama host URL (defaults to environment or http://localhost:11434)
Returns:
Normalized embeddings array, shape: (len(texts), embedding_dim)
@@ -416,17 +556,19 @@ def compute_embeddings_ollama(
if not texts:
raise ValueError("Cannot compute embeddings for empty text list")
resolved_host = resolve_ollama_host(host)
logger.info(
f"Computing embeddings for {len(texts)} texts using Ollama API, model: '{model_name}'"
f"Computing embeddings for {len(texts)} texts using Ollama API, model: '{model_name}', host: '{resolved_host}'"
)
# Check if Ollama is running
try:
response = requests.get(f"{host}/api/version", timeout=5)
response = requests.get(f"{resolved_host}/api/version", timeout=5)
response.raise_for_status()
except requests.exceptions.ConnectionError:
error_msg = (
f"❌ Could not connect to Ollama at {host}.\n\n"
f"❌ Could not connect to Ollama at {resolved_host}.\n\n"
"Please ensure Ollama is running:\n"
" • macOS/Linux: ollama serve\n"
" • Windows: Make sure Ollama is running in the system tray\n\n"
@@ -438,7 +580,7 @@ def compute_embeddings_ollama(
# Check if model exists and provide helpful suggestions
try:
response = requests.get(f"{host}/api/tags", timeout=5)
response = requests.get(f"{resolved_host}/api/tags", timeout=5)
response.raise_for_status()
models = response.json()
model_names = [model["name"] for model in models.get("models", [])]
@@ -501,7 +643,9 @@ def compute_embeddings_ollama(
# Verify the model supports embeddings by testing it
try:
test_response = requests.post(
f"{host}/api/embeddings", json={"model": model_name, "prompt": "test"}, timeout=10
f"{resolved_host}/api/embeddings",
json={"model": model_name, "prompt": "test"},
timeout=10,
)
if test_response.status_code != 200:
error_msg = (
@@ -548,7 +692,7 @@ def compute_embeddings_ollama(
while retry_count < max_retries:
try:
response = requests.post(
f"{host}/api/embeddings",
f"{resolved_host}/api/embeddings",
json={"model": model_name, "prompt": truncated_text},
timeout=30,
)

View File

@@ -8,6 +8,8 @@ import time
from pathlib import Path
from typing import Optional
from .settings import encode_provider_options
# Lightweight, self-contained server manager with no cross-process inspection
# Set up logging based on environment variable
@@ -82,16 +84,40 @@ class EmbeddingServerManager:
) -> tuple[bool, int]:
"""Start the embedding server."""
# passages_file may be present in kwargs for server CLI, but we don't need it here
provider_options = kwargs.pop("provider_options", None)
config_signature = {
"model_name": model_name,
"passages_file": kwargs.get("passages_file", ""),
"embedding_mode": embedding_mode,
"provider_options": provider_options or {},
}
# If this manager already has a live server, just reuse it
if self.server_process and self.server_process.poll() is None and self.server_port:
if (
self.server_process
and self.server_process.poll() is None
and self.server_port
and self._server_config == config_signature
):
logger.info("Reusing in-process server")
return True, self.server_port
# Configuration changed, stop existing server before starting a new one
if self.server_process and self.server_process.poll() is None:
logger.info("Existing server configuration differs; restarting embedding server")
self.stop_server()
# For Colab environment, use a different strategy
if _is_colab_environment():
logger.info("Detected Colab environment, using alternative startup strategy")
return self._start_server_colab(port, model_name, embedding_mode, **kwargs)
return self._start_server_colab(
port,
model_name,
embedding_mode,
provider_options=provider_options,
**kwargs,
)
# Always pick a fresh available port
try:
@@ -101,13 +127,21 @@ class EmbeddingServerManager:
return False, port
# Start a new server
return self._start_new_server(actual_port, model_name, embedding_mode, **kwargs)
return self._start_new_server(
actual_port,
model_name,
embedding_mode,
provider_options=provider_options,
config_signature=config_signature,
**kwargs,
)
def _start_server_colab(
self,
port: int,
model_name: str,
embedding_mode: str = "sentence-transformers",
provider_options: Optional[dict] = None,
**kwargs,
) -> tuple[bool, int]:
"""Start server with Colab-specific configuration."""
@@ -125,8 +159,20 @@ class EmbeddingServerManager:
try:
# In Colab, we'll use a more direct approach
self._launch_server_process_colab(command, actual_port)
return self._wait_for_server_ready_colab(actual_port)
self._launch_server_process_colab(
command,
actual_port,
provider_options=provider_options,
)
started, ready_port = self._wait_for_server_ready_colab(actual_port)
if started:
self._server_config = {
"model_name": model_name,
"passages_file": kwargs.get("passages_file", ""),
"embedding_mode": embedding_mode,
"provider_options": provider_options or {},
}
return started, ready_port
except Exception as e:
logger.error(f"Failed to start embedding server in Colab: {e}")
return False, actual_port
@@ -134,7 +180,13 @@ class EmbeddingServerManager:
# Note: No compatibility check needed; manager is per-searcher and configs are stable per instance
def _start_new_server(
self, port: int, model_name: str, embedding_mode: str, **kwargs
self,
port: int,
model_name: str,
embedding_mode: str,
provider_options: Optional[dict] = None,
config_signature: Optional[dict] = None,
**kwargs,
) -> tuple[bool, int]:
"""Start a new embedding server on the given port."""
logger.info(f"Starting embedding server on port {port}...")
@@ -142,8 +194,20 @@ class EmbeddingServerManager:
command = self._build_server_command(port, model_name, embedding_mode, **kwargs)
try:
self._launch_server_process(command, port)
return self._wait_for_server_ready(port)
self._launch_server_process(
command,
port,
provider_options=provider_options,
)
started, ready_port = self._wait_for_server_ready(port)
if started:
self._server_config = config_signature or {
"model_name": model_name,
"passages_file": kwargs.get("passages_file", ""),
"embedding_mode": embedding_mode,
"provider_options": provider_options or {},
}
return started, ready_port
except Exception as e:
logger.error(f"Failed to start embedding server: {e}")
return False, port
@@ -173,7 +237,12 @@ class EmbeddingServerManager:
return command
def _launch_server_process(self, command: list, port: int) -> None:
def _launch_server_process(
self,
command: list,
port: int,
provider_options: Optional[dict] = None,
) -> None:
"""Launch the server process."""
project_root = Path(__file__).parent.parent.parent.parent.parent
logger.info(f"Command: {' '.join(command)}")
@@ -192,14 +261,21 @@ class EmbeddingServerManager:
stderr_target = None # Direct to console for visible logs
# Start embedding server subprocess
logger.info(f"Starting server process with command: {' '.join(command)}")
env = os.environ.copy()
encoded_options = encode_provider_options(provider_options)
if encoded_options:
env["LEANN_EMBEDDING_OPTIONS"] = encoded_options
self.server_process = subprocess.Popen(
command,
cwd=project_root,
stdout=stdout_target,
stderr=stderr_target,
env=env,
)
self.server_port = port
# Record config for in-process reuse
# Record config for in-process reuse (best effort; refined later when ready)
try:
self._server_config = {
"model_name": command[command.index("--model-name") + 1]
@@ -211,12 +287,14 @@ class EmbeddingServerManager:
"embedding_mode": command[command.index("--embedding-mode") + 1]
if "--embedding-mode" in command
else "sentence-transformers",
"provider_options": provider_options or {},
}
except Exception:
self._server_config = {
"model_name": "",
"passages_file": "",
"embedding_mode": "sentence-transformers",
"provider_options": provider_options or {},
}
logger.info(f"Server process started with PID: {self.server_process.pid}")
@@ -321,16 +399,27 @@ class EmbeddingServerManager:
# Removed: cross-process adoption no longer supported
return
def _launch_server_process_colab(self, command: list, port: int) -> None:
def _launch_server_process_colab(
self,
command: list,
port: int,
provider_options: Optional[dict] = None,
) -> None:
"""Launch the server process with Colab-specific settings."""
logger.info(f"Colab Command: {' '.join(command)}")
# In Colab, we need to be more careful about process management
env = os.environ.copy()
encoded_options = encode_provider_options(provider_options)
if encoded_options:
env["LEANN_EMBEDDING_OPTIONS"] = encoded_options
self.server_process = subprocess.Popen(
command,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
env=env,
)
self.server_port = port
logger.info(f"Colab server process started with PID: {self.server_process.pid}")
@@ -344,6 +433,7 @@ class EmbeddingServerManager:
"model_name": "",
"passages_file": "",
"embedding_mode": "sentence-transformers",
"provider_options": provider_options or {},
}
def _wait_for_server_ready_colab(self, port: int) -> tuple[bool, int]:

View File

@@ -0,0 +1,240 @@
"""
Metadata filtering engine for LEANN search results.
This module provides generic metadata filtering capabilities that can be applied
to search results from any LEANN backend. The filtering supports various
operators for different data types including numbers, strings, booleans, and lists.
"""
import logging
from typing import Any, Union
logger = logging.getLogger(__name__)
# Type alias for filter specifications
FilterValue = Union[str, int, float, bool, list]
FilterSpec = dict[str, FilterValue]
MetadataFilters = dict[str, FilterSpec]
class MetadataFilterEngine:
"""
Engine for evaluating metadata filters against search results.
Supports various operators for filtering based on metadata fields:
- Comparison: ==, !=, <, <=, >, >=
- Membership: in, not_in
- String operations: contains, starts_with, ends_with
- Boolean operations: is_true, is_false
"""
def __init__(self):
"""Initialize the filter engine with supported operators."""
self.operators = {
"==": self._equals,
"!=": self._not_equals,
"<": self._less_than,
"<=": self._less_than_or_equal,
">": self._greater_than,
">=": self._greater_than_or_equal,
"in": self._in,
"not_in": self._not_in,
"contains": self._contains,
"starts_with": self._starts_with,
"ends_with": self._ends_with,
"is_true": self._is_true,
"is_false": self._is_false,
}
def apply_filters(
self, search_results: list[dict[str, Any]], metadata_filters: MetadataFilters
) -> list[dict[str, Any]]:
"""
Apply metadata filters to a list of search results.
Args:
search_results: List of result dictionaries, each containing 'metadata' field
metadata_filters: Dictionary of filter specifications
Format: {"field_name": {"operator": value}}
Returns:
Filtered list of search results
"""
if not metadata_filters:
return search_results
logger.debug(f"Applying filters: {metadata_filters}")
logger.debug(f"Input results count: {len(search_results)}")
filtered_results = []
for result in search_results:
if self._evaluate_filters(result, metadata_filters):
filtered_results.append(result)
logger.debug(f"Filtered results count: {len(filtered_results)}")
return filtered_results
def _evaluate_filters(self, result: dict[str, Any], filters: MetadataFilters) -> bool:
"""
Evaluate all filters against a single search result.
All filters must pass (AND logic) for the result to be included.
Args:
result: Full search result dictionary (including metadata, text, etc.)
filters: Filter specifications to evaluate
Returns:
True if all filters pass, False otherwise
"""
for field_name, filter_spec in filters.items():
if not self._evaluate_field_filter(result, field_name, filter_spec):
return False
return True
def _evaluate_field_filter(
self, result: dict[str, Any], field_name: str, filter_spec: FilterSpec
) -> bool:
"""
Evaluate a single field filter against a search result.
Args:
result: Full search result dictionary
field_name: Name of the field to filter on
filter_spec: Filter specification for this field
Returns:
True if the filter passes, False otherwise
"""
# First check top-level fields, then check metadata
field_value = result.get(field_name)
if field_value is None:
# Try to get from metadata if not found at top level
metadata = result.get("metadata", {})
field_value = metadata.get(field_name)
# Handle missing fields - they fail all filters except existence checks
if field_value is None:
logger.debug(f"Field '{field_name}' not found in result or metadata")
return False
# Evaluate each operator in the filter spec
for operator, expected_value in filter_spec.items():
if operator not in self.operators:
logger.warning(f"Unsupported operator: {operator}")
return False
try:
if not self.operators[operator](field_value, expected_value):
logger.debug(
f"Filter failed: {field_name} {operator} {expected_value} "
f"(actual: {field_value})"
)
return False
except Exception as e:
logger.warning(
f"Error evaluating filter {field_name} {operator} {expected_value}: {e}"
)
return False
return True
# Comparison operators
def _equals(self, field_value: Any, expected_value: Any) -> bool:
"""Check if field value equals expected value."""
return field_value == expected_value
def _not_equals(self, field_value: Any, expected_value: Any) -> bool:
"""Check if field value does not equal expected value."""
return field_value != expected_value
def _less_than(self, field_value: Any, expected_value: Any) -> bool:
"""Check if field value is less than expected value."""
return self._numeric_compare(field_value, expected_value, lambda a, b: a < b)
def _less_than_or_equal(self, field_value: Any, expected_value: Any) -> bool:
"""Check if field value is less than or equal to expected value."""
return self._numeric_compare(field_value, expected_value, lambda a, b: a <= b)
def _greater_than(self, field_value: Any, expected_value: Any) -> bool:
"""Check if field value is greater than expected value."""
return self._numeric_compare(field_value, expected_value, lambda a, b: a > b)
def _greater_than_or_equal(self, field_value: Any, expected_value: Any) -> bool:
"""Check if field value is greater than or equal to expected value."""
return self._numeric_compare(field_value, expected_value, lambda a, b: a >= b)
# Membership operators
def _in(self, field_value: Any, expected_value: Any) -> bool:
"""Check if field value is in the expected list/collection."""
if not isinstance(expected_value, (list, tuple, set)):
raise ValueError("'in' operator requires a list, tuple, or set")
return field_value in expected_value
def _not_in(self, field_value: Any, expected_value: Any) -> bool:
"""Check if field value is not in the expected list/collection."""
if not isinstance(expected_value, (list, tuple, set)):
raise ValueError("'not_in' operator requires a list, tuple, or set")
return field_value not in expected_value
# String operators
def _contains(self, field_value: Any, expected_value: Any) -> bool:
"""Check if field value contains the expected substring."""
field_str = str(field_value)
expected_str = str(expected_value)
return expected_str in field_str
def _starts_with(self, field_value: Any, expected_value: Any) -> bool:
"""Check if field value starts with the expected prefix."""
field_str = str(field_value)
expected_str = str(expected_value)
return field_str.startswith(expected_str)
def _ends_with(self, field_value: Any, expected_value: Any) -> bool:
"""Check if field value ends with the expected suffix."""
field_str = str(field_value)
expected_str = str(expected_value)
return field_str.endswith(expected_str)
# Boolean operators
def _is_true(self, field_value: Any, expected_value: Any) -> bool:
"""Check if field value is truthy."""
return bool(field_value)
def _is_false(self, field_value: Any, expected_value: Any) -> bool:
"""Check if field value is falsy."""
return not bool(field_value)
# Helper methods
def _numeric_compare(self, field_value: Any, expected_value: Any, compare_func) -> bool:
"""
Helper for numeric comparisons with type coercion.
Args:
field_value: Value from metadata
expected_value: Value to compare against
compare_func: Comparison function to apply
Returns:
Result of comparison
"""
try:
# Try to convert both values to numbers for comparison
if isinstance(field_value, str) and isinstance(expected_value, str):
# String comparison if both are strings
return compare_func(field_value, expected_value)
# Numeric comparison - attempt to convert to float
field_num = (
float(field_value) if not isinstance(field_value, (int, float)) else field_value
)
expected_num = (
float(expected_value)
if not isinstance(expected_value, (int, float))
else expected_value
)
return compare_func(field_num, expected_num)
except (ValueError, TypeError):
# Fall back to string comparison if numeric conversion fails
return compare_func(str(field_value), str(expected_value))

