Compare commits

..

232 Commits

Author SHA1 Message Date
Andy Lee
2dd59c4ba1 fix: let auditwheel auto-detect manylinux platform tag
- Remove --plat manylinux2014_x86_64 flag that was causing build failures
- Let auditwheel automatically determine the appropriate manylinux tag
- Add auditwheel show command to display compatibility info
- This fixes the 'too-recent versioned symbols' error
2025-07-24 21:44:15 -07:00
GitHub Actions
166986d5e6 chore: release v0.1.6 2025-07-25 04:30:07 +00:00
Andy Lee
a6aec68f32 fix: use manylinux2014 for better Linux compatibility
- Change auditwheel --plat to manylinux2014_x86_64
- This ensures wheels work on Ubuntu 16.04+ instead of requiring 24.04+
- Fixes compatibility issues for users on Ubuntu 22.04 and similar systems
2025-07-24 21:26:28 -07:00
GitHub Actions
ed27a127d5 chore: release v0.1.5 2025-07-25 04:00:54 +00:00
Andy Lee
d8b4ea7564 fix: add write permissions for GitHub Actions to push commits 2025-07-24 20:55:24 -07:00
Andy Lee
f0a2ef96b4 fix: restore complete build configuration from working version 2025-07-24 19:49:38 -07:00
Andy Lee
7d73c2c803 fix: remove invalid --extra build flag from build commands 2025-07-24 19:43:23 -07:00
Andy Lee
e8d2ecab03 refactor: use reusable workflow to avoid code duplication 2025-07-24 19:35:12 -07:00
Andy Lee
32a374d094 feat: true one-click automated release with multi-platform support 2025-07-24 19:30:44 -07:00
Andy Lee
d45c013806 fix: handle workflow trigger permission gracefully 2025-07-24 19:25:29 -07:00
GitHub Actions
9000a7083d chore: release v0.1.4 2025-07-25 02:23:36 +00:00
Andy Lee
8307555d54 fix: manually trigger CI after version push in release workflow 2025-07-24 19:21:32 -07:00
GitHub Actions
20f2aece08 chore: release v0.1.3 2025-07-25 02:05:11 +00:00
yichuan520030910320
43eb4f9a1d Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-24 19:03:52 -07:00
yichuan520030910320
5461b71d8c colab dev 2025-07-24 19:03:46 -07:00
Andy Lee
374db0ebb8 fix: release workflow to build new version before publishing 2025-07-24 19:03:09 -07:00
GitHub Actions
cea1f6f87c chore: release v0.1.2 2025-07-25 01:53:29 +00:00
Andy Lee
6c0e39372b fix: download all artifacts in release workflow 2025-07-24 17:45:46 -07:00
Andy Lee
2bec67d2b6 feat: auto-update leann-core dependencies during release
- Enhanced bump_version.sh to automatically update leann-core dependency versions
- Script now updates both package versions and their leann-core dependencies
- This ensures version consistency across all packages during release

No more manual dependency version updates needed!
2025-07-24 17:22:41 -07:00
Andy Lee
133e715832 fix: resolve CI issues and consolidate workflows
- Fix version dependencies: update backend packages to depend on leann-core==0.1.1
- Remove duplicate ci.yml workflow (keeping build-and-publish.yml as main CI)
- Update release-manual.yml to reference correct CI workflow name

This fixes the dependency resolution error and eliminates duplicate builds.
2025-07-24 17:20:58 -07:00
Andy Lee
95cf2f16e2 refactor: consolidate release and publish into single workflow
- Manual Release workflow now directly publishes to PyPI after downloading CI artifacts
- No more duplicate builds - reuses artifacts from CI
- build-and-publish.yml renamed to 'CI - Build Multi-Platform Packages'
- Publishing in CI workflow only for emergency manual triggers
- Updated RELEASE.md to reflect the new streamlined process

This fixes the issue where releases would trigger redundant builds.
2025-07-24 17:04:47 -07:00
Andy Lee
47a4c153eb fix: enable PyPI publish on tag push
- Manual Release workflow creates tags but build-and-publish.yml only published on 'release' events
- Now build-and-publish.yml will also publish when v* tags are pushed
- This fixes the issue where manual releases didn't trigger PyPI uploads
2025-07-24 17:00:21 -07:00
GitHub Actions
faf5ae3533 chore: release v0.1.1 2025-07-24 23:36:23 +00:00
Andy Lee
a44dccecac fix: make TestPyPI upload optional and non-blocking
- Add continue-on-error to TestPyPI step
- Check if TEST_PYPI_API_TOKEN exists before attempting upload
- Add graceful failure handling with clear messages
- Update docs to explain TestPyPI token configuration
- Clarify that TestPyPI testing is optional

Now the release won't fail if TestPyPI is not configured or upload fails
2025-07-24 16:02:07 -07:00
yichuan520030910320
9cf9358b9c Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-24 14:40:39 -07:00
yichuan520030910320
de252fef31 [chat] update 30s example 2025-07-24 14:40:33 -07:00
Andy Lee
9076bc27b8 fix: resolve CI run detection issues in release workflow
- Add 'actions: read' permission to access workflow runs
- Use workflow name instead of filename for gh run list
- Look for CI run on HEAD~1 (before version bump commit)
- Improve error messages for better debugging

Fixes HTTP 403 error when trying to find successful CI runs
2025-07-24 14:27:26 -07:00
Andy Lee
50686c0819 refactor: use CI artifacts in release workflow instead of rebuilding
- Download pre-built wheels from successful CI runs
- Avoids duplicate builds and ensures consistency
- CI artifacts are already tested across all platforms
- Faster release process (no build time)
- Updates release documentation to reflect new flow

This ensures the released packages are exactly what was tested in CI.
2025-07-24 14:24:03 -07:00
Andy Lee
1614203786 fix: make bump_version.sh work on both macOS and Linux
- macOS uses sed -i '' while Linux uses sed -i
- Add OS detection to use correct syntax
- Ensures script works in CI (Linux) and local dev (macOS)
2025-07-24 14:13:31 -07:00
Andy Lee
3d4c75a56c fix: add missing scripts directory to git
- Remove scripts/ from .gitignore
- Add build_and_test.sh for local testing
- Add bump_version.sh for version updates (used by CI)
- Add release.sh and upload_to_pypi.sh for publishing
- Fixes CI error: ./scripts/bump_version.sh: No such file or directory
2025-07-24 14:13:14 -07:00
Andy Lee
2684ee71dc fix: ensure uv build uses correct Python version in CI
- Add --python python flag to uv build commands
- This ensures wheels are built with the correct Python version (cp313 for Python 3.13, etc)
- Fixes issue where Python 3.13 CI was building cp311 wheels
- Also adds Python version verification before build
2025-07-24 13:44:02 -07:00
Andy Lee
1d321953ba ci: update all GitHub Actions to latest versions
- Update actions/upload-artifact from v3 to v4 (v3 deprecated April 2024)
- Update actions/setup-python from v4 to v5 (latest version)
- Add Python 3.12 and 3.13 to CI test matrix
- Ensure compatibility with latest Python versions and GitHub Actions
2025-07-24 13:36:21 -07:00
Andy Lee
b3cb251369 ci: add Python 3.12 and 3.13 to test matrix
- Add Python 3.12 and 3.13 to CI test matrix
- Ensure compatibility with latest Python versions
- Python 3.12 is stable, 3.13 was released in Oct 2024
2025-07-24 13:32:29 -07:00
Andy Lee
0a17d2c9d8 feat: implement comprehensive CI/CD pipeline with two-stage release
- Add ci.yml for continuous integration on every commit
  - Test builds on Ubuntu/macOS with Python 3.9/3.10/3.11
  - Ensure code quality before any release

- Add release-manual.yml for controlled releases
  - Manual trigger prevents accidental releases
  - Version validation and tag creation
  - Optional TestPyPI testing before production
  - Only creates tag after validation passes

- Keep build-and-publish.yml for automated PyPI deployment
  - Triggered by new tags (separation of concerns)
  - Handles multi-platform wheel building
  - Allows retry if PyPI upload fails

- Update RELEASE.md with clear prerequisites and workflow

This setup ensures:
1. Every commit is tested (CI)
2. Releases are deliberate (manual trigger)
3. Failed CI won't create broken tags
4. PyPI publish can be retried independently
2025-07-24 13:29:21 -07:00
Andy Lee
e3defbca84 fix: add minimal CI dependencies for HNSW and DiskANN backends
- HNSW (Ubuntu): add libopenblas-dev for BLAS requirements
- DiskANN (Ubuntu): keep MKL, remove redundant pkg-config (HNSW already has it)
- DiskANN (macOS): add protobuf for build requirements
- Both: ensure patchelf for auditwheel on Linux

This avoids OpenBLAS/MKL conflicts by using them in separate jobs
2025-07-24 01:06:57 -07:00
Andy Lee
e407f63977 chore: fix uv build 2025-07-24 00:51:57 -07:00
Andy Lee
7add391b2c chore: build and package 2025-07-24 00:47:46 -07:00
yichuan520030910320
efd6373b32 [chat] update huggingface chat and make qwen no thinking 2025-07-24 00:11:42 -07:00
yichuan520030910320
d502fa24b0 [installation] update install for linux 2025-07-24 02:17:17 +00:00
yichuan520030910320
258a9a5c7f [misc]test link again 2025-07-23 18:29:32 -07:00
yichuan520030910320
5d41ac6115 test link 2025-07-23 18:28:22 -07:00
yichuan520030910320
2a0fdb49b8 test link 2025-07-23 18:27:08 -07:00
yichuan520030910320
9d1b7231b6 fix broken link 2025-07-23 18:25:22 -07:00
yichuan520030910320
ed3095b478 fix broken link 2025-07-23 18:24:17 -07:00
yichuan520030910320
88eca75917 fix readme 2025-07-23 18:22:10 -07:00
yichuan520030910320
42de27e16a Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-23 18:17:19 -07:00
yichuan520030910320
c083bda5b7 fix several bug 2025-07-23 18:17:11 -07:00
Andy Lee
e86da38726 fix: ollama hint for similar models 2025-07-23 15:45:10 -07:00
yichuan520030910320
99076e38bc update install 2025-07-23 14:55:34 -07:00
yichuan520030910320
9698c1a02c fix readme 2025-07-23 14:52:01 -07:00
yichuan520030910320
851f0f04c3 fix some para 2025-07-23 01:46:34 -07:00
yichuan520030910320
ae16d9d888 fix readme 2025-07-23 00:44:43 -07:00
yichuan520030910320
6e1af2eb0c fix readme 2025-07-23 00:43:46 -07:00
yichuan520030910320
7695dd0d50 fix readme 2025-07-23 00:42:17 -07:00
yichuan520030910320
c2065473ad fix readme 2025-07-23 00:30:42 -07:00
yichuan520030910320
5f3870564d Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-23 00:09:30 -07:00
yichuan520030910320
c214b2e33e fix readme 2025-07-23 00:09:24 -07:00
Andy Lee
2420c5fd35 chore: update sentence-transformer to prevent MixIn not found error 2025-07-22 23:27:25 -07:00
yichuan520030910320
f48f526f0a fix readme 2025-07-22 23:21:15 -07:00
yichuan520030910320
5dd74982ba fix readme 2025-07-22 23:14:31 -07:00
Andy Lee
e07aaf52a7 docs: align 2025-07-22 22:37:27 -07:00
Andy Lee
30e5f12616 docs: quick start 2025-07-22 22:33:04 -07:00
Andy Lee
594427bf87 docs: demo 2025-07-22 22:32:18 -07:00
yichuan520030910320
a97d3ada1c fix readme need to polish example 2025-07-22 22:09:55 -07:00
yichuan520030910320
6217bb5638 fix readme 2025-07-22 22:05:28 -07:00
yichuan520030910320
2760e99e18 fix readme 2025-07-22 22:03:19 -07:00
yichuan520030910320
0544f96b79 default main cli to openai add data dict as a args 2025-07-22 21:56:30 -07:00
yichuan520030910320
2ebb29de65 default main cli to openai 2025-07-22 21:55:18 -07:00
yichuan520030910320
43762d44c7 fix readme 2025-07-22 21:51:30 -07:00
yichuan520030910320
cdaf0c98be fix readme 2025-07-22 21:44:52 -07:00
yichuan520030910320
aa9a14a917 make the email wonderful format 2025-07-22 21:41:58 -07:00
yichuan520030910320
9efcc6d95c Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-22 20:44:02 -07:00
yichuan520030910320
f3f5d91207 make the google history wonderful format 2025-07-22 20:43:56 -07:00
Andy Lee
6070160959 chore: remove .vscode 2025-07-22 19:59:35 -07:00
Andy Lee
43155d2811 fix: supress resources leak logs 2025-07-22 19:53:45 -07:00
Andy Lee
d3f85678ec perf: much faster loading and embedding serving 2025-07-22 19:38:22 -07:00
yichuan520030910320
2a96d05b21 upd readme 2025-07-22 17:06:33 -07:00
yichuan520030910320
851e888535 Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-22 17:01:04 -07:00
yichuan520030910320
90120d4dff upd the structure in the chat for better perf 2025-07-22 17:00:56 -07:00
Andy Lee
8513471573 feat: make diskann runnable 2025-07-22 14:26:03 -07:00
Andy Lee
71e5f1774c docs: cli 2025-07-21 23:48:40 -07:00
yichuan520030910320
870a443446 Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-21 23:13:45 -07:00
yichuan520030910320
cefaa2a4cc upd readme 2025-07-21 23:13:38 -07:00
Andy Lee
ab72a2ab9d fix: more logs 2025-07-21 23:08:53 -07:00
yichuan520030910320
046d457d22 Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-21 23:04:00 -07:00
yichuan520030910320
7fd0a30fee upd log 2025-07-21 23:03:52 -07:00
Andy Lee
c2f35c8e73 fix: logs 2025-07-21 23:02:13 -07:00
Andy Lee
573313f0b6 refactor: logs 2025-07-21 22:45:24 -07:00
yichuan520030910320
f7af6805fa readme 2025-07-21 22:33:03 -07:00
yichuan520030910320
966de3a399 readme 2025-07-21 22:32:02 -07:00
yichuan520030910320
8a75829f3a readme 2025-07-21 22:30:03 -07:00
yichuan520030910320
0f7e34b9e2 readme 2025-07-21 22:18:00 -07:00
yichuan520030910320
be0322b616 readme 2025-07-21 22:16:52 -07:00
yichuan520030910320
232a525a62 readme 2025-07-21 22:14:43 -07:00
yichuan520030910320
587ce65cf6 Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-21 21:54:27 -07:00
yichuan520030910320
ccf6c8bfd7 fix flush print 2025-07-21 21:54:20 -07:00
Andy Lee
c112956d2d fix: mlx 2025-07-21 21:29:15 -07:00
Andy Lee
b3970793cf fix: cache the loaded model 2025-07-21 21:20:53 -07:00
yichuan520030910320
727724990e add todo 2025-07-21 20:59:09 -07:00
yichuan520030910320
530f6e4af5 add progress bar in build 2025-07-21 20:55:18 -07:00
Andy Lee
2f224f5793 fix: use server to emb query only when recompute 2025-07-21 20:40:21 -07:00
Andy Lee
1b6272ce0e Building, CLI tool & Embedding Server Fixed (#5)
* chore: shorter build time

* chore: update faiss

* fix: no longger do embedding server reuse

* fix: do not reuse emb_server and close it properly

* feat: cli tool

* feat: cli more args

* fix: same embedding logic
2025-07-21 20:17:25 -07:00
yichuan520030910320
5259ace111 [Readme] 2025-07-21 20:06:21 -07:00
yichuan520030910320
48ea5566e9 [Readme] detail number 2025-07-21 19:51:51 -07:00
yichuan520030910320
3f8b6c5bbd [Readme] 2025-07-21 18:15:00 -07:00
yichuan520030910320
725b32e74f [Readme] 2025-07-21 17:57:44 -07:00
yichuan520030910320
d0b71f393f [Readme] 2025-07-21 17:56:10 -07:00
yichuan520030910320
8a92efdae3 [Readme] 2025-07-21 17:53:59 -07:00
yichuan520030910320
019cdce2e8 [Readme] 2025-07-21 17:30:11 -07:00
yichuan520030910320
b64aa54fac fix break link 2025-07-21 17:29:35 -07:00
yichuan520030910320
c0d040f9d4 Merge branch 'main' of https://github.com/yichuan-w/LEANN 2025-07-21 16:22:24 -07:00
yichuan520030910320
32364320f8 update wechat and we should fix the bug introduced in 1c5fec5 2025-07-21 16:22:16 -07:00
Andy Lee
34c71c072d chore: parallel compile fix 2025-07-19 22:51:47 -07:00
Andy Lee
6d2149c503 chore: parallel compile fix 2025-07-19 22:46:24 -07:00
Andy Lee
043b0bf69d chore: parallel compile fix 2025-07-19 22:34:19 -07:00
Andy Lee
9b07e392c6 chore: parallel compile 2025-07-19 22:32:13 -07:00
Andy Lee
e60fad8c73 chore: mark diskann as optional 2025-07-19 22:24:44 -07:00
Andy Lee
19c1b182c3 docs: effects figure 2025-07-19 22:07:04 -07:00
Andy Lee
49edea780c docs: figure 2025-07-19 21:59:58 -07:00
Andy Lee
12ef5a1900 docs: effects 2025-07-19 21:57:12 -07:00
Andy Lee
d21a134b2a docs: polish 2025-07-19 21:53:41 -07:00
Andy Lee
1cd809aa41 [Docs] README polished version (#4)
* docs: polish

* docs: logo

* docs: logo

* docs: logo with text

* docs: readme effects

* docs: polish

* docs: highlight applications

* docs: polish

* docs: how it works earlier

* docs: polish

* docs: polish

* docs: follow yichuan's suggestion

* docs: follow yichuan's suggestion

---------

Co-authored-by: Yichuan Wang <73766326+yichuan-w@users.noreply.github.com>
2025-07-19 21:47:25 -07:00
yichuan520030910320
e728449b8f change chinese 2025-07-19 19:54:02 -07:00
yichuan520030910320
d0c20b14d5 clear output pf ipynb 2025-07-19 19:48:56 -07:00
yichuan520030910320
83b7ea5a59 change wecaht app split logic& merge 2025-07-19 19:44:33 -07:00
yichuan520030910320
0796a52df1 change wecaht app split logic 2025-07-19 19:43:30 -07:00
Andy Lee
85b7ba0168 feat: allow build from existed embeddings 2025-07-19 01:27:37 -07:00
yichuan520030910320
e117743d24 Merge branch 'main' of github.com:yichuan520030910320/LEANN-RAG 2025-07-17 22:29:39 -07:00
yichuan520030910320
aec2291f04 add embedding api 2025-07-17 22:29:31 -07:00
yichuan520030910320
335ae003ac add data 2025-07-17 22:29:03 -07:00
Andy Lee
71c7de9c84 fix: build with direct embedding 2025-07-17 21:49:36 -07:00
Andy Lee
1c5fec5565 perf: make embedder loading faster by 6x, and embed queries through the server 2025-07-17 20:08:06 -07:00
yichuan520030910320
99d439577d Merge branch 'main' of github.com:yichuan520030910320/LEANN-RAG 2025-07-17 18:15:27 -07:00
yichuan520030910320
4f83086788 update readme and auto find email 2025-07-17 18:15:17 -07:00
Andy Lee
a13c527e39 feat: openai embeddings 2025-07-17 17:02:47 -07:00
yichuan520030910320
90d9f27383 update readme and main example 2025-07-17 15:03:22 -07:00
yichuan520030910320
0db81c16cd update readme and chrome example 2025-07-17 12:58:11 -07:00
yichuan520030910320
e115e186b7 update example and more stats on result 2025-07-16 22:07:15 -07:00
yichuan520030910320
6546b29ef7 update readme 2025-07-16 20:29:45 -07:00
yichuan520030910320
51255bdffa update readme and add timer 2025-07-16 17:15:51 -07:00
Andy Lee
f77c4e38cb perf: reuse embedding server for query embed 2025-07-16 16:12:15 -07:00
Andy Lee
2a1a152073 refactor: nits 2025-07-16 15:39:58 -07:00
Andy Lee
7b9406a3ea feat: different search_args and docstrings 2025-07-16 15:25:58 -07:00
Andy Lee
c3fb949693 docs: ollama 2025-07-16 15:12:37 -07:00
yichuan520030910320
ed3f8dbfd6 update readme 2025-07-15 23:32:25 -07:00
yichuan520030910320
42aa6db170 update readme 2025-07-15 23:23:04 -07:00
yichuan520030910320
a6591d20ca Merge branch 'main' of github.com:yichuan520030910320/LEANN-RAG 2025-07-15 23:18:08 -07:00
yichuan520030910320
c1bc2603a2 update readme and 30 seconds example 2025-07-15 23:18:01 -07:00
Andy Lee
e595bbb5fb feat: hint for users about wrong model name 2025-07-15 22:40:40 -07:00
yichuan520030910320
4a2cb914d7 clean dict 2025-07-15 22:30:52 -07:00
yichuan520030910320
b1c93fe178 Merge branch 'main' of github.com:yichuan520030910320/LEANN-RAG 2025-07-15 22:29:09 -07:00
yichuan520030910320
0719458775 upd readme stats 2025-07-15 22:28:59 -07:00
Andy Lee
6a1dc895fb feat: disable warmup by default 2025-07-15 22:16:02 -07:00
Andy Lee
125c1f6f25 fix: model name 2025-07-15 21:48:45 -07:00
yichuan520030910320
1ceaa7d709 Merge branch 'main' of github.com:yichuan520030910320/LEANN-RAG 2025-07-15 21:19:25 -07:00
yichuan520030910320
dec3ee85fd fix main cli 2025-07-15 21:19:16 -07:00
Andy Lee
d94a5176dc docs: storage reduction data 2025-07-15 15:37:17 -07:00
yichuan520030910320
326783f7f1 fix mem compare fix split 2025-07-14 23:07:46 -07:00
yichuan520030910320
e5a9ca8787 fix mem compare 2025-07-14 22:55:10 -07:00
Andy Lee
f2feccdbd0 fix: mem compare 2025-07-14 16:35:08 -07:00
yichuan520030910320
246a077d64 upd readme 2025-07-14 16:21:34 -07:00
yichuan520030910320
3ba100ff25 upd readme 2025-07-14 16:18:39 -07:00
yichuan520030910320
1e3b571e72 add readme bench 2025-07-14 16:13:21 -07:00
Andy Lee
b89e56e9c2 fix: file name 2025-07-14 15:34:56 -07:00
yichuan520030910320
ed8a02e721 update readme and mlx support 2025-07-14 15:23:56 -07:00
Andy Lee
baa60b40d1 fix: smaller warmup id 2025-07-14 15:20:45 -07:00
Andy Lee
ef01d6997a fix: faiss only 2025-07-14 13:15:55 -07:00
Andy Lee
3da5b44d7f fix: mlx when searching, added to embedding_server 2025-07-14 01:11:21 -07:00
Andy Lee
8b4654921b fix: run faiss in subprocess to prevent kmp 2025-07-14 00:29:21 -07:00
yichuan520030910320
cf1cbafa78 Merge branch 'main' of github.com:yichuan520030910320/LEANN-RAG 2025-07-13 23:19:54 -07:00
yichuan520030910320
c96091744b update readme 2025-07-13 23:19:44 -07:00
Andy Lee
711fb4a775 feat: compare faiss 2025-07-13 22:44:16 -07:00
Andy Lee
3b5a185e60 refactor: check if current emb_server has correct passages/embedder 2025-07-13 22:43:51 -07:00
yichuan520030910320
77ac013a74 update readem 2025-07-13 22:37:41 -07:00
yichuan520030910320
b8e5728e6a fix wechat application 2025-07-13 22:29:54 -07:00
yichuan520030910320
d038319d8b upd readme wechat application 2025-07-13 22:00:49 -07:00
yichuan520030910320
c611d0f30f upd readme mail application 2025-07-13 21:48:57 -07:00
yichuan520030910320
c17899662f upd readme mail application 2025-07-13 21:30:08 -07:00
yichuan520030910320
c51d5320fa upd test/mlx 2025-07-13 20:16:02 -07:00
yichuan520030910320
6fa9512a64 fix wechat path 2025-07-13 18:23:31 -07:00
Andy Lee
fddc61df5e chore: reset to latest version 2025-07-13 17:06:48 -07:00
Andy Lee
53c58fa755 perf: switch to tranditional pdf reader 2025-07-13 17:04:23 -07:00
yichuan520030910320
c69afb56e4 Resolve submodule conflict - update to af2a264 2025-07-13 17:03:42 -07:00
yichuan520030910320
0fa8a9191f add wechat history extract app 2025-07-13 16:52:08 -07:00
Andy Lee
48dda1cb5b feat: mlx 2025-07-13 02:13:04 -07:00
Andy Lee
71ef4b7d4c fix: reproducible dpr on mac 2025-07-12 18:13:22 -07:00
Andy Lee
ecab43e307 feat: dataset for evaluation 2025-07-12 23:43:10 +00:00
Fangzhou66
88ca09440d fix some hf problem 2025-07-12 16:13:15 -07:00
Andy Lee
8e0ab4a28d chore: update deps 2025-07-12 22:48:13 +00:00
yichuan520030910320
9b8c5041dc update readme 2025-07-12 13:01:11 -07:00
yichuan520030910320
74ffd7ec64 add email test code 2025-07-11 23:59:47 -07:00
Andy Lee
eb6f504789 Datastore reproduce (#3)
* fix: diskann zmq port and passages

* feat: auto discovery of packages and fix passage gen for diskann

* docs: embedding pruning

* refactor: passage structure

* feat: reproducible research datas, rpj_wiki & dpr

* refactor: chat and base searcher

* feat: chat on mps
2025-07-11 23:37:23 -07:00
yichuan520030910320
91a026f38b polish readme 2025-07-11 23:06:08 -07:00
yichuan520030910320
595138a0a3 upd readme 2025-07-11 22:43:48 -07:00
yichuan520030910320
19df04095f add readme 2025-07-11 22:34:54 -07:00
yichuan520030910320
8239bbb48f add google hostory api 2025-07-11 21:21:36 -07:00
yichuan520030910320
16ee9d0422 add traverse all dict interface 2025-07-10 15:59:16 -07:00
yichuan520030910320
8a961f8ab3 align the llamaindex result w leann& test attachment 2025-07-09 21:42:15 -07:00
yichuan520030910320
558126c46e add leann and llamaindex email infra, and need to align the results 2025-07-09 16:27:11 -07:00
yichuan520030910320
04c9684488 add email test code 2025-07-09 15:06:31 -07:00
Andy Lee
b744faa7e6 chore: all deps 2025-07-08 23:37:40 +00:00
Andy Lee
27b3a26e75 fix(deps): Update DiskANN with cleaned up CMake configuration 2025-07-08 23:27:05 +00:00
Andy Lee
41d872504e feat(deps): Update DiskANN to use system-installed Boost and Protobuf 2025-07-08 23:13:36 +00:00
Andy Lee
963cd05273 chore: diskann modules 2025-07-08 21:57:38 +00:00
Andy Lee
09b6e67baf chore: diskann upg boost 2025-07-08 21:44:44 +00:00
yichuan520030910320
dafb2aacab update macos env 2025-07-08 14:37:41 -07:00
Andy Lee
a6c400cd4f chroe: linux boost and protobuf 2025-07-08 21:25:43 +00:00
Andy Lee
c013e5ccce chore: linux deps 2025-07-08 13:55:39 -07:00
Andy Lee
f25a1a3840 chore: macos compatible 2025-07-08 13:32:00 -07:00
yichuan520030910320
6497e17671 add gpu chunk embedd and add complexity in hnsw 2025-07-08 18:40:52 +00:00
yichuan520030910320
44369a8138 update diskann module 2025-07-07 18:27:07 -07:00
yichuan520030910320
dfca00c21b add mac support in this repo 2025-07-07 18:22:24 -07:00
yichuan520030910320
637dab379e add workaround code 2025-07-07 23:13:47 +00:00
yichuan520030910320
6fc57eb48e add reuse code 2025-07-07 21:07:00 +00:00
yichuan520030910320
95a653993a rm useless 2025-07-06 06:47:20 +00:00
yichuan520030910320
af0959818d rm useless 2025-07-06 05:21:05 +00:00
Andy Lee
cf17c85607 Make DiskANN and HNSW work on main example (#2)
* fix: diskann zmq port and passages

* feat: auto discovery of packages and fix passage gen for diskann
2025-07-05 22:18:12 -07:00
Andy Lee
a38bc0a3fc refactor: embedding server manager 2025-07-06 01:54:46 +00:00
yichuan
449983c937 Merge pull request #1 from yichuan520030910320/debug_diskann_disable_pipe
debug_diskann_disable_pipe
2025-07-05 17:55:27 -07:00
yichuan520030910320
df63526503 merge main 2025-07-06 00:50:58 +00:00
yichuan520030910320
e92deee1e8 fix larger file read and add faq 2025-07-06 00:48:57 +00:00
Andy Lee
910927a405 feat: support more embedders 2025-07-06 00:35:07 +00:00
Andy Lee
0aa84e147b feat: hnsw embedding server and csr format 2025-07-05 23:04:41 +00:00
yichuan520030910320
368474d036 fix larger file read and add faq 2025-07-03 23:25:36 +00:00
yichuan520030910320
a627abe794 fix file path bug still compatiable bug in hnsw search 2025-07-03 02:02:42 +00:00
yichuan520030910320
44815ee7fd add configuable funcname 2025-07-02 05:18:00 +00:00
yichuan520030910320
371e3de04e add configuable funcname 2025-07-01 05:02:01 +00:00
yichuan520030910320
b81b5d0f86 256 cannot work but increase chunk size can 2025-07-01 04:09:18 +00:00
yichuan520030910320
ee507bfe7a Initial commit 2025-06-30 11:01:12 +00:00
Andy Lee
30898814ae chore: docling deps 2025-06-30 10:52:10 +00:00
yichuan520030910320
a075fd6f47 Add DiskANN and faiss as submodules 2025-06-30 10:11:39 +00:00
yichuan520030910320
303ff6fe1d Initial commit 2025-06-30 09:09:15 +00:00
1201 changed files with 28433 additions and 255404 deletions

11
.github/workflows/build-and-publish.yml vendored Normal file
View File

@@ -0,0 +1,11 @@
name: CI
on:
push:
branches: [ main ]
pull_request:
branches: [ main ]
jobs:
build:
uses: ./.github/workflows/build-reusable.yml

169
.github/workflows/build-reusable.yml vendored Normal file
View File

@@ -0,0 +1,169 @@
name: Reusable Build
on:
workflow_call:
inputs:
ref:
description: 'Git ref to build'
required: false
type: string
default: ''
jobs:
build:
name: Build ${{ matrix.os }} Python ${{ matrix.python }}
strategy:
matrix:
include:
- os: ubuntu-latest
python: '3.9'
- os: ubuntu-latest
python: '3.10'
- os: ubuntu-latest
python: '3.11'
- os: ubuntu-latest
python: '3.12'
- os: macos-latest
python: '3.9'
- os: macos-latest
python: '3.10'
- os: macos-latest
python: '3.11'
- os: macos-latest
python: '3.12'
runs-on: ${{ matrix.os }}
steps:
- uses: actions/checkout@v4
with:
ref: ${{ inputs.ref }}
submodules: recursive
- name: Setup Python
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python }}
- name: Install uv
uses: astral-sh/setup-uv@v4
- name: Install system dependencies (Ubuntu)
if: runner.os == 'Linux'
run: |
sudo apt-get update
sudo apt-get install -y libomp-dev libboost-all-dev protobuf-compiler libzmq3-dev \
pkg-config libopenblas-dev patchelf libabsl-dev libaio-dev libprotobuf-dev
# Install Intel MKL for DiskANN
wget -q https://registrationcenter-download.intel.com/akdlm/IRC_NAS/79153e0f-74d7-45af-b8c2-258941adf58a/intel-onemkl-2025.0.0.940.sh
sudo sh intel-onemkl-2025.0.0.940.sh -a --components intel.oneapi.lin.mkl.devel --action install --eula accept -s
source /opt/intel/oneapi/setvars.sh
echo "MKLROOT=/opt/intel/oneapi/mkl/latest" >> $GITHUB_ENV
echo "LD_LIBRARY_PATH=/opt/intel/oneapi/mkl/latest/lib/intel64:$LD_LIBRARY_PATH" >> $GITHUB_ENV
- name: Install system dependencies (macOS)
if: runner.os == 'macOS'
run: |
brew install llvm libomp boost protobuf zeromq
- name: Install build dependencies
run: |
uv pip install --system scikit-build-core numpy swig Cython pybind11
if [[ "$RUNNER_OS" == "Linux" ]]; then
uv pip install --system auditwheel
else
uv pip install --system delocate
fi
- name: Build packages
run: |
# Build core (platform independent)
if [ "${{ matrix.os }}" == "ubuntu-latest" ]; then
cd packages/leann-core
uv build
cd ../..
fi
# Build HNSW backend
cd packages/leann-backend-hnsw
if [ "${{ matrix.os }}" == "macos-latest" ]; then
CC=$(brew --prefix llvm)/bin/clang CXX=$(brew --prefix llvm)/bin/clang++ uv build --wheel --python python
else
uv build --wheel --python python
fi
cd ../..
# Build DiskANN backend
cd packages/leann-backend-diskann
if [ "${{ matrix.os }}" == "macos-latest" ]; then
CC=$(brew --prefix llvm)/bin/clang CXX=$(brew --prefix llvm)/bin/clang++ uv build --wheel --python python
else
uv build --wheel --python python
fi
cd ../..
# Build meta package (platform independent)
if [ "${{ matrix.os }}" == "ubuntu-latest" ]; then
cd packages/leann
uv build
cd ../..
fi
- name: Repair wheels (Linux)
if: runner.os == 'Linux'
run: |
# Repair HNSW wheel
cd packages/leann-backend-hnsw
if [ -d dist ]; then
# Show what platform auditwheel will use
auditwheel show dist/*.whl || true
# Let auditwheel auto-detect the appropriate manylinux tag
auditwheel repair dist/*.whl -w dist_repaired
rm -rf dist
mv dist_repaired dist
fi
cd ../..
# Repair DiskANN wheel
cd packages/leann-backend-diskann
if [ -d dist ]; then
# Show what platform auditwheel will use
auditwheel show dist/*.whl || true
# Let auditwheel auto-detect the appropriate manylinux tag
auditwheel repair dist/*.whl -w dist_repaired
rm -rf dist
mv dist_repaired dist
fi
cd ../..
- name: Repair wheels (macOS)
if: runner.os == 'macOS'
run: |
# Repair HNSW wheel
cd packages/leann-backend-hnsw
if [ -d dist ]; then
delocate-wheel -w dist_repaired -v dist/*.whl
rm -rf dist
mv dist_repaired dist
fi
cd ../..
# Repair DiskANN wheel
cd packages/leann-backend-diskann
if [ -d dist ]; then
delocate-wheel -w dist_repaired -v dist/*.whl
rm -rf dist
mv dist_repaired dist
fi
cd ../..
- name: List built packages
run: |
echo "📦 Built packages:"
find packages/*/dist -name "*.whl" -o -name "*.tar.gz" | sort
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
name: packages-${{ matrix.os }}-py${{ matrix.python }}
path: packages/*/dist/

103
.github/workflows/release-manual.yml vendored Normal file
View File

@@ -0,0 +1,103 @@
name: Release
on:
workflow_dispatch:
inputs:
version:
description: 'Version to release (e.g., 0.1.2)'
required: true
type: string
jobs:
update-version:
name: Update Version
runs-on: ubuntu-latest
permissions:
contents: write
outputs:
commit-sha: ${{ steps.push.outputs.commit-sha }}
steps:
- uses: actions/checkout@v4
- name: Validate version
run: |
if ! [[ "${{ inputs.version }}" =~ ^[0-9]+\.[0-9]+\.[0-9]+$ ]]; then
echo "❌ Invalid version format"
exit 1
fi
echo "✅ Version format valid"
- name: Update versions and push
id: push
run: |
./scripts/bump_version.sh ${{ inputs.version }}
git config user.name "GitHub Actions"
git config user.email "actions@github.com"
git add packages/*/pyproject.toml
git commit -m "chore: release v${{ inputs.version }}"
git push origin main
COMMIT_SHA=$(git rev-parse HEAD)
echo "commit-sha=$COMMIT_SHA" >> $GITHUB_OUTPUT
echo "✅ Pushed version update: $COMMIT_SHA"
build-packages:
name: Build packages
needs: update-version
uses: ./.github/workflows/build-reusable.yml
with:
ref: ${{ needs.update-version.outputs.commit-sha }}
publish:
name: Publish and Release
needs: build-packages
runs-on: ubuntu-latest
permissions:
contents: write
steps:
- uses: actions/checkout@v4
with:
ref: ${{ needs.update-version.outputs.commit-sha }}
- name: Download all artifacts
uses: actions/download-artifact@v4
with:
path: dist-artifacts
- name: Collect packages
run: |
mkdir -p dist
find dist-artifacts -name "*.whl" -exec cp {} dist/ \;
find dist-artifacts -name "*.tar.gz" -exec cp {} dist/ \;
echo "📦 Packages to publish:"
ls -la dist/
- name: Publish to PyPI
env:
TWINE_USERNAME: __token__
TWINE_PASSWORD: ${{ secrets.PYPI_API_TOKEN }}
run: |
if [ -z "$TWINE_PASSWORD" ]; then
echo "❌ PYPI_API_TOKEN not configured!"
exit 1
fi
pip install twine
twine upload dist/* --skip-existing --verbose
echo "✅ Published to PyPI!"
- name: Create release
run: |
git tag "v${{ inputs.version }}"
git push origin "v${{ inputs.version }}"
gh release create "v${{ inputs.version }}" \
--title "Release v${{ inputs.version }}" \
--notes "🚀 Released to PyPI: https://pypi.org/project/leann/${{ inputs.version }}/" \
--latest
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}

18
.gitignore vendored
View File

@@ -8,11 +8,16 @@ demo/indices/
*pycache* *pycache*
outputs/ outputs/
*.pkl *.pkl
*.pdf
*.idx
*.map
.history/ .history/
scripts/
lm_eval.egg-info/ lm_eval.egg-info/
demo/experiment_results/**/*.json demo/experiment_results/**/*.json
*.jsonl *.jsonl
*.eml
*.emlx
*.json
*.sh *.sh
*.txt *.txt
!CMakeLists.txt !CMakeLists.txt
@@ -29,6 +34,11 @@ build/
nprobe_logs/ nprobe_logs/
micro/results micro/results
micro/contriever-INT8 micro/contriever-INT8
examples/data/*
!examples/data/2501.14312v1 (1).pdf
!examples/data/2506.08276v1.pdf
!examples/data/PrideandPrejudice.txt
!examples/data/README.md
*.qdstrm *.qdstrm
benchmark_results/ benchmark_results/
results/ results/
@@ -41,6 +51,7 @@ embedding_comparison_results/
*.ivecs *.ivecs
*.index *.index
*.bin *.bin
*.old
read_graph read_graph
analyze_diskann_graph analyze_diskann_graph
@@ -70,3 +81,8 @@ test_indices*/
test_*.py test_*.py
!tests/** !tests/**
packages/leann-backend-diskann/third_party/DiskANN/_deps/ packages/leann-backend-diskann/third_party/DiskANN/_deps/
*.meta.json
*.passages.json
batchtest.py

