Compare commits

...

345 Commits

Author SHA1 Message Date
Andy Lee
0877960547 docs: update README to use proper module imports for apps
- Change from 'python apps/xxx.py' to 'python -m apps.xxx'
- More professional and pythonic module calling
- Ensures proper module resolution and imports
- Better separation between apps/ (production tools) and examples/ (demos)
2025-08-03 23:05:48 -07:00
yichuan520030910320
d68af63d05 merge 2025-08-03 23:02:45 -07:00
yichuan520030910320
b844aca968 Merge branch 'refactor-app' of https://github.com/yichuan-w/LEANN into refactor-app 2025-08-03 23:02:12 -07:00
yichuan520030910320
85277ba67a fix wechat 2025-08-03 23:02:06 -07:00
Andy Lee
e9562acdc2 fix: handle certificate errors in link checker 2025-08-03 22:42:16 -07:00
Andy Lee
7fd3db1ddb fix: add init.py 2025-08-03 22:41:20 -07:00
Andy Lee
c1ccc51a75 refactor: reorganize examples and add link checker 2025-08-03 22:40:15 -07:00
Andy Lee
b0239b6e4d refactor: reorgnize all examples/ and test/ 2025-08-03 22:37:45 -07:00
yichuan520030910320
58556ef44c merge 2025-08-03 22:29:30 -07:00
yichuan520030910320
87c930d705 fix email wrong -1 to process all file 2025-08-03 22:27:04 -07:00
Andy Lee
86f919a6da fix: WeChat history reader bugs and refactor wechat_rag to use unified architecture 2025-08-03 21:54:40 -07:00
Andy Lee
f8d34663b4 feat: check if k is larger than #docs 2025-08-03 21:41:53 -07:00
yichuan520030910320
568cf597f4 fix some example 2025-08-03 21:19:05 -07:00
yichuan520030910320
baf70dc411 change rebuild logic 2025-08-03 20:54:52 -07:00
yichuan520030910320
7ad2ec39d6 add response highlight 2025-08-03 20:32:07 -07:00
Andy Lee
31fd3c816a fix: update default embedding models for better performance
- Change WeChat, Browser, and Email RAG examples to use all-MiniLM-L6-v2
- Previous Qwen/Qwen3-Embedding-0.6B was too slow for these use cases
- all-MiniLM-L6-v2 is a fast 384-dim model, ideal for large-scale personal data
2025-08-02 19:04:59 -07:00
Andy Lee
1f6c7f2f5a docs: Emphasize diverse data sources in examples/data description 2025-07-30 22:42:34 -07:00
Andy Lee
c1124eb349 feat: Update documentation based on review feedback
- Add MLX embedding example to README
- Clarify examples/data content description (two papers, Pride and Prejudice, Chinese README)
- Move chunk parameters to common parameters section
- Remove duplicate chunk parameters from document-specific section
2025-07-30 18:05:39 -07:00
Andy Lee
274bbb19ea feat: Add chunk-size parameters and improve file type filtering
- Add --chunk-size and --chunk-overlap parameters to all RAG examples
- Preserve original default values for each data source:
  - Document: 256/128 (optimized for general documents)
  - Email: 256/25 (smaller overlap for email threads)
  - Browser: 256/128 (standard for web content)
  - WeChat: 192/64 (smaller chunks for chat messages)
- Make --file-types optional filter instead of restriction in document_rag
- Update README to clarify interactive mode and parameter usage
- Fix LLM default model documentation (gpt-4o, not gpt-4o-mini)
2025-07-29 18:31:56 -07:00
Andy Lee
8c152c7a31 feat: Address review comments
- Add complexity parameter to LeannChat initialization (default: search_complexity)
- Fix chunk-size default in README documentation (256, not 2048)
- Add more index building parameters as CLI arguments:
  - --backend-name (hnsw/diskann)
  - --graph-degree (default: 32)
  - --build-complexity (default: 64)
  - --no-compact (disable compact storage)
  - --no-recompute (disable embedding recomputation)
- Update README to document all new parameters
2025-07-29 16:59:24 -07:00
Andy Lee
ce77eef13a fix: Fix async/await and add_text issues in unified examples
- Remove incorrect await from chat.ask() calls (not async)
- Fix add_texts -> add_text method calls
- Verify search-complexity correctly maps to efSearch parameter
- All examples now run successfully
2025-07-29 16:00:58 -07:00
Andy Lee
9d77175ac8 fix: Fix issues in unified examples
- Add smart path detection for data directory
- Fix add_texts -> add_text method call
- Handle both running from project root and examples directory
2025-07-29 15:55:46 -07:00
Andy Lee
7fbb6c98ef docs: nit 2025-07-29 14:30:04 -07:00
Andy Lee
914a248c28 docs: Add introduction for Common Parameters section
- Add 'Flexible Configuration' heading with descriptive sentence
- Create parallel structure with 'Generation Model Setup' section
- Improve document flow and readability
2025-07-29 14:16:33 -07:00
Andy Lee
55fc5862f9 docs: Fix collapsible sections
- Make Common Parameters collapsible (as it's lengthy reference material)
- Keep CLI Installation visible (important for users to see immediately)
- Better information hierarchy
2025-07-29 14:14:26 -07:00
Andy Lee
fd97b8dfa8 style: format 2025-07-29 14:11:49 -07:00
Andy Lee
57959947a1 docs: Add collapsible section for CLI installation
- Wrap CLI installation instructions in details/summary tags
- Keep consistent with other collapsible sections in README
- Improve document readability and navigation
2025-07-29 14:10:30 -07:00
Andy Lee
cc0c091ca5 docs: Clarify CLI global installation process
- Explain the transition from venv to global installation
- Add upgrade command for global installation
- Make it clear that global install allows usage without venv activation
2025-07-29 14:06:16 -07:00
Andy Lee
ff389c7d8d docs: Add CLI installation instructions
- Add two installation options: venv and global uv tool
- Clearly explain when to use each option
- Make CLI more accessible for daily use
2025-07-29 14:05:33 -07:00
Andy Lee
6780a8eaba docs: polish applications 2025-07-29 14:04:34 -07:00
Andy Lee
984056f126 docs: Reorganize parameter documentation structure
- Move common parameters to a dedicated section before all examples
- Rename sections to 'X-Specific Arguments' for clarity
- Remove duplicate common parameters from individual examples
- Better information architecture for users
2025-07-29 14:01:19 -07:00
Andy Lee
bd4451bf50 docs: Make example commands more representative
- Add default values to parameter descriptions
- Replace generic examples with real-world use cases
- Focus on data-source-specific features in examples
- Remove redundant demonstrations of common parameters
2025-07-29 13:59:29 -07:00
Andy Lee
34e313f64a docs: Improve parameter categorization in README
- Clearly separate core (shared) vs specific parameters
- Move LLM and embedding examples to 'Example Commands' section
- Add descriptive comments for all specific parameters
- Keep only truly data-source-specific parameters in specific sections
2025-07-29 13:54:47 -07:00
Andy Lee
ddc789b231 fix: Restore embedding-mode parameter to all examples
- All examples now have --embedding-mode parameter (unified interface benefit)
- Default is 'sentence-transformers' (consistent with original behavior)
- Users can now use OpenAI or MLX embeddings with any data source
- Maintains functional equivalence with original scripts
2025-07-29 13:33:40 -07:00
Andy Lee
ff1b622bdd refactor: Remove old example scripts and migration references
- Delete old example scripts (mail_reader_leann.py, google_history_reader_leann.py, etc.)
- Remove migration hints and backward compatibility
- Update tests to use new unified examples directly
- Clean up all references to old script names
- Users now only see the new unified interface
2025-07-29 12:39:36 -07:00
Andy Lee
3cde4fc7b3 fix: Fix pre-commit issues and update tests
- Fix import sorting and unused imports
- Update type annotations to use built-in types (list, dict) instead of typing.List/Dict
- Fix trailing whitespace and end-of-file issues
- Fix Chinese fullwidth comma to regular comma
- Update test_main_cli.py to test_document_rag.py
- Add backward compatibility test for main_cli_example.py
- Pass all pre-commit hooks (ruff, ruff-format, etc.)
2025-07-29 10:19:05 -07:00
Andy Lee
4e3bcda5fa fix: Update CI tests for new unified examples interface
- Rename test_main_cli.py to test_document_rag.py
- Update all references from main_cli_example.py to document_rag.py
- Update tests/README.md documentation

The tests now properly test the new unified interface while maintaining
the same test coverage and functionality.
2025-07-28 23:16:51 -07:00
Andy Lee
46f6f76fc3 refactor: Unify examples interface with BaseRAGExample
- Create BaseRAGExample base class for all RAG examples
- Refactor 4 examples to use unified interface:
  - document_rag.py (replaces main_cli_example.py)
  - email_rag.py (replaces mail_reader_leann.py)
  - browser_rag.py (replaces google_history_reader_leann.py)
  - wechat_rag.py (replaces wechat_history_reader_leann.py)
- Maintain 100% parameter compatibility with original files
- Add interactive mode support for all examples
- Unify parameter names (--max-items replaces --max-emails/--max-entries)
- Update README.md with new examples usage
- Add PARAMETER_CONSISTENCY.md documenting all parameter mappings
- Keep main_cli_example.py for backward compatibility with migration notice

All default values, LeannBuilder parameters, and chunking settings
remain identical to ensure full compatibility with existing indexes.
2025-07-28 23:11:16 -07:00
yichuan520030910320
19bcc07814 change readme discription 2025-07-28 20:52:45 -07:00
yichuan520030910320
8356e3c668 changr to openai main cli 2025-07-28 17:39:14 -07:00
GitHub Actions
08eac5c821 chore: release v0.1.16 2025-07-29 00:15:18 +00:00
Andy Lee
4671ed9b36 Fix macos ABI by using system default clang (#11)
* fix: auto-detect normalized embeddings and use cosine distance

- Add automatic detection for normalized embedding models (OpenAI, Voyage AI, Cohere)
- Automatically set distance_metric='cosine' for normalized embeddings
- Add warnings when using non-optimal distance metrics
- Implement manual L2 normalization in HNSW backend (custom Faiss build lacks normalize_L2)
- Fix DiskANN zmq_port compatibility with lazy loading strategy
- Add documentation for normalized embeddings feature

This fixes the low accuracy issue when using OpenAI text-embedding-3-small model with default MIPS metric.

* style: format

* feat: add OpenAI embeddings support to google_history_reader_leann.py

- Add --embedding-model and --embedding-mode arguments
- Support automatic detection of normalized embeddings
- Works correctly with cosine distance for OpenAI embeddings

* feat: add --use-existing-index option to google_history_reader_leann.py

- Allow using existing index without rebuilding
- Useful for testing pre-built indices

* fix: Improve OpenAI embeddings handling in HNSW backend

* fix: improve macOS C++ compatibility and add CI tests

* refactor: improve test structure and fix main_cli example

- Move pytest configuration from pytest.ini to pyproject.toml
- Remove unnecessary run_tests.py script (use test extras instead)
- Fix main_cli_example.py to properly use command line arguments for LLM config
- Add test_readme_examples.py to test code examples from README
- Refactor tests to use pytest fixtures and parametrization
- Update test documentation to reflect new structure
- Set proper environment variables in CI for test execution

* fix: add --distance-metric support to DiskANN embedding server and remove obsolete macOS ABI test markers

- Add --distance-metric parameter to diskann_embedding_server.py for consistency with other backends
- Remove pytest.skip and pytest.xfail markers for macOS C++ ABI issues as they have been fixed
- Fix test assertions to handle SearchResult objects correctly
- All tests now pass on macOS with the C++ ABI compatibility fixes

* chore: update lock file with test dependencies

* docs: remove obsolete C++ ABI compatibility warnings

- Remove outdated macOS C++ compatibility warnings from README
- Simplify CI workflow by removing macOS-specific failure handling
- All tests now pass consistently on macOS after ABI fixes

* fix: update macOS deployment target for DiskANN to 13.3

- DiskANN uses sgesdd_ LAPACK function which is only available on macOS 13.3+
- Update MACOSX_DEPLOYMENT_TARGET from 11.0 to 13.3 for DiskANN builds
- This fixes the compilation error on GitHub Actions macOS runners

* fix: align Python version requirements to 3.9

- Update root project to support Python 3.9, matching subpackages
- Restore macOS Python 3.9 support in CI
- This fixes the CI failure for Python 3.9 environments

* fix: handle MPS memory issues in CI tests

- Use smaller MiniLM-L6-v2 model (384 dimensions) for README tests in CI
- Skip other memory-intensive tests in CI environment
- Add minimal CI tests that don't require model loading
- Set CI environment variable and disable MPS fallback
- Ensure README examples always run correctly in CI

* fix: remove Python 3.10+ dependencies for compatibility

- Comment out llama-index-readers-docling and llama-index-node-parser-docling
- These packages require Python >= 3.10 and were causing CI failures on Python 3.9
- Regenerate uv.lock file to resolve dependency conflicts

* fix: use virtual environment in CI instead of system packages

- uv-managed Python environments don't allow --system installs
- Create and activate virtual environment before installing packages
- Update all CI steps to use the virtual environment

* add some env in ci

* fix: use --find-links to install platform-specific wheels

- Let uv automatically select the correct wheel for the current platform
- Fixes error when trying to install macOS wheels on Linux
- Simplifies the installation logic

* fix: disable OpenMP parallelism in CI to avoid libomp crashes

- Set OMP_NUM_THREADS=1 to avoid OpenMP thread synchronization issues
- Set MKL_NUM_THREADS=1 for single-threaded MKL operations
- This prevents segfaults in LayerNorm on macOS CI runners
- Addresses the libomp compatibility issues with PyTorch on Apple Silicon

* skip several macos test because strange issue on ci

---------

Co-authored-by: yichuan520030910320 <yichuan_wang@berkeley.edu>
2025-07-28 17:14:42 -07:00
yichuan520030910320
055c086398 add ablation of embedding model compare 2025-07-28 14:43:42 -07:00
Andy Lee
d505dcc5e3 Fix/OpenAI embeddings cosine distance (#10)
* fix: auto-detect normalized embeddings and use cosine distance

- Add automatic detection for normalized embedding models (OpenAI, Voyage AI, Cohere)
- Automatically set distance_metric='cosine' for normalized embeddings
- Add warnings when using non-optimal distance metrics
- Implement manual L2 normalization in HNSW backend (custom Faiss build lacks normalize_L2)
- Fix DiskANN zmq_port compatibility with lazy loading strategy
- Add documentation for normalized embeddings feature

This fixes the low accuracy issue when using OpenAI text-embedding-3-small model with default MIPS metric.

* style: format

* feat: add OpenAI embeddings support to google_history_reader_leann.py

- Add --embedding-model and --embedding-mode arguments
- Support automatic detection of normalized embeddings
- Works correctly with cosine distance for OpenAI embeddings

* feat: add --use-existing-index option to google_history_reader_leann.py

- Allow using existing index without rebuilding
- Useful for testing pre-built indices

* fix: Improve OpenAI embeddings handling in HNSW backend
2025-07-28 14:35:49 -07:00
Andy Lee
261006c36a docs: revert 2025-07-27 22:07:36 -07:00
GitHub Actions
b2eba23e21 chore: release v0.1.15 2025-07-28 05:05:30 +00:00
yichuan520030910320
e9ee687472 nit: fix readme 2025-07-27 21:56:05 -07:00
yichuan520030910320
6f5d5e4a77 fix some readme 2025-07-27 21:50:09 -07:00
Andy Lee
5c8921673a fix: auto-detect normalized embeddings and use cosine distance (#8)
* fix: auto-detect normalized embeddings and use cosine distance

- Add automatic detection for normalized embedding models (OpenAI, Voyage AI, Cohere)
- Automatically set distance_metric='cosine' for normalized embeddings
- Add warnings when using non-optimal distance metrics
- Implement manual L2 normalization in HNSW backend (custom Faiss build lacks normalize_L2)
- Fix DiskANN zmq_port compatibility with lazy loading strategy
- Add documentation for normalized embeddings feature

This fixes the low accuracy issue when using OpenAI text-embedding-3-small model with default MIPS metric.

* style: format
2025-07-27 21:19:29 -07:00
yichuan520030910320
e9d2d420bd fix some readme 2025-07-27 20:48:23 -07:00
yichuan520030910320
ebabfad066 Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-27 20:44:36 -07:00
yichuan520030910320
e6f612b5e8 fix install and readme 2025-07-27 20:44:28 -07:00
Andy Lee
51c41acd82 docs: add comprehensive CONTRIBUTING.md guide with pre-commit setup 2025-07-27 20:40:42 -07:00
yichuan520030910320
455f93fb7c fix emaple and add pypi example 2025-07-27 18:20:13 -07:00
yichuan520030910320
48207c3b69 add pypi example 2025-07-27 17:08:49 -07:00
yichuan520030910320
4de1caa40f fix redame install method 2025-07-27 17:00:28 -07:00
yichuan520030910320
60eaa8165c fix precommit and fix redame install method 2025-07-27 16:36:30 -07:00
yichuan520030910320
c1a5d0c624 fix readme 2025-07-27 02:24:28 -07:00
yichuan520030910320
af1790395a fix ruff errors and formatting 2025-07-27 02:22:54 -07:00
yichuan520030910320
383c6d8d7e add clear instructions 2025-07-27 02:19:27 -07:00
yichuan520030910320
bc0d839693 Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-27 02:07:41 -07:00
yichuan520030910320
8596562de5 add pip install option to README 2025-07-27 02:06:40 -07:00
GitHub Actions
5d09586853 chore: release v0.1.14 2025-07-27 08:50:56 +00:00
Andy Lee
a7cba078dd chore: consolidate essential fixes and add pre-commit hooks
- Add pre-commit configuration with ruff and black
- Fix lint CI job to use uv tool install instead of sync
- Add essential LlamaIndex dependencies to leann-core

Co-Authored-By: Yichuan Wang <73766326+yichuan-w@users.noreply.github.com>
2025-07-27 01:24:24 -07:00
Andy Lee
b3e9ee96fa fix: resolve all ruff linting errors and add lint CI check
- Fix ambiguous fullwidth characters (commas, parentheses) in strings and comments
- Replace Chinese comments with English equivalents
- Fix unused imports with proper noqa annotations for intentional imports
- Fix bare except clauses with specific exception types
- Fix redefined variables and undefined names
- Add ruff noqa annotations for generated protobuf files
- Add lint and format check to GitHub Actions CI pipeline
2025-07-26 22:38:13 -07:00
yichuan520030910320
8537a6b17e default args change 2025-07-26 21:51:14 -07:00
yichuan520030910320
7c8d7dc5c2 tones down 2025-07-26 21:47:55 -07:00
yichuan520030910320
8e23d663e6 Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-26 21:46:02 -07:00
yichuan520030910320
8a3994bf80 update colab now it works perfect 2025-07-26 21:45:56 -07:00
GitHub Actions
8375f601ba chore: release v0.1.13 2025-07-27 01:08:17 +00:00
yichuan520030910320
c87c0fe662 update colab install & fix colab path 2025-07-26 18:07:31 -07:00
yichuan520030910320
73927b68ef Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-26 17:09:55 -07:00
yichuan520030910320
cc1a62e5aa update pytoml version again 2025-07-26 17:09:45 -07:00
GitHub Actions
802020cb41 chore: release v0.1.12 2025-07-26 23:35:28 +00:00
yichuan520030910320
cdb92f7cf4 update pytoml version && fix colab env && fix pdf extract in pip 2025-07-26 16:33:13 -07:00
yichuan520030910320
dc69bdec00 Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-25 17:54:43 -07:00
yichuan520030910320
98073e9868 update missing pkg 2025-07-25 17:54:21 -07:00
GitHub Actions
cf2ef48967 chore: release v0.1.11 2025-07-26 00:12:37 +00:00
yichuan520030910320
0692bbf7a2 change workflow 2025-07-25 17:11:56 -07:00
GitHub Actions
52584a171f chore: release v0.1.10 2025-07-25 23:12:16 +00:00
Andy Lee
efd6b5324b fix: add protobuf as a dependency for DiskANN backend
- Fixes 'No module named google' error when starting DiskANN embedding server
- Prevents users from having to manually install protobuf
2025-07-25 16:10:25 -07:00
Andy Lee
2baaa4549b fix: handle relative paths in HNSW embedding server metadata
- Convert relative paths to absolute paths based on metadata file location
- Fixes FileNotFoundError when starting embedding server
- Resolves issue with passages file not found in different working directories
2025-07-25 16:09:53 -07:00
Andy Lee
35310ddd52 fix: pure Python packages not building due to ubuntu-latest check
The build workflow was checking for matrix.os == 'ubuntu-latest',
but we changed the matrix to use 'ubuntu-22.04', causing the
pure Python packages (leann-core and leann) to never be built.

Changed to use pattern matching [[ == ubuntu-* ]] to match any
Ubuntu version.

This explains why v0.1.9 only published the C++ backend packages
but not the pure Python packages.
2025-07-25 15:14:21 -07:00
Andy Lee
fc9c5cb39d fix: make release workflow idempotent
- Check if version is already updated before trying to update
- Check if tag already exists before creating
- Check if GitHub release already exists before creating
- This allows re-running the workflow after partial failures

Previously, if the workflow failed after updating version but before
completing the release, it couldn't be re-run with the same version.
2025-07-25 14:47:35 -07:00
Andy Lee
8f2a1e87ea Merge pull request #7 from yichuan-w/fix/simple-ubuntu22-build
fix: simplify build system for Colab compatibility
2025-07-25 14:08:37 -07:00
Andy Lee
50caf65f28 fix: change ubuntu-latest to ubuntu-22.04 and add Python 3.13
- Explicitly use ubuntu-22.04 instead of ubuntu-latest
- Add Python 3.13 to the build matrix
- This ensures we build on the same OS version as Google Colab
2025-07-25 13:48:59 -07:00
Andy Lee
1b48794ca8 cleanup: remove cibuildwheel workflow files
- Remove ci-cibuildwheel.yml and build-cibuildwheel.yml
- These files were not present in v0.1.5
- Keep only the simple build system
2025-07-25 13:48:08 -07:00
Andy Lee
4aef1d814e revert: simplify build system by removing manylinux/cibuildwheel
- Revert to simple Ubuntu 22.04 builds that should work with Colab
- Remove all manylinux container complexity
- Colab runs on Ubuntu 22.04, so direct builds should be compatible
- Restore build-reusable.yml to v0.1.5 version
- Remove cibuildwheel option from release workflow

This should fix the overcomplicated build issues while maintaining
Colab compatibility through direct Ubuntu 22.04 builds.
2025-07-25 13:46:51 -07:00
GitHub Actions
75ddcd6158 chore: release v0.1.9 2025-07-25 20:04:42 +00:00
Andy Lee
2a4df11f5c fix: absolute path for passages 2025-07-25 11:59:30 -07:00
Andy Lee
5eb893c62b ci: add Python 3.13 support to build matrix 2025-07-25 09:53:36 -07:00
yichuan520030910320
d91ce2e94d readme 2025-07-25 02:19:54 -07:00
yichuan520030910320
5c2ff8a641 clean research stuff 2025-07-25 02:14:15 -07:00
yichuan520030910320
d4f474c9b7 update broken link 2025-07-25 02:13:22 -07:00
yichuan520030910320
170f7644e9 simplify readme 2025-07-25 02:11:02 -07:00
yichuan520030910320
cd8b970eff Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-25 01:45:57 -07:00
yichuan520030910320
52153bbb69 update faiss compare 2025-07-25 01:45:50 -07:00
GitHub Actions
e1ae087207 chore: release v0.1.8 2025-07-25 08:24:40 +00:00
Andy Lee
48c5e12ac1 fix: use absolute path for passages_file to prevent FileNotFoundError
When embedding server is launched as a subprocess, it may run in a different
working directory. Using absolute paths ensures the server can always find
the metadata file regardless of where it's launched from.
2025-07-25 01:23:47 -07:00
yichuan520030910320
f8b5c97190 Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-25 00:37:33 -07:00
yichuan520030910320
d038c81b8b update benchmard section 2025-07-25 00:37:27 -07:00
Andy Lee
29cbbbd0d6 fix: resolve libzmq pkg-config issues in manylinux containers
- Add gcc-c++ and cmake to dependencies
- Create libzmq.pc file if missing (CentOS 7 issue)
- Set PKG_CONFIG_PATH through CIBW_ENVIRONMENT_LINUX
- Add protobuf-devel to ensure all headers are available
- Fix shell variable escaping in heredoc
2025-07-25 00:35:52 -07:00
Andy Lee
179f30bc36 fix: improve system dependency installation in manylinux containers
- Add yum cache cleaning and updating
- Make package installations more resilient with fallbacks
- Use pkgconfig instead of pkg-config (CentOS 7 naming)
- Handle optional packages that might not be available
- Add error handling for package installation failures
2025-07-25 00:30:29 -07:00
Andy Lee
c4a0a68581 fix: handle pure Python packages in cibuildwheel workflow
- Build pure Python packages (leann-core, leann) with standard build tool
- Only use cibuildwheel for C extension packages (leann-backend-hnsw, leann-backend-diskann)
- Build pure Python packages only once on ubuntu-latest
- Add Python setup for building pure packages
- Add package listing step for debugging
2025-07-25 00:26:15 -07:00
Andy Lee
5c836ad08e fix: handle git dubious ownership error in manylinux containers
- Add multiple safe.directory configurations to cover different possible paths
- This fixes 'detected dubious ownership in repository' error
- Ensures git works properly in manylinux2014 containers
2025-07-25 00:22:01 -07:00
Andy Lee
673fd9b7cd fix: upgrade to actions v4 and handle manylinux2014 compatibility
- Upgrade all GitHub Actions to v4 (v3 is deprecated)
- Use manual git checkout in manylinux2014 containers to avoid Node.js issues
- Update artifact naming to ensure uniqueness (required by v4)
- Add fail-fast: false to build strategies
- This maintains manylinux2014 compatibility while using latest actions
2025-07-25 00:20:21 -07:00
Andy Lee
84b24b233d feat: add cibuildwheel option to release workflow
- Add optional use_cibuildwheel parameter to release workflow
- Create separate CI workflow for testing cibuildwheel
- Support conditional build workflow selection in release process
- This allows building wheels compatible with Google Colab and older systems
- Maintains backward compatibility with existing build process
2025-07-25 00:16:08 -07:00
Andy Lee
499cdd7822 feat: add cibuildwheel workflow for better platform compatibility
- Use cibuildwheel for professional wheel building
- Specifically use manylinux2014 for Google Colab compatibility
- Supports Python 3.9-3.12 on Linux and macOS
- Handles monorepo structure with separate builds per package
- Includes basic import tests for each package
- This should resolve compatibility issues with older systems like Google Colab
2025-07-25 00:16:08 -07:00
yichuan520030910320
800d4cf111 Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-25 00:12:47 -07:00
yichuan520030910320
b6d43f5fd9 add gif 2025-07-25 00:12:35 -07:00
Andy Lee
3603cd5034 fix: downgrade GitHub Actions versions for manylinux2014 compatibility
- Use actions/checkout@v3 instead of v4 (Node.js 16 vs 20)
- Use actions/setup-python@v4 instead of v5
- Use actions/upload-artifact@v3 and download-artifact@v3
- This fixes GLIBC version errors in manylinux2014 containers
- manylinux2014 (CentOS 7) has glibc 2.17 but Node.js 20 needs 2.25+
2025-07-25 00:12:05 -07:00
Andy Lee
6df7893173 feat: use manylinux2014 containers for better Linux compatibility
- Add manylinux2014 Docker containers for Linux builds
- This will generate wheels compatible with older Linux systems (CentOS 7+, Ubuntu 16.04+)
- Separate build logic for container vs regular environments
- Install appropriate system dependencies for yum-based manylinux environment
- Use pip instead of uv in containers for better compatibility
- Fix Python version format for manylinux container paths
2025-07-25 00:08:42 -07:00
GitHub Actions
e64b599276 chore: release v0.1.7 2025-07-25 04:47:57 +00:00
Andy Lee
2dd59c4ba1 fix: let auditwheel auto-detect manylinux platform tag
- Remove --plat manylinux2014_x86_64 flag that was causing build failures
- Let auditwheel automatically determine the appropriate manylinux tag
- Add auditwheel show command to display compatibility info
- This fixes the 'too-recent versioned symbols' error
2025-07-24 21:44:15 -07:00
GitHub Actions
166986d5e6 chore: release v0.1.6 2025-07-25 04:30:07 +00:00
Andy Lee
a6aec68f32 fix: use manylinux2014 for better Linux compatibility
- Change auditwheel --plat to manylinux2014_x86_64
- This ensures wheels work on Ubuntu 16.04+ instead of requiring 24.04+
- Fixes compatibility issues for users on Ubuntu 22.04 and similar systems
2025-07-24 21:26:28 -07:00
GitHub Actions
ed27a127d5 chore: release v0.1.5 2025-07-25 04:00:54 +00:00
Andy Lee
d8b4ea7564 fix: add write permissions for GitHub Actions to push commits 2025-07-24 20:55:24 -07:00
Andy Lee
f0a2ef96b4 fix: restore complete build configuration from working version 2025-07-24 19:49:38 -07:00
Andy Lee
7d73c2c803 fix: remove invalid --extra build flag from build commands 2025-07-24 19:43:23 -07:00
Andy Lee
e8d2ecab03 refactor: use reusable workflow to avoid code duplication 2025-07-24 19:35:12 -07:00
Andy Lee
32a374d094 feat: true one-click automated release with multi-platform support 2025-07-24 19:30:44 -07:00
Andy Lee
d45c013806 fix: handle workflow trigger permission gracefully 2025-07-24 19:25:29 -07:00
GitHub Actions
9000a7083d chore: release v0.1.4 2025-07-25 02:23:36 +00:00
Andy Lee
8307555d54 fix: manually trigger CI after version push in release workflow 2025-07-24 19:21:32 -07:00
GitHub Actions
20f2aece08 chore: release v0.1.3 2025-07-25 02:05:11 +00:00
yichuan520030910320
43eb4f9a1d Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-24 19:03:52 -07:00
yichuan520030910320
5461b71d8c colab dev 2025-07-24 19:03:46 -07:00
Andy Lee
374db0ebb8 fix: release workflow to build new version before publishing 2025-07-24 19:03:09 -07:00
GitHub Actions
cea1f6f87c chore: release v0.1.2 2025-07-25 01:53:29 +00:00
Andy Lee
6c0e39372b fix: download all artifacts in release workflow 2025-07-24 17:45:46 -07:00
Andy Lee
2bec67d2b6 feat: auto-update leann-core dependencies during release
- Enhanced bump_version.sh to automatically update leann-core dependency versions
- Script now updates both package versions and their leann-core dependencies
- This ensures version consistency across all packages during release

No more manual dependency version updates needed!
2025-07-24 17:22:41 -07:00
Andy Lee
133e715832 fix: resolve CI issues and consolidate workflows
- Fix version dependencies: update backend packages to depend on leann-core==0.1.1
- Remove duplicate ci.yml workflow (keeping build-and-publish.yml as main CI)
- Update release-manual.yml to reference correct CI workflow name

This fixes the dependency resolution error and eliminates duplicate builds.
2025-07-24 17:20:58 -07:00
Andy Lee
95cf2f16e2 refactor: consolidate release and publish into single workflow
- Manual Release workflow now directly publishes to PyPI after downloading CI artifacts
- No more duplicate builds - reuses artifacts from CI
- build-and-publish.yml renamed to 'CI - Build Multi-Platform Packages'
- Publishing in CI workflow only for emergency manual triggers
- Updated RELEASE.md to reflect the new streamlined process

This fixes the issue where releases would trigger redundant builds.
2025-07-24 17:04:47 -07:00
Andy Lee
47a4c153eb fix: enable PyPI publish on tag push
- Manual Release workflow creates tags but build-and-publish.yml only published on 'release' events
- Now build-and-publish.yml will also publish when v* tags are pushed
- This fixes the issue where manual releases didn't trigger PyPI uploads
2025-07-24 17:00:21 -07:00
GitHub Actions
faf5ae3533 chore: release v0.1.1 2025-07-24 23:36:23 +00:00
Andy Lee
a44dccecac fix: make TestPyPI upload optional and non-blocking
- Add continue-on-error to TestPyPI step
- Check if TEST_PYPI_API_TOKEN exists before attempting upload
- Add graceful failure handling with clear messages
- Update docs to explain TestPyPI token configuration
- Clarify that TestPyPI testing is optional

Now the release won't fail if TestPyPI is not configured or upload fails
2025-07-24 16:02:07 -07:00
yichuan520030910320
9cf9358b9c Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-24 14:40:39 -07:00
yichuan520030910320
de252fef31 [chat] update 30s example 2025-07-24 14:40:33 -07:00
Andy Lee
9076bc27b8 fix: resolve CI run detection issues in release workflow
- Add 'actions: read' permission to access workflow runs
- Use workflow name instead of filename for gh run list
- Look for CI run on HEAD~1 (before version bump commit)
- Improve error messages for better debugging

Fixes HTTP 403 error when trying to find successful CI runs
2025-07-24 14:27:26 -07:00
Andy Lee
50686c0819 refactor: use CI artifacts in release workflow instead of rebuilding
- Download pre-built wheels from successful CI runs
- Avoids duplicate builds and ensures consistency
- CI artifacts are already tested across all platforms
- Faster release process (no build time)
- Updates release documentation to reflect new flow

This ensures the released packages are exactly what was tested in CI.
2025-07-24 14:24:03 -07:00
Andy Lee
1614203786 fix: make bump_version.sh work on both macOS and Linux
- macOS uses sed -i '' while Linux uses sed -i
- Add OS detection to use correct syntax
- Ensures script works in CI (Linux) and local dev (macOS)
2025-07-24 14:13:31 -07:00
Andy Lee
3d4c75a56c fix: add missing scripts directory to git
- Remove scripts/ from .gitignore
- Add build_and_test.sh for local testing
- Add bump_version.sh for version updates (used by CI)
- Add release.sh and upload_to_pypi.sh for publishing
- Fixes CI error: ./scripts/bump_version.sh: No such file or directory
2025-07-24 14:13:14 -07:00
Andy Lee
2684ee71dc fix: ensure uv build uses correct Python version in CI
- Add --python python flag to uv build commands
- This ensures wheels are built with the correct Python version (cp313 for Python 3.13, etc)
- Fixes issue where Python 3.13 CI was building cp311 wheels
- Also adds Python version verification before build
2025-07-24 13:44:02 -07:00
Andy Lee
1d321953ba ci: update all GitHub Actions to latest versions
- Update actions/upload-artifact from v3 to v4 (v3 deprecated April 2024)
- Update actions/setup-python from v4 to v5 (latest version)
- Add Python 3.12 and 3.13 to CI test matrix
- Ensure compatibility with latest Python versions and GitHub Actions
2025-07-24 13:36:21 -07:00
Andy Lee
b3cb251369 ci: add Python 3.12 and 3.13 to test matrix
- Add Python 3.12 and 3.13 to CI test matrix
- Ensure compatibility with latest Python versions
- Python 3.12 is stable, 3.13 was released in Oct 2024
2025-07-24 13:32:29 -07:00
Andy Lee
0a17d2c9d8 feat: implement comprehensive CI/CD pipeline with two-stage release
- Add ci.yml for continuous integration on every commit
  - Test builds on Ubuntu/macOS with Python 3.9/3.10/3.11
  - Ensure code quality before any release

- Add release-manual.yml for controlled releases
  - Manual trigger prevents accidental releases
  - Version validation and tag creation
  - Optional TestPyPI testing before production
  - Only creates tag after validation passes

- Keep build-and-publish.yml for automated PyPI deployment
  - Triggered by new tags (separation of concerns)
  - Handles multi-platform wheel building
  - Allows retry if PyPI upload fails

- Update RELEASE.md with clear prerequisites and workflow

This setup ensures:
1. Every commit is tested (CI)
2. Releases are deliberate (manual trigger)
3. Failed CI won't create broken tags
4. PyPI publish can be retried independently
2025-07-24 13:29:21 -07:00
Andy Lee
e3defbca84 fix: add minimal CI dependencies for HNSW and DiskANN backends
- HNSW (Ubuntu): add libopenblas-dev for BLAS requirements
- DiskANN (Ubuntu): keep MKL, remove redundant pkg-config (HNSW already has it)
- DiskANN (macOS): add protobuf for build requirements
- Both: ensure patchelf for auditwheel on Linux

This avoids OpenBLAS/MKL conflicts by using them in separate jobs
2025-07-24 01:06:57 -07:00
Andy Lee
e407f63977 chore: fix uv build 2025-07-24 00:51:57 -07:00
Andy Lee
7add391b2c chore: build and package 2025-07-24 00:47:46 -07:00
yichuan520030910320
efd6373b32 [chat] update huggingface chat and make qwen no thinking 2025-07-24 00:11:42 -07:00
yichuan520030910320
d502fa24b0 [installation] update install for linux 2025-07-24 02:17:17 +00:00
yichuan520030910320
258a9a5c7f [misc]test link again 2025-07-23 18:29:32 -07:00
yichuan520030910320
5d41ac6115 test link 2025-07-23 18:28:22 -07:00
yichuan520030910320
2a0fdb49b8 test link 2025-07-23 18:27:08 -07:00
yichuan520030910320
9d1b7231b6 fix broken link 2025-07-23 18:25:22 -07:00
yichuan520030910320
ed3095b478 fix broken link 2025-07-23 18:24:17 -07:00
yichuan520030910320
88eca75917 fix readme 2025-07-23 18:22:10 -07:00
yichuan520030910320
42de27e16a Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-23 18:17:19 -07:00
yichuan520030910320
c083bda5b7 fix several bug 2025-07-23 18:17:11 -07:00
Andy Lee
e86da38726 fix: ollama hint for similar models 2025-07-23 15:45:10 -07:00
yichuan520030910320
99076e38bc update install 2025-07-23 14:55:34 -07:00
yichuan520030910320
9698c1a02c fix readme 2025-07-23 14:52:01 -07:00
yichuan520030910320
851f0f04c3 fix some para 2025-07-23 01:46:34 -07:00
yichuan520030910320
ae16d9d888 fix readme 2025-07-23 00:44:43 -07:00
yichuan520030910320
6e1af2eb0c fix readme 2025-07-23 00:43:46 -07:00
yichuan520030910320
7695dd0d50 fix readme 2025-07-23 00:42:17 -07:00
yichuan520030910320
c2065473ad fix readme 2025-07-23 00:30:42 -07:00
yichuan520030910320
5f3870564d Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-23 00:09:30 -07:00
yichuan520030910320
c214b2e33e fix readme 2025-07-23 00:09:24 -07:00
Andy Lee
2420c5fd35 chore: update sentence-transformer to prevent MixIn not found error 2025-07-22 23:27:25 -07:00
yichuan520030910320
f48f526f0a fix readme 2025-07-22 23:21:15 -07:00
yichuan520030910320
5dd74982ba fix readme 2025-07-22 23:14:31 -07:00
Andy Lee
e07aaf52a7 docs: align 2025-07-22 22:37:27 -07:00
Andy Lee
30e5f12616 docs: quick start 2025-07-22 22:33:04 -07:00
Andy Lee
594427bf87 docs: demo 2025-07-22 22:32:18 -07:00
yichuan520030910320
a97d3ada1c fix readme need to polish example 2025-07-22 22:09:55 -07:00
yichuan520030910320
6217bb5638 fix readme 2025-07-22 22:05:28 -07:00
yichuan520030910320
2760e99e18 fix readme 2025-07-22 22:03:19 -07:00
yichuan520030910320
0544f96b79 default main cli to openai add data dict as a args 2025-07-22 21:56:30 -07:00
yichuan520030910320
2ebb29de65 default main cli to openai 2025-07-22 21:55:18 -07:00
yichuan520030910320
43762d44c7 fix readme 2025-07-22 21:51:30 -07:00
yichuan520030910320
cdaf0c98be fix readme 2025-07-22 21:44:52 -07:00
yichuan520030910320
aa9a14a917 make the email wonderful format 2025-07-22 21:41:58 -07:00
yichuan520030910320
9efcc6d95c Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-22 20:44:02 -07:00
yichuan520030910320
f3f5d91207 make the google history wonderful format 2025-07-22 20:43:56 -07:00
Andy Lee
6070160959 chore: remove .vscode 2025-07-22 19:59:35 -07:00
Andy Lee
43155d2811 fix: supress resources leak logs 2025-07-22 19:53:45 -07:00
Andy Lee
d3f85678ec perf: much faster loading and embedding serving 2025-07-22 19:38:22 -07:00
yichuan520030910320
2a96d05b21 upd readme 2025-07-22 17:06:33 -07:00
yichuan520030910320
851e888535 Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-22 17:01:04 -07:00
yichuan520030910320
90120d4dff upd the structure in the chat for better perf 2025-07-22 17:00:56 -07:00
Andy Lee
8513471573 feat: make diskann runnable 2025-07-22 14:26:03 -07:00
Andy Lee
71e5f1774c docs: cli 2025-07-21 23:48:40 -07:00
yichuan520030910320
870a443446 Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-21 23:13:45 -07:00
yichuan520030910320
cefaa2a4cc upd readme 2025-07-21 23:13:38 -07:00
Andy Lee
ab72a2ab9d fix: more logs 2025-07-21 23:08:53 -07:00
yichuan520030910320
046d457d22 Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-21 23:04:00 -07:00
yichuan520030910320
7fd0a30fee upd log 2025-07-21 23:03:52 -07:00
Andy Lee
c2f35c8e73 fix: logs 2025-07-21 23:02:13 -07:00
Andy Lee
573313f0b6 refactor: logs 2025-07-21 22:45:24 -07:00
yichuan520030910320
f7af6805fa readme 2025-07-21 22:33:03 -07:00
yichuan520030910320
966de3a399 readme 2025-07-21 22:32:02 -07:00
yichuan520030910320
8a75829f3a readme 2025-07-21 22:30:03 -07:00
yichuan520030910320
0f7e34b9e2 readme 2025-07-21 22:18:00 -07:00
yichuan520030910320
be0322b616 readme 2025-07-21 22:16:52 -07:00
yichuan520030910320
232a525a62 readme 2025-07-21 22:14:43 -07:00
yichuan520030910320
587ce65cf6 Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-21 21:54:27 -07:00
yichuan520030910320
ccf6c8bfd7 fix flush print 2025-07-21 21:54:20 -07:00
Andy Lee
c112956d2d fix: mlx 2025-07-21 21:29:15 -07:00
Andy Lee
b3970793cf fix: cache the loaded model 2025-07-21 21:20:53 -07:00
yichuan520030910320
727724990e add todo 2025-07-21 20:59:09 -07:00
yichuan520030910320
530f6e4af5 add progress bar in build 2025-07-21 20:55:18 -07:00
Andy Lee
2f224f5793 fix: use server to emb query only when recompute 2025-07-21 20:40:21 -07:00
Andy Lee
1b6272ce0e Building, CLI tool & Embedding Server Fixed (#5)
* chore: shorter build time

* chore: update faiss

* fix: no longger do embedding server reuse

* fix: do not reuse emb_server and close it properly

* feat: cli tool

* feat: cli more args

* fix: same embedding logic
2025-07-21 20:17:25 -07:00
yichuan520030910320
5259ace111 [Readme] 2025-07-21 20:06:21 -07:00
yichuan520030910320
48ea5566e9 [Readme] detail number 2025-07-21 19:51:51 -07:00
yichuan520030910320
3f8b6c5bbd [Readme] 2025-07-21 18:15:00 -07:00
yichuan520030910320
725b32e74f [Readme] 2025-07-21 17:57:44 -07:00
yichuan520030910320
d0b71f393f [Readme] 2025-07-21 17:56:10 -07:00
yichuan520030910320
8a92efdae3 [Readme] 2025-07-21 17:53:59 -07:00
yichuan520030910320
019cdce2e8 [Readme] 2025-07-21 17:30:11 -07:00
yichuan520030910320
b64aa54fac fix break link 2025-07-21 17:29:35 -07:00
yichuan520030910320
c0d040f9d4 Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-21 16:22:24 -07:00
yichuan520030910320
32364320f8 update wechat and we should fix the bug introduced in 1c5fec5 2025-07-21 16:22:16 -07:00
Andy Lee
34c71c072d chore: parallel compile fix 2025-07-19 22:51:47 -07:00
Andy Lee
6d2149c503 chore: parallel compile fix 2025-07-19 22:46:24 -07:00
Andy Lee
043b0bf69d chore: parallel compile fix 2025-07-19 22:34:19 -07:00
Andy Lee
9b07e392c6 chore: parallel compile 2025-07-19 22:32:13 -07:00
Andy Lee
e60fad8c73 chore: mark diskann as optional 2025-07-19 22:24:44 -07:00
Andy Lee
19c1b182c3 docs: effects figure 2025-07-19 22:07:04 -07:00
Andy Lee
49edea780c docs: figure 2025-07-19 21:59:58 -07:00
Andy Lee
12ef5a1900 docs: effects 2025-07-19 21:57:12 -07:00
Andy Lee
d21a134b2a docs: polish 2025-07-19 21:53:41 -07:00
Andy Lee
1cd809aa41 [Docs] README polished version (#4)
* docs: polish

* docs: logo

* docs: logo

* docs: logo with text

* docs: readme effects

* docs: polish

* docs: highlight applications

* docs: polish

* docs: how it works earlier

* docs: polish

* docs: polish

* docs: follow yichuan's suggestion

* docs: follow yichuan's suggestion

---------

Co-authored-by: Yichuan Wang <73766326+yichuan-w@users.noreply.github.com>
2025-07-19 21:47:25 -07:00
yichuan520030910320
e728449b8f change chinese 2025-07-19 19:54:02 -07:00
yichuan520030910320
d0c20b14d5 clear output pf ipynb 2025-07-19 19:48:56 -07:00
yichuan520030910320
83b7ea5a59 change wecaht app split logic& merge 2025-07-19 19:44:33 -07:00
yichuan520030910320
0796a52df1 change wecaht app split logic 2025-07-19 19:43:30 -07:00
Andy Lee
85b7ba0168 feat: allow build from existed embeddings 2025-07-19 01:27:37 -07:00
yichuan520030910320
e117743d24 Merge branch 'main' of github.com:yichuan520030910320/LEANN-RAG 2025-07-17 22:29:39 -07:00
yichuan520030910320
aec2291f04 add embedding api 2025-07-17 22:29:31 -07:00
yichuan520030910320
335ae003ac add data 2025-07-17 22:29:03 -07:00
Andy Lee
71c7de9c84 fix: build with direct embedding 2025-07-17 21:49:36 -07:00
Andy Lee
1c5fec5565 perf: make embedder loading faster by 6x, and embed queries through the server 2025-07-17 20:08:06 -07:00
yichuan520030910320
99d439577d Merge branch 'main' of github.com:yichuan520030910320/LEANN-RAG 2025-07-17 18:15:27 -07:00
yichuan520030910320
4f83086788 update readme and auto find email 2025-07-17 18:15:17 -07:00
Andy Lee
a13c527e39 feat: openai embeddings 2025-07-17 17:02:47 -07:00
yichuan520030910320
90d9f27383 update readme and main example 2025-07-17 15:03:22 -07:00
yichuan520030910320
0db81c16cd update readme and chrome example 2025-07-17 12:58:11 -07:00
yichuan520030910320
e115e186b7 update example and more stats on result 2025-07-16 22:07:15 -07:00
yichuan520030910320
6546b29ef7 update readme 2025-07-16 20:29:45 -07:00
yichuan520030910320
51255bdffa update readme and add timer 2025-07-16 17:15:51 -07:00
Andy Lee
f77c4e38cb perf: reuse embedding server for query embed 2025-07-16 16:12:15 -07:00
Andy Lee
2a1a152073 refactor: nits 2025-07-16 15:39:58 -07:00
Andy Lee
7b9406a3ea feat: different search_args and docstrings 2025-07-16 15:25:58 -07:00
Andy Lee
c3fb949693 docs: ollama 2025-07-16 15:12:37 -07:00
yichuan520030910320
ed3f8dbfd6 update readme 2025-07-15 23:32:25 -07:00
yichuan520030910320
42aa6db170 update readme 2025-07-15 23:23:04 -07:00
yichuan520030910320
a6591d20ca Merge branch 'main' of github.com:yichuan520030910320/LEANN-RAG 2025-07-15 23:18:08 -07:00
yichuan520030910320
c1bc2603a2 update readme and 30 seconds example 2025-07-15 23:18:01 -07:00
Andy Lee
e595bbb5fb feat: hint for users about wrong model name 2025-07-15 22:40:40 -07:00
yichuan520030910320
4a2cb914d7 clean dict 2025-07-15 22:30:52 -07:00
yichuan520030910320
b1c93fe178 Merge branch 'main' of github.com:yichuan520030910320/LEANN-RAG 2025-07-15 22:29:09 -07:00
yichuan520030910320
0719458775 upd readme stats 2025-07-15 22:28:59 -07:00
Andy Lee
6a1dc895fb feat: disable warmup by default 2025-07-15 22:16:02 -07:00
Andy Lee
125c1f6f25 fix: model name 2025-07-15 21:48:45 -07:00
yichuan520030910320
1ceaa7d709 Merge branch 'main' of github.com:yichuan520030910320/LEANN-RAG 2025-07-15 21:19:25 -07:00
yichuan520030910320
dec3ee85fd fix main cli 2025-07-15 21:19:16 -07:00
Andy Lee
d94a5176dc docs: storage reduction data 2025-07-15 15:37:17 -07:00
yichuan520030910320
326783f7f1 fix mem compare fix split 2025-07-14 23:07:46 -07:00
yichuan520030910320
e5a9ca8787 fix mem compare 2025-07-14 22:55:10 -07:00
Andy Lee
f2feccdbd0 fix: mem compare 2025-07-14 16:35:08 -07:00
yichuan520030910320
246a077d64 upd readme 2025-07-14 16:21:34 -07:00
yichuan520030910320
3ba100ff25 upd readme 2025-07-14 16:18:39 -07:00
yichuan520030910320
1e3b571e72 add readme bench 2025-07-14 16:13:21 -07:00
Andy Lee
b89e56e9c2 fix: file name 2025-07-14 15:34:56 -07:00
yichuan520030910320
ed8a02e721 update readme and mlx support 2025-07-14 15:23:56 -07:00
Andy Lee
baa60b40d1 fix: smaller warmup id 2025-07-14 15:20:45 -07:00
Andy Lee
ef01d6997a fix: faiss only 2025-07-14 13:15:55 -07:00
Andy Lee
3da5b44d7f fix: mlx when searching, added to embedding_server 2025-07-14 01:11:21 -07:00
Andy Lee
8b4654921b fix: run faiss in subprocess to prevent kmp 2025-07-14 00:29:21 -07:00
yichuan520030910320
cf1cbafa78 Merge branch 'main' of github.com:yichuan520030910320/LEANN-RAG 2025-07-13 23:19:54 -07:00
yichuan520030910320
c96091744b update readme 2025-07-13 23:19:44 -07:00
Andy Lee
711fb4a775 feat: compare faiss 2025-07-13 22:44:16 -07:00
Andy Lee
3b5a185e60 refactor: check if current emb_server has correct passages/embedder 2025-07-13 22:43:51 -07:00
yichuan520030910320
77ac013a74 update readem 2025-07-13 22:37:41 -07:00
yichuan520030910320
b8e5728e6a fix wechat application 2025-07-13 22:29:54 -07:00
yichuan520030910320
d038319d8b upd readme wechat application 2025-07-13 22:00:49 -07:00
yichuan520030910320
c611d0f30f upd readme mail application 2025-07-13 21:48:57 -07:00
yichuan520030910320
c17899662f upd readme mail application 2025-07-13 21:30:08 -07:00
yichuan520030910320
c51d5320fa upd test/mlx 2025-07-13 20:16:02 -07:00
yichuan520030910320
6fa9512a64 fix wechat path 2025-07-13 18:23:31 -07:00
Andy Lee
fddc61df5e chore: reset to latest version 2025-07-13 17:06:48 -07:00
Andy Lee
53c58fa755 perf: switch to tranditional pdf reader 2025-07-13 17:04:23 -07:00
yichuan520030910320
c69afb56e4 Resolve submodule conflict - update to af2a264 2025-07-13 17:03:42 -07:00
yichuan520030910320
0fa8a9191f add wechat history extract app 2025-07-13 16:52:08 -07:00
Andy Lee
48dda1cb5b feat: mlx 2025-07-13 02:13:04 -07:00
Andy Lee
71ef4b7d4c fix: reproducible dpr on mac 2025-07-12 18:13:22 -07:00
Andy Lee
ecab43e307 feat: dataset for evaluation 2025-07-12 23:43:10 +00:00
Fangzhou66
88ca09440d fix some hf problem 2025-07-12 16:13:15 -07:00
Andy Lee
8e0ab4a28d chore: update deps 2025-07-12 22:48:13 +00:00
yichuan520030910320
9b8c5041dc update readme 2025-07-12 13:01:11 -07:00
yichuan520030910320
74ffd7ec64 add email test code 2025-07-11 23:59:47 -07:00
Andy Lee
eb6f504789 Datastore reproduce (#3)
* fix: diskann zmq port and passages

* feat: auto discovery of packages and fix passage gen for diskann

* docs: embedding pruning

* refactor: passage structure

* feat: reproducible research datas, rpj_wiki & dpr

* refactor: chat and base searcher

* feat: chat on mps
2025-07-11 23:37:23 -07:00
yichuan520030910320
91a026f38b polish readme 2025-07-11 23:06:08 -07:00
yichuan520030910320
595138a0a3 upd readme 2025-07-11 22:43:48 -07:00
yichuan520030910320
19df04095f add readme 2025-07-11 22:34:54 -07:00
yichuan520030910320
8239bbb48f add google hostory api 2025-07-11 21:21:36 -07:00
yichuan520030910320
16ee9d0422 add traverse all dict interface 2025-07-10 15:59:16 -07:00
yichuan520030910320
8a961f8ab3 align the llamaindex result w leann& test attachment 2025-07-09 21:42:15 -07:00
yichuan520030910320
558126c46e add leann and llamaindex email infra, and need to align the results 2025-07-09 16:27:11 -07:00
yichuan520030910320
04c9684488 add email test code 2025-07-09 15:06:31 -07:00
Andy Lee
b744faa7e6 chore: all deps 2025-07-08 23:37:40 +00:00
Andy Lee
27b3a26e75 fix(deps): Update DiskANN with cleaned up CMake configuration 2025-07-08 23:27:05 +00:00
Andy Lee
41d872504e feat(deps): Update DiskANN to use system-installed Boost and Protobuf 2025-07-08 23:13:36 +00:00
Andy Lee
963cd05273 chore: diskann modules 2025-07-08 21:57:38 +00:00
Andy Lee
09b6e67baf chore: diskann upg boost 2025-07-08 21:44:44 +00:00
yichuan520030910320
dafb2aacab update macos env 2025-07-08 14:37:41 -07:00
Andy Lee
a6c400cd4f chroe: linux boost and protobuf 2025-07-08 21:25:43 +00:00
Andy Lee
c013e5ccce chore: linux deps 2025-07-08 13:55:39 -07:00
Andy Lee
f25a1a3840 chore: macos compatible 2025-07-08 13:32:00 -07:00
yichuan520030910320
6497e17671 add gpu chunk embedd and add complexity in hnsw 2025-07-08 18:40:52 +00:00
yichuan520030910320
44369a8138 update diskann module 2025-07-07 18:27:07 -07:00
yichuan520030910320
dfca00c21b add mac support in this repo 2025-07-07 18:22:24 -07:00
yichuan520030910320
637dab379e add workaround code 2025-07-07 23:13:47 +00:00
yichuan520030910320
6fc57eb48e add reuse code 2025-07-07 21:07:00 +00:00
yichuan520030910320
95a653993a rm useless 2025-07-06 06:47:20 +00:00
yichuan520030910320
af0959818d rm useless 2025-07-06 05:21:05 +00:00
Andy Lee
cf17c85607 Make DiskANN and HNSW work on main example (#2)
* fix: diskann zmq port and passages

* feat: auto discovery of packages and fix passage gen for diskann
2025-07-05 22:18:12 -07:00
Andy Lee
a38bc0a3fc refactor: embedding server manager 2025-07-06 01:54:46 +00:00
yichuan
449983c937 Merge pull request #1 from yichuan520030910320/debug_diskann_disable_pipe
debug_diskann_disable_pipe
2025-07-05 17:55:27 -07:00
yichuan520030910320
df63526503 merge main 2025-07-06 00:50:58 +00:00
yichuan520030910320
e92deee1e8 fix larger file read and add faq 2025-07-06 00:48:57 +00:00
Andy Lee
910927a405 feat: support more embedders 2025-07-06 00:35:07 +00:00
Andy Lee
0aa84e147b feat: hnsw embedding server and csr format 2025-07-05 23:04:41 +00:00
yichuan520030910320
368474d036 fix larger file read and add faq 2025-07-03 23:25:36 +00:00
yichuan520030910320
a627abe794 fix file path bug still compatiable bug in hnsw search 2025-07-03 02:02:42 +00:00
yichuan520030910320
44815ee7fd add configuable funcname 2025-07-02 05:18:00 +00:00
yichuan520030910320
371e3de04e add configuable funcname 2025-07-01 05:02:01 +00:00
yichuan520030910320
b81b5d0f86 256 cannot work but increase chunk size can 2025-07-01 04:09:18 +00:00
yichuan520030910320
ee507bfe7a Initial commit 2025-06-30 11:01:12 +00:00
Andy Lee
30898814ae chore: docling deps 2025-06-30 10:52:10 +00:00
yichuan520030910320
a075fd6f47 Add DiskANN and faiss as submodules 2025-06-30 10:11:39 +00:00
yichuan520030910320
303ff6fe1d Initial commit 2025-06-30 09:09:15 +00:00
1296 changed files with 28064 additions and 264602 deletions