View File

@@ -41,6 +41,7 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
print("WARNING: embedding_model not found in meta.json. Recompute will fail.")
self.embedding_mode = self.meta.get("embedding_mode", "sentence-transformers")
self.embedding_options = self.meta.get("embedding_options", {})
self.embedding_server_manager = EmbeddingServerManager(
backend_module_name=backend_module_name,
@@ -77,6 +78,7 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
passages_file=passages_source_file,
distance_metric=distance_metric,
enable_warmup=kwargs.get("enable_warmup", False),
provider_options=self.embedding_options,
)
if not server_started:
raise RuntimeError(f"Failed to start embedding server on port {actual_port}")
@@ -125,7 +127,12 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
from .embedding_compute import compute_embeddings
embedding_mode = self.meta.get("embedding_mode", "sentence-transformers")
return compute_embeddings([query], self.embedding_model, embedding_mode)
return compute_embeddings(
[query],
self.embedding_model,
embedding_mode,
provider_options=self.embedding_options,
)
def _compute_embedding_via_server(self, chunks: list, zmq_port: int) -> np.ndarray:
"""Compute embeddings using the ZMQ embedding server."""

View File

@@ -0,0 +1,74 @@
"""Runtime configuration helpers for LEANN."""
from __future__ import annotations
import json
import os
from typing import Any
# Default fallbacks to preserve current behaviour while keeping them in one place.
_DEFAULT_OLLAMA_HOST = "http://localhost:11434"
_DEFAULT_OPENAI_BASE_URL = "https://api.openai.com/v1"
def _clean_url(value: str) -> str:
"""Normalize URL strings by stripping trailing slashes."""
return value.rstrip("/") if value else value
def resolve_ollama_host(explicit: str | None = None) -> str:
"""Resolve the Ollama-compatible endpoint to use."""
candidates = (
explicit,
os.getenv("LEANN_LOCAL_LLM_HOST"),
os.getenv("LEANN_OLLAMA_HOST"),
os.getenv("OLLAMA_HOST"),
os.getenv("LOCAL_LLM_ENDPOINT"),
)
for candidate in candidates:
if candidate:
return _clean_url(candidate)
return _clean_url(_DEFAULT_OLLAMA_HOST)
def resolve_openai_base_url(explicit: str | None = None) -> str:
"""Resolve the base URL for OpenAI-compatible services."""
candidates = (
explicit,
os.getenv("LEANN_OPENAI_BASE_URL"),
os.getenv("OPENAI_BASE_URL"),
os.getenv("LOCAL_OPENAI_BASE_URL"),
)
for candidate in candidates:
if candidate:
return _clean_url(candidate)
return _clean_url(_DEFAULT_OPENAI_BASE_URL)
def resolve_openai_api_key(explicit: str | None = None) -> str | None:
"""Resolve the API key for OpenAI-compatible services."""
if explicit:
return explicit
return os.getenv("OPENAI_API_KEY")
def encode_provider_options(options: dict[str, Any] | None) -> str | None:
"""Serialize provider options for child processes."""
if not options:
return None
try:
return json.dumps(options)
except (TypeError, ValueError):
# Fall back to empty payload if serialization fails
return None