14
.gitmodules vendored
View File

@@ -1,6 +1,16 @@
[submodule "packages/leann-backend-diskann/third_party/DiskANN"] [submodule "packages/leann-backend-diskann/third_party/DiskANN"]
path = packages/leann-backend-diskann/third_party/DiskANN path = packages/leann-backend-diskann/third_party/DiskANN
url = https://github.com/yichuan520030910320/DiskANN.git url = https://github.com/yichuan-w/DiskANN.git
[submodule "packages/leann-backend-hnsw/third_party/faiss"] [submodule "packages/leann-backend-hnsw/third_party/faiss"]
path = packages/leann-backend-hnsw/third_party/faiss path = packages/leann-backend-hnsw/third_party/faiss
url = https://github.com/yichuan520030910320/faiss.git url = https://github.com/yichuan-w/faiss.git
[submodule "packages/leann-backend-hnsw/third_party/msgpack-c"]
path = packages/leann-backend-hnsw/third_party/msgpack-c
url = https://github.com/msgpack/msgpack-c.git
branch = cpp_master
[submodule "packages/leann-backend-hnsw/third_party/cppzmq"]
path = packages/leann-backend-hnsw/third_party/cppzmq
url = https://github.com/zeromq/cppzmq.git
[submodule "packages/leann-backend-hnsw/third_party/libzmq"]
path = packages/leann-backend-hnsw/third_party/libzmq
url = https://github.com/zeromq/libzmq.git

View File

@@ -1,9 +0,0 @@
{
"recommendations": [
"llvm-vs-code-extensions.vscode-clangd",
"ms-python.python",
"ms-vscode.cmake-tools",
"vadimcn.vscode-lldb",
"eamodio.gitlens",
]
}

283
.vscode/launch.json vendored
View File

@@ -1,283 +0,0 @@
{
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
"version": "0.2.0",
"configurations": [
// new emdedder
{
"name": "New Embedder",
"type": "debugpy",
"request": "launch",
"program": "demo/main.py",
"console": "integratedTerminal",
"args": [
"--search",
"--use-original",
"--domain",
"dpr",
"--nprobe",
"5000",
"--load",
"flat",
"--embedder",
"intfloat/multilingual-e5-small"
]
}
//python /home/ubuntu/Power-RAG/faiss/demo/simple_build.py
{
"name": "main.py",
"type": "debugpy",
"request": "launch",
"program": "demo/main.py",
"console": "integratedTerminal",
"cwd": "${workspaceFolder}",
"args": [
"--query",
"1000",
"--load",
"bm25"
]
},
{
"name": "Simple Build",
"type": "lldb",
"request": "launch",
"program": "${workspaceFolder}/.venv/bin/python",
"console": "integratedTerminal",
"cwd": "${workspaceFolder}",
"args": [
"faiss/demo/simple_build.py"
],
"env": {
"LD_PRELOAD": "/lib/x86_64-linux-gnu/libmkl_core.so:/lib/x86_64-linux-gnu/libmkl_intel_thread.so:/lib/x86_64-linux-gnu/libmkl_intel_lp64.so:/lib/x86_64-linux-gnu/libiomp5.so"
}
},
//# Fix for Intel MKL error
//export LD_PRELOAD=/lib/x86_64-linux-gnu/libmkl_core.so:/lib/x86_64-linux-gnu/libmkl_intel_thread.so:/lib/x86_64-linux-gnu/libmkl_intel_lp64.so:/lib/x86_64-linux-gnu/libiomp5.so
//python faiss/demo/build_demo.py
{
"name": "Build Demo",
"type": "lldb",
"request": "launch",
"program": "${workspaceFolder}/.venv/bin/python",
"console": "integratedTerminal",
"cwd": "${workspaceFolder}",
"args": [
"faiss/demo/build_demo.py"
],
"env": {
"LD_PRELOAD": "/lib/x86_64-linux-gnu/libmkl_core.so:/lib/x86_64-linux-gnu/libmkl_intel_thread.so:/lib/x86_64-linux-gnu/libmkl_intel_lp64.so:/lib/x86_64-linux-gnu/libiomp5.so"
}
},
{
"name": "DiskANN Serve",
"type": "lldb",
"request": "launch",
"program": "${workspaceFolder}/.venv/bin/python",
"console": "integratedTerminal",
"cwd": "${workspaceFolder}",
"args": [
"demo/main.py",
"--mode",
"serve",
"--engine",
"sglang",
"--load-indices",
"diskann",
"--domain",
"rpj_wiki",
"--lazy-load",
"--recompute-beighbor-embeddings",
"--port",
"8082",
"--diskann-search-memory-maximum",
"2",
"--diskann-graph",
"240",
"--search-only"
],
"env": {
"PYTHONPATH": "${workspaceFolder}/faiss_repo/build/faiss/python:$PYTHONPATH"
},
"preLaunchTask": "CMake: build",
},
{
"name": "DiskANN Serve MAC",
"type": "lldb",
"request": "launch",
"program": "${workspaceFolder}/.venv/bin/python",
"console": "integratedTerminal",
"cwd": "${workspaceFolder}",
"args": [
"demo/main.py",
"--mode",
"serve",
"--engine",
"ollama",
"--load-indices",
"diskann",
"--domain",
"rpj_wiki",
"--lazy-load",
"--recompute-beighbor-embeddings"
],
"preLaunchTask": "CMake: build",
"env": {
"KMP_DUPLICATE_LIB_OK": "TRUE",
"OMP_NUM_THREADS": "1",
"MKL_NUM_THREADS": "1",
"DYLD_INSERT_LIBRARIES": "/Users/ec2-user/Power-RAG/.venv/lib/python3.10/site-packages/torch/lib/libomp.dylib",
"KMP_BLOCKTIME": "0"
}
},
{
"name": "Python Debugger: Current File with Arguments",
"type": "debugpy",
"request": "launch",
"program": "ric/main_ric.py",
"console": "integratedTerminal",
"cwd": "${workspaceFolder}",
"args": [
"--config-name",
"${input:configSelection}"
],
"justMyCode": false
},
//python ./demo/validate_equivalence.py sglang
{
"name": "Validate Equivalence",
"type": "debugpy",
"request": "launch",
"program": "demo/validate_equivalence.py",
"console": "integratedTerminal",
"args": [
"sglang"
],
},
//python demo/retrieval_demo.py --engine sglang --skip-embeddings --domain dpr --load-indices flat ivf_flat
{
"name": "Retrieval Demo",
"type": "debugpy",
"request": "launch",
"program": "demo/retrieval_demo.py",
"console": "integratedTerminal",
"args": [
"--engine",
"vllm",
"--skip-embeddings",
"--domain",
"dpr",
"--load-indices",
// "flat",
"ivf_flat"
],
},
//python demo/retrieval_demo.py --engine sglang --skip-embeddings --domain dpr --load-indices diskann --hnsw-M 64 --hnsw-efConstruction 150 --hnsw-efSearch 128 --hnsw-sq-bits 8
{
"name": "Retrieval Demo DiskANN",
"type": "debugpy",
"request": "launch",
"program": "demo/retrieval_demo.py",
"console": "integratedTerminal",
"args": [
"--engine",
"sglang",
"--skip-embeddings",
"--domain",
"dpr",
"--load-indices",
"diskann",
"--hnsw-M",
"64",
"--hnsw-efConstruction",
"150",
"--hnsw-efSearch",
"128",
"--hnsw-sq-bits",
"8"
],
},
{
"name": "Find Probe",
"type": "debugpy",
"request": "launch",
"program": "find_probe.py",
"console": "integratedTerminal",
"cwd": "${workspaceFolder}",
},
{
"name": "Python: Attach",
"type": "debugpy",
"request": "attach",
"processId": "${command:pickProcess}",
"justMyCode": true
},
{
"name": "Edge RAG",
"type": "lldb",
"request": "launch",
"program": "${workspaceFolder}/.venv/bin/python",
"console": "integratedTerminal",
"cwd": "${workspaceFolder}",
"args": [
"edgerag_demo.py"
],
"env": {
"LD_PRELOAD": "/lib/x86_64-linux-gnu/libiomp5.so /lib/x86_64-linux-gnu/libmkl_core.so /lib/x86_64-linux-gnu/libmkl_intel_lp64.so /lib/x86_64-linux-gnu/libmkl_intel_thread.so",
"MKL_NUM_THREADS": "1",
"OMP_NUM_THREADS": "1",
}
},
{
"name": "Launch Embedding Server",
"type": "debugpy",
"request": "launch",
"program": "demo/embedding_server.py",
"console": "integratedTerminal",
"cwd": "${workspaceFolder}",
"args": [
"--domain",
"rpj_wiki",
"--zmq-port",
"5556",
]
},
{
"name": "HNSW Serve",
"type": "lldb",
"request": "launch",
"program": "${workspaceFolder}/.venv/bin/python",
"console": "integratedTerminal",
"cwd": "${workspaceFolder}",
"args": [
"demo/main.py",
"--domain",
"rpj_wiki",
"--load",
"hnsw",
"--mode",
"serve",
"--search",
"--skip-pa",
"--recompute",
"--hnsw-old"
],
"env": {
"LD_PRELOAD": "/lib/x86_64-linux-gnu/libmkl_core.so:/lib/x86_64-linux-gnu/libmkl_intel_thread.so:/lib/x86_64-linux-gnu/libmkl_intel_lp64.so:/lib/x86_64-linux-gnu/libiomp5.so"
}
},
],
"inputs": [
{
"id": "configSelection",
"type": "pickString",
"description": "Select a configuration",
"options": [
"example_config",
"vllm_gritlm"
],
"default": "example_config"
}
],
}

43
.vscode/settings.json vendored
View File

@@ -1,43 +0,0 @@
{
"python.analysis.extraPaths": [
"./sglang_repo/python"
],
"cmake.sourceDirectory": "${workspaceFolder}/DiskANN",
"cmake.configureArgs": [
"-DPYBIND=True",
"-DUPDATE_EDITABLE_INSTALL=ON",
],
"cmake.environment": {
"PATH": "/Users/ec2-user/Power-RAG/.venv/bin:${env:PATH}"
},
"cmake.buildDirectory": "${workspaceFolder}/build",
"files.associations": {
"*.tcc": "cpp",
"deque": "cpp",
"string": "cpp",
"unordered_map": "cpp",
"vector": "cpp",
"map": "cpp",
"unordered_set": "cpp",
"atomic": "cpp",
"inplace_vector": "cpp",
"*.ipp": "cpp",
"forward_list": "cpp",
"list": "cpp",
"any": "cpp",
"system_error": "cpp",
"__hash_table": "cpp",
"__split_buffer": "cpp",
"__tree": "cpp",
"ios": "cpp",
"set": "cpp",
"__string": "cpp",
"string_view": "cpp",
"ranges": "cpp",
"iosfwd": "cpp"
},
"lldb.displayFormat": "auto",
"lldb.showDisassembly": "auto",
"lldb.dereferencePointers": true,
"lldb.consoleMode": "commands",
}

16
.vscode/tasks.json vendored
View File

@@ -1,16 +0,0 @@
{
"version": "2.0.0",
"tasks": [
{
"type": "cmake",
"label": "CMake: build",
"command": "build",
"targets": [
"all"
],
"group": "build",
"problemMatcher": [],
"detail": "CMake template build task"
}
]
}

View File

@@ -1,6 +1,6 @@
MIT License MIT License
Copyright (c) 2024 Rulin Shao Copyright (c) 2025 LEANN Contributors
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

616
README.md
View File

@@ -1,171 +1,437 @@
# 🚀 LEANN: A Low-Storage Vector Index <p align="center">
<img src="assets/logo-text.png" alt="LEANN Logo" width="400">
</p>
<p align="center"> <p align="center">
<img src="https://img.shields.io/badge/Python-3.9%2B-blue.svg" alt="Python 3.9+"> <img src="https://img.shields.io/badge/Python-3.9%2B-blue.svg" alt="Python 3.9+">
<img src="https://img.shields.io/badge/License-MIT-green.svg" alt="MIT License"> <img src="https://img.shields.io/badge/License-MIT-green.svg" alt="MIT License">
<img src="https://img.shields.io/badge/PRs-welcome-brightgreen.svg" alt="PRs Welcome"> <img src="https://img.shields.io/badge/Platform-Linux%20%7C%20macOS-lightgrey" alt="Platform">
<img src="https://img.shields.io/badge/Platform-Linux%20%7C%20macOS%20%7C%20Windows-lightgrey" alt="Platform">
</p> </p>
<h2 align="center" tabindex="-1" class="heading-element" dir="auto">
The smallest vector index in the world. RAG Everything with LEANN!
</h2>
LEANN is a revolutionary vector database that democratizes personal AI. Transform your laptop into a powerful RAG system that can index and search through millions of documents while using **97% less storage** than traditional solutions **without accuracy loss**.
LEANN achieves this through *graph-based selective recomputation* with *high-degree preserving pruning*, computing embeddings on-demand instead of storing them all. [Illustration Fig →](#-architecture--how-it-works) | [Paper →](https://arxiv.org/abs/2506.08276)
**Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can search your **[file system](#-personal-data-manager-process-any-documents-pdf-txt-md)**, **[emails](#-your-personal-email-secretary-rag-on-apple-mail)**, **[browser history](#-time-machine-for-the-web-rag-your-entire-browser-history)**, **[chat history](#-wechat-detective-unlock-your-golden-memories)**, or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy.
## Why LEANN?
<p align="center"> <p align="center">
<strong>⚡ Real-time embedding computation for large-scale RAG on consumer hardware</strong> <img src="assets/effects.png" alt="LEANN vs Traditional Vector DB Storage Comparison" width="70%">
</p> </p>
<p align="center"> > **The numbers speak for themselves:** Index 60 million Wikipedia chunks in just 6GB instead of 201GB. From emails to browser history, everything fits on your laptop. [See detailed benchmarks for different applications below ↓](#storage-usage-comparison)
<a href="#-quick-start">Quick Start</a> •
<a href="#-features">Features</a> •
<a href="#-benchmarks">Benchmarks</a> •
<a href="#-documentation">Documentation</a> •
<a href="#-paper">Paper</a>
</p>
---
## 🌟 What is Leann? 🔒 **Privacy:** Your data never leaves your laptop. No OpenAI, no cloud, no "terms of service".
**Leann** revolutionizes Retrieval-Augmented Generation (RAG) by eliminating the storage bottleneck of traditional vector databases. Instead of pre-computing and storing billions of embeddings, Leann dynamically computes embeddings at query time using highly optimized graph-based search algorithms. 🪶 **Lightweight:** Graph-based recomputation eliminates heavy embedding storage, while smart graph pruning and CSR format minimize graph storage overhead. Always less storage, less memory usage!
### 🎯 Why Leann? 📈 **Scalability:** Handle messy personal data that would crash traditional vector DBs, easily managing your growing personalized data and agent generated memory!
Traditional RAG systems face a fundamental trade-off: **No Accuracy Loss:** Maintain the same search quality as heavyweight solutions while using 97% less storage.
- **💾 Storage**: Storing embeddings for millions of documents requires massive disk space
- **🔄 Freshness**: Pre-computed embeddings become stale when documents change
- **💰 Cost**: Vector databases are expensive to scale
**Leann solves this by:** ## Installation
-**Zero embedding storage** - Only graph structure is persisted
-**Real-time computation** - Embeddings computed on-demand with ms latency
-**Memory efficient** - Runs on consumer hardware (8GB RAM)
-**Always fresh** - No stale embeddings, ever
## 🚀 Quick Start
### Installation
```bash ```bash
git clone https://github.com/yichuan520030910320/Power-RAG.git leann git clone git@github.com:yichuan-w/LEANN.git leann
cd leann cd leann
git submodule update --init --recursive
```
**macOS:**
```bash
brew install llvm libomp boost protobuf zeromq pkgconf
# Install with HNSW backend (default, recommended for most users)
# Install uv first if you don't have it:
# curl -LsSf https://astral.sh/uv/install.sh | sh
# See: https://docs.astral.sh/uv/getting-started/installation/#installation-methods
CC=$(brew --prefix llvm)/bin/clang CXX=$(brew --prefix llvm)/bin/clang++ uv sync
```
**Linux:**
```bash
sudo apt-get install libomp-dev libboost-all-dev protobuf-compiler libabsl-dev libmkl-full-dev libaio-dev libzmq3-dev
# Install with HNSW backend (default, recommended for most users)
uv sync uv sync
``` ```
### 30-Second Example
**Ollama Setup (Recommended for full privacy):**
> *You can skip this installation if you only want to use OpenAI API for generation.*
**macOS:**
First, [download Ollama for macOS](https://ollama.com/download/mac).
```bash
# Pull a lightweight model (recommended for consumer hardware)
ollama pull llama3.2:1b
```
**Linux:**
```bash
# Install Ollama
curl -fsSL https://ollama.ai/install.sh | sh
# Start Ollama service manually
ollama serve &
# Pull a lightweight model (recommended for consumer hardware)
ollama pull llama3.2:1b
```
## Quick Start in 30s
Our declarative API makes RAG as easy as writing a config file.
[Try in this ipynb file →](demo.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/yichuan-w/LEANN/blob/main/demo.ipynb)
```python ```python
from leann.api import LeannBuilder, LeannSearcher from leann.api import LeannBuilder, LeannSearcher, LeannChat
# 1. Build index (no embeddings stored!) # 1. Build the index (no embeddings stored!)
builder = LeannBuilder(backend_name="diskann") builder = LeannBuilder(backend_name="hnsw")
builder.add_text("Python is a powerful programming language") builder.add_text("C# is a powerful programming language")
builder.add_text("Python is a powerful programming language and it is very popular")
builder.add_text("Machine learning transforms industries") builder.add_text("Machine learning transforms industries")
builder.add_text("Neural networks process complex data") builder.add_text("Neural networks process complex data")
builder.add_text("Leann is a great storage saving engine for RAG on your MacBook")
builder.build_index("knowledge.leann") builder.build_index("knowledge.leann")
# 2. Search with real-time embeddings # 2. Search with real-time embeddings
searcher = LeannSearcher("knowledge.leann") searcher = LeannSearcher("knowledge.leann")
results = searcher.search("programming languages", top_k=2) results = searcher.search("programming languages", top_k=2)
for result in results: # 3. Chat with LEANN using retrieved results
print(f"Score: {result['score']:.3f} - {result['text']}") llm_config = {
"type": "ollama",
"model": "llama3.2:1b"
}
chat = LeannChat(index_path="knowledge.leann", llm_config=llm_config)
response = chat.ask(
"Compare the two retrieved programming languages and say which one is more popular today.",
top_k=2,
)
``` ```
### Run the Demo ## RAG on Everything!
LEANN supports RAG on various data sources including documents (.pdf, .txt, .md), Apple Mail, Google Search History, WeChat, and more.
### 📄 Personal Data Manager: Process Any Documents (.pdf, .txt, .md)!
Ask questions directly about your personal PDFs, documents, and any directory containing your files!
The example below asks a question about summarizing two papers (uses default data in `examples/data`):
```bash ```bash
uv run examples/document_search.py # Drop your PDFs, .txt, .md files into examples/data/
uv run ./examples/main_cli_example.py
``` ```
**PDF RAG Demo (using LlamaIndex for document parsing and Leann for indexing/search)** ```
# Or use python directly
source .venv/bin/activate
python ./examples/main_cli_example.py
```
This demo showcases how to build a RAG system for PDF documents using Leann.
1. Place your PDF files (and other supported formats like .docx, .pptx, .xlsx) into the `examples/data/` directory.
2. Ensure you have an `OPENAI_API_KEY` set in your environment variables or in a `.env` file for the LLM to function. ### 📧 Your Personal Email Secretary: RAG on Apple Mail!
**Note:** You need to grant full disk access to your terminal/VS Code in System Preferences → Privacy & Security → Full Disk Access.
```bash
python examples/mail_reader_leann.py --query "What's the food I ordered by doordash or Uber eat mostly?"
```
**780K email chunks → 78MB storage** Finally, search your email like you search Google.
<details>
<summary><strong>📋 Click to expand: Command Examples</strong></summary>
```bash ```bash
uv run examples/main_cli_example.py # Use default mail path (works for most macOS setups)
python examples/mail_reader_leann.py
# Run with custom index directory
python examples/mail_reader_leann.py --index-dir "./my_mail_index"
# Process all emails (may take time but indexes everything)
python examples/mail_reader_leann.py --max-emails -1
# Limit number of emails processed (useful for testing)
python examples/mail_reader_leann.py --max-emails 1000
# Run a single query
python examples/mail_reader_leann.py --query "What did my boss say about deadlines?"
``` ```
## ✨ Features </details>
### 🔥 Core Features <details>
- **📊 Multiple Distance Functions**: L2, Cosine, MIPS (Maximum Inner Product Search) <summary><strong>📋 Click to expand: Example queries you can try</strong></summary>
- **🏗️ Pluggable Backends**: DiskANN, HNSW/FAISS with unified API
- **🔄 Real-time Embeddings**: Dynamic computation using optimized ZMQ servers
- **📈 Scalable Architecture**: Handles millions of documents on consumer hardware
- **🎯 Graph Pruning**: Advanced techniques for memory-efficient search
### 🛠️ Technical Highlights Once the index is built, you can ask questions like:
- **Zero-copy operations** for maximum performance - "Find emails from my boss about deadlines"
- **SIMD-optimized** distance computations (AVX2/AVX512) - "What did John say about the project timeline?"
- **Async embedding pipeline** with batched processing - "Show me emails about travel expenses"
- **Memory-mapped indices** for fast startup </details>
- **Recompute mode** for highest accuracy scenarios
### 🎨 Developer Experience
- **Simple Python API** - Get started in minutes
- **Extensible backend system** - Easy to add new algorithms
- **Comprehensive examples** - From basic usage to production deployment
- **Rich debugging tools** - Built-in performance profiling
## 📊 Benchmarks
### Memory Usage Comparison
| System | 1M Documents | 10M Documents | 100M Documents |
|--------|-------------|---------------|----------------|
| Traditional Vector DB | 3.1 GB | 31 GB | 310 GB |
| **Leann** | **180 MB** | **1.2 GB** | **8.4 GB** |
| **Reduction** | **94.2%** | **96.1%** | **97.3%** |
### Query Performance
| Backend | Index Size | Query Time | Recall@10 |
|---------|------------|------------|-----------|
| DiskANN | 1M docs | 12ms | 0.95 |
| DiskANN + Recompute | 1M docs | 145ms | 0.98 |
| HNSW | 1M docs | 8ms | 0.93 |
*Benchmarks run on AMD Ryzen 7 with 32GB RAM*
## 🏗️ Architecture
### 🔍 Time Machine for the Web: RAG Your Entire Google Browser History!
```bash
python examples/google_history_reader_leann.py --query "Tell me my browser history about machine learning?"
``` ```
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐ **38K browser entries → 6MB storage.** Your browser history becomes your personal search engine.
│ Query Text │───▶│ Embedding │───▶│ Graph-based │
│ │ │ Computation │ │ Search │ <details>
└─────────────────┘ └──────────────────┘ └─────────────────┘ <summary><strong>📋 Click to expand: Command Examples</strong></summary>
│ │
▼ ▼ ```bash
┌──────────────┐ ┌──────────────┐ # Use default Chrome profile (auto-finds all profiles)
│ ZMQ Server │ │ Pruned Graph │ python examples/google_history_reader_leann.py
│ (Cached) │ │ Index │
└──────────────┘ └──────────────┘ # Run with custom index directory
python examples/google_history_reader_leann.py --index-dir "./my_chrome_index"
# Limit number of history entries processed (useful for testing)
python examples/google_history_reader_leann.py --max-entries 500
# Run a single query
python examples/google_history_reader_leann.py --query "What websites did I visit about machine learning?"
``` ```
### Key Components </details>
1. **🧠 Embedding Engine**: Real-time transformer inference with caching <details>
2. **📊 Graph Index**: Memory-efficient navigation structures <summary><strong>📋 Click to expand: How to find your Chrome profile</strong></summary>
3. **🔄 Search Coordinator**: Orchestrates embedding + graph search
4. **⚡ Backend Adapters**: Pluggable algorithm implementations
## 🎓 Supported Models & Backends The default Chrome profile path is configured for a typical macOS setup. If you need to find your specific Chrome profile:
### 🤖 Embedding Models 1. Open Terminal
- **sentence-transformers/all-mpnet-base-v2** (default) 2. Run: `ls ~/Library/Application\ Support/Google/Chrome/`
- **sentence-transformers/all-MiniLM-L6-v2** (lightweight) 3. Look for folders like "Default", "Profile 1", "Profile 2", etc.
- Any HuggingFace sentence-transformer model 4. Use the full path as your `--chrome-profile` argument
- Custom model support via API
### 🔧 Search Backends **Common Chrome profile locations:**
- **DiskANN**: Microsoft's billion-scale ANN algorithm - macOS: `~/Library/Application Support/Google/Chrome/Default`
- **HNSW**: Hierarchical Navigable Small World graphs - Linux: `~/.config/google-chrome/Default`
- **Coming soon**: ScaNN, Faiss-IVF, NGT
### 📏 Distance Functions </details>
- **L2**: Euclidean distance for precise similarity
- **Cosine**: Angular similarity for normalized vectors
- **MIPS**: Maximum Inner Product Search for recommendation systems
<details>
<summary><strong>💬 Click to expand: Example queries you can try</strong></summary>
Once the index is built, you can ask questions like:
- "What websites did I visit about machine learning?"
- "Find my search history about programming"
- "What YouTube videos did I watch recently?"
- "Show me websites I visited about travel planning"
</details>
### 💬 WeChat Detective: Unlock Your Golden Memories!
```bash
python examples/wechat_history_reader_leann.py --query "Show me all group chats about weekend plans"
```
**400K messages → 64MB storage** Search years of chat history in any language.
<details>
<summary><strong>🔧 Click to expand: Installation Requirements</strong></summary>
First, you need to install the WeChat exporter:
```bash
sudo packages/wechat-exporter/wechattweak-cli install
```
**Troubleshooting:**
- **Installation issues**: Check the [WeChatTweak-CLI issues page](https://github.com/sunnyyoung/WeChatTweak-CLI/issues/41)
- **Export errors**: If you encounter the error below, try restarting WeChat
```
Failed to export WeChat data. Please ensure WeChat is running and WeChatTweak is installed.
Failed to find or export WeChat data. Exiting.
```
</details>
<details>
<summary><strong>📋 Click to expand: Command Examples</strong></summary>
```bash
# Use default settings (recommended for first run)
python examples/wechat_history_reader_leann.py
# Run with custom export directory and wehn we run the first time, LEANN will export all chat history automatically for you
python examples/wechat_history_reader_leann.py --export-dir "./my_wechat_exports"
# Run with custom index directory
python examples/wechat_history_reader_leann.py --index-dir "./my_wechat_index"
# Limit number of chat entries processed (useful for testing)
python examples/wechat_history_reader_leann.py --max-entries 1000
# Run a single query
python examples/wechat_history_reader_leann.py --query "Show me conversations about travel plans"
```
</details>
<details>
<summary><strong>💬 Click to expand: Example queries you can try</strong></summary>
Once the index is built, you can ask questions like:
- "我想买魔术师约翰逊的球衣,给我一些对应聊天记录?" (Chinese: Show me chat records about buying Magic Johnson's jersey)
</details>
## 🖥️ Command Line Interface
LEANN includes a powerful CLI for document processing and search. Perfect for quick document indexing and interactive chat.
```bash
# Build an index from documents
leann build my-docs --docs ./documents
# Search your documents
leann search my-docs "machine learning concepts"
# Interactive chat with your documents
leann ask my-docs --interactive
# List all your indexes
leann list
```
**Key CLI features:**
- Auto-detects document formats (PDF, TXT, MD, DOCX)
- Smart text chunking with overlap
- Multiple LLM providers (Ollama, OpenAI, HuggingFace)
- Organized index storage in `~/.leann/indexes/`
- Support for advanced search parameters
<details>
<summary><strong>📋 Click to expand: Complete CLI Reference</strong></summary>
**Build Command:**
```bash
leann build INDEX_NAME --docs DIRECTORY [OPTIONS]
Options:
--backend {hnsw,diskann} Backend to use (default: hnsw)
--embedding-model MODEL Embedding model (default: facebook/contriever)
--graph-degree N Graph degree (default: 32)
--complexity N Build complexity (default: 64)
--force Force rebuild existing index
--compact Use compact storage (default: true)
--recompute Enable recomputation (default: true)
```
**Search Command:**
```bash
leann search INDEX_NAME QUERY [OPTIONS]
Options:
--top-k N Number of results (default: 5)
--complexity N Search complexity (default: 64)
--recompute-embeddings Use recomputation for highest accuracy
--pruning-strategy {global,local,proportional}
```
**Ask Command:**
```bash
leann ask INDEX_NAME [OPTIONS]
Options:
--llm {ollama,openai,hf} LLM provider (default: ollama)
--model MODEL Model name (default: qwen3:8b)
--interactive Interactive chat mode
--top-k N Retrieval count (default: 20)
```
</details>
## 🏗️ Architecture & How It Works
<p align="center">
<img src="assets/arch.png" alt="LEANN Architecture" width="800">
</p>
**The magic:** Most vector DBs store every single embedding (expensive). LEANN stores a pruned graph structure (cheap) and recomputes embeddings only when needed (fast).
**Core techniques:**
- **Graph-based selective recomputation:** Only compute embeddings for nodes in the search path
- **High-degree preserving pruning:** Keep important "hub" nodes while removing redundant connections
- **Dynamic batching:** Efficiently batch embedding computations for GPU utilization
- **Two-level search:** Smart graph traversal that prioritizes promising nodes
**Backends:** DiskANN or HNSW - pick what works for your data size.
## Benchmarks
Run the comparison yourself:
```bash
python examples/compare_faiss_vs_leann.py
```
| System | Storage |
|--------|---------|
| FAISS HNSW | 5.5 MB |
| LEANN | 0.5 MB |
| **Savings** | **91%** |
Same dataset, same hardware, same embedding model. LEANN just works better.
### Storage Usage Comparison
| System | DPR (2.1M chunks) | RPJ-wiki (60M chunks) | Chat history (400K messages) | Apple emails (780K messages chunks) |Google Search History (38K entries)
|-----------------------|------------------|------------------------|-----------------------------|------------------------------|------------------------------|
| Traditional Vector DB(FAISS) | 3.8 GB | 201 GB | 1.8G | 2.4G |130.4 MB |
| **LEANN** | **324 MB** | **6 GB** | **64 MB** | **79 MB** |**6.4MB** |
| **Reduction** | **91% smaller** | **97% smaller** | **97% smaller** | **97% smaller** |**95% smaller** |
<!-- ### Memory Usage Comparison
| System j | DPR(2M docs) | RPJ-wiki(60M docs) | Chat history() |
| --------------------- | ---------------- | ---------------- | ---------------- |
| Traditional Vector DB(LLamaindex faiss) | x GB | x GB | x GB |
| **Leann** | **xx MB** | **x GB** | **x GB** |
| **Reduction** | **x%** | **x%** | **x%** |
### Query Performance of LEANN
| Backend | Index Size | Query Time | Recall@3 |
| ------------------- | ---------- | ---------- | --------- |
| DiskANN | 1M docs | xms | 0.95 |
| HNSW | 1M docs | xms | 0.95 | -->
*Benchmarks run on Apple M3 Pro 36 GB*
## Reproduce Our Results
```bash
uv pip install -e ".[dev]" # Install dev dependencies
python examples/run_evaluation.py data/indices/dpr/dpr_diskann # DPR dataset
python examples/run_evaluation.py data/indices/rpj_wiki/rpj_wiki.index # Wikipedia
```
The evaluation script downloads data automatically on first run. The last three results were tested with partial personal data, and you can reproduce them with your own data!
## 🔬 Paper ## 🔬 Paper
If you find Leann useful, please cite: If you find Leann useful, please cite:
@@ -184,91 +450,98 @@ If you find Leann useful, please cite:
} }
``` ```
## 🌍 Use Cases ## ✨ Features
### 💼 Enterprise RAG ### 🔥 Core Features
```python
# Handle millions of documents with limited resources
builder = LeannBuilder(
backend_name="diskann",
distance_metric="cosine",
graph_degree=64,
memory_budget="4GB"
)
```
### 🔬 Research & Experimentation - **🔄 Real-time Embeddings** - Eliminate heavy embedding storage with dynamic computation using optimized ZMQ servers and highly optimized search paradigm (overlapping and batching) with highly optimized embedding engine
```python - **📈 Scalable Architecture** - Handles millions of documents on consumer hardware; the larger your dataset, the more LEANN can save
# Quick prototyping with different algorithms - **🎯 Graph Pruning** - Advanced techniques to minimize the storage overhead of vector search to a limited footprint
for backend in ["diskann", "hnsw"]: - **🏗️ Pluggable Backends** - DiskANN, HNSW/FAISS with unified API
searcher = LeannSearcher(index_path, backend=backend)
evaluate_recall(searcher, queries, ground_truth)
```
### 🚀 Real-time Applications ### 🛠️ Technical Highlights
```python - **🔄 Recompute Mode** - Highest accuracy scenarios while eliminating vector storage overhead
# Sub-second response times - **⚡ Zero-copy Operations** - Minimize IPC overhead by transferring distances instead of embeddings
chat = LeannChat("knowledge.leann") - **🚀 High-throughput Embedding Pipeline** - Optimized batched processing for maximum efficiency
response = chat.ask("What is quantum computing?") - **🎯 Two-level Search** - Novel coarse-to-fine search overlap for accelerated query processing (optional)
# Returns in <100ms with recompute mode - **💾 Memory-mapped Indices** - Fast startup with raw text mapping to reduce memory overhead
``` - **🚀 MLX Support** - Ultra-fast recompute/build with quantized embedding models, accelerating building and search ([minimal example](test/build_mlx_index.py))
### 🎨 Developer Experience
- **Simple Python API** - Get started in minutes
- **Extensible backend system** - Easy to add new algorithms
- **Comprehensive examples** - From basic usage to production deployment
## 🤝 Contributing ## 🤝 Contributing
We welcome contributions! Leann is built by the community, for the community. We welcome contributions! Leann is built by the community, for the community.
### Ways to Contribute ### Ways to Contribute
- 🐛 **Bug Reports**: Found an issue? Let us know! - 🐛 **Bug Reports**: Found an issue? Let us know!
- 💡 **Feature Requests**: Have an idea? We'd love to hear it! - 💡 **Feature Requests**: Have an idea? We'd love to hear it!
- 🔧 **Code Contributions**: PRs welcome for all skill levels - 🔧 **Code Contributions**: PRs welcome for all skill levels
- 📖 **Documentation**: Help make Leann more accessible - 📖 **Documentation**: Help make Leann more accessible
- 🧪 **Benchmarks**: Share your performance results - 🧪 **Benchmarks**: Share your performance results
### Development Setup
```bash <!-- ## ❓ FAQ
git clone https://github.com/yourname/leann
cd leann ### Common Issues
uv sync --dev
uv run pytest tests/ #### NCCL Topology Error
**Problem**: You encounter `ncclTopoComputePaths` error during document processing:
```
ncclTopoComputePaths (system=<optimized out>, comm=comm@entry=0x5555a82fa3c0) at graph/paths.cc:688
``` ```
### Quick Tests **Solution**: Set these environment variables before running your script:
```bash
# Sanity check all distance functions
uv run python tests/sanity_checks/test_distance_functions.py
# Verify L2 implementation ```bash
uv run python tests/sanity_checks/test_l2_verification.py export NCCL_TOPO_DUMP_FILE=/tmp/nccl_topo.xml
export NCCL_DEBUG=INFO
export NCCL_DEBUG_SUBSYS=INIT,GRAPH
export NCCL_IB_DISABLE=1
export NCCL_NET_PLUGIN=none
export NCCL_SOCKET_IFNAME=ens5
``` -->
## FAQ
### 1. My building time seems long
You can speed up the process by using a lightweight embedding model. Add this to your arguments:
```bash
--embedding-model sentence-transformers/all-MiniLM-L6-v2
``` ```
**Model sizes:** `all-MiniLM-L6-v2` (30M parameters), `facebook/contriever` (~100M parameters), `Qwen3-0.6B` (600M parameters)
## 📈 Roadmap ## 📈 Roadmap
### 🎯 Q1 2024 ### 🎯 Q2 2025
- [x] DiskANN backend with MIPS/L2/Cosine support
- [x] HNSW backend integration - [X] DiskANN backend with MIPS/L2/Cosine support
- [x] Real-time embedding pipeline - [X] HNSW backend integration
- [x] Memory-efficient graph pruning - [X] Real-time embedding pipeline
- [X] Memory-efficient graph pruning
### 🚀 Q3 2025
### 🚀 Q2 2024
- [ ] Distributed search across multiple nodes
- [ ] ScaNN backend support
- [ ] Advanced caching strategies - [ ] Advanced caching strategies
- [ ] Kubernetes deployment guides - [ ] Add contextual-retrieval https://www.anthropic.com/news/contextual-retrieval
- [ ] Add sleep-time-compute and summarize agent! to summarilze the file on computer!
- [ ] Add OpenAI recompute API
### 🌟 Q4 2025
### 🌟 Q3 2024
- [ ] GPU-accelerated embedding computation
- [ ] Approximate distance functions
- [ ] Integration with LangChain/LlamaIndex - [ ] Integration with LangChain/LlamaIndex
- [ ] Visual similarity search - [ ] Visual similarity search
- [ ] Query rewrtiting, rerank and expansion
## 💬 Community
Join our growing community of researchers and engineers!
- 🐦 **Twitter**: [@LeannAI](https://twitter.com/LeannAI)
- 💬 **Discord**: [Join our server](https://discord.gg/leann)
- 📧 **Email**: leann@yourcompany.com
- 🐙 **GitHub Discussions**: [Ask questions here](https://github.com/yourname/leann/discussions)
## 📄 License ## 📄 License
@@ -290,3 +563,4 @@ MIT License - see [LICENSE](LICENSE) for details.
<p align="center"> <p align="center">
Made with ❤️ by the Leann team Made with ❤️ by the Leann team
</p> </p>

BIN
assets/arch.png Normal file
View File

Binary file not shown.

After

Width:  |  Height:  |  Size: 78 KiB

BIN
assets/effects.png Normal file
View File

Binary file not shown.

After

Width:  |  Height:  |  Size: 339 KiB

BIN
assets/logo-text.png Normal file
View File

Binary file not shown.

After

Width:  |  Height:  |  Size: 818 KiB

BIN
assets/logo.png Normal file
View File

Binary file not shown.