11
.github/workflows/build-and-publish.yml vendored Normal file
View File

@@ -0,0 +1,11 @@
name: CI
on:
push:
branches: [ main ]
pull_request:
branches: [ main ]
jobs:
build:
uses: ./.github/workflows/build-reusable.yml

251
.github/workflows/build-reusable.yml vendored Normal file
View File

@@ -0,0 +1,251 @@
name: Reusable Build
on:
workflow_call:
inputs:
ref:
description: 'Git ref to build'
required: false
type: string
default: ''
jobs:
lint:
name: Lint and Format Check
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
ref: ${{ inputs.ref }}
- name: Setup Python
uses: actions/setup-python@v5
with:
python-version: '3.11'
- name: Install uv
uses: astral-sh/setup-uv@v4
- name: Install ruff
run: |
uv tool install ruff
- name: Run ruff check
run: |
ruff check .
- name: Run ruff format check
run: |
ruff format --check .
build:
needs: lint
name: Build ${{ matrix.os }} Python ${{ matrix.python }}
strategy:
matrix:
include:
- os: ubuntu-22.04
python: '3.9'
- os: ubuntu-22.04
python: '3.10'
- os: ubuntu-22.04
python: '3.11'
- os: ubuntu-22.04
python: '3.12'
- os: ubuntu-22.04
python: '3.13'
- os: macos-latest
python: '3.9'
- os: macos-latest
python: '3.10'
- os: macos-latest
python: '3.11'
- os: macos-latest
python: '3.12'
- os: macos-latest
python: '3.13'
runs-on: ${{ matrix.os }}
steps:
- uses: actions/checkout@v4
with:
ref: ${{ inputs.ref }}
submodules: recursive
- name: Setup Python
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python }}
- name: Install uv
uses: astral-sh/setup-uv@v4
- name: Install system dependencies (Ubuntu)
if: runner.os == 'Linux'
run: |
sudo apt-get update
sudo apt-get install -y libomp-dev libboost-all-dev protobuf-compiler libzmq3-dev \
pkg-config libopenblas-dev patchelf libabsl-dev libaio-dev libprotobuf-dev
# Install Intel MKL for DiskANN
wget -q https://registrationcenter-download.intel.com/akdlm/IRC_NAS/79153e0f-74d7-45af-b8c2-258941adf58a/intel-onemkl-2025.0.0.940.sh
sudo sh intel-onemkl-2025.0.0.940.sh -a --components intel.oneapi.lin.mkl.devel --action install --eula accept -s
source /opt/intel/oneapi/setvars.sh
echo "MKLROOT=/opt/intel/oneapi/mkl/latest" >> $GITHUB_ENV
echo "LD_LIBRARY_PATH=/opt/intel/oneapi/mkl/latest/lib/intel64:$LD_LIBRARY_PATH" >> $GITHUB_ENV
- name: Install system dependencies (macOS)
if: runner.os == 'macOS'
run: |
# Don't install LLVM, use system clang for better compatibility
brew install libomp boost protobuf zeromq
- name: Install build dependencies
run: |
uv pip install --system scikit-build-core numpy swig Cython pybind11
if [[ "$RUNNER_OS" == "Linux" ]]; then
uv pip install --system auditwheel
else
uv pip install --system delocate
fi
- name: Build packages
run: |
# Build core (platform independent)
if [[ "${{ matrix.os }}" == ubuntu-* ]]; then
cd packages/leann-core
uv build
cd ../..
fi
# Build HNSW backend
cd packages/leann-backend-hnsw
if [ "${{ matrix.os }}" == "macos-latest" ]; then
# Use system clang instead of homebrew LLVM for better compatibility
export CC=clang
export CXX=clang++
export MACOSX_DEPLOYMENT_TARGET=11.0
uv build --wheel --python python
else
uv build --wheel --python python
fi
cd ../..
# Build DiskANN backend
cd packages/leann-backend-diskann
if [ "${{ matrix.os }}" == "macos-latest" ]; then
# Use system clang instead of homebrew LLVM for better compatibility
export CC=clang
export CXX=clang++
# DiskANN requires macOS 13.3+ for sgesdd_ LAPACK function
export MACOSX_DEPLOYMENT_TARGET=13.3
uv build --wheel --python python
else
uv build --wheel --python python
fi
cd ../..
# Build meta package (platform independent)
if [[ "${{ matrix.os }}" == ubuntu-* ]]; then
cd packages/leann
uv build
cd ../..
fi
- name: Repair wheels (Linux)
if: runner.os == 'Linux'
run: |
# Repair HNSW wheel
cd packages/leann-backend-hnsw
if [ -d dist ]; then
auditwheel repair dist/*.whl -w dist_repaired
rm -rf dist
mv dist_repaired dist
fi
cd ../..
# Repair DiskANN wheel
cd packages/leann-backend-diskann
if [ -d dist ]; then
auditwheel repair dist/*.whl -w dist_repaired
rm -rf dist
mv dist_repaired dist
fi
cd ../..
- name: Repair wheels (macOS)
if: runner.os == 'macOS'
run: |
# Repair HNSW wheel
cd packages/leann-backend-hnsw
if [ -d dist ]; then
delocate-wheel -w dist_repaired -v dist/*.whl
rm -rf dist
mv dist_repaired dist
fi
cd ../..
# Repair DiskANN wheel
cd packages/leann-backend-diskann
if [ -d dist ]; then
delocate-wheel -w dist_repaired -v dist/*.whl
rm -rf dist
mv dist_repaired dist
fi
cd ../..
- name: List built packages
run: |
echo "📦 Built packages:"
find packages/*/dist -name "*.whl" -o -name "*.tar.gz" | sort
- name: Install built packages for testing
run: |
# Create a virtual environment
uv venv
source .venv/bin/activate || source .venv/Scripts/activate
# Install the built wheels
# Use --find-links to let uv choose the correct wheel for the platform
if [[ "${{ matrix.os }}" == ubuntu-* ]]; then
uv pip install leann-core --find-links packages/leann-core/dist
uv pip install leann --find-links packages/leann/dist
fi
uv pip install leann-backend-hnsw --find-links packages/leann-backend-hnsw/dist
uv pip install leann-backend-diskann --find-links packages/leann-backend-diskann/dist
# Install test dependencies using extras
uv pip install -e ".[test]"
- name: Run tests with pytest
env:
CI: true # Mark as CI environment to skip memory-intensive tests
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
HF_HUB_DISABLE_SYMLINKS: 1
TOKENIZERS_PARALLELISM: false
PYTORCH_ENABLE_MPS_FALLBACK: 0 # Disable MPS on macOS CI to avoid memory issues
OMP_NUM_THREADS: 1 # Disable OpenMP parallelism to avoid libomp crashes
MKL_NUM_THREADS: 1 # Single thread for MKL operations
run: |
# Activate virtual environment
source .venv/bin/activate || source .venv/Scripts/activate
# Run all tests
pytest tests/
- name: Run sanity checks (optional)
run: |
# Activate virtual environment
source .venv/bin/activate || source .venv/Scripts/activate
# Run distance function tests if available
if [ -f test/sanity_checks/test_distance_functions.py ]; then
echo "Running distance function sanity checks..."
python test/sanity_checks/test_distance_functions.py || echo "⚠️ Distance function test failed, continuing..."
fi
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
name: packages-${{ matrix.os }}-py${{ matrix.python }}
path: packages/*/dist/

19
.github/workflows/link-check.yml vendored Normal file
View File

@@ -0,0 +1,19 @@
name: Link Check
on:
push:
branches: [ main, master ]
pull_request:
schedule:
- cron: "0 3 * * 1"
jobs:
link-check:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: lycheeverse/lychee-action@v2
with:
args: --no-progress --insecure README.md docs/ apps/ examples/ benchmarks/
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

129
.github/workflows/release-manual.yml vendored Normal file
View File

@@ -0,0 +1,129 @@
name: Release
on:
workflow_dispatch:
inputs:
version:
description: 'Version to release (e.g., 0.1.2)'
required: true
type: string
jobs:
update-version:
name: Update Version
runs-on: ubuntu-latest
permissions:
contents: write
outputs:
commit-sha: ${{ steps.push.outputs.commit-sha }}
steps:
- uses: actions/checkout@v4
- name: Validate version
run: |
# Remove 'v' prefix if present for validation
VERSION_CLEAN="${{ inputs.version }}"
VERSION_CLEAN="${VERSION_CLEAN#v}"
if ! [[ "$VERSION_CLEAN" =~ ^[0-9]+\.[0-9]+\.[0-9]+$ ]]; then
echo "❌ Invalid version format. Expected format: X.Y.Z or vX.Y.Z"
exit 1
fi
echo "✅ Version format valid: ${{ inputs.version }}"
- name: Update versions and push
id: push
run: |
# Check current version
CURRENT_VERSION=$(grep "^version" packages/leann-core/pyproject.toml | cut -d'"' -f2)
echo "Current version: $CURRENT_VERSION"
echo "Target version: ${{ inputs.version }}"
if [ "$CURRENT_VERSION" = "${{ inputs.version }}" ]; then
echo "⚠️ Version is already ${{ inputs.version }}, skipping update"
COMMIT_SHA=$(git rev-parse HEAD)
else
./scripts/bump_version.sh ${{ inputs.version }}
git config user.name "GitHub Actions"
git config user.email "actions@github.com"
git add packages/*/pyproject.toml
git commit -m "chore: release v${{ inputs.version }}"
git push origin main
COMMIT_SHA=$(git rev-parse HEAD)
echo "✅ Pushed version update: $COMMIT_SHA"
fi
echo "commit-sha=$COMMIT_SHA" >> $GITHUB_OUTPUT
build-packages:
name: Build packages
needs: update-version
uses: ./.github/workflows/build-reusable.yml
with:
ref: 'main'
publish:
name: Publish and Release
needs: [update-version, build-packages]
if: always() && needs.update-version.result == 'success' && needs.build-packages.result == 'success'
runs-on: ubuntu-latest
permissions:
contents: write
steps:
- uses: actions/checkout@v4
with:
ref: 'main'
- name: Download all artifacts
uses: actions/download-artifact@v4
with:
path: dist-artifacts
- name: Collect packages
run: |
mkdir -p dist
find dist-artifacts -name "*.whl" -exec cp {} dist/ \;
find dist-artifacts -name "*.tar.gz" -exec cp {} dist/ \;
echo "📦 Packages to publish:"
ls -la dist/
- name: Publish to PyPI
env:
TWINE_USERNAME: __token__
TWINE_PASSWORD: ${{ secrets.PYPI_API_TOKEN }}
run: |
if [ -z "$TWINE_PASSWORD" ]; then
echo "❌ PYPI_API_TOKEN not configured!"
exit 1
fi
pip install twine
twine upload dist/* --skip-existing --verbose
echo "✅ Published to PyPI!"
- name: Create release
run: |
# Check if tag already exists
if git rev-parse "v${{ inputs.version }}" >/dev/null 2>&1; then
echo "⚠️ Tag v${{ inputs.version }} already exists, skipping tag creation"
else
git tag "v${{ inputs.version }}"
git push origin "v${{ inputs.version }}"
echo "✅ Created and pushed tag v${{ inputs.version }}"
fi
# Check if release already exists
if gh release view "v${{ inputs.version }}" >/dev/null 2>&1; then
echo "⚠️ Release v${{ inputs.version }} already exists, skipping release creation"
else
gh release create "v${{ inputs.version }}" \
--title "Release v${{ inputs.version }}" \
--notes "🚀 Released to PyPI: https://pypi.org/project/leann/${{ inputs.version }}/" \
--latest
echo "✅ Created GitHub release v${{ inputs.version }}"
fi
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}

24
.gitignore vendored
View File

@@ -8,11 +8,16 @@ demo/indices/
*pycache* *pycache*
outputs/ outputs/
*.pkl *.pkl
*.pdf
*.idx
*.map
.history/ .history/
scripts/
lm_eval.egg-info/ lm_eval.egg-info/
demo/experiment_results/**/*.json demo/experiment_results/**/*.json
*.jsonl *.jsonl
*.eml
*.emlx
*.json
*.sh *.sh
*.txt *.txt
!CMakeLists.txt !CMakeLists.txt
@@ -29,6 +34,15 @@ build/
nprobe_logs/ nprobe_logs/
micro/results micro/results
micro/contriever-INT8 micro/contriever-INT8
data/*
!data/2501.14312v1 (1).pdf
!data/2506.08276v1.pdf
!data/PrideandPrejudice.txt
!data/README.md
!data/ground_truth/
!data/indices/
!data/queries/
!data/.gitattributes
*.qdstrm *.qdstrm
benchmark_results/ benchmark_results/
results/ results/
@@ -41,6 +55,7 @@ embedding_comparison_results/
*.ivecs *.ivecs
*.index *.index
*.bin *.bin
*.old
read_graph read_graph
analyze_diskann_graph analyze_diskann_graph
@@ -70,3 +85,10 @@ test_indices*/
test_*.py test_*.py
!tests/** !tests/**
packages/leann-backend-diskann/third_party/DiskANN/_deps/ packages/leann-backend-diskann/third_party/DiskANN/_deps/
*.meta.json
*.passages.json
batchtest.py
tests/__pytest_cache__/
tests/__pycache__/

14
.gitmodules vendored
View File

@@ -1,6 +1,16 @@
[submodule "packages/leann-backend-diskann/third_party/DiskANN"] [submodule "packages/leann-backend-diskann/third_party/DiskANN"]
path = packages/leann-backend-diskann/third_party/DiskANN path = packages/leann-backend-diskann/third_party/DiskANN
url = https://github.com/yichuan520030910320/DiskANN.git url = https://github.com/yichuan-w/DiskANN.git
[submodule "packages/leann-backend-hnsw/third_party/faiss"] [submodule "packages/leann-backend-hnsw/third_party/faiss"]
path = packages/leann-backend-hnsw/third_party/faiss path = packages/leann-backend-hnsw/third_party/faiss
url = https://github.com/yichuan520030910320/faiss.git url = https://github.com/yichuan-w/faiss.git
[submodule "packages/leann-backend-hnsw/third_party/msgpack-c"]
path = packages/leann-backend-hnsw/third_party/msgpack-c
url = https://github.com/msgpack/msgpack-c.git
branch = cpp_master
[submodule "packages/leann-backend-hnsw/third_party/cppzmq"]
path = packages/leann-backend-hnsw/third_party/cppzmq
url = https://github.com/zeromq/cppzmq.git
[submodule "packages/leann-backend-hnsw/third_party/libzmq"]
path = packages/leann-backend-hnsw/third_party/libzmq
url = https://github.com/zeromq/libzmq.git

16
.pre-commit-config.yaml Normal file
View File

@@ -0,0 +1,16 @@
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.5.0
hooks:
- id: trailing-whitespace
- id: end-of-file-fixer
- id: check-yaml
- id: check-added-large-files
- id: check-merge-conflict
- id: debug-statements
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.2.1
hooks:
- id: ruff
- id: ruff-format

View File

@@ -1,9 +0,0 @@
{
"recommendations": [
"llvm-vs-code-extensions.vscode-clangd",
"ms-python.python",
"ms-vscode.cmake-tools",
"vadimcn.vscode-lldb",
"eamodio.gitlens",
]
}

283
.vscode/launch.json vendored
View File

@@ -1,283 +0,0 @@
{
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
"version": "0.2.0",
"configurations": [
// new emdedder
{
"name": "New Embedder",
"type": "debugpy",
"request": "launch",
"program": "demo/main.py",
"console": "integratedTerminal",
"args": [
"--search",
"--use-original",
"--domain",
"dpr",
"--nprobe",
"5000",
"--load",
"flat",
"--embedder",
"intfloat/multilingual-e5-small"
]
}
//python /home/ubuntu/Power-RAG/faiss/demo/simple_build.py
{
"name": "main.py",
"type": "debugpy",
"request": "launch",
"program": "demo/main.py",
"console": "integratedTerminal",
"cwd": "${workspaceFolder}",
"args": [
"--query",
"1000",
"--load",
"bm25"
]
},
{
"name": "Simple Build",
"type": "lldb",
"request": "launch",
"program": "${workspaceFolder}/.venv/bin/python",
"console": "integratedTerminal",
"cwd": "${workspaceFolder}",
"args": [
"faiss/demo/simple_build.py"
],
"env": {
"LD_PRELOAD": "/lib/x86_64-linux-gnu/libmkl_core.so:/lib/x86_64-linux-gnu/libmkl_intel_thread.so:/lib/x86_64-linux-gnu/libmkl_intel_lp64.so:/lib/x86_64-linux-gnu/libiomp5.so"
}
},
//# Fix for Intel MKL error
//export LD_PRELOAD=/lib/x86_64-linux-gnu/libmkl_core.so:/lib/x86_64-linux-gnu/libmkl_intel_thread.so:/lib/x86_64-linux-gnu/libmkl_intel_lp64.so:/lib/x86_64-linux-gnu/libiomp5.so
//python faiss/demo/build_demo.py
{
"name": "Build Demo",
"type": "lldb",
"request": "launch",
"program": "${workspaceFolder}/.venv/bin/python",
"console": "integratedTerminal",
"cwd": "${workspaceFolder}",
"args": [
"faiss/demo/build_demo.py"
],
"env": {
"LD_PRELOAD": "/lib/x86_64-linux-gnu/libmkl_core.so:/lib/x86_64-linux-gnu/libmkl_intel_thread.so:/lib/x86_64-linux-gnu/libmkl_intel_lp64.so:/lib/x86_64-linux-gnu/libiomp5.so"
}
},
{
"name": "DiskANN Serve",
"type": "lldb",
"request": "launch",
"program": "${workspaceFolder}/.venv/bin/python",
"console": "integratedTerminal",
"cwd": "${workspaceFolder}",
"args": [
"demo/main.py",
"--mode",
"serve",
"--engine",
"sglang",
"--load-indices",
"diskann",
"--domain",
"rpj_wiki",
"--lazy-load",
"--recompute-beighbor-embeddings",
"--port",
"8082",
"--diskann-search-memory-maximum",
"2",
"--diskann-graph",
"240",
"--search-only"
],
"env": {
"PYTHONPATH": "${workspaceFolder}/faiss_repo/build/faiss/python:$PYTHONPATH"
},
"preLaunchTask": "CMake: build",
},
{
"name": "DiskANN Serve MAC",
"type": "lldb",
"request": "launch",
"program": "${workspaceFolder}/.venv/bin/python",
"console": "integratedTerminal",
"cwd": "${workspaceFolder}",
"args": [
"demo/main.py",
"--mode",
"serve",
"--engine",
"ollama",
"--load-indices",
"diskann",
"--domain",
"rpj_wiki",
"--lazy-load",
"--recompute-beighbor-embeddings"
],
"preLaunchTask": "CMake: build",
"env": {
"KMP_DUPLICATE_LIB_OK": "TRUE",
"OMP_NUM_THREADS": "1",
"MKL_NUM_THREADS": "1",
"DYLD_INSERT_LIBRARIES": "/Users/ec2-user/Power-RAG/.venv/lib/python3.10/site-packages/torch/lib/libomp.dylib",
"KMP_BLOCKTIME": "0"
}
},
{
"name": "Python Debugger: Current File with Arguments",
"type": "debugpy",
"request": "launch",
"program": "ric/main_ric.py",
"console": "integratedTerminal",
"cwd": "${workspaceFolder}",
"args": [
"--config-name",
"${input:configSelection}"
],
"justMyCode": false
},
//python ./demo/validate_equivalence.py sglang
{
"name": "Validate Equivalence",
"type": "debugpy",
"request": "launch",
"program": "demo/validate_equivalence.py",
"console": "integratedTerminal",
"args": [
"sglang"
],
},
//python demo/retrieval_demo.py --engine sglang --skip-embeddings --domain dpr --load-indices flat ivf_flat
{
"name": "Retrieval Demo",
"type": "debugpy",
"request": "launch",
"program": "demo/retrieval_demo.py",
"console": "integratedTerminal",
"args": [
"--engine",
"vllm",
"--skip-embeddings",
"--domain",
"dpr",
"--load-indices",
// "flat",
"ivf_flat"
],
},
//python demo/retrieval_demo.py --engine sglang --skip-embeddings --domain dpr --load-indices diskann --hnsw-M 64 --hnsw-efConstruction 150 --hnsw-efSearch 128 --hnsw-sq-bits 8
{
"name": "Retrieval Demo DiskANN",
"type": "debugpy",
"request": "launch",
"program": "demo/retrieval_demo.py",
"console": "integratedTerminal",
"args": [
"--engine",
"sglang",
"--skip-embeddings",
"--domain",
"dpr",
"--load-indices",
"diskann",
"--hnsw-M",
"64",
"--hnsw-efConstruction",
"150",
"--hnsw-efSearch",
"128",
"--hnsw-sq-bits",
"8"
],
},
{
"name": "Find Probe",
"type": "debugpy",
"request": "launch",
"program": "find_probe.py",
"console": "integratedTerminal",
"cwd": "${workspaceFolder}",
},
{
"name": "Python: Attach",
"type": "debugpy",
"request": "attach",
"processId": "${command:pickProcess}",
"justMyCode": true
},
{
"name": "Edge RAG",
"type": "lldb",
"request": "launch",
"program": "${workspaceFolder}/.venv/bin/python",
"console": "integratedTerminal",
"cwd": "${workspaceFolder}",
"args": [
"edgerag_demo.py"
],
"env": {
"LD_PRELOAD": "/lib/x86_64-linux-gnu/libiomp5.so /lib/x86_64-linux-gnu/libmkl_core.so /lib/x86_64-linux-gnu/libmkl_intel_lp64.so /lib/x86_64-linux-gnu/libmkl_intel_thread.so",
"MKL_NUM_THREADS": "1",
"OMP_NUM_THREADS": "1",
}
},
{
"name": "Launch Embedding Server",
"type": "debugpy",
"request": "launch",
"program": "demo/embedding_server.py",
"console": "integratedTerminal",
"cwd": "${workspaceFolder}",
"args": [
"--domain",
"rpj_wiki",
"--zmq-port",
"5556",
]
},
{
"name": "HNSW Serve",
"type": "lldb",
"request": "launch",
"program": "${workspaceFolder}/.venv/bin/python",
"console": "integratedTerminal",
"cwd": "${workspaceFolder}",
"args": [
"demo/main.py",
"--domain",
"rpj_wiki",
"--load",
"hnsw",
"--mode",
"serve",
"--search",
"--skip-pa",
"--recompute",
"--hnsw-old"
],
"env": {
"LD_PRELOAD": "/lib/x86_64-linux-gnu/libmkl_core.so:/lib/x86_64-linux-gnu/libmkl_intel_thread.so:/lib/x86_64-linux-gnu/libmkl_intel_lp64.so:/lib/x86_64-linux-gnu/libiomp5.so"
}
},
],
"inputs": [
{
"id": "configSelection",
"type": "pickString",
"description": "Select a configuration",
"options": [
"example_config",
"vllm_gritlm"
],
"default": "example_config"
}
],
}

43
.vscode/settings.json vendored
View File

@@ -1,43 +0,0 @@
{
"python.analysis.extraPaths": [
"./sglang_repo/python"
],
"cmake.sourceDirectory": "${workspaceFolder}/DiskANN",
"cmake.configureArgs": [
"-DPYBIND=True",
"-DUPDATE_EDITABLE_INSTALL=ON",
],
"cmake.environment": {
"PATH": "/Users/ec2-user/Power-RAG/.venv/bin:${env:PATH}"
},
"cmake.buildDirectory": "${workspaceFolder}/build",
"files.associations": {
"*.tcc": "cpp",
"deque": "cpp",
"string": "cpp",
"unordered_map": "cpp",
"vector": "cpp",
"map": "cpp",
"unordered_set": "cpp",
"atomic": "cpp",
"inplace_vector": "cpp",
"*.ipp": "cpp",
"forward_list": "cpp",
"list": "cpp",
"any": "cpp",
"system_error": "cpp",
"__hash_table": "cpp",
"__split_buffer": "cpp",
"__tree": "cpp",
"ios": "cpp",
"set": "cpp",
"__string": "cpp",
"string_view": "cpp",
"ranges": "cpp",
"iosfwd": "cpp"
},
"lldb.displayFormat": "auto",
"lldb.showDisassembly": "auto",
"lldb.dereferencePointers": true,
"lldb.consoleMode": "commands",
}

16
.vscode/tasks.json vendored
View File

@@ -1,16 +0,0 @@
{
"version": "2.0.0",
"tasks": [
{
"type": "cmake",
"label": "CMake: build",
"command": "build",
"targets": [
"all"
],
"group": "build",
"problemMatcher": [],
"detail": "CMake template build task"
}
]
}

View File

@@ -1,6 +1,6 @@
MIT License MIT License
Copyright (c) 2024 Rulin Shao Copyright (c) 2025 LEANN Contributors
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