View File

@@ -2,6 +2,8 @@
Transform your development workflow with intelligent code assistance using LEANN's semantic search directly in Claude Code.
For agent-facing discovery details, see `llms.txt` in the repository root.
## Prerequisites
Install LEANN globally for MCP integration (with default backend):

View File

@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
[project]
name = "leann"
version = "0.3.2"
version = "0.3.4"
description = "LEANN - The smallest vector index in the world. RAG Everything with LEANN!"
readme = "README.md"
requires-python = ">=3.9"

View File

@@ -46,27 +46,17 @@ dependencies = [
"pathspec>=0.12.1",
"nbconvert>=7.16.6",
"gitignore-parser>=0.1.12",
# AST-aware code chunking dependencies
"astchunk>=0.1.0",
"tree-sitter>=0.20.0",
"tree-sitter-python>=0.20.0",
"tree-sitter-java>=0.20.0",
"tree-sitter-c-sharp>=0.20.0",
"tree-sitter-typescript>=0.20.0",
"torchvision>=0.23.0",
]
[project.optional-dependencies]
dev = [
"pytest>=7.0",
"pytest-cov>=4.0",
"pytest-xdist>=3.0", # For parallel test execution
"black>=23.0",
"ruff==0.12.7", # Fixed version to ensure consistent formatting across all environments
"matplotlib",
"huggingface-hub>=0.20.0",
"pre-commit>=3.5.0",
]
test = [
"pytest>=7.0",
"pytest-timeout>=2.0",
"llama-index-core>=0.12.0",
"python-dotenv>=1.0.0",
]
diskann = [
"leann-backend-diskann",
]
@@ -92,11 +82,38 @@ wechat-exporter = "wechat_exporter.main:main"
leann-core = { path = "packages/leann-core", editable = true }
leann-backend-diskann = { path = "packages/leann-backend-diskann", editable = true }
leann-backend-hnsw = { path = "packages/leann-backend-hnsw", editable = true }
astchunk = { path = "packages/astchunk-leann", editable = true }
[dependency-groups]
# Minimal lint toolchain for CI and local hooks
lint = [
"pre-commit>=3.5.0",
"ruff==0.12.7", # Fixed version to ensure consistent formatting across all environments
]
# Test toolchain (no heavy project runtime deps)
test = [
"pytest>=7.0",
"pytest-cov>=4.0",
"pytest-xdist>=3.0",
"pytest-timeout>=2.0",
"python-dotenv>=1.0.0",
]
# dependencies by apps/ should list here
dev = [
"matplotlib",
"huggingface-hub>=0.20.0",
]
[tool.ruff]
target-version = "py39"
line-length = 100
extend-exclude = ["third_party"]
extend-exclude = [
"third_party",
"apps/multimodal/vision-based-pdf-multi-vector/multi-vector-leann.py",
"apps/multimodal/vision-based-pdf-multi-vector/multi-vector-leann-similarity-map.py"
]
[tool.ruff.lint]

121
scripts/hf_upload.py Normal file
View File

@@ -0,0 +1,121 @@
#!/usr/bin/env python3
"""
Upload local evaluation data to Hugging Face Hub, excluding diskann_rpj_wiki.
Defaults:
- repo_id: LEANN-RAG/leann-rag-evaluation-data (dataset)
- folder_path: benchmarks/data
- ignore_patterns: diskann_rpj_wiki/** and .cache/**
Requires authentication via `huggingface-cli login` or HF_TOKEN env var.
"""
from __future__ import annotations
import argparse
import os
try:
from huggingface_hub import HfApi
except Exception as e:
raise SystemExit(
"huggingface_hub is required. Install with: pip install huggingface_hub hf_transfer"
) from e
def _enable_transfer_accel_if_available() -> None:
"""Best-effort enabling of accelerated transfers across hub versions.
Tries the public util if present; otherwise, falls back to env flag when
hf_transfer is installed. Silently no-ops if unavailable.
"""
try:
# Newer huggingface_hub exposes this under utils
from huggingface_hub.utils import hf_hub_enable_hf_transfer # type: ignore
hf_hub_enable_hf_transfer()
return
except Exception:
pass
try:
# If hf_transfer is installed, set env flag recognized by the hub
import hf_transfer # noqa: F401
os.environ.setdefault("HF_HUB_ENABLE_HF_TRANSFER", "1")
except Exception:
# Acceleration not available; proceed without it
pass
def parse_args() -> argparse.Namespace:
p = argparse.ArgumentParser(description="Upload local data to HF, excluding diskann_rpj_wiki")
p.add_argument(
"--repo-id",
default="LEANN-RAG/leann-rag-evaluation-data",
help="Target dataset repo id (namespace/name)",
)
p.add_argument(
"--folder-path",
default="benchmarks/data",
help="Local folder to upload (default: benchmarks/data)",
)
p.add_argument(
"--ignore",
default=["diskann_rpj_wiki/**", ".cache/**"],
nargs="+",
help="Glob patterns to ignore (space-separated)",
)
p.add_argument(
"--allow",
default=["**"],
nargs="+",
help="Glob patterns to allow (space-separated). Defaults to everything.",
)
p.add_argument(
"--message",
default="sync local data (exclude diskann_rpj_wiki)",
help="Commit message",
)
p.add_argument(
"--no-transfer-accel",
action="store_true",
help="Disable hf_transfer accelerated uploads",
)
return p.parse_args()
def main() -> None:
args = parse_args()
if not args.no_transfer_accel:
_enable_transfer_accel_if_available()
if not os.path.isdir(args.folder_path):
raise SystemExit(f"Folder not found: {args.folder_path}")
print("Uploading to Hugging Face Hub:")
print(f" repo_id: {args.repo_id}")
print(" repo_type: dataset")
print(f" folder_path: {args.folder_path}")
print(f" allow_patterns: {args.allow}")
print(f" ignore_patterns:{args.ignore}")
api = HfApi()
# Perform upload. This skips unchanged files by content hash.
api.upload_folder(
repo_id=args.repo_id,
repo_type="dataset",
folder_path=args.folder_path,
path_in_repo=".",
allow_patterns=args.allow,
ignore_patterns=args.ignore,
commit_message=args.message,
)
print("Upload completed (unchanged files were skipped by the Hub).")
if __name__ == "__main__":
main()

View File

@@ -40,8 +40,8 @@ Tests DiskANN graph partitioning functionality:
### Install test dependencies:
```bash
# Using extras
uv pip install -e ".[test]"
# Using uv dependency groups (tools only)
uv sync --only-group test
```
### Run all tests:

View File

@@ -0,0 +1,397 @@
"""
Test suite for astchunk integration with LEANN.
Tests AST-aware chunking functionality, language detection, and fallback mechanisms.
"""
import os
import subprocess
import sys
import tempfile
from pathlib import Path
from unittest.mock import patch
import pytest
# Add apps directory to path for imports
sys.path.insert(0, str(Path(__file__).parent.parent / "apps"))
from typing import Optional
from chunking import (
create_ast_chunks,
create_text_chunks,
create_traditional_chunks,
detect_code_files,
get_language_from_extension,
)
class MockDocument:
"""Mock LlamaIndex Document for testing."""
def __init__(self, content: str, file_path: str = "", metadata: Optional[dict] = None):
self.content = content
self.metadata = metadata or {}
if file_path:
self.metadata["file_path"] = file_path
def get_content(self) -> str:
return self.content
class TestCodeFileDetection:
"""Test code file detection and language mapping."""
def test_detect_code_files_python(self):
"""Test detection of Python files."""
docs = [
MockDocument("print('hello')", "/path/to/file.py"),
MockDocument("This is text", "/path/to/file.txt"),
]
code_docs, text_docs = detect_code_files(docs)
assert len(code_docs) == 1
assert len(text_docs) == 1
assert code_docs[0].metadata["language"] == "python"
assert code_docs[0].metadata["is_code"] is True
assert text_docs[0].metadata["is_code"] is False
def test_detect_code_files_multiple_languages(self):
"""Test detection of multiple programming languages."""
docs = [
MockDocument("def func():", "/path/to/script.py"),
MockDocument("public class Test {}", "/path/to/Test.java"),
MockDocument("interface ITest {}", "/path/to/test.ts"),
MockDocument("using System;", "/path/to/Program.cs"),
MockDocument("Regular text content", "/path/to/document.txt"),
]
code_docs, text_docs = detect_code_files(docs)
assert len(code_docs) == 4
assert len(text_docs) == 1
languages = [doc.metadata["language"] for doc in code_docs]
assert "python" in languages
assert "java" in languages
assert "typescript" in languages
assert "csharp" in languages
def test_detect_code_files_no_file_path(self):
"""Test handling of documents without file paths."""
docs = [
MockDocument("some content"),
MockDocument("other content", metadata={"some_key": "value"}),
]
code_docs, text_docs = detect_code_files(docs)
assert len(code_docs) == 0
assert len(text_docs) == 2
for doc in text_docs:
assert doc.metadata["is_code"] is False
def test_get_language_from_extension(self):
"""Test language detection from file extensions."""
assert get_language_from_extension("test.py") == "python"
assert get_language_from_extension("Test.java") == "java"
assert get_language_from_extension("component.tsx") == "typescript"
assert get_language_from_extension("Program.cs") == "csharp"
assert get_language_from_extension("document.txt") is None
assert get_language_from_extension("") is None
class TestChunkingFunctions:
"""Test various chunking functionality."""
def test_create_traditional_chunks(self):
"""Test traditional text chunking."""
docs = [
MockDocument(
"This is a test document. It has multiple sentences. We want to test chunking."
)
]
chunks = create_traditional_chunks(docs, chunk_size=50, chunk_overlap=10)
assert len(chunks) > 0
assert all(isinstance(chunk, str) for chunk in chunks)
assert all(len(chunk.strip()) > 0 for chunk in chunks)
def test_create_traditional_chunks_empty_docs(self):
"""Test traditional chunking with empty documents."""
chunks = create_traditional_chunks([], chunk_size=50, chunk_overlap=10)
assert chunks == []
@pytest.mark.skipif(
os.environ.get("CI") == "true",
reason="Skip astchunk tests in CI - dependency may not be available",
)
def test_create_ast_chunks_with_astchunk_available(self):
"""Test AST chunking when astchunk is available."""
python_code = '''
def hello_world():
"""Print hello world message."""
print("Hello, World!")
def add_numbers(a, b):
"""Add two numbers and return the result."""
return a + b
class Calculator:
"""A simple calculator class."""
def __init__(self):
self.history = []
def add(self, a, b):
result = a + b
self.history.append(f"{a} + {b} = {result}")
return result
'''
docs = [MockDocument(python_code, "/test/calculator.py", {"language": "python"})]
try:
chunks = create_ast_chunks(docs, max_chunk_size=200, chunk_overlap=50)
# Should have multiple chunks due to different functions/classes
assert len(chunks) > 0
assert all(isinstance(chunk, str) for chunk in chunks)
assert all(len(chunk.strip()) > 0 for chunk in chunks)
# Check that code structure is somewhat preserved
combined_content = " ".join(chunks)
assert "def hello_world" in combined_content
assert "class Calculator" in combined_content
except ImportError:
# astchunk not available, should fall back to traditional chunking
chunks = create_ast_chunks(docs, max_chunk_size=200, chunk_overlap=50)
assert len(chunks) > 0 # Should still get chunks from fallback
def test_create_ast_chunks_fallback_to_traditional(self):
"""Test AST chunking falls back to traditional when astchunk is not available."""
docs = [MockDocument("def test(): pass", "/test/script.py", {"language": "python"})]
# Mock astchunk import to fail
with patch("chunking.create_ast_chunks"):
# First call (actual test) should import astchunk and potentially fail
# Let's call the actual function to test the import error handling
chunks = create_ast_chunks(docs)
# Should return some chunks (either from astchunk or fallback)
assert isinstance(chunks, list)
def test_create_text_chunks_traditional_mode(self):
"""Test text chunking in traditional mode."""
docs = [
MockDocument("def test(): pass", "/test/script.py"),
MockDocument("This is regular text.", "/test/doc.txt"),
]
chunks = create_text_chunks(docs, use_ast_chunking=False, chunk_size=50, chunk_overlap=10)
assert len(chunks) > 0
assert all(isinstance(chunk, str) for chunk in chunks)
def test_create_text_chunks_ast_mode(self):
"""Test text chunking in AST mode."""
docs = [
MockDocument("def test(): pass", "/test/script.py"),
MockDocument("This is regular text.", "/test/doc.txt"),
]
chunks = create_text_chunks(
docs,
use_ast_chunking=True,
ast_chunk_size=100,
ast_chunk_overlap=20,
chunk_size=50,
chunk_overlap=10,
)
assert len(chunks) > 0
assert all(isinstance(chunk, str) for chunk in chunks)
def test_create_text_chunks_custom_extensions(self):
"""Test text chunking with custom code file extensions."""
docs = [
MockDocument("function test() {}", "/test/script.js"), # Not in default extensions
MockDocument("Regular text", "/test/doc.txt"),
]
# First without custom extensions - should treat .js as text
chunks_without = create_text_chunks(docs, use_ast_chunking=True, code_file_extensions=None)
# Then with custom extensions - should treat .js as code
chunks_with = create_text_chunks(
docs, use_ast_chunking=True, code_file_extensions=[".js", ".jsx"]
)
# Both should return chunks
assert len(chunks_without) > 0
assert len(chunks_with) > 0
class TestIntegrationWithDocumentRAG:
"""Integration tests with the document RAG system."""
@pytest.fixture
def temp_code_dir(self):
"""Create a temporary directory with sample code files."""
with tempfile.TemporaryDirectory() as temp_dir:
temp_path = Path(temp_dir)
# Create sample Python file
python_file = temp_path / "example.py"
python_file.write_text('''
def fibonacci(n):
"""Calculate fibonacci number."""
if n <= 1:
return n
return fibonacci(n-1) + fibonacci(n-2)
class MathUtils:
@staticmethod
def factorial(n):
if n <= 1:
return 1
return n * MathUtils.factorial(n-1)
''')
# Create sample text file
text_file = temp_path / "readme.txt"
text_file.write_text("This is a sample text file for testing purposes.")
yield temp_path
@pytest.mark.skipif(
os.environ.get("CI") == "true",
reason="Skip integration tests in CI to avoid dependency issues",
)
def test_document_rag_with_ast_chunking(self, temp_code_dir):
"""Test document RAG with AST chunking enabled."""
with tempfile.TemporaryDirectory() as index_dir:
cmd = [
sys.executable,
"apps/document_rag.py",
"--llm",
"simulated",
"--embedding-model",
"facebook/contriever",
"--embedding-mode",
"sentence-transformers",
"--index-dir",
index_dir,
"--data-dir",
str(temp_code_dir),
"--enable-code-chunking",
"--query",
"How does the fibonacci function work?",
]
env = os.environ.copy()
env["HF_HUB_DISABLE_SYMLINKS"] = "1"
env["TOKENIZERS_PARALLELISM"] = "false"
try:
result = subprocess.run(
cmd,
capture_output=True,
text=True,
timeout=300, # 5 minutes
env=env,
)
# Should succeed even if astchunk is not available (fallback)
assert result.returncode == 0, f"Command failed: {result.stderr}"
output = result.stdout + result.stderr
assert "Index saved to" in output or "Using existing index" in output
except subprocess.TimeoutExpired:
pytest.skip("Test timed out - likely due to model download in CI")
@pytest.mark.skipif(
os.environ.get("CI") == "true",
reason="Skip integration tests in CI to avoid dependency issues",
)
def test_code_rag_application(self, temp_code_dir):
"""Test the specialized code RAG application."""
with tempfile.TemporaryDirectory() as index_dir:
cmd = [
sys.executable,
"apps/code_rag.py",
"--llm",
"simulated",
"--embedding-model",
"facebook/contriever",
"--index-dir",
index_dir,
"--repo-dir",
str(temp_code_dir),
"--query",
"What classes are defined in this code?",
]
env = os.environ.copy()
env["HF_HUB_DISABLE_SYMLINKS"] = "1"
env["TOKENIZERS_PARALLELISM"] = "false"
try:
result = subprocess.run(cmd, capture_output=True, text=True, timeout=300, env=env)
# Should succeed
assert result.returncode == 0, f"Command failed: {result.stderr}"
output = result.stdout + result.stderr
assert "Using AST-aware chunking" in output or "traditional chunking" in output
except subprocess.TimeoutExpired:
pytest.skip("Test timed out - likely due to model download in CI")
class TestErrorHandling:
"""Test error handling and edge cases."""
def test_text_chunking_empty_documents(self):
"""Test text chunking with empty document list."""
chunks = create_text_chunks([])
assert chunks == []
def test_text_chunking_invalid_parameters(self):
"""Test text chunking with invalid parameters."""
docs = [MockDocument("test content")]
# Should handle negative chunk sizes gracefully
chunks = create_text_chunks(
docs, chunk_size=0, chunk_overlap=0, ast_chunk_size=0, ast_chunk_overlap=0
)
# Should still return some result
assert isinstance(chunks, list)
def test_create_ast_chunks_no_language(self):
"""Test AST chunking with documents missing language metadata."""
docs = [MockDocument("def test(): pass", "/test/script.py")] # No language set
chunks = create_ast_chunks(docs)
# Should fall back to traditional chunking
assert isinstance(chunks, list)
assert len(chunks) >= 0 # May be empty if fallback also fails
def test_create_ast_chunks_empty_content(self):
"""Test AST chunking with empty content."""
docs = [MockDocument("", "/test/script.py", {"language": "python"})]
chunks = create_ast_chunks(docs)
# Should handle empty content gracefully
assert isinstance(chunks, list)
if __name__ == "__main__":
pytest.main([__file__, "-v"])