After

Width:  |  Height:  |  Size: 276 KiB

82
data/.gitattributes vendored Normal file
View File

@@ -0,0 +1,82 @@
*.7z filter=lfs diff=lfs merge=lfs -text
*.arrow filter=lfs diff=lfs merge=lfs -text
*.bin filter=lfs diff=lfs merge=lfs -text
*.bz2 filter=lfs diff=lfs merge=lfs -text
*.ckpt filter=lfs diff=lfs merge=lfs -text
*.ftz filter=lfs diff=lfs merge=lfs -text
*.gz filter=lfs diff=lfs merge=lfs -text
*.h5 filter=lfs diff=lfs merge=lfs -text
*.joblib filter=lfs diff=lfs merge=lfs -text
*.lfs.* filter=lfs diff=lfs merge=lfs -text
*.lz4 filter=lfs diff=lfs merge=lfs -text
*.mds filter=lfs diff=lfs merge=lfs -text
*.mlmodel filter=lfs diff=lfs merge=lfs -text
*.model filter=lfs diff=lfs merge=lfs -text
*.msgpack filter=lfs diff=lfs merge=lfs -text
*.npy filter=lfs diff=lfs merge=lfs -text
*.npz filter=lfs diff=lfs merge=lfs -text
*.onnx filter=lfs diff=lfs merge=lfs -text
*.ot filter=lfs diff=lfs merge=lfs -text
*.parquet filter=lfs diff=lfs merge=lfs -text
*.pb filter=lfs diff=lfs merge=lfs -text
*.pickle filter=lfs diff=lfs merge=lfs -text
*.pkl filter=lfs diff=lfs merge=lfs -text
*.pt filter=lfs diff=lfs merge=lfs -text
*.pth filter=lfs diff=lfs merge=lfs -text
*.rar filter=lfs diff=lfs merge=lfs -text
*.safetensors filter=lfs diff=lfs merge=lfs -text
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
*.tar.* filter=lfs diff=lfs merge=lfs -text
*.tar filter=lfs diff=lfs merge=lfs -text
*.tflite filter=lfs diff=lfs merge=lfs -text
*.tgz filter=lfs diff=lfs merge=lfs -text
*.wasm filter=lfs diff=lfs merge=lfs -text
*.xz filter=lfs diff=lfs merge=lfs -text
*.zip filter=lfs diff=lfs merge=lfs -text
*.zst filter=lfs diff=lfs merge=lfs -text
*tfevents* filter=lfs diff=lfs merge=lfs -text
# Audio files - uncompressed
*.pcm filter=lfs diff=lfs merge=lfs -text
*.sam filter=lfs diff=lfs merge=lfs -text
*.raw filter=lfs diff=lfs merge=lfs -text
# Audio files - compressed
*.aac filter=lfs diff=lfs merge=lfs -text
*.flac filter=lfs diff=lfs merge=lfs -text
*.mp3 filter=lfs diff=lfs merge=lfs -text
*.ogg filter=lfs diff=lfs merge=lfs -text
*.wav filter=lfs diff=lfs merge=lfs -text
# Image files - uncompressed
*.bmp filter=lfs diff=lfs merge=lfs -text
*.gif filter=lfs diff=lfs merge=lfs -text
*.png filter=lfs diff=lfs merge=lfs -text
*.tiff filter=lfs diff=lfs merge=lfs -text
# Image files - compressed
*.jpg filter=lfs diff=lfs merge=lfs -text
*.jpeg filter=lfs diff=lfs merge=lfs -text
*.webp filter=lfs diff=lfs merge=lfs -text
# Video files - compressed
*.mp4 filter=lfs diff=lfs merge=lfs -text
*.webm filter=lfs diff=lfs merge=lfs -text
ground_truth/dpr/id_map.json filter=lfs diff=lfs merge=lfs -text
indices/dpr/dpr_diskann.passages.idx filter=lfs diff=lfs merge=lfs -text
indices/dpr/dpr_diskann.passages.jsonl filter=lfs diff=lfs merge=lfs -text
indices/dpr/dpr_diskann_disk.index filter=lfs diff=lfs merge=lfs -text
indices/dpr/leann.labels.map filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/leann.labels.map filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.index filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.0.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.0.jsonl filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.1.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.1.jsonl filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.2.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.2.jsonl filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.3.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.3.jsonl filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.4.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.4.jsonl filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.5.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.5.jsonl filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.6.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.6.jsonl filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.7.idx filter=lfs diff=lfs merge=lfs -text
indices/rpj_wiki/rpj_wiki.passages.7.jsonl filter=lfs diff=lfs merge=lfs -text

44
data/README.md Normal file
View File

@@ -0,0 +1,44 @@
---
license: mit
---
# LEANN-RAG Evaluation Data
This repository contains the necessary data to run the recall evaluation scripts for the [LEANN-RAG](https://huggingface.co/LEANN-RAG) project.
## Dataset Components
This dataset is structured into three main parts:
1. **Pre-built LEANN Indices**:
* `dpr/`: A pre-built index for the DPR dataset.
* `rpj_wiki/`: A pre-built index for the RPJ-Wiki dataset.
These indices were created using the `leann-core` library and are required by the `LeannSearcher`.
2. **Ground Truth Data**:
* `ground_truth/`: Contains the ground truth files (`flat_results_nq_k3.json`) for both the DPR and RPJ-Wiki datasets. These files map queries to the original passage IDs from the Natural Questions benchmark, evaluated using the Contriever model.
3. **Queries**:
* `queries/`: Contains the `nq_open.jsonl` file with the Natural Questions queries used for the evaluation.
## Usage
To use this data, you can download it locally using the `huggingface-hub` library. First, install the library:
```bash
pip install huggingface-hub
```
Then, you can download the entire dataset to a local directory (e.g., `data/`) with the following Python script:
```python
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="LEANN-RAG/leann-rag-evaluation-data",
repo_type="dataset",
local_dir="data"
)
```
This will download all the necessary files into a local `data` folder, preserving the repository structure. The evaluation scripts in the main [LEANN-RAG Space](https://huggingface.co/LEANN-RAG) are configured to work with this data structure.

View File

@@ -1,226 +1,321 @@
{ {
"cells": [ "cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Quick Start in 30s"
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 3, "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# install this if you areusing colab\n",
"! pip install leann"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Build the index"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"INFO: LeannBuilder initialized with 'diskann' backend.\n", "INFO: Registering backend 'hnsw'\n"
"INFO: Computing embeddings for 6 chunks using 'sentence-transformers/all-mpnet-base-v2'...\n"
] ]
}, },
{ {
"name": "stderr", "name": "stderr",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"Batches: 100%|██████████| 1/1 [00:00<00:00, 77.61it/s]" "/Users/yichuan/Desktop/code/LEANN/leann/.venv/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n",
"INFO:sentence_transformers.SentenceTransformer:Load pretrained SentenceTransformer: facebook/contriever\n",
"WARNING:sentence_transformers.SentenceTransformer:No sentence-transformers model found with name facebook/contriever. Creating a new one with mean pooling.\n",
"Writing passages: 100%|██████████| 5/5 [00:00<00:00, 27887.66chunk/s]\n",
"Batches: 100%|██████████| 1/1 [00:00<00:00, 13.51it/s]\n",
"WARNING:leann_backend_hnsw.hnsw_backend:Converting data to float32, shape: (5, 768)\n",
"INFO:leann_backend_hnsw.hnsw_backend:INFO: Converting HNSW index to CSR-pruned format...\n"
] ]
}, },
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"INFO: Building DiskANN index for 6 vectors with metric Metric.INNER_PRODUCT...\n", "M: 64 for level: 0\n",
"Using Inner Product search, so need to pre-process base data into temp file. Please ensure there is additional (n*(d+1)*4) bytes for storing pre-processed base vectors, apart from the interim indices created by DiskANN and the final index.\n", "Starting conversion: knowledge.index -> knowledge.csr.tmp\n",
"Pre-processing base file by adding extra coordinate\n", "[0.00s] Reading Index HNSW header...\n",
"✅ DiskANN index built successfully at 'knowledge'\n", "[0.00s] Header read: d=768, ntotal=5\n",
"Writing bin: knowledge_disk.index_max_base_norm.bin\n", "[0.00s] Reading HNSW struct vectors...\n",
"bin: #pts = 1, #dims = 1, size = 12B\n", " Reading vector (dtype=<class 'numpy.float64'>, fmt='d')... Count=6, Bytes=48\n",
"Finished writing bin.\n", "[0.00s] Read assign_probas (6)\n",
"Time for preprocessing data for inner product: 0.000165 seconds\n", " Reading vector (dtype=<class 'numpy.int32'>, fmt='i')... Count=7, Bytes=28\n",
"Reading max_norm_of_base from knowledge_disk.index_max_base_norm.bin\n", "[0.11s] Read cum_nneighbor_per_level (7)\n",
"Reading bin file knowledge_disk.index_max_base_norm.bin ...\n", " Reading vector (dtype=<class 'numpy.int32'>, fmt='i')... Count=5, Bytes=20\n",
"Opening bin file knowledge_disk.index_max_base_norm.bin... \n", "[0.21s] Read levels (5)\n",
"Metadata: #pts = 1, #dims = 1...\n", "[0.30s] Probing for compact storage flag...\n",
"done.\n", "[0.30s] Found compact flag: False\n",
"max_norm_of_base: 1\n", "[0.30s] Compact flag is False, reading original format...\n",
"! Using prepped_base file at knowledge_prepped_base.bin\n", "[0.30s] Probing for potential extra byte before non-compact offsets...\n",
"Starting index build: R=32 L=64 Query RAM budget: 4.02653e+09 Indexing ram budget: 8 T: 8\n", "[0.30s] Found and consumed an unexpected 0x00 byte.\n",
"getting bin metadata\n", " Reading vector (dtype=<class 'numpy.uint64'>, fmt='Q')... Count=6, Bytes=48\n",
"Time for getting bin metadata: 0.000008 seconds\n", "[0.30s] Read offsets (6)\n",
"Compressing 769-dimensional data into 512 bytes per vector.\n", "[0.40s] Attempting to read neighbors vector...\n",
"Opened: knowledge_prepped_base.bin, size: 18464, cache_size: 18464\n", " Reading vector (dtype=<class 'numpy.int32'>, fmt='i')... Count=320, Bytes=1280\n",
"Training data with 6 samples loaded.\n", "[0.40s] Read neighbors (320)\n",
"Reading bin file knowledge_pq_pivots.bin ...\n", "[0.50s] Read scalar params (ep=4, max_lvl=0)\n",
"Opening bin file knowledge_pq_pivots.bin... \n", "[0.50s] Checking for storage data...\n",
"Metadata: #pts = 256, #dims = 769...\n", "[0.50s] Found storage fourcc: 49467849.\n",
"done.\n", "[0.50s] Converting to CSR format...\n",
"PQ pivot file exists. Not generating again\n", "[0.50s] Conversion loop finished. \n",
"Opened: knowledge_prepped_base.bin, size: 18464, cache_size: 18464\n", "[0.50s] Running validation checks...\n",
"Reading bin file knowledge_pq_pivots.bin ...\n", " Checking total valid neighbor count...\n",
"Opening bin file knowledge_pq_pivots.bin... \n", " OK: Total valid neighbors = 20\n",
"Metadata: #pts = 4, #dims = 1...\n", " Checking final pointer indices...\n",
"done.\n", " OK: Final pointers match data size.\n",
"Reading bin file knowledge_pq_pivots.bin ...\n", "[0.50s] Deleting original neighbors and offsets arrays...\n",
"Opening bin file knowledge_pq_pivots.bin... \n", " CSR Stats: |data|=20, |level_ptr|=10\n",
"Metadata: #pts = 256, #dims = 769...\n", "[0.59s] Writing CSR HNSW graph data in FAISS-compatible order...\n",
"done.\n", " Pruning embeddings: Writing NULL storage marker.\n",
"Reading bin file knowledge_pq_pivots.bin ...\n", "[0.69s] Conversion complete.\n"
"Opening bin file knowledge_pq_pivots.bin... \n",
"Metadata: #pts = 769, #dims = 1...\n",
"done.\n",
"Reading bin file knowledge_pq_pivots.bin ...\n",
"Opening bin file knowledge_pq_pivots.bin... \n",
"Metadata: #pts = 513, #dims = 1...\n",
"done.\n",
"Loaded PQ pivot information\n",
"Processing points [0, 6)...done.\n",
"Time for generating quantized data: 0.023918 seconds\n",
"Full index fits in RAM budget, should consume at most 2.03973e-05GiBs, so building in one shot\n",
"L2: Using AVX2 distance computation DistanceL2Float\n",
"Passed, empty search_params while creating index config\n",
"Using only first 6 from file.. \n",
"Starting index build with 6 points... \n",
"0% of index build completed.Starting final cleanup..done. Link time: 9e-05s\n",
"Index built with degree: max:5 avg:5 min:5 count(deg<2):0\n",
"Not saving tags as they are not enabled.\n",
"Time taken for save: 0.000178s.\n",
"Time for building merged vamana index: 0.000579 seconds\n",
"Opened: knowledge_prepped_base.bin, size: 18464, cache_size: 18464\n",
"Vamana index file size=168\n",
"Opened: knowledge_disk.index, cache_size: 67108864\n",
"medoid: 0B\n",
"max_node_len: 3100B\n",
"nnodes_per_sector: 1B\n",
"# sectors: 6\n",
"Sector #0written\n",
"Finished writing 28672B\n",
"Writing bin: knowledge_disk.index\n",
"bin: #pts = 9, #dims = 1, size = 80B\n",
"Finished writing bin.\n",
"Output disk index file written to knowledge_disk.index\n",
"Finished writing 28672B\n",
"Time for generating disk layout: 0.043488 seconds\n",
"Opened: knowledge_prepped_base.bin, size: 18464, cache_size: 18464\n",
"Loading base knowledge_prepped_base.bin. #points: 6. #dim: 769.\n",
"Wrote 1 points to sample file: knowledge_sample_data.bin\n",
"Indexing time: 0.0684344\n",
"INFO: Leann metadata saved to knowledge.leann.meta.json\n"
] ]
}, },
{ {
"name": "stderr", "name": "stderr",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"\n", "INFO:leann_backend_hnsw.hnsw_backend:✅ CSR conversion successful.\n",
"Opened file : knowledge_disk.index\n" "INFO:leann_backend_hnsw.hnsw_backend:INFO: Replaced original index with CSR-pruned version at 'knowledge.index'\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Since data is floating point, we assume that it has been appropriately pre-processed (normalization for cosine, and convert-to-l2 by adding extra dimension for MIPS). So we shall invoke an l2 distance function.\n",
"L2: Using AVX2 distance computation DistanceL2Float\n",
"L2: Using AVX2 distance computation DistanceL2Float\n",
"Before index load\n",
"✅ DiskANN index loaded successfully.\n",
"INFO: LeannSearcher initialized with 'diskann' backend using index 'knowledge.leann'.\n",
"Reading bin file knowledge_pq_compressed.bin ...\n",
"Opening bin file knowledge_pq_compressed.bin... \n",
"Metadata: #pts = 6, #dims = 512...\n",
"done.\n",
"Reading bin file knowledge_pq_pivots.bin ...\n",
"Opening bin file knowledge_pq_pivots.bin... \n",
"Metadata: #pts = 4, #dims = 1...\n",
"done.\n",
"Offsets: 4096 791560 794644 796704\n",
"Reading bin file knowledge_pq_pivots.bin ...\n",
"Opening bin file knowledge_pq_pivots.bin... \n",
"Metadata: #pts = 256, #dims = 769...\n",
"done.\n",
"Reading bin file knowledge_pq_pivots.bin ...\n",
"Opening bin file knowledge_pq_pivots.bin... \n",
"Metadata: #pts = 769, #dims = 1...\n",
"done.\n",
"Reading bin file knowledge_pq_pivots.bin ...\n",
"Opening bin file knowledge_pq_pivots.bin... \n",
"Metadata: #pts = 513, #dims = 1...\n",
"done.\n",
"Loaded PQ Pivots: #ctrs: 256, #dims: 769, #chunks: 512\n",
"Loaded PQ centroids and in-memory compressed vectors. #points: 6 #dim: 769 #aligned_dim: 776 #chunks: 512\n",
"Loading index metadata from knowledge_disk.index\n",
"Disk-Index File Meta-data: # nodes per sector: 1, max node len (bytes): 3100, max node degree: 5\n",
"Disk-Index Meta: nodes per sector: 1, max node len: 3100, max node degree: 5\n",
"Setting up thread-specific contexts for nthreads: 8\n",
"allocating ctx: 0x78348f4de000 to thread-id:132170359560000\n",
"allocating ctx: 0x78348f4cd000 to thread-id:132158431693760\n",
"allocating ctx: 0x78348f4bc000 to thread-id:132158442179392\n",
"allocating ctx: 0x78348f4ab000 to thread-id:132158421208128\n",
"allocating ctx: 0x78348f49a000 to thread-id:132158452665024\n",
"allocating ctx: 0x78348f489000 to thread-id:132158389751232\n",
"allocating ctx: 0x78348f478000 to thread-id:132158410722496\n",
"allocating ctx: 0x78348f467000 to thread-id:132158400236864\n",
"Loading centroid data from medoids vector data of 1 medoid(s)\n",
"Reading bin file knowledge_disk.index_max_base_norm.bin ...\n",
"Opening bin file knowledge_disk.index_max_base_norm.bin... \n",
"Metadata: #pts = 1, #dims = 1...\n",
"done.\n",
"Setting re-scaling factor of base vectors to 1\n",
"load_from_separate_paths done.\n",
"Reading (with alignment) bin file knowledge_sample_data.bin ...Metadata: #pts = 1, #dims = 769, aligned_dim = 776... allocating aligned memory of 3104 bytes... done. Copying data to mem_aligned buffer... done.\n",
"reserve ratio: 1\n",
"Graph traversal completed, hops: 3\n",
"Loading the cache list into memory....done.\n",
"After index load\n",
"Clearing scratch\n",
"INFO: Computing embeddings for 1 chunks using 'sentence-transformers/all-mpnet-base-v2'...\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Batches: 100%|██████████| 1/1 [00:00<00:00, 92.66it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Score: -0.481 - C++ is a powerful programming language\n",
"Score: -1.049 - Java is a powerful programming language\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"reserve ratio: 1\n",
"Graph traversal completed, hops: 3\n"
] ]
} }
], ],
"source": [ "source": [
"from leann.api import LeannBuilder, LeannSearcher\n", "from leann.api import LeannBuilder\n",
"import leann_backend_diskann\n", "\n",
"# 1. Build index (no embeddings stored!)\n", "builder = LeannBuilder(backend_name=\"hnsw\")\n",
"builder = LeannBuilder(backend_name=\"diskann\")\n", "builder.add_text(\"C# is a powerful programming language and it is good at game development\")\n",
"builder.add_text(\"Python is a powerful programming language\")\n", "builder.add_text(\"Python is a powerful programming language and it is good at machine learning tasks\")\n",
"builder.add_text(\"Machine learning transforms industries\") \n", "builder.add_text(\"Machine learning transforms industries\")\n",
"builder.add_text(\"Neural networks process complex data\")\n", "builder.add_text(\"Neural networks process complex data\")\n",
"builder.add_text(\"Java is a powerful programming language\")\n", "builder.add_text(\"Leann is a great storage saving engine for RAG on your MacBook\")\n",
"builder.add_text(\"C++ is a powerful programming language\")\n", "builder.build_index(\"knowledge.leann\")"
"builder.add_text(\"C# is a powerful programming language\")\n", ]
"builder.build_index(\"knowledge.leann\")\n", },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Search with real-time embeddings"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:leann.api:🔍 LeannSearcher.search() called:\n",
"INFO:leann.api: Query: 'programming languages'\n",
"INFO:leann.api: Top_k: 2\n",
"INFO:leann.api: Additional kwargs: {}\n",
"INFO:leann.embedding_server_manager:Port 5557 has incompatible server, trying next port...\n",
"INFO:leann.embedding_server_manager:Port 5558 has incompatible server, trying next port...\n",
"INFO:leann.embedding_server_manager:Port 5559 has incompatible server, trying next port...\n",
"INFO:leann.embedding_server_manager:Using port 5560 instead of 5557\n",
"INFO:leann.embedding_server_manager:Starting embedding server on port 5560...\n",
"INFO:leann.embedding_server_manager:Command: /Users/yichuan/Desktop/code/LEANN/leann/.venv/bin/python -m leann_backend_hnsw.hnsw_embedding_server --zmq-port 5560 --model-name facebook/contriever --passages-file knowledge.leann.meta.json\n",
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n",
"INFO:leann.embedding_server_manager:Server process started with PID: 4574\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[read_HNSW - CSR NL v4] Reading metadata & CSR indices (manual offset)...\n",
"[read_HNSW NL v4] Read levels vector, size: 5\n",
"[read_HNSW NL v4] Reading Compact Storage format indices...\n",
"[read_HNSW NL v4] Read compact_level_ptr, size: 10\n",
"[read_HNSW NL v4] Read compact_node_offsets, size: 6\n",
"[read_HNSW NL v4] Read entry_point: 4, max_level: 0\n",
"[read_HNSW NL v4] Read storage fourcc: 0x6c6c756e\n",
"[read_HNSW NL v4 FIX] Detected FileIOReader. Neighbors size field offset: 326\n",
"[read_HNSW NL v4] Reading neighbors data into memory.\n",
"[read_HNSW NL v4] Read neighbors data, size: 20\n",
"[read_HNSW NL v4] Finished reading metadata and CSR indices.\n",
"INFO: Skipping external storage loading, since is_recompute is true.\n",
"INFO: Registering backend 'hnsw'\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:leann.embedding_server_manager:Embedding server is ready!\n",
"INFO:leann.api: Launching server time: 1.078078269958496 seconds\n",
"INFO:leann.embedding_server_manager:Existing server process (PID 4574) is compatible\n",
"INFO:sentence_transformers.SentenceTransformer:Load pretrained SentenceTransformer: facebook/contriever\n",
"WARNING:sentence_transformers.SentenceTransformer:No sentence-transformers model found with name facebook/contriever. Creating a new one with mean pooling.\n",
"INFO:leann.api: Generated embedding shape: (1, 768)\n",
"INFO:leann.api: Embedding time: 2.9307072162628174 seconds\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"ZmqDistanceComputer initialized: d=768, metric=0\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:leann.api: Search time: 0.27327895164489746 seconds\n",
"INFO:leann.api: Backend returned: labels=2 results\n",
"INFO:leann.api: Processing 2 passage IDs:\n",
"INFO:leann.api: 1. passage_id='0' -> SUCCESS: C# is a powerful programming language and it is good at game development...\n",
"INFO:leann.api: 2. passage_id='1' -> SUCCESS: Python is a powerful programming language and it is good at machine learning tasks...\n",
"INFO:leann.api: Final enriched results: 2 passages\n"
]
},
{
"data": {
"text/plain": [
"[SearchResult(id='0', score=np.float32(0.9874103), text='C# is a powerful programming language and it is good at game development', metadata={}),\n",
" SearchResult(id='1', score=np.float32(0.8922168), text='Python is a powerful programming language and it is good at machine learning tasks', metadata={})]"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from leann.api import LeannSearcher\n",
"\n", "\n",
"# 2. Search with real-time embeddings\n",
"searcher = LeannSearcher(\"knowledge.leann\")\n", "searcher = LeannSearcher(\"knowledge.leann\")\n",
"results = searcher.search(\"C++ programming languages\", top_k=2)\n", "results = searcher.search(\"programming languages\", top_k=2)\n",
"results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Chat with LEANN using retrieved results"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:leann.chat:Attempting to create LLM of type='hf' with model='Qwen/Qwen3-0.6B'\n",
"INFO:leann.chat:Initializing HFChat with model='Qwen/Qwen3-0.6B'\n",
"INFO:leann.chat:MPS is available. Using Apple Silicon GPU.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[read_HNSW - CSR NL v4] Reading metadata & CSR indices (manual offset)...\n",
"[read_HNSW NL v4] Read levels vector, size: 5\n",
"[read_HNSW NL v4] Reading Compact Storage format indices...\n",
"[read_HNSW NL v4] Read compact_level_ptr, size: 10\n",
"[read_HNSW NL v4] Read compact_node_offsets, size: 6\n",
"[read_HNSW NL v4] Read entry_point: 4, max_level: 0\n",
"[read_HNSW NL v4] Read storage fourcc: 0x6c6c756e\n",
"[read_HNSW NL v4 FIX] Detected FileIOReader. Neighbors size field offset: 326\n",
"[read_HNSW NL v4] Reading neighbors data into memory.\n",
"[read_HNSW NL v4] Read neighbors data, size: 20\n",
"[read_HNSW NL v4] Finished reading metadata and CSR indices.\n",
"INFO: Skipping external storage loading, since is_recompute is true.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:leann.api:🔍 LeannSearcher.search() called:\n",
"INFO:leann.api: Query: 'Compare the two retrieved programming languages and tell me their advantages.'\n",
"INFO:leann.api: Top_k: 2\n",
"INFO:leann.api: Additional kwargs: {}\n",
"INFO:leann.embedding_server_manager:Port 5557 has incompatible server, trying next port...\n",
"INFO:leann.embedding_server_manager:Port 5558 has incompatible server, trying next port...\n",
"INFO:leann.embedding_server_manager:Port 5559 has incompatible server, trying next port...\n",
"INFO:leann.embedding_server_manager:Found compatible server on port 5560\n",
"INFO:leann.embedding_server_manager:Using existing compatible server on port 5560\n",
"INFO:leann.api: Launching server time: 0.04932403564453125 seconds\n",
"INFO:leann.embedding_server_manager:Found compatible server on port 5560\n",
"INFO:leann.embedding_server_manager:Using existing compatible server on port 5560\n",
"INFO:leann.api: Generated embedding shape: (1, 768)\n",
"INFO:leann.api: Embedding time: 0.06902289390563965 seconds\n",
"INFO:leann.api: Search time: 0.026793241500854492 seconds\n",
"INFO:leann.api: Backend returned: labels=2 results\n",
"INFO:leann.api: Processing 2 passage IDs:\n",
"INFO:leann.api: 1. passage_id='0' -> SUCCESS: C# is a powerful programming language and it is good at game development...\n",
"INFO:leann.api: 2. passage_id='1' -> SUCCESS: Python is a powerful programming language and it is good at machine learning tasks...\n",
"INFO:leann.api: Final enriched results: 2 passages\n",
"INFO:leann.chat:Generating with HuggingFace model, config: {'max_new_tokens': 128, 'temperature': 0.7, 'top_p': 0.9, 'do_sample': True, 'pad_token_id': 151645, 'eos_token_id': 151645}\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"ZmqDistanceComputer initialized: d=768, metric=0\n"
]
},
{
"data": {
"text/plain": [
"\"<think>\\n\\n</think>\\n\\nBased on the context provided, here's a comparison of the two retrieved programming languages:\\n\\n**C#** is known for being a powerful programming language and is well-suited for game development. It is often used in game development and is popular among developers working on Windows applications.\\n\\n**Python**, on the other hand, is also a powerful language and is well-suited for machine learning tasks. It is widely used for data analysis, scientific computing, and other applications that require handling large datasets or performing complex calculations.\\n\\n**Advantages**:\\n- C#: Strong for game development and cross-platform compatibility.\\n- Python: Strong for\""
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from leann.api import LeannChat\n",
"\n", "\n",
"for result in results:\n", "llm_config = {\n",
" print(f\"Score: {result['score']:.3f} - {result['text']}\")" " \"type\": \"hf\",\n",
" \"model\": \"Qwen/Qwen3-0.6B\",\n",
"}\n",
"\n",
"chat = LeannChat(index_path=\"knowledge.leann\", llm_config=llm_config)\n",
"response = chat.ask(\n",
" \"Compare the two retrieved programming languages and tell me their advantages.\",\n",
" top_k=2,\n",
" llm_kwargs={\"max_tokens\": 128}\n",
")\n",
"response"
] ]
} }
], ],
@@ -240,7 +335,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.11.11" "version": "3.11.12"
} }
}, },
"nbformat": 4, "nbformat": 4,

22
docs/RELEASE.md Normal file
View File

@@ -0,0 +1,22 @@
# Release Guide
## Setup (One-time)
Add `PYPI_API_TOKEN` to GitHub Secrets:
1. Get token: https://pypi.org/manage/account/token/
2. Add to secrets: Settings → Secrets → Actions → `PYPI_API_TOKEN`
## Release (One-click)
1. Go to: https://github.com/yichuan-w/LEANN/actions/workflows/release-manual.yml
2. Click "Run workflow"
3. Enter version: `0.1.2`
4. Click green "Run workflow" button
That's it! The workflow will automatically:
- ✅ Update version in all packages
- ✅ Build all packages
- ✅ Publish to PyPI
- ✅ Create GitHub tag and release
Check progress: https://github.com/yichuan-w/LEANN/actions

View File

@@ -0,0 +1,335 @@
#!/usr/bin/env python3
"""
Memory comparison between Faiss HNSW and LEANN HNSW backend
"""
import logging
import os
import sys
import time
import psutil
import gc
import subprocess
from pathlib import Path
from llama_index.core.node_parser import SentenceSplitter
# Setup logging
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logger = logging.getLogger(__name__)
def get_memory_usage():
"""Get current memory usage in MB"""
process = psutil.Process()
return process.memory_info().rss / 1024 / 1024
def print_memory_stats(stage: str, start_mem: float):
"""Print memory statistics"""
current_mem = get_memory_usage()
diff = current_mem - start_mem
print(f"[{stage}] Memory: {current_mem:.1f} MB (+{diff:.1f} MB)")
return current_mem
class MemoryTracker:
def __init__(self, name: str):
self.name = name
self.start_mem = get_memory_usage()
self.stages = []
def checkpoint(self, stage: str):
current_mem = print_memory_stats(f"{self.name} - {stage}", self.start_mem)
self.stages.append((stage, current_mem))
return current_mem
def summary(self):
print(f"\n=== {self.name} Memory Summary ===")
for stage, mem in self.stages:
print(f"{stage}: {mem:.1f} MB")
peak_mem = max(mem for _, mem in self.stages)
print(f"Peak Memory: {peak_mem:.1f} MB")
print(f"Total Memory Increase: {peak_mem - self.start_mem:.1f} MB")
return peak_mem
def test_faiss_hnsw():
"""Test Faiss HNSW Vector Store in subprocess"""
print("\n" + "=" * 50)
print("TESTING FAISS HNSW VECTOR STORE")
print("=" * 50)
try:
result = subprocess.run(
[sys.executable, "examples/faiss_only.py"],
capture_output=True,
text=True,
timeout=300,
)
print(result.stdout)
if result.stderr:
print("Stderr:", result.stderr)
if result.returncode != 0:
return {
"peak_memory": float("inf"),
"error": f"Process failed with code {result.returncode}",
}
# Parse peak memory from output
lines = result.stdout.split("\n")
peak_memory = 0.0
for line in lines:
if "Peak Memory:" in line:
peak_memory = float(
line.split("Peak Memory:")[1].split("MB")[0].strip()
)
return {"peak_memory": peak_memory}
except Exception as e:
return {
"peak_memory": float("inf"),
"error": str(e),
}
def test_leann_hnsw():
"""Test LEANN HNSW Search Memory (load existing index)"""
print("\n" + "=" * 50)
print("TESTING LEANN HNSW SEARCH MEMORY")
print("=" * 50)
tracker = MemoryTracker("LEANN HNSW Search")
# Import and setup
tracker.checkpoint("Initial")
from leann.api import LeannSearcher
tracker.checkpoint("After imports")
from llama_index.core import SimpleDirectoryReader
from leann.api import LeannBuilder, LeannSearcher
# Load and parse documents
documents = SimpleDirectoryReader(
"examples/data",
recursive=True,
encoding="utf-8",
required_exts=[".pdf", ".txt", ".md"],
).load_data()
tracker.checkpoint("After document loading")
# Parse into chunks
node_parser = SentenceSplitter(
chunk_size=256, chunk_overlap=20, separator=" ", paragraph_separator="\n\n"
)
all_texts = []
for doc in documents:
nodes = node_parser.get_nodes_from_documents([doc])
for node in nodes:
all_texts.append(node.get_content())
tracker.checkpoint("After text chunking")
# Build LEANN index
INDEX_DIR = Path("./test_leann_comparison")
INDEX_PATH = str(INDEX_DIR / "comparison.leann")
# Check if index already exists
if os.path.exists(INDEX_PATH + ".meta.json"):
print("Loading existing LEANN HNSW index...")
tracker.checkpoint("After loading existing index")
else:
print("Building new LEANN HNSW index...")
# Clean up previous index
import shutil
if INDEX_DIR.exists():
shutil.rmtree(INDEX_DIR)
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="facebook/contriever",
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1,
)
tracker.checkpoint("After builder setup")
print("Building LEANN HNSW index...")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(INDEX_PATH)
del builder
gc.collect()
tracker.checkpoint("After index building")
# Find existing LEANN index
index_paths = [
"./test_leann_comparison/comparison.leann",
]
index_path = None
for path in index_paths:
if os.path.exists(path + ".meta.json"):
index_path = path
break
if not index_path:
print("❌ LEANN index not found. Please build it first")
return {"peak_memory": float("inf"), "error": "Index not found"}
# Measure runtime memory overhead
print("\nMeasuring runtime memory overhead...")
runtime_start_mem = get_memory_usage()
print(f"Before load memory: {runtime_start_mem:.1f} MB")
tracker.checkpoint("Before load memory")
# Load searcher
searcher = LeannSearcher(index_path)
tracker.checkpoint("After searcher loading")
print("Running search queries...")
queries = [
"什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发",
"What is LEANN and how does it work?",
"华为诺亚方舟实验室的主要研究内容",
]
for i, query in enumerate(queries):
start_time = time.time()
# Use same parameters as Faiss: top_k=20, ef=120 (complexity parameter)
_ = searcher.search(query, top_k=20, ef=120)
query_time = time.time() - start_time
print(f"Query {i + 1} time: {query_time:.3f}s")
tracker.checkpoint(f"After query {i + 1}")
runtime_end_mem = get_memory_usage()
runtime_overhead = runtime_end_mem - runtime_start_mem
peak_memory = tracker.summary()
print(f"Runtime Memory Overhead: {runtime_overhead:.1f} MB")
# Get storage size before cleanup
storage_size = 0
INDEX_DIR = Path(index_path).parent
if INDEX_DIR.exists():
total_size = 0
for dirpath, _, filenames in os.walk(str(INDEX_DIR)):
for filename in filenames:
# Only count actual index files, skip text data and backups
if filename.endswith((".old", ".tmp", ".bak", ".jsonl", ".json")):
continue
# Count .index, .idx, .map files (actual index structures)
if filename.endswith((".index", ".idx", ".map")):
filepath = os.path.join(dirpath, filename)
total_size += os.path.getsize(filepath)
storage_size = total_size / (1024 * 1024) # Convert to MB
# Clean up
del searcher
gc.collect()
return {
"peak_memory": peak_memory,
"storage_size": storage_size,
}
def main():
"""Run comparison tests"""
print("Storage + Search Memory Comparison: Faiss HNSW vs LEANN HNSW")
print("=" * 60)
# Test Faiss HNSW
faiss_results = test_faiss_hnsw()
# Force garbage collection
gc.collect()
time.sleep(2)
# Test LEANN HNSW
leann_results = test_leann_hnsw()
# Final comparison
print("\n" + "=" * 60)
print("STORAGE + SEARCH MEMORY COMPARISON")
print("=" * 60)
# Get storage sizes
faiss_storage_size = 0
leann_storage_size = leann_results.get("storage_size", 0)
# Get Faiss storage size using Python
if os.path.exists("./storage_faiss"):
total_size = 0
for dirpath, _, filenames in os.walk("./storage_faiss"):
for filename in filenames:
filepath = os.path.join(dirpath, filename)
total_size += os.path.getsize(filepath)
faiss_storage_size = total_size / (1024 * 1024) # Convert to MB
print("Faiss HNSW:")
if "error" in faiss_results:
print(f" ❌ Failed: {faiss_results['error']}")
else:
print(f" Search Memory: {faiss_results['peak_memory']:.1f} MB")
print(f" Storage Size: {faiss_storage_size:.1f} MB")
print("\nLEANN HNSW:")
if "error" in leann_results:
print(f" ❌ Failed: {leann_results['error']}")
else:
print(f" Search Memory: {leann_results['peak_memory']:.1f} MB")
print(f" Storage Size: {leann_storage_size:.1f} MB")
# Calculate improvements only if both tests succeeded
if "error" not in faiss_results and "error" not in leann_results:
memory_ratio = faiss_results["peak_memory"] / leann_results["peak_memory"]
print("\nLEANN vs Faiss Performance:")
memory_saving = faiss_results["peak_memory"] - leann_results["peak_memory"]
print(
f" Search Memory: {memory_ratio:.1f}x less ({memory_saving:.1f} MB saved)"
)
# Storage comparison
if leann_storage_size > faiss_storage_size:
storage_ratio = leann_storage_size / faiss_storage_size
print(
f" Storage Size: {storage_ratio:.1f}x larger (LEANN uses more storage)"
)
elif faiss_storage_size > leann_storage_size:
storage_ratio = faiss_storage_size / leann_storage_size
print(
f" Storage Size: {storage_ratio:.1f}x smaller (LEANN uses less storage)"
)
else:
print(" Storage Size: similar")
else:
if "error" not in leann_results:
print("\n✅ LEANN HNSW completed successfully!")
print(f"📊 Search Memory: {leann_results['peak_memory']:.1f} MB")
print(f"📊 Storage Size: {leann_storage_size:.1f} MB")
if "error" not in faiss_results:
print("\n✅ Faiss HNSW completed successfully!")
print(f"📊 Search Memory: {faiss_results['peak_memory']:.1f} MB")
print(f"📊 Storage Size: {faiss_storage_size:.1f} MB")
if __name__ == "__main__":
main()

View File

Binary file not shown.