705
README.md
View File

@@ -1,171 +1,544 @@
# 🚀 LEANN: A Low-Storage Vector Index <p align="center">
<img src="assets/logo-text.png" alt="LEANN Logo" width="400">
</p>
<p align="center"> <p align="center">
<img src="https://img.shields.io/badge/Python-3.9%2B-blue.svg" alt="Python 3.9+"> <img src="https://img.shields.io/badge/Python-3.9%2B-blue.svg" alt="Python 3.9+">
<img src="https://img.shields.io/badge/License-MIT-green.svg" alt="MIT License"> <img src="https://img.shields.io/badge/License-MIT-green.svg" alt="MIT License">
<img src="https://img.shields.io/badge/PRs-welcome-brightgreen.svg" alt="PRs Welcome"> <img src="https://img.shields.io/badge/Platform-Linux%20%7C%20macOS-lightgrey" alt="Platform">
<img src="https://img.shields.io/badge/Platform-Linux%20%7C%20macOS%20%7C%20Windows-lightgrey" alt="Platform">
</p> </p>
<h2 align="center" tabindex="-1" class="heading-element" dir="auto">
The smallest vector index in the world. RAG Everything with LEANN!
</h2>
LEANN is an innovative vector database that democratizes personal AI. Transform your laptop into a powerful RAG system that can index and search through millions of documents while using **97% less storage** than traditional solutions **without accuracy loss**.
LEANN achieves this through *graph-based selective recomputation* with *high-degree preserving pruning*, computing embeddings on-demand instead of storing them all. [Illustration Fig →](#-architecture--how-it-works) | [Paper →](https://arxiv.org/abs/2506.08276)
**Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can search your **[file system](#-personal-data-manager-process-any-documents-pdf-txt-md)**, **[emails](#-your-personal-email-secretary-rag-on-apple-mail)**, **[browser history](#-time-machine-for-the-web-rag-your-entire-browser-history)**, **[chat history](#-wechat-detective-unlock-your-golden-memories)**, or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy.
## Why LEANN?
<p align="center"> <p align="center">
<strong>⚡ Real-time embedding computation for large-scale RAG on consumer hardware</strong> <img src="assets/effects.png" alt="LEANN vs Traditional Vector DB Storage Comparison" width="70%">
</p> </p>
<p align="center"> > **The numbers speak for themselves:** Index 60 million Wikipedia chunks in just 6GB instead of 201GB. From emails to browser history, everything fits on your laptop. [See detailed benchmarks for different applications below ↓](#storage-comparison)
<a href="#-quick-start">Quick Start</a> •
<a href="#-features">Features</a> •
<a href="#-benchmarks">Benchmarks</a> •
<a href="#-documentation">Documentation</a> •
<a href="#-paper">Paper</a>
</p>
---
## 🌟 What is Leann? 🔒 **Privacy:** Your data never leaves your laptop. No OpenAI, no cloud, no "terms of service".
**Leann** revolutionizes Retrieval-Augmented Generation (RAG) by eliminating the storage bottleneck of traditional vector databases. Instead of pre-computing and storing billions of embeddings, Leann dynamically computes embeddings at query time using highly optimized graph-based search algorithms. 🪶 **Lightweight:** Graph-based recomputation eliminates heavy embedding storage, while smart graph pruning and CSR format minimize graph storage overhead. Always less storage, less memory usage!
### 🎯 Why Leann? 📦 **Portable:** Transfer your entire knowledge base between devices (even with others) with minimal cost - your personal AI memory travels with you.
Traditional RAG systems face a fundamental trade-off: 📈 **Scalability:** Handle messy personal data that would crash traditional vector DBs, easily managing your growing personalized data and agent generated memory!
- **💾 Storage**: Storing embeddings for millions of documents requires massive disk space
- **🔄 Freshness**: Pre-computed embeddings become stale when documents change
- **💰 Cost**: Vector databases are expensive to scale
**Leann solves this by:** **No Accuracy Loss:** Maintain the same search quality as heavyweight solutions while using 97% less storage.
-**Zero embedding storage** - Only graph structure is persisted
-**Real-time computation** - Embeddings computed on-demand with ms latency
-**Memory efficient** - Runs on consumer hardware (8GB RAM)
-**Always fresh** - No stale embeddings, ever
## 🚀 Quick Start ## Installation
### Installation ### 📦 Prerequisites: Install uv
[Install uv](https://docs.astral.sh/uv/getting-started/installation/#installation-methods) first if you don't have it. Typically, you can install it with:
```bash ```bash
git clone https://github.com/yichuan520030910320/Power-RAG.git leann curl -LsSf https://astral.sh/uv/install.sh | sh
```
### 🚀 Quick Install
Clone the repository to access all examples and try amazing applications,
```bash
git clone https://github.com/yichuan-w/LEANN.git leann
cd leann cd leann
```
and install LEANN from [PyPI](https://pypi.org/project/leann/) to run them immediately:
```bash
uv venv
source .venv/bin/activate
uv pip install leann
```
<details>
<summary>
<strong>🔧 Build from Source (Recommended for development)</strong>
</summary>
```bash
git clone https://github.com/yichuan-w/LEANN.git leann
cd leann
git submodule update --init --recursive
```
**macOS:**
```bash
brew install llvm libomp boost protobuf zeromq pkgconf
CC=$(brew --prefix llvm)/bin/clang CXX=$(brew --prefix llvm)/bin/clang++ uv sync
```
**Linux:**
```bash
sudo apt-get install libomp-dev libboost-all-dev protobuf-compiler libabsl-dev libmkl-full-dev libaio-dev libzmq3-dev
uv sync uv sync
``` ```
### 30-Second Example </details>
## Quick Start
Our declarative API makes RAG as easy as writing a config file.
Check out [demo.ipynb](demo.ipynb) or [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/yichuan-w/LEANN/blob/main/demo.ipynb)
```python ```python
from leann.api import LeannBuilder, LeannSearcher from leann import LeannBuilder, LeannSearcher, LeannChat
from pathlib import Path
INDEX_PATH = str(Path("./").resolve() / "demo.leann")
# 1. Build index (no embeddings stored!) # Build an index
builder = LeannBuilder(backend_name="diskann") builder = LeannBuilder(backend_name="hnsw")
builder.add_text("Python is a powerful programming language") builder.add_text("LEANN saves 97% storage compared to traditional vector databases.")
builder.add_text("Machine learning transforms industries") builder.add_text("Tung Tung Tung Sahur called—they need their bananacrocodile hybrid back")
builder.add_text("Neural networks process complex data") builder.build_index(INDEX_PATH)
builder.build_index("knowledge.leann")
# 2. Search with real-time embeddings # Search
searcher = LeannSearcher("knowledge.leann") searcher = LeannSearcher(INDEX_PATH)
results = searcher.search("programming languages", top_k=2) results = searcher.search("fantastical AI-generated creatures", top_k=1)
for result in results: # Chat with your data
print(f"Score: {result['score']:.3f} - {result['text']}") chat = LeannChat(INDEX_PATH, llm_config={"type": "hf", "model": "Qwen/Qwen3-0.6B"})
response = chat.ask("How much storage does LEANN save?", top_k=1)
``` ```
### Run the Demo ## RAG on Everything!
LEANN supports RAG on various data sources including documents (`.pdf`, `.txt`, `.md`), Apple Mail, Google Search History, WeChat, and more.
### Generation Model Setup
LEANN supports multiple LLM providers for text generation (OpenAI API, HuggingFace, Ollama).
<details>
<summary><strong>🔑 OpenAI API Setup (Default)</strong></summary>
Set your OpenAI API key as an environment variable:
```bash ```bash
uv run examples/document_search.py export OPENAI_API_KEY="your-api-key-here"
``` ```
**PDF RAG Demo (using LlamaIndex for document parsing and Leann for indexing/search)** </details>
This demo showcases how to build a RAG system for PDF documents using Leann. <details>
1. Place your PDF files (and other supported formats like .docx, .pptx, .xlsx) into the `examples/data/` directory. <summary><strong>🔧 Ollama Setup (Recommended for full privacy)</strong></summary>
2. Ensure you have an `OPENAI_API_KEY` set in your environment variables or in a `.env` file for the LLM to function.
**macOS:**
First, [download Ollama for macOS](https://ollama.com/download/mac).
```bash ```bash
uv run examples/main_cli_example.py # Pull a lightweight model (recommended for consumer hardware)
ollama pull llama3.2:1b
``` ```
## ✨ Features **Linux:**
### 🔥 Core Features ```bash
- **📊 Multiple Distance Functions**: L2, Cosine, MIPS (Maximum Inner Product Search) # Install Ollama
- **🏗️ Pluggable Backends**: DiskANN, HNSW/FAISS with unified API curl -fsSL https://ollama.ai/install.sh | sh
- **🔄 Real-time Embeddings**: Dynamic computation using optimized ZMQ servers
- **📈 Scalable Architecture**: Handles millions of documents on consumer hardware
- **🎯 Graph Pruning**: Advanced techniques for memory-efficient search
### 🛠️ Technical Highlights # Start Ollama service manually
- **Zero-copy operations** for maximum performance ollama serve &
- **SIMD-optimized** distance computations (AVX2/AVX512)
- **Async embedding pipeline** with batched processing
- **Memory-mapped indices** for fast startup
- **Recompute mode** for highest accuracy scenarios
### 🎨 Developer Experience # Pull a lightweight model (recommended for consumer hardware)
- **Simple Python API** - Get started in minutes ollama pull llama3.2:1b
- **Extensible backend system** - Easy to add new algorithms
- **Comprehensive examples** - From basic usage to production deployment
- **Rich debugging tools** - Built-in performance profiling
## 📊 Benchmarks
### Memory Usage Comparison
| System | 1M Documents | 10M Documents | 100M Documents |
|--------|-------------|---------------|----------------|
| Traditional Vector DB | 3.1 GB | 31 GB | 310 GB |
| **Leann** | **180 MB** | **1.2 GB** | **8.4 GB** |
| **Reduction** | **94.2%** | **96.1%** | **97.3%** |
### Query Performance
| Backend | Index Size | Query Time | Recall@10 |
|---------|------------|------------|-----------|
| DiskANN | 1M docs | 12ms | 0.95 |
| DiskANN + Recompute | 1M docs | 145ms | 0.98 |
| HNSW | 1M docs | 8ms | 0.93 |
*Benchmarks run on AMD Ryzen 7 with 32GB RAM*
## 🏗️ Architecture
```
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
│ Query Text │───▶│ Embedding │───▶│ Graph-based │
│ │ │ Computation │ │ Search │
└─────────────────┘ └──────────────────┘ └─────────────────┘
│ │
▼ ▼
┌──────────────┐ ┌──────────────┐
│ ZMQ Server │ │ Pruned Graph │
│ (Cached) │ │ Index │
└──────────────┘ └──────────────┘
``` ```
### Key Components </details>
1. **🧠 Embedding Engine**: Real-time transformer inference with caching ### Flexible Configuration
2. **📊 Graph Index**: Memory-efficient navigation structures
3. **🔄 Search Coordinator**: Orchestrates embedding + graph search
4. **⚡ Backend Adapters**: Pluggable algorithm implementations
## 🎓 Supported Models & Backends LEANN provides flexible parameters for embedding models, search strategies, and data processing to fit your specific needs.
### 🤖 Embedding Models <details>
- **sentence-transformers/all-mpnet-base-v2** (default) <summary><strong>📋 Click to expand: Common Parameters (Available in All Examples)</strong></summary>
- **sentence-transformers/all-MiniLM-L6-v2** (lightweight)
- Any HuggingFace sentence-transformer model
- Custom model support via API
### 🔧 Search Backends All RAG examples share these common parameters. **Interactive mode** is available in all examples - simply run without `--query` to start a continuous Q&A session where you can ask multiple questions. Type 'quit' to exit.
- **DiskANN**: Microsoft's billion-scale ANN algorithm
- **HNSW**: Hierarchical Navigable Small World graphs
- **Coming soon**: ScaNN, Faiss-IVF, NGT
### 📏 Distance Functions ```bash
- **L2**: Euclidean distance for precise similarity # Core Parameters (General preprocessing for all examples)
- **Cosine**: Angular similarity for normalized vectors --index-dir DIR # Directory to store the index (default: current directory)
- **MIPS**: Maximum Inner Product Search for recommendation systems --query "YOUR QUESTION" # Single query mode. Omit for interactive chat (type 'quit' to exit), and now you can play with your index interactively
--max-items N # Limit data preprocessing (default: -1, process all data)
--force-rebuild # Force rebuild index even if it exists
# Embedding Parameters
--embedding-model MODEL # e.g., facebook/contriever, text-embedding-3-small or mlx-community/multilingual-e5-base-mlx
--embedding-mode MODE # sentence-transformers, openai, or mlx
# LLM Parameters (Text generation models)
--llm TYPE # LLM backend: openai, ollama, or hf (default: openai)
--llm-model MODEL # Model name (default: gpt-4o) e.g., gpt-4o-mini, llama3.2:1b, Qwen/Qwen2.5-1.5B-Instruct
# Search Parameters
--top-k N # Number of results to retrieve (default: 20)
--search-complexity N # Search complexity for graph traversal (default: 32)
# Chunking Parameters
--chunk-size N # Size of text chunks (default varies by source: 256 for most, 192 for WeChat)
--chunk-overlap N # Overlap between chunks (default varies: 25-128 depending on source)
# Index Building Parameters
--backend-name NAME # Backend to use: hnsw or diskann (default: hnsw)
--graph-degree N # Graph degree for index construction (default: 32)
--build-complexity N # Build complexity for index construction (default: 64)
--no-compact # Disable compact index storage (compact storage IS enabled to save storage by default)
--no-recompute # Disable embedding recomputation (recomputation IS enabled to save storage by default)
```
</details>
### 📄 Personal Data Manager: Process Any Documents (`.pdf`, `.txt`, `.md`)!
Ask questions directly about your personal PDFs, documents, and any directory containing your files!
<p align="center">
<img src="videos/paper_clear.gif" alt="LEANN Document Search Demo" width="600">
</p>
The example below asks a question about summarizing our paper (uses default data in `data/`, which is a directory with diverse data sources: two papers, Pride and Prejudice, and a README in Chinese) and this is the **easiest example** to run here:
```bash
source .venv/bin/activate # Don't forget to activate the virtual environment
python -m apps.document_rag --query "What are the main techniques LEANN explores?"
```
<details>
<summary><strong>📋 Click to expand: Document-Specific Arguments</strong></summary>
#### Parameters
```bash
--data-dir DIR # Directory containing documents to process (default: data)
--file-types .ext .ext # Filter by specific file types (optional - all LlamaIndex supported types if omitted)
```
#### Example Commands
```bash
# Process all documents with larger chunks for academic papers
python -m apps.document_rag --data-dir "~/Documents/Papers" --chunk-size 1024
# Filter only markdown and Python files with smaller chunks
python -m apps.document_rag --data-dir "./docs" --chunk-size 256 --file-types .md .py
```
</details>
### 📧 Your Personal Email Secretary: RAG on Apple Mail!
> **Note:** The examples below currently support macOS only. Windows support coming soon.
<p align="center">
<img src="videos/mail_clear.gif" alt="LEANN Email Search Demo" width="600">
</p>
Before running the example below, you need to grant full disk access to your terminal/VS Code in System Preferences → Privacy & Security → Full Disk Access.
```bash
python -m apps.email_rag --query "What's the food I ordered by DoorDash or Uber Eats mostly?"
```
**780K email chunks → 78MB storage.** Finally, search your email like you search Google.
<details>
<summary><strong>📋 Click to expand: Email-Specific Arguments</strong></summary>
#### Parameters
```bash
--mail-path PATH # Path to specific mail directory (auto-detects if omitted)
--include-html # Include HTML content in processing (useful for newsletters)
```
#### Example Commands
```bash
# Search work emails from a specific account
python -m apps.email_rag --mail-path "~/Library/Mail/V10/WORK_ACCOUNT"
# Find all receipts and order confirmations (includes HTML)
python -m apps.email_rag --query "receipt order confirmation invoice" --include-html
```
</details>
<details>
<summary><strong>📋 Click to expand: Example queries you can try</strong></summary>
Once the index is built, you can ask questions like:
- "Find emails from my boss about deadlines"
- "What did John say about the project timeline?"
- "Show me emails about travel expenses"
</details>
### 🔍 Time Machine for the Web: RAG Your Entire Chrome Browser History!
<p align="center">
<img src="videos/google_clear.gif" alt="LEANN Browser History Search Demo" width="600">
</p>
```bash
python -m apps.browser_rag --query "Tell me my browser history about machine learning?"
```
**38K browser entries → 6MB storage.** Your browser history becomes your personal search engine.
<details>
<summary><strong>📋 Click to expand: Browser-Specific Arguments</strong></summary>
#### Parameters
```bash
--chrome-profile PATH # Path to Chrome profile directory (auto-detects if omitted)
```
#### Example Commands
```bash
# Search academic research from your browsing history
python -m apps.browser_rag --query "arxiv papers machine learning transformer architecture"
# Track competitor analysis across work profile
python -m apps.browser_rag --chrome-profile "~/Library/Application Support/Google/Chrome/Work Profile" --max-items 5000
```
</details>
<details>
<summary><strong>📋 Click to expand: How to find your Chrome profile</strong></summary>
The default Chrome profile path is configured for a typical macOS setup. If you need to find your specific Chrome profile:
1. Open Terminal
2. Run: `ls ~/Library/Application\ Support/Google/Chrome/`
3. Look for folders like "Default", "Profile 1", "Profile 2", etc.
4. Use the full path as your `--chrome-profile` argument
**Common Chrome profile locations:**
- macOS: `~/Library/Application Support/Google/Chrome/Default`
- Linux: `~/.config/google-chrome/Default`
</details>
<details>
<summary><strong>💬 Click to expand: Example queries you can try</strong></summary>
Once the index is built, you can ask questions like:
- "What websites did I visit about machine learning?"
- "Find my search history about programming"
- "What YouTube videos did I watch recently?"
- "Show me websites I visited about travel planning"
</details>
### 💬 WeChat Detective: Unlock Your Golden Memories!
<p align="center">
<img src="videos/wechat_clear.gif" alt="LEANN WeChat Search Demo" width="600">
</p>
```bash
python -m apps.wechat_rag --query "Show me all group chats about weekend plans"
```
**400K messages → 64MB storage** Search years of chat history in any language.
<details>
<summary><strong>🔧 Click to expand: Installation Requirements</strong></summary>
First, you need to install the [WeChat exporter](https://github.com/sunnyyoung/WeChatTweak-CLI),
```bash
brew install sunnyyoung/repo/wechattweak-cli
```
or install it manually (if you have issues with Homebrew):
```bash
sudo packages/wechat-exporter/wechattweak-cli install
```
**Troubleshooting:**
- **Installation issues**: Check the [WeChatTweak-CLI issues page](https://github.com/sunnyyoung/WeChatTweak-CLI/issues/41)
- **Export errors**: If you encounter the error below, try restarting WeChat
```bash
Failed to export WeChat data. Please ensure WeChat is running and WeChatTweak is installed.
Failed to find or export WeChat data. Exiting.
```
</details>
<details>
<summary><strong>📋 Click to expand: WeChat-Specific Arguments</strong></summary>
#### Parameters
```bash
--export-dir DIR # Directory to store exported WeChat data (default: wechat_export_direct)
--force-export # Force re-export even if data exists
```
#### Example Commands
```bash
# Search for travel plans discussed in group chats
python -m apps.wechat_rag --query "travel plans" --max-items 10000
# Re-export and search recent chats (useful after new messages)
python -m apps.wechat_rag --force-export --query "work schedule"
```
</details>
<details>
<summary><strong>💬 Click to expand: Example queries you can try</strong></summary>
Once the index is built, you can ask questions like:
- "我想买魔术师约翰逊的球衣,给我一些对应聊天记录?" (Chinese: Show me chat records about buying Magic Johnson's jersey)
</details>
## 🖥️ Command Line Interface
LEANN includes a powerful CLI for document processing and search. Perfect for quick document indexing and interactive chat.
### Installation
If you followed the Quick Start, `leann` is already installed in your virtual environment:
```bash
source .venv/bin/activate
leann --help
```
**To make it globally available (recommended for daily use):**
```bash
# Install the LEANN CLI globally using uv tool
uv tool install leann
# Now you can use leann from anywhere without activating venv
leann --help
```
### Usage Examples
```bash
# Build an index from documents
leann build my-docs --docs ./documents
# Search your documents
leann search my-docs "machine learning concepts"
# Interactive chat with your documents
leann ask my-docs --interactive
# List all your indexes
leann list
```
**Key CLI features:**
- Auto-detects document formats (PDF, TXT, MD, DOCX)
- Smart text chunking with overlap
- Multiple LLM providers (Ollama, OpenAI, HuggingFace)
- Organized index storage in `~/.leann/indexes/`
- Support for advanced search parameters
<details>
<summary><strong>📋 Click to expand: Complete CLI Reference</strong></summary>
**Build Command:**
```bash
leann build INDEX_NAME --docs DIRECTORY [OPTIONS]
Options:
--backend {hnsw,diskann} Backend to use (default: hnsw)
--embedding-model MODEL Embedding model (default: facebook/contriever)
--graph-degree N Graph degree (default: 32)
--complexity N Build complexity (default: 64)
--force Force rebuild existing index
--compact Use compact storage (default: true)
--recompute Enable recomputation (default: true)
```
**Search Command:**
```bash
leann search INDEX_NAME QUERY [OPTIONS]
Options:
--top-k N Number of results (default: 5)
--complexity N Search complexity (default: 64)
--recompute-embeddings Use recomputation for highest accuracy
--pruning-strategy {global,local,proportional}
```
**Ask Command:**
```bash
leann ask INDEX_NAME [OPTIONS]
Options:
--llm {ollama,openai,hf} LLM provider (default: ollama)
--model MODEL Model name (default: qwen3:8b)
--interactive Interactive chat mode
--top-k N Retrieval count (default: 20)
```
</details>
## 🏗️ Architecture & How It Works
<p align="center">
<img src="assets/arch.png" alt="LEANN Architecture" width="800">
</p>
**The magic:** Most vector DBs store every single embedding (expensive). LEANN stores a pruned graph structure (cheap) and recomputes embeddings only when needed (fast).
**Core techniques:**
- **Graph-based selective recomputation:** Only compute embeddings for nodes in the search path
- **High-degree preserving pruning:** Keep important "hub" nodes while removing redundant connections
- **Dynamic batching:** Efficiently batch embedding computations for GPU utilization
- **Two-level search:** Smart graph traversal that prioritizes promising nodes
**Backends:** DiskANN or HNSW - pick what works for your data size.
## Benchmarks
**[Simple Example: Compare LEANN vs FAISS →](benchmarks/compare_faiss_vs_leann.py)**
### 📊 Storage Comparison
| System | DPR (2.1M) | Wiki (60M) | Chat (400K) | Email (780K) | Browser (38K) |
|--------|-------------|------------|-------------|--------------|---------------|
| Traditional vector database (e.g., FAISS) | 3.8 GB | 201 GB | 1.8 GB | 2.4 GB | 130 MB |
| LEANN | 324 MB | 6 GB | 64 MB | 79 MB | 6.4 MB |
| Savings| 91% | 97% | 97% | 97% | 95% |
## Reproduce Our Results
```bash
uv pip install -e ".[dev]" # Install dev dependencies
python benchmarks/run_evaluation.py data/indices/dpr/dpr_diskann # DPR dataset
python benchmarks/run_evaluation.py data/indices/rpj_wiki/rpj_wiki.index # Wikipedia
```
The evaluation script downloads data automatically on first run. The last three results were tested with partial personal data, and you can reproduce them with your own data!
## 🔬 Paper ## 🔬 Paper
If you find Leann useful, please cite: If you find Leann useful, please cite:
@@ -174,101 +547,25 @@ If you find Leann useful, please cite:
```bibtex ```bibtex
@misc{wang2025leannlowstoragevectorindex, @misc{wang2025leannlowstoragevectorindex,
title={LEANN: A Low-Storage Vector Index}, title={LEANN: A Low-Storage Vector Index},
author={Yichuan Wang and Shu Liu and Zhifei Li and Yongji Wu and Ziming Mao and Yilong Zhao and Xiao Yan and Zhiying Xu and Yang Zhou and Ion Stoica and Sewon Min and Matei Zaharia and Joseph E. Gonzalez}, author={Yichuan Wang and Shu Liu and Zhifei Li and Yongji Wu and Ziming Mao and Yilong Zhao and Xiao Yan and Zhiying Xu and Yang Zhou and Ion Stoica and Sewon Min and Matei Zaharia and Joseph E. Gonzalez},
year={2025}, year={2025},
eprint={2506.08276}, eprint={2506.08276},
archivePrefix={arXiv}, archivePrefix={arXiv},
primaryClass={cs.DB}, primaryClass={cs.DB},
url={https://arxiv.org/abs/2506.08276}, url={https://arxiv.org/abs/2506.08276},
} }
``` ```
## 🌍 Use Cases ## ✨ [Detailed Features →](docs/features.md)
### 💼 Enterprise RAG ## 🤝 [CONTRIBUTING →](docs/CONTRIBUTING.md)
```python
# Handle millions of documents with limited resources
builder = LeannBuilder(
backend_name="diskann",
distance_metric="cosine",
graph_degree=64,
memory_budget="4GB"
)
```
### 🔬 Research & Experimentation
```python
# Quick prototyping with different algorithms
for backend in ["diskann", "hnsw"]:
searcher = LeannSearcher(index_path, backend=backend)
evaluate_recall(searcher, queries, ground_truth)
```
### 🚀 Real-time Applications ## ❓ [FAQ →](docs/faq.md)
```python
# Sub-second response times
chat = LeannChat("knowledge.leann")
response = chat.ask("What is quantum computing?")
# Returns in <100ms with recompute mode
```
## 🤝 Contributing
We welcome contributions! Leann is built by the community, for the community. ## 📈 [Roadmap →](docs/roadmap.md)
### Ways to Contribute
- 🐛 **Bug Reports**: Found an issue? Let us know!
- 💡 **Feature Requests**: Have an idea? We'd love to hear it!
- 🔧 **Code Contributions**: PRs welcome for all skill levels
- 📖 **Documentation**: Help make Leann more accessible
- 🧪 **Benchmarks**: Share your performance results
### Development Setup
```bash
git clone https://github.com/yourname/leann
cd leann
uv sync --dev
uv run pytest tests/
```
### Quick Tests
```bash
# Sanity check all distance functions
uv run python tests/sanity_checks/test_distance_functions.py
# Verify L2 implementation
uv run python tests/sanity_checks/test_l2_verification.py
```
## 📈 Roadmap
### 🎯 Q1 2024
- [x] DiskANN backend with MIPS/L2/Cosine support
- [x] HNSW backend integration
- [x] Real-time embedding pipeline
- [x] Memory-efficient graph pruning
### 🚀 Q2 2024
- [ ] Distributed search across multiple nodes
- [ ] ScaNN backend support
- [ ] Advanced caching strategies
- [ ] Kubernetes deployment guides
### 🌟 Q3 2024
- [ ] GPU-accelerated embedding computation
- [ ] Approximate distance functions
- [ ] Integration with LangChain/LlamaIndex
- [ ] Visual similarity search
## 💬 Community
Join our growing community of researchers and engineers!
- 🐦 **Twitter**: [@LeannAI](https://twitter.com/LeannAI)
- 💬 **Discord**: [Join our server](https://discord.gg/leann)
- 📧 **Email**: leann@yourcompany.com
- 🐙 **GitHub Discussions**: [Ask questions here](https://github.com/yourname/leann/discussions)
## 📄 License ## 📄 License
@@ -276,10 +573,8 @@ MIT License - see [LICENSE](LICENSE) for details.
## 🙏 Acknowledgments ## 🙏 Acknowledgments
- **Microsoft Research** for the DiskANN algorithm This work is done at [**Berkeley Sky Computing Lab**](https://sky.cs.berkeley.edu/).
- **Meta AI** for FAISS and optimization insights
- **HuggingFace** for the transformer ecosystem
- **Our amazing contributors** who make this possible
--- ---
@@ -289,4 +584,4 @@ MIT License - see [LICENSE](LICENSE) for details.
<p align="center"> <p align="center">
Made with ❤️ by the Leann team Made with ❤️ by the Leann team
</p> </p>

296
apps/base_rag_example.py Normal file
View File

@@ -0,0 +1,296 @@
"""
Base class for unified RAG examples interface.
Provides common parameters and functionality for all RAG examples.
"""
import argparse
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Any
import dotenv
from leann.api import LeannBuilder, LeannChat
from llama_index.core.node_parser import SentenceSplitter
dotenv.load_dotenv()
class BaseRAGExample(ABC):
"""Base class for all RAG examples with unified interface."""
def __init__(
self,
name: str,
description: str,
default_index_name: str,
):
self.name = name
self.description = description
self.default_index_name = default_index_name
self.parser = self._create_parser()
def _create_parser(self) -> argparse.ArgumentParser:
"""Create argument parser with common parameters."""
parser = argparse.ArgumentParser(
description=self.description, formatter_class=argparse.RawDescriptionHelpFormatter
)
# Core parameters (all examples share these)
core_group = parser.add_argument_group("Core Parameters")
core_group.add_argument(
"--index-dir",
type=str,
default=f"./{self.default_index_name}",
help=f"Directory to store the index (default: ./{self.default_index_name})",
)
core_group.add_argument(
"--query",
type=str,
default=None,
help="Query to run (if not provided, will run in interactive mode)",
)
# Allow subclasses to override default max_items
max_items_default = getattr(self, "max_items_default", -1)
core_group.add_argument(
"--max-items",
type=int,
default=max_items_default,
help="Maximum number of items to process -1 for all, means index all documents, and you should set it to a reasonable number if you have a large dataset and try at the first time)",
)
core_group.add_argument(
"--force-rebuild", action="store_true", help="Force rebuild index even if it exists"
)
# Embedding parameters
embedding_group = parser.add_argument_group("Embedding Parameters")
# Allow subclasses to override default embedding_model
embedding_model_default = getattr(self, "embedding_model_default", "facebook/contriever")
embedding_group.add_argument(
"--embedding-model",
type=str,
default=embedding_model_default,
help=f"Embedding model to use (default: {embedding_model_default})",
)
embedding_group.add_argument(
"--embedding-mode",
type=str,
default="sentence-transformers",
choices=["sentence-transformers", "openai", "mlx"],
help="Embedding backend mode (default: sentence-transformers)",
)
# LLM parameters
llm_group = parser.add_argument_group("LLM Parameters")
llm_group.add_argument(
"--llm",
type=str,
default="openai",
choices=["openai", "ollama", "hf"],
help="LLM backend to use (default: openai)",
)
llm_group.add_argument(
"--llm-model",
type=str,
default=None,
help="LLM model name (default: gpt-4o for openai, llama3.2:1b for ollama)",
)
llm_group.add_argument(
"--llm-host",
type=str,
default="http://localhost:11434",
help="Host for Ollama API (default: http://localhost:11434)",
)
# Search parameters
search_group = parser.add_argument_group("Search Parameters")
search_group.add_argument(
"--top-k", type=int, default=20, help="Number of results to retrieve (default: 20)"
)
search_group.add_argument(
"--search-complexity",
type=int,
default=32,
help="Search complexity for graph traversal (default: 64)",
)
# Index building parameters
index_group = parser.add_argument_group("Index Building Parameters")
index_group.add_argument(
"--backend-name",
type=str,
default="hnsw",
choices=["hnsw", "diskann"],
help="Backend to use for index (default: hnsw)",
)
index_group.add_argument(
"--graph-degree",
type=int,
default=32,
help="Graph degree for index construction (default: 32)",
)
index_group.add_argument(
"--build-complexity",
type=int,
default=64,
help="Build complexity for index construction (default: 64)",
)
index_group.add_argument(
"--no-compact",
action="store_true",
help="Disable compact index storage",
)
index_group.add_argument(
"--no-recompute",
action="store_true",
help="Disable embedding recomputation",
)
# Add source-specific parameters
self._add_specific_arguments(parser)
return parser
@abstractmethod
def _add_specific_arguments(self, parser: argparse.ArgumentParser):
"""Add source-specific arguments. Override in subclasses."""
pass
@abstractmethod
async def load_data(self, args) -> list[str]:
"""Load data from the source. Returns list of text chunks."""
pass
def get_llm_config(self, args) -> dict[str, Any]:
"""Get LLM configuration based on arguments."""
config = {"type": args.llm}
if args.llm == "openai":
config["model"] = args.llm_model or "gpt-4o"
elif args.llm == "ollama":
config["model"] = args.llm_model or "llama3.2:1b"
config["host"] = args.llm_host
elif args.llm == "hf":
config["model"] = args.llm_model or "Qwen/Qwen2.5-1.5B-Instruct"
return config
async def build_index(self, args, texts: list[str]) -> str:
"""Build LEANN index from texts."""
index_path = str(Path(args.index_dir) / f"{self.default_index_name}.leann")
print(f"\n[Building Index] Creating {self.name} index...")
print(f"Total text chunks: {len(texts)}")
builder = LeannBuilder(
backend_name=args.backend_name,
embedding_model=args.embedding_model,
embedding_mode=args.embedding_mode,
graph_degree=args.graph_degree,
complexity=args.build_complexity,
is_compact=not args.no_compact,
is_recompute=not args.no_recompute,
num_threads=1, # Force single-threaded mode
)
# Add texts in batches for better progress tracking
batch_size = 1000
for i in range(0, len(texts), batch_size):
batch = texts[i : i + batch_size]
for text in batch:
builder.add_text(text)
print(f"Added {min(i + batch_size, len(texts))}/{len(texts)} texts...")
print("Building index structure...")
builder.build_index(index_path)
print(f"Index saved to: {index_path}")
return index_path
async def run_interactive_chat(self, args, index_path: str):
"""Run interactive chat with the index."""
chat = LeannChat(
index_path,
llm_config=self.get_llm_config(args),
system_prompt=f"You are a helpful assistant that answers questions about {self.name} data.",
complexity=args.search_complexity,
)
print(f"\n[Interactive Mode] Chat with your {self.name} data!")
print("Type 'quit' or 'exit' to stop.\n")
while True:
try:
query = input("You: ").strip()
if query.lower() in ["quit", "exit", "q"]:
print("Goodbye!")
break
if not query:
continue
response = chat.ask(query, top_k=args.top_k, complexity=args.search_complexity)
print(f"\nAssistant: {response}\n")
except KeyboardInterrupt:
print("\nGoodbye!")
break
except Exception as e:
print(f"Error: {e}")
async def run_single_query(self, args, index_path: str, query: str):
"""Run a single query against the index."""
chat = LeannChat(
index_path,
llm_config=self.get_llm_config(args),
system_prompt=f"You are a helpful assistant that answers questions about {self.name} data.",
complexity=args.search_complexity,
)
print(f"\n[Query]: \033[36m{query}\033[0m")
response = chat.ask(query, top_k=args.top_k, complexity=args.search_complexity)
print(f"\n[Response]: \033[36m{response}\033[0m")
async def run(self):
"""Main entry point for the example."""
args = self.parser.parse_args()
# Check if index exists
index_path = str(Path(args.index_dir) / f"{self.default_index_name}.leann")
index_exists = Path(args.index_dir).exists()
if not index_exists or args.force_rebuild:
# Load data and build index
print(f"\n{'Rebuilding' if index_exists else 'Building'} index...")
texts = await self.load_data(args)
if not texts:
print("No data found to index!")
return
index_path = await self.build_index(args, texts)
else:
print(f"\nUsing existing index in {args.index_dir}")
# Run query or interactive mode
if args.query:
await self.run_single_query(args, index_path, args.query)
else:
await self.run_interactive_chat(args, index_path)
def create_text_chunks(documents, chunk_size=256, chunk_overlap=25) -> list[str]:
"""Helper function to create text chunks from documents."""
node_parser = SentenceSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
separator=" ",
paragraph_separator="\n\n",
)
all_texts = []
for doc in documents:
nodes = node_parser.get_nodes_from_documents([doc])
if nodes:
all_texts.extend(node.get_content() for node in nodes)
return all_texts

170
apps/browser_rag.py Normal file
View File

@@ -0,0 +1,170 @@
"""
Browser History RAG example using the unified interface.
Supports Chrome browser history.
"""
import os
import sys
from pathlib import Path
# Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent))
from base_rag_example import BaseRAGExample, create_text_chunks
from .history_data.history import ChromeHistoryReader
class BrowserRAG(BaseRAGExample):
"""RAG example for Chrome browser history."""
def __init__(self):
# Set default values BEFORE calling super().__init__
self.embedding_model_default = (
"sentence-transformers/all-MiniLM-L6-v2" # Fast 384-dim model
)
super().__init__(
name="Browser History",
description="Process and query Chrome browser history with LEANN",
default_index_name="google_history_index",
)
def _add_specific_arguments(self, parser):
"""Add browser-specific arguments."""
browser_group = parser.add_argument_group("Browser Parameters")
browser_group.add_argument(
"--chrome-profile",
type=str,
default=None,
help="Path to Chrome profile directory (auto-detected if not specified)",
)
browser_group.add_argument(
"--auto-find-profiles",
action="store_true",
default=True,
help="Automatically find all Chrome profiles (default: True)",
)
browser_group.add_argument(
"--chunk-size", type=int, default=256, help="Text chunk size (default: 256)"
)
browser_group.add_argument(
"--chunk-overlap", type=int, default=128, help="Text chunk overlap (default: 128)"
)
def _get_chrome_base_path(self) -> Path:
"""Get the base Chrome profile path based on OS."""
if sys.platform == "darwin":
return Path.home() / "Library" / "Application Support" / "Google" / "Chrome"
elif sys.platform.startswith("linux"):
return Path.home() / ".config" / "google-chrome"
elif sys.platform == "win32":
return Path(os.environ["LOCALAPPDATA"]) / "Google" / "Chrome" / "User Data"
else:
raise ValueError(f"Unsupported platform: {sys.platform}")
def _find_chrome_profiles(self) -> list[Path]:
"""Auto-detect all Chrome profiles."""
base_path = self._get_chrome_base_path()
if not base_path.exists():
return []
profiles = []
# Check Default profile
default_profile = base_path / "Default"
if default_profile.exists() and (default_profile / "History").exists():
profiles.append(default_profile)
# Check numbered profiles
for item in base_path.iterdir():
if item.is_dir() and item.name.startswith("Profile "):
if (item / "History").exists():
profiles.append(item)
return profiles
async def load_data(self, args) -> list[str]:
"""Load browser history and convert to text chunks."""
# Determine Chrome profiles
if args.chrome_profile and not args.auto_find_profiles:
profile_dirs = [Path(args.chrome_profile)]
else:
print("Auto-detecting Chrome profiles...")
profile_dirs = self._find_chrome_profiles()
# If specific profile given, filter to just that one
if args.chrome_profile:
profile_path = Path(args.chrome_profile)
profile_dirs = [p for p in profile_dirs if p == profile_path]
if not profile_dirs:
print("No Chrome profiles found!")
print("Please specify --chrome-profile manually")
return []
print(f"Found {len(profile_dirs)} Chrome profiles")
# Create reader
reader = ChromeHistoryReader()
# Process each profile
all_documents = []
total_processed = 0
for i, profile_dir in enumerate(profile_dirs):
print(f"\nProcessing profile {i + 1}/{len(profile_dirs)}: {profile_dir.name}")
try:
# Apply max_items limit per profile
max_per_profile = -1
if args.max_items > 0:
remaining = args.max_items - total_processed
if remaining <= 0:
break
max_per_profile = remaining
# Load history
documents = reader.load_data(
chrome_profile_path=str(profile_dir),
max_count=max_per_profile,
)
if documents:
all_documents.extend(documents)
total_processed += len(documents)
print(f"Processed {len(documents)} history entries from this profile")
except Exception as e:
print(f"Error processing {profile_dir}: {e}")
continue
if not all_documents:
print("No browser history found to process!")
return []
print(f"\nTotal history entries processed: {len(all_documents)}")
# Convert to text chunks
all_texts = create_text_chunks(
all_documents, chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
)
return all_texts
if __name__ == "__main__":
import asyncio
# Example queries for browser history RAG
print("\n🌐 Browser History RAG Example")
print("=" * 50)
print("\nExample queries you can try:")
print("- 'What websites did I visit about machine learning?'")
print("- 'Find my search history about programming'")
print("- 'What YouTube videos did I watch recently?'")
print("- 'Show me websites about travel planning'")
print("\nNote: Make sure Chrome is closed before running\n")
rag = BrowserRAG()
asyncio.run(rag.run())

106
apps/document_rag.py Normal file
View File

@@ -0,0 +1,106 @@
"""
Document RAG example using the unified interface.
Supports PDF, TXT, MD, and other document formats.
"""
import sys
from pathlib import Path
# Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent))
from base_rag_example import BaseRAGExample, create_text_chunks
from llama_index.core import SimpleDirectoryReader
class DocumentRAG(BaseRAGExample):
"""RAG example for document processing (PDF, TXT, MD, etc.)."""
def __init__(self):
super().__init__(
name="Document",
description="Process and query documents (PDF, TXT, MD, etc.) with LEANN",
default_index_name="test_doc_files",
)
def _add_specific_arguments(self, parser):
"""Add document-specific arguments."""
doc_group = parser.add_argument_group("Document Parameters")
doc_group.add_argument(
"--data-dir",
type=str,
default="data",
help="Directory containing documents to index (default: data)",
)
doc_group.add_argument(
"--file-types",
nargs="+",
default=None,
help="Filter by file types (e.g., .pdf .txt .md). If not specified, all supported types are processed",
)
doc_group.add_argument(
"--chunk-size", type=int, default=256, help="Text chunk size (default: 256)"
)
doc_group.add_argument(
"--chunk-overlap", type=int, default=128, help="Text chunk overlap (default: 128)"
)
async def load_data(self, args) -> list[str]:
"""Load documents and convert to text chunks."""
print(f"Loading documents from: {args.data_dir}")
if args.file_types:
print(f"Filtering by file types: {args.file_types}")
else:
print("Processing all supported file types")
# Check if data directory exists
data_path = Path(args.data_dir)
if not data_path.exists():
raise ValueError(f"Data directory not found: {args.data_dir}")
# Load documents
reader_kwargs = {
"recursive": True,
"encoding": "utf-8",
}
if args.file_types:
reader_kwargs["required_exts"] = args.file_types
documents = SimpleDirectoryReader(args.data_dir, **reader_kwargs).load_data(
show_progress=True
)
if not documents:
print(f"No documents found in {args.data_dir} with extensions {args.file_types}")
return []
print(f"Loaded {len(documents)} documents")
# Convert to text chunks
all_texts = create_text_chunks(
documents, chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
)
# Apply max_items limit if specified
if args.max_items > 0 and len(all_texts) > args.max_items:
print(f"Limiting to {args.max_items} chunks (from {len(all_texts)})")
all_texts = all_texts[: args.max_items]
return all_texts
if __name__ == "__main__":
import asyncio
# Example queries for document RAG
print("\n📄 Document RAG Example")
print("=" * 50)
print("\nExample queries you can try:")
print("- 'What are the main techniques LEANN uses?'")
print("- 'What is the technique DLPM?'")
print("- 'Who does Elizabeth Bennet marry?'")
print("- 'What is the problem of developing pan gu model? (盘古大模型开发中遇到什么问题?)'")
print("\nOr run without --query for interactive mode\n")
rag = DocumentRAG()
asyncio.run(rag.run())

View File

@@ -0,0 +1,167 @@
import email
import os
from pathlib import Path
from typing import Any
from llama_index.core import Document
from llama_index.core.readers.base import BaseReader
def find_all_messages_directories(root: str | None = None) -> list[Path]:
"""
Recursively find all 'Messages' directories under the given root.
Returns a list of Path objects.
"""
if root is None:
# Auto-detect user's mail path
home_dir = os.path.expanduser("~")
root = os.path.join(home_dir, "Library", "Mail")
messages_dirs = []
for dirpath, _dirnames, _filenames in os.walk(root):
if os.path.basename(dirpath) == "Messages":
messages_dirs.append(Path(dirpath))
return messages_dirs
class EmlxReader(BaseReader):
"""
Apple Mail .emlx file reader with embedded metadata.
Reads individual .emlx files from Apple Mail's storage format.
"""
def __init__(self, include_html: bool = False) -> None:
"""
Initialize.
Args:
include_html: Whether to include HTML content in the email body (default: False)
"""
self.include_html = include_html
def load_data(self, input_dir: str, **load_kwargs: Any) -> list[Document]:
"""
Load data from the input directory containing .emlx files.
Args:
input_dir: Directory containing .emlx files
**load_kwargs:
max_count (int): Maximum amount of messages to read.
"""
docs: list[Document] = []
max_count = load_kwargs.get("max_count", 1000)
count = 0
total_files = 0
successful_files = 0
failed_files = 0
print(f"Starting to process directory: {input_dir}")
# Walk through the directory recursively
for dirpath, dirnames, filenames in os.walk(input_dir):
# Skip hidden directories
dirnames[:] = [d for d in dirnames if not d.startswith(".")]
for filename in filenames:
# Check if we've reached the max count (skip if max_count == -1)
if max_count > 0 and count >= max_count:
break
if filename.endswith(".emlx"):
total_files += 1
filepath = os.path.join(dirpath, filename)
try:
# Read the .emlx file
with open(filepath, encoding="utf-8", errors="ignore") as f:
content = f.read()
# .emlx files have a length prefix followed by the email content
# The first line contains the length, followed by the email
lines = content.split("\n", 1)
if len(lines) >= 2:
email_content = lines[1]
# Parse the email using Python's email module
try:
msg = email.message_from_string(email_content)
# Extract email metadata
subject = msg.get("Subject", "No Subject")
from_addr = msg.get("From", "Unknown")
to_addr = msg.get("To", "Unknown")
date = msg.get("Date", "Unknown")
# Extract email body
body = ""
if msg.is_multipart():
for part in msg.walk():
if (
part.get_content_type() == "text/plain"
or part.get_content_type() == "text/html"
):
if (
part.get_content_type() == "text/html"
and not self.include_html
):
continue
try:
payload = part.get_payload(decode=True)
if payload:
body += payload.decode("utf-8", errors="ignore")
except Exception as e:
print(f"Error decoding payload: {e}")
continue
else:
try:
payload = msg.get_payload(decode=True)
if payload:
body = payload.decode("utf-8", errors="ignore")
except Exception as e:
print(f"Error decoding single part payload: {e}")
body = ""
# Only create document if we have some content
if body.strip() or subject != "No Subject":
# Create document content with metadata embedded in text
doc_content = f"""
[File]: {filename}
[From]: {from_addr}
[To]: {to_addr}
[Subject]: {subject}
[Date]: {date}
[EMAIL BODY Start]:
{body}
"""
# No separate metadata - everything is in the text
doc = Document(text=doc_content, metadata={})
docs.append(doc)
count += 1
successful_files += 1
# Print first few successful files for debugging
if successful_files <= 3:
print(
f"Successfully loaded: {filename} - Subject: {subject[:50]}..."
)
except Exception as e:
failed_files += 1
if failed_files <= 5: # Only print first few errors
print(f"Error parsing email from {filepath}: {e}")
continue
except Exception as e:
failed_files += 1
if failed_files <= 5: # Only print first few errors
print(f"Error reading file {filepath}: {e}")
continue
print("Processing summary:")
print(f" Total .emlx files found: {total_files}")
print(f" Successfully loaded: {successful_files}")
print(f" Failed to load: {failed_files}")
print(f" Final documents: {len(docs)}")
return docs

186
apps/email_data/email.py Normal file
View File

@@ -0,0 +1,186 @@
"""
Mbox parser.
Contains simple parser for mbox files.
"""
import logging
from pathlib import Path
from typing import Any
from fsspec import AbstractFileSystem
from llama_index.core.readers.base import BaseReader
from llama_index.core.schema import Document
logger = logging.getLogger(__name__)
class MboxReader(BaseReader):
"""
Mbox parser.
Extract messages from mailbox files.
Returns string including date, subject, sender, receiver and
content for each message.
"""
DEFAULT_MESSAGE_FORMAT: str = (
"Date: {_date}\nFrom: {_from}\nTo: {_to}\nSubject: {_subject}\nContent: {_content}"
)
def __init__(
self,
*args: Any,
max_count: int = 0,
message_format: str = DEFAULT_MESSAGE_FORMAT,
**kwargs: Any,
) -> None:
"""Init params."""
try:
from bs4 import BeautifulSoup # noqa
except ImportError:
raise ImportError("`beautifulsoup4` package not found: `pip install beautifulsoup4`")
super().__init__(*args, **kwargs)
self.max_count = max_count
self.message_format = message_format
def load_data(
self,
file: Path,
extra_info: dict | None = None,
fs: AbstractFileSystem | None = None,
) -> list[Document]:
"""Parse file into string."""
# Import required libraries
import mailbox
from email.parser import BytesParser
from email.policy import default
from bs4 import BeautifulSoup
if fs:
logger.warning(
"fs was specified but MboxReader doesn't support loading "
"from fsspec filesystems. Will load from local filesystem instead."
)
i = 0
results: list[str] = []
# Load file using mailbox
bytes_parser = BytesParser(policy=default).parse
mbox = mailbox.mbox(file, factory=bytes_parser) # type: ignore
# Iterate through all messages
for _, _msg in enumerate(mbox):
try:
msg: mailbox.mboxMessage = _msg
# Parse multipart messages
if msg.is_multipart():
for part in msg.walk():
ctype = part.get_content_type()
cdispo = str(part.get("Content-Disposition"))
if "attachment" in cdispo:
print(f"Attachment found: {part.get_filename()}")
if ctype == "text/plain" and "attachment" not in cdispo:
content = part.get_payload(decode=True) # decode
break
# Get plain message payload for non-multipart messages
else:
content = msg.get_payload(decode=True)
# Parse message HTML content and remove unneeded whitespace
soup = BeautifulSoup(content)
stripped_content = " ".join(soup.get_text().split())
# Format message to include date, sender, receiver and subject
msg_string = self.message_format.format(
_date=msg["date"],
_from=msg["from"],
_to=msg["to"],
_subject=msg["subject"],
_content=stripped_content,
)
# Add message string to results
results.append(msg_string)
except Exception as e:
logger.warning(f"Failed to parse message:\n{_msg}\n with exception {e}")
# Increment counter and return if max count is met
i += 1
if self.max_count > 0 and i >= self.max_count:
break
return [Document(text=result, metadata=extra_info or {}) for result in results]
class EmlxMboxReader(MboxReader):
"""
EmlxMboxReader - Modified MboxReader that handles directories of .emlx files.
Extends MboxReader to work with Apple Mail's .emlx format by:
1. Reading .emlx files from a directory
2. Converting them to mbox format in memory
3. Using the parent MboxReader's parsing logic
"""
def load_data(
self,
directory: Path,
extra_info: dict | None = None,
fs: AbstractFileSystem | None = None,
) -> list[Document]:
"""Parse .emlx files from directory into strings using MboxReader logic."""
import os
import tempfile
if fs:
logger.warning(
"fs was specified but EmlxMboxReader doesn't support loading "
"from fsspec filesystems. Will load from local filesystem instead."
)
# Find all .emlx files in the directory
emlx_files = list(directory.glob("*.emlx"))
logger.info(f"Found {len(emlx_files)} .emlx files in {directory}")
if not emlx_files:
logger.warning(f"No .emlx files found in {directory}")
return []
# Create a temporary mbox file
with tempfile.NamedTemporaryFile(mode="w", suffix=".mbox", delete=False) as temp_mbox:
temp_mbox_path = temp_mbox.name
# Convert .emlx files to mbox format
for emlx_file in emlx_files:
try:
# Read the .emlx file
with open(emlx_file, encoding="utf-8", errors="ignore") as f:
content = f.read()
# .emlx format: first line is length, rest is email content
lines = content.split("\n", 1)
if len(lines) >= 2:
email_content = lines[1] # Skip the length line
# Write to mbox format (each message starts with "From " and ends with blank line)
temp_mbox.write(f"From {emlx_file.name} {email_content}\n\n")
except Exception as e:
logger.warning(f"Failed to process {emlx_file}: {e}")
continue
# Close the temporary file so MboxReader can read it
temp_mbox.close()
try:
# Use the parent MboxReader's logic to parse the mbox file
return super().load_data(Path(temp_mbox_path), extra_info, fs)
finally:
# Clean up temporary file
try:
os.unlink(temp_mbox_path)
except OSError:
pass

156
apps/email_rag.py Normal file
View File

@@ -0,0 +1,156 @@
"""
Email RAG example using the unified interface.
Supports Apple Mail on macOS.
"""
import sys
from pathlib import Path
# Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent))
from base_rag_example import BaseRAGExample, create_text_chunks
from .email_data.LEANN_email_reader import EmlxReader
class EmailRAG(BaseRAGExample):
"""RAG example for Apple Mail processing."""
def __init__(self):
# Set default values BEFORE calling super().__init__
self.max_items_default = -1 # Process all emails by default
self.embedding_model_default = (
"sentence-transformers/all-MiniLM-L6-v2" # Fast 384-dim model
)
super().__init__(
name="Email",
description="Process and query Apple Mail emails with LEANN",
default_index_name="mail_index",
)
def _add_specific_arguments(self, parser):
"""Add email-specific arguments."""
email_group = parser.add_argument_group("Email Parameters")
email_group.add_argument(
"--mail-path",
type=str,
default=None,
help="Path to Apple Mail directory (auto-detected if not specified)",
)
email_group.add_argument(
"--include-html", action="store_true", help="Include HTML content in email processing"
)
email_group.add_argument(
"--chunk-size", type=int, default=256, help="Text chunk size (default: 256)"
)
email_group.add_argument(
"--chunk-overlap", type=int, default=25, help="Text chunk overlap (default: 25)"
)
def _find_mail_directories(self) -> list[Path]:
"""Auto-detect all Apple Mail directories."""
mail_base = Path.home() / "Library" / "Mail"
if not mail_base.exists():
return []
# Find all Messages directories
messages_dirs = []
for item in mail_base.rglob("Messages"):
if item.is_dir():
messages_dirs.append(item)
return messages_dirs
async def load_data(self, args) -> list[str]:
"""Load emails and convert to text chunks."""
# Determine mail directories
if args.mail_path:
messages_dirs = [Path(args.mail_path)]
else:
print("Auto-detecting Apple Mail directories...")
messages_dirs = self._find_mail_directories()
if not messages_dirs:
print("No Apple Mail directories found!")
print("Please specify --mail-path manually")
return []
print(f"Found {len(messages_dirs)} mail directories")
# Create reader
reader = EmlxReader(include_html=args.include_html)
# Process each directory
all_documents = []
total_processed = 0
for i, messages_dir in enumerate(messages_dirs):
print(f"\nProcessing directory {i + 1}/{len(messages_dirs)}: {messages_dir}")
try:
# Count emlx files
emlx_files = list(messages_dir.glob("*.emlx"))
print(f"Found {len(emlx_files)} email files")
# Apply max_items limit per directory
max_per_dir = -1 # Default to process all
if args.max_items > 0:
remaining = args.max_items - total_processed
if remaining <= 0:
break
max_per_dir = remaining
# If args.max_items == -1, max_per_dir stays -1 (process all)
# Load emails - fix the parameter passing
documents = reader.load_data(
input_dir=str(messages_dir),
max_count=max_per_dir,
)
if documents:
all_documents.extend(documents)
total_processed += len(documents)
print(f"Processed {len(documents)} emails from this directory")
except Exception as e:
print(f"Error processing {messages_dir}: {e}")
continue
if not all_documents:
print("No emails found to process!")
return []
print(f"\nTotal emails processed: {len(all_documents)}")
print("now starting to split into text chunks ... take some time")
# Convert to text chunks
# Email reader uses chunk_overlap=25 as in original
all_texts = create_text_chunks(
all_documents, chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
)
return all_texts
if __name__ == "__main__":
import asyncio
# Check platform
if sys.platform != "darwin":
print("\n⚠️ Warning: This example is designed for macOS (Apple Mail)")
print(" Windows/Linux support coming soon!\n")
# Example queries for email RAG
print("\n📧 Email RAG Example")
print("=" * 50)
print("\nExample queries you can try:")
print("- 'What did my boss say about deadlines?'")
print("- 'Find emails about travel expenses'")
print("- 'Show me emails from last month about the project'")
print("- 'What food did I order from DoorDash?'")
print("\nNote: You may need to grant Full Disk Access to your terminal\n")
rag = EmailRAG()
asyncio.run(rag.run())

View File

@@ -0,0 +1,3 @@
from .history import ChromeHistoryReader
__all__ = ["ChromeHistoryReader"]

View File

@@ -0,0 +1,186 @@
import os
import sqlite3
from pathlib import Path
from typing import Any
from llama_index.core import Document
from llama_index.core.readers.base import BaseReader
class ChromeHistoryReader(BaseReader):
"""
Chrome browser history reader that extracts browsing data from SQLite database.
Reads Chrome history from the default Chrome profile location and creates documents
with embedded metadata similar to the email reader structure.
"""
def __init__(self) -> None:
"""Initialize."""
pass
def load_data(self, input_dir: str | None = None, **load_kwargs: Any) -> list[Document]:
"""
Load Chrome history data from the default Chrome profile location.
Args:
input_dir: Not used for Chrome history (kept for compatibility)
**load_kwargs:
max_count (int): Maximum amount of history entries to read.
chrome_profile_path (str): Custom path to Chrome profile directory.
"""
docs: list[Document] = []
max_count = load_kwargs.get("max_count", 1000)
chrome_profile_path = load_kwargs.get("chrome_profile_path", None)
# Default Chrome profile path on macOS
if chrome_profile_path is None:
chrome_profile_path = os.path.expanduser(
"~/Library/Application Support/Google/Chrome/Default"
)
history_db_path = os.path.join(chrome_profile_path, "History")
if not os.path.exists(history_db_path):
print(f"Chrome history database not found at: {history_db_path}")
return docs
try:
# Connect to the Chrome history database
print(f"Connecting to database: {history_db_path}")
conn = sqlite3.connect(history_db_path)
cursor = conn.cursor()
# Query to get browsing history with metadata (removed created_time column)
query = """
SELECT
datetime(last_visit_time/1000000-11644473600,'unixepoch','localtime') as last_visit,
url,
title,
visit_count,
typed_count,
hidden
FROM urls
ORDER BY last_visit_time DESC
"""
print(f"Executing query on database: {history_db_path}")
cursor.execute(query)
rows = cursor.fetchall()
print(f"Query returned {len(rows)} rows")
count = 0
for row in rows:
if count >= max_count and max_count > 0:
break
last_visit, url, title, visit_count, typed_count, hidden = row
# Create document content with metadata embedded in text
doc_content = f"""
[Title]: {title}
[URL of the page]: {url}
[Last visited time]: {last_visit}
[Visit times]: {visit_count}
[Typed times]: {typed_count}
"""
# Create document with embedded metadata
doc = Document(text=doc_content, metadata={"title": title[0:150]})
# if len(title) > 150:
# print(f"Title is too long: {title}")
docs.append(doc)
count += 1
conn.close()
print(f"Loaded {len(docs)} Chrome history documents")
except Exception as e:
print(f"Error reading Chrome history: {e}")
# add you may need to close your browser to make the database file available
# also highlight in red
print(
"\033[91mYou may need to close your browser to make the database file available\033[0m"
)
return docs
return docs
@staticmethod
def find_chrome_profiles() -> list[Path]:
"""
Find all Chrome profile directories.
Returns:
List of Path objects pointing to Chrome profile directories
"""
chrome_base_path = Path(os.path.expanduser("~/Library/Application Support/Google/Chrome"))
profile_dirs = []
if not chrome_base_path.exists():
print(f"Chrome directory not found at: {chrome_base_path}")
return profile_dirs
# Find all profile directories
for profile_dir in chrome_base_path.iterdir():
if profile_dir.is_dir() and profile_dir.name != "System Profile":
history_path = profile_dir / "History"
if history_path.exists():
profile_dirs.append(profile_dir)
print(f"Found Chrome profile: {profile_dir}")
print(f"Found {len(profile_dirs)} Chrome profiles")
return profile_dirs
@staticmethod
def export_history_to_file(
output_file: str = "chrome_history_export.txt", max_count: int = 1000
):
"""
Export Chrome history to a text file using the same SQL query format.
Args:
output_file: Path to the output file
max_count: Maximum number of entries to export
"""
chrome_profile_path = os.path.expanduser(
"~/Library/Application Support/Google/Chrome/Default"
)
history_db_path = os.path.join(chrome_profile_path, "History")
if not os.path.exists(history_db_path):
print(f"Chrome history database not found at: {history_db_path}")
return
try:
conn = sqlite3.connect(history_db_path)
cursor = conn.cursor()
query = """
SELECT
datetime(last_visit_time/1000000-11644473600,'unixepoch','localtime') as last_visit,
url,
title,
visit_count,
typed_count,
hidden
FROM urls
ORDER BY last_visit_time DESC
LIMIT ?
"""
cursor.execute(query, (max_count,))
rows = cursor.fetchall()
with open(output_file, "w", encoding="utf-8") as f:
for row in rows:
last_visit, url, title, visit_count, typed_count, hidden = row
f.write(
f"{last_visit}\t{url}\t{title}\t{visit_count}\t{typed_count}\t{hidden}\n"
)
conn.close()
print(f"Exported {len(rows)} history entries to {output_file}")
except Exception as e:
print(f"Error exporting Chrome history: {e}")

View File

@@ -0,0 +1,774 @@
import json
import os
import re
import subprocess
import time
from datetime import datetime
from pathlib import Path
from typing import Any
from llama_index.core import Document
from llama_index.core.readers.base import BaseReader
class WeChatHistoryReader(BaseReader):
"""
WeChat chat history reader that extracts chat data from exported JSON files.
Reads WeChat chat history from exported JSON files (from wechat-exporter tool)
and creates documents with embedded metadata similar to the Chrome history reader structure.
Also includes utilities for automatic WeChat chat history export.
"""
def __init__(self) -> None:
"""Initialize."""
self.packages_dir = Path(__file__).parent.parent.parent / "packages"
self.wechat_exporter_dir = self.packages_dir / "wechat-exporter"
self.wechat_decipher_dir = self.packages_dir / "wechat-decipher-macos"
def check_wechat_running(self) -> bool:
"""Check if WeChat is currently running."""
try:
result = subprocess.run(["pgrep", "-f", "WeChat"], capture_output=True, text=True)
return result.returncode == 0
except Exception:
return False
def install_wechattweak(self) -> bool:
"""Install WeChatTweak CLI tool."""
try:
# Create wechat-exporter directory if it doesn't exist
self.wechat_exporter_dir.mkdir(parents=True, exist_ok=True)
wechattweak_path = self.wechat_exporter_dir / "wechattweak-cli"
if not wechattweak_path.exists():
print("Downloading WeChatTweak CLI...")
subprocess.run(
[
"curl",
"-L",
"-o",
str(wechattweak_path),
"https://github.com/JettChenT/WeChatTweak-CLI/releases/latest/download/wechattweak-cli",
],
check=True,
)
# Make executable
wechattweak_path.chmod(0o755)
# Install WeChatTweak
print("Installing WeChatTweak...")
subprocess.run(["sudo", str(wechattweak_path), "install"], check=True)
return True
except Exception as e:
print(f"Error installing WeChatTweak: {e}")
return False
def restart_wechat(self):
"""Restart WeChat to apply WeChatTweak."""
try:
print("Restarting WeChat...")
subprocess.run(["pkill", "-f", "WeChat"], check=False)
time.sleep(2)
subprocess.run(["open", "-a", "WeChat"], check=True)
time.sleep(5) # Wait for WeChat to start
except Exception as e:
print(f"Error restarting WeChat: {e}")
def check_api_available(self) -> bool:
"""Check if WeChatTweak API is available."""
try:
result = subprocess.run(
["curl", "-s", "http://localhost:48065/wechat/allcontacts"],
capture_output=True,
text=True,
timeout=5,
)
return result.returncode == 0 and result.stdout.strip()
except Exception:
return False
def _extract_readable_text(self, content: str) -> str:
"""
Extract readable text from message content, removing XML and system messages.
Args:
content: The raw message content (can be string or dict)
Returns:
Cleaned, readable text
"""
if not content:
return ""
# Handle dictionary content (like quoted messages)
if isinstance(content, dict):
# Extract text from dictionary structure
text_parts = []
if "title" in content:
text_parts.append(str(content["title"]))
if "quoted" in content:
text_parts.append(str(content["quoted"]))
if "content" in content:
text_parts.append(str(content["content"]))
if "text" in content:
text_parts.append(str(content["text"]))
if text_parts:
return " | ".join(text_parts)
else:
# If we can't extract meaningful text from dict, return empty
return ""
# Handle string content
if not isinstance(content, str):
return ""
# Remove common prefixes like "wxid_xxx:\n"
clean_content = re.sub(r"^wxid_[^:]+:\s*", "", content)
clean_content = re.sub(r"^[^:]+:\s*", "", clean_content)
# If it's just XML or system message, return empty
if clean_content.strip().startswith("<") or "recalled a message" in clean_content:
return ""
return clean_content.strip()
def _is_text_message(self, content: str) -> bool:
"""
Check if a message contains readable text content.
Args:
content: The message content (can be string or dict)
Returns:
True if the message contains readable text, False otherwise
"""
if not content:
return False
# Handle dictionary content
if isinstance(content, dict):
# Check if dict has any readable text fields
text_fields = ["title", "quoted", "content", "text"]
for field in text_fields:
if content.get(field):
return True
return False
# Handle string content
if not isinstance(content, str):
return False
# Skip image messages (contain XML with img tags)
if "<img" in content and "cdnurl" in content:
return False
# Skip emoji messages (contain emoji XML tags)
if "<emoji" in content and "productid" in content:
return False
# Skip voice messages
if "<voice" in content:
return False
# Skip video messages
if "<video" in content:
return False
# Skip file messages
if "<appmsg" in content and "appid" in content:
return False
# Skip system messages (like "recalled a message")
if "recalled a message" in content:
return False
# Check if there's actual readable text (not just XML or system messages)
# Remove common prefixes like "wxid_xxx:\n" and check for actual content
clean_content = re.sub(r"^wxid_[^:]+:\s*", "", content)
clean_content = re.sub(r"^[^:]+:\s*", "", clean_content)
# If after cleaning we have meaningful text, consider it readable
if len(clean_content.strip()) > 0 and not clean_content.strip().startswith("<"):
return True
return False
def _concatenate_messages(
self,
messages: list[dict],
max_length: int = 128,
time_window_minutes: int = 30,
overlap_messages: int = 0,
) -> list[dict]:
"""
Concatenate messages based on length and time rules.
Args:
messages: List of message dictionaries
max_length: Maximum length for concatenated message groups. Use -1 to disable length constraint.
time_window_minutes: Time window in minutes to group messages together. Use -1 to disable time constraint.
overlap_messages: Number of messages to overlap between consecutive groups
Returns:
List of concatenated message groups
"""
if not messages:
return []
concatenated_groups = []
current_group = []
current_length = 0
last_timestamp = None
for message in messages:
# Extract message info
content = message.get("content", "")
message_text = message.get("message", "")
create_time = message.get("createTime", 0)
message.get("fromUser", "")
message.get("toUser", "")
message.get("isSentFromSelf", False)
# Extract readable text
readable_text = self._extract_readable_text(content)
if not readable_text:
readable_text = message_text
# Skip empty messages
if not readable_text.strip():
continue
# Check time window constraint (only if time_window_minutes != -1)
if time_window_minutes != -1 and last_timestamp is not None and create_time > 0:
time_diff_minutes = (create_time - last_timestamp) / 60
if time_diff_minutes > time_window_minutes:
# Time gap too large, start new group
if current_group:
concatenated_groups.append(
{
"messages": current_group,
"total_length": current_length,
"start_time": current_group[0].get("createTime", 0),
"end_time": current_group[-1].get("createTime", 0),
}
)
# Keep last few messages for overlap
if overlap_messages > 0 and len(current_group) > overlap_messages:
current_group = current_group[-overlap_messages:]
current_length = sum(
len(
self._extract_readable_text(msg.get("content", ""))
or msg.get("message", "")
)
for msg in current_group
)
else:
current_group = []
current_length = 0
# Check length constraint (only if max_length != -1)
message_length = len(readable_text)
if max_length != -1 and current_length + message_length > max_length and current_group:
# Current group would exceed max length, save it and start new
concatenated_groups.append(
{
"messages": current_group,
"total_length": current_length,
"start_time": current_group[0].get("createTime", 0),
"end_time": current_group[-1].get("createTime", 0),
}
)
# Keep last few messages for overlap
if overlap_messages > 0 and len(current_group) > overlap_messages:
current_group = current_group[-overlap_messages:]
current_length = sum(
len(
self._extract_readable_text(msg.get("content", ""))
or msg.get("message", "")
)
for msg in current_group
)
else:
current_group = []
current_length = 0
# Add message to current group
current_group.append(message)
current_length += message_length
last_timestamp = create_time
# Add the last group if it exists
if current_group:
concatenated_groups.append(
{
"messages": current_group,
"total_length": current_length,
"start_time": current_group[0].get("createTime", 0),
"end_time": current_group[-1].get("createTime", 0),
}
)
return concatenated_groups
def _create_concatenated_content(self, message_group: dict, contact_name: str) -> str:
"""
Create concatenated content from a group of messages.
Args:
message_group: Dictionary containing messages and metadata
contact_name: Name of the contact
Returns:
Formatted concatenated content
"""
messages = message_group["messages"]
start_time = message_group["start_time"]
end_time = message_group["end_time"]
# Format timestamps
if start_time:
try:
start_timestamp = datetime.fromtimestamp(start_time)
start_time_str = start_timestamp.strftime("%Y-%m-%d %H:%M:%S")
except (ValueError, OSError):
start_time_str = str(start_time)
else:
start_time_str = "Unknown"
if end_time:
try:
end_timestamp = datetime.fromtimestamp(end_time)
end_time_str = end_timestamp.strftime("%Y-%m-%d %H:%M:%S")
except (ValueError, OSError):
end_time_str = str(end_time)
else:
end_time_str = "Unknown"
# Build concatenated message content
message_parts = []
for message in messages:
content = message.get("content", "")
message_text = message.get("message", "")
create_time = message.get("createTime", 0)
is_sent_from_self = message.get("isSentFromSelf", False)
# Extract readable text
readable_text = self._extract_readable_text(content)
if not readable_text:
readable_text = message_text
# Format individual message
if create_time:
try:
timestamp = datetime.fromtimestamp(create_time)
# change to YYYY-MM-DD HH:MM:SS
time_str = timestamp.strftime("%Y-%m-%d %H:%M:%S")
except (ValueError, OSError):
time_str = str(create_time)
else:
time_str = "Unknown"
sender = "[Me]" if is_sent_from_self else "[Contact]"
message_parts.append(f"({time_str}) {sender}: {readable_text}")
concatenated_text = "\n".join(message_parts)
# Create final document content
doc_content = f"""
Contact: {contact_name}
Time Range: {start_time_str} - {end_time_str}
Messages ({len(messages)} messages, {message_group["total_length"]} chars):
{concatenated_text}
"""
# TODO @yichuan give better format and rich info here!
doc_content = f"""
{concatenated_text}
"""
return doc_content, contact_name
def load_data(self, input_dir: str | None = None, **load_kwargs: Any) -> list[Document]:
"""
Load WeChat chat history data from exported JSON files.
Args:
input_dir: Directory containing exported WeChat JSON files
**load_kwargs:
max_count (int): Maximum amount of chat entries to read.
wechat_export_dir (str): Custom path to WeChat export directory.
include_non_text (bool): Whether to include non-text messages (images, emojis, etc.)
concatenate_messages (bool): Whether to concatenate messages based on length rules.
max_length (int): Maximum length for concatenated message groups (default: 1000).
time_window_minutes (int): Time window in minutes to group messages together (default: 30).
overlap_messages (int): Number of messages to overlap between consecutive groups (default: 2).
"""
docs: list[Document] = []
max_count = load_kwargs.get("max_count", 1000)
wechat_export_dir = load_kwargs.get("wechat_export_dir", None)
include_non_text = load_kwargs.get("include_non_text", False)
concatenate_messages = load_kwargs.get("concatenate_messages", False)
max_length = load_kwargs.get("max_length", 1000)
time_window_minutes = load_kwargs.get("time_window_minutes", 30)
# Default WeChat export path
if wechat_export_dir is None:
wechat_export_dir = "./wechat_export_test"
if not os.path.exists(wechat_export_dir):
print(f"WeChat export directory not found at: {wechat_export_dir}")
return docs
try:
# Find all JSON files in the export directory
json_files = list(Path(wechat_export_dir).glob("*.json"))
print(f"Found {len(json_files)} WeChat chat history files")
count = 0
for json_file in json_files:
if count >= max_count and max_count > 0:
break
try:
with open(json_file, encoding="utf-8") as f:
chat_data = json.load(f)
# Extract contact name from filename
contact_name = json_file.stem
if concatenate_messages:
# Filter messages to only include readable text messages
readable_messages = []
for message in chat_data:
try:
content = message.get("content", "")
if not include_non_text and not self._is_text_message(content):
continue
readable_text = self._extract_readable_text(content)
if not readable_text and not include_non_text:
continue
readable_messages.append(message)
except Exception as e:
print(f"Error processing message in {json_file}: {e}")
continue
# Concatenate messages based on rules
message_groups = self._concatenate_messages(
readable_messages,
max_length=max_length,
time_window_minutes=time_window_minutes,
overlap_messages=0, # No overlap between groups
)
# Create documents from concatenated groups
for message_group in message_groups:
if count >= max_count and max_count > 0:
break
doc_content, contact_name = self._create_concatenated_content(
message_group, contact_name
)
doc = Document(
text=doc_content,
metadata={"contact_name": contact_name},
)
docs.append(doc)
count += 1
print(
f"Created {len(message_groups)} concatenated message groups for {contact_name}"
)
else:
# Original single-message processing
for message in chat_data:
if count >= max_count and max_count > 0:
break
# Extract message information
message.get("fromUser", "")
message.get("toUser", "")
content = message.get("content", "")
message_text = message.get("message", "")
create_time = message.get("createTime", 0)
is_sent_from_self = message.get("isSentFromSelf", False)
# Handle content that might be dict or string
try:
# Check if this is a readable text message
if not include_non_text and not self._is_text_message(content):
continue
# Extract readable text
readable_text = self._extract_readable_text(content)
if not readable_text and not include_non_text:
continue
except Exception as e:
# Skip messages that cause processing errors
print(f"Error processing message in {json_file}: {e}")
continue
# Convert timestamp to readable format
if create_time:
try:
timestamp = datetime.fromtimestamp(create_time)
time_str = timestamp.strftime("%Y-%m-%d %H:%M:%S")
except (ValueError, OSError):
time_str = str(create_time)
else:
time_str = "Unknown"
# Create document content with metadata header and contact info
doc_content = f"""
Contact: {contact_name}
Is sent from self: {is_sent_from_self}
Time: {time_str}
Message: {readable_text if readable_text else message_text}
"""
# Create document with embedded metadata
doc = Document(
text=doc_content, metadata={"contact_name": contact_name}
)
docs.append(doc)
count += 1
except Exception as e:
print(f"Error reading {json_file}: {e}")
continue
print(f"Loaded {len(docs)} WeChat chat documents")
except Exception as e:
print(f"Error reading WeChat history: {e}")
return docs
return docs
@staticmethod
def find_wechat_export_dirs() -> list[Path]:
"""
Find all WeChat export directories.
Returns:
List of Path objects pointing to WeChat export directories
"""
export_dirs = []
# Look for common export directory names
possible_dirs = [
Path("./wechat_export"),
Path("./wechat_export_direct"),
Path("./wechat_chat_history"),
Path("./chat_export"),
]
for export_dir in possible_dirs:
if export_dir.exists() and export_dir.is_dir():
json_files = list(export_dir.glob("*.json"))
if json_files:
export_dirs.append(export_dir)
print(
f"Found WeChat export directory: {export_dir} with {len(json_files)} files"
)
print(f"Found {len(export_dirs)} WeChat export directories")
return export_dirs
@staticmethod
def export_chat_to_file(
output_file: str = "wechat_chat_export.txt",
max_count: int = 1000,
export_dir: str | None = None,
include_non_text: bool = False,
):
"""
Export WeChat chat history to a text file.
Args:
output_file: Path to the output file
max_count: Maximum number of entries to export
export_dir: Directory containing WeChat JSON files
include_non_text: Whether to include non-text messages
"""
if export_dir is None:
export_dir = "./wechat_export_test"
if not os.path.exists(export_dir):
print(f"WeChat export directory not found at: {export_dir}")
return
try:
json_files = list(Path(export_dir).glob("*.json"))
with open(output_file, "w", encoding="utf-8") as f:
count = 0
for json_file in json_files:
if count >= max_count and max_count > 0:
break
try:
with open(json_file, encoding="utf-8") as json_f:
chat_data = json.load(json_f)
contact_name = json_file.stem
f.write(f"\n=== Chat with {contact_name} ===\n")
for message in chat_data:
if count >= max_count and max_count > 0:
break
from_user = message.get("fromUser", "")
content = message.get("content", "")
message_text = message.get("message", "")
create_time = message.get("createTime", 0)
# Skip non-text messages unless requested
if not include_non_text:
reader = WeChatHistoryReader()
if not reader._is_text_message(content):
continue
readable_text = reader._extract_readable_text(content)
if not readable_text:
continue
message_text = readable_text
if create_time:
try:
timestamp = datetime.fromtimestamp(create_time)
time_str = timestamp.strftime("%Y-%m-%d %H:%M:%S")
except (ValueError, OSError):
time_str = str(create_time)
else:
time_str = "Unknown"
f.write(f"[{time_str}] {from_user}: {message_text}\n")
count += 1
except Exception as e:
print(f"Error processing {json_file}: {e}")
continue
print(f"Exported {count} chat entries to {output_file}")
except Exception as e:
print(f"Error exporting WeChat chat history: {e}")
def export_wechat_chat_history(self, export_dir: str = "./wechat_export_direct") -> Path | None:
"""
Export WeChat chat history using wechat-exporter tool.
Args:
export_dir: Directory to save exported chat history
Returns:
Path to export directory if successful, None otherwise
"""
try:
import subprocess
import sys
# Create export directory
export_path = Path(export_dir)
export_path.mkdir(exist_ok=True)
print(f"Exporting WeChat chat history to {export_path}...")
# Check if wechat-exporter directory exists
if not self.wechat_exporter_dir.exists():
print(f"wechat-exporter directory not found at: {self.wechat_exporter_dir}")
return None
# Install requirements if needed
requirements_file = self.wechat_exporter_dir / "requirements.txt"
if requirements_file.exists():
print("Installing wechat-exporter requirements...")
subprocess.run(["uv", "pip", "install", "-r", str(requirements_file)], check=True)
# Run the export command
print("Running wechat-exporter...")
result = subprocess.run(
[
sys.executable,
str(self.wechat_exporter_dir / "main.py"),
"export-all",
str(export_path),
],
capture_output=True,
text=True,
check=True,
)
print("Export command output:")
print(result.stdout)
if result.stderr:
print("Export errors:")
print(result.stderr)
# Check if export was successful
if export_path.exists() and any(export_path.glob("*.json")):
json_files = list(export_path.glob("*.json"))
print(
f"Successfully exported {len(json_files)} chat history files to {export_path}"
)
return export_path
else:
print("Export completed but no JSON files found")
return None
except subprocess.CalledProcessError as e:
print(f"Export command failed: {e}")
print(f"Command output: {e.stdout}")
print(f"Command errors: {e.stderr}")
return None
except Exception as e:
print(f"Export failed: {e}")
print("Please ensure WeChat is running and WeChatTweak is installed.")
return None
def find_or_export_wechat_data(self, export_dir: str = "./wechat_export_direct") -> list[Path]:
"""
Find existing WeChat exports or create new ones.
Args:
export_dir: Directory to save exported chat history if needed
Returns:
List of Path objects pointing to WeChat export directories
"""
export_dirs = []
# Look for existing exports in common locations
possible_export_dirs = [
Path("./wechat_database_export"),
Path("./wechat_export_test"),
Path("./wechat_export"),
Path("./wechat_export_direct"),
Path("./wechat_chat_history"),
Path("./chat_export"),
]
for export_dir_path in possible_export_dirs:
if export_dir_path.exists() and any(export_dir_path.glob("*.json")):
export_dirs.append(export_dir_path)
print(f"Found existing export: {export_dir_path}")
# If no existing exports, try to export automatically
if not export_dirs:
print("No existing WeChat exports found. Starting direct export...")
# Try to export using wechat-exporter
exported_path = self.export_wechat_chat_history(export_dir)
if exported_path:
export_dirs = [exported_path]
else:
print(
"Failed to export WeChat data. Please ensure WeChat is running and WeChatTweak is installed."
)
return export_dirs

189
apps/wechat_rag.py Normal file
View File

@@ -0,0 +1,189 @@
"""
WeChat History RAG example using the unified interface.
Supports WeChat chat history export and search.
"""
import subprocess
import sys
from pathlib import Path
# Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent))
from base_rag_example import BaseRAGExample
from .history_data.wechat_history import WeChatHistoryReader
class WeChatRAG(BaseRAGExample):
"""RAG example for WeChat chat history."""
def __init__(self):
# Set default values BEFORE calling super().__init__
self.max_items_default = -1 # Match original default
self.embedding_model_default = (
"sentence-transformers/all-MiniLM-L6-v2" # Fast 384-dim model
)
super().__init__(
name="WeChat History",
description="Process and query WeChat chat history with LEANN",
default_index_name="wechat_history_magic_test_11Debug_new",
)
def _add_specific_arguments(self, parser):
"""Add WeChat-specific arguments."""
wechat_group = parser.add_argument_group("WeChat Parameters")
wechat_group.add_argument(
"--export-dir",
type=str,
default="./wechat_export",
help="Directory to store WeChat exports (default: ./wechat_export)",
)
wechat_group.add_argument(
"--force-export",
action="store_true",
help="Force re-export of WeChat data even if exports exist",
)
wechat_group.add_argument(
"--chunk-size", type=int, default=192, help="Text chunk size (default: 192)"
)
wechat_group.add_argument(
"--chunk-overlap", type=int, default=64, help="Text chunk overlap (default: 64)"
)
def _export_wechat_data(self, export_dir: Path) -> bool:
"""Export WeChat data using wechattweak-cli."""
print("Exporting WeChat data...")
# Check if WeChat is running
try:
result = subprocess.run(["pgrep", "WeChat"], capture_output=True, text=True)
if result.returncode != 0:
print("WeChat is not running. Please start WeChat first.")
return False
except Exception:
pass # pgrep might not be available on all systems
# Create export directory
export_dir.mkdir(parents=True, exist_ok=True)
# Run export command
cmd = ["packages/wechat-exporter/wechattweak-cli", "export", str(export_dir)]
try:
print(f"Running: {' '.join(cmd)}")
result = subprocess.run(cmd, capture_output=True, text=True)
if result.returncode == 0:
print("WeChat data exported successfully!")
return True
else:
print(f"Export failed: {result.stderr}")
return False
except FileNotFoundError:
print("\nError: wechattweak-cli not found!")
print("Please install it first:")
print(" sudo packages/wechat-exporter/wechattweak-cli install")
return False
except Exception as e:
print(f"Export error: {e}")
return False
async def load_data(self, args) -> list[str]:
"""Load WeChat history and convert to text chunks."""
# Initialize WeChat reader with export capabilities
reader = WeChatHistoryReader()
# Find existing exports or create new ones using the centralized method
export_dirs = reader.find_or_export_wechat_data(args.export_dir)
if not export_dirs:
print("Failed to find or export WeChat data. Trying to find any existing exports...")
# Try to find any existing exports in common locations
export_dirs = reader.find_wechat_export_dirs()
if not export_dirs:
print("No WeChat data found. Please ensure WeChat exports exist.")
return []
# Load documents from all found export directories
all_documents = []
total_processed = 0
for i, export_dir in enumerate(export_dirs):
print(f"\nProcessing WeChat export {i + 1}/{len(export_dirs)}: {export_dir}")
try:
# Apply max_items limit per export
max_per_export = -1
if args.max_items > 0:
remaining = args.max_items - total_processed
if remaining <= 0:
break
max_per_export = remaining
documents = reader.load_data(
wechat_export_dir=str(export_dir),
max_count=max_per_export,
concatenate_messages=True, # Enable message concatenation for better context
)
if documents:
print(f"Loaded {len(documents)} chat documents from {export_dir}")
all_documents.extend(documents)
total_processed += len(documents)
else:
print(f"No documents loaded from {export_dir}")
except Exception as e:
print(f"Error processing {export_dir}: {e}")
continue
if not all_documents:
print("No documents loaded from any source. Exiting.")
return []
print(f"\nTotal loaded {len(all_documents)} chat documents from {len(export_dirs)} exports")
print("now starting to split into text chunks ... take some time")
# Convert to text chunks with contact information
all_texts = []
for doc in all_documents:
# Split the document into chunks
from llama_index.core.node_parser import SentenceSplitter
text_splitter = SentenceSplitter(
chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
)
nodes = text_splitter.get_nodes_from_documents([doc])
for node in nodes:
# Add contact information to each chunk
contact_name = doc.metadata.get("contact_name", "Unknown")
text = f"[Contact] means the message is from: {contact_name}\n" + node.get_content()
all_texts.append(text)
print(f"Created {len(all_texts)} text chunks from {len(all_documents)} documents")
return all_texts
if __name__ == "__main__":
import asyncio
# Check platform
if sys.platform != "darwin":
print("\n⚠️ Warning: WeChat export is only supported on macOS")
print(" You can still query existing exports on other platforms\n")
# Example queries for WeChat RAG
print("\n💬 WeChat History RAG Example")
print("=" * 50)
print("\nExample queries you can try:")
print("- 'Show me conversations about travel plans'")
print("- 'Find group chats about weekend activities'")
print("- '我想买魔术师约翰逊的球衣,给我一些对应聊天记录?'")
print("- 'What did we discuss about the project last month?'")
print("\nNote: WeChat must be running for export to work\n")
rag = WeChatRAG()
asyncio.run(rag.run())

BIN
assets/arch.png Normal file
View File

Binary file not shown.

After

Width:  |  Height:  |  Size: 78 KiB

BIN
assets/effects.png Normal file
View File

Binary file not shown.

After

Width:  |  Height:  |  Size: 339 KiB

BIN
assets/logo-text.png Normal file
View File

Binary file not shown.

After

Width:  |  Height:  |  Size: 818 KiB

BIN
assets/logo.png Normal file
View File

Binary file not shown.

After

Width:  |  Height:  |  Size: 276 KiB

View File

@@ -7,7 +7,7 @@ This directory contains comprehensive sanity checks for the Leann system, ensuri
### `test_distance_functions.py` ### `test_distance_functions.py`
Tests all supported distance functions across DiskANN backend: Tests all supported distance functions across DiskANN backend:
- ✅ **MIPS** (Maximum Inner Product Search) - ✅ **MIPS** (Maximum Inner Product Search)
- ✅ **L2** (Euclidean Distance) - ✅ **L2** (Euclidean Distance)
- ✅ **Cosine** (Cosine Similarity) - ✅ **Cosine** (Cosine Similarity)
```bash ```bash
@@ -27,7 +27,7 @@ uv run python tests/sanity_checks/test_l2_verification.py
### `test_sanity_check.py` ### `test_sanity_check.py`
Comprehensive end-to-end verification including: Comprehensive end-to-end verification including:
- Distance function testing - Distance function testing
- Embedding model compatibility - Embedding model compatibility
- Search result correctness validation - Search result correctness validation
- Backend integration testing - Backend integration testing
@@ -64,7 +64,7 @@ When all tests pass, you should see:
``` ```
📊 测试结果总结: 📊 测试结果总结:
mips : ✅ 通过 mips : ✅ 通过
l2 : ✅ 通过 l2 : ✅ 通过
cosine : ✅ 通过 cosine : ✅ 通过
🎉 测试完成! 🎉 测试完成!
@@ -98,7 +98,7 @@ pkill -f "embedding_server"
### Typical Timing (3 documents, consumer hardware): ### Typical Timing (3 documents, consumer hardware):
- **Index Building**: 2-5 seconds per distance function - **Index Building**: 2-5 seconds per distance function
- **Search Query**: 50-200ms - **Search Query**: 50-200ms
- **Recompute Mode**: 5-15 seconds (higher accuracy) - **Recompute Mode**: 5-15 seconds (higher accuracy)
### Memory Usage: ### Memory Usage:
@@ -117,4 +117,4 @@ These tests are designed to be run in automated environments:
uv run python tests/sanity_checks/test_l2_verification.py uv run python tests/sanity_checks/test_l2_verification.py
``` ```
The tests are deterministic and should produce consistent results across different platforms. The tests are deterministic and should produce consistent results across different platforms.