14
tests/test_cli_ask.py Normal file
View File

@@ -0,0 +1,14 @@
from leann.cli import LeannCLI
def test_cli_ask_accepts_positional_query(tmp_path, monkeypatch):
monkeypatch.chdir(tmp_path)
cli = LeannCLI()
parser = cli.create_parser()
args = parser.parse_args(["ask", "my-docs", "Where are prompts configured?"])
assert args.command == "ask"
assert args.index_name == "my-docs"
assert args.query == "Where are prompts configured?"

View File

@@ -57,6 +57,51 @@ def test_document_rag_simulated(test_data_dir):
assert "This is a simulated answer" in output
@pytest.mark.skipif(
os.environ.get("CI") == "true",
reason="Skip AST chunking tests in CI to avoid dependency issues",
)
def test_document_rag_with_ast_chunking(test_data_dir):
"""Test document_rag with AST-aware chunking enabled."""
with tempfile.TemporaryDirectory() as temp_dir:
# Use a subdirectory that doesn't exist yet to force index creation
index_dir = Path(temp_dir) / "test_ast_index"
cmd = [
sys.executable,
"apps/document_rag.py",
"--llm",
"simulated",
"--embedding-model",
"facebook/contriever",
"--embedding-mode",
"sentence-transformers",
"--index-dir",
str(index_dir),
"--data-dir",
str(test_data_dir),
"--enable-code-chunking", # Enable AST chunking
"--query",
"What is Pride and Prejudice about?",
]
env = os.environ.copy()
env["HF_HUB_DISABLE_SYMLINKS"] = "1"
env["TOKENIZERS_PARALLELISM"] = "false"
result = subprocess.run(cmd, capture_output=True, text=True, timeout=600, env=env)
# Check return code
assert result.returncode == 0, f"Command failed: {result.stderr}"
# Verify output
output = result.stdout + result.stderr
assert "Index saved to" in output or "Using existing index" in output
assert "This is a simulated answer" in output
# Should mention AST chunking if code files are present
# (might not be relevant for the test data, but command should succeed)
@pytest.mark.skipif(not os.environ.get("OPENAI_API_KEY"), reason="OpenAI API key not available")
@pytest.mark.skipif(
os.environ.get("CI") == "true", reason="Skip OpenAI tests in CI to avoid API costs"