View File

File diff suppressed because it is too large Load Diff

82
examples/data/README.md Normal file
View File

@@ -0,0 +1,82 @@
# 盘古之殇:华为诺亚盘古大模型研发历程的心酸与黑暗
各位好,
我是一名盘古大模型团队,华为诺亚方舟实验室的员工。
首先为自证身份,列举一些细节:
1. 现诺亚主任,前算法应用部部长,后改名为小模型实验室的主任王云鹤。前诺亚主任:姚骏(大家称姚老师)。几个实验室主任:唐睿明(明哥,明队,已离职),尚利峰,张维(维哥),郝建业(郝老师),刘武龙(称呼为武龙所)等。其他骨干成员和专家陆续有很多人离职。
2. 我们隶属于“四野”这个组织。四野下属有许多纵队,基础语言大模型是四纵。王云鹤的小模型是十六纵队。我们参加过苏州的集结,有各种月份的时间节点。在苏州攻关会颁发任务令,需要在节点前达成目标。苏州集结会把各地的人员都集中在苏州研究所,平常住宾馆,比如在甪直的酒店,与家人孩子天各一方。
3. 在苏州集结的时候周六默认上班,非常辛苦,不过周六有下午茶,有一次还有小龙虾。在苏州研究所的工位搬迁过一次,从一栋楼换到了另一栋。苏州研究所楼栋都是欧式装修,门口有大坡,里面景色很不错。去苏州集结一般至少要去一周,甚至更久,多的人甚至一两个月都回不了家。
4. 诺亚曾经传说是研究型的但是来了之后因为在四野做大模型项目项目成员完全变成了交付型的且充满了例会评审汇报。很多时候做实验都要申请。团队需要对接终端小艺华为云ICT等诸多业务线交付压力不小。
5. 诺亚研发的盘古模型早期内部代号叫做“盘古智子”一开始只有内部需要申请试用的网页版到后续迫于压力在welink上接入和公测开放。
这些天发生关于质疑盘古大模型抄袭千问的事情闹的沸沸扬扬。作为一个盘古团队的成员,我最近夜夜辗转反侧,难以入眠。盘古的品牌受到如此大的影响,一方面,我自私的为我的职业发展担忧,也为自己过去的努力工作感到不值。另一方面,由于有人开始揭露这些事情我内心又感到大快人心。在多少个日日夜夜,我们对内部某些人一次次靠着造假而又获得了无数利益的行为咬牙切齿而又无能为力。这种压抑和羞辱也逐渐消磨了我对华为的感情,让我在这里的时日逐渐浑浑噩噩,迷茫无措,时常怀疑自己的人生和自我价值。
我承认我是一个懦弱的人,作为一个小小的打工人,我不仅不敢和王云鹤等内部手眼通天的人做对,更不敢和华为这样的庞然大物做对。我很怕失去我的工作,毕竟我也有家人和孩子,所以我打心眼里很佩服揭露者。但是,看到内部还在试图洗地掩盖事实,蒙蔽公众的时候,我实在不能容忍了。我也希望勇敢一次,顺从自己本心。就算自损八百,我也希望能伤敌一千。我决定把我在这里的所见所闻(部分来自于同事口述)公布出来,关于盘古大模型的“传奇故事”:
华为确实主要在昇腾卡上训练大模型小模型实验室有不少英伟达的卡他们之前也会用来训练后面转移到昇腾。曾经我被华为“打造世界第二选择”的决心而折服我本身也曾经对华为有深厚的感情。我们陪着昇腾一步步摸爬滚打从充满bug到现在能训出模型付出了巨大的心血和代价。
最初我们的算力非常有限在910A上训练模型。那会只支持fp16训练的稳定性远不如bf16。盘古的moe开始很早23年就主要是训练38Bmoe模型和后续的71B dense模型。71B的dense模型通过扩增变成了第一代的135Bdense模型后面主力模型也逐渐在910B上训练。
71B和135B模型都有一个巨大的硬伤就是tokenizer。当时使用的tokenizer编码效率极低每个单个的符号数字空格乃至汉字都会占用一个token。可想而知这会非常浪费算力且使得模型的效果很差。这时候小模型实验室正好有个自己训的词表。姚老师当时怀疑是不是模型的tokenizer不好虽然事后来看他的怀疑是无疑正确的于是就决定让71B和135B换tokenizer因为小模型实验室曾经尝试过。团队缝合了两个tokenizer开始了tokenizer的更换。71B模型的更换失败了而135B因为采用了更精细的embedding初始化策略续训了至少1T的数据后词表总算更换成功但可想而知效果并不会变好。
于此同期阿里和智谱等国内其他公司在GPU上训练且已经摸索出了正确的方法盘古和竞品的差距越来越大。内部一个230B从头训练的dense模型又因为各种原因训练失败导致项目的状况几乎陷入绝境。面临几个节点的压力以及内部对盘古的强烈质疑时团队的士气低迷到了极点。团队在算力极其有限的时候做出了很多努力和挣扎。比如团队偶然发现当时的38B moe并没有预期moe的效果。于是去掉了moe参数还原为了13B的dense模型。由于38B的moe源自很早的pangu alpha 13B架构相对落后团队进行了一系列的操作比如切换绝对位置编码到rope去掉bias切换为rmsnorm。同时鉴于tokenizer的一些失败和换词表的经验这个模型的词表也更换为了王云鹤的小模型实验室7B模型所使用的词表。后面这个13B模型进行了扩增续训变成了第二代38B dense模型在几个月内这个模型都是主要的盘古中档位模型曾经具有一定的竞争力。但是由于更大的135B模型架构落后且更换词表模型损伤巨大后续分析发现当时更换的缝合词表有更严重的bug续训后也与千问等当时国内领先模型存在很大差距。这时由于内部的质疑声和领导的压力也越来越大。团队的状态几乎陷入了绝境。
在这种情况下王云鹤和他的小模型实验室出手了。他们声称是从旧的135B参数继承改造而来通过训练短短的几百B数据各项指标平均提升了十个点左右。实际上这就是他们套壳应用到大模型的第一次杰作。华为的外行领导内行使得领导完全对于这种扯淡的事情没有概念他们只会觉得肯定是有什么算法创新。经过内部的分析他们实际上是使用Qwen 1.5 110B续训而来通过加层扩增ffn维度添加盘古pi论文的一些机制得来凑够了大概135B的参数。实际上旧的135B有107层而这个模型只有82层各种配置也都不一样。新的来路不明的135B训练完很多参数的分布也和Qwen 110B几乎一模一样。连模型代码的类名当时都是Qwen甚至懒得改名。后续这个模型就是所谓的135B V2。而这个模型当时也提供给了很多下游甚至包括外部客户。
这件事对于我们这些认真诚实做事的同事们带来了巨大的冲击内部很多人其实都知道这件事甚至包括终端和华为云。我们都戏称以后别叫盘古模型了叫千古吧。当时团队成员就想向bcg举报了毕竟这已经是重大的业务造假了。但是后面据说被领导拦了下来因为更高级别的领导比如姚老师以及可能熊总和查老其实后面也知道了但是并不管因为通过套壳拿出好的结果对他们也是有利的。这件事使得当时团队几位最强的同事开始心灰意冷离职跑路也逐渐成为挂在嘴边的事。
此时盘古似乎迎来了转机。由于前面所述的这些盘古模型基本都是续训和改造而来当时诺亚完全没有掌握从头训练的技术何况还是在昇腾的NPU上进行训练。在当时团队的核心成员的极力争取下盘古开始了第三代模型的训练付出了巨大的努力后在数据架构和训练算法方面都与业界逐渐接轨而这其中的艰辛和小模型实验室的人一点关系都没有。
一开始团队成员毫无信心只从一个13B的模型开始训练但是后面发现效果还不错于是这个模型后续再次进行了一次参数扩增变成了第三代的38B代号38B V3。想必很多产品线的兄弟都对这个模型很熟悉。当时这个模型的tokenizer是基于llama的词表进行扩展的也是业界常见的做法。而当时王云鹤的实验室做出来了另一个词表也就是后续pangu系列的词表。当时两个词表还被迫进行了一次赛马最终没有明显的好坏结论。于是领导当即决定应该统一词表使用王云鹤他们的。于是在后续从头训练的135B V3也就是对外的Pangu Ultra便是采用了这个tokenizer。这也解释了很多使用我们模型的兄弟的疑惑为什么当时同为V3代的两个不同档位的模型会使用不同的tokenizer。
我们打心眼里觉得135B V3是我们四纵团队当时的骄傲。这是第一个真正意义上的华为全栈自研正经从头训练的千亿级别的模型且效果与24年同期竞品可比的。写到这里我已经热泪盈眶太不容易了。当时为了稳定训练团队做了大量实验对比并且多次在模型梯度出现异常的时候进行及时回退重启。这个模型真正做到了后面技术报告所说的训练全程没有一个loss spike。我们克服了不知道多少困难我们做到了我们愿用生命和荣誉保证这个模型训练的真实性。多少个凌晨我们为了它的训练而不眠。在被内部心声骂的一文不值的时候我们有多么不甘有多少的委屈我们挺住了。
我们这帮人是真的在为打磨国产算力底座燃烧自己的青春啊……客居他乡,我们放弃了家庭,放弃了假期,放弃了健康,放弃了娱乐,抛头颅洒热血,其中的艰辛与困苦,寥寥数笔不足以概括其万一。在各种动员大会上,当时口号中喊出的盘古必胜,华为必胜,我们心里是真的深深被感动。
然而我们的所有辛苦的成果经常被小模型实验室轻飘飘的拿走了。数据直接要走。代码直接要走还要求我们配合适配到能一键运行。我们当时戏称小模型实验室为点鼠标实验室。我们付出辛苦他们取得荣耀。果然应了那句话你在负重前行是因为有人替你岁月静好。在这种情况下越来越多的战友再也坚持不下去了选择了离开。看到身边那些优秀的同事一个个离职我的内心又感叹又难过。在这种作战一样的环境下我们比起同事来说更像是战友。他们在技术上也有无数值得我学习的地方堪称良师。看到他们去了诸如字节SeedDeepseek月之暗面腾讯和快手等等很多出色的团队我打心眼里为他们高兴和祝福脱离了这个辛苦却肮脏的地方。我至今还对一位离职同事的话记忆犹新ta说“来这里是我技术生涯中的耻辱在这里再呆每一天都是浪费生命”。话虽难听却让我无言以对。我担心我自己技术方面的积累不足以及没法适应互联网公司高淘汰的环境让我多次想离职的心始终没有迈出这一步。
盘古除了dense模型后续也启动了moe的探索。一开始训练的是一个224B的moe模型。而与之平行的小模型实验室也开启了第二次主要的套壳行动次要的插曲可能还包括一些别的模型比如math模型即这次流传甚广的pangu pro moe 72B。这个模型内部自称是从小模型实验室的7B扩增上来的就算如此这也与技术报告不符何况是套壳qwen 2.5的14b续训。还记得他们训了没几天内部的评测就立刻追上了当时的38B V3。AI系统实验室很多兄弟因为需要适配模型都知道他们的套壳行动只是迫于各种原因无法伸张正义。实际上对于后续训了很久很久的这个模型Honestagi能够分析出这个量级的相似性我已经很诧异了因为这个模型为了续训洗参数所付出的算力甚至早就足够从头训一个同档位的模型了。听同事说他们为了洗掉千问的水印采取了不少办法甚至包括故意训了脏数据。这也为学术界研究模型血缘提供了一个前所未有的特殊模范吧。以后新的血缘方法提出可以拿出来溜溜。
24年底和25年初在Deepseek v3和r1发布之后由于其惊艳的技术水平团队受到了巨大的冲击也受到了更大的质疑。于是为了紧跟潮流盘古模仿Deepseek的模型尺寸开启了718B moe的训练。这个时候小模型实验室再次出手了。他们选择了套壳Deepseekv3续训。他们通过冻住Deepseek加载的参数进行训练。连任务加载ckpt的目录都是deepseekv3改都不改何其嚣张与之相反一些有真正技术信仰的同事在从头训练另一个718B的moe。但其中出现了各种各样的问题。但是很显然这个模型怎么可能比直接套壳的好呢如果不是团队leader坚持早就被叫停了。
华为的流程管理之繁重,严重拖累了大模型的研发节奏,例如版本管理,模型血缘,各种流程化,各种可追溯。讽刺的是,小模型实验室的模型似乎从来不受这些流程的约束,想套壳就套壳,想续训就续训,算力源源不断的伸手拿走。这种强烈到近乎魔幻的对比,说明了当前流程管理的情况:只许州官放火,不许百姓点灯。何其可笑?何其可悲?何其可恶?何其可耻!
HonestAGI的事情出来后内部让大家不停的研讨分析如何公关和“回应”。诚然这个原文的分析也许不够有力给了王云鹤与小模型实验室他们狡辩和颠倒黑白的机会。为此这两天我内心感到作呕时时怀疑自己的人生意义以及苍天无眼。我不奉陪了我要离职了同时我也在申请从盘古部分技术报告的作者名单中移除。曾经在这些技术报告上署名是我一生都无法抹除的污点。当时我没想到他们竟然猖狂到敢开源。我没想到他们敢如此愚弄世人大肆宣发。当时我也许是存了侥幸心理没有拒绝署名。我相信很多扎实做事的战友也只是被迫上了贼船或者不知情。但这件事已经无法挽回我希望我的余生能够坚持扎实做真正有意义的事为我当时的软弱和不坚定赎罪。
深夜写到这里,我已经泪流满面,泣不成声。还记得一些出色的同事离职时,我苦笑问他们要不要发个长长的心声惯例帖,揭露一下现状。对方说:不了,浪费时间,而且我也怕揭露出来你们过的更糟。我当时一下黯然神伤,因为曾经共同为了理想奋斗过的战友已经彻底对华为彻底灰心了。当时大家调侃,我们用着当年共产党的小米加步枪,组织却有着堪比当年国民党的作风。
曾几何时,我为我们用着小米加步枪打败洋枪洋炮而自豪。
现在,我累了,我想投降。
其实时至今日我还是真心希望华为能认真吸取教训能做好盘古把盘古做到世界一流把昇腾变成英伟达的水平。内部的劣币驱逐良币使得诺亚乃至华为在短时间内急剧流失了大量出色的大模型人才。相信他们也正在如Deepseek等各个团队闪耀着施展着他们的抱负才华为中美在AI的激烈竞赛中奉献力量。我时常感叹华为不是没有人才而是根本不知道怎么留住人才。如果给这些人合适的环境合适的资源更少的枷锁更少的政治斗争盘古何愁不成
最后:我以生命,人格和荣誉发誓,我写的以上所有内容均为真实(至少在我有限的认知范围内)。我没有那么高的技术水平以及机会去做详尽扎实的分析,也不敢直接用内部记录举证,怕因为信息安全抓到。但是我相信我很多曾经的战友,会为我作证。在华为内部的兄弟,包括我们曾经服务过的产品线兄弟们,相信本文的无数细节能和你们的印象对照,印证我的说法。你们可能也曾经被蒙骗,但这些残酷的真相不会被尘封。我们奋战过的痕迹,也不应该被扭曲和埋葬。
写了这么多,某些人肯定想把我找出来,抹杀掉。公司搞不好也想让我噤声乃至追责。如果真的这样,我,乃至我的家人的人身乃至生命安全可能都会受到威胁。为了自我保护,我近期每天会跟大家报平安。
如果我消失了就当是我为了真理和理想为了华为乃至中国能够更好地发展算力和AI而牺牲了吧我愿埋葬于那片曾经奋斗过的地方。
诺亚,再见
2025年7月6日凌晨 写于深圳
---
各位好,
感谢大家的关心与祝福。我目前暂时安全,但公司应该在进行排查与某些名单收集,后续情况未知。
我补充一些细节,以免某些人继续颠倒黑白。
关于135B V2小模型实验室在迅速地完成套壳并拿完所有套壳带来的好处后比如任务令表彰和及时激励因为不想继续支撑下游应用和模型迭代又把这个烫手山芋甩给了四纵。确实技高一筹直接把四纵的兄弟们拉下水。同事提供过去一个老旧的模型最终拿回了一个当时一个魔改的先进的千问。做大模型的人自己做的模型就像自己孩子一样熟悉不要把别人都当傻子。就像自家儿子出门一趟回来个别人家孩子。
盘古report的署名是不符合学术规范的。例如135B V3有不少有技术贡献的人因为作者名额数量限制劳动成果没有得到应有的回报团队内曾经有不小的意见。这个模型当时是大家智慧和汗水的结晶甚至是团队当时的精神支柱支撑着不少兄弟们继续留在诺亚。所谓的名额限制以及挂名了一些毫无技术贡献的人如一些小模型实验室的人让兄弟们何其心寒。
---
暂时平安。另外,支持我勇于说出真相的战友们 https://github.com/HW-whistleblower/True-Story-of-Pangu/issues/317

View File

@@ -74,7 +74,7 @@ def main():
print(f"⏱️ Basic search time: {basic_time:.3f} seconds") print(f"⏱️ Basic search time: {basic_time:.3f} seconds")
print(">>> Basic search results <<<") print(">>> Basic search results <<<")
for i, res in enumerate(results, 1): for i, res in enumerate(results, 1):
print(f" {i}. ID: {res['id']}, Score: {res['score']:.4f}, Text: '{res['text']}', Metadata: {res['metadata']}") print(f" {i}. ID: {res.id}, Score: {res.score:.4f}, Text: '{res.text}', Metadata: {res.metadata}")
# --- 3. Recompute search demo --- # --- 3. Recompute search demo ---
print(f"\n[PHASE 3] Recompute search using embedding server...") print(f"\n[PHASE 3] Recompute search using embedding server...")
@@ -107,7 +107,7 @@ def main():
print(f"⏱️ Recompute search time: {recompute_time:.3f} seconds") print(f"⏱️ Recompute search time: {recompute_time:.3f} seconds")
print(">>> Recompute search results <<<") print(">>> Recompute search results <<<")
for i, res in enumerate(recompute_results, 1): for i, res in enumerate(recompute_results, 1):
print(f" {i}. ID: {res['id']}, Score: {res['score']:.4f}, Text: '{res['text']}', Metadata: {res['metadata']}") print(f" {i}. ID: {res.id}, Score: {res.score:.4f}, Text: '{res.text}', Metadata: {res.metadata}")
# Compare results # Compare results
print(f"\n--- Result comparison ---") print(f"\n--- Result comparison ---")
@@ -116,8 +116,8 @@ def main():
print("\nBasic search vs Recompute results:") print("\nBasic search vs Recompute results:")
for i in range(min(len(results), len(recompute_results))): for i in range(min(len(results), len(recompute_results))):
basic_score = results[i]['score'] basic_score = results[i].score
recompute_score = recompute_results[i]['score'] recompute_score = recompute_results[i].score
score_diff = abs(basic_score - recompute_score) score_diff = abs(basic_score - recompute_score)
print(f" Position {i+1}: PQ={basic_score:.4f}, Recompute={recompute_score:.4f}, Difference={score_diff:.4f}") print(f" Position {i+1}: PQ={basic_score:.4f}, Recompute={recompute_score:.4f}, Difference={score_diff:.4f}")

View File

@@ -0,0 +1,122 @@
import os
import email
from pathlib import Path
from typing import List, Any
from llama_index.core import Document
from llama_index.core.readers.base import BaseReader
def find_all_messages_directories(root: str = None) -> List[Path]:
"""
Recursively find all 'Messages' directories under the given root.
Returns a list of Path objects.
"""
if root is None:
# Auto-detect user's mail path
home_dir = os.path.expanduser("~")
root = os.path.join(home_dir, "Library", "Mail")
messages_dirs = []
for dirpath, dirnames, filenames in os.walk(root):
if os.path.basename(dirpath) == "Messages":
messages_dirs.append(Path(dirpath))
return messages_dirs
class EmlxReader(BaseReader):
"""
Apple Mail .emlx file reader with embedded metadata.
Reads individual .emlx files from Apple Mail's storage format.
"""
def __init__(self, include_html: bool = False) -> None:
"""
Initialize.
Args:
include_html: Whether to include HTML content in the email body (default: False)
"""
self.include_html = include_html
def load_data(self, input_dir: str, **load_kwargs: Any) -> List[Document]:
"""
Load data from the input directory containing .emlx files.
Args:
input_dir: Directory containing .emlx files
**load_kwargs:
max_count (int): Maximum amount of messages to read.
"""
docs: List[Document] = []
max_count = load_kwargs.get('max_count', 1000)
count = 0
# Walk through the directory recursively
for dirpath, dirnames, filenames in os.walk(input_dir):
# Skip hidden directories
dirnames[:] = [d for d in dirnames if not d.startswith(".")]
for filename in filenames:
if count >= max_count:
break
if filename.endswith(".emlx"):
filepath = os.path.join(dirpath, filename)
try:
# Read the .emlx file
with open(filepath, 'r', encoding='utf-8', errors='ignore') as f:
content = f.read()
# .emlx files have a length prefix followed by the email content
# The first line contains the length, followed by the email
lines = content.split('\n', 1)
if len(lines) >= 2:
email_content = lines[1]
# Parse the email using Python's email module
try:
msg = email.message_from_string(email_content)
# Extract email metadata
subject = msg.get('Subject', 'No Subject')
from_addr = msg.get('From', 'Unknown')
to_addr = msg.get('To', 'Unknown')
date = msg.get('Date', 'Unknown')
# Extract email body
body = ""
if msg.is_multipart():
for part in msg.walk():
if part.get_content_type() == "text/plain" or part.get_content_type() == "text/html":
if part.get_content_type() == "text/html" and not self.include_html:
continue
body += part.get_payload(decode=True).decode('utf-8', errors='ignore')
# break
else:
body = msg.get_payload(decode=True).decode('utf-8', errors='ignore')
# Create document content with metadata embedded in text
doc_content = f"""
[File]: {filename}
[From]: {from_addr}
[To]: {to_addr}
[Subject]: {subject}
[Date]: {date}
[EMAIL BODY Start]:
{body}
"""
# No separate metadata - everything is in the text
doc = Document(text=doc_content, metadata={})
docs.append(doc)
count += 1
except Exception as e:
print(f"Error parsing email from {filepath}: {e}")
continue
except Exception as e:
print(f"Error reading file {filepath}: {e}")
continue
print(f"Loaded {len(docs)} email documents")
return docs

View File

@@ -0,0 +1,192 @@
"""
Mbox parser.
Contains simple parser for mbox files.
"""
import logging
from pathlib import Path
from typing import Any, Dict, List, Optional
from fsspec import AbstractFileSystem
from llama_index.core.readers.base import BaseReader
from llama_index.core.schema import Document
logger = logging.getLogger(__name__)
class MboxReader(BaseReader):
"""
Mbox parser.
Extract messages from mailbox files.
Returns string including date, subject, sender, receiver and
content for each message.
"""
DEFAULT_MESSAGE_FORMAT: str = (
"Date: {_date}\n"
"From: {_from}\n"
"To: {_to}\n"
"Subject: {_subject}\n"
"Content: {_content}"
)
def __init__(
self,
*args: Any,
max_count: int = 0,
message_format: str = DEFAULT_MESSAGE_FORMAT,
**kwargs: Any,
) -> None:
"""Init params."""
try:
from bs4 import BeautifulSoup # noqa
except ImportError:
raise ImportError(
"`beautifulsoup4` package not found: `pip install beautifulsoup4`"
)
super().__init__(*args, **kwargs)
self.max_count = max_count
self.message_format = message_format
def load_data(
self,
file: Path,
extra_info: Optional[Dict] = None,
fs: Optional[AbstractFileSystem] = None,
) -> List[Document]:
"""Parse file into string."""
# Import required libraries
import mailbox
from email.parser import BytesParser
from email.policy import default
from bs4 import BeautifulSoup
if fs:
logger.warning(
"fs was specified but MboxReader doesn't support loading "
"from fsspec filesystems. Will load from local filesystem instead."
)
i = 0
results: List[str] = []
# Load file using mailbox
bytes_parser = BytesParser(policy=default).parse
mbox = mailbox.mbox(file, factory=bytes_parser) # type: ignore
# Iterate through all messages
for _, _msg in enumerate(mbox):
try:
msg: mailbox.mboxMessage = _msg
# Parse multipart messages
if msg.is_multipart():
for part in msg.walk():
ctype = part.get_content_type()
cdispo = str(part.get("Content-Disposition"))
if "attachment" in cdispo:
print(f"Attachment found: {part.get_filename()}")
if ctype == "text/plain" and "attachment" not in cdispo:
content = part.get_payload(decode=True) # decode
break
# Get plain message payload for non-multipart messages
else:
content = msg.get_payload(decode=True)
# Parse message HTML content and remove unneeded whitespace
soup = BeautifulSoup(content)
stripped_content = " ".join(soup.get_text().split())
# Format message to include date, sender, receiver and subject
msg_string = self.message_format.format(
_date=msg["date"],
_from=msg["from"],
_to=msg["to"],
_subject=msg["subject"],
_content=stripped_content,
)
# Add message string to results
results.append(msg_string)
except Exception as e:
logger.warning(f"Failed to parse message:\n{_msg}\n with exception {e}")
# Increment counter and return if max count is met
i += 1
if self.max_count > 0 and i >= self.max_count:
break
return [Document(text=result, metadata=extra_info or {}) for result in results]
class EmlxMboxReader(MboxReader):
"""
EmlxMboxReader - Modified MboxReader that handles directories of .emlx files.
Extends MboxReader to work with Apple Mail's .emlx format by:
1. Reading .emlx files from a directory
2. Converting them to mbox format in memory
3. Using the parent MboxReader's parsing logic
"""
def load_data(
self,
directory: Path,
extra_info: Optional[Dict] = None,
fs: Optional[AbstractFileSystem] = None,
) -> List[Document]:
"""Parse .emlx files from directory into strings using MboxReader logic."""
import tempfile
import os
if fs:
logger.warning(
"fs was specified but EmlxMboxReader doesn't support loading "
"from fsspec filesystems. Will load from local filesystem instead."
)
# Find all .emlx files in the directory
emlx_files = list(directory.glob("*.emlx"))
logger.info(f"Found {len(emlx_files)} .emlx files in {directory}")
if not emlx_files:
logger.warning(f"No .emlx files found in {directory}")
return []
# Create a temporary mbox file
with tempfile.NamedTemporaryFile(mode='w', suffix='.mbox', delete=False) as temp_mbox:
temp_mbox_path = temp_mbox.name
# Convert .emlx files to mbox format
for emlx_file in emlx_files:
try:
# Read the .emlx file
with open(emlx_file, 'r', encoding='utf-8', errors='ignore') as f:
content = f.read()
# .emlx format: first line is length, rest is email content
lines = content.split('\n', 1)
if len(lines) >= 2:
email_content = lines[1] # Skip the length line
# Write to mbox format (each message starts with "From " and ends with blank line)
temp_mbox.write(f"From {emlx_file.name} {email_content}\n\n")
except Exception as e:
logger.warning(f"Failed to process {emlx_file}: {e}")
continue
# Close the temporary file so MboxReader can read it
temp_mbox.close()
try:
# Use the parent MboxReader's logic to parse the mbox file
return super().load_data(Path(temp_mbox_path), extra_info, fs)
finally:
# Clean up temporary file
try:
os.unlink(temp_mbox_path)
except:
pass

151
examples/faiss_only.py Normal file
View File

@@ -0,0 +1,151 @@
#!/usr/bin/env python3
"""Test only Faiss HNSW"""
import sys
import time
import psutil
import gc
import os
def get_memory_usage():
process = psutil.Process()
return process.memory_info().rss / 1024 / 1024
class MemoryTracker:
def __init__(self, name: str):
self.name = name
self.start_mem = get_memory_usage()
self.stages = []
def checkpoint(self, stage: str):
current_mem = get_memory_usage()
diff = current_mem - self.start_mem
print(f"[{self.name} - {stage}] Memory: {current_mem:.1f} MB (+{diff:.1f} MB)")
self.stages.append((stage, current_mem))
return current_mem
def summary(self):
peak_mem = max(mem for _, mem in self.stages)
print(f"Peak Memory: {peak_mem:.1f} MB")
return peak_mem
def main():
try:
import faiss
except ImportError:
print("Faiss is not installed.")
print("Please install it with `uv pip install faiss-cpu`")
sys.exit(1)
from llama_index.core import (
SimpleDirectoryReader,
VectorStoreIndex,
StorageContext,
Settings,
node_parser,
Document,
)
from llama_index.core.node_parser import SentenceSplitter
from llama_index.vector_stores.faiss import FaissVectorStore
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
tracker = MemoryTracker("Faiss HNSW")
tracker.checkpoint("Initial")
embed_model = HuggingFaceEmbedding(model_name="facebook/contriever")
Settings.embed_model = embed_model
tracker.checkpoint("After embedding model setup")
d = 768
faiss_index = faiss.IndexHNSWFlat(d, 32)
faiss_index.hnsw.efConstruction = 64
tracker.checkpoint("After Faiss index creation")
documents = SimpleDirectoryReader(
"examples/data",
recursive=True,
encoding="utf-8",
required_exts=[".pdf", ".txt", ".md"],
).load_data()
tracker.checkpoint("After document loading")
# Parse into chunks using the same splitter as LEANN
node_parser = SentenceSplitter(
chunk_size=256, chunk_overlap=20, separator=" ", paragraph_separator="\n\n"
)
tracker.checkpoint("After text splitter setup")
# Check if index already exists and try to load it
index_loaded = False
if os.path.exists("./storage_faiss"):
print("Loading existing Faiss HNSW index...")
try:
# Use the correct Faiss loading pattern from the example
vector_store = FaissVectorStore.from_persist_dir("./storage_faiss")
storage_context = StorageContext.from_defaults(
vector_store=vector_store, persist_dir="./storage_faiss"
)
from llama_index.core import load_index_from_storage
index = load_index_from_storage(storage_context=storage_context)
print(f"Index loaded from ./storage_faiss")
tracker.checkpoint("After loading existing index")
index_loaded = True
except Exception as e:
print(f"Failed to load existing index: {e}")
print("Cleaning up corrupted index and building new one...")
# Clean up corrupted index
import shutil
if os.path.exists("./storage_faiss"):
shutil.rmtree("./storage_faiss")
if not index_loaded:
print("Building new Faiss HNSW index...")
# Use the correct Faiss building pattern from the example
vector_store = FaissVectorStore(faiss_index=faiss_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents,
storage_context=storage_context,
transformations=[node_parser]
)
tracker.checkpoint("After index building")
# Save index to disk using the correct pattern
index.storage_context.persist(persist_dir="./storage_faiss")
tracker.checkpoint("After index saving")
# Measure runtime memory overhead
print("\nMeasuring runtime memory overhead...")
runtime_start_mem = get_memory_usage()
print(f"Before load memory: {runtime_start_mem:.1f} MB")
tracker.checkpoint("Before load memory")
query_engine = index.as_query_engine(similarity_top_k=20)
queries = [
"什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发",
"What is LEANN and how does it work?",
"华为诺亚方舟实验室的主要研究内容",
]
for i, query in enumerate(queries):
start_time = time.time()
_ = query_engine.query(query)
query_time = time.time() - start_time
print(f"Query {i + 1} time: {query_time:.3f}s")
tracker.checkpoint(f"After query {i + 1}")
runtime_end_mem = get_memory_usage()
runtime_overhead = runtime_end_mem - runtime_start_mem
peak_memory = tracker.summary()
print(f"Peak Memory: {peak_memory:.1f} MB")
print(f"Runtime Memory Overhead: {runtime_overhead:.1f} MB")
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,285 @@
import os
import asyncio
import argparse
try:
import dotenv
dotenv.load_dotenv()
except ModuleNotFoundError:
# python-dotenv is not installed; skip loading environment variables
dotenv = None
from pathlib import Path
from typing import List, Any
from leann.api import LeannBuilder, LeannSearcher, LeannChat
from llama_index.core.node_parser import SentenceSplitter
# dotenv.load_dotenv() # handled above if python-dotenv is available
# Default Chrome profile path
DEFAULT_CHROME_PROFILE = os.path.expanduser("~/Library/Application Support/Google/Chrome/Default")
def create_leann_index_from_multiple_chrome_profiles(profile_dirs: List[Path], index_path: str = "chrome_history_index.leann", max_count: int = -1):
"""
Create LEANN index from multiple Chrome profile data sources.
Args:
profile_dirs: List of Path objects pointing to Chrome profile directories
index_path: Path to save the LEANN index
max_count: Maximum number of history entries to process per profile
"""
print("Creating LEANN index from multiple Chrome profile data sources...")
# Load documents using ChromeHistoryReader from history_data
from history_data.history import ChromeHistoryReader
reader = ChromeHistoryReader()
INDEX_DIR = Path(index_path).parent
if not INDEX_DIR.exists():
print(f"--- Index directory not found, building new index ---")
all_documents = []
total_processed = 0
# Process each Chrome profile directory
for i, profile_dir in enumerate(profile_dirs):
print(f"\nProcessing Chrome profile {i+1}/{len(profile_dirs)}: {profile_dir}")
try:
documents = reader.load_data(
chrome_profile_path=str(profile_dir),
max_count=max_count
)
if documents:
print(f"Loaded {len(documents)} history documents from {profile_dir}")
all_documents.extend(documents)
total_processed += len(documents)
# Check if we've reached the max count
if max_count > 0 and total_processed >= max_count:
print(f"Reached max count of {max_count} documents")
break
else:
print(f"No documents loaded from {profile_dir}")
except Exception as e:
print(f"Error processing {profile_dir}: {e}")
continue
if not all_documents:
print("No documents loaded from any source. Exiting.")
# highlight info that you need to close all chrome browser before running this script and high light the instruction!!
print("\033[91mYou need to close or quit all chrome browser before running this script\033[0m")
return None
print(f"\nTotal loaded {len(all_documents)} history documents from {len(profile_dirs)} profiles")
# Create text splitter with 256 chunk size
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=128)
# Convert Documents to text strings and chunk them
all_texts = []
for doc in all_documents:
# Split the document into chunks
nodes = text_splitter.get_nodes_from_documents([doc])
for node in nodes:
text = node.get_content()
# text = '[Title] ' + doc.metadata["title"] + '\n' + text
all_texts.append(text)
print(f"Created {len(all_texts)} text chunks from {len(all_documents)} documents")
# Create LEANN index directory
print(f"--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print(f"--- Building new LEANN index ---")
print(f"\n[PHASE 1] Building Leann index...")
# Use HNSW backend for better macOS compatibility
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="facebook/contriever",
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1 # Force single-threaded mode
)
print(f"Adding {len(all_texts)} history chunks to index...")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(index_path)
print(f"\nLEANN index built at {index_path}!")
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
return index_path
def create_leann_index(profile_path: str = None, index_path: str = "chrome_history_index.leann", max_count: int = 1000):
"""
Create LEANN index from Chrome history data.
Args:
profile_path: Path to the Chrome profile directory (optional, uses default if None)
index_path: Path to save the LEANN index
max_count: Maximum number of history entries to process
"""
print("Creating LEANN index from Chrome history data...")
INDEX_DIR = Path(index_path).parent
if not INDEX_DIR.exists():
print(f"--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print(f"--- Building new LEANN index ---")
print(f"\n[PHASE 1] Building Leann index...")
# Load documents using ChromeHistoryReader from history_data
from history_data.history import ChromeHistoryReader
reader = ChromeHistoryReader()
documents = reader.load_data(
chrome_profile_path=profile_path,
max_count=max_count
)
if not documents:
print("No documents loaded. Exiting.")
return None
print(f"Loaded {len(documents)} history documents")
# Create text splitter with 256 chunk size
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25)
# Convert Documents to text strings and chunk them
all_texts = []
for doc in documents:
# Split the document into chunks
nodes = text_splitter.get_nodes_from_documents([doc])
for node in nodes:
all_texts.append(node.get_content())
print(f"Created {len(all_texts)} text chunks from {len(documents)} documents")
# Create LEANN index directory
print(f"--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print(f"--- Building new LEANN index ---")
print(f"\n[PHASE 1] Building Leann index...")
# Use HNSW backend for better macOS compatibility
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="facebook/contriever",
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1 # Force single-threaded mode
)
print(f"Adding {len(all_texts)} history chunks to index...")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(index_path)
print(f"\nLEANN index built at {index_path}!")
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
return index_path
async def query_leann_index(index_path: str, query: str):
"""
Query the LEANN index.
Args:
index_path: Path to the LEANN index
query: The query string
"""
print(f"\n[PHASE 2] Starting Leann chat session...")
chat = LeannChat(index_path=index_path)
print(f"You: {query}")
chat_response = chat.ask(
query,
top_k=10,
recompute_beighbor_embeddings=True,
complexity=32,
beam_width=1,
llm_config={
"type": "openai",
"model": "gpt-4o",
"api_key": os.getenv("OPENAI_API_KEY"),
},
llm_kwargs={
"temperature": 0.0,
"max_tokens": 1000
}
)
print(f"Leann: {chat_response}")
async def main():
# Parse command line arguments
parser = argparse.ArgumentParser(description='LEANN Chrome History Reader - Create and query browser history index')
parser.add_argument('--chrome-profile', type=str, default=DEFAULT_CHROME_PROFILE,
help=f'Path to Chrome profile directory (default: {DEFAULT_CHROME_PROFILE}), usually you dont need to change this')
parser.add_argument('--index-dir', type=str, default="./all_google_new",
help='Directory to store the LEANN index (default: ./chrome_history_index_leann_test)')
parser.add_argument('--max-entries', type=int, default=1000,
help='Maximum number of history entries to process (default: 1000)')
parser.add_argument('--query', type=str, default=None,
help='Single query to run (default: runs example queries)')
parser.add_argument('--auto-find-profiles', action='store_true', default=True,
help='Automatically find all Chrome profiles (default: True)')
args = parser.parse_args()
INDEX_DIR = Path(args.index_dir)
INDEX_PATH = str(INDEX_DIR / "chrome_history.leann")
print(f"Using Chrome profile: {args.chrome_profile}")
print(f"Index directory: {INDEX_DIR}")
print(f"Max entries: {args.max_entries}")
# Find Chrome profile directories
from history_data.history import ChromeHistoryReader
if args.auto_find_profiles:
profile_dirs = ChromeHistoryReader.find_chrome_profiles()
if not profile_dirs:
print("No Chrome profiles found automatically. Exiting.")
return
else:
# Use single specified profile
profile_path = Path(args.chrome_profile)
if not profile_path.exists():
print(f"Chrome profile not found: {profile_path}")
return
profile_dirs = [profile_path]
# Create or load the LEANN index from all sources
index_path = create_leann_index_from_multiple_chrome_profiles(profile_dirs, INDEX_PATH, args.max_entries)
if index_path:
if args.query:
# Run single query
await query_leann_index(index_path, args.query)
else:
# Example queries
queries = [
"What websites did I visit about machine learning?",
"Find my search history about programming"
]
for query in queries:
print("\n" + "="*60)
await query_leann_index(index_path, query)
if __name__ == "__main__":
asyncio.run(main())

View File

@@ -0,0 +1,3 @@
from .history import ChromeHistoryReader
__all__ = ['ChromeHistoryReader']

View File

@@ -0,0 +1,171 @@
import sqlite3
import os
from pathlib import Path
from typing import List, Any
from llama_index.core import Document
from llama_index.core.readers.base import BaseReader
class ChromeHistoryReader(BaseReader):
"""
Chrome browser history reader that extracts browsing data from SQLite database.
Reads Chrome history from the default Chrome profile location and creates documents
with embedded metadata similar to the email reader structure.
"""
def __init__(self) -> None:
"""Initialize."""
pass
def load_data(self, input_dir: str = None, **load_kwargs: Any) -> List[Document]:
"""
Load Chrome history data from the default Chrome profile location.
Args:
input_dir: Not used for Chrome history (kept for compatibility)
**load_kwargs:
max_count (int): Maximum amount of history entries to read.
chrome_profile_path (str): Custom path to Chrome profile directory.
"""
docs: List[Document] = []
max_count = load_kwargs.get('max_count', 1000)
chrome_profile_path = load_kwargs.get('chrome_profile_path', None)
# Default Chrome profile path on macOS
if chrome_profile_path is None:
chrome_profile_path = os.path.expanduser("~/Library/Application Support/Google/Chrome/Default")
history_db_path = os.path.join(chrome_profile_path, "History")
if not os.path.exists(history_db_path):
print(f"Chrome history database not found at: {history_db_path}")
return docs
try:
# Connect to the Chrome history database
print(f"Connecting to database: {history_db_path}")
conn = sqlite3.connect(history_db_path)
cursor = conn.cursor()
# Query to get browsing history with metadata (removed created_time column)
query = """
SELECT
datetime(last_visit_time/1000000-11644473600,'unixepoch','localtime') as last_visit,
url,
title,
visit_count,
typed_count,
hidden
FROM urls
ORDER BY last_visit_time DESC
"""
print(f"Executing query on database: {history_db_path}")
cursor.execute(query)
rows = cursor.fetchall()
print(f"Query returned {len(rows)} rows")
count = 0
for row in rows:
if count >= max_count and max_count > 0:
break
last_visit, url, title, visit_count, typed_count, hidden = row
# Create document content with metadata embedded in text
doc_content = f"""
[Title]: {title}
[URL of the page]: {url}
[Last visited time]: {last_visit}
[Visit times]: {visit_count}
[Typed times]: {typed_count}
"""
# Create document with embedded metadata
doc = Document(text=doc_content, metadata={ "title": title[0:150]})
# if len(title) > 150:
# print(f"Title is too long: {title}")
docs.append(doc)
count += 1
conn.close()
print(f"Loaded {len(docs)} Chrome history documents")
except Exception as e:
print(f"Error reading Chrome history: {e}")
return docs
return docs
@staticmethod
def find_chrome_profiles() -> List[Path]:
"""
Find all Chrome profile directories.
Returns:
List of Path objects pointing to Chrome profile directories
"""
chrome_base_path = Path(os.path.expanduser("~/Library/Application Support/Google/Chrome"))
profile_dirs = []
if not chrome_base_path.exists():
print(f"Chrome directory not found at: {chrome_base_path}")
return profile_dirs
# Find all profile directories
for profile_dir in chrome_base_path.iterdir():
if profile_dir.is_dir() and profile_dir.name != "System Profile":
history_path = profile_dir / "History"
if history_path.exists():
profile_dirs.append(profile_dir)
print(f"Found Chrome profile: {profile_dir}")
print(f"Found {len(profile_dirs)} Chrome profiles")
return profile_dirs
@staticmethod
def export_history_to_file(output_file: str = "chrome_history_export.txt", max_count: int = 1000):
"""
Export Chrome history to a text file using the same SQL query format.
Args:
output_file: Path to the output file
max_count: Maximum number of entries to export
"""
chrome_profile_path = os.path.expanduser("~/Library/Application Support/Google/Chrome/Default")
history_db_path = os.path.join(chrome_profile_path, "History")
if not os.path.exists(history_db_path):
print(f"Chrome history database not found at: {history_db_path}")
return
try:
conn = sqlite3.connect(history_db_path)
cursor = conn.cursor()
query = """
SELECT
datetime(last_visit_time/1000000-11644473600,'unixepoch','localtime') as last_visit,
url,
title,
visit_count,
typed_count,
hidden
FROM urls
ORDER BY last_visit_time DESC
LIMIT ?
"""
cursor.execute(query, (max_count,))
rows = cursor.fetchall()
with open(output_file, 'w', encoding='utf-8') as f:
for row in rows:
last_visit, url, title, visit_count, typed_count, hidden = row
f.write(f"{last_visit}\t{url}\t{title}\t{visit_count}\t{typed_count}\t{hidden}\n")
conn.close()
print(f"Exported {len(rows)} history entries to {output_file}")
except Exception as e:
print(f"Error exporting Chrome history: {e}")