View File

@@ -0,0 +1,141 @@
import time
import matplotlib.pyplot as plt
import mlx.core as mx
import numpy as np
import torch
from mlx_lm import load
from sentence_transformers import SentenceTransformer
# --- Configuration ---
MODEL_NAME_TORCH = "Qwen/Qwen3-Embedding-0.6B"
MODEL_NAME_MLX = "mlx-community/Qwen3-Embedding-0.6B-4bit-DWQ"
BATCH_SIZES = [1, 8, 16, 32, 64, 128]
NUM_RUNS = 10 # Number of runs to average for each batch size
WARMUP_RUNS = 2 # Number of warm-up runs
# --- Generate Dummy Data ---
DUMMY_SENTENCES = ["This is a test sentence for benchmarking." * 5] * max(BATCH_SIZES)
# --- Benchmark Functions ---b
def benchmark_torch(model, sentences):
start_time = time.time()
model.encode(sentences, convert_to_numpy=True)
end_time = time.time()
return (end_time - start_time) * 1000 # Return time in ms
def benchmark_mlx(model, tokenizer, sentences):
start_time = time.time()
# Tokenize sentences using MLX tokenizer
tokens = []
for sentence in sentences:
token_ids = tokenizer.encode(sentence)
tokens.append(token_ids)
# Pad sequences to the same length
max_len = max(len(t) for t in tokens)
input_ids = []
attention_mask = []
for token_seq in tokens:
# Pad sequence
padded = token_seq + [tokenizer.eos_token_id] * (max_len - len(token_seq))
input_ids.append(padded)
# Create attention mask (1 for real tokens, 0 for padding)
mask = [1] * len(token_seq) + [0] * (max_len - len(token_seq))
attention_mask.append(mask)
# Convert to MLX arrays
input_ids = mx.array(input_ids)
attention_mask = mx.array(attention_mask)
# Get embeddings
embeddings = model(input_ids)
# Mean pooling
mask = mx.expand_dims(attention_mask, -1)
sum_embeddings = (embeddings * mask).sum(axis=1)
sum_mask = mask.sum(axis=1)
_ = sum_embeddings / sum_mask
mx.eval() # Ensure computation is finished
end_time = time.time()
return (end_time - start_time) * 1000 # Return time in ms
# --- Main Execution ---
def main():
print("--- Initializing Models ---")
# Load PyTorch model
print(f"Loading PyTorch model: {MODEL_NAME_TORCH}")
device = "mps" if torch.backends.mps.is_available() else "cpu"
model_torch = SentenceTransformer(MODEL_NAME_TORCH, device=device)
print(f"PyTorch model loaded on: {device}")
# Load MLX model
print(f"Loading MLX model: {MODEL_NAME_MLX}")
model_mlx, tokenizer_mlx = load(MODEL_NAME_MLX)
print("MLX model loaded.")
# --- Warm-up ---
print("\n--- Performing Warm-up Runs ---")
for _ in range(WARMUP_RUNS):
benchmark_torch(model_torch, DUMMY_SENTENCES[:1])
benchmark_mlx(model_mlx, tokenizer_mlx, DUMMY_SENTENCES[:1])
print("Warm-up complete.")
# --- Benchmarking ---
print("\n--- Starting Benchmark ---")
results_torch = []
results_mlx = []
for batch_size in BATCH_SIZES:
print(f"Benchmarking batch size: {batch_size}")
sentences_batch = DUMMY_SENTENCES[:batch_size]
# Benchmark PyTorch
torch_times = [benchmark_torch(model_torch, sentences_batch) for _ in range(NUM_RUNS)]
results_torch.append(np.mean(torch_times))
# Benchmark MLX
mlx_times = [
benchmark_mlx(model_mlx, tokenizer_mlx, sentences_batch) for _ in range(NUM_RUNS)
]
results_mlx.append(np.mean(mlx_times))
print("\n--- Benchmark Results (Average time per batch in ms) ---")
print(f"Batch Sizes: {BATCH_SIZES}")
print(f"PyTorch (mps): {[f'{t:.2f}' for t in results_torch]}")
print(f"MLX: {[f'{t:.2f}' for t in results_mlx]}")
# --- Plotting ---
print("\n--- Generating Plot ---")
plt.figure(figsize=(10, 6))
plt.plot(
BATCH_SIZES,
results_torch,
marker="o",
linestyle="-",
label=f"PyTorch ({device})",
)
plt.plot(BATCH_SIZES, results_mlx, marker="s", linestyle="-", label="MLX")
plt.title(f"Embedding Performance: MLX vs PyTorch\nModel: {MODEL_NAME_TORCH}")
plt.xlabel("Batch Size")
plt.ylabel("Average Time per Batch (ms)")
plt.xticks(BATCH_SIZES)
plt.grid(True)
plt.legend()
# Save the plot
output_filename = "embedding_benchmark.png"
plt.savefig(output_filename)
print(f"Plot saved to {output_filename}")
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,326 @@
#!/usr/bin/env python3
"""
Memory comparison between Faiss HNSW and LEANN HNSW backend
"""
import gc
import logging
import os
import subprocess
import sys
import time
from pathlib import Path
import psutil
from llama_index.core.node_parser import SentenceSplitter
# Setup logging
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logger = logging.getLogger(__name__)
def get_memory_usage():
"""Get current memory usage in MB"""
process = psutil.Process()
return process.memory_info().rss / 1024 / 1024
def print_memory_stats(stage: str, start_mem: float):
"""Print memory statistics"""
current_mem = get_memory_usage()
diff = current_mem - start_mem
print(f"[{stage}] Memory: {current_mem:.1f} MB (+{diff:.1f} MB)")
return current_mem
class MemoryTracker:
def __init__(self, name: str):
self.name = name
self.start_mem = get_memory_usage()
self.stages = []
def checkpoint(self, stage: str):
current_mem = print_memory_stats(f"{self.name} - {stage}", self.start_mem)
self.stages.append((stage, current_mem))
return current_mem
def summary(self):
print(f"\n=== {self.name} Memory Summary ===")
for stage, mem in self.stages:
print(f"{stage}: {mem:.1f} MB")
peak_mem = max(mem for _, mem in self.stages)
print(f"Peak Memory: {peak_mem:.1f} MB")
print(f"Total Memory Increase: {peak_mem - self.start_mem:.1f} MB")
return peak_mem
def test_faiss_hnsw():
"""Test Faiss HNSW Vector Store in subprocess"""
print("\n" + "=" * 50)
print("TESTING FAISS HNSW VECTOR STORE")
print("=" * 50)
try:
result = subprocess.run(
[sys.executable, "benchmarks/faiss_only.py"],
capture_output=True,
text=True,
timeout=300,
)
print(result.stdout)
if result.stderr:
print("Stderr:", result.stderr)
if result.returncode != 0:
return {
"peak_memory": float("inf"),
"error": f"Process failed with code {result.returncode}",
}
# Parse peak memory from output
lines = result.stdout.split("\n")
peak_memory = 0.0
for line in lines:
if "Peak Memory:" in line:
peak_memory = float(line.split("Peak Memory:")[1].split("MB")[0].strip())
return {"peak_memory": peak_memory}
except Exception as e:
return {
"peak_memory": float("inf"),
"error": str(e),
}
def test_leann_hnsw():
"""Test LEANN HNSW Search Memory (load existing index)"""
print("\n" + "=" * 50)
print("TESTING LEANN HNSW SEARCH MEMORY")
print("=" * 50)
tracker = MemoryTracker("LEANN HNSW Search")
# Import and setup
tracker.checkpoint("Initial")
from leann.api import LeannSearcher
tracker.checkpoint("After imports")
from leann.api import LeannBuilder
from llama_index.core import SimpleDirectoryReader
# Load and parse documents
documents = SimpleDirectoryReader(
"data",
recursive=True,
encoding="utf-8",
required_exts=[".pdf", ".txt", ".md"],
).load_data()
tracker.checkpoint("After document loading")
# Parse into chunks
node_parser = SentenceSplitter(
chunk_size=256, chunk_overlap=20, separator=" ", paragraph_separator="\n\n"
)
all_texts = []
for doc in documents:
nodes = node_parser.get_nodes_from_documents([doc])
for node in nodes:
all_texts.append(node.get_content())
print(f"Total number of chunks: {len(all_texts)}")
tracker.checkpoint("After text chunking")
# Build LEANN index
INDEX_DIR = Path("./test_leann_comparison")
INDEX_PATH = str(INDEX_DIR / "comparison.leann")
# Check if index already exists
if os.path.exists(INDEX_PATH + ".meta.json"):
print("Loading existing LEANN HNSW index...")
tracker.checkpoint("After loading existing index")
else:
print("Building new LEANN HNSW index...")
# Clean up previous index
import shutil
if INDEX_DIR.exists():
shutil.rmtree(INDEX_DIR)
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="facebook/contriever",
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1,
)
tracker.checkpoint("After builder setup")
print("Building LEANN HNSW index...")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(INDEX_PATH)
del builder
gc.collect()
tracker.checkpoint("After index building")
# Find existing LEANN index
index_paths = [
"./test_leann_comparison/comparison.leann",
]
index_path = None
for path in index_paths:
if os.path.exists(path + ".meta.json"):
index_path = path
break
if not index_path:
print("❌ LEANN index not found. Please build it first")
return {"peak_memory": float("inf"), "error": "Index not found"}
# Measure runtime memory overhead
print("\nMeasuring runtime memory overhead...")
runtime_start_mem = get_memory_usage()
print(f"Before load memory: {runtime_start_mem:.1f} MB")
tracker.checkpoint("Before load memory")
# Load searcher
searcher = LeannSearcher(index_path)
tracker.checkpoint("After searcher loading")
print("Running search queries...")
queries = [
"什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发",
"What is LEANN and how does it work?",
"华为诺亚方舟实验室的主要研究内容",
]
for i, query in enumerate(queries):
start_time = time.time()
# Use same parameters as Faiss: top_k=20, ef=120 (complexity parameter)
_ = searcher.search(query, top_k=20, ef=120)
query_time = time.time() - start_time
print(f"Query {i + 1} time: {query_time:.3f}s")
tracker.checkpoint(f"After query {i + 1}")
runtime_end_mem = get_memory_usage()
runtime_overhead = runtime_end_mem - runtime_start_mem
peak_memory = tracker.summary()
print(f"Runtime Memory Overhead: {runtime_overhead:.1f} MB")
# Get storage size before cleanup
storage_size = 0
INDEX_DIR = Path(index_path).parent
if INDEX_DIR.exists():
total_size = 0
for dirpath, _, filenames in os.walk(str(INDEX_DIR)):
for filename in filenames:
# Only count actual index files, skip text data and backups
if filename.endswith((".old", ".tmp", ".bak", ".jsonl", ".json")):
continue
# Count .index, .idx, .map files (actual index structures)
if filename.endswith((".index", ".idx", ".map")):
filepath = os.path.join(dirpath, filename)
total_size += os.path.getsize(filepath)
storage_size = total_size / (1024 * 1024) # Convert to MB
# Clean up
del searcher
gc.collect()
return {
"peak_memory": peak_memory,
"storage_size": storage_size,
}
def main():
"""Run comparison tests"""
print("Storage + Search Memory Comparison: Faiss HNSW vs LEANN HNSW")
print("=" * 60)
# Test Faiss HNSW
faiss_results = test_faiss_hnsw()
# Force garbage collection
gc.collect()
time.sleep(2)
# Test LEANN HNSW
leann_results = test_leann_hnsw()
# Final comparison
print("\n" + "=" * 60)
print("STORAGE + SEARCH MEMORY COMPARISON")
print("=" * 60)
# Get storage sizes
faiss_storage_size = 0
leann_storage_size = leann_results.get("storage_size", 0)
# Get Faiss storage size using Python
if os.path.exists("./storage_faiss"):
total_size = 0
for dirpath, _, filenames in os.walk("./storage_faiss"):
for filename in filenames:
filepath = os.path.join(dirpath, filename)
total_size += os.path.getsize(filepath)
faiss_storage_size = total_size / (1024 * 1024) # Convert to MB
print("Faiss HNSW:")
if "error" in faiss_results:
print(f" ❌ Failed: {faiss_results['error']}")
else:
print(f" Search Memory: {faiss_results['peak_memory']:.1f} MB")
print(f" Storage Size: {faiss_storage_size:.1f} MB")
print("\nLEANN HNSW:")
if "error" in leann_results:
print(f" ❌ Failed: {leann_results['error']}")
else:
print(f" Search Memory: {leann_results['peak_memory']:.1f} MB")
print(f" Storage Size: {leann_storage_size:.1f} MB")
# Calculate improvements only if both tests succeeded
if "error" not in faiss_results and "error" not in leann_results:
memory_ratio = faiss_results["peak_memory"] / leann_results["peak_memory"]
print("\nLEANN vs Faiss Performance:")
memory_saving = faiss_results["peak_memory"] - leann_results["peak_memory"]
print(f" Search Memory: {memory_ratio:.1f}x less ({memory_saving:.1f} MB saved)")
# Storage comparison
if leann_storage_size > faiss_storage_size:
storage_ratio = leann_storage_size / faiss_storage_size
print(f" Storage Size: {storage_ratio:.1f}x larger (LEANN uses more storage)")
elif faiss_storage_size > leann_storage_size:
storage_ratio = faiss_storage_size / leann_storage_size
print(f" Storage Size: {storage_ratio:.1f}x smaller (LEANN uses less storage)")
else:
print(" Storage Size: similar")
else:
if "error" not in leann_results:
print("\n✅ LEANN HNSW completed successfully!")
print(f"📊 Search Memory: {leann_results['peak_memory']:.1f} MB")
print(f"📊 Storage Size: {leann_storage_size:.1f} MB")
if "error" not in faiss_results:
print("\n✅ Faiss HNSW completed successfully!")
print(f"📊 Search Memory: {faiss_results['peak_memory']:.1f} MB")
print(f"📊 Storage Size: {faiss_storage_size:.1f} MB")
if __name__ == "__main__":
main()

151
benchmarks/faiss_only.py Normal file
View File

@@ -0,0 +1,151 @@
#!/usr/bin/env python3
"""Test only Faiss HNSW"""
import os
import sys
import time
import psutil
def get_memory_usage():
process = psutil.Process()
return process.memory_info().rss / 1024 / 1024
class MemoryTracker:
def __init__(self, name: str):
self.name = name
self.start_mem = get_memory_usage()
self.stages = []
def checkpoint(self, stage: str):
current_mem = get_memory_usage()
diff = current_mem - self.start_mem
print(f"[{self.name} - {stage}] Memory: {current_mem:.1f} MB (+{diff:.1f} MB)")
self.stages.append((stage, current_mem))
return current_mem
def summary(self):
peak_mem = max(mem for _, mem in self.stages)
print(f"Peak Memory: {peak_mem:.1f} MB")
return peak_mem
def main():
try:
import faiss
except ImportError:
print("Faiss is not installed.")
print(
"Please install it with `uv pip install faiss-cpu` and you can then run this script again"
)
sys.exit(1)
from llama_index.core import (
Settings,
SimpleDirectoryReader,
StorageContext,
VectorStoreIndex,
)
from llama_index.core.node_parser import SentenceSplitter
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.vector_stores.faiss import FaissVectorStore
tracker = MemoryTracker("Faiss HNSW")
tracker.checkpoint("Initial")
embed_model = HuggingFaceEmbedding(model_name="facebook/contriever")
Settings.embed_model = embed_model
tracker.checkpoint("After embedding model setup")
d = 768
faiss_index = faiss.IndexHNSWFlat(d, 32)
faiss_index.hnsw.efConstruction = 64
tracker.checkpoint("After Faiss index creation")
documents = SimpleDirectoryReader(
"data",
recursive=True,
encoding="utf-8",
required_exts=[".pdf", ".txt", ".md"],
).load_data()
tracker.checkpoint("After document loading")
# Parse into chunks using the same splitter as LEANN
node_parser = SentenceSplitter(
chunk_size=256, chunk_overlap=20, separator=" ", paragraph_separator="\n\n"
)
tracker.checkpoint("After text splitter setup")
# Check if index already exists and try to load it
index_loaded = False
if os.path.exists("./storage_faiss"):
print("Loading existing Faiss HNSW index...")
try:
# Use the correct Faiss loading pattern from the example
vector_store = FaissVectorStore.from_persist_dir("./storage_faiss")
storage_context = StorageContext.from_defaults(
vector_store=vector_store, persist_dir="./storage_faiss"
)
from llama_index.core import load_index_from_storage
index = load_index_from_storage(storage_context=storage_context)
print("Index loaded from ./storage_faiss")
tracker.checkpoint("After loading existing index")
index_loaded = True
except Exception as e:
print(f"Failed to load existing index: {e}")
print("Cleaning up corrupted index and building new one...")
# Clean up corrupted index
import shutil
if os.path.exists("./storage_faiss"):
shutil.rmtree("./storage_faiss")
if not index_loaded:
print("Building new Faiss HNSW index...")
# Use the correct Faiss building pattern from the example
vector_store = FaissVectorStore(faiss_index=faiss_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context, transformations=[node_parser]
)
tracker.checkpoint("After index building")
# Save index to disk using the correct pattern
index.storage_context.persist(persist_dir="./storage_faiss")
tracker.checkpoint("After index saving")
# Measure runtime memory overhead
print("\nMeasuring runtime memory overhead...")
runtime_start_mem = get_memory_usage()
print(f"Before load memory: {runtime_start_mem:.1f} MB")
tracker.checkpoint("Before load memory")
query_engine = index.as_query_engine(similarity_top_k=20)
queries = [
"什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发",
"What is LEANN and how does it work?",
"华为诺亚方舟实验室的主要研究内容",
]
for i, query in enumerate(queries):
start_time = time.time()
_ = query_engine.query(query)
query_time = time.time() - start_time
print(f"Query {i + 1} time: {query_time:.3f}s")
tracker.checkpoint(f"After query {i + 1}")
runtime_end_mem = get_memory_usage()
runtime_overhead = runtime_end_mem - runtime_start_mem
peak_memory = tracker.summary()
print(f"Peak Memory: {peak_memory:.1f} MB")
print(f"Runtime Memory Overhead: {runtime_overhead:.1f} MB")
if __name__ == "__main__":
main()

View File

@@ -2,21 +2,20 @@
import argparse import argparse
import time import time
from contextlib import contextmanager
from dataclasses import dataclass from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple
import numpy as np import numpy as np
import torch import torch
from torch import nn from torch import nn
from torchao import quantize_
from transformers import AutoModel, BitsAndBytesConfig
from tqdm import tqdm from tqdm import tqdm
from contextlib import contextmanager from transformers import AutoModel, BitsAndBytesConfig
@dataclass @dataclass
class BenchmarkConfig: class BenchmarkConfig:
model_path: str model_path: str
batch_sizes: List[int] batch_sizes: list[int]
seq_length: int seq_length: int
num_runs: int num_runs: int
use_fp16: bool = True use_fp16: bool = True
@@ -27,173 +26,223 @@ class BenchmarkConfig:
use_linear8bitlt: bool = False use_linear8bitlt: bool = False
class CUDAGraphContainer: class GraphContainer:
"""Container for managing CUDA graphs for different batch sizes.""" """Container for managing graphs for different batch sizes (CUDA graphs on NVIDIA, regular on others)."""
def __init__(self, model: nn.Module, seq_length: int): def __init__(self, model: nn.Module, seq_length: int):
self.model = model self.model = model
self.seq_length = seq_length self.seq_length = seq_length
self.graphs: Dict[int, CUDAGraphWrapper] = {} self.graphs: dict[int, GraphWrapper] = {}
def get_or_create(self, batch_size: int) -> 'CUDAGraphWrapper': def get_or_create(self, batch_size: int) -> "GraphWrapper":
if batch_size not in self.graphs: if batch_size not in self.graphs:
self.graphs[batch_size] = CUDAGraphWrapper( self.graphs[batch_size] = GraphWrapper(self.model, batch_size, self.seq_length)
self.model, batch_size, self.seq_length
)
return self.graphs[batch_size] return self.graphs[batch_size]
class CUDAGraphWrapper: class GraphWrapper:
"""Wrapper for CUDA graph capture and replay.""" """Wrapper for graph capture and replay (CUDA graphs on NVIDIA, regular on others)."""
def __init__(self, model: nn.Module, batch_size: int, seq_length: int): def __init__(self, model: nn.Module, batch_size: int, seq_length: int):
self.model = model self.model = model
self.device = self._get_device()
self.static_input = self._create_random_batch(batch_size, seq_length) self.static_input = self._create_random_batch(batch_size, seq_length)
self.static_attention_mask = torch.ones_like(self.static_input) self.static_attention_mask = torch.ones_like(self.static_input)
# Warm up # Warm up
self._warmup() self._warmup()
# Capture graph # Only use CUDA graphs on NVIDIA GPUs
self.graph = torch.cuda.CUDAGraph() if torch.cuda.is_available() and hasattr(torch.cuda, "CUDAGraph"):
with torch.cuda.graph(self.graph): # Capture graph
self.static_output = self.model( self.graph = torch.cuda.CUDAGraph()
input_ids=self.static_input, with torch.cuda.graph(self.graph):
attention_mask=self.static_attention_mask self.static_output = self.model(
) input_ids=self.static_input,
attention_mask=self.static_attention_mask,
)
self.use_cuda_graph = True
else:
# For MPS or CPU, just store the model
self.use_cuda_graph = False
self.static_output = None
def _get_device(self) -> str:
if torch.cuda.is_available():
return "cuda"
elif torch.backends.mps.is_available():
return "mps"
else:
return "cpu"
def _create_random_batch(self, batch_size: int, seq_length: int) -> torch.Tensor: def _create_random_batch(self, batch_size: int, seq_length: int) -> torch.Tensor:
return torch.randint( return torch.randint(
0, 1000, (batch_size, seq_length), 0, 1000, (batch_size, seq_length), device=self.device, dtype=torch.long
device="cuda",
dtype=torch.long
) )
def _warmup(self, num_warmup: int = 3): def _warmup(self, num_warmup: int = 3):
with torch.no_grad(): with torch.no_grad():
for _ in range(num_warmup): for _ in range(num_warmup):
self.model( self.model(
input_ids=self.static_input, input_ids=self.static_input,
attention_mask=self.static_attention_mask attention_mask=self.static_attention_mask,
) )
def __call__(self, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor: def __call__(self, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
self.static_input.copy_(input_ids) if self.use_cuda_graph:
self.static_attention_mask.copy_(attention_mask) self.static_input.copy_(input_ids)
self.graph.replay() self.static_attention_mask.copy_(attention_mask)
return self.static_output self.graph.replay()
return self.static_output
else:
# For MPS/CPU, just run normally
return self.model(input_ids=input_ids, attention_mask=attention_mask)
class ModelOptimizer: class ModelOptimizer:
"""Applies various optimizations to the model.""" """Applies various optimizations to the model."""
@staticmethod @staticmethod
def optimize(model: nn.Module, config: BenchmarkConfig) -> nn.Module: def optimize(model: nn.Module, config: BenchmarkConfig) -> nn.Module:
print("\nApplying model optimizations:") print("\nApplying model optimizations:")
if model is None: if model is None:
raise ValueError("Cannot optimize None model") raise ValueError("Cannot optimize None model")
# Move to GPU # Move to GPU
model = model.cuda() if torch.cuda.is_available():
print("- Model moved to GPU") model = model.cuda()
device = "cuda"
elif torch.backends.mps.is_available():
model = model.to("mps")
device = "mps"
else:
model = model.cpu()
device = "cpu"
print(f"- Model moved to {device}")
# FP16 # FP16
if config.use_fp16 and not config.use_int4: if config.use_fp16 and not config.use_int4:
model = model.half() model = model.half()
# use torch compile # use torch compile
model = torch.compile(model) model = torch.compile(model)
print("- Using FP16 precision") print("- Using FP16 precision")
# Check if using SDPA # Check if using SDPA (only on CUDA)
if torch.version.cuda and float(torch.version.cuda[:3]) >= 11.6: if (
if hasattr(torch.nn.functional, 'scaled_dot_product_attention'): torch.cuda.is_available()
and torch.version.cuda
and float(torch.version.cuda[:3]) >= 11.6
):
if hasattr(torch.nn.functional, "scaled_dot_product_attention"):
print("- Using PyTorch SDPA (scaled_dot_product_attention)") print("- Using PyTorch SDPA (scaled_dot_product_attention)")
else: else:
print("- PyTorch SDPA not available") print("- PyTorch SDPA not available")
# Flash Attention # Flash Attention (only on CUDA)
if config.use_flash_attention: if config.use_flash_attention and torch.cuda.is_available():
try: try:
from flash_attn.flash_attention import FlashAttention from flash_attn.flash_attention import FlashAttention # noqa: F401
print("- Flash Attention 2 available") print("- Flash Attention 2 available")
if hasattr(model.config, "attention_mode"): if hasattr(model.config, "attention_mode"):
model.config.attention_mode = "flash_attention_2" model.config.attention_mode = "flash_attention_2"
print(" - Enabled Flash Attention 2 mode") print(" - Enabled Flash Attention 2 mode")
except ImportError: except ImportError:
print("- Flash Attention not available") print("- Flash Attention not available")
# Memory efficient attention # Memory efficient attention (only on CUDA)
try: if torch.cuda.is_available():
from xformers.ops import memory_efficient_attention try:
if hasattr(model, 'enable_xformers_memory_efficient_attention'): from xformers.ops import memory_efficient_attention # noqa: F401
model.enable_xformers_memory_efficient_attention()
print("- Enabled xformers memory efficient attention") if hasattr(model, "enable_xformers_memory_efficient_attention"):
else: model.enable_xformers_memory_efficient_attention()
print("- Model doesn't support xformers") print("- Enabled xformers memory efficient attention")
except (ImportError, AttributeError): else:
print("- Xformers not available") print("- Model doesn't support xformers")
except (ImportError, AttributeError):
print("- Xformers not available")
model.eval() model.eval()
print("- Model set to eval mode") print("- Model set to eval mode")
return model return model
class Timer: class Timer:
"""Handles accurate GPU timing using CUDA events.""" """Handles accurate GPU timing using GPU events or CPU timing."""
def __init__(self): def __init__(self):
self.start_event = torch.cuda.Event(enable_timing=True) if torch.cuda.is_available():
self.end_event = torch.cuda.Event(enable_timing=True) self.start_event = torch.cuda.Event(enable_timing=True)
self.end_event = torch.cuda.Event(enable_timing=True)
self.use_gpu_timing = True
elif torch.backends.mps.is_available():
# MPS doesn't have events, use CPU timing
self.use_gpu_timing = False
else:
# CPU timing
self.use_gpu_timing = False
@contextmanager @contextmanager
def timing(self): def timing(self):
self.start_event.record() if self.use_gpu_timing:
yield self.start_event.record()
self.end_event.record() yield
self.end_event.synchronize() self.end_event.record()
self.end_event.synchronize()
else:
# Use CPU timing for MPS/CPU
start_time = time.time()
yield
self.cpu_elapsed = time.time() - start_time
def elapsed_time(self) -> float: def elapsed_time(self) -> float:
return self.start_event.elapsed_time(self.end_event) / 1000 # ms to seconds if self.use_gpu_timing:
return self.start_event.elapsed_time(self.end_event) / 1000 # ms to seconds
else:
return self.cpu_elapsed
class Benchmark: class Benchmark:
"""Main benchmark runner.""" """Main benchmark runner."""
def __init__(self, config: BenchmarkConfig): def __init__(self, config: BenchmarkConfig):
self.config = config self.config = config
try: try:
self.model = self._load_model() self.model = self._load_model()
if self.model is None: if self.model is None:
raise ValueError("Model initialization failed - model is None") raise ValueError("Model initialization failed - model is None")
self.cuda_graphs = ( # Only use CUDA graphs on NVIDIA GPUs
CUDAGraphContainer(self.model, config.seq_length) if config.use_cuda_graphs and torch.cuda.is_available():
if config.use_cuda_graphs self.graphs = GraphContainer(self.model, config.seq_length)
else None else:
) self.graphs = None
self.timer = Timer() self.timer = Timer()
except Exception as e: except Exception as e:
print(f"ERROR in benchmark initialization: {str(e)}") print(f"ERROR in benchmark initialization: {e!s}")
raise raise
def _load_model(self) -> nn.Module: def _load_model(self) -> nn.Module:
print(f"Loading model from {self.config.model_path}...") print(f"Loading model from {self.config.model_path}...")
try: try:
# Int4 quantization using HuggingFace integration # Int4 quantization using HuggingFace integration
if self.config.use_int4: if self.config.use_int4:
import bitsandbytes as bnb import bitsandbytes as bnb
print(f"- bitsandbytes version: {bnb.__version__}") print(f"- bitsandbytes version: {bnb.__version__}")
# 检查是否使用自定义的8bit量化 # Check if using custom 8bit quantization
if hasattr(self.config, 'use_linear8bitlt') and self.config.use_linear8bitlt: if hasattr(self.config, "use_linear8bitlt") and self.config.use_linear8bitlt:
print("- Using custom Linear8bitLt replacement for all linear layers") print("- Using custom Linear8bitLt replacement for all linear layers")
# 加载原始模型(不使用量化配置) # Load original model (without quantization config)
import bitsandbytes as bnb import bitsandbytes as bnb
import torch import torch
# set default to half # set default to half
torch.set_default_dtype(torch.float16) torch.set_default_dtype(torch.float16)
compute_dtype = torch.float16 if self.config.use_fp16 else torch.float32 compute_dtype = torch.float16 if self.config.use_fp16 else torch.float32
@@ -201,276 +250,281 @@ class Benchmark:
self.config.model_path, self.config.model_path,
torch_dtype=compute_dtype, torch_dtype=compute_dtype,
) )
# 定义替换函数 # Define replacement function
def replace_linear_with_linear8bitlt(model): def replace_linear_with_linear8bitlt(model):
"""递归地将模型中的所有nn.Linear层替换为Linear8bitLt""" """Recursively replace all nn.Linear layers with Linear8bitLt"""
for name, module in list(model.named_children()): for name, module in list(model.named_children()):
if isinstance(module, nn.Linear): if isinstance(module, nn.Linear):
# 获取原始线性层的参数 # Get original linear layer parameters
in_features = module.in_features in_features = module.in_features
out_features = module.out_features out_features = module.out_features
bias = module.bias is not None bias = module.bias is not None
# 创建8bit线性层 # Create 8bit linear layer
# print size # print size
print(f"in_features: {in_features}, out_features: {out_features}") print(f"in_features: {in_features}, out_features: {out_features}")
new_module = bnb.nn.Linear8bitLt( new_module = bnb.nn.Linear8bitLt(
in_features, in_features,
out_features, out_features,
bias=bias, bias=bias,
has_fp16_weights=False has_fp16_weights=False,
) )
# 复制权重和偏置 # Copy weights and bias
new_module.weight.data = module.weight.data new_module.weight.data = module.weight.data
if bias: if bias:
new_module.bias.data = module.bias.data new_module.bias.data = module.bias.data
# 替换模块 # Replace module
setattr(model, name, new_module) setattr(model, name, new_module)
else: else:
# 递归处理子模块 # Process child modules recursively
replace_linear_with_linear8bitlt(module) replace_linear_with_linear8bitlt(module)
return model return model
# 替换所有线性层 # Replace all linear layers
model = replace_linear_with_linear8bitlt(model) model = replace_linear_with_linear8bitlt(model)
# add torch compile # add torch compile
model = torch.compile(model) model = torch.compile(model)
# 将模型移到GPU量化发生在这里 # Move model to GPU (quantization happens here)
device = "cuda" if torch.cuda.is_available() else "cpu" device = (
"cuda"
if torch.cuda.is_available()
else "mps"
if torch.backends.mps.is_available()
else "cpu"
)
model = model.to(device) model = model.to(device)
print("- All linear layers replaced with Linear8bitLt") print("- All linear layers replaced with Linear8bitLt")
else: else:
# 使用原来的Int4量化方法 # Use original Int4 quantization method
print("- Using bitsandbytes for Int4 quantization") print("- Using bitsandbytes for Int4 quantization")
# Create quantization config # Create quantization config
compute_dtype = torch.float16 if self.config.use_fp16 else torch.float32 compute_dtype = torch.float16 if self.config.use_fp16 else torch.float32
quantization_config = BitsAndBytesConfig( quantization_config = BitsAndBytesConfig(
load_in_4bit=True, load_in_4bit=True,
bnb_4bit_compute_dtype=compute_dtype, bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=True, bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4" bnb_4bit_quant_type="nf4",
) )
print("- Quantization config:", quantization_config) print("- Quantization config:", quantization_config)
# Load model directly with quantization config # Load model directly with quantization config
model = AutoModel.from_pretrained( model = AutoModel.from_pretrained(
self.config.model_path, self.config.model_path,
quantization_config=quantization_config, quantization_config=quantization_config,
torch_dtype=compute_dtype, torch_dtype=compute_dtype,
device_map="auto" # Let HF decide on device mapping device_map="auto", # Let HF decide on device mapping
) )
# Check if model loaded successfully # Check if model loaded successfully
if model is None: if model is None:
raise ValueError("Model loading returned None") raise ValueError("Model loading returned None")
print(f"- Model type: {type(model)}") print(f"- Model type: {type(model)}")
# Apply optimizations directly here # Apply optimizations directly here
print("\nApplying model optimizations:") print("\nApplying model optimizations:")
if hasattr(self.config, 'use_linear8bitlt') and self.config.use_linear8bitlt: if hasattr(self.config, "use_linear8bitlt") and self.config.use_linear8bitlt:
print("- Model moved to GPU with Linear8bitLt quantization") print("- Model moved to GPU with Linear8bitLt quantization")
else: else:
# Skip moving to GPU since device_map="auto" already did that # Skip moving to GPU since device_map="auto" already did that
print("- Model already on GPU due to device_map='auto'") print("- Model already on GPU due to device_map='auto'")
# Skip FP16 conversion since we specified compute_dtype # Skip FP16 conversion since we specified compute_dtype
print(f"- Using {compute_dtype} for compute dtype") print(f"- Using {compute_dtype} for compute dtype")
# Check CUDA and SDPA # Check CUDA and SDPA
if torch.version.cuda and float(torch.version.cuda[:3]) >= 11.6: if (
if hasattr(torch.nn.functional, 'scaled_dot_product_attention'): torch.cuda.is_available()
and torch.version.cuda
and float(torch.version.cuda[:3]) >= 11.6
):
if hasattr(torch.nn.functional, "scaled_dot_product_attention"):
print("- Using PyTorch SDPA (scaled_dot_product_attention)") print("- Using PyTorch SDPA (scaled_dot_product_attention)")
else: else:
print("- PyTorch SDPA not available") print("- PyTorch SDPA not available")
# Try xformers if available # Try xformers if available (only on CUDA)
try: if torch.cuda.is_available():
from xformers.ops import memory_efficient_attention try:
if hasattr(model, 'enable_xformers_memory_efficient_attention'): if hasattr(model, "enable_xformers_memory_efficient_attention"):
model.enable_xformers_memory_efficient_attention() model.enable_xformers_memory_efficient_attention()
print("- Enabled xformers memory efficient attention") print("- Enabled xformers memory efficient attention")
else: else:
print("- Model doesn't support xformers") print("- Model doesn't support xformers")
except (ImportError, AttributeError): except (ImportError, AttributeError):
print("- Xformers not available") print("- Xformers not available")
# Set to eval mode # Set to eval mode
model.eval() model.eval()
print("- Model set to eval mode") print("- Model set to eval mode")
# Int8 quantization using HuggingFace integration # Int8 quantization using HuggingFace integration
# Int8 quantization using TorchAO
elif self.config.use_int8: elif self.config.use_int8:
print("- Using TorchAO for Int8 dynamic activation and Int8 weight quantization") print("- Using INT8 quantization")
# For now, just use standard loading with INT8 config
# Import the quantize_ function and the quantization config compute_dtype = torch.float16 if self.config.use_fp16 else torch.float32
from torchao.quantization import quantize_, int8_dynamic_activation_int8_weight quantization_config = BitsAndBytesConfig(
print("- Successfully imported TorchAO") load_in_8bit=True,
llm_int8_threshold=6.0,
# Load model normally first llm_int8_has_fp16_weight=False,
# set default to half )
import torch
torch.set_default_dtype(torch.bfloat16)
model = AutoModel.from_pretrained( model = AutoModel.from_pretrained(
self.config.model_path, self.config.model_path,
device_map="auto" quantization_config=quantization_config,
torch_dtype=compute_dtype,
device_map="auto",
) )
print("- Model loaded in full precision") if model is None:
raise ValueError("Model loading returned None")
print(f"- Model type: {type(model)}") print(f"- Model type: {type(model)}")
# Apply quantization - call the function to get the config, then apply it
# quantize_(model, int8_dynamic_activation_int8_weight())
# from torchao.quantization import quantize_, Int8DynamicActivationInt8WeightConfig,int8_dynamic_activation_int8_semi_sparse_weight,int4_weight_only,Int8DynActInt4WeightGPTQQuantizer,int8_dynamic_activation_int4_weight,Int8DynamicActivationInt4WeightConfig,Int4DynamicActivationInt4WeightConfig
from torchao.quantization import quantize_, Int8DynamicActivationInt8WeightConfig
quantize_(model, Int8DynamicActivationInt8WeightConfig())
print("- Model successfully quantized with int8 weights and int8 activations")
# add torch compile
model = torch.compile(model)
# For older PyTorch versions that have issues with tensor subclasses
from torchao.utils import unwrap_tensor_subclass
import torch
if hasattr(torch, '_version') and not torch.version >= "2.5.0":
print("- Unwrapping tensor subclasses for compatibility with older PyTorch")
unwrap_tensor_subclass(model)
# Apply optimizations
if torch.version.cuda and float(torch.version.cuda[:3]) >= 11.6:
if hasattr(torch.nn.functional, 'scaled_dot_product_attention'):
print("- Using PyTorch SDPA (scaled_dot_product_attention)")
else:
print("- PyTorch SDPA not available")
# Set to eval mode
model.eval() model.eval()
print("- Model set to eval mode") print("- Model set to eval mode")
# For better performance with int8 dynamic quantization
torch._inductor.config.force_fuse_int_mm_with_mul = True
print("- Enabled fusion of int matmul with mul operations")
else: else:
# Standard loading for FP16/FP32 # Standard loading for FP16/FP32
model = AutoModel.from_pretrained(self.config.model_path) model = AutoModel.from_pretrained(self.config.model_path)
print("- Model loaded in standard precision") print("- Model loaded in standard precision")
print(f"- Model type: {type(model)}") print(f"- Model type: {type(model)}")
# Apply standard optimizations # Apply standard optimizations
# set default to half # set default to half
import torch import torch
torch.set_default_dtype(torch.bfloat16) torch.set_default_dtype(torch.bfloat16)
model = ModelOptimizer.optimize(model, self.config) model = ModelOptimizer.optimize(model, self.config)
model = model.half() model = model.half()
# add torch compile # add torch compile
model = torch.compile(model) model = torch.compile(model)
# Final check to ensure model is not None # Final check to ensure model is not None
if model is None: if model is None:
raise ValueError("Model is None after optimization") raise ValueError("Model is None after optimization")
print(f"- Final model type: {type(model)}") print(f"- Final model type: {type(model)}")
return model return model
except Exception as e: except Exception as e:
print(f"ERROR loading model: {str(e)}") print(f"ERROR loading model: {e!s}")
import traceback import traceback
traceback.print_exc() traceback.print_exc()
raise raise
def _create_random_batch(self, batch_size: int) -> torch.Tensor: def _create_random_batch(self, batch_size: int) -> torch.Tensor:
return torch.randint( device = (
0, 1000, "cuda"
(batch_size, self.config.seq_length), if torch.cuda.is_available()
device="cuda", else "mps"
dtype=torch.long if torch.backends.mps.is_available()
else "cpu"
) )
return torch.randint(
0,
1000,
(batch_size, self.config.seq_length),
device=device,
dtype=torch.long,
)
def _run_inference( def _run_inference(
self, self, input_ids: torch.Tensor, graph_wrapper: GraphWrapper | None = None
input_ids: torch.Tensor, ) -> tuple[float, torch.Tensor]:
cuda_graph_wrapper: Optional[CUDAGraphWrapper] = None
) -> Tuple[float, torch.Tensor]:
attention_mask = torch.ones_like(input_ids) attention_mask = torch.ones_like(input_ids)
with torch.no_grad(), self.timer.timing(): with torch.no_grad(), self.timer.timing():
if cuda_graph_wrapper is not None: if graph_wrapper is not None:
output = cuda_graph_wrapper(input_ids, attention_mask) output = graph_wrapper(input_ids, attention_mask)
else: else:
output = self.model(input_ids=input_ids, attention_mask=attention_mask) output = self.model(input_ids=input_ids, attention_mask=attention_mask)
return self.timer.elapsed_time(), output return self.timer.elapsed_time(), output
def run(self) -> Dict[int, Dict[str, float]]: def run(self) -> dict[int, dict[str, float]]:
results = {} results = {}
# Reset peak memory stats # Reset peak memory stats
torch.cuda.reset_peak_memory_stats() if torch.cuda.is_available():
torch.cuda.reset_peak_memory_stats()
elif torch.backends.mps.is_available():
# MPS doesn't have reset_peak_memory_stats, skip it
pass
else:
print("- No GPU memory stats available")
for batch_size in self.config.batch_sizes: for batch_size in self.config.batch_sizes:
print(f"\nTesting batch size: {batch_size}") print(f"\nTesting batch size: {batch_size}")
times = [] times = []
# Get or create CUDA graph for this batch size # Get or create graph for this batch size
cuda_graph_wrapper = ( graph_wrapper = (
self.cuda_graphs.get_or_create(batch_size) self.graphs.get_or_create(batch_size) if self.graphs is not None else None
if self.cuda_graphs is not None
else None
) )
# Pre-allocate input tensor # Pre-allocate input tensor
input_ids = self._create_random_batch(batch_size) input_ids = self._create_random_batch(batch_size)
print(f"Input shape: {input_ids.shape}") print(f"Input shape: {input_ids.shape}")
# Run benchmark # Run benchmark
for i in tqdm(range(self.config.num_runs), desc=f"Batch size {batch_size}"): for i in tqdm(range(self.config.num_runs), desc=f"Batch size {batch_size}"):
try: try:
elapsed_time, output = self._run_inference(input_ids, cuda_graph_wrapper) elapsed_time, output = self._run_inference(input_ids, graph_wrapper)
if i == 0: # Only print on first run if i == 0: # Only print on first run
print(f"Output shape: {output.last_hidden_state.shape}") print(f"Output shape: {output.last_hidden_state.shape}")
times.append(elapsed_time) times.append(elapsed_time)
except Exception as e: except Exception as e:
print(f"Error during inference: {e}") print(f"Error during inference: {e}")
break break
if not times: if not times:
print(f"No successful runs for batch size {batch_size}, skipping") print(f"No successful runs for batch size {batch_size}, skipping")
continue continue
# Calculate statistics # Calculate statistics
avg_time = np.mean(times) avg_time = np.mean(times)
std_time = np.std(times) std_time = np.std(times)
throughput = batch_size / avg_time throughput = batch_size / avg_time
results[batch_size] = { results[batch_size] = {
"avg_time": avg_time, "avg_time": avg_time,
"std_time": std_time, "std_time": std_time,
"throughput": throughput, "throughput": throughput,
} }
print(f"Avg Time: {avg_time:.4f}s ± {std_time:.4f}s") print(f"Avg Time: {avg_time:.4f}s ± {std_time:.4f}s")
print(f"Throughput: {throughput:.2f} sequences/second") print(f"Throughput: {throughput:.2f} sequences/second")
# Log memory usage # Log memory usage
peak_memory_gb = torch.cuda.max_memory_allocated() / (1024 ** 3) if torch.cuda.is_available():
print(f"\nPeak GPU memory usage: {peak_memory_gb:.2f} GB") peak_memory_gb = torch.cuda.max_memory_allocated() / (1024**3)
elif torch.backends.mps.is_available():
# MPS doesn't have max_memory_allocated, use 0
peak_memory_gb = 0.0
else:
peak_memory_gb = 0.0
print("- No GPU memory usage available")
if peak_memory_gb > 0:
print(f"\nPeak GPU memory usage: {peak_memory_gb:.2f} GB")
else:
print("\n- GPU memory usage not available")
# Add memory info to results # Add memory info to results
for batch_size in results: for batch_size in results:
results[batch_size]["peak_memory_gb"] = peak_memory_gb results[batch_size]["peak_memory_gb"] = peak_memory_gb
return results return results
@@ -485,7 +539,7 @@ def main():
parser.add_argument( parser.add_argument(
"--batch_sizes", "--batch_sizes",
type=str, type=str,
default="1,2,4,8,10,16,20,32,40,64,128,256,512,1024,2048,4096,8192", default="1,2,4,8,16,32",
help="Comma-separated list of batch sizes", help="Comma-separated list of batch sizes",
) )
parser.add_argument( parser.add_argument(
@@ -518,26 +572,26 @@ def main():
parser.add_argument( parser.add_argument(
"--use_cuda_graphs", "--use_cuda_graphs",
action="store_true", action="store_true",
help="Enable CUDA Graphs optimization", help="Enable CUDA Graphs optimization (only on NVIDIA GPUs)",
) )
parser.add_argument( parser.add_argument(
"--use_flash_attention", "--use_flash_attention",
action="store_true", action="store_true",
help="Enable Flash Attention 2 if available", help="Enable Flash Attention 2 if available (only on NVIDIA GPUs)",
) )
parser.add_argument( parser.add_argument(
"--use_linear8bitlt", "--use_linear8bitlt",
action="store_true", action="store_true",
help="Enable Linear8bitLt quantization for all linear layers", help="Enable Linear8bitLt quantization for all linear layers",
) )
args = parser.parse_args() args = parser.parse_args()
# Print arguments for debugging # Print arguments for debugging
print("\nCommand line arguments:") print("\nCommand line arguments:")
for arg, value in vars(args).items(): for arg, value in vars(args).items():
print(f"- {arg}: {value}") print(f"- {arg}: {value}")
config = BenchmarkConfig( config = BenchmarkConfig(
model_path=args.model_path, model_path=args.model_path,
batch_sizes=[int(bs) for bs in args.batch_sizes.split(",")], batch_sizes=[int(bs) for bs in args.batch_sizes.split(",")],
@@ -550,45 +604,56 @@ def main():
use_flash_attention=args.use_flash_attention, use_flash_attention=args.use_flash_attention,
use_linear8bitlt=args.use_linear8bitlt, use_linear8bitlt=args.use_linear8bitlt,
) )
# Print configuration for debugging # Print configuration for debugging
print("\nBenchmark configuration:") print("\nBenchmark configuration:")
for field, value in vars(config).items(): for field, value in vars(config).items():
print(f"- {field}: {value}") print(f"- {field}: {value}")
try: try:
benchmark = Benchmark(config) benchmark = Benchmark(config)
results = benchmark.run() results = benchmark.run()
# Save results to file # Save results to file
import json import json
import os import os
# Create results directory if it doesn't exist # Create results directory if it doesn't exist
os.makedirs("results", exist_ok=True) os.makedirs("results", exist_ok=True)
# Generate filename based on configuration # Generate filename based on configuration
precision_type = "int4" if config.use_int4 else "fp16" if config.use_fp16 else "fp32" precision_type = (
"int4"
if config.use_int4
else "int8"
if config.use_int8
else "fp16"
if config.use_fp16
else "fp32"
)
model_name = os.path.basename(config.model_path) model_name = os.path.basename(config.model_path)
output_file = f"results/benchmark_{model_name}_{precision_type}.json" output_file = f"results/benchmark_{model_name}_{precision_type}.json"
# Save results # Save results
with open(output_file, "w") as f: with open(output_file, "w") as f:
json.dump( json.dump(
{ {
"config": {k: str(v) if isinstance(v, list) else v for k, v in vars(config).items()}, "config": {
"results": {str(k): v for k, v in results.items()} k: str(v) if isinstance(v, list) else v for k, v in vars(config).items()
}, },
f, "results": {str(k): v for k, v in results.items()},
indent=2 },
f,
indent=2,
) )
print(f"Results saved to {output_file}") print(f"Results saved to {output_file}")
except Exception as e: except Exception as e:
print(f"Benchmark failed: {e}") print(f"Benchmark failed: {e}")
import traceback import traceback
traceback.print_exc() traceback.print_exc()
if __name__ == "__main__": if __name__ == "__main__":
main() main()