View File

@@ -0,0 +1,365 @@
"""
Comprehensive tests for metadata filtering functionality.
This module tests the MetadataFilterEngine class and its integration
with the LEANN search system.
"""
import os
# Import the modules we're testing
import sys
from unittest.mock import Mock, patch
sys.path.insert(0, os.path.join(os.path.dirname(__file__), "../packages/leann-core/src"))
from leann.api import PassageManager, SearchResult
from leann.metadata_filter import MetadataFilterEngine
class TestMetadataFilterEngine:
"""Test suite for the MetadataFilterEngine class."""
def setup_method(self):
"""Setup test fixtures."""
self.engine = MetadataFilterEngine()
# Sample search results for testing
self.sample_results = [
{
"id": "doc1",
"score": 0.95,
"text": "This is chapter 1 content",
"metadata": {
"chapter": 1,
"character": "Alice",
"tags": ["adventure", "fantasy"],
"word_count": 150,
"is_published": True,
"genre": "fiction",
},
},
{
"id": "doc2",
"score": 0.87,
"text": "This is chapter 3 content",
"metadata": {
"chapter": 3,
"character": "Bob",
"tags": ["mystery", "thriller"],
"word_count": 250,
"is_published": True,
"genre": "fiction",
},
},
{
"id": "doc3",
"score": 0.82,
"text": "This is chapter 5 content",
"metadata": {
"chapter": 5,
"character": "Alice",
"tags": ["romance", "drama"],
"word_count": 300,
"is_published": False,
"genre": "non-fiction",
},
},
{
"id": "doc4",
"score": 0.78,
"text": "This is chapter 10 content",
"metadata": {
"chapter": 10,
"character": "Charlie",
"tags": ["action", "adventure"],
"word_count": 400,
"is_published": True,
"genre": "fiction",
},
},
]
def test_engine_initialization(self):
"""Test that the filter engine initializes correctly."""
assert self.engine is not None
assert len(self.engine.operators) > 0
assert "==" in self.engine.operators
assert "contains" in self.engine.operators
assert "in" in self.engine.operators
def test_direct_instantiation(self):
"""Test direct instantiation of the engine."""
engine = MetadataFilterEngine()
assert isinstance(engine, MetadataFilterEngine)
def test_no_filters_returns_all_results(self):
"""Test that passing None or empty filters returns all results."""
# Test with None
result = self.engine.apply_filters(self.sample_results, None)
assert len(result) == len(self.sample_results)
# Test with empty dict
result = self.engine.apply_filters(self.sample_results, {})
assert len(result) == len(self.sample_results)
# Test comparison operators
def test_equals_filter(self):
"""Test equals (==) filter."""
filters = {"chapter": {"==": 1}}
result = self.engine.apply_filters(self.sample_results, filters)
assert len(result) == 1
assert result[0]["id"] == "doc1"
def test_not_equals_filter(self):
"""Test not equals (!=) filter."""
filters = {"genre": {"!=": "fiction"}}
result = self.engine.apply_filters(self.sample_results, filters)
assert len(result) == 1
assert result[0]["metadata"]["genre"] == "non-fiction"
def test_less_than_filter(self):
"""Test less than (<) filter."""
filters = {"chapter": {"<": 5}}
result = self.engine.apply_filters(self.sample_results, filters)
assert len(result) == 2
chapters = [r["metadata"]["chapter"] for r in result]
assert all(ch < 5 for ch in chapters)
def test_less_than_or_equal_filter(self):
"""Test less than or equal (<=) filter."""
filters = {"chapter": {"<=": 5}}
result = self.engine.apply_filters(self.sample_results, filters)
assert len(result) == 3
chapters = [r["metadata"]["chapter"] for r in result]
assert all(ch <= 5 for ch in chapters)
def test_greater_than_filter(self):
"""Test greater than (>) filter."""
filters = {"word_count": {">": 200}}
result = self.engine.apply_filters(self.sample_results, filters)
assert len(result) == 3 # Documents with word_count 250, 300, 400
word_counts = [r["metadata"]["word_count"] for r in result]
assert all(wc > 200 for wc in word_counts)
def test_greater_than_or_equal_filter(self):
"""Test greater than or equal (>=) filter."""
filters = {"word_count": {">=": 250}}
result = self.engine.apply_filters(self.sample_results, filters)
assert len(result) == 3
word_counts = [r["metadata"]["word_count"] for r in result]
assert all(wc >= 250 for wc in word_counts)
# Test membership operators
def test_in_filter(self):
"""Test in filter."""
filters = {"character": {"in": ["Alice", "Bob"]}}
result = self.engine.apply_filters(self.sample_results, filters)
assert len(result) == 3
characters = [r["metadata"]["character"] for r in result]
assert all(ch in ["Alice", "Bob"] for ch in characters)
def test_not_in_filter(self):
"""Test not_in filter."""
filters = {"character": {"not_in": ["Alice", "Bob"]}}
result = self.engine.apply_filters(self.sample_results, filters)
assert len(result) == 1
assert result[0]["metadata"]["character"] == "Charlie"
# Test string operators
def test_contains_filter(self):
"""Test contains filter."""
filters = {"genre": {"contains": "fiction"}}
result = self.engine.apply_filters(self.sample_results, filters)
assert len(result) == 4 # Both "fiction" and "non-fiction"
def test_starts_with_filter(self):
"""Test starts_with filter."""
filters = {"genre": {"starts_with": "non"}}
result = self.engine.apply_filters(self.sample_results, filters)
assert len(result) == 1
assert result[0]["metadata"]["genre"] == "non-fiction"
def test_ends_with_filter(self):
"""Test ends_with filter."""
filters = {"text": {"ends_with": "content"}}
result = self.engine.apply_filters(self.sample_results, filters)
assert len(result) == 4 # All sample texts end with "content"
# Test boolean operators
def test_is_true_filter(self):
"""Test is_true filter."""