View File

@@ -0,0 +1,719 @@
import json
import os
import re
import subprocess
import sys
import time
from pathlib import Path
from typing import List, Any, Dict, Optional
from llama_index.core import Document
from llama_index.core.readers.base import BaseReader
from datetime import datetime
class WeChatHistoryReader(BaseReader):
"""
WeChat chat history reader that extracts chat data from exported JSON files.
Reads WeChat chat history from exported JSON files (from wechat-exporter tool)
and creates documents with embedded metadata similar to the Chrome history reader structure.
Also includes utilities for automatic WeChat chat history export.
"""
def __init__(self) -> None:
"""Initialize."""
self.packages_dir = Path(__file__).parent.parent.parent / "packages"
self.wechat_exporter_dir = self.packages_dir / "wechat-exporter"
self.wechat_decipher_dir = self.packages_dir / "wechat-decipher-macos"
def check_wechat_running(self) -> bool:
"""Check if WeChat is currently running."""
try:
result = subprocess.run(["pgrep", "-f", "WeChat"], capture_output=True, text=True)
return result.returncode == 0
except Exception:
return False
def install_wechattweak(self) -> bool:
"""Install WeChatTweak CLI tool."""
try:
# Create wechat-exporter directory if it doesn't exist
self.wechat_exporter_dir.mkdir(parents=True, exist_ok=True)
wechattweak_path = self.wechat_exporter_dir / "wechattweak-cli"
if not wechattweak_path.exists():
print("Downloading WeChatTweak CLI...")
subprocess.run([
"curl", "-L", "-o", str(wechattweak_path),
"https://github.com/JettChenT/WeChatTweak-CLI/releases/latest/download/wechattweak-cli"
], check=True)
# Make executable
wechattweak_path.chmod(0o755)
# Install WeChatTweak
print("Installing WeChatTweak...")
subprocess.run(["sudo", str(wechattweak_path), "install"], check=True)
return True
except Exception as e:
print(f"Error installing WeChatTweak: {e}")
return False
def restart_wechat(self):
"""Restart WeChat to apply WeChatTweak."""
try:
print("Restarting WeChat...")
subprocess.run(["pkill", "-f", "WeChat"], check=False)
time.sleep(2)
subprocess.run(["open", "-a", "WeChat"], check=True)
time.sleep(5) # Wait for WeChat to start
except Exception as e:
print(f"Error restarting WeChat: {e}")
def check_api_available(self) -> bool:
"""Check if WeChatTweak API is available."""
try:
result = subprocess.run([
"curl", "-s", "http://localhost:48065/wechat/allcontacts"
], capture_output=True, text=True, timeout=5)
return result.returncode == 0 and result.stdout.strip()
except Exception:
return False
def _extract_readable_text(self, content: str) -> str:
"""
Extract readable text from message content, removing XML and system messages.
Args:
content: The raw message content (can be string or dict)
Returns:
Cleaned, readable text
"""
if not content:
return ""
# Handle dictionary content (like quoted messages)
if isinstance(content, dict):
# Extract text from dictionary structure
text_parts = []
if 'title' in content:
text_parts.append(str(content['title']))
if 'quoted' in content:
text_parts.append(str(content['quoted']))
if 'content' in content:
text_parts.append(str(content['content']))
if 'text' in content:
text_parts.append(str(content['text']))
if text_parts:
return " | ".join(text_parts)
else:
# If we can't extract meaningful text from dict, return empty
return ""
# Handle string content
if not isinstance(content, str):
return ""
# Remove common prefixes like "wxid_xxx:\n"
clean_content = re.sub(r'^wxid_[^:]+:\s*', '', content)
clean_content = re.sub(r'^[^:]+:\s*', '', clean_content)
# If it's just XML or system message, return empty
if clean_content.strip().startswith('<') or 'recalled a message' in clean_content:
return ""
return clean_content.strip()
def _is_text_message(self, content: str) -> bool:
"""
Check if a message contains readable text content.
Args:
content: The message content (can be string or dict)
Returns:
True if the message contains readable text, False otherwise
"""
if not content:
return False
# Handle dictionary content
if isinstance(content, dict):
# Check if dict has any readable text fields
text_fields = ['title', 'quoted', 'content', 'text']
for field in text_fields:
if field in content and content[field]:
return True
return False
# Handle string content
if not isinstance(content, str):
return False
# Skip image messages (contain XML with img tags)
if '<img' in content and 'cdnurl' in content:
return False
# Skip emoji messages (contain emoji XML tags)
if '<emoji' in content and 'productid' in content:
return False
# Skip voice messages
if '<voice' in content:
return False
# Skip video messages
if '<video' in content:
return False
# Skip file messages
if '<appmsg' in content and 'appid' in content:
return False
# Skip system messages (like "recalled a message")
if 'recalled a message' in content:
return False
# Check if there's actual readable text (not just XML or system messages)
# Remove common prefixes like "wxid_xxx:\n" and check for actual content
clean_content = re.sub(r'^wxid_[^:]+:\s*', '', content)
clean_content = re.sub(r'^[^:]+:\s*', '', clean_content)
# If after cleaning we have meaningful text, consider it readable
if len(clean_content.strip()) > 0 and not clean_content.strip().startswith('<'):
return True
return False
def _concatenate_messages(self, messages: List[Dict], max_length: int = 128,
time_window_minutes: int = 30, overlap_messages: int = 0) -> List[Dict]:
"""
Concatenate messages based on length and time rules.
Args:
messages: List of message dictionaries
max_length: Maximum length for concatenated message groups. Use -1 to disable length constraint.
time_window_minutes: Time window in minutes to group messages together. Use -1 to disable time constraint.
overlap_messages: Number of messages to overlap between consecutive groups
Returns:
List of concatenated message groups
"""
if not messages:
return []
concatenated_groups = []
current_group = []
current_length = 0
last_timestamp = None
for message in messages:
# Extract message info
content = message.get('content', '')
message_text = message.get('message', '')
create_time = message.get('createTime', 0)
from_user = message.get('fromUser', '')
to_user = message.get('toUser', '')
is_sent_from_self = message.get('isSentFromSelf', False)
# Extract readable text
readable_text = self._extract_readable_text(content)
if not readable_text:
readable_text = message_text
# Skip empty messages
if not readable_text.strip():
continue
# Check time window constraint (only if time_window_minutes != -1)
if time_window_minutes != -1 and last_timestamp is not None and create_time > 0:
time_diff_minutes = (create_time - last_timestamp) / 60
if time_diff_minutes > time_window_minutes:
# Time gap too large, start new group
if current_group:
concatenated_groups.append({
'messages': current_group,
'total_length': current_length,
'start_time': current_group[0].get('createTime', 0),
'end_time': current_group[-1].get('createTime', 0)
})
# Keep last few messages for overlap
if overlap_messages > 0 and len(current_group) > overlap_messages:
current_group = current_group[-overlap_messages:]
current_length = sum(len(self._extract_readable_text(msg.get('content', '')) or msg.get('message', '')) for msg in current_group)
else:
current_group = []
current_length = 0
# Check length constraint (only if max_length != -1)
message_length = len(readable_text)
if max_length != -1 and current_length + message_length > max_length and current_group:
# Current group would exceed max length, save it and start new
concatenated_groups.append({
'messages': current_group,
'total_length': current_length,
'start_time': current_group[0].get('createTime', 0),
'end_time': current_group[-1].get('createTime', 0)
})
# Keep last few messages for overlap
if overlap_messages > 0 and len(current_group) > overlap_messages:
current_group = current_group[-overlap_messages:]
current_length = sum(len(self._extract_readable_text(msg.get('content', '')) or msg.get('message', '')) for msg in current_group)
else:
current_group = []
current_length = 0
# Add message to current group
current_group.append(message)
current_length += message_length
last_timestamp = create_time
# Add the last group if it exists
if current_group:
concatenated_groups.append({
'messages': current_group,
'total_length': current_length,
'start_time': current_group[0].get('createTime', 0),
'end_time': current_group[-1].get('createTime', 0)
})
return concatenated_groups
def _create_concatenated_content(self, message_group: Dict, contact_name: str) -> str:
"""
Create concatenated content from a group of messages.
Args:
message_group: Dictionary containing messages and metadata
contact_name: Name of the contact
Returns:
Formatted concatenated content
"""
messages = message_group['messages']
start_time = message_group['start_time']
end_time = message_group['end_time']
# Format timestamps
if start_time:
try:
start_timestamp = datetime.fromtimestamp(start_time)
start_time_str = start_timestamp.strftime('%Y-%m-%d %H:%M:%S')
except:
start_time_str = str(start_time)
else:
start_time_str = "Unknown"
if end_time:
try:
end_timestamp = datetime.fromtimestamp(end_time)
end_time_str = end_timestamp.strftime('%Y-%m-%d %H:%M:%S')
except:
end_time_str = str(end_time)
else:
end_time_str = "Unknown"
# Build concatenated message content
message_parts = []
for message in messages:
content = message.get('content', '')
message_text = message.get('message', '')
create_time = message.get('createTime', 0)
is_sent_from_self = message.get('isSentFromSelf', False)
# Extract readable text
readable_text = self._extract_readable_text(content)
if not readable_text:
readable_text = message_text
# Format individual message
if create_time:
try:
timestamp = datetime.fromtimestamp(create_time)
# change to YYYY-MM-DD HH:MM:SS
time_str = timestamp.strftime('%Y-%m-%d %H:%M:%S')
except:
time_str = str(create_time)
else:
time_str = "Unknown"
sender = "[Me]" if is_sent_from_self else "[Contact]"
message_parts.append(f"({time_str}) {sender}: {readable_text}")
concatenated_text = "\n".join(message_parts)
# Create final document content
doc_content = f"""
Contact: {contact_name}
Time Range: {start_time_str} - {end_time_str}
Messages ({len(messages)} messages, {message_group['total_length']} chars):
{concatenated_text}
"""
# TODO @yichuan give better format and rich info here!
doc_content = f"""
{concatenated_text}
"""
return doc_content, contact_name
def load_data(self, input_dir: str = None, **load_kwargs: Any) -> List[Document]:
"""
Load WeChat chat history data from exported JSON files.
Args:
input_dir: Directory containing exported WeChat JSON files
**load_kwargs:
max_count (int): Maximum amount of chat entries to read.
wechat_export_dir (str): Custom path to WeChat export directory.
include_non_text (bool): Whether to include non-text messages (images, emojis, etc.)
concatenate_messages (bool): Whether to concatenate messages based on length rules.
max_length (int): Maximum length for concatenated message groups (default: 1000).
time_window_minutes (int): Time window in minutes to group messages together (default: 30).
overlap_messages (int): Number of messages to overlap between consecutive groups (default: 2).
"""
docs: List[Document] = []
max_count = load_kwargs.get('max_count', 1000)
wechat_export_dir = load_kwargs.get('wechat_export_dir', None)
include_non_text = load_kwargs.get('include_non_text', False)
concatenate_messages = load_kwargs.get('concatenate_messages', False)
max_length = load_kwargs.get('max_length', 1000)
time_window_minutes = load_kwargs.get('time_window_minutes', 30)
# Default WeChat export path
if wechat_export_dir is None:
wechat_export_dir = "./wechat_export_test"
if not os.path.exists(wechat_export_dir):
print(f"WeChat export directory not found at: {wechat_export_dir}")
return docs
try:
# Find all JSON files in the export directory
json_files = list(Path(wechat_export_dir).glob("*.json"))
print(f"Found {len(json_files)} WeChat chat history files")
count = 0
for json_file in json_files:
if count >= max_count and max_count > 0:
break
try:
with open(json_file, 'r', encoding='utf-8') as f:
chat_data = json.load(f)
# Extract contact name from filename
contact_name = json_file.stem
if concatenate_messages:
# Filter messages to only include readable text messages
readable_messages = []
for message in chat_data:
try:
content = message.get('content', '')
if not include_non_text and not self._is_text_message(content):
continue
readable_text = self._extract_readable_text(content)
if not readable_text and not include_non_text:
continue
readable_messages.append(message)
except Exception as e:
print(f"Error processing message in {json_file}: {e}")
continue
# Concatenate messages based on rules
message_groups = self._concatenate_messages(
readable_messages,
max_length=-1,
time_window_minutes=-1,
overlap_messages=0 # Keep 2 messages overlap between groups
)
# Create documents from concatenated groups
for message_group in message_groups:
if count >= max_count and max_count > 0:
break
doc_content, contact_name = self._create_concatenated_content(message_group, contact_name)
doc = Document(text=doc_content, metadata={"contact_name": contact_name})
docs.append(doc)
count += 1
print(f"Created {len(message_groups)} concatenated message groups for {contact_name}")
else:
# Original single-message processing
for message in chat_data:
if count >= max_count and max_count > 0:
break
# Extract message information
from_user = message.get('fromUser', '')
to_user = message.get('toUser', '')
content = message.get('content', '')
message_text = message.get('message', '')
create_time = message.get('createTime', 0)
is_sent_from_self = message.get('isSentFromSelf', False)
# Handle content that might be dict or string
try:
# Check if this is a readable text message
if not include_non_text and not self._is_text_message(content):
continue
# Extract readable text
readable_text = self._extract_readable_text(content)
if not readable_text and not include_non_text:
continue
except Exception as e:
# Skip messages that cause processing errors
print(f"Error processing message in {json_file}: {e}")
continue
# Convert timestamp to readable format
if create_time:
try:
timestamp = datetime.fromtimestamp(create_time)
time_str = timestamp.strftime('%Y-%m-%d %H:%M:%S')
except:
time_str = str(create_time)
else:
time_str = "Unknown"
# Create document content with metadata header and contact info
doc_content = f"""
Contact: {contact_name}
Is sent from self: {is_sent_from_self}
Time: {time_str}
Message: {readable_text if readable_text else message_text}
"""
# Create document with embedded metadata
doc = Document(text=doc_content, metadata={})
docs.append(doc)
count += 1
except Exception as e:
print(f"Error reading {json_file}: {e}")
continue
print(f"Loaded {len(docs)} WeChat chat documents")
except Exception as e:
print(f"Error reading WeChat history: {e}")
return docs
return docs
@staticmethod
def find_wechat_export_dirs() -> List[Path]:
"""
Find all WeChat export directories.
Returns:
List of Path objects pointing to WeChat export directories
"""
export_dirs = []
# Look for common export directory names
possible_dirs = [
Path("./wechat_export_test"),
Path("./wechat_export"),
Path("./wechat_chat_history"),
Path("./chat_export")
]
for export_dir in possible_dirs:
if export_dir.exists() and export_dir.is_dir():
json_files = list(export_dir.glob("*.json"))
if json_files:
export_dirs.append(export_dir)
print(f"Found WeChat export directory: {export_dir} with {len(json_files)} files")
print(f"Found {len(export_dirs)} WeChat export directories")
return export_dirs
@staticmethod
def export_chat_to_file(output_file: str = "wechat_chat_export.txt", max_count: int = 1000, export_dir: str = None, include_non_text: bool = False):
"""
Export WeChat chat history to a text file.
Args:
output_file: Path to the output file
max_count: Maximum number of entries to export
export_dir: Directory containing WeChat JSON files
include_non_text: Whether to include non-text messages
"""
if export_dir is None:
export_dir = "./wechat_export_test"
if not os.path.exists(export_dir):
print(f"WeChat export directory not found at: {export_dir}")
return
try:
json_files = list(Path(export_dir).glob("*.json"))
with open(output_file, 'w', encoding='utf-8') as f:
count = 0
for json_file in json_files:
if count >= max_count and max_count > 0:
break
try:
with open(json_file, 'r', encoding='utf-8') as json_f:
chat_data = json.load(json_f)
contact_name = json_file.stem
f.write(f"\n=== Chat with {contact_name} ===\n")
for message in chat_data:
if count >= max_count and max_count > 0:
break
from_user = message.get('fromUser', '')
content = message.get('content', '')
message_text = message.get('message', '')
create_time = message.get('createTime', 0)
# Skip non-text messages unless requested
if not include_non_text:
reader = WeChatHistoryReader()
if not reader._is_text_message(content):
continue
readable_text = reader._extract_readable_text(content)
if not readable_text:
continue
message_text = readable_text
if create_time:
try:
timestamp = datetime.fromtimestamp(create_time)
time_str = timestamp.strftime('%Y-%m-%d %H:%M:%S')
except:
time_str = str(create_time)
else:
time_str = "Unknown"
f.write(f"[{time_str}] {from_user}: {message_text}\n")
count += 1
except Exception as e:
print(f"Error processing {json_file}: {e}")
continue
print(f"Exported {count} chat entries to {output_file}")
except Exception as e:
print(f"Error exporting WeChat chat history: {e}")
def export_wechat_chat_history(self, export_dir: str = "./wechat_export_direct") -> Optional[Path]:
"""
Export WeChat chat history using wechat-exporter tool.
Args:
export_dir: Directory to save exported chat history
Returns:
Path to export directory if successful, None otherwise
"""
try:
import subprocess
import sys
# Create export directory
export_path = Path(export_dir)
export_path.mkdir(exist_ok=True)
print(f"Exporting WeChat chat history to {export_path}...")
# Check if wechat-exporter directory exists
if not self.wechat_exporter_dir.exists():
print(f"wechat-exporter directory not found at: {self.wechat_exporter_dir}")
return None
# Install requirements if needed
requirements_file = self.wechat_exporter_dir / "requirements.txt"
if requirements_file.exists():
print("Installing wechat-exporter requirements...")
subprocess.run([
"uv", "pip", "install", "-r", str(requirements_file)
], check=True)
# Run the export command
print("Running wechat-exporter...")
result = subprocess.run([
sys.executable, str(self.wechat_exporter_dir / "main.py"),
"export-all", str(export_path)
], capture_output=True, text=True, check=True)
print("Export command output:")
print(result.stdout)
if result.stderr:
print("Export errors:")
print(result.stderr)
# Check if export was successful
if export_path.exists() and any(export_path.glob("*.json")):
json_files = list(export_path.glob("*.json"))
print(f"Successfully exported {len(json_files)} chat history files to {export_path}")
return export_path
else:
print("Export completed but no JSON files found")
return None
except subprocess.CalledProcessError as e:
print(f"Export command failed: {e}")
print(f"Command output: {e.stdout}")
print(f"Command errors: {e.stderr}")
return None
except Exception as e:
print(f"Export failed: {e}")
print("Please ensure WeChat is running and WeChatTweak is installed.")
return None
def find_or_export_wechat_data(self, export_dir: str = "./wechat_export_direct") -> List[Path]:
"""
Find existing WeChat exports or create new ones.
Args:
export_dir: Directory to save exported chat history if needed
Returns:
List of Path objects pointing to WeChat export directories
"""
export_dirs = []
# Look for existing exports in common locations
possible_export_dirs = [
Path("./wechat_database_export"),
Path("./wechat_export_test"),
Path("./wechat_export"),
Path("./wechat_export_direct"),
Path("./wechat_chat_history"),
Path("./chat_export")
]
for export_dir_path in possible_export_dirs:
if export_dir_path.exists() and any(export_dir_path.glob("*.json")):
export_dirs.append(export_dir_path)
print(f"Found existing export: {export_dir_path}")
# If no existing exports, try to export automatically
if not export_dirs:
print("No existing WeChat exports found. Starting direct export...")
# Try to export using wechat-exporter
exported_path = self.export_wechat_chat_history(export_dir)
if exported_path:
export_dirs = [exported_path]
else:
print("Failed to export WeChat data. Please ensure WeChat is running and WeChatTweak is installed.")
return export_dirs

View File

@@ -0,0 +1,290 @@
import os
import sys
import asyncio
import dotenv
import argparse
from pathlib import Path
from typing import List, Any
# Add the project root to Python path so we can import from examples
project_root = Path(__file__).parent.parent
sys.path.insert(0, str(project_root))
from leann.api import LeannBuilder, LeannSearcher, LeannChat
from llama_index.core.node_parser import SentenceSplitter
dotenv.load_dotenv()
# Auto-detect user's mail path
def get_mail_path():
"""Get the mail path for the current user"""
home_dir = os.path.expanduser("~")
return os.path.join(home_dir, "Library", "Mail")
# Default mail path for macOS
DEFAULT_MAIL_PATH = "/Users/yichuan/Library/Mail/V10/0FCA0879-FD8C-4B7E-83BF-FDDA930791C5/[Gmail].mbox/All Mail.mbox/78BA5BE1-8819-4F9A-9613-EB63772F1DD0/Data"
def create_leann_index_from_multiple_sources(messages_dirs: List[Path], index_path: str = "mail_index.leann", max_count: int = -1, include_html: bool = False, embedding_model: str = "facebook/contriever"):
"""
Create LEANN index from multiple mail data sources.
Args:
messages_dirs: List of Path objects pointing to Messages directories
index_path: Path to save the LEANN index
max_count: Maximum number of emails to process per directory
include_html: Whether to include HTML content in email processing
"""
print("Creating LEANN index from multiple mail data sources...")
# Load documents using EmlxReader from LEANN_email_reader
from examples.email_data.LEANN_email_reader import EmlxReader
reader = EmlxReader(include_html=include_html)
# from email_data.email import EmlxMboxReader
# from pathlib import Path
# reader = EmlxMboxReader()
INDEX_DIR = Path(index_path).parent
if not INDEX_DIR.exists():
print(f"--- Index directory not found, building new index ---")
all_documents = []
total_processed = 0
# Process each Messages directory
for i, messages_dir in enumerate(messages_dirs):
print(f"\nProcessing Messages directory {i+1}/{len(messages_dirs)}: {messages_dir}")
try:
documents = reader.load_data(messages_dir)
if documents:
print(f"Loaded {len(documents)} email documents from {messages_dir}")
all_documents.extend(documents)
total_processed += len(documents)
# Check if we've reached the max count
if max_count > 0 and total_processed >= max_count:
print(f"Reached max count of {max_count} documents")
break
else:
print(f"No documents loaded from {messages_dir}")
except Exception as e:
print(f"Error processing {messages_dir}: {e}")
continue
if not all_documents:
print("No documents loaded from any source. Exiting.")
return None
print(f"\nTotal loaded {len(all_documents)} email documents from {len(messages_dirs)} directories and starting to split them into chunks")
# Create text splitter with 256 chunk size
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25)
# Convert Documents to text strings and chunk them
all_texts = []
for doc in all_documents:
# Split the document into chunks
nodes = text_splitter.get_nodes_from_documents([doc])
for node in nodes:
text = node.get_content()
# text = '[subject] ' + doc.metadata["subject"] + '\n' + text
all_texts.append(text)
print(f"Finished splitting {len(all_documents)} documents into {len(all_texts)} text chunks")
# Create LEANN index directory
print(f"--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print(f"--- Building new LEANN index ---")
print(f"\n[PHASE 1] Building Leann index...")
# Use HNSW backend for better macOS compatibility
builder = LeannBuilder(
backend_name="hnsw",
embedding_model=embedding_model,
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1 # Force single-threaded mode
)
print(f"Adding {len(all_texts)} email chunks to index...")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(index_path)
print(f"\nLEANN index built at {index_path}!")
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
return index_path
def create_leann_index(mail_path: str, index_path: str = "mail_index.leann", max_count: int = 1000, include_html: bool = False, embedding_model: str = "facebook/contriever"):
"""
Create LEANN index from mail data.
Args:
mail_path: Path to the mail directory
index_path: Path to save the LEANN index
max_count: Maximum number of emails to process
include_html: Whether to include HTML content in email processing
"""
print("Creating LEANN index from mail data...")
INDEX_DIR = Path(index_path).parent
if not INDEX_DIR.exists():
print(f"--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print(f"--- Building new LEANN index ---")
print(f"\n[PHASE 1] Building Leann index...")
# Load documents using EmlxReader from LEANN_email_reader
from examples.email_data.LEANN_email_reader import EmlxReader
reader = EmlxReader(include_html=include_html)
# from email_data.email import EmlxMboxReader
# from pathlib import Path
# reader = EmlxMboxReader()
documents = reader.load_data(Path(mail_path))
if not documents:
print("No documents loaded. Exiting.")
return None
print(f"Loaded {len(documents)} email documents")
# Create text splitter with 256 chunk size
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=128)
# Convert Documents to text strings and chunk them
all_texts = []
for doc in documents:
# Split the document into chunks
nodes = text_splitter.get_nodes_from_documents([doc])
for node in nodes:
all_texts.append(node.get_content())
print(f"Created {len(all_texts)} text chunks from {len(documents)} documents")
# Create LEANN index directory
print(f"--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print(f"--- Building new LEANN index ---")
print(f"\n[PHASE 1] Building Leann index...")
# Use HNSW backend for better macOS compatibility
builder = LeannBuilder(
backend_name="hnsw",
embedding_model=embedding_model,
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1 # Force single-threaded mode
)
print(f"Adding {len(all_texts)} email chunks to index...")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(index_path)
print(f"\nLEANN index built at {index_path}!")
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
return index_path
async def query_leann_index(index_path: str, query: str):
"""
Query the LEANN index.
Args:
index_path: Path to the LEANN index
query: The query string
"""
print(f"\n[PHASE 2] Starting Leann chat session...")
chat = LeannChat(index_path=index_path,
llm_config={"type": "openai", "model": "gpt-4o"})
print(f"You: {query}")
import time
start_time = time.time()
chat_response = chat.ask(
query,
top_k=20,
recompute_beighbor_embeddings=True,
complexity=32,
beam_width=1,
)
end_time = time.time()
print(f"Time taken: {end_time - start_time} seconds")
print(f"Leann: {chat_response}")
async def main():
# Parse command line arguments
parser = argparse.ArgumentParser(description='LEANN Mail Reader - Create and query email index')
# Remove --mail-path argument and auto-detect all Messages directories
# Remove DEFAULT_MAIL_PATH
parser.add_argument('--index-dir', type=str, default="./mail_index_index_file",
help='Directory to store the LEANN index (default: ./mail_index_leann_raw_text_all_dicts)')
parser.add_argument('--max-emails', type=int, default=1000,
help='Maximum number of emails to process (-1 means all)')
parser.add_argument('--query', type=str, default="Give me some funny advertisement about apple or other companies",
help='Single query to run (default: runs example queries)')
parser.add_argument('--include-html', action='store_true', default=False,
help='Include HTML content in email processing (default: False)')
parser.add_argument('--embedding-model', type=str, default="facebook/contriever",
help='Embedding model to use (default: facebook/contriever)')
args = parser.parse_args()
print(f"args: {args}")
# Automatically find all Messages directories under the current user's Mail directory
from examples.email_data.LEANN_email_reader import find_all_messages_directories
mail_path = get_mail_path()
print(f"Searching for email data in: {mail_path}")
messages_dirs = find_all_messages_directories(mail_path)
# messages_dirs = find_all_messages_directories(DEFAULT_MAIL_PATH)
# messages_dirs = [DEFAULT_MAIL_PATH]
# messages_dirs = messages_dirs[:1]
print('len(messages_dirs): ', len(messages_dirs))
if not messages_dirs:
print("No Messages directories found. Exiting.")
return
INDEX_DIR = Path(args.index_dir)
INDEX_PATH = str(INDEX_DIR / "mail_documents.leann")
print(f"Index directory: {INDEX_DIR}")
print(f"Found {len(messages_dirs)} Messages directories.")
# Create or load the LEANN index from all sources
index_path = create_leann_index_from_multiple_sources(messages_dirs, INDEX_PATH, args.max_emails, args.include_html, args.embedding_model)
if index_path:
if args.query:
# Run single query
await query_leann_index(index_path, args.query)
else:
# Example queries
queries = [
"Hows Berkeley Graduate Student Instructor",
"how's the icloud related advertisement saying",
"Whats the number of class recommend to take per semester for incoming EECS students"
]
for query in queries:
print("\n" + "="*60)
await query_leann_index(index_path, query)
if __name__ == "__main__":
asyncio.run(main())

View File

@@ -0,0 +1,108 @@
import os
import sys
import argparse
from pathlib import Path
from typing import List, Any
# Add the project root to Python path so we can import from examples
project_root = Path(__file__).parent.parent
sys.path.insert(0, str(project_root))
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.core.node_parser import SentenceSplitter
# --- EMBEDDING MODEL ---
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
import torch
# --- END EMBEDDING MODEL ---
# Import EmlxReader from the new module
from examples.email_data.LEANN_email_reader import EmlxReader
def create_and_save_index(mail_path: str, save_dir: str = "mail_index_embedded", max_count: int = 1000, include_html: bool = False):
print("Creating index from mail data with embedded metadata...")
documents = EmlxReader(include_html=include_html).load_data(mail_path, max_count=max_count)
if not documents:
print("No documents loaded. Exiting.")
return None
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25)
# Use facebook/contriever as the embedder
embed_model = HuggingFaceEmbedding(model_name="facebook/contriever")
# set on device
import torch
if torch.cuda.is_available():
embed_model._model.to("cuda")
# set mps
elif torch.backends.mps.is_available():
embed_model._model.to("mps")
else:
embed_model._model.to("cpu")
index = VectorStoreIndex.from_documents(
documents,
transformations=[text_splitter],
embed_model=embed_model
)
os.makedirs(save_dir, exist_ok=True)
index.storage_context.persist(persist_dir=save_dir)
print(f"Index saved to {save_dir}")
return index
def load_index(save_dir: str = "mail_index_embedded"):
try:
storage_context = StorageContext.from_defaults(persist_dir=save_dir)
index = VectorStoreIndex.from_vector_store(
storage_context.vector_store,
storage_context=storage_context
)
print(f"Index loaded from {save_dir}")
return index
except Exception as e:
print(f"Error loading index: {e}")
return None
def query_index(index, query: str):
if index is None:
print("No index available for querying.")
return
query_engine = index.as_query_engine()
response = query_engine.query(query)
print(f"Query: {query}")
print(f"Response: {response}")
def main():
# Parse command line arguments
parser = argparse.ArgumentParser(description='LlamaIndex Mail Reader - Create and query email index')
parser.add_argument('--mail-path', type=str,
default="/Users/yichuan/Library/Mail/V10/0FCA0879-FD8C-4B7E-83BF-FDDA930791C5/[Gmail].mbox/All Mail.mbox/78BA5BE1-8819-4F9A-9613-EB63772F1DD0/Data/9/Messages",
help='Path to mail data directory')
parser.add_argument('--save-dir', type=str, default="mail_index_embedded",
help='Directory to store the index (default: mail_index_embedded)')
parser.add_argument('--max-emails', type=int, default=10000,
help='Maximum number of emails to process')
parser.add_argument('--include-html', action='store_true', default=False,
help='Include HTML content in email processing (default: False)')
args = parser.parse_args()
mail_path = args.mail_path
save_dir = args.save_dir
if os.path.exists(save_dir) and os.path.exists(os.path.join(save_dir, "vector_store.json")):
print("Loading existing index...")
index = load_index(save_dir)
else:
print("Creating new index...")
index = create_and_save_index(mail_path, save_dir, max_count=args.max_emails, include_html=args.include_html)
if index:
queries = [
"Hows Berkeley Graduate Student Instructor",
"how's the icloud related advertisement saying",
"Whats the number of class recommend to take per semester for incoming EECS students"
]
for query in queries:
print("\n" + "="*50)
query_index(index, query)
if __name__ == "__main__":
main()

View File

@@ -1,76 +1,115 @@
from llama_index.core import SimpleDirectoryReader, Settings import argparse
from llama_index.core.readers.base import BaseReader from llama_index.core import SimpleDirectoryReader
from llama_index.node_parser.docling import DoclingNodeParser from llama_index.core.node_parser import SentenceSplitter
from llama_index.readers.docling import DoclingReader
from docling_core.transforms.chunker.hybrid_chunker import HybridChunker
import asyncio import asyncio
import os
import dotenv import dotenv
from leann.api import LeannBuilder, LeannSearcher, LeannChat from leann.api import LeannBuilder, LeannChat
import leann_backend_diskann # Import to ensure backend registration
import shutil
from pathlib import Path from pathlib import Path
dotenv.load_dotenv() dotenv.load_dotenv()
reader = DoclingReader(export_type=DoclingReader.ExportType.JSON)
file_extractor: dict[str, BaseReader] = {
".docx": reader,
".pptx": reader,
".pdf": reader,
".xlsx": reader,
}
node_parser = DoclingNodeParser(
chunker=HybridChunker(tokenizer="Qwen/Qwen3-Embedding-4B", max_tokens=10240)
)
documents = SimpleDirectoryReader( async def main(args):
"examples/data", INDEX_DIR = Path(args.index_dir)
recursive=True, INDEX_PATH = str(INDEX_DIR / "pdf_documents.leann")
file_extractor=file_extractor,
encoding="utf-8",
required_exts=[".pdf", ".docx", ".pptx", ".xlsx"]
).load_data(show_progress=True)
# Extract text from documents and prepare for Leann if not INDEX_DIR.exists():
all_texts = [] node_parser = SentenceSplitter(
for doc in documents: chunk_size=256, chunk_overlap=128, separator=" ", paragraph_separator="\n\n"
# DoclingNodeParser returns Node objects, which have a text attribute )
nodes = node_parser.get_nodes_from_documents([doc])
for node in nodes:
all_texts.append(node.text)
INDEX_DIR = Path("./test_pdf_index") print("Loading documents...")
INDEX_PATH = str(INDEX_DIR / "pdf_documents.leann") documents = SimpleDirectoryReader(
args.data_dir,
recursive=True,
encoding="utf-8",
required_exts=[".pdf", ".txt", ".md"],
).load_data(show_progress=True)
print("Documents loaded.")
all_texts = []
for doc in documents:
nodes = node_parser.get_nodes_from_documents([doc])
for node in nodes:
all_texts.append(node.get_content())
if INDEX_DIR.exists(): print("--- Index directory not found, building new index ---")
print(f"--- Cleaning up old index directory: {INDEX_DIR} ---")
shutil.rmtree(INDEX_DIR)
print(f"\n[PHASE 1] Building Leann index...") print("\n[PHASE 1] Building Leann index...")
builder = LeannBuilder( # Use HNSW backend for better macOS compatibility
backend_name="diskann", builder = LeannBuilder(
embedding_model="sentence-transformers/all-mpnet-base-v2", # Using a common sentence transformer model backend_name="hnsw",
graph_degree=32, embedding_model="facebook/contriever",
complexity=64 graph_degree=32,
) complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1, # Force single-threaded mode
)
print(f"Loaded {len(all_texts)} text chunks from documents.") print(f"Loaded {len(all_texts)} text chunks from documents.")
for chunk_text in all_texts: for chunk_text in all_texts:
builder.add_text(chunk_text) builder.add_text(chunk_text)
builder.build_index(INDEX_PATH) builder.build_index(INDEX_PATH)
print(f"\nLeann index built at {INDEX_PATH}!") print(f"\nLeann index built at {INDEX_PATH}!")
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
async def main():
print(f"\n[PHASE 2] Starting Leann chat session...") print(f"\n[PHASE 2] Starting Leann chat session...")
chat = LeannChat(index_path=INDEX_PATH)
query = "Based on the paper, what are the two main techniques LEANN uses to achieve low storage overhead and high retrieval accuracy?" llm_config = {"type": "hf", "model": "Qwen/Qwen3-4B"}
llm_config = {"type": "ollama", "model": "qwen3:8b"}
llm_config = {"type": "openai", "model": "gpt-4o"}
chat = LeannChat(index_path=INDEX_PATH, llm_config=llm_config)
query = "Based on the paper, what are the main techniques LEANN explores to reduce the storage overhead and DLPM explore to achieve Fairness and Efiiciency trade-off?"
# query = (
# "什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发"
# )
print(f"You: {query}") print(f"You: {query}")
chat_response = chat.ask(query, recompute_beighbor_embeddings=True) chat_response = chat.ask(query, top_k=20, recompute_embeddings=True, complexity=32)
print(f"Leann: {chat_response}") print(f"Leann: {chat_response}")
if __name__ == "__main__": if __name__ == "__main__":
asyncio.run(main()) parser = argparse.ArgumentParser(
description="Run Leann Chat with various LLM backends."
)
parser.add_argument(
"--llm",
type=str,
default="hf",
choices=["simulated", "ollama", "hf", "openai"],
help="The LLM backend to use.",
)
parser.add_argument(
"--model",
type=str,
default="Qwen/Qwen3-0.6B",
help="The model name to use (e.g., 'llama3:8b' for ollama, 'deepseek-ai/deepseek-llm-7b-chat' for hf, 'gpt-4o' for openai).",
)
parser.add_argument(
"--host",
type=str,
default="http://localhost:11434",
help="The host for the Ollama API.",
)
parser.add_argument(
"--index-dir",
type=str,
default="./test_doc_files",
help="Directory where the Leann index will be stored.",
)
parser.add_argument(
"--data-dir",
type=str,
default="examples/data",
help="Directory containing documents to index (PDF, TXT, MD files).",
)
args = parser.parse_args()
asyncio.run(main(args))