View File

@@ -0,0 +1,359 @@
#!/usr/bin/env python3
"""
This script runs a recall evaluation on a given LEANN index.
It correctly compares results by fetching the text content for both the new search
results and the golden standard results, making the comparison robust to ID changes.
"""
import argparse
import json
import sys
import time
from pathlib import Path
import numpy as np
from leann.api import LeannBuilder, LeannSearcher
def download_data_if_needed(data_root: Path, download_embeddings: bool = False):
"""Checks if the data directory exists, and if not, downloads it from HF Hub."""
if not data_root.exists():
print(f"Data directory '{data_root}' not found.")
print("Downloading evaluation data from Hugging Face Hub... (this may take a moment)")
try:
from huggingface_hub import snapshot_download
if download_embeddings:
# Download everything including embeddings (large files)
snapshot_download(
repo_id="LEANN-RAG/leann-rag-evaluation-data",
repo_type="dataset",
local_dir=data_root,
local_dir_use_symlinks=False,
)
print("Data download complete (including embeddings)!")
else:
# Download only specific folders, excluding embeddings
allow_patterns = [
"ground_truth/**",
"indices/**",
"queries/**",
"*.md",
"*.txt",
]
snapshot_download(
repo_id="LEANN-RAG/leann-rag-evaluation-data",
repo_type="dataset",
local_dir=data_root,
local_dir_use_symlinks=False,
allow_patterns=allow_patterns,
)
print("Data download complete (excluding embeddings)!")
except ImportError:
print(
"Error: huggingface_hub is not installed. Please install it to download the data:"
)
print("uv pip install -e '.[dev]'")
sys.exit(1)
except Exception as e:
print(f"An error occurred during data download: {e}")
sys.exit(1)
def download_embeddings_if_needed(data_root: Path, dataset_type: str | None = None):
"""Download embeddings files specifically."""
embeddings_dir = data_root / "embeddings"
if dataset_type:
# Check if specific dataset embeddings exist
target_file = embeddings_dir / dataset_type / "passages_00.pkl"
if target_file.exists():
print(f"Embeddings for {dataset_type} already exist")
return str(target_file)
print("Downloading embeddings from HuggingFace Hub...")
try:
from huggingface_hub import snapshot_download
# Download only embeddings folder
snapshot_download(
repo_id="LEANN-RAG/leann-rag-evaluation-data",
repo_type="dataset",
local_dir=data_root,
local_dir_use_symlinks=False,
allow_patterns=["embeddings/**/*.pkl"],
)
print("Embeddings download complete!")
if dataset_type:
target_file = embeddings_dir / dataset_type / "passages_00.pkl"
if target_file.exists():
return str(target_file)
return str(embeddings_dir)
except Exception as e:
print(f"Error downloading embeddings: {e}")
sys.exit(1)
# --- Helper Function to get Golden Passages ---
def get_golden_texts(searcher: LeannSearcher, golden_ids: list[int]) -> set:
"""
Retrieves the text for golden passage IDs directly from the LeannSearcher's
passage manager.
"""
golden_texts = set()
for gid in golden_ids:
try:
# PassageManager uses string IDs
passage_data = searcher.passage_manager.get_passage(str(gid))
golden_texts.add(passage_data["text"])
except KeyError:
print(f"Warning: Golden passage ID '{gid}' not found in the index's passage data.")
return golden_texts
def load_queries(file_path: Path) -> list[str]:
queries = []
with open(file_path, encoding="utf-8") as f:
for line in f:
data = json.loads(line)
queries.append(data["query"])
return queries
def build_index_from_embeddings(embeddings_file: str, output_path: str, backend: str = "hnsw"):
"""
Build a LEANN index from pre-computed embeddings.
Args:
embeddings_file: Path to pickle file with (ids, embeddings) tuple
output_path: Path where to save the index
backend: Backend to use ("hnsw" or "diskann")
"""
print(f"Building {backend} index from embeddings: {embeddings_file}")
# Create builder with appropriate parameters
if backend == "hnsw":
builder_kwargs = {
"M": 32, # Graph degree
"efConstruction": 256, # Construction complexity
"is_compact": True, # Use compact storage
"is_recompute": True, # Enable pruning for better recall
}
elif backend == "diskann":
builder_kwargs = {
"complexity": 64,
"graph_degree": 32,
"search_memory_maximum": 8.0, # GB
"build_memory_maximum": 16.0, # GB
}
else:
builder_kwargs = {}
builder = LeannBuilder(
backend_name=backend,
embedding_model="facebook/contriever-msmarco", # Model used to create embeddings
dimensions=768, # Will be auto-detected from embeddings
**builder_kwargs,
)
# Build index from precomputed embeddings
builder.build_index_from_embeddings(output_path, embeddings_file)
print(f"Index saved to: {output_path}")
return output_path
def main():
parser = argparse.ArgumentParser(description="Run recall evaluation on a LEANN index.")
parser.add_argument(
"index_path",
type=str,
nargs="?",
help="Path to the LEANN index to evaluate or build (optional).",
)
parser.add_argument(
"--mode",
choices=["evaluate", "build"],
default="evaluate",
help="Mode: 'evaluate' existing index or 'build' from embeddings",
)
parser.add_argument(
"--embeddings-file",
type=str,
help="Path to embeddings pickle file (optional for build mode)",
)
parser.add_argument(
"--backend",
choices=["hnsw", "diskann"],
default="hnsw",
help="Backend to use for building index (default: hnsw)",
)
parser.add_argument(
"--num-queries", type=int, default=10, help="Number of queries to evaluate."
)
parser.add_argument("--top-k", type=int, default=3, help="The 'k' value for recall@k.")
parser.add_argument(
"--ef-search", type=int, default=120, help="The 'efSearch' parameter for HNSW."
)
args = parser.parse_args()
# --- Path Configuration ---
# Assumes a project structure where the script is in 'benchmarks/'
# and evaluation data is in 'benchmarks/data/'.
script_dir = Path(__file__).resolve().parent
data_root = script_dir / "data"
# Download data based on mode
if args.mode == "build":
# For building mode, we need embeddings
download_data_if_needed(data_root, download_embeddings=False) # Basic data first
# Auto-detect dataset type and download embeddings
if args.embeddings_file:
embeddings_file = args.embeddings_file
# Try to detect dataset type from embeddings file path
if "rpj_wiki" in str(embeddings_file):
dataset_type = "rpj_wiki"
elif "dpr" in str(embeddings_file):
dataset_type = "dpr"
else:
dataset_type = "dpr" # Default
else:
# Auto-detect from index path if provided, otherwise default to DPR
if args.index_path:
index_path_str = str(args.index_path)
if "rpj_wiki" in index_path_str:
dataset_type = "rpj_wiki"
elif "dpr" in index_path_str:
dataset_type = "dpr"
else:
dataset_type = "dpr" # Default to DPR
else:
dataset_type = "dpr" # Default to DPR
embeddings_file = download_embeddings_if_needed(data_root, dataset_type)
# Auto-generate index path if not provided
if not args.index_path:
indices_dir = data_root / "indices" / dataset_type
indices_dir.mkdir(parents=True, exist_ok=True)
args.index_path = str(indices_dir / f"{dataset_type}_from_embeddings")
print(f"Auto-generated index path: {args.index_path}")
print(f"Building index from embeddings: {embeddings_file}")
built_index_path = build_index_from_embeddings(
embeddings_file, args.index_path, args.backend
)
print(f"Index built successfully: {built_index_path}")
# Ask if user wants to run evaluation
eval_response = input("Run evaluation on the built index? (y/n): ").strip().lower()
if eval_response != "y":
print("Index building complete. Exiting.")
return
else:
# For evaluation mode, don't need embeddings
download_data_if_needed(data_root, download_embeddings=False)
# Auto-detect index path if not provided
if not args.index_path:
# Default to using downloaded indices
indices_dir = data_root / "indices"
# Try common datasets in order of preference
for dataset in ["dpr", "rpj_wiki"]:
dataset_dir = indices_dir / dataset
if dataset_dir.exists():
# Look for index files
index_files = list(dataset_dir.glob("*.index")) + list(
dataset_dir.glob("*_disk.index")
)
if index_files:
args.index_path = str(
index_files[0].with_suffix("")
) # Remove .index extension
print(f"Using index: {args.index_path}")
break
if not args.index_path:
print("No indices found. The data download should have included pre-built indices.")
print(
"Please check the benchmarks/data/indices/ directory or provide --index-path manually."
)
sys.exit(1)
# Detect dataset type from index path to select the correct ground truth
index_path_str = str(args.index_path)
if "rpj_wiki" in index_path_str:
dataset_type = "rpj_wiki"
elif "dpr" in index_path_str:
dataset_type = "dpr"
else:
# Fallback: try to infer from the index directory name
dataset_type = Path(args.index_path).name
print(f"WARNING: Could not detect dataset type from path, inferred '{dataset_type}'.")
queries_file = data_root / "queries" / "nq_open.jsonl"
golden_results_file = data_root / "ground_truth" / dataset_type / "flat_results_nq_k3.json"
print(f"INFO: Detected dataset type: {dataset_type}")
print(f"INFO: Using queries file: {queries_file}")
print(f"INFO: Using ground truth file: {golden_results_file}")
try:
searcher = LeannSearcher(args.index_path)
queries = load_queries(queries_file)
with open(golden_results_file) as f:
golden_results_data = json.load(f)
num_eval_queries = min(args.num_queries, len(queries))
queries = queries[:num_eval_queries]
print(f"\nRunning evaluation on {num_eval_queries} queries...")
recall_scores = []
search_times = []
for i in range(num_eval_queries):
start_time = time.time()
new_results = searcher.search(queries[i], top_k=args.top_k, ef=args.ef_search)
search_times.append(time.time() - start_time)
# Correct Recall Calculation: Based on TEXT content
new_texts = {result.text for result in new_results}
# Get golden texts directly from the searcher's passage manager
golden_ids = golden_results_data["indices"][i][: args.top_k]
golden_texts = get_golden_texts(searcher, golden_ids)
overlap = len(new_texts & golden_texts)
recall = overlap / len(golden_texts) if golden_texts else 0
recall_scores.append(recall)
print("\n--- EVALUATION RESULTS ---")
print(f"Query: {queries[i]}")
print(f"New Results: {new_texts}")
print(f"Golden Results: {golden_texts}")
print(f"Overlap: {overlap}")
print(f"Recall: {recall}")
print(f"Search Time: {search_times[-1]:.4f}s")
print("--------------------------------")
avg_recall = np.mean(recall_scores) if recall_scores else 0
avg_time = np.mean(search_times) if search_times else 0
print("\n🎉 --- Evaluation Complete ---")
print(f"Avg. Recall@{args.top_k} (efSearch={args.ef_search}): {avg_recall:.4f}")
print(f"Avg. Search Time: {avg_time:.4f}s")
except Exception as e:
print(f"\n❌ An error occurred during evaluation: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,311 @@
import time
from dataclasses import dataclass
import numpy as np
import torch
from torch import nn
from tqdm import tqdm
from transformers import AutoModel
# Add MLX imports
try:
import mlx.core as mx
from mlx_lm.utils import load
MLX_AVAILABLE = True
except ImportError:
print("MLX not available. Install with: uv pip install mlx mlx-lm")
MLX_AVAILABLE = False
@dataclass
class BenchmarkConfig:
model_path: str = "facebook/contriever"
batch_sizes: list[int] = None
seq_length: int = 256
num_runs: int = 5
use_fp16: bool = True
use_int4: bool = False
use_int8: bool = False
use_cuda_graphs: bool = False
use_flash_attention: bool = False
use_linear8bitlt: bool = False
use_mlx: bool = False # New flag for MLX testing
def __post_init__(self):
if self.batch_sizes is None:
self.batch_sizes = [1, 2, 4, 8, 16, 32, 64]
class MLXBenchmark:
"""MLX-specific benchmark for embedding models"""
def __init__(self, config: BenchmarkConfig):
self.config = config
self.model, self.tokenizer = self._load_model()
def _load_model(self):
"""Load MLX model and tokenizer following the API pattern"""
print(f"Loading MLX model from {self.config.model_path}...")
try:
model, tokenizer = load(self.config.model_path)
print("MLX model loaded successfully")
return model, tokenizer
except Exception as e:
print(f"Error loading MLX model: {e}")
raise
def _create_random_batch(self, batch_size: int):
"""Create random input batches for MLX testing - same as PyTorch"""
return torch.randint(0, 1000, (batch_size, self.config.seq_length), dtype=torch.long)
def _run_inference(self, input_ids: torch.Tensor) -> float:
"""Run MLX inference with same input as PyTorch"""
start_time = time.time()
try:
# Convert PyTorch tensor to MLX array
input_ids_mlx = mx.array(input_ids.numpy())
# Get embeddings
embeddings = self.model(input_ids_mlx)
# Mean pooling (following the API pattern)
pooled = embeddings.mean(axis=1)
# Convert to numpy (following the API pattern)
pooled_numpy = np.array(pooled.tolist(), dtype=np.float32)
# Force computation
_ = pooled_numpy.shape
except Exception as e:
print(f"MLX inference error: {e}")
return float("inf")
end_time = time.time()
return end_time - start_time
def run(self) -> dict[int, dict[str, float]]:
"""Run the MLX benchmark across all batch sizes"""
results = {}
print(f"Starting MLX benchmark with model: {self.config.model_path}")
print(f"Testing batch sizes: {self.config.batch_sizes}")
for batch_size in self.config.batch_sizes:
print(f"\n=== Testing MLX batch size: {batch_size} ===")
times = []
# Create input batch (same as PyTorch)
input_ids = self._create_random_batch(batch_size)
# Warm up
print("Warming up...")
for _ in range(3):
try:
self._run_inference(input_ids[:2]) # Warm up with smaller batch
except Exception as e:
print(f"Warmup error: {e}")
break
# Run benchmark
for _i in tqdm(range(self.config.num_runs), desc=f"MLX Batch size {batch_size}"):
try:
elapsed_time = self._run_inference(input_ids)
if elapsed_time != float("inf"):
times.append(elapsed_time)
except Exception as e:
print(f"Error during MLX inference: {e}")
break
if not times:
print(f"Skipping batch size {batch_size} due to errors")
continue
# Calculate statistics
avg_time = np.mean(times)
std_time = np.std(times)
throughput = batch_size / avg_time
results[batch_size] = {
"avg_time": avg_time,
"std_time": std_time,
"throughput": throughput,
"min_time": np.min(times),
"max_time": np.max(times),
}
print(f"MLX Results for batch size {batch_size}:")
print(f" Avg Time: {avg_time:.4f}s ± {std_time:.4f}s")
print(f" Min Time: {np.min(times):.4f}s")
print(f" Max Time: {np.max(times):.4f}s")
print(f" Throughput: {throughput:.2f} sequences/second")
return results
class Benchmark:
def __init__(self, config: BenchmarkConfig):
self.config = config
self.device = (
"cuda"
if torch.cuda.is_available()
else "mps"
if torch.backends.mps.is_available()
else "cpu"
)
self.model = self._load_model()
def _load_model(self) -> nn.Module:
print(f"Loading model from {self.config.model_path}...")
model = AutoModel.from_pretrained(self.config.model_path)
if self.config.use_fp16:
model = model.half()
model = torch.compile(model)
model = model.to(self.device)
model.eval()
return model
def _create_random_batch(self, batch_size: int) -> torch.Tensor:
return torch.randint(
0,
1000,
(batch_size, self.config.seq_length),
device=self.device,
dtype=torch.long,
)
def _run_inference(self, input_ids: torch.Tensor) -> float:
attention_mask = torch.ones_like(input_ids)
start_time = time.time()
with torch.no_grad():
self.model(input_ids=input_ids, attention_mask=attention_mask)
end_time = time.time()
return end_time - start_time
def run(self) -> dict[int, dict[str, float]]:
results = {}
if torch.cuda.is_available():
torch.cuda.reset_peak_memory_stats()
for batch_size in self.config.batch_sizes:
print(f"\nTesting batch size: {batch_size}")
times = []
input_ids = self._create_random_batch(batch_size)
for _i in tqdm(range(self.config.num_runs), desc=f"Batch size {batch_size}"):
try:
elapsed_time = self._run_inference(input_ids)
times.append(elapsed_time)
except Exception as e:
print(f"Error during inference: {e}")
break
if not times:
continue
avg_time = np.mean(times)
std_time = np.std(times)
throughput = batch_size / avg_time
results[batch_size] = {
"avg_time": avg_time,
"std_time": std_time,
"throughput": throughput,
}
print(f"Avg Time: {avg_time:.4f}s ± {std_time:.4f}s")
print(f"Throughput: {throughput:.2f} sequences/second")
if torch.cuda.is_available():
peak_memory_gb = torch.cuda.max_memory_allocated() / (1024**3)
else:
peak_memory_gb = 0.0
for batch_size in results:
results[batch_size]["peak_memory_gb"] = peak_memory_gb
return results
def run_benchmark():
"""Main function to run the benchmark with optimized parameters."""
config = BenchmarkConfig()
try:
benchmark = Benchmark(config)
results = benchmark.run()
max_throughput = max(results[batch_size]["throughput"] for batch_size in results)
avg_throughput = np.mean([results[batch_size]["throughput"] for batch_size in results])
return {
"max_throughput": max_throughput,
"avg_throughput": avg_throughput,
"results": results,
}
except Exception as e:
print(f"Benchmark failed: {e}")
return {"max_throughput": 0.0, "avg_throughput": 0.0, "error": str(e)}
def run_mlx_benchmark():
"""Run MLX-specific benchmark"""
if not MLX_AVAILABLE:
print("MLX not available, skipping MLX benchmark")
return {
"max_throughput": 0.0,
"avg_throughput": 0.0,
"error": "MLX not available",
}
config = BenchmarkConfig(model_path="mlx-community/all-MiniLM-L6-v2-4bit", use_mlx=True)
try:
benchmark = MLXBenchmark(config)
results = benchmark.run()
if not results:
return {
"max_throughput": 0.0,
"avg_throughput": 0.0,
"error": "No valid results",
}
max_throughput = max(results[batch_size]["throughput"] for batch_size in results)
avg_throughput = np.mean([results[batch_size]["throughput"] for batch_size in results])
return {
"max_throughput": max_throughput,
"avg_throughput": avg_throughput,
"results": results,
}
except Exception as e:
print(f"MLX benchmark failed: {e}")
return {"max_throughput": 0.0, "avg_throughput": 0.0, "error": str(e)}
if __name__ == "__main__":
print("=== PyTorch Benchmark ===")
pytorch_result = run_benchmark()
print(f"PyTorch Max throughput: {pytorch_result['max_throughput']:.2f} sequences/second")
print(f"PyTorch Average throughput: {pytorch_result['avg_throughput']:.2f} sequences/second")
print("\n=== MLX Benchmark ===")
mlx_result = run_mlx_benchmark()
print(f"MLX Max throughput: {mlx_result['max_throughput']:.2f} sequences/second")
print(f"MLX Average throughput: {mlx_result['avg_throughput']:.2f} sequences/second")
# Compare results
if pytorch_result["max_throughput"] > 0 and mlx_result["max_throughput"] > 0:
speedup = mlx_result["max_throughput"] / pytorch_result["max_throughput"]
print("\n=== Comparison ===")
print(f"MLX is {speedup:.2f}x {'faster' if speedup > 1 else 'slower'} than PyTorch")

82
data/.gitattributes vendored Normal file
View File

@@ -0,0 +1,82 @@
*.7z filter=lfs diff=lfs merge=lfs -text
*.arrow filter=lfs diff=lfs merge=lfs -text
*.bin filter=lfs diff=lfs merge=lfs -text
*.bz2 filter=lfs diff=lfs merge=lfs -text
*.ckpt filter=lfs diff=lfs merge=lfs -text
*.ftz filter=lfs diff=lfs merge=lfs -text
*.gz filter=lfs diff=lfs merge=lfs -text
*.h5 filter=lfs diff=lfs merge=lfs -text
*.joblib filter=lfs diff=lfs merge=lfs -text
*.lfs.* filter=lfs diff=lfs merge=lfs -text
*.lz4 filter=lfs diff=lfs merge=lfs -text
*.mds filter=lfs diff=lfs merge=lfs -text
*.mlmodel filter=lfs diff=lfs merge=lfs -text
*.model filter=lfs diff=lfs merge=lfs -text
*.msgpack filter=lfs diff=lfs merge=lfs -text
*.npy filter=lfs diff=lfs merge=lfs -text
*.npz filter=lfs diff=lfs merge=lfs -text
*.onnx filter=lfs diff=lfs merge=lfs -text
*.ot filter=lfs diff=lfs merge=lfs -text
*.parquet filter=lfs diff=lfs merge=lfs -text
*.pb filter=lfs diff=lfs merge=lfs -text
*.pickle filter=lfs diff=lfs merge=lfs -text
*.pkl filter=lfs diff=lfs merge=lfs -text
*.pt filter=lfs diff=lfs merge=lfs -text
*.pth filter=lfs diff=lfs merge=lfs -text
*.rar filter=lfs diff=lfs merge=lfs -text
*.safetensors filter=lfs diff=lfs merge=lfs -text
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
*.tar.* filter=lfs diff=lfs merge=lfs -text
*.tar filter=lfs diff=lfs merge=lfs -text
*.tflite filter=lfs diff=lfs merge=lfs -text
*.tgz filter=lfs diff=lfs merge=lfs -text
*.wasm filter=lfs diff=lfs merge=lfs -text
*.xz filter=lfs diff=lfs merge=lfs -text
*.zip filter=lfs diff=lfs merge=lfs -text
*.zst filter=lfs diff=lfs merge=lfs -text
*tfevents* filter=lfs diff=lfs merge=lfs -text
# Audio files - uncompressed
*.pcm filter=lfs diff=lfs merge=lfs -text
*.sam filter=lfs diff=lfs merge=lfs -text
*.raw filter=lfs diff=lfs merge=lfs -text
# Audio files - compressed
*.aac filter=lfs diff=lfs merge=lfs -text
*.flac filter=lfs diff=lfs merge=lfs -text
*.mp3 filter=lfs diff=lfs merge=lfs -text
*.ogg filter=lfs diff=lfs merge=lfs -text
*.wav filter=lfs diff=lfs merge=lfs -text
# Image files - uncompressed
*.bmp filter=lfs diff=lfs merge=lfs -text
*.gif filter=lfs diff=lfs merge=lfs -text
*.png filter=lfs diff=lfs merge=lfs -text
*.tiff filter=lfs diff=lfs merge=lfs -text
# Image files - compressed
*.jpg filter=lfs diff=lfs merge=lfs -text
*.jpeg filter=lfs diff=lfs merge=lfs -text
*.webp filter=lfs diff=lfs merge=lfs -text
# Video files - compressed
*.mp4 filter=lfs diff=lfs merge=lfs -text
*.webm filter=lfs diff=lfs merge=lfs -text
ground_truth/dpr/id_map.json filter=lfs diff=lfs merge=lfs -text
indices/dpr/dpr_diskann.passages.idx filter=lfs diff=lfs merge=lfs -text
indices/dpr/dpr_diskann.passages.jsonl filter=lfs diff=lfs merge=lfs -text
indices/dpr/dpr_diskann_disk.index filter=lfs diff=lfs merge=lfs -text
indices/dpr/leann.labels.map filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/leann.labels.map filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.index filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.0.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.0.jsonl filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.1.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.1.jsonl filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.2.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.2.jsonl filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.3.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.3.jsonl filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.4.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.4.jsonl filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.5.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.5.jsonl filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.6.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.6.jsonl filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.7.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.7.jsonl filter=lfs diff=lfs merge=lfs -text

BIN
data/2501.14312v1 (1).pdf Normal file
View File

Binary file not shown.

14905
data/PrideandPrejudice.txt Normal file
View File

File diff suppressed because it is too large Load Diff

82
data/README.md Normal file
View File

@@ -0,0 +1,82 @@
# 盘古之殇:华为诺亚盘古大模型研发历程的心酸与黑暗
各位好,
我是一名盘古大模型团队,华为诺亚方舟实验室的员工。
首先为自证身份,列举一些细节:
1. 现诺亚主任,前算法应用部部长,后改名为小模型实验室的主任王云鹤。前诺亚主任:姚骏(大家称姚老师)。几个实验室主任:唐睿明(明哥,明队,已离职),尚利峰,张维(维哥),郝建业(郝老师),刘武龙(称呼为武龙所)等。其他骨干成员和专家陆续有很多人离职。
2. 我们隶属于“四野”这个组织。四野下属有许多纵队,基础语言大模型是四纵。王云鹤的小模型是十六纵队。我们参加过苏州的集结,有各种月份的时间节点。在苏州攻关会颁发任务令,需要在节点前达成目标。苏州集结会把各地的人员都集中在苏州研究所,平常住宾馆,比如在甪直的酒店,与家人孩子天各一方。
3. 在苏州集结的时候周六默认上班,非常辛苦,不过周六有下午茶,有一次还有小龙虾。在苏州研究所的工位搬迁过一次,从一栋楼换到了另一栋。苏州研究所楼栋都是欧式装修,门口有大坡,里面景色很不错。去苏州集结一般至少要去一周,甚至更久,多的人甚至一两个月都回不了家。
4. 诺亚曾经传说是研究型的但是来了之后因为在四野做大模型项目项目成员完全变成了交付型的且充满了例会评审汇报。很多时候做实验都要申请。团队需要对接终端小艺华为云ICT等诸多业务线交付压力不小。
5. 诺亚研发的盘古模型早期内部代号叫做“盘古智子”一开始只有内部需要申请试用的网页版到后续迫于压力在welink上接入和公测开放。
这些天发生关于质疑盘古大模型抄袭千问的事情闹的沸沸扬扬。作为一个盘古团队的成员,我最近夜夜辗转反侧,难以入眠。盘古的品牌受到如此大的影响,一方面,我自私的为我的职业发展担忧,也为自己过去的努力工作感到不值。另一方面,由于有人开始揭露这些事情我内心又感到大快人心。在多少个日日夜夜,我们对内部某些人一次次靠着造假而又获得了无数利益的行为咬牙切齿而又无能为力。这种压抑和羞辱也逐渐消磨了我对华为的感情,让我在这里的时日逐渐浑浑噩噩,迷茫无措,时常怀疑自己的人生和自我价值。
我承认我是一个懦弱的人,作为一个小小的打工人,我不仅不敢和王云鹤等内部手眼通天的人做对,更不敢和华为这样的庞然大物做对。我很怕失去我的工作,毕竟我也有家人和孩子,所以我打心眼里很佩服揭露者。但是,看到内部还在试图洗地掩盖事实,蒙蔽公众的时候,我实在不能容忍了。我也希望勇敢一次,顺从自己本心。就算自损八百,我也希望能伤敌一千。我决定把我在这里的所见所闻(部分来自于同事口述)公布出来,关于盘古大模型的“传奇故事”:
华为确实主要在昇腾卡上训练大模型小模型实验室有不少英伟达的卡他们之前也会用来训练后面转移到昇腾。曾经我被华为“打造世界第二选择”的决心而折服我本身也曾经对华为有深厚的感情。我们陪着昇腾一步步摸爬滚打从充满bug到现在能训出模型付出了巨大的心血和代价。
最初我们的算力非常有限在910A上训练模型。那会只支持fp16训练的稳定性远不如bf16。盘古的moe开始很早23年就主要是训练38Bmoe模型和后续的71B dense模型。71B的dense模型通过扩增变成了第一代的135Bdense模型后面主力模型也逐渐在910B上训练。
71B和135B模型都有一个巨大的硬伤就是tokenizer。当时使用的tokenizer编码效率极低每个单个的符号数字空格乃至汉字都会占用一个token。可想而知这会非常浪费算力且使得模型的效果很差。这时候小模型实验室正好有个自己训的词表。姚老师当时怀疑是不是模型的tokenizer不好虽然事后来看他的怀疑是无疑正确的于是就决定让71B和135B换tokenizer因为小模型实验室曾经尝试过。团队缝合了两个tokenizer开始了tokenizer的更换。71B模型的更换失败了而135B因为采用了更精细的embedding初始化策略续训了至少1T的数据后词表总算更换成功但可想而知效果并不会变好。
于此同期阿里和智谱等国内其他公司在GPU上训练且已经摸索出了正确的方法盘古和竞品的差距越来越大。内部一个230B从头训练的dense模型又因为各种原因训练失败导致项目的状况几乎陷入绝境。面临几个节点的压力以及内部对盘古的强烈质疑时团队的士气低迷到了极点。团队在算力极其有限的时候做出了很多努力和挣扎。比如团队偶然发现当时的38B moe并没有预期moe的效果。于是去掉了moe参数还原为了13B的dense模型。由于38B的moe源自很早的pangu alpha 13B架构相对落后团队进行了一系列的操作比如切换绝对位置编码到rope去掉bias切换为rmsnorm。同时鉴于tokenizer的一些失败和换词表的经验这个模型的词表也更换为了王云鹤的小模型实验室7B模型所使用的词表。后面这个13B模型进行了扩增续训变成了第二代38B dense模型在几个月内这个模型都是主要的盘古中档位模型曾经具有一定的竞争力。但是由于更大的135B模型架构落后且更换词表模型损伤巨大后续分析发现当时更换的缝合词表有更严重的bug续训后也与千问等当时国内领先模型存在很大差距。这时由于内部的质疑声和领导的压力也越来越大。团队的状态几乎陷入了绝境。
在这种情况下王云鹤和他的小模型实验室出手了。他们声称是从旧的135B参数继承改造而来通过训练短短的几百B数据各项指标平均提升了十个点左右。实际上这就是他们套壳应用到大模型的第一次杰作。华为的外行领导内行使得领导完全对于这种扯淡的事情没有概念他们只会觉得肯定是有什么算法创新。经过内部的分析他们实际上是使用Qwen 1.5 110B续训而来通过加层扩增ffn维度添加盘古pi论文的一些机制得来凑够了大概135B的参数。实际上旧的135B有107层而这个模型只有82层各种配置也都不一样。新的来路不明的135B训练完很多参数的分布也和Qwen 110B几乎一模一样。连模型代码的类名当时都是Qwen甚至懒得改名。后续这个模型就是所谓的135B V2。而这个模型当时也提供给了很多下游甚至包括外部客户。
这件事对于我们这些认真诚实做事的同事们带来了巨大的冲击内部很多人其实都知道这件事甚至包括终端和华为云。我们都戏称以后别叫盘古模型了叫千古吧。当时团队成员就想向bcg举报了毕竟这已经是重大的业务造假了。但是后面据说被领导拦了下来因为更高级别的领导比如姚老师以及可能熊总和查老其实后面也知道了但是并不管因为通过套壳拿出好的结果对他们也是有利的。这件事使得当时团队几位最强的同事开始心灰意冷离职跑路也逐渐成为挂在嘴边的事。
此时盘古似乎迎来了转机。由于前面所述的这些盘古模型基本都是续训和改造而来当时诺亚完全没有掌握从头训练的技术何况还是在昇腾的NPU上进行训练。在当时团队的核心成员的极力争取下盘古开始了第三代模型的训练付出了巨大的努力后在数据架构和训练算法方面都与业界逐渐接轨而这其中的艰辛和小模型实验室的人一点关系都没有。
一开始团队成员毫无信心只从一个13B的模型开始训练但是后面发现效果还不错于是这个模型后续再次进行了一次参数扩增变成了第三代的38B代号38B V3。想必很多产品线的兄弟都对这个模型很熟悉。当时这个模型的tokenizer是基于llama的词表进行扩展的也是业界常见的做法。而当时王云鹤的实验室做出来了另一个词表也就是后续pangu系列的词表。当时两个词表还被迫进行了一次赛马最终没有明显的好坏结论。于是领导当即决定应该统一词表使用王云鹤他们的。于是在后续从头训练的135B V3也就是对外的Pangu Ultra便是采用了这个tokenizer。这也解释了很多使用我们模型的兄弟的疑惑为什么当时同为V3代的两个不同档位的模型会使用不同的tokenizer。
我们打心眼里觉得135B V3是我们四纵团队当时的骄傲。这是第一个真正意义上的华为全栈自研正经从头训练的千亿级别的模型且效果与24年同期竞品可比的。写到这里我已经热泪盈眶太不容易了。当时为了稳定训练团队做了大量实验对比并且多次在模型梯度出现异常的时候进行及时回退重启。这个模型真正做到了后面技术报告所说的训练全程没有一个loss spike。我们克服了不知道多少困难我们做到了我们愿用生命和荣誉保证这个模型训练的真实性。多少个凌晨我们为了它的训练而不眠。在被内部心声骂的一文不值的时候我们有多么不甘有多少的委屈我们挺住了。
我们这帮人是真的在为打磨国产算力底座燃烧自己的青春啊……客居他乡,我们放弃了家庭,放弃了假期,放弃了健康,放弃了娱乐,抛头颅洒热血,其中的艰辛与困苦,寥寥数笔不足以概括其万一。在各种动员大会上,当时口号中喊出的盘古必胜,华为必胜,我们心里是真的深深被感动。
然而我们的所有辛苦的成果经常被小模型实验室轻飘飘的拿走了。数据直接要走。代码直接要走还要求我们配合适配到能一键运行。我们当时戏称小模型实验室为点鼠标实验室。我们付出辛苦他们取得荣耀。果然应了那句话你在负重前行是因为有人替你岁月静好。在这种情况下越来越多的战友再也坚持不下去了选择了离开。看到身边那些优秀的同事一个个离职我的内心又感叹又难过。在这种作战一样的环境下我们比起同事来说更像是战友。他们在技术上也有无数值得我学习的地方堪称良师。看到他们去了诸如字节SeedDeepseek月之暗面腾讯和快手等等很多出色的团队我打心眼里为他们高兴和祝福脱离了这个辛苦却肮脏的地方。我至今还对一位离职同事的话记忆犹新ta说“来这里是我技术生涯中的耻辱在这里再呆每一天都是浪费生命”。话虽难听却让我无言以对。我担心我自己技术方面的积累不足以及没法适应互联网公司高淘汰的环境让我多次想离职的心始终没有迈出这一步。
盘古除了dense模型后续也启动了moe的探索。一开始训练的是一个224B的moe模型。而与之平行的小模型实验室也开启了第二次主要的套壳行动次要的插曲可能还包括一些别的模型比如math模型即这次流传甚广的pangu pro moe 72B。这个模型内部自称是从小模型实验室的7B扩增上来的就算如此这也与技术报告不符何况是套壳qwen 2.5的14b续训。还记得他们训了没几天内部的评测就立刻追上了当时的38B V3。AI系统实验室很多兄弟因为需要适配模型都知道他们的套壳行动只是迫于各种原因无法伸张正义。实际上对于后续训了很久很久的这个模型Honestagi能够分析出这个量级的相似性我已经很诧异了因为这个模型为了续训洗参数所付出的算力甚至早就足够从头训一个同档位的模型了。听同事说他们为了洗掉千问的水印采取了不少办法甚至包括故意训了脏数据。这也为学术界研究模型血缘提供了一个前所未有的特殊模范吧。以后新的血缘方法提出可以拿出来溜溜。
24年底和25年初在Deepseek v3和r1发布之后由于其惊艳的技术水平团队受到了巨大的冲击也受到了更大的质疑。于是为了紧跟潮流盘古模仿Deepseek的模型尺寸开启了718B moe的训练。这个时候小模型实验室再次出手了。他们选择了套壳Deepseekv3续训。他们通过冻住Deepseek加载的参数进行训练。连任务加载ckpt的目录都是deepseekv3改都不改何其嚣张与之相反一些有真正技术信仰的同事在从头训练另一个718B的moe。但其中出现了各种各样的问题。但是很显然这个模型怎么可能比直接套壳的好呢如果不是团队leader坚持早就被叫停了。
华为的流程管理之繁重,严重拖累了大模型的研发节奏,例如版本管理,模型血缘,各种流程化,各种可追溯。讽刺的是,小模型实验室的模型似乎从来不受这些流程的约束,想套壳就套壳,想续训就续训,算力源源不断的伸手拿走。这种强烈到近乎魔幻的对比,说明了当前流程管理的情况:只许州官放火,不许百姓点灯。何其可笑?何其可悲?何其可恶?何其可耻!
HonestAGI的事情出来后内部让大家不停的研讨分析如何公关和“回应”。诚然这个原文的分析也许不够有力给了王云鹤与小模型实验室他们狡辩和颠倒黑白的机会。为此这两天我内心感到作呕时时怀疑自己的人生意义以及苍天无眼。我不奉陪了我要离职了同时我也在申请从盘古部分技术报告的作者名单中移除。曾经在这些技术报告上署名是我一生都无法抹除的污点。当时我没想到他们竟然猖狂到敢开源。我没想到他们敢如此愚弄世人大肆宣发。当时我也许是存了侥幸心理没有拒绝署名。我相信很多扎实做事的战友也只是被迫上了贼船或者不知情。但这件事已经无法挽回我希望我的余生能够坚持扎实做真正有意义的事为我当时的软弱和不坚定赎罪。
深夜写到这里,我已经泪流满面,泣不成声。还记得一些出色的同事离职时,我苦笑问他们要不要发个长长的心声惯例帖,揭露一下现状。对方说:不了,浪费时间,而且我也怕揭露出来你们过的更糟。我当时一下黯然神伤,因为曾经共同为了理想奋斗过的战友已经彻底对华为彻底灰心了。当时大家调侃,我们用着当年共产党的小米加步枪,组织却有着堪比当年国民党的作风。
曾几何时,我为我们用着小米加步枪打败洋枪洋炮而自豪。
现在,我累了,我想投降。
其实时至今日我还是真心希望华为能认真吸取教训能做好盘古把盘古做到世界一流把昇腾变成英伟达的水平。内部的劣币驱逐良币使得诺亚乃至华为在短时间内急剧流失了大量出色的大模型人才。相信他们也正在如Deepseek等各个团队闪耀着施展着他们的抱负才华为中美在AI的激烈竞赛中奉献力量。我时常感叹华为不是没有人才而是根本不知道怎么留住人才。如果给这些人合适的环境合适的资源更少的枷锁更少的政治斗争盘古何愁不成
最后:我以生命,人格和荣誉发誓,我写的以上所有内容均为真实(至少在我有限的认知范围内)。我没有那么高的技术水平以及机会去做详尽扎实的分析,也不敢直接用内部记录举证,怕因为信息安全抓到。但是我相信我很多曾经的战友,会为我作证。在华为内部的兄弟,包括我们曾经服务过的产品线兄弟们,相信本文的无数细节能和你们的印象对照,印证我的说法。你们可能也曾经被蒙骗,但这些残酷的真相不会被尘封。我们奋战过的痕迹,也不应该被扭曲和埋葬。
写了这么多,某些人肯定想把我找出来,抹杀掉。公司搞不好也想让我噤声乃至追责。如果真的这样,我,乃至我的家人的人身乃至生命安全可能都会受到威胁。为了自我保护,我近期每天会跟大家报平安。
如果我消失了就当是我为了真理和理想为了华为乃至中国能够更好地发展算力和AI而牺牲了吧我愿埋葬于那片曾经奋斗过的地方。
诺亚,再见
2025年7月6日凌晨 写于深圳
---
各位好,
感谢大家的关心与祝福。我目前暂时安全,但公司应该在进行排查与某些名单收集,后续情况未知。
我补充一些细节,以免某些人继续颠倒黑白。
关于135B V2小模型实验室在迅速地完成套壳并拿完所有套壳带来的好处后比如任务令表彰和及时激励因为不想继续支撑下游应用和模型迭代又把这个烫手山芋甩给了四纵。确实技高一筹直接把四纵的兄弟们拉下水。同事提供过去一个老旧的模型最终拿回了一个当时一个魔改的先进的千问。做大模型的人自己做的模型就像自己孩子一样熟悉不要把别人都当傻子。就像自家儿子出门一趟回来个别人家孩子。
盘古report的署名是不符合学术规范的。例如135B V3有不少有技术贡献的人因为作者名额数量限制劳动成果没有得到应有的回报团队内曾经有不小的意见。这个模型当时是大家智慧和汗水的结晶甚至是团队当时的精神支柱支撑着不少兄弟们继续留在诺亚。所谓的名额限制以及挂名了一些毫无技术贡献的人如一些小模型实验室的人让兄弟们何其心寒。
---
暂时平安。另外,支持我勇于说出真相的战友们 https://github.com/HW-whistleblower/True-Story-of-Pangu/issues/317

View File

@@ -1,226 +1,116 @@
{ {
"cells": [ "cells": [
{ {
"cell_type": "code", "cell_type": "markdown",
"execution_count": 3,
"metadata": {}, "metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO: LeannBuilder initialized with 'diskann' backend.\n",
"INFO: Computing embeddings for 6 chunks using 'sentence-transformers/all-mpnet-base-v2'...\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Batches: 100%|██████████| 1/1 [00:00<00:00, 77.61it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO: Building DiskANN index for 6 vectors with metric Metric.INNER_PRODUCT...\n",
"Using Inner Product search, so need to pre-process base data into temp file. Please ensure there is additional (n*(d+1)*4) bytes for storing pre-processed base vectors, apart from the interim indices created by DiskANN and the final index.\n",
"Pre-processing base file by adding extra coordinate\n",
"✅ DiskANN index built successfully at 'knowledge'\n",
"Writing bin: knowledge_disk.index_max_base_norm.bin\n",
"bin: #pts = 1, #dims = 1, size = 12B\n",
"Finished writing bin.\n",
"Time for preprocessing data for inner product: 0.000165 seconds\n",
"Reading max_norm_of_base from knowledge_disk.index_max_base_norm.bin\n",
"Reading bin file knowledge_disk.index_max_base_norm.bin ...\n",
"Opening bin file knowledge_disk.index_max_base_norm.bin... \n",
"Metadata: #pts = 1, #dims = 1...\n",
"done.\n",
"max_norm_of_base: 1\n",
"! Using prepped_base file at knowledge_prepped_base.bin\n",
"Starting index build: R=32 L=64 Query RAM budget: 4.02653e+09 Indexing ram budget: 8 T: 8\n",
"getting bin metadata\n",
"Time for getting bin metadata: 0.000008 seconds\n",
"Compressing 769-dimensional data into 512 bytes per vector.\n",
"Opened: knowledge_prepped_base.bin, size: 18464, cache_size: 18464\n",
"Training data with 6 samples loaded.\n",
"Reading bin file knowledge_pq_pivots.bin ...\n",
"Opening bin file knowledge_pq_pivots.bin... \n",
"Metadata: #pts = 256, #dims = 769...\n",
"done.\n",
"PQ pivot file exists. Not generating again\n",
"Opened: knowledge_prepped_base.bin, size: 18464, cache_size: 18464\n",
"Reading bin file knowledge_pq_pivots.bin ...\n",
"Opening bin file knowledge_pq_pivots.bin... \n",
"Metadata: #pts = 4, #dims = 1...\n",
"done.\n",
"Reading bin file knowledge_pq_pivots.bin ...\n",
"Opening bin file knowledge_pq_pivots.bin... \n",
"Metadata: #pts = 256, #dims = 769...\n",
"done.\n",
"Reading bin file knowledge_pq_pivots.bin ...\n",
"Opening bin file knowledge_pq_pivots.bin... \n",
"Metadata: #pts = 769, #dims = 1...\n",
"done.\n",
"Reading bin file knowledge_pq_pivots.bin ...\n",
"Opening bin file knowledge_pq_pivots.bin... \n",
"Metadata: #pts = 513, #dims = 1...\n",
"done.\n",
"Loaded PQ pivot information\n",
"Processing points [0, 6)...done.\n",
"Time for generating quantized data: 0.023918 seconds\n",
"Full index fits in RAM budget, should consume at most 2.03973e-05GiBs, so building in one shot\n",
"L2: Using AVX2 distance computation DistanceL2Float\n",
"Passed, empty search_params while creating index config\n",
"Using only first 6 from file.. \n",
"Starting index build with 6 points... \n",
"0% of index build completed.Starting final cleanup..done. Link time: 9e-05s\n",
"Index built with degree: max:5 avg:5 min:5 count(deg<2):0\n",
"Not saving tags as they are not enabled.\n",
"Time taken for save: 0.000178s.\n",
"Time for building merged vamana index: 0.000579 seconds\n",
"Opened: knowledge_prepped_base.bin, size: 18464, cache_size: 18464\n",
"Vamana index file size=168\n",
"Opened: knowledge_disk.index, cache_size: 67108864\n",
"medoid: 0B\n",
"max_node_len: 3100B\n",
"nnodes_per_sector: 1B\n",
"# sectors: 6\n",
"Sector #0written\n",
"Finished writing 28672B\n",
"Writing bin: knowledge_disk.index\n",
"bin: #pts = 9, #dims = 1, size = 80B\n",
"Finished writing bin.\n",
"Output disk index file written to knowledge_disk.index\n",
"Finished writing 28672B\n",
"Time for generating disk layout: 0.043488 seconds\n",
"Opened: knowledge_prepped_base.bin, size: 18464, cache_size: 18464\n",
"Loading base knowledge_prepped_base.bin. #points: 6. #dim: 769.\n",
"Wrote 1 points to sample file: knowledge_sample_data.bin\n",
"Indexing time: 0.0684344\n",
"INFO: Leann metadata saved to knowledge.leann.meta.json\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"Opened file : knowledge_disk.index\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Since data is floating point, we assume that it has been appropriately pre-processed (normalization for cosine, and convert-to-l2 by adding extra dimension for MIPS). So we shall invoke an l2 distance function.\n",
"L2: Using AVX2 distance computation DistanceL2Float\n",
"L2: Using AVX2 distance computation DistanceL2Float\n",
"Before index load\n",
"✅ DiskANN index loaded successfully.\n",
"INFO: LeannSearcher initialized with 'diskann' backend using index 'knowledge.leann'.\n",
"Reading bin file knowledge_pq_compressed.bin ...\n",
"Opening bin file knowledge_pq_compressed.bin... \n",
"Metadata: #pts = 6, #dims = 512...\n",
"done.\n",
"Reading bin file knowledge_pq_pivots.bin ...\n",
"Opening bin file knowledge_pq_pivots.bin... \n",
"Metadata: #pts = 4, #dims = 1...\n",
"done.\n",
"Offsets: 4096 791560 794644 796704\n",
"Reading bin file knowledge_pq_pivots.bin ...\n",
"Opening bin file knowledge_pq_pivots.bin... \n",
"Metadata: #pts = 256, #dims = 769...\n",
"done.\n",
"Reading bin file knowledge_pq_pivots.bin ...\n",
"Opening bin file knowledge_pq_pivots.bin... \n",
"Metadata: #pts = 769, #dims = 1...\n",
"done.\n",
"Reading bin file knowledge_pq_pivots.bin ...\n",
"Opening bin file knowledge_pq_pivots.bin... \n",
"Metadata: #pts = 513, #dims = 1...\n",
"done.\n",
"Loaded PQ Pivots: #ctrs: 256, #dims: 769, #chunks: 512\n",
"Loaded PQ centroids and in-memory compressed vectors. #points: 6 #dim: 769 #aligned_dim: 776 #chunks: 512\n",
"Loading index metadata from knowledge_disk.index\n",
"Disk-Index File Meta-data: # nodes per sector: 1, max node len (bytes): 3100, max node degree: 5\n",
"Disk-Index Meta: nodes per sector: 1, max node len: 3100, max node degree: 5\n",
"Setting up thread-specific contexts for nthreads: 8\n",
"allocating ctx: 0x78348f4de000 to thread-id:132170359560000\n",
"allocating ctx: 0x78348f4cd000 to thread-id:132158431693760\n",
"allocating ctx: 0x78348f4bc000 to thread-id:132158442179392\n",
"allocating ctx: 0x78348f4ab000 to thread-id:132158421208128\n",
"allocating ctx: 0x78348f49a000 to thread-id:132158452665024\n",
"allocating ctx: 0x78348f489000 to thread-id:132158389751232\n",
"allocating ctx: 0x78348f478000 to thread-id:132158410722496\n",
"allocating ctx: 0x78348f467000 to thread-id:132158400236864\n",
"Loading centroid data from medoids vector data of 1 medoid(s)\n",
"Reading bin file knowledge_disk.index_max_base_norm.bin ...\n",
"Opening bin file knowledge_disk.index_max_base_norm.bin... \n",
"Metadata: #pts = 1, #dims = 1...\n",
"done.\n",
"Setting re-scaling factor of base vectors to 1\n",
"load_from_separate_paths done.\n",
"Reading (with alignment) bin file knowledge_sample_data.bin ...Metadata: #pts = 1, #dims = 769, aligned_dim = 776... allocating aligned memory of 3104 bytes... done. Copying data to mem_aligned buffer... done.\n",
"reserve ratio: 1\n",
"Graph traversal completed, hops: 3\n",
"Loading the cache list into memory....done.\n",
"After index load\n",
"Clearing scratch\n",
"INFO: Computing embeddings for 1 chunks using 'sentence-transformers/all-mpnet-base-v2'...\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Batches: 100%|██████████| 1/1 [00:00<00:00, 92.66it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Score: -0.481 - C++ is a powerful programming language\n",
"Score: -1.049 - Java is a powerful programming language\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"reserve ratio: 1\n",
"Graph traversal completed, hops: 3\n"
]
}
],
"source": [ "source": [
"from leann.api import LeannBuilder, LeannSearcher\n", "# Quick Start \n",
"import leann_backend_diskann\n", "\n",
"# 1. Build index (no embeddings stored!)\n", "**Home GitHub Repository:** [LEANN on GitHub](https://github.com/yichuan-w/LEANN)\n",
"builder = LeannBuilder(backend_name=\"diskann\")\n", "\n",
"builder.add_text(\"Python is a powerful programming language\")\n", "**Important for Colab users:** Set your runtime type to T4 GPU for optimal performance. Go to Runtime → Change runtime type → Hardware accelerator → T4 GPU."
"builder.add_text(\"Machine learning transforms industries\") \n", ]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# install this if you are using colab\n",
"! uv pip install leann-core leann-backend-hnsw --no-deps\n",
"! uv pip install leann --no-deps\n",
"# For Colab environment, we need to set some environment variables\n",
"import os\n",
"\n",
"os.environ[\"LEANN_LOG_LEVEL\"] = \"INFO\" # Enable more detailed logging"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from pathlib import Path\n",
"\n",
"INDEX_DIR = Path(\"./\").resolve()\n",
"INDEX_PATH = str(INDEX_DIR / \"demo.leann\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Build the index"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from leann.api import LeannBuilder\n",
"\n",
"builder = LeannBuilder(backend_name=\"hnsw\")\n",
"builder.add_text(\"C# is a powerful programming language and it is good at game development\")\n",
"builder.add_text(\n",
" \"Python is a powerful programming language and it is good at machine learning tasks\"\n",
")\n",
"builder.add_text(\"Machine learning transforms industries\")\n",
"builder.add_text(\"Neural networks process complex data\")\n", "builder.add_text(\"Neural networks process complex data\")\n",
"builder.add_text(\"Java is a powerful programming language\")\n", "builder.add_text(\"Leann is a great storage saving engine for RAG on your MacBook\")\n",
"builder.add_text(\"C++ is a powerful programming language\")\n", "builder.build_index(INDEX_PATH)"
"builder.add_text(\"C# is a powerful programming language\")\n", ]
"builder.build_index(\"knowledge.leann\")\n", },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Search with real-time embeddings"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from leann.api import LeannSearcher\n",
"\n", "\n",
"# 2. Search with real-time embeddings\n", "searcher = LeannSearcher(INDEX_PATH)\n",
"searcher = LeannSearcher(\"knowledge.leann\")\n", "results = searcher.search(\"programming languages\", top_k=2)\n",
"results = searcher.search(\"C++ programming languages\", top_k=2)\n", "results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Chat with LEANN using retrieved results"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from leann.api import LeannChat\n",
"\n", "\n",
"for result in results:\n", "llm_config = {\n",
" print(f\"Score: {result['score']:.3f} - {result['text']}\")" " \"type\": \"hf\",\n",
" \"model\": \"Qwen/Qwen3-0.6B\",\n",
"}\n",
"\n",
"chat = LeannChat(index_path=INDEX_PATH, llm_config=llm_config)\n",
"response = chat.ask(\n",
" \"Compare the two retrieved programming languages and tell me their advantages.\",\n",
" top_k=2,\n",
" llm_kwargs={\"max_tokens\": 128},\n",
")\n",
"response"
] ]
} }
], ],
@@ -240,7 +130,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.11.11" "version": "3.11.12"
} }
}, },
"nbformat": 4, "nbformat": 4,

220
docs/CONTRIBUTING.md Normal file
View File

@@ -0,0 +1,220 @@
# 🤝 Contributing
We welcome contributions! Leann is built by the community, for the community.
## Ways to Contribute
- 🐛 **Bug Reports**: Found an issue? Let us know!
- 💡 **Feature Requests**: Have an idea? We'd love to hear it!
- 🔧 **Code Contributions**: PRs welcome for all skill levels
- 📖 **Documentation**: Help make Leann more accessible
- 🧪 **Benchmarks**: Share your performance results
## 🚀 Development Setup
### Prerequisites
1. **Install uv** (fast Python package installer):
```bash
curl -LsSf https://astral.sh/uv/install.sh | sh
```
2. **Clone the repository**:
```bash
git clone https://github.com/LEANN-RAG/LEANN-RAG.git
cd LEANN-RAG
```
3. **Install system dependencies**:
**macOS:**
```bash
brew install llvm libomp boost protobuf zeromq pkgconf
```
**Ubuntu/Debian:**
```bash
sudo apt-get install libomp-dev libboost-all-dev protobuf-compiler \
libabsl-dev libmkl-full-dev libaio-dev libzmq3-dev
```
4. **Build from source**:
```bash
# macOS
CC=$(brew --prefix llvm)/bin/clang CXX=$(brew --prefix llvm)/bin/clang++ uv sync
# Ubuntu/Debian
uv sync
```
## 🔨 Pre-commit Hooks
We use pre-commit hooks to ensure code quality and consistency. This runs automatically before each commit.
### Setup Pre-commit
1. **Install pre-commit** (already included when you run `uv sync`):
```bash
uv pip install pre-commit
```
2. **Install the git hooks**:
```bash
pre-commit install
```
3. **Run pre-commit manually** (optional):
```bash
pre-commit run --all-files
```
### Pre-commit Checks
Our pre-commit configuration includes:
- **Trailing whitespace removal**
- **End-of-file fixing**
- **YAML validation**
- **Large file prevention**
- **Merge conflict detection**
- **Debug statement detection**
- **Code formatting with ruff**
- **Code linting with ruff**
## 🧪 Testing
### Running Tests
```bash
# Run all tests
uv run pytest
# Run specific test file
uv run pytest test/test_filename.py
# Run with coverage
uv run pytest --cov=leann
```
### Writing Tests
- Place tests in the `test/` directory
- Follow the naming convention `test_*.py`
- Use descriptive test names that explain what's being tested
- Include both positive and negative test cases
## 📝 Code Style
We use `ruff` for both linting and formatting to ensure consistent code style.
### Format Your Code
```bash
# Format all files
ruff format
# Check formatting without changing files
ruff format --check
```
### Lint Your Code
```bash
# Run linter with auto-fix
ruff check --fix
# Just check without fixing
ruff check
```
### Style Guidelines
- Follow PEP 8 conventions
- Use descriptive variable names
- Add type hints where appropriate
- Write docstrings for all public functions and classes
- Keep functions focused and single-purpose
## 🚦 CI/CD
Our CI pipeline runs automatically on all pull requests. It includes:
1. **Linting and Formatting**: Ensures code follows our style guidelines
2. **Multi-platform builds**: Tests on Ubuntu and macOS
3. **Python version matrix**: Tests on Python 3.9-3.13
4. **Wheel building**: Ensures packages can be built and distributed
### CI Commands
The CI uses the same commands as pre-commit to ensure consistency:
```bash
# Linting
ruff check .
# Format checking
ruff format --check .
```
Make sure your code passes these checks locally before pushing!
## 🔄 Pull Request Process
1. **Fork the repository** and create your branch from `main`:
```bash
git checkout -b feature/your-feature-name
```
2. **Make your changes**:
- Write clean, documented code
- Add tests for new functionality
- Update documentation as needed
3. **Run pre-commit checks**:
```bash
pre-commit run --all-files
```
4. **Test your changes**:
```bash
uv run pytest
```
5. **Commit with descriptive messages**:
```bash
git commit -m "feat: add new search algorithm"
```
Follow [Conventional Commits](https://www.conventionalcommits.org/):
- `feat:` for new features
- `fix:` for bug fixes
- `docs:` for documentation changes
- `test:` for test additions/changes
- `refactor:` for code refactoring
- `perf:` for performance improvements
6. **Push and create a pull request**:
- Provide a clear description of your changes
- Reference any related issues
- Include examples or screenshots if applicable
## 📚 Documentation
When adding new features or making significant changes:
1. Update relevant documentation in `/docs`
2. Add docstrings to new functions/classes
3. Update README.md if needed
4. Include usage examples
## 🤔 Getting Help
- **Discord**: Join our community for discussions
- **Issues**: Check existing issues or create a new one
- **Discussions**: For general questions and ideas
## 📄 License
By contributing, you agree that your contributions will be licensed under the same license as the project (MIT).
---
Thank you for contributing to LEANN! Every contribution, no matter how small, helps make the project better for everyone. 🌟

22
docs/RELEASE.md Normal file
View File

@@ -0,0 +1,22 @@
# Release Guide
## Setup (One-time)
Add `PYPI_API_TOKEN` to GitHub Secrets:
1. Get token: https://pypi.org/manage/account/token/
2. Add to secrets: Settings → Secrets → Actions → `PYPI_API_TOKEN`
## Release (One-click)
1. Go to: https://github.com/yichuan-w/LEANN/actions/workflows/release-manual.yml
2. Click "Run workflow"
3. Enter version: `0.1.2`
4. Click green "Run workflow" button
That's it! The workflow will automatically:
- ✅ Update version in all packages
- ✅ Build all packages
- ✅ Publish to PyPI
- ✅ Create GitHub tag and release
Check progress: https://github.com/yichuan-w/LEANN/actions

View File

@@ -0,0 +1,98 @@
"""
Comparison between Sentence Transformers and OpenAI embeddings
This example shows how different embedding models handle complex queries
and demonstrates the differences between local and API-based embeddings.
"""
import numpy as np
from leann.embedding_compute import compute_embeddings
# OpenAI API key should be set as environment variable
# export OPENAI_API_KEY="your-api-key-here"
# Test data
conference_text = "[Title]: COLING 2025 Conference\n[URL]: https://coling2025.org/"
browser_text = "[Title]: Browser Use Tool\n[URL]: https://github.com/browser-use"
# Two queries with same intent but different wording
query1 = "Tell me my browser history about some conference i often visit"
query2 = "browser history about conference I often visit"
texts = [query1, query2, conference_text, browser_text]
def cosine_similarity(a, b):
return np.dot(a, b) # Already normalized
def analyze_embeddings(embeddings, model_name):
print(f"\n=== {model_name} Results ===")
# Results for Query 1
sim1_conf = cosine_similarity(embeddings[0], embeddings[2])
sim1_browser = cosine_similarity(embeddings[0], embeddings[3])
print(f"Query 1: '{query1}'")
print(f" → Conference similarity: {sim1_conf:.4f} {'' if sim1_conf > sim1_browser else ''}")
print(
f" → Browser similarity: {sim1_browser:.4f} {'' if sim1_browser > sim1_conf else ''}"
)
print(f" Winner: {'Conference' if sim1_conf > sim1_browser else 'Browser'}")
# Results for Query 2
sim2_conf = cosine_similarity(embeddings[1], embeddings[2])
sim2_browser = cosine_similarity(embeddings[1], embeddings[3])
print(f"\nQuery 2: '{query2}'")
print(f" → Conference similarity: {sim2_conf:.4f} {'' if sim2_conf > sim2_browser else ''}")
print(
f" → Browser similarity: {sim2_browser:.4f} {'' if sim2_browser > sim2_conf else ''}"
)
print(f" Winner: {'Conference' if sim2_conf > sim2_browser else 'Browser'}")
# Show the impact
print("\n=== Impact Analysis ===")
print(f"Conference similarity change: {sim2_conf - sim1_conf:+.4f}")
print(f"Browser similarity change: {sim2_browser - sim1_browser:+.4f}")
if sim1_conf > sim1_browser and sim2_browser > sim2_conf:
print("❌ FLIP: Adding 'browser history' flips winner from Conference to Browser!")
elif sim1_conf > sim1_browser and sim2_conf > sim2_browser:
print("✅ STABLE: Conference remains winner in both queries")
elif sim1_browser > sim1_conf and sim2_browser > sim2_conf:
print("✅ STABLE: Browser remains winner in both queries")
else:
print("🔄 MIXED: Results vary between queries")
return {
"query1_conf": sim1_conf,
"query1_browser": sim1_browser,
"query2_conf": sim2_conf,
"query2_browser": sim2_browser,
}
# Test Sentence Transformers
print("Testing Sentence Transformers (facebook/contriever)...")
try:
st_embeddings = compute_embeddings(texts, "facebook/contriever", mode="sentence-transformers")
st_results = analyze_embeddings(st_embeddings, "Sentence Transformers (facebook/contriever)")
except Exception as e:
print(f"❌ Sentence Transformers failed: {e}")
st_results = None
# Test OpenAI
print("\n" + "=" * 60)
print("Testing OpenAI (text-embedding-3-small)...")
try:
openai_embeddings = compute_embeddings(texts, "text-embedding-3-small", mode="openai")
openai_results = analyze_embeddings(openai_embeddings, "OpenAI (text-embedding-3-small)")
except Exception as e:
print(f"❌ OpenAI failed: {e}")
openai_results = None
# Compare results
if st_results and openai_results:
print("\n" + "=" * 60)
print("=== COMPARISON SUMMARY ===")

10
docs/faq.md Normal file
View File

@@ -0,0 +1,10 @@
# FAQ
## 1. My building time seems long
You can speed up the process by using a lightweight embedding model. Add this to your arguments:
```bash
--embedding-model sentence-transformers/all-MiniLM-L6-v2
```
**Model sizes:** `all-MiniLM-L6-v2` (30M parameters), `facebook/contriever` (~100M parameters), `Qwen3-0.6B` (600M parameters)

22
docs/features.md Normal file
View File

@@ -0,0 +1,22 @@
# ✨ Detailed Features
## 🔥 Core Features
- **🔄 Real-time Embeddings** - Eliminate heavy embedding storage with dynamic computation using optimized ZMQ servers and highly optimized search paradigm (overlapping and batching) with highly optimized embedding engine
- **📈 Scalable Architecture** - Handles millions of documents on consumer hardware; the larger your dataset, the more LEANN can save
- **🎯 Graph Pruning** - Advanced techniques to minimize the storage overhead of vector search to a limited footprint
- **🏗️ Pluggable Backends** - DiskANN, HNSW/FAISS with unified API
## 🛠️ Technical Highlights
- **🔄 Recompute Mode** - Highest accuracy scenarios while eliminating vector storage overhead
- **⚡ Zero-copy Operations** - Minimize IPC overhead by transferring distances instead of embeddings
- **🚀 High-throughput Embedding Pipeline** - Optimized batched processing for maximum efficiency
- **🎯 Two-level Search** - Novel coarse-to-fine search overlap for accelerated query processing (optional)
- **💾 Memory-mapped Indices** - Fast startup with raw text mapping to reduce memory overhead
- **🚀 MLX Support** - Ultra-fast recompute/build with quantized embedding models, accelerating building and search ([minimal example](../examples/mlx_demo.py))
## 🎨 Developer Experience
- **Simple Python API** - Get started in minutes
- **Extensible backend system** - Easy to add new algorithms
- **Comprehensive examples** - From basic usage to production deployment

View File

@@ -0,0 +1,75 @@
# Normalized Embeddings Support in LEANN
LEANN now automatically detects normalized embedding models and sets the appropriate distance metric for optimal performance.
## What are Normalized Embeddings?
Normalized embeddings are vectors with L2 norm = 1 (unit vectors). These embeddings are optimized for cosine similarity rather than Maximum Inner Product Search (MIPS).
## Automatic Detection
When you create a `LeannBuilder` instance with a normalized embedding model, LEANN will:
1. **Automatically set `distance_metric="cosine"`** if not specified
2. **Show a warning** if you manually specify a different distance metric
3. **Provide optimal search performance** with the correct metric
## Supported Normalized Embedding Models
### OpenAI
All OpenAI text embedding models are normalized:
- `text-embedding-ada-002`
- `text-embedding-3-small`
- `text-embedding-3-large`
### Voyage AI
All Voyage AI embedding models are normalized:
- `voyage-2`
- `voyage-3`
- `voyage-large-2`
- `voyage-multilingual-2`
- `voyage-code-2`
### Cohere
All Cohere embedding models are normalized:
- `embed-english-v3.0`
- `embed-multilingual-v3.0`
- `embed-english-light-v3.0`
- `embed-multilingual-light-v3.0`
## Example Usage
```python
from leann.api import LeannBuilder
# Automatic detection - will use cosine distance
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="text-embedding-3-small",
embedding_mode="openai"
)
# Warning: Detected normalized embeddings model 'text-embedding-3-small'...
# Automatically setting distance_metric='cosine'
# Manual override (not recommended)
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="text-embedding-3-small",
embedding_mode="openai",
distance_metric="mips" # Will show warning
)
# Warning: Using 'mips' distance metric with normalized embeddings...
```
## Non-Normalized Embeddings
Models like `facebook/contriever` and other sentence-transformers models that are not normalized will continue to use MIPS by default, which is optimal for them.
## Why This Matters
Using the wrong distance metric with normalized embeddings can lead to:
- **Poor search quality** due to HNSW's early termination with narrow score ranges
- **Incorrect ranking** of search results
- **Suboptimal performance** compared to using the correct metric
For more details on why this happens, see our analysis in the [embedding detection code](../packages/leann-core/src/leann/api.py) which automatically handles normalized embeddings and MIPS distance metric issues.