filters = {"is_published": {"is_true": True}}
result = self.engine.apply_filters(self.sample_results, filters)
assert len(result) == 3
assert all(r["metadata"]["is_published"] for r in result)
def test_is_false_filter(self):
"""Test is_false filter."""
filters = {"is_published": {"is_false": False}}
result = self.engine.apply_filters(self.sample_results, filters)
assert len(result) == 1
assert not result[0]["metadata"]["is_published"]
# Test compound filters (AND logic)
def test_compound_filters(self):
"""Test multiple filters applied together (AND logic)."""
filters = {"genre": {"==": "fiction"}, "chapter": {"<=": 5}}
result = self.engine.apply_filters(self.sample_results, filters)
assert len(result) == 2
for r in result:
assert r["metadata"]["genre"] == "fiction"
assert r["metadata"]["chapter"] <= 5
def test_multiple_operators_same_field(self):
"""Test multiple operators on the same field."""
filters = {"word_count": {">=": 200, "<=": 350}}
result = self.engine.apply_filters(self.sample_results, filters)
assert len(result) == 2
for r in result:
wc = r["metadata"]["word_count"]
assert 200 <= wc <= 350
# Test edge cases
def test_missing_field_fails_filter(self):
"""Test that missing metadata fields fail filters."""
filters = {"nonexistent_field": {"==": "value"}}
result = self.engine.apply_filters(self.sample_results, filters)
assert len(result) == 0
def test_invalid_operator(self):
"""Test that invalid operators are handled gracefully."""
filters = {"chapter": {"invalid_op": 1}}
result = self.engine.apply_filters(self.sample_results, filters)
assert len(result) == 0 # Should filter out all results
def test_type_coercion_numeric(self):
"""Test numeric type coercion in comparisons."""
# Add a result with string chapter number
test_results = [
*self.sample_results,
{
"id": "doc5",
"score": 0.75,
"text": "String chapter test",
"metadata": {"chapter": "2", "genre": "test"},
},
]
filters = {"chapter": {"<": 3}}
result = self.engine.apply_filters(test_results, filters)
# Should include doc1 (chapter=1) and doc5 (chapter="2")
assert len(result) == 2
ids = [r["id"] for r in result]
assert "doc1" in ids
assert "doc5" in ids
def test_list_membership_with_nested_tags(self):
"""Test membership operations with list metadata."""
# Note: This tests the metadata structure, not list field filtering
# For list field filtering, we'd need to modify the test data
filters = {"character": {"in": ["Alice"]}}
result = self.engine.apply_filters(self.sample_results, filters)
assert len(result) == 2
assert all(r["metadata"]["character"] == "Alice" for r in result)
def test_empty_results_list(self):
"""Test filtering on empty results list."""
filters = {"chapter": {"==": 1}}
result = self.engine.apply_filters([], filters)
assert len(result) == 0
class TestPassageManagerFiltering:
"""Test suite for PassageManager filtering integration."""
def setup_method(self):
"""Setup test fixtures."""
# Mock the passage manager without actual file I/O
self.passage_manager = Mock(spec=PassageManager)
self.passage_manager.filter_engine = MetadataFilterEngine()
# Sample SearchResult objects
self.search_results = [
SearchResult(
id="doc1",
score=0.95,
text="Chapter 1 content",
metadata={"chapter": 1, "character": "Alice"},
),
SearchResult(
id="doc2",
score=0.87,
text="Chapter 5 content",
metadata={"chapter": 5, "character": "Bob"},
),
SearchResult(
id="doc3",
score=0.82,
text="Chapter 10 content",
metadata={"chapter": 10, "character": "Alice"},
),
]
def test_search_result_filtering(self):
"""Test filtering SearchResult objects."""
# Create a real PassageManager instance just for the filtering method
# We'll mock the file operations
with patch("builtins.open"), patch("json.loads"), patch("pickle.load"):
pm = PassageManager([{"type": "jsonl", "path": "test.jsonl"}])
filters = {"chapter": {"<=": 5}}
result = pm.filter_search_results(self.search_results, filters)
assert len(result) == 2
chapters = [r.metadata["chapter"] for r in result]
assert all(ch <= 5 for ch in chapters)
def test_filter_search_results_no_filters(self):
"""Test that None filters return all results."""
with patch("builtins.open"), patch("json.loads"), patch("pickle.load"):
pm = PassageManager([{"type": "jsonl", "path": "test.jsonl"}])
result = pm.filter_search_results(self.search_results, None)
assert len(result) == len(self.search_results)
def test_filter_maintains_search_result_type(self):
"""Test that filtering returns SearchResult objects."""
with patch("builtins.open"), patch("json.loads"), patch("pickle.load"):
pm = PassageManager([{"type": "jsonl", "path": "test.jsonl"}])
filters = {"character": {"==": "Alice"}}
result = pm.filter_search_results(self.search_results, filters)
assert len(result) == 2
for r in result:
assert isinstance(r, SearchResult)
assert r.metadata["character"] == "Alice"
# Integration tests would go here, but they require actual LEANN backend setup
# These would test the full pipeline from LeannSearcher.search() with metadata_filters
if __name__ == "__main__":
# Run basic smoke tests
engine = MetadataFilterEngine()
sample_data = [
{
"id": "test1",
"score": 0.9,
"text": "Test content",
"metadata": {"chapter": 1, "published": True},
}
]
# Test basic filtering
result = engine.apply_filters(sample_data, {"chapter": {"==": 1}})
assert len(result) == 1
print("✅ Basic filtering test passed")
result = engine.apply_filters(sample_data, {"chapter": {"==": 2}})
assert len(result) == 0
print("✅ No match filtering test passed")
print("🎉 All smoke tests passed!")

7916
uv.lock generated
View File

File diff suppressed because it is too large Load Diff