View File

@@ -0,0 +1,319 @@
#!/usr/bin/env python3
"""
Multi-Vector Aggregator for Fat Embeddings
==========================================
This module implements aggregation strategies for multi-vector embeddings,
similar to ColPali's approach where multiple patch vectors represent a single document.
Key features:
- MaxSim aggregation (take maximum similarity across patches)
- Voting-based aggregation (count patch matches)
- Weighted aggregation (attention-score weighted)
- Spatial clustering of matching patches
- Document-level result consolidation
"""
import numpy as np
from typing import List, Dict, Any, Tuple, Optional
from dataclasses import dataclass
from collections import defaultdict
import json
@dataclass
class PatchResult:
"""Represents a single patch search result."""
patch_id: int
image_name: str
image_path: str
coordinates: Tuple[int, int, int, int] # (x1, y1, x2, y2)
score: float
attention_score: float
scale: float
metadata: Dict[str, Any]
@dataclass
class AggregatedResult:
"""Represents an aggregated document-level result."""
image_name: str
image_path: str
doc_score: float
patch_count: int
best_patch: PatchResult
all_patches: List[PatchResult]
aggregation_method: str
spatial_clusters: Optional[List[List[PatchResult]]] = None
class MultiVectorAggregator:
"""
Aggregates multiple patch-level results into document-level results.
"""
def __init__(self,
aggregation_method: str = "maxsim",
spatial_clustering: bool = True,
cluster_distance_threshold: float = 100.0):
"""
Initialize the aggregator.
Args:
aggregation_method: "maxsim", "voting", "weighted", or "mean"
spatial_clustering: Whether to cluster spatially close patches
cluster_distance_threshold: Distance threshold for spatial clustering
"""
self.aggregation_method = aggregation_method
self.spatial_clustering = spatial_clustering
self.cluster_distance_threshold = cluster_distance_threshold
def aggregate_results(self,
search_results: List[Dict[str, Any]],
top_k: int = 10) -> List[AggregatedResult]:
"""
Aggregate patch-level search results into document-level results.
Args:
search_results: List of search results from LeannSearcher
top_k: Number of top documents to return
Returns:
List of aggregated document results
"""
# Group results by image
image_groups = defaultdict(list)
for result in search_results:
metadata = result.metadata
if "image_name" in metadata and "patch_id" in metadata:
patch_result = PatchResult(
patch_id=metadata["patch_id"],
image_name=metadata["image_name"],
image_path=metadata["image_path"],
coordinates=tuple(metadata["coordinates"]),
score=result.score,
attention_score=metadata.get("attention_score", 0.0),
scale=metadata.get("scale", 1.0),
metadata=metadata
)
image_groups[metadata["image_name"]].append(patch_result)
# Aggregate each image group
aggregated_results = []
for image_name, patches in image_groups.items():
if len(patches) == 0:
continue
agg_result = self._aggregate_image_patches(image_name, patches)
aggregated_results.append(agg_result)
# Sort by aggregated score and return top-k
aggregated_results.sort(key=lambda x: x.doc_score, reverse=True)
return aggregated_results[:top_k]
def _aggregate_image_patches(self, image_name: str, patches: List[PatchResult]) -> AggregatedResult:
"""Aggregate patches for a single image."""
if self.aggregation_method == "maxsim":
doc_score = max(patch.score for patch in patches)
best_patch = max(patches, key=lambda p: p.score)
elif self.aggregation_method == "voting":
# Count patches above threshold
threshold = np.percentile([p.score for p in patches], 75)
doc_score = sum(1 for patch in patches if patch.score >= threshold)
best_patch = max(patches, key=lambda p: p.score)
elif self.aggregation_method == "weighted":
# Weight by attention scores
total_weighted_score = sum(p.score * p.attention_score for p in patches)
total_weights = sum(p.attention_score for p in patches)
doc_score = total_weighted_score / max(total_weights, 1e-8)
best_patch = max(patches, key=lambda p: p.score * p.attention_score)
elif self.aggregation_method == "mean":
doc_score = np.mean([patch.score for patch in patches])
best_patch = max(patches, key=lambda p: p.score)
else:
raise ValueError(f"Unknown aggregation method: {self.aggregation_method}")
# Spatial clustering if enabled
spatial_clusters = None
if self.spatial_clustering:
spatial_clusters = self._cluster_patches_spatially(patches)
return AggregatedResult(
image_name=image_name,
image_path=patches[0].image_path,
doc_score=float(doc_score),
patch_count=len(patches),
best_patch=best_patch,
all_patches=sorted(patches, key=lambda p: p.score, reverse=True),
aggregation_method=self.aggregation_method,
spatial_clusters=spatial_clusters
)
def _cluster_patches_spatially(self, patches: List[PatchResult]) -> List[List[PatchResult]]:
"""Cluster patches that are spatially close to each other."""
if len(patches) <= 1:
return [patches]
clusters = []
remaining_patches = patches.copy()
while remaining_patches:
# Start new cluster with highest scoring remaining patch
seed_patch = max(remaining_patches, key=lambda p: p.score)
current_cluster = [seed_patch]
remaining_patches.remove(seed_patch)
# Add nearby patches to cluster
added_to_cluster = True
while added_to_cluster:
added_to_cluster = False
for patch in remaining_patches.copy():
if self._is_patch_nearby(patch, current_cluster):
current_cluster.append(patch)
remaining_patches.remove(patch)
added_to_cluster = True
clusters.append(current_cluster)
return sorted(clusters, key=lambda cluster: max(p.score for p in cluster), reverse=True)
def _is_patch_nearby(self, patch: PatchResult, cluster: List[PatchResult]) -> bool:
"""Check if a patch is spatially close to any patch in the cluster."""
patch_center = self._get_patch_center(patch.coordinates)
for cluster_patch in cluster:
cluster_center = self._get_patch_center(cluster_patch.coordinates)
distance = np.sqrt((patch_center[0] - cluster_center[0])**2 +
(patch_center[1] - cluster_center[1])**2)
if distance <= self.cluster_distance_threshold:
return True
return False
def _get_patch_center(self, coordinates: Tuple[int, int, int, int]) -> Tuple[float, float]:
"""Get center point of a patch."""
x1, y1, x2, y2 = coordinates
return ((x1 + x2) / 2, (y1 + y2) / 2)
def print_aggregated_results(self, results: List[AggregatedResult], max_patches_per_doc: int = 3):
"""Pretty print aggregated results."""
print(f"\n🔍 Aggregated Results (method: {self.aggregation_method})")
print("=" * 80)
for i, result in enumerate(results):
print(f"\n{i+1}. {result.image_name}")
print(f" Doc Score: {result.doc_score:.4f} | Patches: {result.patch_count}")
print(f" Path: {result.image_path}")
# Show best patch
best = result.best_patch
print(f" 🌟 Best Patch: #{best.patch_id} at {best.coordinates} (score: {best.score:.4f})")
# Show top patches
print(f" 📍 Top Patches:")
for j, patch in enumerate(result.all_patches[:max_patches_per_doc]):
print(f" {j+1}. Patch #{patch.patch_id}: {patch.score:.4f} at {patch.coordinates}")
# Show spatial clusters if available
if result.spatial_clusters and len(result.spatial_clusters) > 1:
print(f" 🗂️ Spatial Clusters: {len(result.spatial_clusters)}")
for j, cluster in enumerate(result.spatial_clusters[:2]): # Show top 2 clusters
cluster_score = max(p.score for p in cluster)
print(f" Cluster {j+1}: {len(cluster)} patches (best: {cluster_score:.4f})")
def demo_aggregation():
"""Demonstrate the multi-vector aggregation functionality."""
print("=== Multi-Vector Aggregation Demo ===")
# Simulate some patch-level search results
# In real usage, these would come from LeannSearcher.search()
class MockResult:
def __init__(self, score, metadata):
self.score = score
self.metadata = metadata
# Simulate results for 2 images with multiple patches each
mock_results = [
# Image 1: cats_and_kitchen.jpg - 4 patches
MockResult(0.85, {
"image_name": "cats_and_kitchen.jpg",
"image_path": "/path/to/cats_and_kitchen.jpg",
"patch_id": 3,
"coordinates": [100, 50, 224, 174], # Kitchen area
"attention_score": 0.92,
"scale": 1.0
}),
MockResult(0.78, {
"image_name": "cats_and_kitchen.jpg",
"image_path": "/path/to/cats_and_kitchen.jpg",
"patch_id": 7,
"coordinates": [200, 300, 324, 424], # Cat area
"attention_score": 0.88,
"scale": 1.0
}),
MockResult(0.72, {
"image_name": "cats_and_kitchen.jpg",
"image_path": "/path/to/cats_and_kitchen.jpg",
"patch_id": 12,
"coordinates": [150, 100, 274, 224], # Appliances
"attention_score": 0.75,
"scale": 1.0
}),
MockResult(0.65, {
"image_name": "cats_and_kitchen.jpg",
"image_path": "/path/to/cats_and_kitchen.jpg",
"patch_id": 15,
"coordinates": [50, 250, 174, 374], # Furniture
"attention_score": 0.70,
"scale": 1.0
}),
# Image 2: city_street.jpg - 3 patches
MockResult(0.68, {
"image_name": "city_street.jpg",
"image_path": "/path/to/city_street.jpg",
"patch_id": 2,
"coordinates": [300, 100, 424, 224], # Buildings
"attention_score": 0.80,
"scale": 1.0
}),
MockResult(0.62, {
"image_name": "city_street.jpg",
"image_path": "/path/to/city_street.jpg",
"patch_id": 8,
"coordinates": [100, 350, 224, 474], # Street level
"attention_score": 0.75,
"scale": 1.0
}),
MockResult(0.55, {
"image_name": "city_street.jpg",
"image_path": "/path/to/city_street.jpg",
"patch_id": 11,
"coordinates": [400, 200, 524, 324], # Sky area
"attention_score": 0.60,
"scale": 1.0
}),
]
# Test different aggregation methods
methods = ["maxsim", "voting", "weighted", "mean"]
for method in methods:
print(f"\n{'='*20} {method.upper()} AGGREGATION {'='*20}")
aggregator = MultiVectorAggregator(
aggregation_method=method,
spatial_clustering=True,
cluster_distance_threshold=100.0
)
aggregated = aggregator.aggregate_results(mock_results, top_k=5)
aggregator.print_aggregated_results(aggregated)
if __name__ == "__main__":
demo_aggregation()

View File

@@ -0,0 +1,108 @@
#!/usr/bin/env python3
"""
OpenAI Embedding Example
Complete example showing how to build and search with OpenAI embeddings using HNSW backend.
"""
import os
import dotenv
from pathlib import Path
from leann.api import LeannBuilder, LeannSearcher
# Load environment variables
dotenv.load_dotenv()
def main():
# Check if OpenAI API key is available
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
print("ERROR: OPENAI_API_KEY environment variable not set")
return False
print(f"✅ OpenAI API key found: {api_key[:10]}...")
# Sample texts
sample_texts = [
"Machine learning is a powerful technology that enables computers to learn from data.",
"Natural language processing helps computers understand and generate human language.",
"Deep learning uses neural networks with multiple layers to solve complex problems.",
"Computer vision allows machines to interpret and understand visual information.",
"Reinforcement learning trains agents to make decisions through trial and error.",
"Data science combines statistics, math, and programming to extract insights from data.",
"Artificial intelligence aims to create machines that can perform human-like tasks.",
"Python is a popular programming language used extensively in data science and AI.",
"Neural networks are inspired by the structure and function of the human brain.",
"Big data refers to extremely large datasets that require special tools to process."
]
INDEX_DIR = Path("./simple_openai_test_index")
INDEX_PATH = str(INDEX_DIR / "simple_test.leann")
print(f"\n=== Building Index with OpenAI Embeddings ===")
print(f"Index path: {INDEX_PATH}")
try:
# Use proper configuration for OpenAI embeddings
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="text-embedding-3-small",
embedding_mode="openai",
# HNSW settings for OpenAI embeddings
M=16, # Smaller graph degree
efConstruction=64, # Smaller construction complexity
is_compact=True, # Enable compact storage for recompute
is_recompute=True, # MUST enable for OpenAI embeddings
num_threads=1,
)
print(f"Adding {len(sample_texts)} texts to the index...")
for i, text in enumerate(sample_texts):
metadata = {"id": f"doc_{i}", "topic": "AI"}
builder.add_text(text, metadata)
print("Building index...")
builder.build_index(INDEX_PATH)
print(f"✅ Index built successfully!")
except Exception as e:
print(f"❌ Error building index: {e}")
import traceback
traceback.print_exc()
return False
print(f"\n=== Testing Search ===")
try:
searcher = LeannSearcher(INDEX_PATH)
test_queries = [
"What is machine learning?",
"How do neural networks work?",
"Programming languages for data science"
]
for query in test_queries:
print(f"\n🔍 Query: '{query}'")
results = searcher.search(query, top_k=3)
print(f" Found {len(results)} results:")
for i, result in enumerate(results):
print(f" {i+1}. Score: {result.score:.4f}")
print(f" Text: {result.text[:80]}...")
print(f"\n✅ Search test completed successfully!")
return True
except Exception as e:
print(f"❌ Error during search: {e}")
import traceback
traceback.print_exc()
return False
if __name__ == "__main__":
success = main()
if success:
print(f"\n🎉 Simple OpenAI index test completed successfully!")
else:
print(f"\n💥 Simple OpenAI index test failed!")

18
examples/resue_index.py Normal file
View File

@@ -0,0 +1,18 @@
import asyncio
from leann.api import LeannChat
from pathlib import Path
INDEX_DIR = Path("./test_pdf_index_huawei")
INDEX_PATH = str(INDEX_DIR / "pdf_documents.leann")
async def main():
print(f"\n[PHASE 2] Starting Leann chat session...")
chat = LeannChat(index_path=INDEX_PATH)
query = "What is the main idea of RL and give me 5 exapmle of classic RL algorithms?"
query = "Based on the paper, what are the main techniques LEANN explores to reduce the storage overhead and DLPM explore to achieve Fairness and Efiiciency trade-off?"
# query = "什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发"
response = chat.ask(query,top_k=20,recompute_beighbor_embeddings=True,complexity=32,beam_width=1)
print(f"\n[PHASE 2] Response: {response}")
if __name__ == "__main__":
asyncio.run(main())

382
examples/run_evaluation.py Normal file
View File

@@ -0,0 +1,382 @@
#!/usr/bin/env python3
"""
This script runs a recall evaluation on a given LEANN index.
It correctly compares results by fetching the text content for both the new search
results and the golden standard results, making the comparison robust to ID changes.
"""
import json
import argparse
import time
from pathlib import Path
import sys
import numpy as np
from typing import List
from leann.api import LeannSearcher, LeannBuilder
def download_data_if_needed(data_root: Path, download_embeddings: bool = False):
"""Checks if the data directory exists, and if not, downloads it from HF Hub."""
if not data_root.exists():
print(f"Data directory '{data_root}' not found.")
print(
"Downloading evaluation data from Hugging Face Hub... (this may take a moment)"
)
try:
from huggingface_hub import snapshot_download
if download_embeddings:
# Download everything including embeddings (large files)
snapshot_download(
repo_id="LEANN-RAG/leann-rag-evaluation-data",
repo_type="dataset",
local_dir=data_root,
local_dir_use_symlinks=False,
)
print("Data download complete (including embeddings)!")
else:
# Download only specific folders, excluding embeddings
allow_patterns = [
"ground_truth/**",
"indices/**",
"queries/**",
"*.md",
"*.txt",
]
snapshot_download(
repo_id="LEANN-RAG/leann-rag-evaluation-data",
repo_type="dataset",
local_dir=data_root,
local_dir_use_symlinks=False,
allow_patterns=allow_patterns,
)
print("Data download complete (excluding embeddings)!")
except ImportError:
print(
"Error: huggingface_hub is not installed. Please install it to download the data:"
)
print("uv pip install -e '.[dev]'")
sys.exit(1)
except Exception as e:
print(f"An error occurred during data download: {e}")
sys.exit(1)
def download_embeddings_if_needed(data_root: Path, dataset_type: str = None):
"""Download embeddings files specifically."""
embeddings_dir = data_root / "embeddings"
if dataset_type:
# Check if specific dataset embeddings exist
target_file = embeddings_dir / dataset_type / "passages_00.pkl"
if target_file.exists():
print(f"Embeddings for {dataset_type} already exist")
return str(target_file)
print("Downloading embeddings from HuggingFace Hub...")
try:
from huggingface_hub import snapshot_download
# Download only embeddings folder
snapshot_download(
repo_id="LEANN-RAG/leann-rag-evaluation-data",
repo_type="dataset",
local_dir=data_root,
local_dir_use_symlinks=False,
allow_patterns=["embeddings/**/*.pkl"],
)
print("Embeddings download complete!")
if dataset_type:
target_file = embeddings_dir / dataset_type / "passages_00.pkl"
if target_file.exists():
return str(target_file)
return str(embeddings_dir)
except Exception as e:
print(f"Error downloading embeddings: {e}")
sys.exit(1)
# --- Helper Function to get Golden Passages ---
def get_golden_texts(searcher: LeannSearcher, golden_ids: List[int]) -> set:
"""
Retrieves the text for golden passage IDs directly from the LeannSearcher's
passage manager.
"""
golden_texts = set()
for gid in golden_ids:
try:
# PassageManager uses string IDs
passage_data = searcher.passage_manager.get_passage(str(gid))
golden_texts.add(passage_data["text"])
except KeyError:
print(
f"Warning: Golden passage ID '{gid}' not found in the index's passage data."
)
return golden_texts
def load_queries(file_path: Path) -> List[str]:
queries = []
with open(file_path, "r", encoding="utf-8") as f:
for line in f:
data = json.loads(line)
queries.append(data["query"])
return queries
def build_index_from_embeddings(
embeddings_file: str, output_path: str, backend: str = "hnsw"
):
"""
Build a LEANN index from pre-computed embeddings.
Args:
embeddings_file: Path to pickle file with (ids, embeddings) tuple
output_path: Path where to save the index
backend: Backend to use ("hnsw" or "diskann")
"""
print(f"Building {backend} index from embeddings: {embeddings_file}")
# Create builder with appropriate parameters
if backend == "hnsw":
builder_kwargs = {
"M": 32, # Graph degree
"efConstruction": 256, # Construction complexity
"is_compact": True, # Use compact storage
"is_recompute": True, # Enable pruning for better recall
}
elif backend == "diskann":
builder_kwargs = {
"complexity": 64,
"graph_degree": 32,
"search_memory_maximum": 8.0, # GB
"build_memory_maximum": 16.0, # GB
}
else:
builder_kwargs = {}
builder = LeannBuilder(
backend_name=backend,
embedding_model="facebook/contriever-msmarco", # Model used to create embeddings
dimensions=768, # Will be auto-detected from embeddings
**builder_kwargs,
)
# Build index from precomputed embeddings
builder.build_index_from_embeddings(output_path, embeddings_file)
print(f"Index saved to: {output_path}")
return output_path
def main():
parser = argparse.ArgumentParser(
description="Run recall evaluation on a LEANN index."
)
parser.add_argument(
"index_path",
type=str,
nargs="?",
help="Path to the LEANN index to evaluate or build (optional).",
)
parser.add_argument(
"--mode",
choices=["evaluate", "build"],
default="evaluate",
help="Mode: 'evaluate' existing index or 'build' from embeddings",
)
parser.add_argument(
"--embeddings-file",
type=str,
help="Path to embeddings pickle file (optional for build mode)",
)
parser.add_argument(
"--backend",
choices=["hnsw", "diskann"],
default="hnsw",
help="Backend to use for building index (default: hnsw)",
)
parser.add_argument(
"--num-queries", type=int, default=10, help="Number of queries to evaluate."
)
parser.add_argument(
"--top-k", type=int, default=3, help="The 'k' value for recall@k."
)
parser.add_argument(
"--ef-search", type=int, default=120, help="The 'efSearch' parameter for HNSW."
)
args = parser.parse_args()
# --- Path Configuration ---
# Assumes a project structure where the script is in 'examples/'
# and data is in 'data/' at the project root.
project_root = Path(__file__).resolve().parent.parent
data_root = project_root / "data"
# Download data based on mode
if args.mode == "build":
# For building mode, we need embeddings
download_data_if_needed(
data_root, download_embeddings=False
) # Basic data first
# Auto-detect dataset type and download embeddings
if args.embeddings_file:
embeddings_file = args.embeddings_file
# Try to detect dataset type from embeddings file path
if "rpj_wiki" in str(embeddings_file):
dataset_type = "rpj_wiki"
elif "dpr" in str(embeddings_file):
dataset_type = "dpr"
else:
dataset_type = "dpr" # Default
else:
# Auto-detect from index path if provided, otherwise default to DPR
if args.index_path:
index_path_str = str(args.index_path)
if "rpj_wiki" in index_path_str:
dataset_type = "rpj_wiki"
elif "dpr" in index_path_str:
dataset_type = "dpr"
else:
dataset_type = "dpr" # Default to DPR
else:
dataset_type = "dpr" # Default to DPR
embeddings_file = download_embeddings_if_needed(data_root, dataset_type)
# Auto-generate index path if not provided
if not args.index_path:
indices_dir = data_root / "indices" / dataset_type
indices_dir.mkdir(parents=True, exist_ok=True)
args.index_path = str(indices_dir / f"{dataset_type}_from_embeddings")
print(f"Auto-generated index path: {args.index_path}")
print(f"Building index from embeddings: {embeddings_file}")
built_index_path = build_index_from_embeddings(
embeddings_file, args.index_path, args.backend
)
print(f"Index built successfully: {built_index_path}")
# Ask if user wants to run evaluation
eval_response = (
input("Run evaluation on the built index? (y/n): ").strip().lower()
)
if eval_response != "y":
print("Index building complete. Exiting.")
return
else:
# For evaluation mode, don't need embeddings
download_data_if_needed(data_root, download_embeddings=False)
# Auto-detect index path if not provided
if not args.index_path:
# Default to using downloaded indices
indices_dir = data_root / "indices"
# Try common datasets in order of preference
for dataset in ["dpr", "rpj_wiki"]:
dataset_dir = indices_dir / dataset
if dataset_dir.exists():
# Look for index files
index_files = list(dataset_dir.glob("*.index")) + list(
dataset_dir.glob("*_disk.index")
)
if index_files:
args.index_path = str(
index_files[0].with_suffix("")
) # Remove .index extension
print(f"Using index: {args.index_path}")
break
if not args.index_path:
print(
"No indices found. The data download should have included pre-built indices."
)
print(
"Please check the data/indices/ directory or provide --index-path manually."
)
sys.exit(1)
# Detect dataset type from index path to select the correct ground truth
index_path_str = str(args.index_path)
if "rpj_wiki" in index_path_str:
dataset_type = "rpj_wiki"
elif "dpr" in index_path_str:
dataset_type = "dpr"
else:
# Fallback: try to infer from the index directory name
dataset_type = Path(args.index_path).name
print(
f"WARNING: Could not detect dataset type from path, inferred '{dataset_type}'."
)
queries_file = data_root / "queries" / "nq_open.jsonl"
golden_results_file = (
data_root / "ground_truth" / dataset_type / "flat_results_nq_k3.json"
)
print(f"INFO: Detected dataset type: {dataset_type}")
print(f"INFO: Using queries file: {queries_file}")
print(f"INFO: Using ground truth file: {golden_results_file}")
try:
searcher = LeannSearcher(args.index_path)
queries = load_queries(queries_file)
with open(golden_results_file, "r") as f:
golden_results_data = json.load(f)
num_eval_queries = min(args.num_queries, len(queries))
queries = queries[:num_eval_queries]
print(f"\nRunning evaluation on {num_eval_queries} queries...")
recall_scores = []
search_times = []
for i in range(num_eval_queries):
start_time = time.time()
new_results = searcher.search(
queries[i], top_k=args.top_k, ef=args.ef_search
)
search_times.append(time.time() - start_time)
# Correct Recall Calculation: Based on TEXT content
new_texts = {result.text for result in new_results}
# Get golden texts directly from the searcher's passage manager
golden_ids = golden_results_data["indices"][i][: args.top_k]
golden_texts = get_golden_texts(searcher, golden_ids)
overlap = len(new_texts & golden_texts)
recall = overlap / len(golden_texts) if golden_texts else 0
recall_scores.append(recall)
print("\n--- EVALUATION RESULTS ---")
print(f"Query: {queries[i]}")
print(f"New Results: {new_texts}")
print(f"Golden Results: {golden_texts}")
print(f"Overlap: {overlap}")
print(f"Recall: {recall}")
print(f"Search Time: {search_times[-1]:.4f}s")
print("--------------------------------")
avg_recall = np.mean(recall_scores) if recall_scores else 0
avg_time = np.mean(search_times) if search_times else 0
print("\n🎉 --- Evaluation Complete ---")
print(f"Avg. Recall@{args.top_k} (efSearch={args.ef_search}): {avg_recall:.4f}")
print(f"Avg. Search Time: {avg_time:.4f}s")
except Exception as e:
print(f"\n❌ An error occurred during evaluation: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
main()

View File

@@ -3,11 +3,17 @@ Simple demo showing basic leann usage
Run: uv run python examples/simple_demo.py Run: uv run python examples/simple_demo.py
""" """
import argparse
from leann import LeannBuilder, LeannSearcher, LeannChat from leann import LeannBuilder, LeannSearcher, LeannChat
def main(): def main():
print("=== Leann Simple Demo ===") parser = argparse.ArgumentParser(description="Simple demo of Leann with selectable embedding models.")
parser.add_argument("--embedding_model", type=str, default="sentence-transformers/all-mpnet-base-v2",
help="The embedding model to use, e.g., 'sentence-transformers/all-mpnet-base-v2' or 'text-embedding-ada-002'.")
args = parser.parse_args()
print(f"=== Leann Simple Demo with {args.embedding_model} ===")
print() print()
# Sample knowledge base # Sample knowledge base
@@ -24,10 +30,11 @@ def main():
print("1. Building index (no embeddings stored)...") print("1. Building index (no embeddings stored)...")
builder = LeannBuilder( builder = LeannBuilder(
embedding_model="sentence-transformers/all-mpnet-base-v2", embedding_model=args.embedding_model,
prune_ratio=0.7, # Keep 30% of connections backend_name="hnsw",
) )
builder.add_chunks(chunks) for chunk in chunks:
builder.add_text(chunk)
builder.build_index("demo_knowledge.leann") builder.build_index("demo_knowledge.leann")
print() print()
@@ -49,14 +56,7 @@ def main():
print(f" Text: {result.text[:100]}...") print(f" Text: {result.text[:100]}...")
print() print()
print("3. Memory stats:") print("3. Interactive chat demo:")
stats = searcher.get_memory_stats()
print(f" Cache size: {stats.embedding_cache_size}")
print(f" Cache memory: {stats.embedding_cache_memory_mb:.1f} MB")
print(f" Total chunks: {stats.total_chunks}")
print()
print("4. Interactive chat demo:")
print(" (Note: Requires OpenAI API key for real responses)") print(" (Note: Requires OpenAI API key for real responses)")
chat = LeannChat("demo_knowledge.leann") chat = LeannChat("demo_knowledge.leann")

View File

@@ -0,0 +1,319 @@
import os
import asyncio
import dotenv
import argparse
from pathlib import Path
from typing import List, Any, Optional
from leann.api import LeannBuilder, LeannSearcher, LeannChat
from llama_index.core.node_parser import SentenceSplitter
import requests
import time
dotenv.load_dotenv()
# Default WeChat export directory
DEFAULT_WECHAT_EXPORT_DIR = "./wechat_export_direct"
def create_leann_index_from_multiple_wechat_exports(
export_dirs: List[Path],
index_path: str = "wechat_history_index.leann",
max_count: int = -1,
):
"""
Create LEANN index from multiple WeChat export data sources.
Args:
export_dirs: List of Path objects pointing to WeChat export directories
index_path: Path to save the LEANN index
max_count: Maximum number of chat entries to process per export
"""
print("Creating LEANN index from multiple WeChat export data sources...")
# Load documents using WeChatHistoryReader from history_data
from history_data.wechat_history import WeChatHistoryReader
reader = WeChatHistoryReader()
INDEX_DIR = Path(index_path).parent
if not INDEX_DIR.exists():
print(f"--- Index directory not found, building new index ---")
all_documents = []
total_processed = 0
# Process each WeChat export directory
for i, export_dir in enumerate(export_dirs):
print(
f"\nProcessing WeChat export {i + 1}/{len(export_dirs)}: {export_dir}"
)
try:
documents = reader.load_data(
wechat_export_dir=str(export_dir),
max_count=max_count,
concatenate_messages=True, # Disable concatenation - one message per document
)
if documents:
print(f"Loaded {len(documents)} chat documents from {export_dir}")
all_documents.extend(documents)
total_processed += len(documents)
# Check if we've reached the max count
if max_count > 0 and total_processed >= max_count:
print(f"Reached max count of {max_count} documents")
break
else:
print(f"No documents loaded from {export_dir}")
except Exception as e:
print(f"Error processing {export_dir}: {e}")
continue
if not all_documents:
print("No documents loaded from any source. Exiting.")
return None
print(
f"\nTotal loaded {len(all_documents)} chat documents from {len(export_dirs)} exports and starting to split them into chunks"
)
# Create text splitter with 256 chunk size
text_splitter = SentenceSplitter(chunk_size=192, chunk_overlap=64)
# Convert Documents to text strings and chunk them
all_texts = []
for doc in all_documents:
# Split the document into chunks
nodes = text_splitter.get_nodes_from_documents([doc])
for node in nodes:
text = '[Contact] means the message is from: ' + doc.metadata["contact_name"] + '\n' + node.get_content()
all_texts.append(text)
print(
f"Finished splitting {len(all_documents)} documents into {len(all_texts)} text chunks"
)
# Create LEANN index directory
print(f"--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print(f"--- Building new LEANN index ---")
print(f"\n[PHASE 1] Building Leann index...")
# Use HNSW backend for better macOS compatibility
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="Qwen/Qwen3-Embedding-0.6B",
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1, # Force single-threaded mode
)
print(f"Adding {len(all_texts)} chat chunks to index...")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(index_path)
print(f"\nLEANN index built at {index_path}!")
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
return index_path
def create_leann_index(
export_dir: str = None,
index_path: str = "wechat_history_index.leann",
max_count: int = 1000,
):
"""
Create LEANN index from WeChat chat history data.
Args:
export_dir: Path to the WeChat export directory (optional, uses default if None)
index_path: Path to save the LEANN index
max_count: Maximum number of chat entries to process
"""
print("Creating LEANN index from WeChat chat history data...")
INDEX_DIR = Path(index_path).parent
if not INDEX_DIR.exists():
print(f"--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print(f"--- Building new LEANN index ---")
print(f"\n[PHASE 1] Building Leann index...")
# Load documents using WeChatHistoryReader from history_data
from history_data.wechat_history import WeChatHistoryReader
reader = WeChatHistoryReader()
documents = reader.load_data(
wechat_export_dir=export_dir,
max_count=max_count,
concatenate_messages=False, # Disable concatenation - one message per document
)
if not documents:
print("No documents loaded. Exiting.")
return None
print(f"Loaded {len(documents)} chat documents")
# Create text splitter with 256 chunk size
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25)
# Convert Documents to text strings and chunk them
all_texts = []
for doc in documents:
# Split the document into chunks
nodes = text_splitter.get_nodes_from_documents([doc])
for node in nodes:
all_texts.append(node.get_content())
print(f"Created {len(all_texts)} text chunks from {len(documents)} documents")
# Create LEANN index directory
print(f"--- Index directory not found, building new index ---")
INDEX_DIR.mkdir(exist_ok=True)
print(f"--- Building new LEANN index ---")
print(f"\n[PHASE 1] Building Leann index...")
# Use HNSW backend for better macOS compatibility
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="mlx-community/Qwen3-Embedding-0.6B-4bit-DWQ", # MLX-optimized model
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1, # Force single-threaded mode
)
print(f"Adding {len(all_texts)} chat chunks to index...")
for chunk_text in all_texts:
builder.add_text(chunk_text)
builder.build_index(index_path)
print(f"\nLEANN index built at {index_path}!")
else:
print(f"--- Using existing index at {INDEX_DIR} ---")
return index_path
async def query_leann_index(index_path: str, query: str):
"""
Query the LEANN index.
Args:
index_path: Path to the LEANN index
query: The query string
"""
print(f"\n[PHASE 2] Starting Leann chat session...")
chat = LeannChat(index_path=index_path)
print(f"You: {query}")
chat_response = chat.ask(
query,
top_k=20,
recompute_beighbor_embeddings=True,
complexity=16,
beam_width=1,
llm_config={
"type": "openai",
"model": "gpt-4o",
"api_key": os.getenv("OPENAI_API_KEY"),
},
llm_kwargs={"temperature": 0.0, "max_tokens": 1000},
)
print(f"Leann: {chat_response}")
async def main():
"""Main function with integrated WeChat export functionality."""
# Parse command line arguments
parser = argparse.ArgumentParser(
description="LEANN WeChat History Reader - Create and query WeChat chat history index"
)
parser.add_argument(
"--export-dir",
type=str,
default=DEFAULT_WECHAT_EXPORT_DIR,
help=f"Directory to store WeChat exports (default: {DEFAULT_WECHAT_EXPORT_DIR})",
)
parser.add_argument(
"--index-dir",
type=str,
default="./wechat_history_magic_test_11Debug_new",
help="Directory to store the LEANN index (default: ./wechat_history_index_leann_test)",
)
parser.add_argument(
"--max-entries",
type=int,
default=50,
help="Maximum number of chat entries to process (default: 5000)",
)
parser.add_argument(
"--query",
type=str,
default=None,
help="Single query to run (default: runs example queries)",
)
parser.add_argument(
"--force-export",
action="store_true",
default=False,
help="Force re-export of WeChat data even if exports exist",
)
args = parser.parse_args()
INDEX_DIR = Path(args.index_dir)
INDEX_PATH = str(INDEX_DIR / "wechat_history.leann")
print(f"Using WeChat export directory: {args.export_dir}")
print(f"Index directory: {INDEX_DIR}")
print(f"Max entries: {args.max_entries}")
# Initialize WeChat reader with export capabilities
from history_data.wechat_history import WeChatHistoryReader
reader = WeChatHistoryReader()
# Find existing exports or create new ones using the centralized method
export_dirs = reader.find_or_export_wechat_data(args.export_dir)
if not export_dirs:
print("Failed to find or export WeChat data. Exiting.")
return
# Create or load the LEANN index from all sources
index_path = create_leann_index_from_multiple_wechat_exports(
export_dirs, INDEX_PATH, max_count=args.max_entries
)
if index_path:
if args.query:
# Run single query
await query_leann_index(index_path, args.query)
else:
# Example queries
queries = [
"我想买魔术师约翰逊的球衣,给我一些对应聊天记录?",
]
for query in queries:
print("\n" + "=" * 60)
await query_leann_index(index_path, query)
if __name__ == "__main__":
asyncio.run(main())

View File

@@ -1,32 +0,0 @@
{
"version": "0.1.0",
"backend_name": "diskann",
"embedding_model": "sentence-transformers/all-mpnet-base-v2",
"num_chunks": 6,
"chunks": [
{
"text": "Python is a powerful programming language",
"metadata": {}
},
{
"text": "Machine learning transforms industries",
"metadata": {}
},
{
"text": "Neural networks process complex data",
"metadata": {}
},
{
"text": "Java is a powerful programming language",
"metadata": {}
},
{
"text": "C++ is a powerful programming language",
"metadata": {}
},
{
"text": "C# is a powerful programming language",
"metadata": {}
}
]
}

1
packages/__init__.py Normal file
View File

@@ -0,0 +1 @@

View File

@@ -1,8 +1,8 @@
# packages/leann-backend-diskann/CMakeLists.txt (最终简化版) # packages/leann-backend-diskann/CMakeLists.txt (simplified version)
cmake_minimum_required(VERSION 3.20) cmake_minimum_required(VERSION 3.20)
project(leann_backend_diskann_wrapper) project(leann_backend_diskann_wrapper)
# 告诉 CMake 直接进入 DiskANN 子模块并执行它自己的 CMakeLists.txt # Tell CMake to directly enter the DiskANN submodule and execute its own CMakeLists.txt
# DiskANN 会自己处理所有事情,包括编译 Python 绑定 # DiskANN will handle everything itself, including compiling Python bindings
add_subdirectory(src/third_party/DiskANN) add_subdirectory(src/third_party/DiskANN)

View File

@@ -0,0 +1 @@
# This file makes the directory a Python package

View File

@@ -1,7 +1 @@
print("Initializing leann-backend-diskann...") from . import diskann_backend
try:
from .diskann_backend import DiskannBackend
print("INFO: DiskANN backend loaded successfully")
except ImportError as e:
print(f"WARNING: Could not import DiskANN backend: {e}")