21
docs/roadmap.md Normal file
View File

@@ -0,0 +1,21 @@
# 📈 Roadmap
## 🎯 Q2 2025
- [X] DiskANN backend with MIPS/L2/Cosine support
- [X] HNSW backend integration
- [X] Real-time embedding pipeline
- [X] Memory-efficient graph pruning
## 🚀 Q3 2025
- [ ] Advanced caching strategies
- [ ] Add contextual-retrieval https://www.anthropic.com/news/contextual-retrieval
- [ ] Add sleep-time-compute and summarize agent! to summarilze the file on computer!
- [ ] Add OpenAI recompute API
## 🌟 Q4 2025
- [ ] Integration with LangChain/LlamaIndex
- [ ] Visual similarity search
- [ ] Query rewrtiting, rerank and expansion

View File

@@ -1,15 +1,28 @@
""" """
Simple demo showing basic leann usage Simple demo showing basic leann usage
Run: uv run python examples/simple_demo.py Run: uv run python examples/basic_demo.py
""" """
from leann import LeannBuilder, LeannSearcher, LeannChat import argparse
from leann import LeannBuilder, LeannChat, LeannSearcher
def main(): def main():
print("=== Leann Simple Demo ===") parser = argparse.ArgumentParser(
description="Simple demo of Leann with selectable embedding models."
)
parser.add_argument(
"--embedding_model",
type=str,
default="sentence-transformers/all-mpnet-base-v2",
help="The embedding model to use, e.g., 'sentence-transformers/all-mpnet-base-v2' or 'text-embedding-ada-002'.",
)
args = parser.parse_args()
print(f"=== Leann Simple Demo with {args.embedding_model} ===")
print() print()
# Sample knowledge base # Sample knowledge base
chunks = [ chunks = [
"Machine learning is a subset of artificial intelligence that enables computers to learn without being explicitly programmed.", "Machine learning is a subset of artificial intelligence that enables computers to learn without being explicitly programmed.",
@@ -21,61 +34,55 @@ def main():
"Big data refers to extremely large datasets that require special tools and techniques to process.", "Big data refers to extremely large datasets that require special tools and techniques to process.",
"Cloud computing provides on-demand access to computing resources over the internet.", "Cloud computing provides on-demand access to computing resources over the internet.",
] ]
print("1. Building index (no embeddings stored)...") print("1. Building index (no embeddings stored)...")
builder = LeannBuilder( builder = LeannBuilder(
embedding_model="sentence-transformers/all-mpnet-base-v2", embedding_model=args.embedding_model,
prune_ratio=0.7, # Keep 30% of connections backend_name="hnsw",
) )
builder.add_chunks(chunks) for chunk in chunks:
builder.add_text(chunk)
builder.build_index("demo_knowledge.leann") builder.build_index("demo_knowledge.leann")
print() print()
print("2. Searching with real-time embeddings...") print("2. Searching with real-time embeddings...")
searcher = LeannSearcher("demo_knowledge.leann") searcher = LeannSearcher("demo_knowledge.leann")
queries = [ queries = [
"What is machine learning?", "What is machine learning?",
"How does neural network work?", "How does neural network work?",
"Tell me about data processing", "Tell me about data processing",
] ]
for query in queries: for query in queries:
print(f"Query: {query}") print(f"Query: {query}")
results = searcher.search(query, top_k=2) results = searcher.search(query, top_k=2)
for i, result in enumerate(results, 1): for i, result in enumerate(results, 1):
print(f" {i}. Score: {result.score:.3f}") print(f" {i}. Score: {result.score:.3f}")
print(f" Text: {result.text[:100]}...") print(f" Text: {result.text[:100]}...")
print() print()
print("3. Memory stats:") print("3. Interactive chat demo:")
stats = searcher.get_memory_stats()
print(f" Cache size: {stats.embedding_cache_size}")
print(f" Cache memory: {stats.embedding_cache_memory_mb:.1f} MB")
print(f" Total chunks: {stats.total_chunks}")
print()
print("4. Interactive chat demo:")
print(" (Note: Requires OpenAI API key for real responses)") print(" (Note: Requires OpenAI API key for real responses)")
chat = LeannChat("demo_knowledge.leann") chat = LeannChat("demo_knowledge.leann")
# Demo questions # Demo questions
demo_questions: list[str] = [ demo_questions: list[str] = [
"What is the difference between machine learning and deep learning?", "What is the difference between machine learning and deep learning?",
"How is data science related to big data?", "How is data science related to big data?",
] ]
for question in demo_questions: for question in demo_questions:
print(f" Q: {question}") print(f" Q: {question}")
response = chat.ask(question) response = chat.ask(question)
print(f" A: {response}") print(f" A: {response}")
print() print()
print("Demo completed! Try running:") print("Demo completed! Try running:")
print(" uv run python examples/document_search.py") print(" uv run python apps/document_rag.py")
if __name__ == "__main__": if __name__ == "__main__":
main() main()

View File

@@ -1,146 +0,0 @@
#!/usr/bin/env python3
"""
Document search demo with recompute mode
"""
import os
from pathlib import Path
import shutil
import time
# Import backend packages to trigger plugin registration
try:
import leann_backend_diskann
import leann_backend_hnsw
print("INFO: Backend packages imported successfully.")
except ImportError as e:
print(f"WARNING: Could not import backend packages. Error: {e}")
# Import upper-level API from leann-core
from leann.api import LeannBuilder, LeannSearcher, LeannChat
def load_sample_documents():
"""Create sample documents for demonstration"""
docs = [
{"title": "Intro to Python", "content": "Python is a high-level, interpreted language known for simplicity."},
{"title": "ML Basics", "content": "Machine learning builds systems that learn from data."},
{"title": "Data Structures", "content": "Data structures like arrays, lists, and graphs organize data."},
]
return docs
def main():
print("==========================================================")
print("=== Leann Document Search Demo (DiskANN + Recompute) ===")
print("==========================================================")
INDEX_DIR = Path("./test_indices")
INDEX_PATH = str(INDEX_DIR / "documents.diskann")
BACKEND_TO_TEST = "diskann"
if INDEX_DIR.exists():
print(f"--- Cleaning up old index directory: {INDEX_DIR} ---")
shutil.rmtree(INDEX_DIR)
# --- 1. Build index ---
print(f"\n[PHASE 1] Building index using '{BACKEND_TO_TEST}' backend...")
builder = LeannBuilder(
backend_name=BACKEND_TO_TEST,
graph_degree=32,
complexity=64
)
documents = load_sample_documents()
print(f"Loaded {len(documents)} sample documents.")
for doc in documents:
builder.add_text(doc["content"], metadata={"title": doc["title"]})
builder.build_index(INDEX_PATH)
print(f"\nIndex built!")
# --- 2. Basic search demo ---
print(f"\n[PHASE 2] Basic search using '{BACKEND_TO_TEST}' backend...")
searcher = LeannSearcher(index_path=INDEX_PATH)
query = "What is machine learning?"
print(f"\nQuery: '{query}'")
print("\n--- Basic search mode (PQ computation) ---")
start_time = time.time()
results = searcher.search(query, top_k=2)
basic_time = time.time() - start_time
print(f"⏱️ Basic search time: {basic_time:.3f} seconds")
print(">>> Basic search results <<<")
for i, res in enumerate(results, 1):
print(f" {i}. ID: {res['id']}, Score: {res['score']:.4f}, Text: '{res['text']}', Metadata: {res['metadata']}")
# --- 3. Recompute search demo ---
print(f"\n[PHASE 3] Recompute search using embedding server...")
print("\n--- Recompute search mode (get real embeddings via network) ---")
# Configure recompute parameters
recompute_params = {
"recompute_beighbor_embeddings": True, # Enable network recomputation
"USE_DEFERRED_FETCH": False, # Don't use deferred fetch
"skip_search_reorder": True, # Skip search reordering
"dedup_node_dis": True, # Enable node distance deduplication
"prune_ratio": 0.1, # Pruning ratio 10%
"batch_recompute": False, # Don't use batch recomputation
"global_pruning": False, # Don't use global pruning
"zmq_port": 5555, # ZMQ port
"embedding_model": "sentence-transformers/all-mpnet-base-v2"
}
print("Recompute parameter configuration:")
for key, value in recompute_params.items():
print(f" {key}: {value}")
print(f"\n🔄 Executing Recompute search...")
try:
start_time = time.time()
recompute_results = searcher.search(query, top_k=2, **recompute_params)
recompute_time = time.time() - start_time
print(f"⏱️ Recompute search time: {recompute_time:.3f} seconds")
print(">>> Recompute search results <<<")
for i, res in enumerate(recompute_results, 1):
print(f" {i}. ID: {res['id']}, Score: {res['score']:.4f}, Text: '{res['text']}', Metadata: {res['metadata']}")
# Compare results
print(f"\n--- Result comparison ---")
print(f"Basic search time: {basic_time:.3f} seconds")
print(f"Recompute time: {recompute_time:.3f} seconds")
print("\nBasic search vs Recompute results:")
for i in range(min(len(results), len(recompute_results))):
basic_score = results[i]['score']
recompute_score = recompute_results[i]['score']
score_diff = abs(basic_score - recompute_score)
print(f" Position {i+1}: PQ={basic_score:.4f}, Recompute={recompute_score:.4f}, Difference={score_diff:.4f}")
if recompute_time > basic_time:
print(f"✅ Recompute mode working correctly (more accurate but slower)")
else:
print(f" Recompute time is unusually fast, network recomputation may not be enabled")
except Exception as e:
print(f"❌ Recompute search failed: {e}")
print("This usually indicates an embedding server connection issue")
# --- 4. Chat demo ---
print(f"\n[PHASE 4] Starting chat session...")
chat = LeannChat(index_path=INDEX_PATH)
chat_response = chat.ask(query)
print(f"You: {query}")
print(f"Leann: {chat_response}")
print("\n==========================================================")
print("✅ Demo finished successfully!")
print("==========================================================")
if __name__ == "__main__":
main()

View File

@@ -1,76 +0,0 @@
from llama_index.core import SimpleDirectoryReader, Settings
from llama_index.core.readers.base import BaseReader
from llama_index.node_parser.docling import DoclingNodeParser
from llama_index.readers.docling import DoclingReader
from docling_core.transforms.chunker.hybrid_chunker import HybridChunker
import asyncio
import os
import dotenv
from leann.api import LeannBuilder, LeannSearcher, LeannChat
import leann_backend_diskann # Import to ensure backend registration
import shutil
from pathlib import Path
dotenv.load_dotenv()
reader = DoclingReader(export_type=DoclingReader.ExportType.JSON)
file_extractor: dict[str, BaseReader] = {
".docx": reader,
".pptx": reader,
".pdf": reader,
".xlsx": reader,
}
node_parser = DoclingNodeParser(
chunker=HybridChunker(tokenizer="Qwen/Qwen3-Embedding-4B", max_tokens=10240)
)
documents = SimpleDirectoryReader(
"examples/data",
recursive=True,
file_extractor=file_extractor,
encoding="utf-8",
required_exts=[".pdf", ".docx", ".pptx", ".xlsx"]
).load_data(show_progress=True)
# Extract text from documents and prepare for Leann
all_texts = []
for doc in documents:
# DoclingNodeParser returns Node objects, which have a text attribute
nodes = node_parser.get_nodes_from_documents([doc])
for node in nodes:
all_texts.append(node.text)
INDEX_DIR = Path("./test_pdf_index")
INDEX_PATH = str(INDEX_DIR / "pdf_documents.leann")
if INDEX_DIR.exists():
print(f"--- Cleaning up old index directory: {INDEX_DIR} ---")
shutil.rmtree(INDEX_DIR)
print(f"\n[PHASE 1] Building Leann index...")
builder = LeannBuilder(
backend_name="diskann",
embedding_model="sentence-transformers/all-mpnet-base-v2", # Using a common sentence transformer model
graph_degree=32,
complexity=64
)
print(f"Loaded {len(all_texts)} text chunks from documents.")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(INDEX_PATH)
print(f"\nLeann index built at {INDEX_PATH}!")
async def main():
print(f"\n[PHASE 2] Starting Leann chat session...")
chat = LeannChat(index_path=INDEX_PATH)
query = "Based on the paper, what are the two main techniques LEANN uses to achieve low storage overhead and high retrieval accuracy?"
print(f"You: {query}")
chat_response = chat.ask(query, recompute_beighbor_embeddings=True)
print(f"Leann: {chat_response}")
if __name__ == "__main__":
asyncio.run(main())

43
examples/mlx_demo.py Normal file
View File

@@ -0,0 +1,43 @@
import os
from leann.api import LeannBuilder, LeannChat
# Define the path for our new MLX-based index
INDEX_PATH = "./mlx_diskann_index/leann"
if os.path.exists(INDEX_PATH + ".meta.json"):
print(f"Index already exists at {INDEX_PATH}. Skipping build.")
else:
print("Initializing LeannBuilder with MLX support...")
# 1. Configure LeannBuilder to use MLX
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="mlx-community/Qwen3-Embedding-0.6B-4bit-DWQ",
embedding_mode="mlx",
)
# 2. Add documents
print("Adding documents...")
docs = [
"MLX is an array framework for machine learning on Apple silicon.",
"It was designed by Apple's machine learning research team.",
"The mlx-community organization provides pre-trained models in MLX format.",
"It supports operations on multi-dimensional arrays.",
"Leann can now use MLX for its embedding models.",
]
for doc in docs:
builder.add_text(doc)
# 3. Build the index
print(f"Building the MLX-based index at: {INDEX_PATH}")
builder.build_index(INDEX_PATH)
print("\nSuccessfully built the index with MLX embeddings!")
print(f"Check the metadata file: {INDEX_PATH}.meta.json")
chat = LeannChat(index_path=INDEX_PATH)
# add query
query = "MLX is an array framework for machine learning on Apple silicon."
print(f"Query: {query}")
response = chat.ask(query, top_k=3, recompute_beighbor_embeddings=True, complexity=3, beam_width=1)
print(f"Response: {response}")

View File

@@ -1,32 +0,0 @@
{
"version": "0.1.0",
"backend_name": "diskann",
"embedding_model": "sentence-transformers/all-mpnet-base-v2",
"num_chunks": 6,
"chunks": [
{
"text": "Python is a powerful programming language",
"metadata": {}
},
{
"text": "Machine learning transforms industries",
"metadata": {}
},
{
"text": "Neural networks process complex data",
"metadata": {}
},
{
"text": "Java is a powerful programming language",
"metadata": {}
},
{
"text": "C++ is a powerful programming language",
"metadata": {}
},
{
"text": "C# is a powerful programming language",
"metadata": {}
}
]
}

View File

@@ -1,8 +1,8 @@
# packages/leann-backend-diskann/CMakeLists.txt (最终简化版) # packages/leann-backend-diskann/CMakeLists.txt (simplified version)
cmake_minimum_required(VERSION 3.20) cmake_minimum_required(VERSION 3.20)
project(leann_backend_diskann_wrapper) project(leann_backend_diskann_wrapper)
# 告诉 CMake 直接进入 DiskANN 子模块并执行它自己的 CMakeLists.txt # Tell CMake to directly enter the DiskANN submodule and execute its own CMakeLists.txt
# DiskANN 会自己处理所有事情,包括编译 Python 绑定 # DiskANN will handle everything itself, including compiling Python bindings
add_subdirectory(src/third_party/DiskANN) add_subdirectory(src/third_party/DiskANN)

View File

@@ -0,0 +1 @@
# This file makes the directory a Python package

View File

@@ -1,7 +1 @@
print("Initializing leann-backend-diskann...") from . import diskann_backend as diskann_backend
try:
from .diskann_backend import DiskannBackend
print("INFO: DiskANN backend loaded successfully")
except ImportError as e:
print(f"WARNING: Could not import DiskANN backend: {e}")

View File

@@ -1,30 +1,70 @@
import numpy as np
import os
import json
import struct
from pathlib import Path
from typing import Dict
import contextlib import contextlib
import threading import logging
import time import os
import atexit import struct
import socket
import subprocess
import sys import sys
from pathlib import Path
from typing import Any, Literal
from leann.registry import register_backend import numpy as np
from leann.interface import ( from leann.interface import (
LeannBackendFactoryInterface,
LeannBackendBuilderInterface, LeannBackendBuilderInterface,
LeannBackendSearcherInterface LeannBackendFactoryInterface,
LeannBackendSearcherInterface,
) )
from . import _diskannpy as diskannpy from leann.registry import register_backend
from leann.searcher_base import BaseSearcher
logger = logging.getLogger(__name__)
@contextlib.contextmanager
def suppress_cpp_output_if_needed():
"""Suppress C++ stdout/stderr based on LEANN_LOG_LEVEL"""
log_level = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
# Only suppress if log level is WARNING or higher (ERROR, CRITICAL)
should_suppress = log_level in ["WARNING", "ERROR", "CRITICAL"]
if not should_suppress:
# Don't suppress, just yield
yield
return
# Save original file descriptors
stdout_fd = sys.stdout.fileno()
stderr_fd = sys.stderr.fileno()
# Save original stdout/stderr
stdout_dup = os.dup(stdout_fd)
stderr_dup = os.dup(stderr_fd)
try:
# Redirect to /dev/null
devnull = os.open(os.devnull, os.O_WRONLY)
os.dup2(devnull, stdout_fd)
os.dup2(devnull, stderr_fd)
os.close(devnull)
yield
finally:
# Restore original file descriptors
os.dup2(stdout_dup, stdout_fd)
os.dup2(stderr_dup, stderr_fd)
os.close(stdout_dup)
os.close(stderr_dup)
def _get_diskann_metrics():
from . import _diskannpy as diskannpy # type: ignore
return {
"mips": diskannpy.Metric.INNER_PRODUCT,
"l2": diskannpy.Metric.L2,
"cosine": diskannpy.Metric.COSINE,
}
METRIC_MAP = {
"mips": diskannpy.Metric.INNER_PRODUCT,
"l2": diskannpy.Metric.L2,
"cosine": diskannpy.Metric.COSINE,
}
@contextlib.contextmanager @contextlib.contextmanager
def chdir(path): def chdir(path):
@@ -35,102 +75,14 @@ def chdir(path):
finally: finally:
os.chdir(original_dir) os.chdir(original_dir)
def _write_vectors_to_bin(data: np.ndarray, file_path: str):
def _write_vectors_to_bin(data: np.ndarray, file_path: Path):
num_vectors, dim = data.shape num_vectors, dim = data.shape
with open(file_path, 'wb') as f: with open(file_path, "wb") as f:
f.write(struct.pack('I', num_vectors)) f.write(struct.pack("I", num_vectors))
f.write(struct.pack('I', dim)) f.write(struct.pack("I", dim))
f.write(data.tobytes()) f.write(data.tobytes())
def _check_port(port: int) -> bool:
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
return s.connect_ex(('localhost', port)) == 0
class EmbeddingServerManager:
def __init__(self):
self.server_process = None
self.server_port = None
atexit.register(self.stop_server)
def start_server(self, port=5555, model_name="sentence-transformers/all-mpnet-base-v2"):
if self.server_process and self.server_process.poll() is None:
print(f"INFO: Reusing existing server process for this session (PID {self.server_process.pid})")
return True
# 检查端口是否已被其他无关进程占用
if _check_port(port):
print(f"WARNING: Port {port} is already in use. Assuming an external server is running and connecting to it.")
return True
print(f"INFO: Starting session-level embedding server as a background process...")
try:
command = [
sys.executable,
"-m", "packages.leann-backend-diskann.leann_backend_diskann.embedding_server",
"--zmq-port", str(port),
"--model-name", model_name
]
project_root = Path(__file__).parent.parent.parent.parent
print(f"INFO: Running command from project root: {project_root}")
self.server_process = subprocess.Popen(
command,
cwd=project_root,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
encoding='utf-8'
)
self.server_port = port
print(f"INFO: Server process started with PID: {self.server_process.pid}")
max_wait, wait_interval = 30, 0.5
for _ in range(int(max_wait / wait_interval)):
if _check_port(port):
print(f"✅ Embedding server is up and ready for this session.")
log_thread = threading.Thread(target=self._log_monitor, daemon=True)
log_thread.start()
return True
if self.server_process.poll() is not None:
print("❌ ERROR: Server process terminated unexpectedly during startup.")
self._log_monitor()
return False
time.sleep(wait_interval)
print(f"❌ ERROR: Server process failed to start listening within {max_wait} seconds.")
self.stop_server()
return False
except Exception as e:
print(f"❌ ERROR: Failed to start embedding server process: {e}")
return False
def _log_monitor(self):
if not self.server_process:
return
try:
if self.server_process.stdout:
for line in iter(self.server_process.stdout.readline, ''):
print(f"[EmbeddingServer LOG]: {line.strip()}")
self.server_process.stdout.close()
if self.server_process.stderr:
for line in iter(self.server_process.stderr.readline, ''):
print(f"[EmbeddingServer ERROR]: {line.strip()}")
self.server_process.stderr.close()
except Exception as e:
print(f"Log monitor error: {e}")
def stop_server(self):
if self.server_process and self.server_process.poll() is None:
print(f"INFO: Terminating session server process (PID: {self.server_process.pid})...")
self.server_process.terminate()
try:
self.server_process.wait(timeout=5)
print("INFO: Server process terminated.")
except subprocess.TimeoutExpired:
print("WARNING: Server process did not terminate gracefully, killing it.")
self.server_process.kill()
self.server_process = None
@register_backend("diskann") @register_backend("diskann")
class DiskannBackend(LeannBackendFactoryInterface): class DiskannBackend(LeannBackendFactoryInterface):
@@ -140,138 +92,179 @@ class DiskannBackend(LeannBackendFactoryInterface):
@staticmethod @staticmethod
def searcher(index_path: str, **kwargs) -> LeannBackendSearcherInterface: def searcher(index_path: str, **kwargs) -> LeannBackendSearcherInterface:
path = Path(index_path)
meta_path = path.parent / f"{path.name}.meta.json"
if not meta_path.exists():
raise FileNotFoundError(f"Leann metadata file not found at {meta_path}. Cannot infer vector dimension for searcher.")
with open(meta_path, 'r') as f:
meta = json.load(f)
try:
from sentence_transformers import SentenceTransformer
model = SentenceTransformer(meta.get("embedding_model"))
dimensions = model.get_sentence_embedding_dimension()
kwargs['dimensions'] = dimensions
except ImportError:
raise ImportError("sentence-transformers is required to infer embedding dimensions. Please install it.")
except Exception as e:
raise RuntimeError(f"Could not load SentenceTransformer model to get dimension: {e}")
return DiskannSearcher(index_path, **kwargs) return DiskannSearcher(index_path, **kwargs)
class DiskannBuilder(LeannBackendBuilderInterface): class DiskannBuilder(LeannBackendBuilderInterface):
def __init__(self, **kwargs): def __init__(self, **kwargs):
self.build_params = kwargs self.build_params = kwargs
def build(self, data: np.ndarray, index_path: str, **kwargs): def build(self, data: np.ndarray, ids: list[str], index_path: str, **kwargs):
path = Path(index_path) path = Path(index_path)
index_dir = path.parent index_dir = path.parent
index_prefix = path.stem index_prefix = path.stem
index_dir.mkdir(parents=True, exist_ok=True) index_dir.mkdir(parents=True, exist_ok=True)
if data.dtype != np.float32: if data.dtype != np.float32:
logger.warning(f"Converting data to float32, shape: {data.shape}")
data = data.astype(np.float32) data = data.astype(np.float32)
if not data.flags['C_CONTIGUOUS']:
data = np.ascontiguousarray(data)
data_filename = f"{index_prefix}_data.bin" data_filename = f"{index_prefix}_data.bin"
_write_vectors_to_bin(data, index_dir / data_filename) _write_vectors_to_bin(data, index_dir / data_filename)
build_kwargs = {**self.build_params, **kwargs} build_kwargs = {**self.build_params, **kwargs}
metric_str = build_kwargs.get("distance_metric", "mips").lower() metric_enum = _get_diskann_metrics().get(
metric_enum = METRIC_MAP.get(metric_str) build_kwargs.get("distance_metric", "mips").lower()
)
if metric_enum is None: if metric_enum is None:
raise ValueError(f"Unsupported distance_metric '{metric_str}'.") raise ValueError(
f"Unsupported distance_metric '{build_kwargs.get('distance_metric', 'unknown')}'."
)
complexity = build_kwargs.get("complexity", 64)
graph_degree = build_kwargs.get("graph_degree", 32)
final_index_ram_limit = build_kwargs.get("search_memory_maximum", 4.0)
indexing_ram_budget = build_kwargs.get("build_memory_maximum", 8.0)
num_threads = build_kwargs.get("num_threads", 8)
pq_disk_bytes = build_kwargs.get("pq_disk_bytes", 0)
codebook_prefix = ""
print(f"INFO: Building DiskANN index for {data.shape[0]} vectors with metric {metric_enum}...")
try: try:
from . import _diskannpy as diskannpy # type: ignore
with chdir(index_dir): with chdir(index_dir):
diskannpy.build_disk_float_index( diskannpy.build_disk_float_index(
metric_enum, metric_enum,
data_filename, data_filename,
index_prefix, index_prefix,
complexity, build_kwargs.get("complexity", 64),
graph_degree, build_kwargs.get("graph_degree", 32),
final_index_ram_limit, build_kwargs.get("search_memory_maximum", 4.0),
indexing_ram_budget, build_kwargs.get("build_memory_maximum", 8.0),
num_threads, build_kwargs.get("num_threads", 8),
pq_disk_bytes, build_kwargs.get("pq_disk_bytes", 0),
codebook_prefix "",
) )
print(f"✅ DiskANN index built successfully at '{index_dir / index_prefix}'")
except Exception as e:
print(f"💥 ERROR: DiskANN index build failed. Exception: {e}")
raise
finally: finally:
temp_data_file = index_dir / data_filename temp_data_file = index_dir / data_filename
if temp_data_file.exists(): if temp_data_file.exists():
os.remove(temp_data_file) os.remove(temp_data_file)
logger.debug(f"Cleaned up temporary data file: {temp_data_file}")
class DiskannSearcher(LeannBackendSearcherInterface):
class DiskannSearcher(BaseSearcher):
def __init__(self, index_path: str, **kwargs): def __init__(self, index_path: str, **kwargs):
path = Path(index_path) super().__init__(
index_dir = path.parent index_path,
index_prefix = path.stem backend_module_name="leann_backend_diskann.diskann_embedding_server",
metric_str = kwargs.get("distance_metric", "mips").lower() **kwargs,
metric_enum = METRIC_MAP.get(metric_str) )
if metric_enum is None:
raise ValueError(f"Unsupported distance_metric '{metric_str}'.") # Initialize DiskANN index with suppressed C++ output based on log level
with suppress_cpp_output_if_needed():
num_threads = kwargs.get("num_threads", 8) from . import _diskannpy as diskannpy # type: ignore
num_nodes_to_cache = kwargs.get("num_nodes_to_cache", 0)
dimensions = kwargs.get("dimensions") distance_metric = kwargs.get("distance_metric", "mips").lower()
if not dimensions: metric_enum = _get_diskann_metrics().get(distance_metric)
raise ValueError("Vector dimension not provided to DiskannSearcher.") if metric_enum is None:
raise ValueError(f"Unsupported distance_metric '{distance_metric}'.")
try:
full_index_prefix = str(index_dir / index_prefix) self.num_threads = kwargs.get("num_threads", 8)
self._index = diskannpy.StaticDiskFloatIndex(
metric_enum, full_index_prefix, num_threads, num_nodes_to_cache, 1, "", "" # For DiskANN, we need to reinitialize the index when zmq_port changes
) # Store the initialization parameters for later use
self.num_threads = num_threads full_index_prefix = str(self.index_dir / self.index_path.stem)
self.embedding_server_manager = EmbeddingServerManager() self._init_params = {
print("✅ DiskANN index loaded successfully.") "metric_enum": metric_enum,
except Exception as e: "full_index_prefix": full_index_prefix,
print(f"💥 ERROR: Failed to load DiskANN index. Exception: {e}") "num_threads": self.num_threads,
raise "num_nodes_to_cache": kwargs.get("num_nodes_to_cache", 0),
"cache_mechanism": 1,
"pq_prefix": "",
"partition_prefix": "",
}
self._diskannpy = diskannpy
self._current_zmq_port = None
self._index = None
logger.debug("DiskANN searcher initialized (index will be loaded on first search)")
def _ensure_index_loaded(self, zmq_port: int):
"""Ensure the index is loaded with the correct zmq_port."""
if self._index is None or self._current_zmq_port != zmq_port:
# Need to (re)load the index with the correct zmq_port
with suppress_cpp_output_if_needed():
if self._index is not None:
logger.debug(f"Reloading DiskANN index with new zmq_port: {zmq_port}")
else:
logger.debug(f"Loading DiskANN index with zmq_port: {zmq_port}")
self._index = self._diskannpy.StaticDiskFloatIndex(
self._init_params["metric_enum"],
self._init_params["full_index_prefix"],
self._init_params["num_threads"],
self._init_params["num_nodes_to_cache"],
self._init_params["cache_mechanism"],
zmq_port,
self._init_params["pq_prefix"],
self._init_params["partition_prefix"],
)
self._current_zmq_port = zmq_port
def search(
self,
query: np.ndarray,
top_k: int,
complexity: int = 64,
beam_width: int = 1,
prune_ratio: float = 0.0,
recompute_embeddings: bool = False,
pruning_strategy: Literal["global", "local", "proportional"] = "global",
zmq_port: int | None = None,
batch_recompute: bool = False,
dedup_node_dis: bool = False,
**kwargs,
) -> dict[str, Any]:
"""
Search for nearest neighbors using DiskANN index.
Args:
query: Query vectors (B, D) where B is batch size, D is dimension
top_k: Number of nearest neighbors to return
complexity: Search complexity/candidate list size, higher = more accurate but slower
beam_width: Number of parallel IO requests per iteration
prune_ratio: Ratio of neighbors to prune via approximate distance (0.0-1.0)
recompute_embeddings: Whether to fetch fresh embeddings from server
pruning_strategy: PQ candidate selection strategy:
- "global": Use global pruning strategy (default)
- "local": Use local pruning strategy
- "proportional": Not supported in DiskANN, falls back to global
zmq_port: ZMQ port for embedding server communication. Must be provided if recompute_embeddings is True.
batch_recompute: Whether to batch neighbor recomputation (DiskANN-specific)
dedup_node_dis: Whether to cache and reuse distance computations (DiskANN-specific)
**kwargs: Additional DiskANN-specific parameters (for legacy compatibility)
Returns:
Dict with 'labels' (list of lists) and 'distances' (ndarray)
"""
# Handle zmq_port compatibility: Ensure index is loaded with correct port
if recompute_embeddings:
if zmq_port is None:
raise ValueError("zmq_port must be provided if recompute_embeddings is True")
self._ensure_index_loaded(zmq_port)
else:
# If not recomputing, we still need an index, use a default port
if self._index is None:
self._ensure_index_loaded(6666) # Default port when not recomputing
# DiskANN doesn't support "proportional" strategy
if pruning_strategy == "proportional":
raise NotImplementedError(
"DiskANN backend does not support 'proportional' pruning strategy. Use 'global' or 'local' instead."
)
def search(self, query: np.ndarray, top_k: int, **kwargs) -> Dict[str, any]:
complexity = kwargs.get("complexity", 100)
beam_width = kwargs.get("beam_width", 4)
USE_DEFERRED_FETCH = kwargs.get("USE_DEFERRED_FETCH", False)
skip_search_reorder = kwargs.get("skip_search_reorder", False)
recompute_beighbor_embeddings = kwargs.get("recompute_beighbor_embeddings", False)
dedup_node_dis = kwargs.get("dedup_node_dis", False)
prune_ratio = kwargs.get("prune_ratio", 0.0)
batch_recompute = kwargs.get("batch_recompute", False)
global_pruning = kwargs.get("global_pruning", False)
if recompute_beighbor_embeddings:
print(f"INFO: DiskANN ZMQ mode enabled - ensuring embedding server is running")
zmq_port = kwargs.get("zmq_port", 5555)
embedding_model = kwargs.get("embedding_model", "sentence-transformers/all-mpnet-base-v2")
if not self.embedding_server_manager.start_server(zmq_port, embedding_model):
print(f"WARNING: Failed to start embedding server, falling back to PQ computation")
kwargs['recompute_beighbor_embeddings'] = False
if query.dtype != np.float32: if query.dtype != np.float32:
query = query.astype(np.float32) query = query.astype(np.float32)
if query.ndim == 1:
query = np.expand_dims(query, axis=0) # Map pruning_strategy to DiskANN's global_pruning parameter
if pruning_strategy == "local":
try: use_global_pruning = False
else: # "global"
use_global_pruning = True
# Perform search with suppressed C++ output based on log level
with suppress_cpp_output_if_needed():
labels, distances = self._index.batch_search( labels, distances = self._index.batch_search(
query, query,
query.shape[0], query.shape[0],
@@ -279,21 +272,15 @@ class DiskannSearcher(LeannBackendSearcherInterface):
complexity, complexity,
beam_width, beam_width,
self.num_threads, self.num_threads,
USE_DEFERRED_FETCH, kwargs.get("USE_DEFERRED_FETCH", False),
skip_search_reorder, kwargs.get("skip_search_reorder", False),
recompute_beighbor_embeddings, recompute_embeddings,
dedup_node_dis, dedup_node_dis,
prune_ratio, prune_ratio,
batch_recompute, batch_recompute,
global_pruning use_global_pruning,
) )
return {"labels": labels, "distances": distances}
except Exception as e: string_labels = [[str(int_label) for int_label in batch_labels] for batch_labels in labels]
print(f"💥 ERROR: DiskANN search failed. Exception: {e}")
batch_size = query.shape[0] return {"labels": string_labels, "distances": distances}
return {"labels": np.full((batch_size, top_k), -1, dtype=np.int64),
"distances": np.full((batch_size, top_k), float('inf'), dtype=np.float32)}
def __del__(self):
if hasattr(self, 'embedding_server_manager'):
self.embedding_server_manager.stop_server()

View File

@@ -0,0 +1,284 @@
"""
DiskANN-specific embedding server
"""
import argparse
import json
import logging
import os
import sys
import threading
import time
from pathlib import Path
import numpy as np
import zmq
# Set up logging based on environment variable
LOG_LEVEL = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
logger = logging.getLogger(__name__)
# Force set logger level (don't rely on basicConfig in subprocess)
log_level = getattr(logging, LOG_LEVEL, logging.WARNING)
logger.setLevel(log_level)
# Ensure we have a handler if none exists
if not logger.handlers:
handler = logging.StreamHandler()
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.propagate = False
def create_diskann_embedding_server(
passages_file: str | None = None,
zmq_port: int = 5555,
model_name: str = "sentence-transformers/all-mpnet-base-v2",
embedding_mode: str = "sentence-transformers",
distance_metric: str = "l2",
):
"""
Create and start a ZMQ-based embedding server for DiskANN backend.
Uses ROUTER socket and protobuf communication as required by DiskANN C++ implementation.
"""
logger.info(f"Starting DiskANN server on port {zmq_port} with model {model_name}")
logger.info(f"Using embedding mode: {embedding_mode}")
# Add leann-core to path for unified embedding computation
current_dir = Path(__file__).parent
leann_core_path = current_dir.parent.parent / "leann-core" / "src"
sys.path.insert(0, str(leann_core_path))
try:
from leann.api import PassageManager
from leann.embedding_compute import compute_embeddings
logger.info("Successfully imported unified embedding computation module")
except ImportError as e:
logger.error(f"Failed to import embedding computation module: {e}")
return
finally:
sys.path.pop(0)
# Check port availability
import socket
def check_port(port):
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
return s.connect_ex(("localhost", port)) == 0
if check_port(zmq_port):
logger.error(f"Port {zmq_port} is already in use")
return
# Only support metadata file, fail fast for everything else
if not passages_file or not passages_file.endswith(".meta.json"):
raise ValueError("Only metadata files (.meta.json) are supported")
# Load metadata to get passage sources
with open(passages_file) as f:
meta = json.load(f)
passages = PassageManager(meta["passage_sources"])
logger.info(
f"Loaded PassageManager with {len(passages.global_offset_map)} passages from metadata"
)
# Import protobuf after ensuring the path is correct
try:
from . import embedding_pb2
except ImportError as e:
logger.error(f"Failed to import protobuf module: {e}")
return
def zmq_server_thread():
"""ZMQ server thread using REP socket for universal compatibility"""
context = zmq.Context()
socket = context.socket(
zmq.REP
) # REP socket for both BaseSearcher and DiskANN C++ REQ clients
socket.bind(f"tcp://*:{zmq_port}")
logger.info(f"DiskANN ZMQ REP server listening on port {zmq_port}")
socket.setsockopt(zmq.RCVTIMEO, 300000)
socket.setsockopt(zmq.SNDTIMEO, 300000)
while True:
try:
# REP socket receives single-part messages
message = socket.recv()
# Check for empty messages - REP socket requires response to every request
if len(message) == 0:
logger.debug("Received empty message, sending empty response")
socket.send(b"") # REP socket must respond to every request
continue
logger.debug(f"Received ZMQ request of size {len(message)} bytes")
logger.debug(f"Message preview: {message[:50]}") # Show first 50 bytes
e2e_start = time.time()
# Try protobuf first (for DiskANN C++ node_ids requests - primary use case)
texts = []
node_ids = []
is_text_request = False
try:
req_proto = embedding_pb2.NodeEmbeddingRequest()
req_proto.ParseFromString(message)
node_ids = list(req_proto.node_ids)
if not node_ids:
raise RuntimeError(
f"PROTOBUF: Received empty node_ids! Message size: {len(message)}"
)
logger.info(
f"✅ PROTOBUF: Node ID request for {len(node_ids)} node embeddings: {node_ids[:10]}"
)
except Exception as protobuf_error:
logger.debug(f"Protobuf parsing failed: {protobuf_error}")
# Fallback to msgpack (for BaseSearcher direct text requests)
try:
import msgpack
request = msgpack.unpackb(message)
# For BaseSearcher compatibility, request is a list of texts directly
if isinstance(request, list) and all(
isinstance(item, str) for item in request
):
texts = request
is_text_request = True
logger.info(f"✅ MSGPACK: Direct text request for {len(texts)} texts")
else:
raise ValueError("Not a valid msgpack text request")
except Exception as msgpack_error:
raise RuntimeError(
f"Both protobuf and msgpack parsing failed! Protobuf: {protobuf_error}, Msgpack: {msgpack_error}"
)
# Look up texts by node IDs (only if not direct text request)
if not is_text_request:
for nid in node_ids:
try:
passage_data = passages.get_passage(str(nid))
txt = passage_data["text"]
if not txt:
raise RuntimeError(f"FATAL: Empty text for passage ID {nid}")
texts.append(txt)
except KeyError as e:
logger.error(f"Passage ID {nid} not found: {e}")
raise e
except Exception as e:
logger.error(f"Exception looking up passage ID {nid}: {e}")
raise
# Debug logging
logger.debug(f"Processing {len(texts)} texts")
logger.debug(f"Text lengths: {[len(t) for t in texts[:5]]}") # Show first 5
# Process embeddings using unified computation
embeddings = compute_embeddings(texts, model_name, mode=embedding_mode)
logger.info(
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
)
# Prepare response based on request type
if is_text_request:
# For BaseSearcher compatibility: return msgpack format
import msgpack
response_data = msgpack.packb(embeddings.tolist())
else:
# For DiskANN C++ compatibility: return protobuf format
resp_proto = embedding_pb2.NodeEmbeddingResponse()
hidden_contiguous = np.ascontiguousarray(embeddings, dtype=np.float32)
# Serialize embeddings data
resp_proto.embeddings_data = hidden_contiguous.tobytes()
resp_proto.dimensions.append(hidden_contiguous.shape[0])
resp_proto.dimensions.append(hidden_contiguous.shape[1])
response_data = resp_proto.SerializeToString()
# Send response back to the client
socket.send(response_data)
e2e_end = time.time()
logger.info(f"⏱️ ZMQ E2E time: {e2e_end - e2e_start:.6f}s")
except zmq.Again:
logger.debug("ZMQ socket timeout, continuing to listen")
continue
except Exception as e:
logger.error(f"Error in ZMQ server loop: {e}")
import traceback
traceback.print_exc()
raise
zmq_thread = threading.Thread(target=zmq_server_thread, daemon=True)
zmq_thread.start()
logger.info(f"Started DiskANN ZMQ server thread on port {zmq_port}")
# Keep the main thread alive
try:
while True:
time.sleep(1)
except KeyboardInterrupt:
logger.info("DiskANN Server shutting down...")
return
if __name__ == "__main__":
import signal
import sys
def signal_handler(sig, frame):
logger.info(f"Received signal {sig}, shutting down gracefully...")
sys.exit(0)
# Register signal handlers for graceful shutdown
signal.signal(signal.SIGTERM, signal_handler)
signal.signal(signal.SIGINT, signal_handler)
parser = argparse.ArgumentParser(description="DiskANN Embedding service")
parser.add_argument("--zmq-port", type=int, default=5555, help="ZMQ port to run on")
parser.add_argument(
"--passages-file",
type=str,
help="Metadata JSON file containing passage sources",
)
parser.add_argument(
"--model-name",
type=str,
default="sentence-transformers/all-mpnet-base-v2",
help="Embedding model name",
)
parser.add_argument(
"--embedding-mode",
type=str,
default="sentence-transformers",
choices=["sentence-transformers", "openai", "mlx"],
help="Embedding backend mode",
)
parser.add_argument(
"--distance-metric",
type=str,
default="l2",
choices=["l2", "mips", "cosine"],
help="Distance metric for similarity computation",
)
args = parser.parse_args()
# Create and start the DiskANN embedding server
create_diskann_embedding_server(
passages_file=args.passages_file,
zmq_port=args.zmq_port,
model_name=args.model_name,
embedding_mode=args.embedding_mode,
distance_metric=args.distance_metric,
)

View File

@@ -1,27 +1,28 @@
# -*- coding: utf-8 -*-
# Generated by the protocol buffer compiler. DO NOT EDIT! # Generated by the protocol buffer compiler. DO NOT EDIT!
# source: embedding.proto # source: embedding.proto
# ruff: noqa
"""Generated protocol buffer code.""" """Generated protocol buffer code."""
from google.protobuf.internal import builder as _builder
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports) # @@protoc_insertion_point(imports)
_sym_db = _symbol_database.Default() _sym_db = _symbol_database.Default()
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(
b'\n\x0f\x65mbedding.proto\x12\x0eprotoembedding"(\n\x14NodeEmbeddingRequest\x12\x10\n\x08node_ids\x18\x01 \x03(\r"Y\n\x15NodeEmbeddingResponse\x12\x17\n\x0f\x65mbeddings_data\x18\x01 \x01(\x0c\x12\x12\n\ndimensions\x18\x02 \x03(\x05\x12\x13\n\x0bmissing_ids\x18\x03 \x03(\rb\x06proto3'
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x0f\x65mbedding.proto\x12\x0eprotoembedding\"(\n\x14NodeEmbeddingRequest\x12\x10\n\x08node_ids\x18\x01 \x03(\r\"Y\n\x15NodeEmbeddingResponse\x12\x17\n\x0f\x65mbeddings_data\x18\x01 \x01(\x0c\x12\x12\n\ndimensions\x18\x02 \x03(\x05\x12\x13\n\x0bmissing_ids\x18\x03 \x03(\rb\x06proto3') )
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, globals()) _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, globals())
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'embedding_pb2', globals()) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "embedding_pb2", globals())
if _descriptor._USE_C_DESCRIPTORS == False: if not _descriptor._USE_C_DESCRIPTORS:
DESCRIPTOR._options = None
DESCRIPTOR._options = None _NODEEMBEDDINGREQUEST._serialized_start = 35
_NODEEMBEDDINGREQUEST._serialized_start=35 _NODEEMBEDDINGREQUEST._serialized_end = 75
_NODEEMBEDDINGREQUEST._serialized_end=75 _NODEEMBEDDINGRESPONSE._serialized_start = 77
_NODEEMBEDDINGRESPONSE._serialized_start=77 _NODEEMBEDDINGRESPONSE._serialized_end = 166
_NODEEMBEDDINGRESPONSE._serialized_end=166
# @@protoc_insertion_point(module_scope) # @@protoc_insertion_point(module_scope)

View File

@@ -1,397 +0,0 @@
#!/usr/bin/env python3
"""
Embedding server for leann-backend-diskann - Fixed ZMQ REQ-REP pattern
"""
import pickle
import argparse
import threading
import time
from transformers import AutoTokenizer, AutoModel
import os
from contextlib import contextmanager
import zmq
import numpy as np
RED = "\033[91m"
RESET = "\033[0m"
# 简化的文档存储 - 替代 LazyPassages
class SimpleDocumentStore:
"""简化的文档存储支持任意ID"""
def __init__(self, documents: dict = None):
self.documents = documents or {}
# 默认演示文档
self.default_docs = {
0: "Python is a high-level, interpreted language known for simplicity.",
1: "Machine learning builds systems that learn from data.",
2: "Data structures like arrays, lists, and graphs organize data.",
}
def __getitem__(self, doc_id):
doc_id = int(doc_id)
# 优先使用指定的文档
if doc_id in self.documents:
return {"text": self.documents[doc_id]}
# 其次使用默认演示文档
if doc_id in self.default_docs:
return {"text": self.default_docs[doc_id]}
# 对于任意其他ID返回通用文档
fallback_docs = [
"This is a general document about technology and programming concepts.",
"This document discusses machine learning and artificial intelligence topics.",
"This content covers data structures, algorithms, and computer science fundamentals.",
"This is a document about software engineering and development practices.",
"This content focuses on databases, data management, and information systems."
]
# 根据ID选择一个fallback文档
fallback_text = fallback_docs[doc_id % len(fallback_docs)]
return {"text": f"[ID:{doc_id}] {fallback_text}"}
def __len__(self):
return len(self.documents) + len(self.default_docs)
def create_embedding_server_thread(
zmq_port=5555,
model_name="sentence-transformers/all-mpnet-base-v2",
max_batch_size=128,
):
"""
在当前线程中创建并运行 embedding server
这个函数设计为在单独的线程中调用
"""
print(f"INFO: Initializing embedding server thread on port {zmq_port}")
try:
# 检查端口是否已被占用
import socket
def check_port(port):
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
return s.connect_ex(('localhost', port)) == 0
if check_port(zmq_port):
print(f"{RED}Port {zmq_port} is already in use{RESET}")
return
# 初始化模型
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
import torch
# 选择设备
mps_available = hasattr(torch.backends, 'mps') and torch.backends.mps.is_available()
cuda_available = torch.cuda.is_available()
if cuda_available:
device = torch.device("cuda")
print("INFO: Using CUDA device")
elif mps_available:
device = torch.device("mps")
print("INFO: Using MPS device (Apple Silicon)")
else:
device = torch.device("cpu")
print("INFO: Using CPU device")
# 加载模型
print(f"INFO: Loading model {model_name}")
model = AutoModel.from_pretrained(model_name).to(device).eval()
# 优化模型
if cuda_available or mps_available:
try:
model = model.half()
model = torch.compile(model)
print(f"INFO: Using FP16 precision with model: {model_name}")
except Exception as e:
print(f"WARNING: Model optimization failed: {e}")
# 默认演示文档
demo_documents = {
0: "Python is a high-level, interpreted language known for simplicity.",
1: "Machine learning builds systems that learn from data.",
2: "Data structures like arrays, lists, and graphs organize data.",
}
passages = SimpleDocumentStore(demo_documents)
print(f"INFO: Loaded {len(passages)} demo documents")
class DeviceTimer:
"""设备计时器"""
def __init__(self, name="", device=device):
self.name = name
self.device = device
self.start_time = 0
self.end_time = 0
if cuda_available:
self.start_event = torch.cuda.Event(enable_timing=True)
self.end_event = torch.cuda.Event(enable_timing=True)
else:
self.start_event = None
self.end_event = None
@contextmanager
def timing(self):
self.start()
yield
self.end()
def start(self):
if cuda_available:
torch.cuda.synchronize()
self.start_event.record()
else:
if self.device.type == "mps":
torch.mps.synchronize()
self.start_time = time.time()
def end(self):
if cuda_available:
self.end_event.record()
torch.cuda.synchronize()
else:
if self.device.type == "mps":
torch.mps.synchronize()
self.end_time = time.time()
def elapsed_time(self):
if cuda_available:
return self.start_event.elapsed_time(self.end_event) / 1000.0
else:
return self.end_time - self.start_time
def print_elapsed(self):
print(f"Time taken for {self.name}: {self.elapsed_time():.6f} seconds")
def process_batch(texts_batch, ids_batch, missing_ids):
"""处理文本批次"""
batch_size = len(texts_batch)
print(f"INFO: Processing batch of size {batch_size}")
tokenize_timer = DeviceTimer("tokenization (batch)", device)
to_device_timer = DeviceTimer("transfer to device (batch)", device)
embed_timer = DeviceTimer("embedding (batch)", device)
pool_timer = DeviceTimer("mean pooling (batch)", device)
with tokenize_timer.timing():
encoded_batch = tokenizer.batch_encode_plus(
texts_batch,
padding="max_length",
truncation=True,
max_length=256,
return_tensors="pt",
return_token_type_ids=False,
)
tokenize_timer.print_elapsed()
seq_length = encoded_batch["input_ids"].size(1)
print(f"Batch size: {batch_size}, Sequence length: {seq_length}")
with to_device_timer.timing():
enc = {k: v.to(device) for k, v in encoded_batch.items()}
to_device_timer.print_elapsed()
with torch.no_grad():
with embed_timer.timing():
out = model(enc["input_ids"], enc["attention_mask"])
embed_timer.print_elapsed()
with pool_timer.timing():
hidden_states = out.last_hidden_state if hasattr(out, "last_hidden_state") else out
mask_expanded = enc["attention_mask"].unsqueeze(-1).expand(hidden_states.size()).float()
sum_embeddings = torch.sum(hidden_states * mask_expanded, 1)
sum_mask = torch.clamp(mask_expanded.sum(1), min=1e-9)
batch_embeddings = sum_embeddings / sum_mask
pool_timer.print_elapsed()
return batch_embeddings.cpu().numpy()
# ZMQ server 主循环 - 修改为REP套接字
context = zmq.Context()
socket = context.socket(zmq.ROUTER) # 改为REP套接字
socket.bind(f"tcp://127.0.0.1:{zmq_port}")
print(f"INFO: ZMQ ROUTER server listening on port {zmq_port}")
# 设置超时
socket.setsockopt(zmq.RCVTIMEO, 5000) # 5秒接收超时
socket.setsockopt(zmq.SNDTIMEO, 300000) # 300秒发送超时
from . import embedding_pb2
print(f"INFO: Embedding server ready to serve requests")
while True:
try:
parts = socket.recv_multipart()
# --- 恢复稳健的消息格式判断 ---
# 必须检查 parts 的长度,避免 IndexError
if len(parts) >= 3:
identity = parts[0]
# empty = parts[1] # 中间的空帧我们通常不关心
message = parts[2]
elif len(parts) == 2:
# 也能处理没有空帧的情况
identity = parts[0]
message = parts[1]
else:
# 如果收到格式错误的消息,打印警告并忽略它,而不是崩溃
print(f"WARNING: Received unexpected message format with {len(parts)} parts. Ignoring.")
continue
print(f"INFO: Received ZMQ request from client {identity.hex()[:8]}, size {len(message)} bytes")
e2e_start = time.time()
lookup_timer = DeviceTimer("text lookup", device)
# 解析请求
req_proto = embedding_pb2.NodeEmbeddingRequest()
req_proto.ParseFromString(message)
node_ids = req_proto.node_ids
print(f"INFO: Request for {len(node_ids)} node embeddings: {list(node_ids)}")
# 添加调试信息
if len(node_ids) > 0:
print(f"DEBUG: Node ID range: {min(node_ids)} to {max(node_ids)}")
# 查找文本
texts = []
missing_ids = []
with lookup_timer.timing():
for nid in node_ids:
txtinfo = passages[nid]
txt = txtinfo["text"]
texts.append(txt)
lookup_timer.print_elapsed()
if missing_ids:
print(f"WARNING: Missing passages for IDs: {missing_ids}")
# 处理批次
total_size = len(texts)
print(f"INFO: Total batch size: {total_size}, max_batch_size: {max_batch_size}")
all_embeddings = []
if total_size > max_batch_size:
print(f"INFO: Splitting batch of size {total_size} into chunks of {max_batch_size}")
for i in range(0, total_size, max_batch_size):
end_idx = min(i + max_batch_size, total_size)
print(f"INFO: Processing chunk {i//max_batch_size + 1}/{(total_size + max_batch_size - 1)//max_batch_size}: items {i} to {end_idx-1}")
chunk_texts = texts[i:end_idx]
chunk_ids = node_ids[i:end_idx]
embeddings_chunk = process_batch(chunk_texts, chunk_ids, missing_ids)
all_embeddings.append(embeddings_chunk)
if cuda_available:
torch.cuda.empty_cache()
elif device.type == "mps":
torch.mps.empty_cache()
hidden = np.vstack(all_embeddings)
print(f"INFO: Combined embeddings shape: {hidden.shape}")
else:
hidden = process_batch(texts, node_ids, missing_ids)
# 序列化响应
ser_start = time.time()
resp_proto = embedding_pb2.NodeEmbeddingResponse()
hidden_contiguous = np.ascontiguousarray(hidden, dtype=np.float32)
resp_proto.embeddings_data = hidden_contiguous.tobytes()
resp_proto.dimensions.append(hidden_contiguous.shape[0])
resp_proto.dimensions.append(hidden_contiguous.shape[1])
resp_proto.missing_ids.extend(missing_ids)
response_data = resp_proto.SerializeToString()
# REP 套接字发送单个响应
socket.send_multipart([identity, b'', response_data])
ser_end = time.time()
print(f"INFO: Serialize time: {ser_end - ser_start:.6f} seconds")
if device.type == "cuda":
torch.cuda.synchronize()
elif device.type == "mps":
torch.mps.synchronize()
e2e_end = time.time()
print(f"INFO: ZMQ E2E time: {e2e_end - e2e_start:.6f} seconds")
except zmq.Again:
print("INFO: ZMQ socket timeout, continuing to listen")
# REP套接字不需要重新创建只需要继续监听
continue
except Exception as e:
print(f"ERROR: Error in ZMQ server: {e}")
try:
# 发送空响应以维持REQ-REP状态
empty_resp = embedding_pb2.NodeEmbeddingResponse()
socket.send(empty_resp.SerializeToString())
except:
# 如果发送失败重新创建socket
socket.close()
socket = context.socket(zmq.REP)
socket.bind(f"tcp://127.0.0.1:{zmq_port}")
socket.setsockopt(zmq.RCVTIMEO, 5000)
socket.setsockopt(zmq.SNDTIMEO, 300000)
print("INFO: ZMQ socket recreated after error")
except Exception as e:
print(f"ERROR: Failed to start embedding server: {e}")
raise
# 保持原有的 create_embedding_server 函数不变,只添加线程化版本
def create_embedding_server(
domain="demo",
load_passages=True,
load_embeddings=False,
use_fp16=True,
use_int8=False,
use_cuda_graphs=False,
zmq_port=5555,
max_batch_size=128,
lazy_load_passages=False,
model_name="sentence-transformers/all-mpnet-base-v2",
):
"""
原有的 create_embedding_server 函数保持不变
这个是阻塞版本,用于直接运行
"""
create_embedding_server_thread(zmq_port, model_name, max_batch_size)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Embedding service")
parser.add_argument("--zmq-port", type=int, default=5555, help="ZMQ port to run on")
parser.add_argument("--domain", type=str, default="demo", help="Domain name")
parser.add_argument("--load-passages", action="store_true", default=True)
parser.add_argument("--load-embeddings", action="store_true", default=False)
parser.add_argument("--use-fp16", action="store_true", default=False)
parser.add_argument("--use-int8", action="store_true", default=False)
parser.add_argument("--use-cuda-graphs", action="store_true", default=False)
parser.add_argument("--max-batch-size", type=int, default=128, help="Maximum batch size before splitting")
parser.add_argument("--lazy-load-passages", action="store_true", default=True)
parser.add_argument("--model-name", type=str, default="sentence-transformers/all-mpnet-base-v2",
help="Embedding model name")
args = parser.parse_args()
create_embedding_server(
domain=args.domain,
load_passages=args.load_passages,
load_embeddings=args.load_embeddings,
use_fp16=args.use_fp16,
use_int8=args.use_int8,
use_cuda_graphs=args.use_cuda_graphs,
zmq_port=args.zmq_port,
max_batch_size=args.max_batch_size,
lazy_load_passages=args.lazy_load_passages,
model_name=args.model_name,
)

View File

@@ -4,13 +4,16 @@ build-backend = "scikit_build_core.build"
[project] [project]
name = "leann-backend-diskann" name = "leann-backend-diskann"
version = "0.1.0" version = "0.1.16"
dependencies = ["leann-core==0.1.0", "numpy"] dependencies = ["leann-core==0.1.16", "numpy", "protobuf>=3.19.0"]
[tool.scikit-build] [tool.scikit-build]
# 关键:简化的 CMake 路径 # Key: simplified CMake path
cmake.source-dir = "third_party/DiskANN" cmake.source-dir = "third_party/DiskANN"
# 关键:Python 包在根目录,路径完全匹配 # Key: Python package in root directory, paths match exactly
wheel.packages = ["leann_backend_diskann"] wheel.packages = ["leann_backend_diskann"]
# 使用默认的 redirect 模式 # Use default redirect mode
editable.mode = "redirect" editable.mode = "redirect"
cmake.build-type = "Release"
build.verbose = true
build.tool-args = ["-j8"]

View File

@@ -1,6 +0,0 @@
---
BasedOnStyle: Microsoft
---
Language: Cpp
SortIncludes: false
...