View File

@@ -1,30 +1,71 @@
import numpy as np import numpy as np
import os import os
import json
import struct import struct
from pathlib import Path
from typing import Dict
import contextlib
import threading
import time
import atexit
import socket
import subprocess
import sys import sys
from pathlib import Path
from typing import Dict, Any, List, Literal, Optional
import contextlib
import logging
from leann.searcher_base import BaseSearcher
from leann.registry import register_backend from leann.registry import register_backend
from leann.interface import ( from leann.interface import (
LeannBackendFactoryInterface, LeannBackendFactoryInterface,
LeannBackendBuilderInterface, LeannBackendBuilderInterface,
LeannBackendSearcherInterface LeannBackendSearcherInterface,
) )
from . import _diskannpy as diskannpy
METRIC_MAP = { logger = logging.getLogger(__name__)
"mips": diskannpy.Metric.INNER_PRODUCT,
"l2": diskannpy.Metric.L2,
"cosine": diskannpy.Metric.COSINE, @contextlib.contextmanager
} def suppress_cpp_output_if_needed():
"""Suppress C++ stdout/stderr based on LEANN_LOG_LEVEL"""
log_level = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
# Only suppress if log level is WARNING or higher (ERROR, CRITICAL)
should_suppress = log_level in ["WARNING", "ERROR", "CRITICAL"]
if not should_suppress:
# Don't suppress, just yield
yield
return
# Save original file descriptors
stdout_fd = sys.stdout.fileno()
stderr_fd = sys.stderr.fileno()
# Save original stdout/stderr
stdout_dup = os.dup(stdout_fd)
stderr_dup = os.dup(stderr_fd)
try:
# Redirect to /dev/null
devnull = os.open(os.devnull, os.O_WRONLY)
os.dup2(devnull, stdout_fd)
os.dup2(devnull, stderr_fd)
os.close(devnull)
yield
finally:
# Restore original file descriptors
os.dup2(stdout_dup, stdout_fd)
os.dup2(stderr_dup, stderr_fd)
os.close(stdout_dup)
os.close(stderr_dup)
def _get_diskann_metrics():
from . import _diskannpy as diskannpy # type: ignore
return {
"mips": diskannpy.Metric.INNER_PRODUCT,
"l2": diskannpy.Metric.L2,
"cosine": diskannpy.Metric.COSINE,
}
@contextlib.contextmanager @contextlib.contextmanager
def chdir(path): def chdir(path):
@@ -35,102 +76,14 @@ def chdir(path):
finally: finally:
os.chdir(original_dir) os.chdir(original_dir)
def _write_vectors_to_bin(data: np.ndarray, file_path: str):
def _write_vectors_to_bin(data: np.ndarray, file_path: Path):
num_vectors, dim = data.shape num_vectors, dim = data.shape
with open(file_path, 'wb') as f: with open(file_path, "wb") as f:
f.write(struct.pack('I', num_vectors)) f.write(struct.pack("I", num_vectors))
f.write(struct.pack('I', dim)) f.write(struct.pack("I", dim))
f.write(data.tobytes()) f.write(data.tobytes())
def _check_port(port: int) -> bool:
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
return s.connect_ex(('localhost', port)) == 0
class EmbeddingServerManager:
def __init__(self):
self.server_process = None
self.server_port = None
atexit.register(self.stop_server)
def start_server(self, port=5555, model_name="sentence-transformers/all-mpnet-base-v2"):
if self.server_process and self.server_process.poll() is None:
print(f"INFO: Reusing existing server process for this session (PID {self.server_process.pid})")
return True
# 检查端口是否已被其他无关进程占用
if _check_port(port):
print(f"WARNING: Port {port} is already in use. Assuming an external server is running and connecting to it.")
return True
print(f"INFO: Starting session-level embedding server as a background process...")
try:
command = [
sys.executable,
"-m", "packages.leann-backend-diskann.leann_backend_diskann.embedding_server",
"--zmq-port", str(port),
"--model-name", model_name
]
project_root = Path(__file__).parent.parent.parent.parent
print(f"INFO: Running command from project root: {project_root}")
self.server_process = subprocess.Popen(
command,
cwd=project_root,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
encoding='utf-8'
)
self.server_port = port
print(f"INFO: Server process started with PID: {self.server_process.pid}")
max_wait, wait_interval = 30, 0.5
for _ in range(int(max_wait / wait_interval)):
if _check_port(port):
print(f"✅ Embedding server is up and ready for this session.")
log_thread = threading.Thread(target=self._log_monitor, daemon=True)
log_thread.start()
return True
if self.server_process.poll() is not None:
print("❌ ERROR: Server process terminated unexpectedly during startup.")
self._log_monitor()
return False
time.sleep(wait_interval)
print(f"❌ ERROR: Server process failed to start listening within {max_wait} seconds.")
self.stop_server()
return False
except Exception as e:
print(f"❌ ERROR: Failed to start embedding server process: {e}")
return False
def _log_monitor(self):
if not self.server_process:
return
try:
if self.server_process.stdout:
for line in iter(self.server_process.stdout.readline, ''):
print(f"[EmbeddingServer LOG]: {line.strip()}")
self.server_process.stdout.close()
if self.server_process.stderr:
for line in iter(self.server_process.stderr.readline, ''):
print(f"[EmbeddingServer ERROR]: {line.strip()}")
self.server_process.stderr.close()
except Exception as e:
print(f"Log monitor error: {e}")
def stop_server(self):
if self.server_process and self.server_process.poll() is None:
print(f"INFO: Terminating session server process (PID: {self.server_process.pid})...")
self.server_process.terminate()
try:
self.server_process.wait(timeout=5)
print("INFO: Server process terminated.")
except subprocess.TimeoutExpired:
print("WARNING: Server process did not terminate gracefully, killing it.")
self.server_process.kill()
self.server_process = None
@register_backend("diskann") @register_backend("diskann")
class DiskannBackend(LeannBackendFactoryInterface): class DiskannBackend(LeannBackendFactoryInterface):
@@ -140,138 +93,156 @@ class DiskannBackend(LeannBackendFactoryInterface):
@staticmethod @staticmethod
def searcher(index_path: str, **kwargs) -> LeannBackendSearcherInterface: def searcher(index_path: str, **kwargs) -> LeannBackendSearcherInterface:
path = Path(index_path)
meta_path = path.parent / f"{path.name}.meta.json"
if not meta_path.exists():
raise FileNotFoundError(f"Leann metadata file not found at {meta_path}. Cannot infer vector dimension for searcher.")
with open(meta_path, 'r') as f:
meta = json.load(f)
try:
from sentence_transformers import SentenceTransformer
model = SentenceTransformer(meta.get("embedding_model"))
dimensions = model.get_sentence_embedding_dimension()
kwargs['dimensions'] = dimensions
except ImportError:
raise ImportError("sentence-transformers is required to infer embedding dimensions. Please install it.")
except Exception as e:
raise RuntimeError(f"Could not load SentenceTransformer model to get dimension: {e}")
return DiskannSearcher(index_path, **kwargs) return DiskannSearcher(index_path, **kwargs)
class DiskannBuilder(LeannBackendBuilderInterface): class DiskannBuilder(LeannBackendBuilderInterface):
def __init__(self, **kwargs): def __init__(self, **kwargs):
self.build_params = kwargs self.build_params = kwargs
def build(self, data: np.ndarray, index_path: str, **kwargs): def build(self, data: np.ndarray, ids: List[str], index_path: str, **kwargs):
path = Path(index_path) path = Path(index_path)
index_dir = path.parent index_dir = path.parent
index_prefix = path.stem index_prefix = path.stem
index_dir.mkdir(parents=True, exist_ok=True) index_dir.mkdir(parents=True, exist_ok=True)
if data.dtype != np.float32: if data.dtype != np.float32:
logger.warning(f"Converting data to float32, shape: {data.shape}")
data = data.astype(np.float32) data = data.astype(np.float32)
if not data.flags['C_CONTIGUOUS']:
data = np.ascontiguousarray(data)
data_filename = f"{index_prefix}_data.bin" data_filename = f"{index_prefix}_data.bin"
_write_vectors_to_bin(data, index_dir / data_filename) _write_vectors_to_bin(data, index_dir / data_filename)
build_kwargs = {**self.build_params, **kwargs} build_kwargs = {**self.build_params, **kwargs}
metric_str = build_kwargs.get("distance_metric", "mips").lower() metric_enum = _get_diskann_metrics().get(
metric_enum = METRIC_MAP.get(metric_str) build_kwargs.get("distance_metric", "mips").lower()
)
if metric_enum is None: if metric_enum is None:
raise ValueError(f"Unsupported distance_metric '{metric_str}'.") raise ValueError(
f"Unsupported distance_metric '{build_kwargs.get('distance_metric', 'unknown')}'."
complexity = build_kwargs.get("complexity", 64) )
graph_degree = build_kwargs.get("graph_degree", 32)
final_index_ram_limit = build_kwargs.get("search_memory_maximum", 4.0)
indexing_ram_budget = build_kwargs.get("build_memory_maximum", 8.0)
num_threads = build_kwargs.get("num_threads", 8)
pq_disk_bytes = build_kwargs.get("pq_disk_bytes", 0)
codebook_prefix = ""
print(f"INFO: Building DiskANN index for {data.shape[0]} vectors with metric {metric_enum}...")
try: try:
from . import _diskannpy as diskannpy # type: ignore
with chdir(index_dir): with chdir(index_dir):
diskannpy.build_disk_float_index( diskannpy.build_disk_float_index(
metric_enum, metric_enum,
data_filename, data_filename,
index_prefix, index_prefix,
complexity, build_kwargs.get("complexity", 64),
graph_degree, build_kwargs.get("graph_degree", 32),
final_index_ram_limit, build_kwargs.get("search_memory_maximum", 4.0),
indexing_ram_budget, build_kwargs.get("build_memory_maximum", 8.0),
num_threads, build_kwargs.get("num_threads", 8),
pq_disk_bytes, build_kwargs.get("pq_disk_bytes", 0),
codebook_prefix "",
) )
print(f"✅ DiskANN index built successfully at '{index_dir / index_prefix}'")
except Exception as e:
print(f"💥 ERROR: DiskANN index build failed. Exception: {e}")
raise
finally: finally:
temp_data_file = index_dir / data_filename temp_data_file = index_dir / data_filename
if temp_data_file.exists(): if temp_data_file.exists():
os.remove(temp_data_file) os.remove(temp_data_file)
logger.debug(f"Cleaned up temporary data file: {temp_data_file}")
class DiskannSearcher(LeannBackendSearcherInterface):
class DiskannSearcher(BaseSearcher):
def __init__(self, index_path: str, **kwargs): def __init__(self, index_path: str, **kwargs):
path = Path(index_path) super().__init__(
index_dir = path.parent index_path,
index_prefix = path.stem backend_module_name="leann_backend_diskann.diskann_embedding_server",
metric_str = kwargs.get("distance_metric", "mips").lower() **kwargs,
metric_enum = METRIC_MAP.get(metric_str) )
if metric_enum is None:
raise ValueError(f"Unsupported distance_metric '{metric_str}'.")
num_threads = kwargs.get("num_threads", 8) # Initialize DiskANN index with suppressed C++ output based on log level
num_nodes_to_cache = kwargs.get("num_nodes_to_cache", 0) with suppress_cpp_output_if_needed():
dimensions = kwargs.get("dimensions") from . import _diskannpy as diskannpy # type: ignore
if not dimensions:
raise ValueError("Vector dimension not provided to DiskannSearcher.")
try: distance_metric = kwargs.get("distance_metric", "mips").lower()
full_index_prefix = str(index_dir / index_prefix) metric_enum = _get_diskann_metrics().get(distance_metric)
if metric_enum is None:
raise ValueError(f"Unsupported distance_metric '{distance_metric}'.")
self.num_threads = kwargs.get("num_threads", 8)
fake_zmq_port = 6666
full_index_prefix = str(self.index_dir / self.index_path.stem)
self._index = diskannpy.StaticDiskFloatIndex( self._index = diskannpy.StaticDiskFloatIndex(
metric_enum, full_index_prefix, num_threads, num_nodes_to_cache, 1, "", "" metric_enum,
full_index_prefix,
self.num_threads,
kwargs.get("num_nodes_to_cache", 0),
1,
fake_zmq_port, # Initial port, can be updated at runtime
"",
"",
) )
self.num_threads = num_threads
self.embedding_server_manager = EmbeddingServerManager()
print("✅ DiskANN index loaded successfully.")
except Exception as e:
print(f"💥 ERROR: Failed to load DiskANN index. Exception: {e}")
raise
def search(self, query: np.ndarray, top_k: int, **kwargs) -> Dict[str, any]: def search(
complexity = kwargs.get("complexity", 100) self,
beam_width = kwargs.get("beam_width", 4) query: np.ndarray,
top_k: int,
complexity: int = 64,
beam_width: int = 1,
prune_ratio: float = 0.0,
recompute_embeddings: bool = False,
pruning_strategy: Literal["global", "local", "proportional"] = "global",
zmq_port: Optional[int] = None,
batch_recompute: bool = False,
dedup_node_dis: bool = False,
**kwargs,
) -> Dict[str, Any]:
"""
Search for nearest neighbors using DiskANN index.
USE_DEFERRED_FETCH = kwargs.get("USE_DEFERRED_FETCH", False) Args:
skip_search_reorder = kwargs.get("skip_search_reorder", False) query: Query vectors (B, D) where B is batch size, D is dimension
recompute_beighbor_embeddings = kwargs.get("recompute_beighbor_embeddings", False) top_k: Number of nearest neighbors to return
dedup_node_dis = kwargs.get("dedup_node_dis", False) complexity: Search complexity/candidate list size, higher = more accurate but slower
prune_ratio = kwargs.get("prune_ratio", 0.0) beam_width: Number of parallel IO requests per iteration
batch_recompute = kwargs.get("batch_recompute", False) prune_ratio: Ratio of neighbors to prune via approximate distance (0.0-1.0)
global_pruning = kwargs.get("global_pruning", False) recompute_embeddings: Whether to fetch fresh embeddings from server
pruning_strategy: PQ candidate selection strategy:
- "global": Use global pruning strategy (default)
- "local": Use local pruning strategy
- "proportional": Not supported in DiskANN, falls back to global
zmq_port: ZMQ port for embedding server communication. Must be provided if recompute_embeddings is True.
batch_recompute: Whether to batch neighbor recomputation (DiskANN-specific)
dedup_node_dis: Whether to cache and reuse distance computations (DiskANN-specific)
**kwargs: Additional DiskANN-specific parameters (for legacy compatibility)
if recompute_beighbor_embeddings: Returns:
print(f"INFO: DiskANN ZMQ mode enabled - ensuring embedding server is running") Dict with 'labels' (list of lists) and 'distances' (ndarray)
zmq_port = kwargs.get("zmq_port", 5555) """
embedding_model = kwargs.get("embedding_model", "sentence-transformers/all-mpnet-base-v2") # Handle zmq_port compatibility: DiskANN can now update port at runtime
if recompute_embeddings:
if zmq_port is None:
raise ValueError(
"zmq_port must be provided if recompute_embeddings is True"
)
current_port = self._index.get_zmq_port()
if zmq_port != current_port:
logger.debug(
f"Updating DiskANN zmq_port from {current_port} to {zmq_port}"
)
self._index.set_zmq_port(zmq_port)
if not self.embedding_server_manager.start_server(zmq_port, embedding_model): # DiskANN doesn't support "proportional" strategy
print(f"WARNING: Failed to start embedding server, falling back to PQ computation") if pruning_strategy == "proportional":
kwargs['recompute_beighbor_embeddings'] = False raise NotImplementedError(
"DiskANN backend does not support 'proportional' pruning strategy. Use 'global' or 'local' instead."
)
if query.dtype != np.float32: if query.dtype != np.float32:
query = query.astype(np.float32) query = query.astype(np.float32)
if query.ndim == 1:
query = np.expand_dims(query, axis=0)
try: # Map pruning_strategy to DiskANN's global_pruning parameter
if pruning_strategy == "local":
use_global_pruning = False
else: # "global"
use_global_pruning = True
# Perform search with suppressed C++ output based on log level
with suppress_cpp_output_if_needed():
labels, distances = self._index.batch_search( labels, distances = self._index.batch_search(
query, query,
query.shape[0], query.shape[0],
@@ -279,21 +250,17 @@ class DiskannSearcher(LeannBackendSearcherInterface):
complexity, complexity,
beam_width, beam_width,
self.num_threads, self.num_threads,
USE_DEFERRED_FETCH, kwargs.get("USE_DEFERRED_FETCH", False),
skip_search_reorder, kwargs.get("skip_search_reorder", False),
recompute_beighbor_embeddings, recompute_embeddings,
dedup_node_dis, dedup_node_dis,
prune_ratio, prune_ratio,
batch_recompute, batch_recompute,
global_pruning use_global_pruning,
) )
return {"labels": labels, "distances": distances}
except Exception as e:
print(f"💥 ERROR: DiskANN search failed. Exception: {e}")
batch_size = query.shape[0]
return {"labels": np.full((batch_size, top_k), -1, dtype=np.int64),
"distances": np.full((batch_size, top_k), float('inf'), dtype=np.float32)}
def __del__(self): string_labels = [
if hasattr(self, 'embedding_server_manager'): [str(int_label) for int_label in batch_labels] for batch_labels in labels
self.embedding_server_manager.stop_server() ]
return {"labels": string_labels, "distances": distances}

View File

@@ -0,0 +1,283 @@
"""
DiskANN-specific embedding server
"""
import argparse
import threading
import time
import os
import zmq
import numpy as np
import json
from pathlib import Path
from typing import Optional
import sys
import logging
# Set up logging based on environment variable
LOG_LEVEL = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
logger = logging.getLogger(__name__)
# Force set logger level (don't rely on basicConfig in subprocess)
log_level = getattr(logging, LOG_LEVEL, logging.WARNING)
logger.setLevel(log_level)
# Ensure we have a handler if none exists
if not logger.handlers:
handler = logging.StreamHandler()
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.propagate = False
def create_diskann_embedding_server(
passages_file: Optional[str] = None,
zmq_port: int = 5555,
model_name: str = "sentence-transformers/all-mpnet-base-v2",
embedding_mode: str = "sentence-transformers",
):
"""
Create and start a ZMQ-based embedding server for DiskANN backend.
Uses ROUTER socket and protobuf communication as required by DiskANN C++ implementation.
"""
logger.info(f"Starting DiskANN server on port {zmq_port} with model {model_name}")
logger.info(f"Using embedding mode: {embedding_mode}")
# Add leann-core to path for unified embedding computation
current_dir = Path(__file__).parent
leann_core_path = current_dir.parent.parent / "leann-core" / "src"
sys.path.insert(0, str(leann_core_path))
try:
from leann.embedding_compute import compute_embeddings
from leann.api import PassageManager
logger.info("Successfully imported unified embedding computation module")
except ImportError as e:
logger.error(f"Failed to import embedding computation module: {e}")
return
finally:
sys.path.pop(0)
# Check port availability
import socket
def check_port(port):
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
return s.connect_ex(("localhost", port)) == 0
if check_port(zmq_port):
logger.error(f"Port {zmq_port} is already in use")
return
# Only support metadata file, fail fast for everything else
if not passages_file or not passages_file.endswith(".meta.json"):
raise ValueError("Only metadata files (.meta.json) are supported")
# Load metadata to get passage sources
with open(passages_file, "r") as f:
meta = json.load(f)
passages = PassageManager(meta["passage_sources"])
logger.info(
f"Loaded PassageManager with {len(passages.global_offset_map)} passages from metadata"
)
# Import protobuf after ensuring the path is correct
try:
from . import embedding_pb2
except ImportError as e:
logger.error(f"Failed to import protobuf module: {e}")
return
def zmq_server_thread():
"""ZMQ server thread using REP socket for universal compatibility"""
context = zmq.Context()
socket = context.socket(
zmq.REP
) # REP socket for both BaseSearcher and DiskANN C++ REQ clients
socket.bind(f"tcp://*:{zmq_port}")
logger.info(f"DiskANN ZMQ REP server listening on port {zmq_port}")
socket.setsockopt(zmq.RCVTIMEO, 300000)
socket.setsockopt(zmq.SNDTIMEO, 300000)
while True:
try:
# REP socket receives single-part messages
message = socket.recv()
# Check for empty messages - REP socket requires response to every request
if len(message) == 0:
logger.debug("Received empty message, sending empty response")
socket.send(b"") # REP socket must respond to every request
continue
logger.debug(f"Received ZMQ request of size {len(message)} bytes")
logger.debug(f"Message preview: {message[:50]}") # Show first 50 bytes
e2e_start = time.time()
# Try protobuf first (for DiskANN C++ node_ids requests - primary use case)
texts = []
node_ids = []
is_text_request = False
try:
req_proto = embedding_pb2.NodeEmbeddingRequest()
req_proto.ParseFromString(message)
node_ids = list(req_proto.node_ids)
if not node_ids:
raise RuntimeError(
f"PROTOBUF: Received empty node_ids! Message size: {len(message)}"
)
logger.info(
f"✅ PROTOBUF: Node ID request for {len(node_ids)} node embeddings: {node_ids[:10]}"
)
except Exception as protobuf_error:
logger.debug(f"Protobuf parsing failed: {protobuf_error}")
# Fallback to msgpack (for BaseSearcher direct text requests)
try:
import msgpack
request = msgpack.unpackb(message)
# For BaseSearcher compatibility, request is a list of texts directly
if isinstance(request, list) and all(
isinstance(item, str) for item in request
):
texts = request
is_text_request = True
logger.info(
f"✅ MSGPACK: Direct text request for {len(texts)} texts"
)
else:
raise ValueError("Not a valid msgpack text request")
except Exception as msgpack_error:
raise RuntimeError(
f"Both protobuf and msgpack parsing failed! Protobuf: {protobuf_error}, Msgpack: {msgpack_error}"
)
# Look up texts by node IDs (only if not direct text request)
if not is_text_request:
for nid in node_ids:
try:
passage_data = passages.get_passage(str(nid))
txt = passage_data["text"]
if not txt:
raise RuntimeError(
f"FATAL: Empty text for passage ID {nid}"
)
texts.append(txt)
except KeyError as e:
logger.error(f"Passage ID {nid} not found: {e}")
raise e
except Exception as e:
logger.error(f"Exception looking up passage ID {nid}: {e}")
raise
# Debug logging
logger.debug(f"Processing {len(texts)} texts")
logger.debug(
f"Text lengths: {[len(t) for t in texts[:5]]}"
) # Show first 5
# Process embeddings using unified computation
embeddings = compute_embeddings(texts, model_name, mode=embedding_mode)
logger.info(
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
)
# Prepare response based on request type
if is_text_request:
# For BaseSearcher compatibility: return msgpack format
import msgpack
response_data = msgpack.packb(embeddings.tolist())
else:
# For DiskANN C++ compatibility: return protobuf format
resp_proto = embedding_pb2.NodeEmbeddingResponse()
hidden_contiguous = np.ascontiguousarray(
embeddings, dtype=np.float32
)
# Serialize embeddings data
resp_proto.embeddings_data = hidden_contiguous.tobytes()
resp_proto.dimensions.append(hidden_contiguous.shape[0])
resp_proto.dimensions.append(hidden_contiguous.shape[1])
response_data = resp_proto.SerializeToString()
# Send response back to the client
socket.send(response_data)
e2e_end = time.time()
logger.info(f"⏱️ ZMQ E2E time: {e2e_end - e2e_start:.6f}s")
except zmq.Again:
logger.debug("ZMQ socket timeout, continuing to listen")
continue
except Exception as e:
logger.error(f"Error in ZMQ server loop: {e}")
import traceback
traceback.print_exc()
raise
zmq_thread = threading.Thread(target=zmq_server_thread, daemon=True)
zmq_thread.start()
logger.info(f"Started DiskANN ZMQ server thread on port {zmq_port}")
# Keep the main thread alive
try:
while True:
time.sleep(1)
except KeyboardInterrupt:
logger.info("DiskANN Server shutting down...")
return
if __name__ == "__main__":
import signal
import sys
def signal_handler(sig, frame):
logger.info(f"Received signal {sig}, shutting down gracefully...")
sys.exit(0)
# Register signal handlers for graceful shutdown
signal.signal(signal.SIGTERM, signal_handler)
signal.signal(signal.SIGINT, signal_handler)
parser = argparse.ArgumentParser(description="DiskANN Embedding service")
parser.add_argument("--zmq-port", type=int, default=5555, help="ZMQ port to run on")
parser.add_argument(
"--passages-file",
type=str,
help="Metadata JSON file containing passage sources",
)
parser.add_argument(
"--model-name",
type=str,
default="sentence-transformers/all-mpnet-base-v2",
help="Embedding model name",
)
parser.add_argument(
"--embedding-mode",
type=str,
default="sentence-transformers",
choices=["sentence-transformers", "openai", "mlx"],
help="Embedding backend mode",
)
args = parser.parse_args()
# Create and start the DiskANN embedding server
create_diskann_embedding_server(
passages_file=args.passages_file,
zmq_port=args.zmq_port,
model_name=args.model_name,
embedding_mode=args.embedding_mode,
)

View File

@@ -1,397 +0,0 @@
#!/usr/bin/env python3
"""
Embedding server for leann-backend-diskann - Fixed ZMQ REQ-REP pattern
"""
import pickle
import argparse
import threading
import time
from transformers import AutoTokenizer, AutoModel
import os
from contextlib import contextmanager
import zmq
import numpy as np
RED = "\033[91m"
RESET = "\033[0m"
# 简化的文档存储 - 替代 LazyPassages
class SimpleDocumentStore:
"""简化的文档存储支持任意ID"""
def __init__(self, documents: dict = None):
self.documents = documents or {}
# 默认演示文档
self.default_docs = {
0: "Python is a high-level, interpreted language known for simplicity.",
1: "Machine learning builds systems that learn from data.",
2: "Data structures like arrays, lists, and graphs organize data.",
}
def __getitem__(self, doc_id):
doc_id = int(doc_id)
# 优先使用指定的文档
if doc_id in self.documents:
return {"text": self.documents[doc_id]}
# 其次使用默认演示文档
if doc_id in self.default_docs:
return {"text": self.default_docs[doc_id]}
# 对于任意其他ID返回通用文档
fallback_docs = [
"This is a general document about technology and programming concepts.",
"This document discusses machine learning and artificial intelligence topics.",
"This content covers data structures, algorithms, and computer science fundamentals.",
"This is a document about software engineering and development practices.",
"This content focuses on databases, data management, and information systems."
]
# 根据ID选择一个fallback文档
fallback_text = fallback_docs[doc_id % len(fallback_docs)]
return {"text": f"[ID:{doc_id}] {fallback_text}"}
def __len__(self):
return len(self.documents) + len(self.default_docs)
def create_embedding_server_thread(
zmq_port=5555,
model_name="sentence-transformers/all-mpnet-base-v2",
max_batch_size=128,
):
"""
在当前线程中创建并运行 embedding server
这个函数设计为在单独的线程中调用
"""
print(f"INFO: Initializing embedding server thread on port {zmq_port}")
try:
# 检查端口是否已被占用
import socket
def check_port(port):
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
return s.connect_ex(('localhost', port)) == 0
if check_port(zmq_port):
print(f"{RED}Port {zmq_port} is already in use{RESET}")
return
# 初始化模型
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
import torch
# 选择设备
mps_available = hasattr(torch.backends, 'mps') and torch.backends.mps.is_available()
cuda_available = torch.cuda.is_available()
if cuda_available:
device = torch.device("cuda")
print("INFO: Using CUDA device")
elif mps_available:
device = torch.device("mps")
print("INFO: Using MPS device (Apple Silicon)")
else:
device = torch.device("cpu")
print("INFO: Using CPU device")
# 加载模型
print(f"INFO: Loading model {model_name}")
model = AutoModel.from_pretrained(model_name).to(device).eval()
# 优化模型
if cuda_available or mps_available:
try:
model = model.half()
model = torch.compile(model)
print(f"INFO: Using FP16 precision with model: {model_name}")
except Exception as e:
print(f"WARNING: Model optimization failed: {e}")
# 默认演示文档
demo_documents = {
0: "Python is a high-level, interpreted language known for simplicity.",
1: "Machine learning builds systems that learn from data.",
2: "Data structures like arrays, lists, and graphs organize data.",
}
passages = SimpleDocumentStore(demo_documents)
print(f"INFO: Loaded {len(passages)} demo documents")
class DeviceTimer:
"""设备计时器"""
def __init__(self, name="", device=device):
self.name = name
self.device = device
self.start_time = 0
self.end_time = 0
if cuda_available:
self.start_event = torch.cuda.Event(enable_timing=True)
self.end_event = torch.cuda.Event(enable_timing=True)
else:
self.start_event = None
self.end_event = None
@contextmanager
def timing(self):
self.start()
yield
self.end()
def start(self):
if cuda_available:
torch.cuda.synchronize()
self.start_event.record()
else:
if self.device.type == "mps":
torch.mps.synchronize()
self.start_time = time.time()
def end(self):
if cuda_available:
self.end_event.record()
torch.cuda.synchronize()
else:
if self.device.type == "mps":
torch.mps.synchronize()
self.end_time = time.time()
def elapsed_time(self):
if cuda_available:
return self.start_event.elapsed_time(self.end_event) / 1000.0
else:
return self.end_time - self.start_time
def print_elapsed(self):
print(f"Time taken for {self.name}: {self.elapsed_time():.6f} seconds")
def process_batch(texts_batch, ids_batch, missing_ids):
"""处理文本批次"""
batch_size = len(texts_batch)
print(f"INFO: Processing batch of size {batch_size}")
tokenize_timer = DeviceTimer("tokenization (batch)", device)
to_device_timer = DeviceTimer("transfer to device (batch)", device)
embed_timer = DeviceTimer("embedding (batch)", device)
pool_timer = DeviceTimer("mean pooling (batch)", device)
with tokenize_timer.timing():
encoded_batch = tokenizer.batch_encode_plus(
texts_batch,
padding="max_length",
truncation=True,
max_length=256,
return_tensors="pt",
return_token_type_ids=False,
)
tokenize_timer.print_elapsed()
seq_length = encoded_batch["input_ids"].size(1)
print(f"Batch size: {batch_size}, Sequence length: {seq_length}")
with to_device_timer.timing():
enc = {k: v.to(device) for k, v in encoded_batch.items()}
to_device_timer.print_elapsed()
with torch.no_grad():
with embed_timer.timing():
out = model(enc["input_ids"], enc["attention_mask"])
embed_timer.print_elapsed()
with pool_timer.timing():
hidden_states = out.last_hidden_state if hasattr(out, "last_hidden_state") else out
mask_expanded = enc["attention_mask"].unsqueeze(-1).expand(hidden_states.size()).float()
sum_embeddings = torch.sum(hidden_states * mask_expanded, 1)
sum_mask = torch.clamp(mask_expanded.sum(1), min=1e-9)
batch_embeddings = sum_embeddings / sum_mask
pool_timer.print_elapsed()
return batch_embeddings.cpu().numpy()
# ZMQ server 主循环 - 修改为REP套接字
context = zmq.Context()
socket = context.socket(zmq.ROUTER) # 改为REP套接字
socket.bind(f"tcp://127.0.0.1:{zmq_port}")
print(f"INFO: ZMQ ROUTER server listening on port {zmq_port}")
# 设置超时
socket.setsockopt(zmq.RCVTIMEO, 5000) # 5秒接收超时
socket.setsockopt(zmq.SNDTIMEO, 300000) # 300秒发送超时
from . import embedding_pb2
print(f"INFO: Embedding server ready to serve requests")
while True:
try:
parts = socket.recv_multipart()
# --- 恢复稳健的消息格式判断 ---
# 必须检查 parts 的长度,避免 IndexError
if len(parts) >= 3:
identity = parts[0]
# empty = parts[1] # 中间的空帧我们通常不关心
message = parts[2]
elif len(parts) == 2:
# 也能处理没有空帧的情况
identity = parts[0]
message = parts[1]
else:
# 如果收到格式错误的消息,打印警告并忽略它,而不是崩溃
print(f"WARNING: Received unexpected message format with {len(parts)} parts. Ignoring.")
continue
print(f"INFO: Received ZMQ request from client {identity.hex()[:8]}, size {len(message)} bytes")
e2e_start = time.time()
lookup_timer = DeviceTimer("text lookup", device)
# 解析请求
req_proto = embedding_pb2.NodeEmbeddingRequest()
req_proto.ParseFromString(message)
node_ids = req_proto.node_ids
print(f"INFO: Request for {len(node_ids)} node embeddings: {list(node_ids)}")
# 添加调试信息
if len(node_ids) > 0:
print(f"DEBUG: Node ID range: {min(node_ids)} to {max(node_ids)}")
# 查找文本
texts = []
missing_ids = []
with lookup_timer.timing():
for nid in node_ids:
txtinfo = passages[nid]
txt = txtinfo["text"]
texts.append(txt)
lookup_timer.print_elapsed()
if missing_ids:
print(f"WARNING: Missing passages for IDs: {missing_ids}")
# 处理批次
total_size = len(texts)
print(f"INFO: Total batch size: {total_size}, max_batch_size: {max_batch_size}")
all_embeddings = []
if total_size > max_batch_size:
print(f"INFO: Splitting batch of size {total_size} into chunks of {max_batch_size}")
for i in range(0, total_size, max_batch_size):
end_idx = min(i + max_batch_size, total_size)
print(f"INFO: Processing chunk {i//max_batch_size + 1}/{(total_size + max_batch_size - 1)//max_batch_size}: items {i} to {end_idx-1}")
chunk_texts = texts[i:end_idx]
chunk_ids = node_ids[i:end_idx]
embeddings_chunk = process_batch(chunk_texts, chunk_ids, missing_ids)
all_embeddings.append(embeddings_chunk)
if cuda_available:
torch.cuda.empty_cache()
elif device.type == "mps":
torch.mps.empty_cache()
hidden = np.vstack(all_embeddings)
print(f"INFO: Combined embeddings shape: {hidden.shape}")
else:
hidden = process_batch(texts, node_ids, missing_ids)
# 序列化响应
ser_start = time.time()
resp_proto = embedding_pb2.NodeEmbeddingResponse()
hidden_contiguous = np.ascontiguousarray(hidden, dtype=np.float32)
resp_proto.embeddings_data = hidden_contiguous.tobytes()
resp_proto.dimensions.append(hidden_contiguous.shape[0])
resp_proto.dimensions.append(hidden_contiguous.shape[1])
resp_proto.missing_ids.extend(missing_ids)
response_data = resp_proto.SerializeToString()
# REP 套接字发送单个响应
socket.send_multipart([identity, b'', response_data])
ser_end = time.time()
print(f"INFO: Serialize time: {ser_end - ser_start:.6f} seconds")
if device.type == "cuda":
torch.cuda.synchronize()
elif device.type == "mps":
torch.mps.synchronize()
e2e_end = time.time()
print(f"INFO: ZMQ E2E time: {e2e_end - e2e_start:.6f} seconds")
except zmq.Again:
print("INFO: ZMQ socket timeout, continuing to listen")
# REP套接字不需要重新创建只需要继续监听
continue
except Exception as e:
print(f"ERROR: Error in ZMQ server: {e}")
try:
# 发送空响应以维持REQ-REP状态
empty_resp = embedding_pb2.NodeEmbeddingResponse()
socket.send(empty_resp.SerializeToString())
except:
# 如果发送失败重新创建socket
socket.close()
socket = context.socket(zmq.REP)
socket.bind(f"tcp://127.0.0.1:{zmq_port}")
socket.setsockopt(zmq.RCVTIMEO, 5000)
socket.setsockopt(zmq.SNDTIMEO, 300000)
print("INFO: ZMQ socket recreated after error")
except Exception as e:
print(f"ERROR: Failed to start embedding server: {e}")
raise
# 保持原有的 create_embedding_server 函数不变,只添加线程化版本
def create_embedding_server(
domain="demo",
load_passages=True,
load_embeddings=False,
use_fp16=True,
use_int8=False,
use_cuda_graphs=False,
zmq_port=5555,
max_batch_size=128,
lazy_load_passages=False,
model_name="sentence-transformers/all-mpnet-base-v2",
):
"""
原有的 create_embedding_server 函数保持不变
这个是阻塞版本,用于直接运行
"""
create_embedding_server_thread(zmq_port, model_name, max_batch_size)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Embedding service")
parser.add_argument("--zmq-port", type=int, default=5555, help="ZMQ port to run on")
parser.add_argument("--domain", type=str, default="demo", help="Domain name")
parser.add_argument("--load-passages", action="store_true", default=True)
parser.add_argument("--load-embeddings", action="store_true", default=False)
parser.add_argument("--use-fp16", action="store_true", default=False)
parser.add_argument("--use-int8", action="store_true", default=False)
parser.add_argument("--use-cuda-graphs", action="store_true", default=False)
parser.add_argument("--max-batch-size", type=int, default=128, help="Maximum batch size before splitting")
parser.add_argument("--lazy-load-passages", action="store_true", default=True)
parser.add_argument("--model-name", type=str, default="sentence-transformers/all-mpnet-base-v2",
help="Embedding model name")
args = parser.parse_args()
create_embedding_server(
domain=args.domain,
load_passages=args.load_passages,
load_embeddings=args.load_embeddings,
use_fp16=args.use_fp16,
use_int8=args.use_int8,
use_cuda_graphs=args.use_cuda_graphs,
zmq_port=args.zmq_port,
max_batch_size=args.max_batch_size,
lazy_load_passages=args.lazy_load_passages,
model_name=args.model_name,
)

View File

@@ -4,13 +4,16 @@ build-backend = "scikit_build_core.build"
[project] [project]
name = "leann-backend-diskann" name = "leann-backend-diskann"
version = "0.1.0" version = "0.1.6"
dependencies = ["leann-core==0.1.0", "numpy"] dependencies = ["leann-core==0.1.6", "numpy"]
[tool.scikit-build] [tool.scikit-build]
# 关键:简化的 CMake 路径 # Key: simplified CMake path
cmake.source-dir = "third_party/DiskANN" cmake.source-dir = "third_party/DiskANN"
# 关键:Python 包在根目录,路径完全匹配 # Key: Python package in root directory, paths match exactly
wheel.packages = ["leann_backend_diskann"] wheel.packages = ["leann_backend_diskann"]
# 使用默认的 redirect 模式 # Use default redirect mode
editable.mode = "redirect" editable.mode = "redirect"
cmake.build-type = "Release"
build.verbose = true
build.tool-args = ["-j8"]

View File

@@ -1,6 +0,0 @@
---
BasedOnStyle: Microsoft
---
Language: Cpp
SortIncludes: false
...

View File

@@ -1,14 +0,0 @@
# Set the default behavior, in case people don't have core.autocrlf set.
* text=auto
# Explicitly declare text files you want to always be normalized and converted
# to native line endings on checkout.
*.c text
*.h text
# Declare files that will always have CRLF line endings on checkout.
*.sln text eol=crlf
# Denote all files that are truly binary and should not be modified.
*.png binary
*.jpg binary

View File

@@ -1,40 +0,0 @@
---
name: Bug report
about: Bug reports help us improve! Thanks for submitting yours!
title: "[BUG] "
labels: bug
assignees: ''
---
## Expected Behavior
Tell us what should happen
## Actual Behavior
Tell us what happens instead
## Example Code
Please see [How to create a Minimal, Reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) for some guidance on creating the best possible example of the problem
```bash
```
## Dataset Description
Please tell us about the shape and datatype of your data, (e.g. 128 dimensions, 12.3 billion points, floats)
- Dimensions:
- Number of Points:
- Data type:
## Error
```
Paste the full error, with any sensitive information minimally redacted and marked $$REDACTED$$
```
## Your Environment
* Operating system (e.g. Windows 11 Pro, Ubuntu 22.04.1 LTS)
* DiskANN version (or commit built from)
## Additional Details
Any other contextual information you might feel is important.

View File

@@ -1,2 +0,0 @@
blank_issues_enabled: false

View File

@@ -1,25 +0,0 @@
---
name: Feature request
about: Suggest an idea for this project
title: ''
labels: enhancement
assignees: ''
---
## Is your feature request related to a problem? Please describe.
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
## Describe the solution you'd like
A clear and concise description of what you want to happen.
## Describe alternatives you've considered
A clear and concise description of any alternative solutions or features you've considered.
## Provide references (if applicable)
If your feature request is related to a published algorithm/idea, please provide links to
any relevant articles or webpages.
## Additional context
Add any other context or screenshots about the feature request here.

View File

@@ -1,11 +0,0 @@
---
name: Usage Question
about: Ask us a question about DiskANN!
title: "[Question]"
labels: question
assignees: ''
---
This is our forum for asking whatever DiskANN question you'd like! No need to feel shy - we're happy to talk about use cases and optimal tuning strategies!

View File

@@ -1,22 +0,0 @@
<!--
Thanks for contributing a pull request! Please ensure you have taken a look at
the contribution guidelines: https://github.com/microsoft/DiskANN/blob/main/CONTRIBUTING.md
-->
- [ ] Does this PR have a descriptive title that could go in our release notes?
- [ ] Does this PR add any new dependencies?
- [ ] Does this PR modify any existing APIs?
- [ ] Is the change to the API backwards compatible?
- [ ] Should this result in any changes to our documentation, either updating existing docs or adding new ones?
#### Reference Issues/PRs
<!--
Example: Fixes #1234. See also #3456.
Please use keywords (e.g., Fixes) to create link to the issues or pull requests
you resolved, so that they will automatically be closed when your pull request
is merged. See https://github.com/blog/1506-closing-issues-via-pull-requests
-->
#### What does this implement/fix? Briefly explain your changes.
#### Any other comments?