View File

@@ -1,14 +0,0 @@
# Set the default behavior, in case people don't have core.autocrlf set.
* text=auto
# Explicitly declare text files you want to always be normalized and converted
# to native line endings on checkout.
*.c text
*.h text
# Declare files that will always have CRLF line endings on checkout.
*.sln text eol=crlf
# Denote all files that are truly binary and should not be modified.
*.png binary
*.jpg binary

View File

@@ -1,40 +0,0 @@
---
name: Bug report
about: Bug reports help us improve! Thanks for submitting yours!
title: "[BUG] "
labels: bug
assignees: ''
---
## Expected Behavior
Tell us what should happen
## Actual Behavior
Tell us what happens instead
## Example Code
Please see [How to create a Minimal, Reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) for some guidance on creating the best possible example of the problem
```bash
```
## Dataset Description
Please tell us about the shape and datatype of your data, (e.g. 128 dimensions, 12.3 billion points, floats)
- Dimensions:
- Number of Points:
- Data type:
## Error
```
Paste the full error, with any sensitive information minimally redacted and marked $$REDACTED$$
```
## Your Environment
* Operating system (e.g. Windows 11 Pro, Ubuntu 22.04.1 LTS)
* DiskANN version (or commit built from)
## Additional Details
Any other contextual information you might feel is important.

View File

@@ -1,2 +0,0 @@
blank_issues_enabled: false

View File

@@ -1,25 +0,0 @@
---
name: Feature request
about: Suggest an idea for this project
title: ''
labels: enhancement
assignees: ''
---
## Is your feature request related to a problem? Please describe.
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
## Describe the solution you'd like
A clear and concise description of what you want to happen.
## Describe alternatives you've considered
A clear and concise description of any alternative solutions or features you've considered.
## Provide references (if applicable)
If your feature request is related to a published algorithm/idea, please provide links to
any relevant articles or webpages.
## Additional context
Add any other context or screenshots about the feature request here.

View File

@@ -1,11 +0,0 @@
---
name: Usage Question
about: Ask us a question about DiskANN!
title: "[Question]"
labels: question
assignees: ''
---
This is our forum for asking whatever DiskANN question you'd like! No need to feel shy - we're happy to talk about use cases and optimal tuning strategies!

View File

@@ -1,22 +0,0 @@
<!--
Thanks for contributing a pull request! Please ensure you have taken a look at
the contribution guidelines: https://github.com/microsoft/DiskANN/blob/main/CONTRIBUTING.md
-->
- [ ] Does this PR have a descriptive title that could go in our release notes?
- [ ] Does this PR add any new dependencies?
- [ ] Does this PR modify any existing APIs?
- [ ] Is the change to the API backwards compatible?
- [ ] Should this result in any changes to our documentation, either updating existing docs or adding new ones?
#### Reference Issues/PRs
<!--
Example: Fixes #1234. See also #3456.
Please use keywords (e.g., Fixes) to create link to the issues or pull requests
you resolved, so that they will automatically be closed when your pull request
is merged. See https://github.com/blog/1506-closing-issues-via-pull-requests
-->
#### What does this implement/fix? Briefly explain your changes.
#### Any other comments?

View File

@@ -1,39 +0,0 @@
name: 'DiskANN Build Bootstrap'
description: 'Prepares DiskANN build environment and executes build'
runs:
using: "composite"
steps:
# ------------ Linux Build ---------------
- name: Prepare and Execute Build
if: ${{ runner.os == 'Linux' }}
run: |
sudo scripts/dev/install-dev-deps-ubuntu.bash
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DUNIT_TEST=True
cmake --build build -- -j
cmake --install build --prefix="dist"
shell: bash
# ------------ End Linux Build ---------------
# ------------ Windows Build ---------------
- name: Add VisualStudio command line tools into path
if: runner.os == 'Windows'
uses: ilammy/msvc-dev-cmd@v1
- name: Run configure and build for Windows
if: runner.os == 'Windows'
run: |
mkdir build && cd build && cmake .. -DUNIT_TEST=True && msbuild diskann.sln /m /nologo /t:Build /p:Configuration="Release" /property:Platform="x64" -consoleloggerparameters:"ErrorsOnly;Summary"
cd ..
mkdir dist
mklink /j .\dist\bin .\x64\Release\
shell: cmd
# ------------ End Windows Build ---------------
# ------------ Windows Build With EXEC_ENV_OLS and USE_BING_INFRA ---------------
- name: Add VisualStudio command line tools into path
if: runner.os == 'Windows'
uses: ilammy/msvc-dev-cmd@v1
- name: Run configure and build for Windows with Bing feature flags
if: runner.os == 'Windows'
run: |
mkdir build_bing && cd build_bing && cmake .. -DEXEC_ENV_OLS=1 -DUSE_BING_INFRA=1 -DUNIT_TEST=True && msbuild diskann.sln /m /nologo /t:Build /p:Configuration="Release" /property:Platform="x64" -consoleloggerparameters:"ErrorsOnly;Summary"
cd ..
shell: cmd
# ------------ End Windows Build ---------------

View File

@@ -1,13 +0,0 @@
name: 'Checking code formatting...'
description: 'Ensures code complies with code formatting rules'
runs:
using: "composite"
steps:
- name: Checking code formatting...
run: |
sudo apt install clang-format
find include -name '*.h' -type f -print0 | xargs -0 -P 16 /usr/bin/clang-format --Werror --dry-run
find src -name '*.cpp' -type f -print0 | xargs -0 -P 16 /usr/bin/clang-format --Werror --dry-run
find apps -name '*.cpp' -type f -print0 | xargs -0 -P 16 /usr/bin/clang-format --Werror --dry-run
find python -name '*.cpp' -type f -print0 | xargs -0 -P 16 /usr/bin/clang-format --Werror --dry-run
shell: bash

View File

@@ -1,28 +0,0 @@
name: 'Generating Random Data (Basic)'
description: 'Generates the random data files used in acceptance tests'
runs:
using: "composite"
steps:
- name: Generate Random Data (Basic)
run: |
mkdir data
echo "Generating random 1020,1024,1536D float and 4096 int8 vectors for index"
dist/bin/rand_data_gen --data_type float --output_file data/rand_float_1020D_5K_norm1.0.bin -D 1020 -N 5000 --norm 1.0
#dist/bin/rand_data_gen --data_type float --output_file data/rand_float_1024D_5K_norm1.0.bin -D 1024 -N 5000 --norm 1.0
dist/bin/rand_data_gen --data_type float --output_file data/rand_float_1536D_5K_norm1.0.bin -D 1536 -N 5000 --norm 1.0
dist/bin/rand_data_gen --data_type int8 --output_file data/rand_int8_4096D_5K_norm1.0.bin -D 4096 -N 5000 --norm 1.0
echo "Generating random 1020,1024,1536D float and 4096D int8 avectors for query"
dist/bin/rand_data_gen --data_type float --output_file data/rand_float_1020D_1K_norm1.0.bin -D 1020 -N 1000 --norm 1.0
#dist/bin/rand_data_gen --data_type float --output_file data/rand_float_1024D_1K_norm1.0.bin -D 1024 -N 1000 --norm 1.0
dist/bin/rand_data_gen --data_type float --output_file data/rand_float_1536D_1K_norm1.0.bin -D 1536 -N 1000 --norm 1.0
dist/bin/rand_data_gen --data_type int8 --output_file data/rand_int8_4096D_1K_norm1.0.bin -D 4096 -N 1000 --norm 1.0
echo "Computing ground truth for 1020,1024,1536D float and 4096D int8 avectors for query"
dist/bin/compute_groundtruth --data_type float --dist_fn l2 --base_file data/rand_float_1020D_5K_norm1.0.bin --query_file data/rand_float_1020D_1K_norm1.0.bin --gt_file data/l2_rand_float_1020D_5K_norm1.0_1020D_1K_norm1.0_gt100 --K 100
#dist/bin/compute_groundtruth --data_type float --dist_fn l2 --base_file data/rand_float_1024D_5K_norm1.0.bin --query_file data/rand_float_1024D_1K_norm1.0.bin --gt_file data/l2_rand_float_1024D_5K_norm1.0_1024D_1K_norm1.0_gt100 --K 100
dist/bin/compute_groundtruth --data_type float --dist_fn l2 --base_file data/rand_float_1536D_5K_norm1.0.bin --query_file data/rand_float_1536D_1K_norm1.0.bin --gt_file data/l2_rand_float_1536D_5K_norm1.0_1536D_1K_norm1.0_gt100 --K 100
dist/bin/compute_groundtruth --data_type int8 --dist_fn l2 --base_file data/rand_int8_4096D_5K_norm1.0.bin --query_file data/rand_int8_4096D_1K_norm1.0.bin --gt_file data/l2_rand_int8_4096D_5K_norm1.0_4096D_1K_norm1.0_gt100 --K 100
shell: bash

View File

@@ -1,38 +0,0 @@
name: 'Generating Random Data (Basic)'
description: 'Generates the random data files used in acceptance tests'
runs:
using: "composite"
steps:
- name: Generate Random Data (Basic)
run: |
mkdir data
echo "Generating random vectors for index"
dist/bin/rand_data_gen --data_type float --output_file data/rand_float_10D_10K_norm1.0.bin -D 10 -N 10000 --norm 1.0
dist/bin/rand_data_gen --data_type float --output_file data/rand_float_10D_10K_unnorm.bin -D 10 -N 10000 --rand_scaling 2.0
dist/bin/rand_data_gen --data_type int8 --output_file data/rand_int8_10D_10K_norm50.0.bin -D 10 -N 10000 --norm 50.0
dist/bin/rand_data_gen --data_type uint8 --output_file data/rand_uint8_10D_10K_norm50.0.bin -D 10 -N 10000 --norm 50.0
echo "Generating random vectors for query"
dist/bin/rand_data_gen --data_type float --output_file data/rand_float_10D_1K_norm1.0.bin -D 10 -N 1000 --norm 1.0
dist/bin/rand_data_gen --data_type float --output_file data/rand_float_10D_1K_unnorm.bin -D 10 -N 1000 --rand_scaling 2.0
dist/bin/rand_data_gen --data_type int8 --output_file data/rand_int8_10D_1K_norm50.0.bin -D 10 -N 1000 --norm 50.0
dist/bin/rand_data_gen --data_type uint8 --output_file data/rand_uint8_10D_1K_norm50.0.bin -D 10 -N 1000 --norm 50.0
echo "Computing ground truth for floats across l2, mips, and cosine distance functions"
dist/bin/compute_groundtruth --data_type float --dist_fn l2 --base_file data/rand_float_10D_10K_norm1.0.bin --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/l2_rand_float_10D_10K_norm1.0_10D_1K_norm1.0_gt100 --K 100
dist/bin/compute_groundtruth --data_type float --dist_fn mips --base_file data/rand_float_10D_10K_norm1.0.bin --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/mips_rand_float_10D_10K_norm1.0_10D_1K_norm1.0_gt100 --K 100
dist/bin/compute_groundtruth --data_type float --dist_fn cosine --base_file data/rand_float_10D_10K_norm1.0.bin --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/cosine_rand_float_10D_10K_norm1.0_10D_1K_norm1.0_gt100 --K 100
dist/bin/compute_groundtruth --data_type float --dist_fn cosine --base_file data/rand_float_10D_10K_unnorm.bin --query_file data/rand_float_10D_1K_unnorm.bin --gt_file data/cosine_rand_float_10D_10K_unnorm_10D_1K_unnorm_gt100 --K 100
echo "Computing ground truth for int8s across l2, mips, and cosine distance functions"
dist/bin/compute_groundtruth --data_type int8 --dist_fn l2 --base_file data/rand_int8_10D_10K_norm50.0.bin --query_file data/rand_int8_10D_1K_norm50.0.bin --gt_file data/l2_rand_int8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 --K 100
dist/bin/compute_groundtruth --data_type int8 --dist_fn mips --base_file data/rand_int8_10D_10K_norm50.0.bin --query_file data/rand_int8_10D_1K_norm50.0.bin --gt_file data/mips_rand_int8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 --K 100
dist/bin/compute_groundtruth --data_type int8 --dist_fn cosine --base_file data/rand_int8_10D_10K_norm50.0.bin --query_file data/rand_int8_10D_1K_norm50.0.bin --gt_file data/cosine_rand_int8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 --K 100
echo "Computing ground truth for uint8s across l2, mips, and cosine distance functions"
dist/bin/compute_groundtruth --data_type uint8 --dist_fn l2 --base_file data/rand_uint8_10D_10K_norm50.0.bin --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/l2_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 --K 100
dist/bin/compute_groundtruth --data_type uint8 --dist_fn mips --base_file data/rand_uint8_10D_10K_norm50.0.bin --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/mips_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 --K 100
dist/bin/compute_groundtruth --data_type uint8 --dist_fn cosine --base_file data/rand_uint8_10D_10K_norm50.0.bin --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/cosine_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 --K 100
shell: bash

View File

@@ -1,22 +0,0 @@
name: Build Python Wheel
description: Builds a python wheel with cibuildwheel
inputs:
cibw-identifier:
description: "CI build wheel identifier to build"
required: true
runs:
using: "composite"
steps:
- uses: actions/setup-python@v3
- name: Install cibuildwheel
run: python -m pip install cibuildwheel==2.11.3
shell: bash
- name: Building Python ${{inputs.cibw-identifier}} Wheel
run: python -m cibuildwheel --output-dir dist
env:
CIBW_BUILD: ${{inputs.cibw-identifier}}
shell: bash
- uses: actions/upload-artifact@v3
with:
name: wheels
path: ./dist/*.whl

View File

@@ -1,81 +0,0 @@
name: DiskANN Build PDoc Documentation
on: [workflow_call]
jobs:
build-reference-documentation:
permissions:
contents: write
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v3
with:
fetch-depth: 1
- name: Set up Python 3.9
uses: actions/setup-python@v2
with:
python-version: 3.9
- name: Install python build
run: python -m pip install build
shell: bash
# Install required dependencies
- name: Prepare Linux environment
run: |
sudo scripts/dev/install-dev-deps-ubuntu.bash
shell: bash
# We need to build the wheel in order to run pdoc. pdoc does not seem to work if you just point it at
# our source directory.
- name: Building Python Wheel for documentation generation
run: python -m build --wheel --outdir documentation_dist
shell: bash
- name: "Run Reference Documentation Generation"
run: |
pip install pdoc pipdeptree
pip install documentation_dist/*.whl
echo "documentation" > dependencies_documentation.txt
pipdeptree >> dependencies_documentation.txt
pdoc -o docs/python/html diskannpy
- name: Create version environment variable
run: |
echo "DISKANN_VERSION=$(python <<EOF
from importlib.metadata import version
v = version('diskannpy')
print(v)
EOF
)" >> $GITHUB_ENV
- name: Archive documentation version artifact
uses: actions/upload-artifact@v4
with:
name: dependencies
path: |
${{ github.run_id }}-dependencies_documentation.txt
overwrite: true
- name: Archive documentation artifacts
uses: actions/upload-artifact@v4
with:
name: documentation-site
path: |
docs/python/html
# Publish to /dev if we are on the "main" branch
- name: Publish reference docs for latest development version (main branch)
uses: peaceiris/actions-gh-pages@v3
if: github.ref == 'refs/heads/main'
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
publish_dir: docs/python/html
destination_dir: docs/python/dev
# Publish to /<version> if we are releasing
- name: Publish reference docs by version (main branch)
uses: peaceiris/actions-gh-pages@v3
if: github.event_name == 'release'
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
publish_dir: docs/python/html
destination_dir: docs/python/${{ env.DISKANN_VERSION }}
# Publish to /latest if we are releasing
- name: Publish latest reference docs (main branch)
uses: peaceiris/actions-gh-pages@v3
if: github.event_name == 'release'
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
publish_dir: docs/python/html
destination_dir: docs/python/latest

View File

@@ -1,42 +0,0 @@
name: DiskANN Build Python Wheel
on: [workflow_call]
jobs:
linux-build:
name: Python - Ubuntu - ${{matrix.cibw-identifier}}
strategy:
fail-fast: false
matrix:
cibw-identifier: ["cp39-manylinux_x86_64", "cp310-manylinux_x86_64", "cp311-manylinux_x86_64"]
runs-on: ubuntu-latest
defaults:
run:
shell: bash
steps:
- name: Checkout repository
uses: actions/checkout@v3
with:
fetch-depth: 1
- name: Building python wheel ${{matrix.cibw-identifier}}
uses: ./.github/actions/python-wheel
with:
cibw-identifier: ${{matrix.cibw-identifier}}
windows-build:
name: Python - Windows - ${{matrix.cibw-identifier}}
strategy:
fail-fast: false
matrix:
cibw-identifier: ["cp39-win_amd64", "cp310-win_amd64", "cp311-win_amd64"]
runs-on: windows-latest
defaults:
run:
shell: bash
steps:
- name: Checkout repository
uses: actions/checkout@v3
with:
submodules: true
fetch-depth: 1
- name: Building python wheel ${{matrix.cibw-identifier}}
uses: ./.github/actions/python-wheel
with:
cibw-identifier: ${{matrix.cibw-identifier}}

View File

@@ -1,28 +0,0 @@
name: DiskANN Common Checks
# common means common to both pr-test and push-test
on: [workflow_call]
jobs:
formatting-check:
strategy:
fail-fast: true
name: Code Formatting Test
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v3
with:
fetch-depth: 1
- name: Checking code formatting...
uses: ./.github/actions/format-check
docker-container-build:
name: Docker Container Build
needs: [formatting-check]
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v3
with:
fetch-depth: 1
- name: Docker build
run: |
docker build .

View File

@@ -1,117 +0,0 @@
name: Disk With PQ
on: [workflow_call]
jobs:
acceptance-tests-disk-pq:
name: Disk, PQ
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest, windows-2019, windows-latest]
runs-on: ${{matrix.os}}
defaults:
run:
shell: bash
steps:
- name: Checkout repository
if: ${{ runner.os == 'Linux' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
- name: Checkout repository
if: ${{ runner.os == 'Windows' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
submodules: true
- name: DiskANN Build CLI Applications
uses: ./.github/actions/build
- name: Generate Data
uses: ./.github/actions/generate-random
- name: build and search disk index (one shot graph build, L2, no diskPQ) (float)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type float --dist_fn l2 --data_path data/rand_float_10D_10K_norm1.0.bin --index_path_prefix data/disk_index_l2_rand_float_10D_10K_norm1.0_diskfull_oneshot -R 16 -L 32 -B 0.00003 -M 1
dist/bin/search_disk_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_float_10D_10K_norm1.0_diskfull_oneshot --result_path /tmp/res --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/l2_rand_float_10D_10K_norm1.0_10D_1K_norm1.0_gt100 --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16
- name: build and search disk index (one shot graph build, cosine, no diskPQ) (float)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type float --dist_fn cosine --data_path data/rand_float_10D_10K_unnorm.bin --index_path_prefix data/disk_index_cosine_rand_float_10D_10K_unnorm_diskfull_oneshot -R 16 -L 32 -B 0.00003 -M 1
dist/bin/search_disk_index --data_type float --dist_fn cosine --fail_if_recall_below 70 --index_path_prefix data/disk_index_cosine_rand_float_10D_10K_unnorm_diskfull_oneshot --result_path /tmp/res --query_file data/rand_float_10D_1K_unnorm.bin --gt_file data/cosine_rand_float_10D_10K_unnorm_10D_1K_unnorm_gt100 --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16
- name: build and search disk index (one shot graph build, L2, no diskPQ) (int8)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type int8 --dist_fn l2 --data_path data/rand_int8_10D_10K_norm50.0.bin --index_path_prefix data/disk_index_l2_rand_int8_10D_10K_norm50.0_diskfull_oneshot -R 16 -L 32 -B 0.00003 -M 1
dist/bin/search_disk_index --data_type int8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_int8_10D_10K_norm50.0_diskfull_oneshot --result_path /tmp/res --query_file data/rand_int8_10D_1K_norm50.0.bin --gt_file data/l2_rand_int8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16
- name: build and search disk index (one shot graph build, L2, no diskPQ) (uint8)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type uint8 --dist_fn l2 --data_path data/rand_uint8_10D_10K_norm50.0.bin --index_path_prefix data/disk_index_l2_rand_uint8_10D_10K_norm50.0_diskfull_oneshot -R 16 -L 32 -B 0.00003 -M 1
dist/bin/search_disk_index --data_type uint8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_uint8_10D_10K_norm50.0_diskfull_oneshot --result_path /tmp/res --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/l2_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16
- name: build and search disk index (one shot graph build, L2, no diskPQ, build with PQ distance comparisons) (float)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type float --dist_fn l2 --data_path data/rand_float_10D_10K_norm1.0.bin --index_path_prefix data/disk_index_l2_rand_float_10D_10K_norm1.0_diskfull_oneshot_buildpq5 -R 16 -L 32 -B 0.00003 -M 1 --build_PQ_bytes 5
dist/bin/search_disk_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_float_10D_10K_norm1.0_diskfull_oneshot_buildpq5 --result_path /tmp/res --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/l2_rand_float_10D_10K_norm1.0_10D_1K_norm1.0_gt100 --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16
- name: build and search disk index (one shot graph build, L2, no diskPQ, build with PQ distance comparisons) (int8)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type int8 --dist_fn l2 --data_path data/rand_int8_10D_10K_norm50.0.bin --index_path_prefix data/disk_index_l2_rand_int8_10D_10K_norm50.0_diskfull_oneshot_buildpq5 -R 16 -L 32 -B 0.00003 -M 1 --build_PQ_bytes 5
dist/bin/search_disk_index --data_type int8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_int8_10D_10K_norm50.0_diskfull_oneshot_buildpq5 --result_path /tmp/res --query_file data/rand_int8_10D_1K_norm50.0.bin --gt_file data/l2_rand_int8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16\
- name: build and search disk index (one shot graph build, L2, no diskPQ, build with PQ distance comparisons) (uint8)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type uint8 --dist_fn l2 --data_path data/rand_uint8_10D_10K_norm50.0.bin --index_path_prefix data/disk_index_l2_rand_uint8_10D_10K_norm50.0_diskfull_oneshot_buildpq5 -R 16 -L 32 -B 0.00003 -M 1 --build_PQ_bytes 5
dist/bin/search_disk_index --data_type uint8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_uint8_10D_10K_norm50.0_diskfull_oneshot_buildpq5 --result_path /tmp/res --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/l2_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16
- name: build and search disk index (sharded graph build, L2, no diskPQ) (float)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type float --dist_fn l2 --data_path data/rand_float_10D_10K_norm1.0.bin --index_path_prefix data/disk_index_l2_rand_float_10D_10K_norm1.0_diskfull_sharded -R 16 -L 32 -B 0.00003 -M 0.00006
dist/bin/search_disk_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_float_10D_10K_norm1.0_diskfull_sharded --result_path /tmp/res --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/l2_rand_float_10D_10K_norm1.0_10D_1K_norm1.0_gt100 --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16
- name: build and search disk index (sharded graph build, cosine, no diskPQ) (float)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type float --dist_fn cosine --data_path data/rand_float_10D_10K_unnorm.bin --index_path_prefix data/disk_index_cosine_rand_float_10D_10K_unnorm_diskfull_sharded -R 16 -L 32 -B 0.00003 -M 0.00006
dist/bin/search_disk_index --data_type float --dist_fn cosine --fail_if_recall_below 70 --index_path_prefix data/disk_index_cosine_rand_float_10D_10K_unnorm_diskfull_sharded --result_path /tmp/res --query_file data/rand_float_10D_1K_unnorm.bin --gt_file data/cosine_rand_float_10D_10K_unnorm_10D_1K_unnorm_gt100 --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16
- name: build and search disk index (sharded graph build, L2, no diskPQ) (int8)
run: |
dist/bin/build_disk_index --data_type int8 --dist_fn l2 --data_path data/rand_int8_10D_10K_norm50.0.bin --index_path_prefix data/disk_index_l2_rand_int8_10D_10K_norm50.0_diskfull_sharded -R 16 -L 32 -B 0.00003 -M 0.00006
dist/bin/search_disk_index --data_type int8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_int8_10D_10K_norm50.0_diskfull_sharded --result_path /tmp/res --query_file data/rand_int8_10D_1K_norm50.0.bin --gt_file data/l2_rand_int8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16
- name: build and search disk index (sharded graph build, L2, no diskPQ) (uint8)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type uint8 --dist_fn l2 --data_path data/rand_uint8_10D_10K_norm50.0.bin --index_path_prefix data/disk_index_l2_rand_uint8_10D_10K_norm50.0_diskfull_sharded -R 16 -L 32 -B 0.00003 -M 0.00006
dist/bin/search_disk_index --data_type uint8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_uint8_10D_10K_norm50.0_diskfull_sharded --result_path /tmp/res --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/l2_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16
- name: build and search disk index (one shot graph build, L2, diskPQ) (float)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type float --dist_fn l2 --data_path data/rand_float_10D_10K_norm1.0.bin --index_path_prefix data/disk_index_l2_rand_float_10D_10K_norm1.0_diskpq_oneshot -R 16 -L 32 -B 0.00003 -M 1 --PQ_disk_bytes 5
dist/bin/search_disk_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_float_10D_10K_norm1.0_diskpq_oneshot --result_path /tmp/res --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/l2_rand_float_10D_10K_norm1.0_10D_1K_norm1.0_gt100 --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16
- name: build and search disk index (one shot graph build, L2, diskPQ) (int8)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type int8 --dist_fn l2 --data_path data/rand_int8_10D_10K_norm50.0.bin --index_path_prefix data/disk_index_l2_rand_int8_10D_10K_norm50.0_diskpq_oneshot -R 16 -L 32 -B 0.00003 -M 1 --PQ_disk_bytes 5
dist/bin/search_disk_index --data_type int8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_int8_10D_10K_norm50.0_diskpq_oneshot --result_path /tmp/res --query_file data/rand_int8_10D_1K_norm50.0.bin --gt_file data/l2_rand_int8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16
- name: build and search disk index (one shot graph build, L2, diskPQ) (uint8)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type uint8 --dist_fn l2 --data_path data/rand_uint8_10D_10K_norm50.0.bin --index_path_prefix data/disk_index_l2_rand_uint8_10D_10K_norm50.0_diskpq_oneshot -R 16 -L 32 -B 0.00003 -M 1 --PQ_disk_bytes 5
dist/bin/search_disk_index --data_type uint8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_uint8_10D_10K_norm50.0_diskpq_oneshot --result_path /tmp/res --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/l2_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16
- name: build and search disk index (sharded graph build, MIPS, diskPQ) (float)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type float --dist_fn mips --data_path data/rand_float_10D_10K_norm1.0.bin --index_path_prefix data/disk_index_mips_rand_float_10D_10K_norm1.0_diskpq_sharded -R 16 -L 32 -B 0.00003 -M 0.00006 --PQ_disk_bytes 5
dist/bin/search_disk_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_mips_rand_float_10D_10K_norm1.0_diskpq_sharded --result_path /tmp/res --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/mips_rand_float_10D_10K_norm1.0_10D_1K_norm1.0_gt100 --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16
- name: upload data and bin
uses: actions/upload-artifact@v4
with:
name: disk-pq-${{matrix.os}}
path: |
./dist/**
./data/**

View File

@@ -1,102 +0,0 @@
name: Dynamic-Labels
on: [workflow_call]
jobs:
acceptance-tests-dynamic:
name: Dynamic-Labels
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest, windows-2019, windows-latest]
runs-on: ${{matrix.os}}
defaults:
run:
shell: bash
steps:
- name: Checkout repository
if: ${{ runner.os == 'Linux' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
- name: Checkout repository
if: ${{ runner.os == 'Windows' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
submodules: true
- name: DiskANN Build CLI Applications
uses: ./.github/actions/build
- name: Generate Data
uses: ./.github/actions/generate-random
- name: Generate Labels
run: |
echo "Generating synthetic labels and computing ground truth for filtered search with universal label"
dist/bin/generate_synthetic_labels --num_labels 50 --num_points 10000 --output_file data/rand_labels_50_10K.txt --distribution_type random
echo "Generating synthetic labels with a zipf distribution and computing ground truth for filtered search with universal label"
dist/bin/generate_synthetic_labels --num_labels 50 --num_points 10000 --output_file data/zipf_labels_50_10K.txt --distribution_type zipf
- name: Test a streaming index (float) with labels (Zipf distributed)
run: |
dist/bin/test_streaming_scenario --data_type float --dist_fn l2 --data_path data/rand_float_10D_10K_norm1.0.bin --universal_label 0 --label_file data/zipf_labels_50_10K.txt --index_path_prefix data/index_zipf_stream -R 64 --FilteredLbuild 200 -L 50 --alpha 1.2 --insert_threads 8 --consolidate_threads 8 --max_points_to_insert 10000 --active_window 4000 --consolidate_interval 2000 --start_point_norm 3.2 --unique_labels_supported 51
echo "Computing groundtruth with filter"
dist/bin/compute_groundtruth_for_filters --data_type float --universal_label 0 --filter_label 1 --dist_fn l2 --base_file data/index_zipf_stream.after-streaming-act4000-cons2000-max10000.data --query_file data/rand_float_10D_1K_norm1.0.bin --K 100 --gt_file data/gt100_zipf_base-act4000-cons2000-max10000_1 --label_file data/index_zipf_stream.after-streaming-act4000-cons2000-max10000_raw_labels.txt --tags_file data/index_zipf_stream.after-streaming-act4000-cons2000-max10000.tags
echo "Searching with filter"
dist/bin/search_memory_index --data_type float --dist_fn l2 --filter_label 1 --fail_if_recall_below 40 --index_path_prefix data/index_zipf_stream.after-streaming-act4000-cons2000-max10000 --result_path data/res_stream --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/gt100_zipf_base-act4000-cons2000-max10000_1 -K 10 -L 20 40 60 80 100 150 -T 64 --dynamic true --tags 1
echo "Computing groundtruth w/o filter"
dist/bin/compute_groundtruth --data_type float --dist_fn l2 --base_file data/index_zipf_stream.after-streaming-act4000-cons2000-max10000.data --query_file data/rand_float_10D_1K_norm1.0.bin --K 100 --gt_file data/gt100_zipf_base-act4000-cons2000-max10000
echo "Searching without filter"
dist/bin/search_memory_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_zipf_stream.after-streaming-act4000-cons2000-max10000 --result_path res_stream --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/gt100_zipf_base-act4000-cons2000-max10000 -K 10 -L 20 40 60 80 100 -T 64
- name: Test a streaming index (float) with labels (random distributed)
run: |
dist/bin/test_streaming_scenario --data_type float --dist_fn l2 --data_path data/rand_float_10D_10K_norm1.0.bin --universal_label 0 --label_file data/rand_labels_50_10K.txt --index_path_prefix data/index_rand_stream -R 64 --FilteredLbuild 200 -L 50 --alpha 1.2 --insert_threads 8 --consolidate_threads 8 --max_points_to_insert 10000 --active_window 4000 --consolidate_interval 2000 --start_point_norm 3.2 --unique_labels_supported 51
echo "Computing groundtruth with filter"
dist/bin/compute_groundtruth_for_filters --data_type float --universal_label 0 --filter_label 1 --dist_fn l2 --base_file data/index_rand_stream.after-streaming-act4000-cons2000-max10000.data --query_file data/rand_float_10D_1K_norm1.0.bin --K 100 --gt_file data/gt100_rand_base-act4000-cons2000-max10000_1 --label_file data/index_rand_stream.after-streaming-act4000-cons2000-max10000_raw_labels.txt --tags_file data/index_rand_stream.after-streaming-act4000-cons2000-max10000.tags
echo "Searching with filter"
dist/bin/search_memory_index --data_type float --dist_fn l2 --filter_label 1 --fail_if_recall_below 40 --index_path_prefix data/index_rand_stream.after-streaming-act4000-cons2000-max10000 --result_path data/res_stream --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/gt100_rand_base-act4000-cons2000-max10000_1 -K 10 -L 20 40 60 80 100 150 -T 64 --dynamic true --tags 1
echo "Computing groundtruth w/o filter"
dist/bin/compute_groundtruth --data_type float --dist_fn l2 --base_file data/index_rand_stream.after-streaming-act4000-cons2000-max10000.data --query_file data/rand_float_10D_1K_norm1.0.bin --K 100 --gt_file data/gt100_rand_base-act4000-cons2000-max10000
echo "Searching without filter"
dist/bin/search_memory_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_rand_stream.after-streaming-act4000-cons2000-max10000 --result_path res_stream --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/gt100_rand_base-act4000-cons2000-max10000 -K 10 -L 20 40 60 80 100 -T 64
- name: Test Insert Delete Consolidate (float) with labels (zipf distributed)
run: |
dist/bin/test_insert_deletes_consolidate --data_type float --dist_fn l2 --universal_label 0 --label_file data/zipf_labels_50_10K.txt --FilteredLbuild 70 --data_path data/rand_float_10D_10K_norm1.0.bin --index_path_prefix data/index_zipf_ins_del -R 64 -L 10 --alpha 1.2 --points_to_skip 0 --max_points_to_insert 7500 --beginning_index_size 0 --points_per_checkpoint 1000 --checkpoints_per_snapshot 0 --points_to_delete_from_beginning 2500 --start_deletes_after 5000 --do_concurrent true --start_point_norm 3.2 --unique_labels_supported 51
echo "Computing groundtruth with filter"
dist/bin/compute_groundtruth_for_filters --data_type float --filter_label 5 --universal_label 0 --dist_fn l2 --base_file data/index_zipf_ins_del.after-concurrent-delete-del2500-7500.data --query_file data/rand_float_10D_1K_norm1.0.bin --K 100 --gt_file data/gt100_zipf_random10D_1K_wlabel_5 --label_file data/index_zipf_ins_del.after-concurrent-delete-del2500-7500_raw_labels.txt --tags_file data/index_zipf_ins_del.after-concurrent-delete-del2500-7500.tags
echo "Searching with filter"
dist/bin/search_memory_index --data_type float --dist_fn l2 --filter_label 5 --fail_if_recall_below 10 --index_path_prefix data/index_zipf_ins_del.after-concurrent-delete-del2500-7500 --result_path data/res_zipf_stream --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/gt100_zipf_random10D_1K_wlabel_5 -K 10 -L 20 40 60 80 100 150 -T 64 --dynamic true --tags 1
echo "Computing groundtruth w/o filter"
dist/bin/compute_groundtruth --data_type float --dist_fn l2 --base_file data/index_zipf_ins_del.after-concurrent-delete-del2500-7500.data --query_file data/rand_float_10D_1K_norm1.0.bin --K 100 --gt_file data/gt100_zipf_random10D_1K
echo "Searching without filter"
dist/bin/search_memory_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_zipf_ins_del.after-concurrent-delete-del2500-7500 --result_path res_stream --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/gt100_zipf_random10D_1K -K 10 -L 20 40 60 80 100 -T 64
- name: Test Insert Delete Consolidate (float) with labels (random distributed)
run: |
dist/bin/test_insert_deletes_consolidate --data_type float --dist_fn l2 --universal_label 0 --label_file data/rand_labels_50_10K.txt --FilteredLbuild 70 --data_path data/rand_float_10D_10K_norm1.0.bin --index_path_prefix data/index_rand_ins_del -R 64 -L 10 --alpha 1.2 --points_to_skip 0 --max_points_to_insert 7500 --beginning_index_size 0 --points_per_checkpoint 1000 --checkpoints_per_snapshot 0 --points_to_delete_from_beginning 2500 --start_deletes_after 5000 --do_concurrent true --start_point_norm 3.2 --unique_labels_supported 51
echo "Computing groundtruth with filter"
dist/bin/compute_groundtruth_for_filters --data_type float --filter_label 5 --universal_label 0 --dist_fn l2 --base_file data/index_rand_ins_del.after-concurrent-delete-del2500-7500.data --query_file data/rand_float_10D_1K_norm1.0.bin --K 100 --gt_file data/gt100_rand_random10D_1K_wlabel_5 --label_file data/index_rand_ins_del.after-concurrent-delete-del2500-7500_raw_labels.txt --tags_file data/index_rand_ins_del.after-concurrent-delete-del2500-7500.tags
echo "Searching with filter"
dist/bin/search_memory_index --data_type float --dist_fn l2 --filter_label 5 --fail_if_recall_below 40 --index_path_prefix data/index_rand_ins_del.after-concurrent-delete-del2500-7500 --result_path data/res_rand_stream --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/gt100_rand_random10D_1K_wlabel_5 -K 10 -L 20 40 60 80 100 150 -T 64 --dynamic true --tags 1
echo "Computing groundtruth w/o filter"
dist/bin/compute_groundtruth --data_type float --dist_fn l2 --base_file data/index_rand_ins_del.after-concurrent-delete-del2500-7500.data --query_file data/rand_float_10D_1K_norm1.0.bin --K 100 --gt_file data/gt100_rand_random10D_1K
echo "Searching without filter"
dist/bin/search_memory_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_rand_ins_del.after-concurrent-delete-del2500-7500 --result_path res_stream --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/gt100_rand_random10D_1K -K 10 -L 20 40 60 80 100 -T 64
- name: upload data and bin
uses: actions/upload-artifact@v4
with:
name: dynamic-labels-${{matrix.os}}
path: |
./dist/**
./data/**

View File

@@ -1,75 +0,0 @@
name: Dynamic
on: [workflow_call]
jobs:
acceptance-tests-dynamic:
name: Dynamic
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest, windows-2019, windows-latest]
runs-on: ${{matrix.os}}
defaults:
run:
shell: bash
steps:
- name: Checkout repository
if: ${{ runner.os == 'Linux' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
- name: Checkout repository
if: ${{ runner.os == 'Windows' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
submodules: true
- name: DiskANN Build CLI Applications
uses: ./.github/actions/build
- name: Generate Data
uses: ./.github/actions/generate-random
- name: test a streaming index (float)
run: |
dist/bin/test_streaming_scenario --data_type float --dist_fn l2 --data_path data/rand_float_10D_10K_norm1.0.bin --index_path_prefix data/index_stream -R 64 -L 600 --alpha 1.2 --insert_threads 4 --consolidate_threads 4 --max_points_to_insert 10000 --active_window 4000 --consolidate_interval 2000 --start_point_norm 3.2
dist/bin/compute_groundtruth --data_type float --dist_fn l2 --base_file data/index_stream.after-streaming-act4000-cons2000-max10000.data --query_file data/rand_float_10D_1K_norm1.0.bin --K 100 --gt_file data/gt100_base-act4000-cons2000-max10000 --tags_file data/index_stream.after-streaming-act4000-cons2000-max10000.tags
dist/bin/search_memory_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_stream.after-streaming-act4000-cons2000-max10000 --result_path data/res_stream --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/gt100_base-act4000-cons2000-max10000 -K 10 -L 20 40 60 80 100 -T 64 --dynamic true --tags 1
- name: test a streaming index (int8)
if: success() || failure()
run: |
dist/bin/test_streaming_scenario --data_type int8 --dist_fn l2 --data_path data/rand_int8_10D_10K_norm50.0.bin --index_path_prefix data/index_stream -R 64 -L 600 --alpha 1.2 --insert_threads 4 --consolidate_threads 4 --max_points_to_insert 10000 --active_window 4000 --consolidate_interval 2000 --start_point_norm 200
dist/bin/compute_groundtruth --data_type int8 --dist_fn l2 --base_file data/index_stream.after-streaming-act4000-cons2000-max10000.data --query_file data/rand_int8_10D_1K_norm50.0.bin --K 100 --gt_file data/gt100_base-act4000-cons2000-max10000 --tags_file data/index_stream.after-streaming-act4000-cons2000-max10000.tags
dist/bin/search_memory_index --data_type int8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_stream.after-streaming-act4000-cons2000-max10000 --result_path res_stream --query_file data/rand_int8_10D_1K_norm50.0.bin --gt_file data/gt100_base-act4000-cons2000-max10000 -K 10 -L 20 40 60 80 100 -T 64 --dynamic true --tags 1
- name: test a streaming index
if: success() || failure()
run: |
dist/bin/test_streaming_scenario --data_type uint8 --dist_fn l2 --data_path data/rand_uint8_10D_10K_norm50.0.bin --index_path_prefix data/index_stream -R 64 -L 600 --alpha 1.2 --insert_threads 4 --consolidate_threads 4 --max_points_to_insert 10000 --active_window 4000 --consolidate_interval 2000 --start_point_norm 200
dist/bin/compute_groundtruth --data_type uint8 --dist_fn l2 --base_file data/index_stream.after-streaming-act4000-cons2000-max10000.data --query_file data/rand_uint8_10D_1K_norm50.0.bin --K 100 --gt_file data/gt100_base-act4000-cons2000-max10000 --tags_file data/index_stream.after-streaming-act4000-cons2000-max10000.tags
dist/bin/search_memory_index --data_type uint8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_stream.after-streaming-act4000-cons2000-max10000 --result_path data/res_stream --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/gt100_base-act4000-cons2000-max10000 -K 10 -L 20 40 60 80 100 -T 64 --dynamic true --tags 1
- name: build and search an incremental index (float)
if: success() || failure()
run: |
dist/bin/test_insert_deletes_consolidate --data_type float --dist_fn l2 --data_path data/rand_float_10D_10K_norm1.0.bin --index_path_prefix data/index_ins_del -R 64 -L 300 --alpha 1.2 -T 8 --points_to_skip 0 --max_points_to_insert 7500 --beginning_index_size 0 --points_per_checkpoint 1000 --checkpoints_per_snapshot 0 --points_to_delete_from_beginning 2500 --start_deletes_after 5000 --do_concurrent true --start_point_norm 3.2;
dist/bin/compute_groundtruth --data_type float --dist_fn l2 --base_file data/index_ins_del.after-concurrent-delete-del2500-7500.data --query_file data/rand_float_10D_1K_norm1.0.bin --K 100 --gt_file data/gt100_random10D_1K-conc-2500-7500 --tags_file data/index_ins_del.after-concurrent-delete-del2500-7500.tags
dist/bin/search_memory_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_ins_del.after-concurrent-delete-del2500-7500 --result_path data/res_ins_del --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/gt100_random10D_1K-conc-2500-7500 -K 10 -L 20 40 60 80 100 -T 8 --dynamic true --tags 1
- name: build and search an incremental index (int8)
if: success() || failure()
run: |
dist/bin/test_insert_deletes_consolidate --data_type int8 --dist_fn l2 --data_path data/rand_int8_10D_10K_norm50.0.bin --index_path_prefix data/index_ins_del -R 64 -L 300 --alpha 1.2 -T 8 --points_to_skip 0 --max_points_to_insert 7500 --beginning_index_size 0 --points_per_checkpoint 1000 --checkpoints_per_snapshot 0 --points_to_delete_from_beginning 2500 --start_deletes_after 5000 --do_concurrent true --start_point_norm 200
dist/bin/compute_groundtruth --data_type int8 --dist_fn l2 --base_file data/index_ins_del.after-concurrent-delete-del2500-7500.data --query_file data/rand_int8_10D_1K_norm50.0.bin --K 100 --gt_file data/gt100_random10D_1K-conc-2500-7500 --tags_file data/index_ins_del.after-concurrent-delete-del2500-7500.tags
dist/bin/search_memory_index --data_type int8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_ins_del.after-concurrent-delete-del2500-7500 --result_path data/res_ins_del --query_file data/rand_int8_10D_1K_norm50.0.bin --gt_file data/gt100_random10D_1K-conc-2500-7500 -K 10 -L 20 40 60 80 100 -T 8 --dynamic true --tags 1
- name: build and search an incremental index (uint8)
if: success() || failure()
run: |
dist/bin/test_insert_deletes_consolidate --data_type uint8 --dist_fn l2 --data_path data/rand_uint8_10D_10K_norm50.0.bin --index_path_prefix data/index_ins_del -R 64 -L 300 --alpha 1.2 -T 8 --points_to_skip 0 --max_points_to_insert 7500 --beginning_index_size 0 --points_per_checkpoint 1000 --checkpoints_per_snapshot 0 --points_to_delete_from_beginning 2500 --start_deletes_after 5000 --do_concurrent true --start_point_norm 200
dist/bin/compute_groundtruth --data_type uint8 --dist_fn l2 --base_file data/index_ins_del.after-concurrent-delete-del2500-7500.data --query_file data/rand_uint8_10D_1K_norm50.0.bin --K 100 --gt_file data/gt100_random10D_10K-conc-2500-7500 --tags_file data/index_ins_del.after-concurrent-delete-del2500-7500.tags
dist/bin/search_memory_index --data_type uint8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_ins_del.after-concurrent-delete-del2500-7500 --result_path data/res_ins_del --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/gt100_random10D_10K-conc-2500-7500 -K 10 -L 20 40 60 80 100 -T 8 --dynamic true --tags 1
- name: upload data and bin
uses: actions/upload-artifact@v4
with:
name: dynamic-${{matrix.os}}
path: |
./dist/**
./data/**

View File

@@ -1,81 +0,0 @@
name: In-Memory Without PQ
on: [workflow_call]
jobs:
acceptance-tests-mem-no-pq:
name: In-Mem, Without PQ
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest, windows-2019, windows-latest]
runs-on: ${{matrix.os}}
defaults:
run:
shell: bash
steps:
- name: Checkout repository
if: ${{ runner.os == 'Linux' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
- name: Checkout repository
if: ${{ runner.os == 'Windows' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
submodules: true
- name: DiskANN Build CLI Applications
uses: ./.github/actions/build
- name: Generate Data
uses: ./.github/actions/generate-random
- name: build and search in-memory index with L2 metrics (float)
if: success() || failure()
run: |
dist/bin/build_memory_index --data_type float --dist_fn l2 --data_path data/rand_float_10D_10K_norm1.0.bin --index_path_prefix data/index_l2_rand_float_10D_10K_norm1.0
dist/bin/search_memory_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_l2_rand_float_10D_10K_norm1.0 --query_file data/rand_float_10D_1K_norm1.0.bin --recall_at 10 --result_path temp --gt_file data/l2_rand_float_10D_10K_norm1.0_10D_1K_norm1.0_gt100 -L 16 32
- name: build and search in-memory index with L2 metrics (int8)
if: success() || failure()
run: |
dist/bin/build_memory_index --data_type int8 --dist_fn l2 --data_path data/rand_int8_10D_10K_norm50.0.bin --index_path_prefix data/index_l2_rand_int8_10D_10K_norm50.0
dist/bin/search_memory_index --data_type int8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_l2_rand_int8_10D_10K_norm50.0 --query_file data/rand_int8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/l2_rand_int8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 -L 16 32
- name: build and search in-memory index with L2 metrics (uint8)
if: success() || failure()
run: |
dist/bin/build_memory_index --data_type uint8 --dist_fn l2 --data_path data/rand_uint8_10D_10K_norm50.0.bin --index_path_prefix data/index_l2_rand_uint8_10D_10K_norm50.0
dist/bin/search_memory_index --data_type uint8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_l2_rand_uint8_10D_10K_norm50.0 --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/l2_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 -L 16 32
- name: Searching with fast_l2 distance function (float)
if: runner.os != 'Windows' && (success() || failure())
run: |
dist/bin/search_memory_index --data_type float --dist_fn fast_l2 --fail_if_recall_below 70 --index_path_prefix data/index_l2_rand_float_10D_10K_norm1.0 --query_file data/rand_float_10D_1K_norm1.0.bin --recall_at 10 --result_path temp --gt_file data/l2_rand_float_10D_10K_norm1.0_10D_1K_norm1.0_gt100 -L 16 32
- name: build and search in-memory index with MIPS metric (float)
if: success() || failure()
run: |
dist/bin/build_memory_index --data_type float --dist_fn mips --data_path data/rand_float_10D_10K_norm1.0.bin --index_path_prefix data/index_mips_rand_float_10D_10K_norm1.0
dist/bin/search_memory_index --data_type float --dist_fn mips --fail_if_recall_below 70 --index_path_prefix data/index_l2_rand_float_10D_10K_norm1.0 --query_file data/rand_float_10D_1K_norm1.0.bin --recall_at 10 --result_path temp --gt_file data/mips_rand_float_10D_10K_norm1.0_10D_1K_norm1.0_gt100 -L 16 32
- name: build and search in-memory index with cosine metric (float)
if: success() || failure()
run: |
dist/bin/build_memory_index --data_type float --dist_fn cosine --data_path data/rand_float_10D_10K_norm1.0.bin --index_path_prefix data/index_cosine_rand_float_10D_10K_norm1.0
dist/bin/search_memory_index --data_type float --dist_fn cosine --fail_if_recall_below 70 --index_path_prefix data/index_l2_rand_float_10D_10K_norm1.0 --query_file data/rand_float_10D_1K_norm1.0.bin --recall_at 10 --result_path temp --gt_file data/cosine_rand_float_10D_10K_norm1.0_10D_1K_norm1.0_gt100 -L 16 32
- name: build and search in-memory index with cosine metric (int8)
if: success() || failure()
run: |
dist/bin/build_memory_index --data_type int8 --dist_fn cosine --data_path data/rand_int8_10D_10K_norm50.0.bin --index_path_prefix data/index_cosine_rand_int8_10D_10K_norm50.0
dist/bin/search_memory_index --data_type int8 --dist_fn cosine --fail_if_recall_below 70 --index_path_prefix data/index_l2_rand_int8_10D_10K_norm50.0 --query_file data/rand_int8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/cosine_rand_int8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 -L 16 32
- name: build and search in-memory index with cosine metric
if: success() || failure()
run: |
dist/bin/build_memory_index --data_type uint8 --dist_fn cosine --data_path data/rand_uint8_10D_10K_norm50.0.bin --index_path_prefix data/index_cosine_rand_uint8_10D_10K_norm50.0
dist/bin/search_memory_index --data_type uint8 --dist_fn cosine --fail_if_recall_below 70 --index_path_prefix data/index_l2_rand_uint8_10D_10K_norm50.0 --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/cosine_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 -L 16 32
- name: upload data and bin
uses: actions/upload-artifact@v4
with:
name: in-memory-no-pq-${{matrix.os}}
path: |
./dist/**
./data/**

View File

@@ -1,56 +0,0 @@
name: In-Memory With PQ
on: [workflow_call]
jobs:
acceptance-tests-mem-pq:
name: In-Mem, PQ
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest, windows-2019, windows-latest]
runs-on: ${{matrix.os}}
defaults:
run:
shell: bash
steps:
- name: Checkout repository
if: ${{ runner.os == 'Linux' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
- name: Checkout repository
if: ${{ runner.os == 'Windows' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
submodules: true
- name: DiskANN Build CLI Applications
uses: ./.github/actions/build
- name: Generate Data
uses: ./.github/actions/generate-random
- name: build and search in-memory index with L2 metric with PQ based distance comparisons (float)
if: success() || failure()
run: |
dist/bin/build_memory_index --data_type float --dist_fn l2 --data_path data/rand_float_10D_10K_norm1.0.bin --index_path_prefix data/index_l2_rand_float_10D_10K_norm1.0_buildpq5 --build_PQ_bytes 5
dist/bin/search_memory_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_l2_rand_float_10D_10K_norm1.0_buildpq5 --query_file data/rand_float_10D_1K_norm1.0.bin --recall_at 10 --result_path temp --gt_file data/l2_rand_float_10D_10K_norm1.0_10D_1K_norm1.0_gt100 -L 16 32
- name: build and search in-memory index with L2 metrics with PQ base distance comparisons (int8)
if: success() || failure()
run: |
dist/bin/build_memory_index --data_type int8 --dist_fn l2 --data_path data/rand_int8_10D_10K_norm50.0.bin --index_path_prefix data/index_l2_rand_int8_10D_10K_norm50.0_buildpq5 --build_PQ_bytes 5
dist/bin/search_memory_index --data_type int8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_l2_rand_int8_10D_10K_norm50.0_buildpq5 --query_file data/rand_int8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/l2_rand_int8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 -L 16 32
- name: build and search in-memory index with L2 metrics with PQ base distance comparisons (uint8)
if: success() || failure()
run: |
dist/bin/build_memory_index --data_type uint8 --dist_fn l2 --data_path data/rand_uint8_10D_10K_norm50.0.bin --index_path_prefix data/index_l2_rand_uint8_10D_10K_norm50.0_buildpq5 --build_PQ_bytes 5
dist/bin/search_memory_index --data_type uint8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_l2_rand_uint8_10D_10K_norm50.0_buildpq5 --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/l2_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 -L 16 32
- name: upload data and bin
uses: actions/upload-artifact@v4
with:
name: in-memory-pq-${{matrix.os}}
path: |
./dist/**
./data/**

View File

@@ -1,120 +0,0 @@
name: Labels
on: [workflow_call]
jobs:
acceptance-tests-labels:
name: Labels
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest, windows-2019, windows-latest]
runs-on: ${{matrix.os}}
defaults:
run:
shell: bash
steps:
- name: Checkout repository
if: ${{ runner.os == 'Linux' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
- name: Checkout repository
if: ${{ runner.os == 'Windows' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
submodules: true
- name: DiskANN Build CLI Applications
uses: ./.github/actions/build
- name: Generate Data
uses: ./.github/actions/generate-random
- name: Generate Labels
run: |
echo "Generating synthetic labels and computing ground truth for filtered search with universal label"
dist/bin/generate_synthetic_labels --num_labels 50 --num_points 10000 --output_file data/rand_labels_50_10K.txt --distribution_type random
dist/bin/compute_groundtruth_for_filters --data_type uint8 --dist_fn l2 --universal_label 0 --filter_label 10 --base_file data/rand_uint8_10D_10K_norm50.0.bin --query_file data/rand_uint8_10D_1K_norm50.0.bin --label_file data/rand_labels_50_10K.txt --gt_file data/l2_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel --K 100
dist/bin/compute_groundtruth_for_filters --data_type uint8 --dist_fn mips --universal_label 0 --filter_label 10 --base_file data/rand_uint8_10D_10K_norm50.0.bin --query_file data/rand_uint8_10D_1K_norm50.0.bin --label_file data/rand_labels_50_10K.txt --gt_file data/mips_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel --K 100
dist/bin/compute_groundtruth_for_filters --data_type uint8 --dist_fn cosine --universal_label 0 --filter_label 10 --base_file data/rand_uint8_10D_10K_norm50.0.bin --query_file data/rand_uint8_10D_1K_norm50.0.bin --label_file data/rand_labels_50_10K.txt --gt_file data/cosine_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel --K 100
echo "Generating synthetic labels with a zipf distribution and computing ground truth for filtered search with universal label"
dist/bin/generate_synthetic_labels --num_labels 50 --num_points 10000 --output_file data/zipf_labels_50_10K.txt --distribution_type zipf
dist/bin/compute_groundtruth_for_filters --data_type uint8 --dist_fn l2 --universal_label 0 --filter_label 5 --base_file data/rand_uint8_10D_10K_norm50.0.bin --query_file data/rand_uint8_10D_1K_norm50.0.bin --label_file data/zipf_labels_50_10K.txt --gt_file data/l2_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel --K 100
dist/bin/compute_groundtruth_for_filters --data_type uint8 --dist_fn mips --universal_label 0 --filter_label 5 --base_file data/rand_uint8_10D_10K_norm50.0.bin --query_file data/rand_uint8_10D_1K_norm50.0.bin --label_file data/zipf_labels_50_10K.txt --gt_file data/mips_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel --K 100
dist/bin/compute_groundtruth_for_filters --data_type uint8 --dist_fn cosine --universal_label 0 --filter_label 5 --base_file data/rand_uint8_10D_10K_norm50.0.bin --query_file data/rand_uint8_10D_1K_norm50.0.bin --label_file data/zipf_labels_50_10K.txt --gt_file data/cosine_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel --K 100
echo "Generating synthetic labels and computing ground truth for filtered search without a universal label"
dist/bin/compute_groundtruth_for_filters --data_type uint8 --dist_fn l2 --filter_label 5 --base_file data/rand_uint8_10D_10K_norm50.0.bin --query_file data/rand_uint8_10D_1K_norm50.0.bin --label_file data/zipf_labels_50_10K.txt --gt_file data/l2_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel_nouniversal --K 100
dist/bin/generate_synthetic_labels --num_labels 10 --num_points 1000 --output_file data/query_labels_1K.txt --distribution_type one_per_point
dist/bin/compute_groundtruth_for_filters --data_type uint8 --dist_fn l2 --universal_label 0 --filter_label_file data/query_labels_1K.txt --base_file data/rand_uint8_10D_10K_norm50.0.bin --query_file data/rand_uint8_10D_1K_norm50.0.bin --label_file data/zipf_labels_50_10K.txt --gt_file data/combined_l2_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel --K 100
- name: build and search in-memory index with labels using L2 and Cosine metrics (random distributed labels)
if: success() || failure()
run: |
dist/bin/build_memory_index --data_type uint8 --dist_fn l2 --FilteredLbuild 90 --universal_label 0 --data_path data/rand_uint8_10D_10K_norm50.0.bin --label_file data/rand_labels_50_10K.txt --index_path_prefix data/index_l2_rand_uint8_10D_10K_norm50_wlabel
dist/bin/build_memory_index --data_type uint8 --dist_fn cosine --FilteredLbuild 90 --universal_label 0 --data_path data/rand_uint8_10D_10K_norm50.0.bin --label_file data/rand_labels_50_10K.txt --index_path_prefix data/index_cosine_rand_uint8_10D_10K_norm50_wlabel
dist/bin/search_memory_index --data_type uint8 --dist_fn l2 --filter_label 10 --fail_if_recall_below 70 --index_path_prefix data/index_l2_rand_uint8_10D_10K_norm50_wlabel --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/l2_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel -L 16 32
dist/bin/search_memory_index --data_type uint8 --dist_fn cosine --filter_label 10 --fail_if_recall_below 70 --index_path_prefix data/index_cosine_rand_uint8_10D_10K_norm50_wlabel --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/cosine_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel -L 16 32
echo "Searching without filters"
dist/bin/search_memory_index --data_type uint8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_l2_rand_uint8_10D_10K_norm50_wlabel --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/l2_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 -L 32 64
dist/bin/search_memory_index --data_type uint8 --dist_fn cosine --fail_if_recall_below 70 --index_path_prefix data/index_cosine_rand_uint8_10D_10K_norm50_wlabel --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/cosine_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 -L 32 64
- name: build and search disk index with labels using L2 and Cosine metrics (random distributed labels)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type uint8 --dist_fn l2 --universal_label 0 --FilteredLbuild 90 --data_path data/rand_uint8_10D_10K_norm50.0.bin --label_file data/rand_labels_50_10K.txt --index_path_prefix data/disk_index_l2_rand_uint8_10D_10K_norm50_wlabel -R 32 -L 5 -B 0.00003 -M 1
dist/bin/search_disk_index --data_type uint8 --dist_fn l2 --filter_label 10 --fail_if_recall_below 50 --index_path_prefix data/disk_index_l2_rand_uint8_10D_10K_norm50_wlabel --result_path temp --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/l2_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16
- name: build and search in-memory index with labels using L2 and Cosine metrics (zipf distributed labels)
if: success() || failure()
run: |
dist/bin/build_memory_index --data_type uint8 --dist_fn l2 --FilteredLbuild 90 --universal_label 0 --data_path data/rand_uint8_10D_10K_norm50.0.bin --label_file data/zipf_labels_50_10K.txt --index_path_prefix data/index_l2_zipf_uint8_10D_10K_norm50_wlabel
dist/bin/build_memory_index --data_type uint8 --dist_fn cosine --FilteredLbuild 90 --universal_label 0 --data_path data/rand_uint8_10D_10K_norm50.0.bin --label_file data/zipf_labels_50_10K.txt --index_path_prefix data/index_cosine_zipf_uint8_10D_10K_norm50_wlabel
dist/bin/search_memory_index --data_type uint8 --dist_fn l2 --filter_label 5 --fail_if_recall_below 70 --index_path_prefix data/index_l2_zipf_uint8_10D_10K_norm50_wlabel --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/l2_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel -L 16 32
dist/bin/search_memory_index --data_type uint8 --dist_fn cosine --filter_label 5 --fail_if_recall_below 70 --index_path_prefix data/index_cosine_zipf_uint8_10D_10K_norm50_wlabel --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/cosine_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel -L 16 32
echo "Searching without filters"
dist/bin/compute_groundtruth --data_type uint8 --dist_fn l2 --base_file data/rand_uint8_10D_10K_norm50.0.bin --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/l2_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 --K 100
dist/bin/compute_groundtruth --data_type uint8 --dist_fn cosine --base_file data/rand_uint8_10D_10K_norm50.0.bin --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/cosine_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 --K 100
dist/bin/search_memory_index --data_type uint8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_l2_zipf_uint8_10D_10K_norm50_wlabel --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/l2_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 -L 32 64
dist/bin/search_memory_index --data_type uint8 --dist_fn cosine --fail_if_recall_below 70 --index_path_prefix data/index_cosine_zipf_uint8_10D_10K_norm50_wlabel --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/cosine_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 -L 32 64
- name: build and search disk index with labels using L2 and Cosine metrics (zipf distributed labels)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type uint8 --dist_fn l2 --universal_label 0 --FilteredLbuild 90 --data_path data/rand_uint8_10D_10K_norm50.0.bin --label_file data/zipf_labels_50_10K.txt --index_path_prefix data/disk_index_l2_zipf_uint8_10D_10K_norm50_wlabel -R 32 -L 5 -B 0.00003 -M 1
dist/bin/search_disk_index --data_type uint8 --dist_fn l2 --filter_label 5 --fail_if_recall_below 50 --index_path_prefix data/disk_index_l2_zipf_uint8_10D_10K_norm50_wlabel --result_path temp --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/l2_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16
- name : build and search in-memory and disk index (without universal label, zipf distributed)
if: success() || failure()
run: |
dist/bin/build_memory_index --data_type uint8 --dist_fn l2 --FilteredLbuild 90 --data_path data/rand_uint8_10D_10K_norm50.0.bin --label_file data/zipf_labels_50_10K.txt --index_path_prefix data/index_l2_zipf_uint8_10D_10K_norm50_wlabel_nouniversal
dist/bin/build_disk_index --data_type uint8 --dist_fn l2 --FilteredLbuild 90 --data_path data/rand_uint8_10D_10K_norm50.0.bin --label_file data/zipf_labels_50_10K.txt --index_path_prefix data/disk_index_l2_zipf_uint8_10D_10K_norm50_wlabel_nouniversal -R 32 -L 5 -B 0.00003 -M 1
dist/bin/search_memory_index --data_type uint8 --dist_fn l2 --filter_label 5 --fail_if_recall_below 70 --index_path_prefix data/index_l2_zipf_uint8_10D_10K_norm50_wlabel_nouniversal --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/l2_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel_nouniversal -L 16 32
dist/bin/search_disk_index --data_type uint8 --dist_fn l2 --filter_label 5 --index_path_prefix data/disk_index_l2_zipf_uint8_10D_10K_norm50_wlabel_nouniversal --result_path temp --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/l2_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel_nouniversal --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16
- name: Generate combined GT for each query with a separate label and search
if: success() || failure()
run: |
dist/bin/build_memory_index --data_type uint8 --dist_fn l2 --FilteredLbuild 90 --universal_label 0 --data_path data/rand_uint8_10D_10K_norm50.0.bin --label_file data/zipf_labels_50_10K.txt --index_path_prefix data/index_l2_zipf_uint8_10D_10K_norm50_wlabel
dist/bin/search_memory_index --data_type uint8 --dist_fn l2 --query_filters_file data/query_labels_1K.txt --fail_if_recall_below 70 --index_path_prefix data/index_l2_zipf_uint8_10D_10K_norm50_wlabel --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/combined_l2_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel -L 16 32
- name: build and search in-memory index with pq_dist of 5 with 10 dimensions
if: success() || failure()
run: |
dist/bin/build_memory_index --data_type uint8 --dist_fn l2 --FilteredLbuild 90 --universal_label 0 --data_path data/rand_uint8_10D_10K_norm50.0.bin --label_file data/rand_labels_50_10K.txt --index_path_prefix data/index_l2_rand_uint8_10D_10K_norm50_wlabel --build_PQ_bytes 5
dist/bin/search_memory_index --data_type uint8 --dist_fn l2 --filter_label 10 --fail_if_recall_below 70 --index_path_prefix data/index_l2_rand_uint8_10D_10K_norm50_wlabel --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/l2_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel -L 16 32
- name: Build and search stitched vamana with random and zipf distributed labels
if: success() || failure()
run: |
dist/bin/build_stitched_index --num_threads 48 --data_type uint8 --data_path data/rand_uint8_10D_10K_norm50.0.bin --label_file data/rand_labels_50_10K.txt -R 32 -L 100 --alpha 1.2 --stitched_R 64 --index_path_prefix data/stit_rand_32_100_64_new --universal_label 0
dist/bin/build_stitched_index --num_threads 48 --data_type uint8 --data_path data/rand_uint8_10D_10K_norm50.0.bin --label_file data/zipf_labels_50_10K.txt -R 32 -L 100 --alpha 1.2 --stitched_R 64 --index_path_prefix data/stit_zipf_32_100_64_new --universal_label 0
dist/bin/search_memory_index --num_threads 48 --data_type uint8 --dist_fn l2 --filter_label 10 --index_path_prefix data/stit_rand_32_100_64_new --query_file data/rand_uint8_10D_1K_norm50.0.bin --result_path data/rand_stit_96_10_90_new --gt_file data/l2_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel -K 10 -L 16 32 150
dist/bin/search_memory_index --num_threads 48 --data_type uint8 --dist_fn l2 --filter_label 5 --index_path_prefix data/stit_zipf_32_100_64_new --query_file data/rand_uint8_10D_1K_norm50.0.bin --result_path data/zipf_stit_96_10_90_new --gt_file data/l2_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel -K 10 -L 16 32 150
- name: upload data and bin
if: success() || failure()
uses: actions/upload-artifact@v4
with:
name: labels-${{matrix.os}}
path: |
./dist/**
./data/**

View File

@@ -1,60 +0,0 @@
name: Disk With PQ
on: [workflow_call]
jobs:
acceptance-tests-disk-pq:
name: Disk, PQ
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest, windows-2019, windows-latest]
runs-on: ${{matrix.os}}
defaults:
run:
shell: bash
steps:
- name: Checkout repository
if: ${{ runner.os == 'Linux' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
- name: Checkout repository
if: ${{ runner.os == 'Windows' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
submodules: true
- name: DiskANN Build CLI Applications
uses: ./.github/actions/build
- name: Generate Data
uses: ./.github/actions/generate-high-dim-random
- name: build and search disk index (1020D, one shot graph build, L2, no diskPQ) (float)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type float --dist_fn l2 --data_path data/rand_float_1020D_5K_norm1.0.bin --index_path_prefix data/disk_index_l2_rand_float_1020D_5K_norm1.0_diskfull_oneshot -R 32 -L 500 -B 0.003 -M 1
dist/bin/search_disk_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_float_1020D_5K_norm1.0_diskfull_oneshot --result_path /tmp/res --query_file data/rand_float_1020D_1K_norm1.0.bin --gt_file data/l2_rand_float_1020D_5K_norm1.0_1020D_1K_norm1.0_gt100 --recall_at 5 -L 250 -W 2 --num_nodes_to_cache 100 -T 16
#- name: build and search disk index (1024D, one shot graph build, L2, no diskPQ) (float)
# if: success() || failure()
# run: |
# dist/bin/build_disk_index --data_type float --dist_fn l2 --data_path data/rand_float_1024D_5K_norm1.0.bin --index_path_prefix data/disk_index_l2_rand_float_1024D_5K_norm1.0_diskfull_oneshot -R 32 -L 500 -B 0.003 -M 1
# dist/bin/search_disk_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_float_1024D_5K_norm1.0_diskfull_oneshot --result_path /tmp/res --query_file data/rand_float_1024D_1K_norm1.0.bin --gt_file data/l2_rand_float_1024D_5K_norm1.0_1024D_1K_norm1.0_gt100 --recall_at 5 -L 250 -W 2 --num_nodes_to_cache 100 -T 16
- name: build and search disk index (1536D, one shot graph build, L2, no diskPQ) (float)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type float --dist_fn l2 --data_path data/rand_float_1536D_5K_norm1.0.bin --index_path_prefix data/disk_index_l2_rand_float_1536D_5K_norm1.0_diskfull_oneshot -R 32 -L 500 -B 0.003 -M 1
dist/bin/search_disk_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_float_1536D_5K_norm1.0_diskfull_oneshot --result_path /tmp/res --query_file data/rand_float_1536D_1K_norm1.0.bin --gt_file data/l2_rand_float_1536D_5K_norm1.0_1536D_1K_norm1.0_gt100 --recall_at 5 -L 250 -W 2 --num_nodes_to_cache 100 -T 16
- name: build and search disk index (4096D, one shot graph build, L2, no diskPQ) (int8)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type int8 --dist_fn l2 --data_path data/rand_int8_4096D_5K_norm1.0.bin --index_path_prefix data/disk_index_l2_rand_int8_4096D_5K_norm1.0_diskfull_oneshot -R 32 -L 500 -B 0.003 -M 1
dist/bin/search_disk_index --data_type int8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_int8_4096D_5K_norm1.0_diskfull_oneshot --result_path /tmp/res --query_file data/rand_int8_4096D_1K_norm1.0.bin --gt_file data/l2_rand_int8_4096D_5K_norm1.0_4096D_1K_norm1.0_gt100 --recall_at 5 -L 250 -W 2 --num_nodes_to_cache 100 -T 16
- name: upload data and bin
uses: actions/upload-artifact@v4
with:
name: multi-sector-disk-pq-${{matrix.os}}
path: |
./dist/**
./data/**

View File

@@ -1,26 +0,0 @@
name: DiskANN Nightly Performance Metrics
on:
schedule:
- cron: "41 14 * * *" # 14:41 UTC, 7:41 PDT, 8:41 PST, 08:11 IST
jobs:
perf-test:
name: Run Perf Test from main
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v3
with:
fetch-depth: 1
- name: Build Perf Container
run: |
docker build --build-arg GIT_COMMIT_ISH="$GITHUB_SHA" -t perf -f scripts/perf/Dockerfile scripts
- name: Performance Tests
run: |
mkdir metrics
docker run -v ./metrics:/app/logs perf &> ./metrics/combined_stdouterr.log
- name: Upload Metrics Logs
uses: actions/upload-artifact@v4
with:
name: metrics-${{matrix.os}}
path: |
./metrics/**

View File

@@ -1,35 +0,0 @@
name: DiskANN Pull Request Build and Test
on: [pull_request]
jobs:
common:
strategy:
fail-fast: true
name: DiskANN Common Build Checks
uses: ./.github/workflows/common.yml
unit-tests:
name: Unit tests
uses: ./.github/workflows/unit-tests.yml
in-mem-pq:
name: In-Memory with PQ
uses: ./.github/workflows/in-mem-pq.yml
in-mem-no-pq:
name: In-Memory without PQ
uses: ./.github/workflows/in-mem-no-pq.yml
disk-pq:
name: Disk with PQ
uses: ./.github/workflows/disk-pq.yml
multi-sector-disk-pq:
name: Multi-sector Disk with PQ
uses: ./.github/workflows/multi-sector-disk-pq.yml
labels:
name: Labels
uses: ./.github/workflows/labels.yml
dynamic:
name: Dynamic
uses: ./.github/workflows/dynamic.yml
dynamic-labels:
name: Dynamic Labels
uses: ./.github/workflows/dynamic-labels.yml
python:
name: Python
uses: ./.github/workflows/build-python.yml

View File

@@ -1,50 +0,0 @@
name: DiskANN Push Build
on: [push]
jobs:
common:
strategy:
fail-fast: true
name: DiskANN Common Build Checks
uses: ./.github/workflows/common.yml
build-documentation:
permissions:
contents: write
strategy:
fail-fast: true
name: DiskANN Build Documentation
uses: ./.github/workflows/build-python-pdoc.yml
build:
strategy:
fail-fast: false
matrix:
os: [ ubuntu-latest, windows-2019, windows-latest ]
name: Build for ${{matrix.os}}
runs-on: ${{matrix.os}}
defaults:
run:
shell: bash
steps:
- name: Checkout repository
if: ${{ runner.os == 'Linux' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
- name: Checkout repository
if: ${{ runner.os == 'Windows' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
submodules: true
- name: Build diskannpy dependency tree
run: |
pip install diskannpy pipdeptree
echo "dependencies" > dependencies_${{ matrix.os }}.txt
pipdeptree >> dependencies_${{ matrix.os }}.txt
- name: Archive diskannpy dependencies artifact
uses: actions/upload-artifact@v4
with:
name: dependencies_${{ matrix.os }}
path: |
dependencies_${{ matrix.os }}.txt
- name: DiskANN Build CLI Applications
uses: ./.github/actions/build

View File

@@ -1,43 +0,0 @@
name: Build and Release Python Wheels
on:
release:
types: [published]
jobs:
python-release-wheels:
name: Python
uses: ./.github/workflows/build-python.yml
build-documentation:
strategy:
fail-fast: true
name: DiskANN Build Documentation
uses: ./.github/workflows/build-python-pdoc.yml
release:
permissions:
contents: write
runs-on: ubuntu-latest
needs: python-release-wheels
steps:
- uses: actions/download-artifact@v3
with:
name: wheels
path: dist/
- name: Generate SHA256 files for each wheel
run: |
sha256sum dist/*.whl > checksums.txt
cat checksums.txt
- uses: actions/setup-python@v3
- name: Install twine
run: python -m pip install twine
- name: Publish with twine
env:
TWINE_USERNAME: ${{ secrets.PYPI_USERNAME }}
TWINE_PASSWORD: ${{ secrets.PYPI_PASSWORD }}
run: |
twine upload dist/*.whl
- name: Update release with SHA256 and Artifacts
uses: softprops/action-gh-release@v1
with:
token: ${{ secrets.GITHUB_TOKEN }}
files: |
dist/*.whl
checksums.txt

View File

@@ -1,32 +0,0 @@
name: Unit Tests
on: [workflow_call]
jobs:
acceptance-tests-labels:
name: Unit Tests
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest, windows-2019, windows-latest]
runs-on: ${{matrix.os}}
defaults:
run:
shell: bash
steps:
- name: Checkout repository
if: ${{ runner.os == 'Linux' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
- name: Checkout repository
if: ${{ runner.os == 'Windows' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
submodules: true
- name: DiskANN Build CLI Applications
uses: ./.github/actions/build
- name: Run Unit Tests
run: |
cd build
ctest -C Release

View File

@@ -1,384 +0,0 @@
## Ignore Visual Studio temporary files, build results, and
## files generated by popular Visual Studio add-ons.
##
## Get latest from https://github.com/github/gitignore/blob/master/VisualStudio.gitignore
# User-specific files
*.rsuser
*.suo
*.user
*.userosscache
*.sln.docstates
# User-specific files (MonoDevelop/Xamarin Studio)
*.userprefs
# Mono auto generated files
mono_crash.*
# Build results
[Dd]ebug/
[Dd]ebugPublic/
[Rr]elease/
[Rr]eleases/
x64/
x86/
[Aa][Rr][Mm]/
[Aa][Rr][Mm]64/
bld/
[Bb]in/
[Oo]bj/
[Ll]og/
[Ll]ogs/
# Visual Studio 2015/2017 cache/options directory
.vs/
# Uncomment if you have tasks that create the project's static files in wwwroot
#wwwroot/
# Visual Studio 2017 auto generated files
Generated\ Files/
# MSTest test Results
[Tt]est[Rr]esult*/
[Bb]uild[Ll]og.*
# NUnit
*.VisualState.xml
TestResult.xml
nunit-*.xml
# Build Results of an ATL Project
[Dd]ebugPS/
[Rr]eleasePS/
dlldata.c
# Benchmark Results
BenchmarkDotNet.Artifacts/
# .NET Core
project.lock.json
project.fragment.lock.json
artifacts/
# StyleCop
StyleCopReport.xml
# Files built by Visual Studio
*_i.c
*_p.c
*_h.h
*.ilk
*.meta
*.obj
*.iobj
*.pch
*.pdb
*.ipdb
*.pgc
*.pgd
*.rsp
*.sbr
*.tlb
*.tli
*.tlh
*.tmp
*.tmp_proj
*_wpftmp.csproj
*.log
*.vspscc
*.vssscc
.builds
*.pidb
*.svclog
*.scc
# Chutzpah Test files
_Chutzpah*
# Visual C++ cache files
ipch/
*.aps
*.ncb
*.opendb
*.opensdf
*.sdf
*.cachefile
*.VC.db
*.VC.VC.opendb
# Visual Studio profiler
*.psess
*.vsp
*.vspx
*.sap
# Visual Studio Trace Files
*.e2e
# TFS 2012 Local Workspace
$tf/
# Guidance Automation Toolkit
*.gpState
# ReSharper is a .NET coding add-in
_ReSharper*/
*.[Rr]e[Ss]harper
*.DotSettings.user
# TeamCity is a build add-in
_TeamCity*
# DotCover is a Code Coverage Tool
*.dotCover
# AxoCover is a Code Coverage Tool
.axoCover/*
!.axoCover/settings.json
# Visual Studio code coverage results
*.coverage
*.coveragexml
# NCrunch
_NCrunch_*
.*crunch*.local.xml
nCrunchTemp_*
# MightyMoose
*.mm.*
AutoTest.Net/
# Web workbench (sass)
.sass-cache/
# Installshield output folder
[Ee]xpress/
# DocProject is a documentation generator add-in
DocProject/buildhelp/
DocProject/Help/*.HxT
DocProject/Help/*.HxC
DocProject/Help/*.hhc
DocProject/Help/*.hhk
DocProject/Help/*.hhp
DocProject/Help/Html2
DocProject/Help/html
# Click-Once directory
publish/
# Publish Web Output
*.[Pp]ublish.xml
*.azurePubxml
# Note: Comment the next line if you want to checkin your web deploy settings,
# but database connection strings (with potential passwords) will be unencrypted
*.pubxml
*.publishproj
# Microsoft Azure Web App publish settings. Comment the next line if you want to
# checkin your Azure Web App publish settings, but sensitive information contained
# in these scripts will be unencrypted
PublishScripts/
# NuGet Packages
*.nupkg
# NuGet Symbol Packages
*.snupkg
# The packages folder can be ignored because of Package Restore
**/[Pp]ackages/*
# except build/, which is used as an MSBuild target.
!**/[Pp]ackages/build/
# Uncomment if necessary however generally it will be regenerated when needed
#!**/[Pp]ackages/repositories.config
# NuGet v3's project.json files produces more ignorable files
*.nuget.props
*.nuget.targets
# Microsoft Azure Build Output
csx/
*.build.csdef
# Microsoft Azure Emulator
ecf/
rcf/
# Windows Store app package directories and files
AppPackages/
BundleArtifacts/
Package.StoreAssociation.xml
_pkginfo.txt
*.appx
*.appxbundle
*.appxupload
# Visual Studio cache files
# files ending in .cache can be ignored
*.[Cc]ache
# but keep track of directories ending in .cache
!?*.[Cc]ache/
# Others
ClientBin/
~$*
*~
*.dbmdl
*.dbproj.schemaview
*.jfm
*.pfx
*.publishsettings
orleans.codegen.cs
# Including strong name files can present a security risk
# (https://github.com/github/gitignore/pull/2483#issue-259490424)
#*.snk
# Since there are multiple workflows, uncomment next line to ignore bower_components
# (https://github.com/github/gitignore/pull/1529#issuecomment-104372622)
#bower_components/
# RIA/Silverlight projects
Generated_Code/
# Backup & report files from converting an old project file
# to a newer Visual Studio version. Backup files are not needed,
# because we have git ;-)
_UpgradeReport_Files/
Backup*/
UpgradeLog*.XML
UpgradeLog*.htm
ServiceFabricBackup/
*.rptproj.bak
# SQL Server files
*.mdf
*.ldf
*.ndf
# Business Intelligence projects
*.rdl.data
*.bim.layout
*.bim_*.settings
*.rptproj.rsuser
*- [Bb]ackup.rdl
*- [Bb]ackup ([0-9]).rdl
*- [Bb]ackup ([0-9][0-9]).rdl
# Microsoft Fakes
FakesAssemblies/
# GhostDoc plugin setting file
*.GhostDoc.xml
# Node.js Tools for Visual Studio
.ntvs_analysis.dat
node_modules/
# Visual Studio 6 build log
*.plg
# Visual Studio 6 workspace options file
*.opt
# Visual Studio 6 auto-generated workspace file (contains which files were open etc.)
*.vbw
# Visual Studio LightSwitch build output
**/*.HTMLClient/GeneratedArtifacts
**/*.DesktopClient/GeneratedArtifacts
**/*.DesktopClient/ModelManifest.xml
**/*.Server/GeneratedArtifacts
**/*.Server/ModelManifest.xml
_Pvt_Extensions
# Paket dependency manager
.paket/paket.exe
paket-files/
# FAKE - F# Make
.fake/
# CodeRush personal settings
.cr/personal
# Python Tools for Visual Studio (PTVS)
__pycache__/
*.pyc
# Cake - Uncomment if you are using it
# tools/**
# !tools/packages.config
# Tabs Studio
*.tss
# Telerik's JustMock configuration file
*.jmconfig
# BizTalk build output
*.btp.cs
*.btm.cs
*.odx.cs
*.xsd.cs
# OpenCover UI analysis results
OpenCover/
# Azure Stream Analytics local run output
ASALocalRun/
# MSBuild Binary and Structured Log
*.binlog
# NVidia Nsight GPU debugger configuration file
*.nvuser
# MFractors (Xamarin productivity tool) working folder
.mfractor/
# Local History for Visual Studio
.localhistory/
# BeatPulse healthcheck temp database
healthchecksdb
# Backup folder for Package Reference Convert tool in Visual Studio 2017
MigrationBackup/
# Ionide (cross platform F# VS Code tools) working folder
.ionide/
/vcproj/nsg/x64/Debug/nsg.Build.CppClean.log
/vcproj/test_recall/x64/Debug/test_recall.Build.CppClean.log
/vcproj/test_recall/test_recall.vcxproj.user
/.vs
/out/build/x64-Debug
cscope*
build/
build_linux/
!.github/actions/build
# jetbrains specific stuff
.idea/
cmake-build-debug/
#python extension module ignores
python/diskannpy.egg-info/
python/dist/
**/*.egg-info
wheelhouse/*
dist/*
venv*/**
*.swp
gperftools
# Rust
rust/target
python/src/*.so
compile_commands.json

View File

@@ -1,3 +0,0 @@
[submodule "gperftools"]
path = gperftools
url = https://github.com/gperftools/gperftools.git

View File

@@ -1,563 +0,0 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT license.
# Parameters:
#
# BOOST_ROOT:
# Specify root of the Boost library if Boost cannot be auto-detected. On Windows, a fallback to a
# downloaded nuget version will be used if Boost cannot be found.
#
# DISKANN_RELEASE_UNUSED_TCMALLOC_MEMORY_AT_CHECKPOINTS:
# This is a work-in-progress feature, not completed yet. The core DiskANN library will be split into
# build-related and search-related functionality. In build-related functionality, when using tcmalloc,
# it's possible to release memory that's free but reserved by tcmalloc. Setting this to true enables
# such behavior.
# Contact for this feature: gopalrs.
# Some variables like MSVC are defined only after project(), so put that first.
cmake_minimum_required(VERSION 3.20)
project(diskann)
#Set option to use tcmalloc
option(USE_TCMALLOC "Use tcmalloc from gperftools" ON)
# set tcmalloc to false when on macos
if(APPLE)
set(USE_TCMALLOC OFF)
endif()
option(PYBIND "Build with Python bindings" ON)
if(PYBIND)
# Find Python
find_package(Python 3.6 COMPONENTS Interpreter Development REQUIRED)
execute_process(
COMMAND "${Python_EXECUTABLE}" -c "import pybind11; print(pybind11.get_cmake_dir())"
OUTPUT_VARIABLE pybind11_DIR
OUTPUT_STRIP_TRAILING_WHITESPACE
)
find_package(pybind11 CONFIG REQUIRED)
message(STATUS "Python include dirs: ${Python_INCLUDE_DIRS}")
message(STATUS "Pybind11 include dirs: ${pybind11_INCLUDE_DIRS}")
# Add pybind11 include directories
include_directories(SYSTEM ${pybind11_INCLUDE_DIRS} ${Python_INCLUDE_DIRS})
# Add compilation definitions
add_definitions(-DPYBIND11_EMBEDDED)
# Set visibility flags
if(NOT MSVC)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fvisibility=hidden")
endif()
endif()
set(CMAKE_STANDARD 17)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
# if(NOT MSVC)
# set(CMAKE_CXX_COMPILER g++)
# endif()
set(CMAKE_MODULE_PATH "${PROJECT_SOURCE_DIR}/cmake;${CMAKE_MODULE_PATH}")
# Install nuget packages for dependencies.
if (MSVC)
find_program(NUGET_EXE NAMES nuget)
if (NOT NUGET_EXE)
message(FATAL_ERROR "Cannot find nuget command line tool.\nPlease install it from e.g. https://www.nuget.org/downloads")
endif()
set(DISKANN_MSVC_PACKAGES_CONFIG ${CMAKE_BINARY_DIR}/packages.config)
set(DISKANN_MSVC_PACKAGES ${CMAKE_BINARY_DIR}/packages)
message(STATUS "Invoking nuget to download Boost, OpenMP and MKL dependencies...")
configure_file(${PROJECT_SOURCE_DIR}/windows/packages.config.in ${DISKANN_MSVC_PACKAGES_CONFIG})
exec_program(${NUGET_EXE} ARGS install \"${DISKANN_MSVC_PACKAGES_CONFIG}\" -ExcludeVersion -OutputDirectory \"${DISKANN_MSVC_PACKAGES}\")
if (RESTAPI)
set(DISKANN_MSVC_RESTAPI_PACKAGES_CONFIG ${CMAKE_BINARY_DIR}/restapi/packages.config)
configure_file(${PROJECT_SOURCE_DIR}/windows/packages_restapi.config.in ${DISKANN_MSVC_RESTAPI_PACKAGES_CONFIG})
exec_program(${NUGET_EXE} ARGS install \"${DISKANN_MSVC_RESTAPI_PACKAGES_CONFIG}\" -ExcludeVersion -OutputDirectory \"${DISKANN_MSVC_PACKAGES}\")
endif()
message(STATUS "Finished setting up nuget dependencies")
endif()
include_directories(${PROJECT_SOURCE_DIR}/include)
include(FetchContent)
if(USE_TCMALLOC)
FetchContent_Declare(
tcmalloc
GIT_REPOSITORY https://github.com/google/tcmalloc.git
GIT_TAG origin/master # or specify a particular version or commit
)
FetchContent_MakeAvailable(tcmalloc)
endif()
if(NOT PYBIND)
set(DISKANN_RELEASE_UNUSED_TCMALLOC_MEMORY_AT_CHECKPOINTS ON)
endif()
# It's necessary to include tcmalloc headers only if calling into MallocExtension interface.
# For using tcmalloc in DiskANN tools, it's enough to just link with tcmalloc.
if (DISKANN_RELEASE_UNUSED_TCMALLOC_MEMORY_AT_CHECKPOINTS)
include_directories(${tcmalloc_SOURCE_DIR}/src)
if (MSVC)
include_directories(${tcmalloc_SOURCE_DIR}/src/windows)
endif()
endif()
#OpenMP
if (MSVC)
# Do not use find_package here since it would use VisualStudio's built-in OpenMP, but MKL libraries
# refer to Intel's OpenMP.
#
# No extra settings are needed for compilation: it only needs /openmp flag which is set further below,
# in the common MSVC compiler options block.
include_directories(BEFORE "${DISKANN_MSVC_PACKAGES}/intelopenmp.devel.win/lib/native/include")
link_libraries("${DISKANN_MSVC_PACKAGES}/intelopenmp.devel.win/lib/native/win-x64/libiomp5md.lib")
set(OPENMP_WINDOWS_RUNTIME_FILES
"${DISKANN_MSVC_PACKAGES}/intelopenmp.redist.win/runtimes/win-x64/native/libiomp5md.dll"
"${DISKANN_MSVC_PACKAGES}/intelopenmp.redist.win/runtimes/win-x64/native/libiomp5md.pdb")
elseif(APPLE)
# Check if we're building Python bindings
if(PYBIND)
# First look for PyTorch's OpenMP to avoid conflicts
execute_process(
COMMAND ${Python_EXECUTABLE} -c "import os; import torch; print(os.path.join(os.path.dirname(torch.__file__), 'lib', 'libomp.dylib'))"
RESULT_VARIABLE TORCH_PATH_RESULT
OUTPUT_VARIABLE TORCH_LIBOMP_PATH
OUTPUT_STRIP_TRAILING_WHITESPACE
ERROR_QUIET
)
execute_process(
COMMAND brew --prefix libomp
OUTPUT_VARIABLE LIBOMP_ROOT
OUTPUT_STRIP_TRAILING_WHITESPACE
)
if(EXISTS "${TORCH_LIBOMP_PATH}")
message(STATUS "Found PyTorch's libomp: ${TORCH_LIBOMP_PATH}")
set(OpenMP_CXX_FLAGS "-Xclang -fopenmp")
set(OpenMP_C_FLAGS "-Xclang -fopenmp")
set(OpenMP_CXX_LIBRARIES "${TORCH_LIBOMP_PATH}")
set(OpenMP_C_LIBRARIES "${TORCH_LIBOMP_PATH}")
set(OpenMP_FOUND TRUE)
include_directories(${LIBOMP_ROOT}/include)
# Set compiler flags and link libraries
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OpenMP_C_FLAGS}")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}")
link_libraries("${TORCH_LIBOMP_PATH}")
else()
message(STATUS "No PyTorch's libomp found, falling back to normal OpenMP detection")
# Fallback to normal OpenMP detection
execute_process(
COMMAND brew --prefix libomp
OUTPUT_VARIABLE LIBOMP_ROOT
OUTPUT_STRIP_TRAILING_WHITESPACE
)
set(OpenMP_ROOT "${LIBOMP_ROOT}")
find_package(OpenMP)
if (OPENMP_FOUND)
set (CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OpenMP_C_FLAGS}")
set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}")
link_libraries(OpenMP::OpenMP_CXX)
else()
message(FATAL_ERROR "No OpenMP support")
endif()
endif()
else()
# Regular OpenMP setup for non-Python builds
execute_process(
COMMAND brew --prefix libomp
OUTPUT_VARIABLE LIBOMP_ROOT
OUTPUT_STRIP_TRAILING_WHITESPACE
)
set(OpenMP_ROOT "${LIBOMP_ROOT}")
find_package(OpenMP)
if (OPENMP_FOUND)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OpenMP_C_FLAGS}")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}")
link_libraries(OpenMP::OpenMP_CXX)
else()
message(FATAL_ERROR "No OpenMP support")
endif()
endif()
else()
find_package(OpenMP)
if (OPENMP_FOUND)
set (CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OpenMP_C_FLAGS}")
set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}")
else()
message(FATAL_ERROR "No OpenMP support")
endif()
endif()
# DiskANN core uses header-only libraries. Only DiskANN tools need program_options which has a linker library,
# but its size is small. Reduce number of dependent DLLs by linking statically.
if (MSVC)
set(Boost_USE_STATIC_LIBS ON)
endif()
if(NOT MSVC)
find_package(Boost COMPONENTS program_options)
endif()
# For Windows, fall back to nuget version if find_package didn't find it.
if (MSVC AND NOT Boost_FOUND)
set(DISKANN_BOOST_INCLUDE "${DISKANN_MSVC_PACKAGES}/boost/lib/native/include")
# Multi-threaded static library.
set(PROGRAM_OPTIONS_LIB_PATTERN "${DISKANN_MSVC_PACKAGES}/boost_program_options-vc${MSVC_TOOLSET_VERSION}/lib/native/libboost_program_options-vc${MSVC_TOOLSET_VERSION}-mt-x64-*.lib")
file(GLOB DISKANN_BOOST_PROGRAM_OPTIONS_LIB ${PROGRAM_OPTIONS_LIB_PATTERN})
set(PROGRAM_OPTIONS_DLIB_PATTERN "${DISKANN_MSVC_PACKAGES}/boost_program_options-vc${MSVC_TOOLSET_VERSION}/lib/native/libboost_program_options-vc${MSVC_TOOLSET_VERSION}-mt-gd-x64-*.lib")
file(GLOB DISKANN_BOOST_PROGRAM_OPTIONS_DLIB ${PROGRAM_OPTIONS_DLIB_PATTERN})
if (EXISTS ${DISKANN_BOOST_INCLUDE} AND EXISTS ${DISKANN_BOOST_PROGRAM_OPTIONS_LIB} AND EXISTS ${DISKANN_BOOST_PROGRAM_OPTIONS_DLIB})
set(Boost_FOUND ON)
set(Boost_INCLUDE_DIR ${DISKANN_BOOST_INCLUDE})
add_library(Boost::program_options STATIC IMPORTED)
set_target_properties(Boost::program_options PROPERTIES IMPORTED_LOCATION_RELEASE "${DISKANN_BOOST_PROGRAM_OPTIONS_LIB}")
set_target_properties(Boost::program_options PROPERTIES IMPORTED_LOCATION_DEBUG "${DISKANN_BOOST_PROGRAM_OPTIONS_DLIB}")
message(STATUS "Falling back to using Boost from the nuget package")
else()
message(WARNING "Couldn't find Boost. Was looking for ${DISKANN_BOOST_INCLUDE} and ${PROGRAM_OPTIONS_LIB_PATTERN}")
endif()
endif()
if (NOT Boost_FOUND)
message(FATAL_ERROR "Couldn't find Boost dependency")
endif()
include_directories(${Boost_INCLUDE_DIR})
#MKL Config
if (MSVC)
# Only the DiskANN DLL and one of the tools need MKL libraries. Additionally, only a small part of MKL is used.
# Given that and given that MKL DLLs are huge, use static linking to end up with no MKL DLL dependencies and with
# significantly smaller disk footprint.
#
# The compile options are not modified as there's already an unconditional -DMKL_ILP64 define below
# for all architectures, which is all that's needed.
set(DISKANN_MKL_INCLUDE_DIRECTORIES "${DISKANN_MSVC_PACKAGES}/intelmkl.static.win-x64/lib/native/include")
set(DISKANN_MKL_LIB_PATH "${DISKANN_MSVC_PACKAGES}/intelmkl.static.win-x64/lib/native/win-x64")
set(DISKANN_MKL_LINK_LIBRARIES
"${DISKANN_MKL_LIB_PATH}/mkl_intel_ilp64.lib"
"${DISKANN_MKL_LIB_PATH}/mkl_core.lib"
"${DISKANN_MKL_LIB_PATH}/mkl_intel_thread.lib")
elseif(APPLE)
# no mkl on non-intel devices
find_library(ACCELERATE_LIBRARY Accelerate)
message(STATUS "Found Accelerate (${ACCELERATE_LIBRARY})")
set(DISKANN_ACCEL_LINK_OPTIONS ${ACCELERATE_LIBRARY})
add_compile_definitions(ACCELERATE_NEW_LAPACK)
else()
# expected path for manual intel mkl installs
set(POSSIBLE_OMP_PATHS "/opt/intel/oneapi/compiler/2025.0/lib/libiomp5.so;/opt/intel/oneapi/compiler/latest/linux/compiler/lib/intel64_lin/libiomp5.so;/usr/lib/x86_64-linux-gnu/libiomp5.so;/opt/intel/lib/intel64_lin/libiomp5.so")
foreach(POSSIBLE_OMP_PATH ${POSSIBLE_OMP_PATHS})
if (EXISTS ${POSSIBLE_OMP_PATH})
get_filename_component(OMP_PATH ${POSSIBLE_OMP_PATH} DIRECTORY)
endif()
endforeach()
if(NOT OMP_PATH)
message(FATAL_ERROR "Could not find Intel OMP in standard locations; use -DOMP_PATH to specify the install location for your environment")
endif()
link_directories(${OMP_PATH})
set(POSSIBLE_MKL_LIB_PATHS "/opt/intel/oneapi/mkl/latest/lib/intel64/libmkl_core.so;/usr/lib/x86_64-linux-gnu/libmkl_core.so;/opt/intel/mkl/lib/intel64/libmkl_core.so")
foreach(POSSIBLE_MKL_LIB_PATH ${POSSIBLE_MKL_LIB_PATHS})
if (EXISTS ${POSSIBLE_MKL_LIB_PATH})
get_filename_component(MKL_PATH ${POSSIBLE_MKL_LIB_PATH} DIRECTORY)
endif()
endforeach()
set(POSSIBLE_MKL_INCLUDE_PATHS "/opt/intel/oneapi/mkl/latest/include;/usr/include/mkl;/opt/intel/mkl/include/;")
foreach(POSSIBLE_MKL_INCLUDE_PATH ${POSSIBLE_MKL_INCLUDE_PATHS})
if (EXISTS ${POSSIBLE_MKL_INCLUDE_PATH})
set(MKL_INCLUDE_PATH ${POSSIBLE_MKL_INCLUDE_PATH})
endif()
endforeach()
if(NOT MKL_PATH)
message(FATAL_ERROR "Could not find Intel MKL in standard locations; use -DMKL_PATH to specify the install location for your environment")
elseif(NOT MKL_INCLUDE_PATH)
message(FATAL_ERROR "Could not find Intel MKL in standard locations; use -DMKL_INCLUDE_PATH to specify the install location for headers for your environment")
endif()
if (EXISTS ${MKL_PATH}/libmkl_def.so.2)
set(MKL_DEF_SO ${MKL_PATH}/libmkl_def.so.2)
elseif(EXISTS ${MKL_PATH}/libmkl_def.so)
set(MKL_DEF_SO ${MKL_PATH}/libmkl_def.so)
else()
message(FATAL_ERROR "Despite finding MKL, libmkl_def.so was not found in expected locations.")
endif()
link_directories(${MKL_PATH})
include_directories(${MKL_INCLUDE_PATH})
# compile flags and link libraries
# if gcc/g++
if(CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
add_compile_options(-m64 -Wl,--no-as-needed)
endif()
if (NOT PYBIND)
link_libraries(mkl_intel_ilp64 mkl_intel_thread mkl_core iomp5 pthread m dl)
else()
# static linking for python so as to minimize customer dependency issues
if (CMAKE_BUILD_TYPE STREQUAL "Debug")
# In debug mode, use dynamic linking to ensure all symbols are available
link_libraries(mkl_intel_ilp64 mkl_intel_thread mkl_core ${MKL_DEF_SO} iomp5 pthread m dl)
else()
# In release mode, use static linking to minimize dependencies
link_libraries(
${MKL_PATH}/libmkl_intel_ilp64.a
${MKL_PATH}/libmkl_intel_thread.a
${MKL_PATH}/libmkl_core.a
${MKL_DEF_SO}
iomp5
pthread
m
dl
)
endif()
endif()
add_definitions(-DMKL_ILP64)
endif()
# Section for tcmalloc. The DiskANN tools are always linked to tcmalloc. For Windows, they also need to
# force-include the _tcmalloc symbol for enabling tcmalloc.
#
# The DLL itself needs to be linked to tcmalloc only if DISKANN_RELEASE_UNUSED_TCMALLOC_MEMORY_AT_CHECKPOINTS
# is enabled.
if(USE_TCMALLOC)
if (MSVC)
if (NOT EXISTS "${PROJECT_SOURCE_DIR}/gperftools/gperftools.sln")
message(FATAL_ERROR "The gperftools submodule was not found. "
"Please check-out git submodules by doing 'git submodule init' followed by 'git submodule update'")
endif()
set(TCMALLOC_LINK_LIBRARY "${PROJECT_SOURCE_DIR}/gperftools/x64/Release-Patch/libtcmalloc_minimal.lib")
set(TCMALLOC_WINDOWS_RUNTIME_FILES
"${PROJECT_SOURCE_DIR}/gperftools/x64/Release-Patch/libtcmalloc_minimal.dll"
"${PROJECT_SOURCE_DIR}/gperftools/x64/Release-Patch/libtcmalloc_minimal.pdb")
# Tell CMake how to build the tcmalloc linker library from the submodule.
add_custom_target(build_libtcmalloc_minimal DEPENDS ${TCMALLOC_LINK_LIBRARY})
add_custom_command(OUTPUT ${TCMALLOC_LINK_LIBRARY}
COMMAND ${CMAKE_VS_MSBUILD_COMMAND} gperftools.sln /m /nologo
/t:libtcmalloc_minimal /p:Configuration="Release-Patch"
/property:Platform="x64"
/p:PlatformToolset=v${MSVC_TOOLSET_VERSION}
/p:WindowsTargetPlatformVersion=${CMAKE_VS_WINDOWS_TARGET_PLATFORM_VERSION}
WORKING_DIRECTORY ${PROJECT_SOURCE_DIR}/gperftools)
add_library(libtcmalloc_minimal_for_exe STATIC IMPORTED)
add_library(libtcmalloc_minimal_for_dll STATIC IMPORTED)
set_target_properties(libtcmalloc_minimal_for_dll PROPERTIES
IMPORTED_LOCATION "${TCMALLOC_LINK_LIBRARY}")
set_target_properties(libtcmalloc_minimal_for_exe PROPERTIES
IMPORTED_LOCATION "${TCMALLOC_LINK_LIBRARY}"
INTERFACE_LINK_OPTIONS /INCLUDE:_tcmalloc)
# Ensure libtcmalloc_minimal is built before it's being used.
add_dependencies(libtcmalloc_minimal_for_dll build_libtcmalloc_minimal)
add_dependencies(libtcmalloc_minimal_for_exe build_libtcmalloc_minimal)
set(DISKANN_TOOLS_TCMALLOC_LINK_OPTIONS libtcmalloc_minimal_for_exe)
elseif(APPLE) # ! Inherited from #474, not been adjusted for TCMalloc Removal
execute_process(
COMMAND brew --prefix gperftools
OUTPUT_VARIABLE GPERFTOOLS_PREFIX
OUTPUT_STRIP_TRAILING_WHITESPACE
)
set(DISKANN_TOOLS_TCMALLOC_LINK_OPTIONS "-L${GPERFTOOLS_PREFIX}/lib -ltcmalloc")
elseif(NOT PYBIND)
set(DISKANN_TOOLS_TCMALLOC_LINK_OPTIONS "-ltcmalloc")
endif()
if (DISKANN_RELEASE_UNUSED_TCMALLOC_MEMORY_AT_CHECKPOINTS)
add_definitions(-DRELEASE_UNUSED_TCMALLOC_MEMORY_AT_CHECKPOINTS)
if (MSVC)
set(DISKANN_DLL_TCMALLOC_LINK_OPTIONS libtcmalloc_minimal_for_dll)
endif()
endif()
endif()
if (NOT MSVC AND NOT APPLE)
set(DISKANN_ASYNC_LIB aio)
endif()
#Main compiler/linker settings
if(MSVC)
#language options
add_compile_options(/permissive- /openmp:experimental /Zc:twoPhase- /Zc:inline /WX- /std:c++17 /Gd /W3 /MP /Zi /FC /nologo)
#code generation options
add_compile_options(/arch:AVX2 /fp:fast /fp:except- /EHsc /GS- /Gy)
#optimization options
add_compile_options(/Ot /Oy /Oi)
#path options
add_definitions(-DUSE_AVX2 -DUSE_ACCELERATED_PQ -D_WINDOWS -DNOMINMAX -DUNICODE)
# Linker options. Exclude VCOMP/VCOMPD.LIB which contain VisualStudio's version of OpenMP.
# MKL was linked against Intel's OpenMP and depends on the corresponding DLL.
add_link_options(/NODEFAULTLIB:VCOMP.LIB /NODEFAULTLIB:VCOMPD.LIB /DEBUG:FULL /OPT:REF /OPT:ICF)
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY_DEBUG ${PROJECT_SOURCE_DIR}/x64/Debug)
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_DEBUG ${PROJECT_SOURCE_DIR}/x64/Debug)
set(CMAKE_ARCHIVE_OUTPUT_DIRECTORY_DEBUG ${PROJECT_SOURCE_DIR}/x64/Debug)
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY_RELEASE ${PROJECT_SOURCE_DIR}/x64/Release)
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_RELEASE ${PROJECT_SOURCE_DIR}/x64/Release)
set(CMAKE_ARCHIVE_OUTPUT_DIRECTORY_RELEASE ${PROJECT_SOURCE_DIR}/x64/Release)
elseif(APPLE)
set(ENV{TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD} 500000000000)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -ftree-vectorize -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-free -Xclang -fopenmp -fopenmp-simd -funroll-loops -Wfatal-errors -Wno-inconsistent-missing-override -Wno-return-type")
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -g -DDEBUG")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -Ofast -DNDEBUG -ftree-vectorize")
if (NOT PYBIND)
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -DNDEBUG -Ofast")
if (NOT PORTABLE)
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -mtune=native")
endif()
else()
# -Ofast is not supported in a python extension module
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -DNDEBUG -fPIC")
endif()
else()
set(ENV{TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD} 500000000000)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -mavx2 -mfma -msse2 -ftree-vectorize -fopenmp -fopenmp-simd -funroll-loops -Wfatal-errors -DUSE_AVX2 -fPIC")
if(USE_TCMALLOC)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-free")
endif()
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -g -DDEBUG")
if (NOT PYBIND)
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -DNDEBUG -Ofast")
if (NOT PORTABLE)
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -march=native -mtune=native")
endif()
else()
# -Ofast is not supported in a python extension module
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -DNDEBUG")
endif()
endif()
add_subdirectory(src)
if (NOT PYBIND)
add_subdirectory(apps)
add_subdirectory(apps/utils)
endif()
if (UNIT_TEST)
enable_testing()
add_subdirectory(tests)
endif()
if (MSVC)
message(STATUS "The ${PROJECT_NAME}.sln has been created, opened it from VisualStudio to build Release or Debug configurations.\n"
"Alternatively, use MSBuild to build:\n\n"
"msbuild.exe ${PROJECT_NAME}.sln /m /nologo /t:Build /p:Configuration=\"Release\" /property:Platform=\"x64\"\n")
endif()
if (RESTAPI)
if (MSVC)
set(DISKANN_CPPRESTSDK "${DISKANN_MSVC_PACKAGES}/cpprestsdk.v142/build/native")
# expected path for apt packaged intel mkl installs
link_libraries("${DISKANN_CPPRESTSDK}/x64/lib/cpprest142_2_10.lib")
include_directories("${DISKANN_CPPRESTSDK}/include")
endif()
add_subdirectory(apps/restapi)
endif()
include(clang-format.cmake)
if(PYBIND)
add_subdirectory(python)
install(TARGETS _diskannpy
DESTINATION leann_backend_diskann
COMPONENT python_modules
)
endif()
###############################################################################
# PROTOBUF SECTION - Corrected to use CONFIG mode explicitly
###############################################################################
set(Protobuf_USE_STATIC_LIBS OFF)
find_package(ZLIB REQUIRED)
find_package(Protobuf REQUIRED)
message(STATUS "Protobuf found: ${Protobuf_VERSION}")
message(STATUS "Protobuf include dirs: ${Protobuf_INCLUDE_DIRS}")
message(STATUS "Protobuf libraries: ${Protobuf_LIBRARIES}")
message(STATUS "Protobuf protoc executable: ${Protobuf_PROTOC_EXECUTABLE}")
include_directories(${Protobuf_INCLUDE_DIRS})
set(PROTO_FILE "${CMAKE_CURRENT_SOURCE_DIR}/../embedding.proto")
protobuf_generate_cpp(PROTO_SRCS PROTO_HDRS ${PROTO_FILE})
set(generated_proto_sources ${PROTO_SRCS})
add_library(proto_embeddings STATIC ${generated_proto_sources})
target_link_libraries(proto_embeddings PUBLIC protobuf::libprotobuf)
target_include_directories(proto_embeddings PUBLIC
${CMAKE_CURRENT_BINARY_DIR}
${Protobuf_INCLUDE_DIRS}
)
target_link_libraries(diskann PRIVATE proto_embeddings protobuf::libprotobuf)
target_include_directories(diskann PRIVATE
${CMAKE_CURRENT_BINARY_DIR}
${Protobuf_INCLUDE_DIRS}
)
target_link_libraries(diskann_s PRIVATE proto_embeddings protobuf::libprotobuf)
target_include_directories(diskann_s PRIVATE
${CMAKE_CURRENT_BINARY_DIR}
${Protobuf_INCLUDE_DIRS}
)
###############################################################################
# ZEROMQ SECTION - REQUIRED
###############################################################################
find_package(ZeroMQ QUIET)
if(NOT ZeroMQ_FOUND)
find_path(ZeroMQ_INCLUDE_DIR zmq.h)
find_library(ZeroMQ_LIBRARY zmq)
if(ZeroMQ_INCLUDE_DIR AND ZeroMQ_LIBRARY)
set(ZeroMQ_FOUND TRUE)
endif()
endif()
if(ZeroMQ_FOUND)
message(STATUS "Found ZeroMQ: ${ZeroMQ_LIBRARY}")
include_directories(${ZeroMQ_INCLUDE_DIR})
target_link_libraries(diskann PRIVATE ${ZeroMQ_LIBRARY})
target_link_libraries(diskann_s PRIVATE ${ZeroMQ_LIBRARY})
add_definitions(-DUSE_ZEROMQ)
else()
message(FATAL_ERROR "ZeroMQ is required but not found. Please install ZeroMQ and try again.")
endif()
target_link_libraries(diskann ${PYBIND11_LIBRARIES})
target_link_libraries(diskann_s ${PYBIND11_LIBRARIES})

View File

@@ -1,28 +0,0 @@
{
"configurations": [
{
"name": "x64-Release",
"generator": "Ninja",
"configurationType": "Release",
"inheritEnvironments": [ "msvc_x64" ],
"buildRoot": "${projectDir}\\out\\build\\${name}",
"installRoot": "${projectDir}\\out\\install\\${name}",
"cmakeCommandArgs": "",
"buildCommandArgs": "",
"ctestCommandArgs": ""
},
{
"name": "WSL-GCC-Release",
"generator": "Ninja",
"configurationType": "RelWithDebInfo",
"buildRoot": "${projectDir}\\out\\build\\${name}",
"installRoot": "${projectDir}\\out\\install\\${name}",
"cmakeExecutable": "cmake",
"cmakeCommandArgs": "",
"buildCommandArgs": "",
"ctestCommandArgs": "",
"inheritEnvironments": [ "linux_x64" ],
"wslPath": "${defaultWSLPath}"
}
]
}

View File

@@ -1,9 +0,0 @@
# Microsoft Open Source Code of Conduct
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
Resources:
- [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/)
- [Microsoft Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/)
- Contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with questions or concerns

View File

@@ -1,9 +0,0 @@
# Contributing
This project welcomes contributions and suggestions. Most contributions require you to agree to a
Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us
the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.
When you submit a pull request, a CLA bot will automatically determine whether you need to provide
a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions
provided by the bot. You will only need to do this once across all repos using our CLA.

View File

@@ -1,17 +0,0 @@
#Copyright(c) Microsoft Corporation.All rights reserved.
#Licensed under the MIT license.
FROM ubuntu:jammy
RUN apt update
RUN apt install -y software-properties-common
RUN add-apt-repository -y ppa:git-core/ppa
RUN apt update
RUN DEBIAN_FRONTEND=noninteractive apt install -y git make cmake g++ libaio-dev libgoogle-perftools-dev libunwind-dev clang-format libboost-dev libboost-program-options-dev libmkl-full-dev libcpprest-dev python3.10
WORKDIR /app
RUN git clone https://github.com/microsoft/DiskANN.git
WORKDIR /app/DiskANN
RUN mkdir build
RUN cmake -S . -B build -DCMAKE_BUILD_TYPE=Release
RUN cmake --build build -- -j

View File

@@ -1,17 +0,0 @@
#Copyright(c) Microsoft Corporation.All rights reserved.
#Licensed under the MIT license.
FROM ubuntu:jammy
RUN apt update
RUN apt install -y software-properties-common
RUN add-apt-repository -y ppa:git-core/ppa
RUN apt update
RUN DEBIAN_FRONTEND=noninteractive apt install -y git make cmake g++ libaio-dev libgoogle-perftools-dev libunwind-dev clang-format libboost-dev libboost-program-options-dev libboost-test-dev libmkl-full-dev libcpprest-dev python3.10
WORKDIR /app
RUN git clone https://github.com/microsoft/DiskANN.git
WORKDIR /app/DiskANN
RUN mkdir build
RUN cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DUNIT_TEST=True
RUN cmake --build build -- -j

View File

@@ -1,23 +0,0 @@
DiskANN
MIT License
Copyright (c) Microsoft Corporation.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE

View File

@@ -1,12 +0,0 @@
include MANIFEST.in
include *.txt
include *.md
include setup.py
include pyproject.toml
include *.cmake
recursive-include gperftools *
recursive-include include *
recursive-include python *
recursive-include windows *
prune python/tests
recursive-include src *

Some files were not shown because too many files have changed in this diff Show More