View File

@@ -1,39 +0,0 @@
name: 'DiskANN Build Bootstrap'
description: 'Prepares DiskANN build environment and executes build'
runs:
using: "composite"
steps:
# ------------ Linux Build ---------------
- name: Prepare and Execute Build
if: ${{ runner.os == 'Linux' }}
run: |
sudo scripts/dev/install-dev-deps-ubuntu.bash
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DUNIT_TEST=True
cmake --build build -- -j
cmake --install build --prefix="dist"
shell: bash
# ------------ End Linux Build ---------------
# ------------ Windows Build ---------------
- name: Add VisualStudio command line tools into path
if: runner.os == 'Windows'
uses: ilammy/msvc-dev-cmd@v1
- name: Run configure and build for Windows
if: runner.os == 'Windows'
run: |
mkdir build && cd build && cmake .. -DUNIT_TEST=True && msbuild diskann.sln /m /nologo /t:Build /p:Configuration="Release" /property:Platform="x64" -consoleloggerparameters:"ErrorsOnly;Summary"
cd ..
mkdir dist
mklink /j .\dist\bin .\x64\Release\
shell: cmd
# ------------ End Windows Build ---------------
# ------------ Windows Build With EXEC_ENV_OLS and USE_BING_INFRA ---------------
- name: Add VisualStudio command line tools into path
if: runner.os == 'Windows'
uses: ilammy/msvc-dev-cmd@v1
- name: Run configure and build for Windows with Bing feature flags
if: runner.os == 'Windows'
run: |
mkdir build_bing && cd build_bing && cmake .. -DEXEC_ENV_OLS=1 -DUSE_BING_INFRA=1 -DUNIT_TEST=True && msbuild diskann.sln /m /nologo /t:Build /p:Configuration="Release" /property:Platform="x64" -consoleloggerparameters:"ErrorsOnly;Summary"
cd ..
shell: cmd
# ------------ End Windows Build ---------------

View File

@@ -1,13 +0,0 @@
name: 'Checking code formatting...'
description: 'Ensures code complies with code formatting rules'
runs:
using: "composite"
steps:
- name: Checking code formatting...
run: |
sudo apt install clang-format
find include -name '*.h' -type f -print0 | xargs -0 -P 16 /usr/bin/clang-format --Werror --dry-run
find src -name '*.cpp' -type f -print0 | xargs -0 -P 16 /usr/bin/clang-format --Werror --dry-run
find apps -name '*.cpp' -type f -print0 | xargs -0 -P 16 /usr/bin/clang-format --Werror --dry-run
find python -name '*.cpp' -type f -print0 | xargs -0 -P 16 /usr/bin/clang-format --Werror --dry-run
shell: bash

View File

@@ -1,28 +0,0 @@
name: 'Generating Random Data (Basic)'
description: 'Generates the random data files used in acceptance tests'
runs:
using: "composite"
steps:
- name: Generate Random Data (Basic)
run: |
mkdir data
echo "Generating random 1020,1024,1536D float and 4096 int8 vectors for index"
dist/bin/rand_data_gen --data_type float --output_file data/rand_float_1020D_5K_norm1.0.bin -D 1020 -N 5000 --norm 1.0
#dist/bin/rand_data_gen --data_type float --output_file data/rand_float_1024D_5K_norm1.0.bin -D 1024 -N 5000 --norm 1.0
dist/bin/rand_data_gen --data_type float --output_file data/rand_float_1536D_5K_norm1.0.bin -D 1536 -N 5000 --norm 1.0
dist/bin/rand_data_gen --data_type int8 --output_file data/rand_int8_4096D_5K_norm1.0.bin -D 4096 -N 5000 --norm 1.0
echo "Generating random 1020,1024,1536D float and 4096D int8 avectors for query"
dist/bin/rand_data_gen --data_type float --output_file data/rand_float_1020D_1K_norm1.0.bin -D 1020 -N 1000 --norm 1.0
#dist/bin/rand_data_gen --data_type float --output_file data/rand_float_1024D_1K_norm1.0.bin -D 1024 -N 1000 --norm 1.0
dist/bin/rand_data_gen --data_type float --output_file data/rand_float_1536D_1K_norm1.0.bin -D 1536 -N 1000 --norm 1.0
dist/bin/rand_data_gen --data_type int8 --output_file data/rand_int8_4096D_1K_norm1.0.bin -D 4096 -N 1000 --norm 1.0
echo "Computing ground truth for 1020,1024,1536D float and 4096D int8 avectors for query"
dist/bin/compute_groundtruth --data_type float --dist_fn l2 --base_file data/rand_float_1020D_5K_norm1.0.bin --query_file data/rand_float_1020D_1K_norm1.0.bin --gt_file data/l2_rand_float_1020D_5K_norm1.0_1020D_1K_norm1.0_gt100 --K 100
#dist/bin/compute_groundtruth --data_type float --dist_fn l2 --base_file data/rand_float_1024D_5K_norm1.0.bin --query_file data/rand_float_1024D_1K_norm1.0.bin --gt_file data/l2_rand_float_1024D_5K_norm1.0_1024D_1K_norm1.0_gt100 --K 100
dist/bin/compute_groundtruth --data_type float --dist_fn l2 --base_file data/rand_float_1536D_5K_norm1.0.bin --query_file data/rand_float_1536D_1K_norm1.0.bin --gt_file data/l2_rand_float_1536D_5K_norm1.0_1536D_1K_norm1.0_gt100 --K 100
dist/bin/compute_groundtruth --data_type int8 --dist_fn l2 --base_file data/rand_int8_4096D_5K_norm1.0.bin --query_file data/rand_int8_4096D_1K_norm1.0.bin --gt_file data/l2_rand_int8_4096D_5K_norm1.0_4096D_1K_norm1.0_gt100 --K 100
shell: bash

View File

@@ -1,38 +0,0 @@
name: 'Generating Random Data (Basic)'
description: 'Generates the random data files used in acceptance tests'
runs:
using: "composite"
steps:
- name: Generate Random Data (Basic)
run: |
mkdir data
echo "Generating random vectors for index"
dist/bin/rand_data_gen --data_type float --output_file data/rand_float_10D_10K_norm1.0.bin -D 10 -N 10000 --norm 1.0
dist/bin/rand_data_gen --data_type float --output_file data/rand_float_10D_10K_unnorm.bin -D 10 -N 10000 --rand_scaling 2.0
dist/bin/rand_data_gen --data_type int8 --output_file data/rand_int8_10D_10K_norm50.0.bin -D 10 -N 10000 --norm 50.0
dist/bin/rand_data_gen --data_type uint8 --output_file data/rand_uint8_10D_10K_norm50.0.bin -D 10 -N 10000 --norm 50.0
echo "Generating random vectors for query"
dist/bin/rand_data_gen --data_type float --output_file data/rand_float_10D_1K_norm1.0.bin -D 10 -N 1000 --norm 1.0
dist/bin/rand_data_gen --data_type float --output_file data/rand_float_10D_1K_unnorm.bin -D 10 -N 1000 --rand_scaling 2.0
dist/bin/rand_data_gen --data_type int8 --output_file data/rand_int8_10D_1K_norm50.0.bin -D 10 -N 1000 --norm 50.0
dist/bin/rand_data_gen --data_type uint8 --output_file data/rand_uint8_10D_1K_norm50.0.bin -D 10 -N 1000 --norm 50.0
echo "Computing ground truth for floats across l2, mips, and cosine distance functions"
dist/bin/compute_groundtruth --data_type float --dist_fn l2 --base_file data/rand_float_10D_10K_norm1.0.bin --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/l2_rand_float_10D_10K_norm1.0_10D_1K_norm1.0_gt100 --K 100
dist/bin/compute_groundtruth --data_type float --dist_fn mips --base_file data/rand_float_10D_10K_norm1.0.bin --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/mips_rand_float_10D_10K_norm1.0_10D_1K_norm1.0_gt100 --K 100
dist/bin/compute_groundtruth --data_type float --dist_fn cosine --base_file data/rand_float_10D_10K_norm1.0.bin --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/cosine_rand_float_10D_10K_norm1.0_10D_1K_norm1.0_gt100 --K 100
dist/bin/compute_groundtruth --data_type float --dist_fn cosine --base_file data/rand_float_10D_10K_unnorm.bin --query_file data/rand_float_10D_1K_unnorm.bin --gt_file data/cosine_rand_float_10D_10K_unnorm_10D_1K_unnorm_gt100 --K 100
echo "Computing ground truth for int8s across l2, mips, and cosine distance functions"
dist/bin/compute_groundtruth --data_type int8 --dist_fn l2 --base_file data/rand_int8_10D_10K_norm50.0.bin --query_file data/rand_int8_10D_1K_norm50.0.bin --gt_file data/l2_rand_int8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 --K 100
dist/bin/compute_groundtruth --data_type int8 --dist_fn mips --base_file data/rand_int8_10D_10K_norm50.0.bin --query_file data/rand_int8_10D_1K_norm50.0.bin --gt_file data/mips_rand_int8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 --K 100
dist/bin/compute_groundtruth --data_type int8 --dist_fn cosine --base_file data/rand_int8_10D_10K_norm50.0.bin --query_file data/rand_int8_10D_1K_norm50.0.bin --gt_file data/cosine_rand_int8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 --K 100
echo "Computing ground truth for uint8s across l2, mips, and cosine distance functions"
dist/bin/compute_groundtruth --data_type uint8 --dist_fn l2 --base_file data/rand_uint8_10D_10K_norm50.0.bin --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/l2_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 --K 100
dist/bin/compute_groundtruth --data_type uint8 --dist_fn mips --base_file data/rand_uint8_10D_10K_norm50.0.bin --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/mips_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 --K 100
dist/bin/compute_groundtruth --data_type uint8 --dist_fn cosine --base_file data/rand_uint8_10D_10K_norm50.0.bin --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/cosine_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 --K 100
shell: bash

View File

@@ -1,22 +0,0 @@
name: Build Python Wheel
description: Builds a python wheel with cibuildwheel
inputs:
cibw-identifier:
description: "CI build wheel identifier to build"
required: true
runs:
using: "composite"
steps:
- uses: actions/setup-python@v3
- name: Install cibuildwheel
run: python -m pip install cibuildwheel==2.11.3
shell: bash
- name: Building Python ${{inputs.cibw-identifier}} Wheel
run: python -m cibuildwheel --output-dir dist
env:
CIBW_BUILD: ${{inputs.cibw-identifier}}
shell: bash
- uses: actions/upload-artifact@v3
with:
name: wheels
path: ./dist/*.whl

View File

@@ -1,81 +0,0 @@
name: DiskANN Build PDoc Documentation
on: [workflow_call]
jobs:
build-reference-documentation:
permissions:
contents: write
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v3
with:
fetch-depth: 1
- name: Set up Python 3.9
uses: actions/setup-python@v2
with:
python-version: 3.9
- name: Install python build
run: python -m pip install build
shell: bash
# Install required dependencies
- name: Prepare Linux environment
run: |
sudo scripts/dev/install-dev-deps-ubuntu.bash
shell: bash
# We need to build the wheel in order to run pdoc. pdoc does not seem to work if you just point it at
# our source directory.
- name: Building Python Wheel for documentation generation
run: python -m build --wheel --outdir documentation_dist
shell: bash
- name: "Run Reference Documentation Generation"
run: |
pip install pdoc pipdeptree
pip install documentation_dist/*.whl
echo "documentation" > dependencies_documentation.txt
pipdeptree >> dependencies_documentation.txt
pdoc -o docs/python/html diskannpy
- name: Create version environment variable
run: |
echo "DISKANN_VERSION=$(python <<EOF
from importlib.metadata import version
v = version('diskannpy')
print(v)
EOF
)" >> $GITHUB_ENV
- name: Archive documentation version artifact
uses: actions/upload-artifact@v4
with:
name: dependencies
path: |
${{ github.run_id }}-dependencies_documentation.txt
overwrite: true
- name: Archive documentation artifacts
uses: actions/upload-artifact@v4
with:
name: documentation-site
path: |
docs/python/html
# Publish to /dev if we are on the "main" branch
- name: Publish reference docs for latest development version (main branch)
uses: peaceiris/actions-gh-pages@v3
if: github.ref == 'refs/heads/main'
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
publish_dir: docs/python/html
destination_dir: docs/python/dev
# Publish to /<version> if we are releasing
- name: Publish reference docs by version (main branch)
uses: peaceiris/actions-gh-pages@v3
if: github.event_name == 'release'
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
publish_dir: docs/python/html
destination_dir: docs/python/${{ env.DISKANN_VERSION }}
# Publish to /latest if we are releasing
- name: Publish latest reference docs (main branch)
uses: peaceiris/actions-gh-pages@v3
if: github.event_name == 'release'
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
publish_dir: docs/python/html
destination_dir: docs/python/latest

View File

@@ -1,42 +0,0 @@
name: DiskANN Build Python Wheel
on: [workflow_call]
jobs:
linux-build:
name: Python - Ubuntu - ${{matrix.cibw-identifier}}
strategy:
fail-fast: false
matrix:
cibw-identifier: ["cp39-manylinux_x86_64", "cp310-manylinux_x86_64", "cp311-manylinux_x86_64"]
runs-on: ubuntu-latest
defaults:
run:
shell: bash
steps:
- name: Checkout repository
uses: actions/checkout@v3
with:
fetch-depth: 1
- name: Building python wheel ${{matrix.cibw-identifier}}
uses: ./.github/actions/python-wheel
with:
cibw-identifier: ${{matrix.cibw-identifier}}
windows-build:
name: Python - Windows - ${{matrix.cibw-identifier}}
strategy:
fail-fast: false
matrix:
cibw-identifier: ["cp39-win_amd64", "cp310-win_amd64", "cp311-win_amd64"]
runs-on: windows-latest
defaults:
run:
shell: bash
steps:
- name: Checkout repository
uses: actions/checkout@v3
with:
submodules: true
fetch-depth: 1
- name: Building python wheel ${{matrix.cibw-identifier}}
uses: ./.github/actions/python-wheel
with:
cibw-identifier: ${{matrix.cibw-identifier}}

View File

@@ -1,28 +0,0 @@
name: DiskANN Common Checks
# common means common to both pr-test and push-test
on: [workflow_call]
jobs:
formatting-check:
strategy:
fail-fast: true
name: Code Formatting Test
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v3
with:
fetch-depth: 1
- name: Checking code formatting...
uses: ./.github/actions/format-check
docker-container-build:
name: Docker Container Build
needs: [formatting-check]
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v3
with:
fetch-depth: 1
- name: Docker build
run: |
docker build .

View File

@@ -1,117 +0,0 @@
name: Disk With PQ
on: [workflow_call]
jobs:
acceptance-tests-disk-pq:
name: Disk, PQ
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest, windows-2019, windows-latest]
runs-on: ${{matrix.os}}
defaults:
run:
shell: bash
steps:
- name: Checkout repository
if: ${{ runner.os == 'Linux' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
- name: Checkout repository
if: ${{ runner.os == 'Windows' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
submodules: true
- name: DiskANN Build CLI Applications
uses: ./.github/actions/build
- name: Generate Data
uses: ./.github/actions/generate-random
- name: build and search disk index (one shot graph build, L2, no diskPQ) (float)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type float --dist_fn l2 --data_path data/rand_float_10D_10K_norm1.0.bin --index_path_prefix data/disk_index_l2_rand_float_10D_10K_norm1.0_diskfull_oneshot -R 16 -L 32 -B 0.00003 -M 1
dist/bin/search_disk_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_float_10D_10K_norm1.0_diskfull_oneshot --result_path /tmp/res --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/l2_rand_float_10D_10K_norm1.0_10D_1K_norm1.0_gt100 --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16
- name: build and search disk index (one shot graph build, cosine, no diskPQ) (float)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type float --dist_fn cosine --data_path data/rand_float_10D_10K_unnorm.bin --index_path_prefix data/disk_index_cosine_rand_float_10D_10K_unnorm_diskfull_oneshot -R 16 -L 32 -B 0.00003 -M 1
dist/bin/search_disk_index --data_type float --dist_fn cosine --fail_if_recall_below 70 --index_path_prefix data/disk_index_cosine_rand_float_10D_10K_unnorm_diskfull_oneshot --result_path /tmp/res --query_file data/rand_float_10D_1K_unnorm.bin --gt_file data/cosine_rand_float_10D_10K_unnorm_10D_1K_unnorm_gt100 --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16
- name: build and search disk index (one shot graph build, L2, no diskPQ) (int8)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type int8 --dist_fn l2 --data_path data/rand_int8_10D_10K_norm50.0.bin --index_path_prefix data/disk_index_l2_rand_int8_10D_10K_norm50.0_diskfull_oneshot -R 16 -L 32 -B 0.00003 -M 1
dist/bin/search_disk_index --data_type int8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_int8_10D_10K_norm50.0_diskfull_oneshot --result_path /tmp/res --query_file data/rand_int8_10D_1K_norm50.0.bin --gt_file data/l2_rand_int8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16
- name: build and search disk index (one shot graph build, L2, no diskPQ) (uint8)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type uint8 --dist_fn l2 --data_path data/rand_uint8_10D_10K_norm50.0.bin --index_path_prefix data/disk_index_l2_rand_uint8_10D_10K_norm50.0_diskfull_oneshot -R 16 -L 32 -B 0.00003 -M 1
dist/bin/search_disk_index --data_type uint8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_uint8_10D_10K_norm50.0_diskfull_oneshot --result_path /tmp/res --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/l2_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16
- name: build and search disk index (one shot graph build, L2, no diskPQ, build with PQ distance comparisons) (float)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type float --dist_fn l2 --data_path data/rand_float_10D_10K_norm1.0.bin --index_path_prefix data/disk_index_l2_rand_float_10D_10K_norm1.0_diskfull_oneshot_buildpq5 -R 16 -L 32 -B 0.00003 -M 1 --build_PQ_bytes 5
dist/bin/search_disk_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_float_10D_10K_norm1.0_diskfull_oneshot_buildpq5 --result_path /tmp/res --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/l2_rand_float_10D_10K_norm1.0_10D_1K_norm1.0_gt100 --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16
- name: build and search disk index (one shot graph build, L2, no diskPQ, build with PQ distance comparisons) (int8)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type int8 --dist_fn l2 --data_path data/rand_int8_10D_10K_norm50.0.bin --index_path_prefix data/disk_index_l2_rand_int8_10D_10K_norm50.0_diskfull_oneshot_buildpq5 -R 16 -L 32 -B 0.00003 -M 1 --build_PQ_bytes 5
dist/bin/search_disk_index --data_type int8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_int8_10D_10K_norm50.0_diskfull_oneshot_buildpq5 --result_path /tmp/res --query_file data/rand_int8_10D_1K_norm50.0.bin --gt_file data/l2_rand_int8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16\
- name: build and search disk index (one shot graph build, L2, no diskPQ, build with PQ distance comparisons) (uint8)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type uint8 --dist_fn l2 --data_path data/rand_uint8_10D_10K_norm50.0.bin --index_path_prefix data/disk_index_l2_rand_uint8_10D_10K_norm50.0_diskfull_oneshot_buildpq5 -R 16 -L 32 -B 0.00003 -M 1 --build_PQ_bytes 5
dist/bin/search_disk_index --data_type uint8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_uint8_10D_10K_norm50.0_diskfull_oneshot_buildpq5 --result_path /tmp/res --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/l2_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16
- name: build and search disk index (sharded graph build, L2, no diskPQ) (float)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type float --dist_fn l2 --data_path data/rand_float_10D_10K_norm1.0.bin --index_path_prefix data/disk_index_l2_rand_float_10D_10K_norm1.0_diskfull_sharded -R 16 -L 32 -B 0.00003 -M 0.00006
dist/bin/search_disk_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_float_10D_10K_norm1.0_diskfull_sharded --result_path /tmp/res --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/l2_rand_float_10D_10K_norm1.0_10D_1K_norm1.0_gt100 --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16
- name: build and search disk index (sharded graph build, cosine, no diskPQ) (float)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type float --dist_fn cosine --data_path data/rand_float_10D_10K_unnorm.bin --index_path_prefix data/disk_index_cosine_rand_float_10D_10K_unnorm_diskfull_sharded -R 16 -L 32 -B 0.00003 -M 0.00006
dist/bin/search_disk_index --data_type float --dist_fn cosine --fail_if_recall_below 70 --index_path_prefix data/disk_index_cosine_rand_float_10D_10K_unnorm_diskfull_sharded --result_path /tmp/res --query_file data/rand_float_10D_1K_unnorm.bin --gt_file data/cosine_rand_float_10D_10K_unnorm_10D_1K_unnorm_gt100 --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16
- name: build and search disk index (sharded graph build, L2, no diskPQ) (int8)
run: |
dist/bin/build_disk_index --data_type int8 --dist_fn l2 --data_path data/rand_int8_10D_10K_norm50.0.bin --index_path_prefix data/disk_index_l2_rand_int8_10D_10K_norm50.0_diskfull_sharded -R 16 -L 32 -B 0.00003 -M 0.00006
dist/bin/search_disk_index --data_type int8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_int8_10D_10K_norm50.0_diskfull_sharded --result_path /tmp/res --query_file data/rand_int8_10D_1K_norm50.0.bin --gt_file data/l2_rand_int8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16
- name: build and search disk index (sharded graph build, L2, no diskPQ) (uint8)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type uint8 --dist_fn l2 --data_path data/rand_uint8_10D_10K_norm50.0.bin --index_path_prefix data/disk_index_l2_rand_uint8_10D_10K_norm50.0_diskfull_sharded -R 16 -L 32 -B 0.00003 -M 0.00006
dist/bin/search_disk_index --data_type uint8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_uint8_10D_10K_norm50.0_diskfull_sharded --result_path /tmp/res --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/l2_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16
- name: build and search disk index (one shot graph build, L2, diskPQ) (float)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type float --dist_fn l2 --data_path data/rand_float_10D_10K_norm1.0.bin --index_path_prefix data/disk_index_l2_rand_float_10D_10K_norm1.0_diskpq_oneshot -R 16 -L 32 -B 0.00003 -M 1 --PQ_disk_bytes 5
dist/bin/search_disk_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_float_10D_10K_norm1.0_diskpq_oneshot --result_path /tmp/res --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/l2_rand_float_10D_10K_norm1.0_10D_1K_norm1.0_gt100 --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16
- name: build and search disk index (one shot graph build, L2, diskPQ) (int8)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type int8 --dist_fn l2 --data_path data/rand_int8_10D_10K_norm50.0.bin --index_path_prefix data/disk_index_l2_rand_int8_10D_10K_norm50.0_diskpq_oneshot -R 16 -L 32 -B 0.00003 -M 1 --PQ_disk_bytes 5
dist/bin/search_disk_index --data_type int8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_int8_10D_10K_norm50.0_diskpq_oneshot --result_path /tmp/res --query_file data/rand_int8_10D_1K_norm50.0.bin --gt_file data/l2_rand_int8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16
- name: build and search disk index (one shot graph build, L2, diskPQ) (uint8)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type uint8 --dist_fn l2 --data_path data/rand_uint8_10D_10K_norm50.0.bin --index_path_prefix data/disk_index_l2_rand_uint8_10D_10K_norm50.0_diskpq_oneshot -R 16 -L 32 -B 0.00003 -M 1 --PQ_disk_bytes 5
dist/bin/search_disk_index --data_type uint8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_uint8_10D_10K_norm50.0_diskpq_oneshot --result_path /tmp/res --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/l2_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16
- name: build and search disk index (sharded graph build, MIPS, diskPQ) (float)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type float --dist_fn mips --data_path data/rand_float_10D_10K_norm1.0.bin --index_path_prefix data/disk_index_mips_rand_float_10D_10K_norm1.0_diskpq_sharded -R 16 -L 32 -B 0.00003 -M 0.00006 --PQ_disk_bytes 5
dist/bin/search_disk_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_mips_rand_float_10D_10K_norm1.0_diskpq_sharded --result_path /tmp/res --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/mips_rand_float_10D_10K_norm1.0_10D_1K_norm1.0_gt100 --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16
- name: upload data and bin
uses: actions/upload-artifact@v4
with:
name: disk-pq-${{matrix.os}}
path: |
./dist/**
./data/**

View File

@@ -1,102 +0,0 @@
name: Dynamic-Labels
on: [workflow_call]
jobs:
acceptance-tests-dynamic:
name: Dynamic-Labels
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest, windows-2019, windows-latest]
runs-on: ${{matrix.os}}
defaults:
run:
shell: bash
steps:
- name: Checkout repository
if: ${{ runner.os == 'Linux' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
- name: Checkout repository
if: ${{ runner.os == 'Windows' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
submodules: true
- name: DiskANN Build CLI Applications
uses: ./.github/actions/build
- name: Generate Data
uses: ./.github/actions/generate-random
- name: Generate Labels
run: |
echo "Generating synthetic labels and computing ground truth for filtered search with universal label"
dist/bin/generate_synthetic_labels --num_labels 50 --num_points 10000 --output_file data/rand_labels_50_10K.txt --distribution_type random
echo "Generating synthetic labels with a zipf distribution and computing ground truth for filtered search with universal label"
dist/bin/generate_synthetic_labels --num_labels 50 --num_points 10000 --output_file data/zipf_labels_50_10K.txt --distribution_type zipf
- name: Test a streaming index (float) with labels (Zipf distributed)
run: |
dist/bin/test_streaming_scenario --data_type float --dist_fn l2 --data_path data/rand_float_10D_10K_norm1.0.bin --universal_label 0 --label_file data/zipf_labels_50_10K.txt --index_path_prefix data/index_zipf_stream -R 64 --FilteredLbuild 200 -L 50 --alpha 1.2 --insert_threads 8 --consolidate_threads 8 --max_points_to_insert 10000 --active_window 4000 --consolidate_interval 2000 --start_point_norm 3.2 --unique_labels_supported 51
echo "Computing groundtruth with filter"
dist/bin/compute_groundtruth_for_filters --data_type float --universal_label 0 --filter_label 1 --dist_fn l2 --base_file data/index_zipf_stream.after-streaming-act4000-cons2000-max10000.data --query_file data/rand_float_10D_1K_norm1.0.bin --K 100 --gt_file data/gt100_zipf_base-act4000-cons2000-max10000_1 --label_file data/index_zipf_stream.after-streaming-act4000-cons2000-max10000_raw_labels.txt --tags_file data/index_zipf_stream.after-streaming-act4000-cons2000-max10000.tags
echo "Searching with filter"
dist/bin/search_memory_index --data_type float --dist_fn l2 --filter_label 1 --fail_if_recall_below 40 --index_path_prefix data/index_zipf_stream.after-streaming-act4000-cons2000-max10000 --result_path data/res_stream --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/gt100_zipf_base-act4000-cons2000-max10000_1 -K 10 -L 20 40 60 80 100 150 -T 64 --dynamic true --tags 1
echo "Computing groundtruth w/o filter"
dist/bin/compute_groundtruth --data_type float --dist_fn l2 --base_file data/index_zipf_stream.after-streaming-act4000-cons2000-max10000.data --query_file data/rand_float_10D_1K_norm1.0.bin --K 100 --gt_file data/gt100_zipf_base-act4000-cons2000-max10000
echo "Searching without filter"
dist/bin/search_memory_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_zipf_stream.after-streaming-act4000-cons2000-max10000 --result_path res_stream --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/gt100_zipf_base-act4000-cons2000-max10000 -K 10 -L 20 40 60 80 100 -T 64
- name: Test a streaming index (float) with labels (random distributed)
run: |
dist/bin/test_streaming_scenario --data_type float --dist_fn l2 --data_path data/rand_float_10D_10K_norm1.0.bin --universal_label 0 --label_file data/rand_labels_50_10K.txt --index_path_prefix data/index_rand_stream -R 64 --FilteredLbuild 200 -L 50 --alpha 1.2 --insert_threads 8 --consolidate_threads 8 --max_points_to_insert 10000 --active_window 4000 --consolidate_interval 2000 --start_point_norm 3.2 --unique_labels_supported 51
echo "Computing groundtruth with filter"
dist/bin/compute_groundtruth_for_filters --data_type float --universal_label 0 --filter_label 1 --dist_fn l2 --base_file data/index_rand_stream.after-streaming-act4000-cons2000-max10000.data --query_file data/rand_float_10D_1K_norm1.0.bin --K 100 --gt_file data/gt100_rand_base-act4000-cons2000-max10000_1 --label_file data/index_rand_stream.after-streaming-act4000-cons2000-max10000_raw_labels.txt --tags_file data/index_rand_stream.after-streaming-act4000-cons2000-max10000.tags
echo "Searching with filter"
dist/bin/search_memory_index --data_type float --dist_fn l2 --filter_label 1 --fail_if_recall_below 40 --index_path_prefix data/index_rand_stream.after-streaming-act4000-cons2000-max10000 --result_path data/res_stream --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/gt100_rand_base-act4000-cons2000-max10000_1 -K 10 -L 20 40 60 80 100 150 -T 64 --dynamic true --tags 1
echo "Computing groundtruth w/o filter"
dist/bin/compute_groundtruth --data_type float --dist_fn l2 --base_file data/index_rand_stream.after-streaming-act4000-cons2000-max10000.data --query_file data/rand_float_10D_1K_norm1.0.bin --K 100 --gt_file data/gt100_rand_base-act4000-cons2000-max10000
echo "Searching without filter"
dist/bin/search_memory_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_rand_stream.after-streaming-act4000-cons2000-max10000 --result_path res_stream --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/gt100_rand_base-act4000-cons2000-max10000 -K 10 -L 20 40 60 80 100 -T 64
- name: Test Insert Delete Consolidate (float) with labels (zipf distributed)
run: |
dist/bin/test_insert_deletes_consolidate --data_type float --dist_fn l2 --universal_label 0 --label_file data/zipf_labels_50_10K.txt --FilteredLbuild 70 --data_path data/rand_float_10D_10K_norm1.0.bin --index_path_prefix data/index_zipf_ins_del -R 64 -L 10 --alpha 1.2 --points_to_skip 0 --max_points_to_insert 7500 --beginning_index_size 0 --points_per_checkpoint 1000 --checkpoints_per_snapshot 0 --points_to_delete_from_beginning 2500 --start_deletes_after 5000 --do_concurrent true --start_point_norm 3.2 --unique_labels_supported 51
echo "Computing groundtruth with filter"
dist/bin/compute_groundtruth_for_filters --data_type float --filter_label 5 --universal_label 0 --dist_fn l2 --base_file data/index_zipf_ins_del.after-concurrent-delete-del2500-7500.data --query_file data/rand_float_10D_1K_norm1.0.bin --K 100 --gt_file data/gt100_zipf_random10D_1K_wlabel_5 --label_file data/index_zipf_ins_del.after-concurrent-delete-del2500-7500_raw_labels.txt --tags_file data/index_zipf_ins_del.after-concurrent-delete-del2500-7500.tags
echo "Searching with filter"
dist/bin/search_memory_index --data_type float --dist_fn l2 --filter_label 5 --fail_if_recall_below 10 --index_path_prefix data/index_zipf_ins_del.after-concurrent-delete-del2500-7500 --result_path data/res_zipf_stream --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/gt100_zipf_random10D_1K_wlabel_5 -K 10 -L 20 40 60 80 100 150 -T 64 --dynamic true --tags 1
echo "Computing groundtruth w/o filter"
dist/bin/compute_groundtruth --data_type float --dist_fn l2 --base_file data/index_zipf_ins_del.after-concurrent-delete-del2500-7500.data --query_file data/rand_float_10D_1K_norm1.0.bin --K 100 --gt_file data/gt100_zipf_random10D_1K
echo "Searching without filter"
dist/bin/search_memory_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_zipf_ins_del.after-concurrent-delete-del2500-7500 --result_path res_stream --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/gt100_zipf_random10D_1K -K 10 -L 20 40 60 80 100 -T 64
- name: Test Insert Delete Consolidate (float) with labels (random distributed)
run: |
dist/bin/test_insert_deletes_consolidate --data_type float --dist_fn l2 --universal_label 0 --label_file data/rand_labels_50_10K.txt --FilteredLbuild 70 --data_path data/rand_float_10D_10K_norm1.0.bin --index_path_prefix data/index_rand_ins_del -R 64 -L 10 --alpha 1.2 --points_to_skip 0 --max_points_to_insert 7500 --beginning_index_size 0 --points_per_checkpoint 1000 --checkpoints_per_snapshot 0 --points_to_delete_from_beginning 2500 --start_deletes_after 5000 --do_concurrent true --start_point_norm 3.2 --unique_labels_supported 51
echo "Computing groundtruth with filter"
dist/bin/compute_groundtruth_for_filters --data_type float --filter_label 5 --universal_label 0 --dist_fn l2 --base_file data/index_rand_ins_del.after-concurrent-delete-del2500-7500.data --query_file data/rand_float_10D_1K_norm1.0.bin --K 100 --gt_file data/gt100_rand_random10D_1K_wlabel_5 --label_file data/index_rand_ins_del.after-concurrent-delete-del2500-7500_raw_labels.txt --tags_file data/index_rand_ins_del.after-concurrent-delete-del2500-7500.tags
echo "Searching with filter"
dist/bin/search_memory_index --data_type float --dist_fn l2 --filter_label 5 --fail_if_recall_below 40 --index_path_prefix data/index_rand_ins_del.after-concurrent-delete-del2500-7500 --result_path data/res_rand_stream --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/gt100_rand_random10D_1K_wlabel_5 -K 10 -L 20 40 60 80 100 150 -T 64 --dynamic true --tags 1
echo "Computing groundtruth w/o filter"
dist/bin/compute_groundtruth --data_type float --dist_fn l2 --base_file data/index_rand_ins_del.after-concurrent-delete-del2500-7500.data --query_file data/rand_float_10D_1K_norm1.0.bin --K 100 --gt_file data/gt100_rand_random10D_1K
echo "Searching without filter"
dist/bin/search_memory_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_rand_ins_del.after-concurrent-delete-del2500-7500 --result_path res_stream --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/gt100_rand_random10D_1K -K 10 -L 20 40 60 80 100 -T 64
- name: upload data and bin
uses: actions/upload-artifact@v4
with:
name: dynamic-labels-${{matrix.os}}
path: |
./dist/**
./data/**

View File

@@ -1,75 +0,0 @@
name: Dynamic
on: [workflow_call]
jobs:
acceptance-tests-dynamic:
name: Dynamic
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest, windows-2019, windows-latest]
runs-on: ${{matrix.os}}
defaults:
run:
shell: bash
steps:
- name: Checkout repository
if: ${{ runner.os == 'Linux' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
- name: Checkout repository
if: ${{ runner.os == 'Windows' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
submodules: true
- name: DiskANN Build CLI Applications
uses: ./.github/actions/build
- name: Generate Data
uses: ./.github/actions/generate-random
- name: test a streaming index (float)
run: |
dist/bin/test_streaming_scenario --data_type float --dist_fn l2 --data_path data/rand_float_10D_10K_norm1.0.bin --index_path_prefix data/index_stream -R 64 -L 600 --alpha 1.2 --insert_threads 4 --consolidate_threads 4 --max_points_to_insert 10000 --active_window 4000 --consolidate_interval 2000 --start_point_norm 3.2
dist/bin/compute_groundtruth --data_type float --dist_fn l2 --base_file data/index_stream.after-streaming-act4000-cons2000-max10000.data --query_file data/rand_float_10D_1K_norm1.0.bin --K 100 --gt_file data/gt100_base-act4000-cons2000-max10000 --tags_file data/index_stream.after-streaming-act4000-cons2000-max10000.tags
dist/bin/search_memory_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_stream.after-streaming-act4000-cons2000-max10000 --result_path data/res_stream --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/gt100_base-act4000-cons2000-max10000 -K 10 -L 20 40 60 80 100 -T 64 --dynamic true --tags 1
- name: test a streaming index (int8)
if: success() || failure()
run: |
dist/bin/test_streaming_scenario --data_type int8 --dist_fn l2 --data_path data/rand_int8_10D_10K_norm50.0.bin --index_path_prefix data/index_stream -R 64 -L 600 --alpha 1.2 --insert_threads 4 --consolidate_threads 4 --max_points_to_insert 10000 --active_window 4000 --consolidate_interval 2000 --start_point_norm 200
dist/bin/compute_groundtruth --data_type int8 --dist_fn l2 --base_file data/index_stream.after-streaming-act4000-cons2000-max10000.data --query_file data/rand_int8_10D_1K_norm50.0.bin --K 100 --gt_file data/gt100_base-act4000-cons2000-max10000 --tags_file data/index_stream.after-streaming-act4000-cons2000-max10000.tags
dist/bin/search_memory_index --data_type int8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_stream.after-streaming-act4000-cons2000-max10000 --result_path res_stream --query_file data/rand_int8_10D_1K_norm50.0.bin --gt_file data/gt100_base-act4000-cons2000-max10000 -K 10 -L 20 40 60 80 100 -T 64 --dynamic true --tags 1
- name: test a streaming index
if: success() || failure()
run: |
dist/bin/test_streaming_scenario --data_type uint8 --dist_fn l2 --data_path data/rand_uint8_10D_10K_norm50.0.bin --index_path_prefix data/index_stream -R 64 -L 600 --alpha 1.2 --insert_threads 4 --consolidate_threads 4 --max_points_to_insert 10000 --active_window 4000 --consolidate_interval 2000 --start_point_norm 200
dist/bin/compute_groundtruth --data_type uint8 --dist_fn l2 --base_file data/index_stream.after-streaming-act4000-cons2000-max10000.data --query_file data/rand_uint8_10D_1K_norm50.0.bin --K 100 --gt_file data/gt100_base-act4000-cons2000-max10000 --tags_file data/index_stream.after-streaming-act4000-cons2000-max10000.tags
dist/bin/search_memory_index --data_type uint8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_stream.after-streaming-act4000-cons2000-max10000 --result_path data/res_stream --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/gt100_base-act4000-cons2000-max10000 -K 10 -L 20 40 60 80 100 -T 64 --dynamic true --tags 1
- name: build and search an incremental index (float)
if: success() || failure()
run: |
dist/bin/test_insert_deletes_consolidate --data_type float --dist_fn l2 --data_path data/rand_float_10D_10K_norm1.0.bin --index_path_prefix data/index_ins_del -R 64 -L 300 --alpha 1.2 -T 8 --points_to_skip 0 --max_points_to_insert 7500 --beginning_index_size 0 --points_per_checkpoint 1000 --checkpoints_per_snapshot 0 --points_to_delete_from_beginning 2500 --start_deletes_after 5000 --do_concurrent true --start_point_norm 3.2;
dist/bin/compute_groundtruth --data_type float --dist_fn l2 --base_file data/index_ins_del.after-concurrent-delete-del2500-7500.data --query_file data/rand_float_10D_1K_norm1.0.bin --K 100 --gt_file data/gt100_random10D_1K-conc-2500-7500 --tags_file data/index_ins_del.after-concurrent-delete-del2500-7500.tags
dist/bin/search_memory_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_ins_del.after-concurrent-delete-del2500-7500 --result_path data/res_ins_del --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/gt100_random10D_1K-conc-2500-7500 -K 10 -L 20 40 60 80 100 -T 8 --dynamic true --tags 1
- name: build and search an incremental index (int8)
if: success() || failure()
run: |
dist/bin/test_insert_deletes_consolidate --data_type int8 --dist_fn l2 --data_path data/rand_int8_10D_10K_norm50.0.bin --index_path_prefix data/index_ins_del -R 64 -L 300 --alpha 1.2 -T 8 --points_to_skip 0 --max_points_to_insert 7500 --beginning_index_size 0 --points_per_checkpoint 1000 --checkpoints_per_snapshot 0 --points_to_delete_from_beginning 2500 --start_deletes_after 5000 --do_concurrent true --start_point_norm 200
dist/bin/compute_groundtruth --data_type int8 --dist_fn l2 --base_file data/index_ins_del.after-concurrent-delete-del2500-7500.data --query_file data/rand_int8_10D_1K_norm50.0.bin --K 100 --gt_file data/gt100_random10D_1K-conc-2500-7500 --tags_file data/index_ins_del.after-concurrent-delete-del2500-7500.tags
dist/bin/search_memory_index --data_type int8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_ins_del.after-concurrent-delete-del2500-7500 --result_path data/res_ins_del --query_file data/rand_int8_10D_1K_norm50.0.bin --gt_file data/gt100_random10D_1K-conc-2500-7500 -K 10 -L 20 40 60 80 100 -T 8 --dynamic true --tags 1
- name: build and search an incremental index (uint8)
if: success() || failure()
run: |
dist/bin/test_insert_deletes_consolidate --data_type uint8 --dist_fn l2 --data_path data/rand_uint8_10D_10K_norm50.0.bin --index_path_prefix data/index_ins_del -R 64 -L 300 --alpha 1.2 -T 8 --points_to_skip 0 --max_points_to_insert 7500 --beginning_index_size 0 --points_per_checkpoint 1000 --checkpoints_per_snapshot 0 --points_to_delete_from_beginning 2500 --start_deletes_after 5000 --do_concurrent true --start_point_norm 200
dist/bin/compute_groundtruth --data_type uint8 --dist_fn l2 --base_file data/index_ins_del.after-concurrent-delete-del2500-7500.data --query_file data/rand_uint8_10D_1K_norm50.0.bin --K 100 --gt_file data/gt100_random10D_10K-conc-2500-7500 --tags_file data/index_ins_del.after-concurrent-delete-del2500-7500.tags
dist/bin/search_memory_index --data_type uint8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_ins_del.after-concurrent-delete-del2500-7500 --result_path data/res_ins_del --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/gt100_random10D_10K-conc-2500-7500 -K 10 -L 20 40 60 80 100 -T 8 --dynamic true --tags 1
- name: upload data and bin
uses: actions/upload-artifact@v4
with:
name: dynamic-${{matrix.os}}
path: |
./dist/**
./data/**

View File

@@ -1,81 +0,0 @@
name: In-Memory Without PQ
on: [workflow_call]
jobs:
acceptance-tests-mem-no-pq:
name: In-Mem, Without PQ
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest, windows-2019, windows-latest]
runs-on: ${{matrix.os}}
defaults:
run:
shell: bash
steps:
- name: Checkout repository
if: ${{ runner.os == 'Linux' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
- name: Checkout repository
if: ${{ runner.os == 'Windows' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
submodules: true
- name: DiskANN Build CLI Applications
uses: ./.github/actions/build
- name: Generate Data
uses: ./.github/actions/generate-random
- name: build and search in-memory index with L2 metrics (float)
if: success() || failure()
run: |
dist/bin/build_memory_index --data_type float --dist_fn l2 --data_path data/rand_float_10D_10K_norm1.0.bin --index_path_prefix data/index_l2_rand_float_10D_10K_norm1.0
dist/bin/search_memory_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_l2_rand_float_10D_10K_norm1.0 --query_file data/rand_float_10D_1K_norm1.0.bin --recall_at 10 --result_path temp --gt_file data/l2_rand_float_10D_10K_norm1.0_10D_1K_norm1.0_gt100 -L 16 32
- name: build and search in-memory index with L2 metrics (int8)
if: success() || failure()
run: |
dist/bin/build_memory_index --data_type int8 --dist_fn l2 --data_path data/rand_int8_10D_10K_norm50.0.bin --index_path_prefix data/index_l2_rand_int8_10D_10K_norm50.0
dist/bin/search_memory_index --data_type int8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_l2_rand_int8_10D_10K_norm50.0 --query_file data/rand_int8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/l2_rand_int8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 -L 16 32
- name: build and search in-memory index with L2 metrics (uint8)
if: success() || failure()
run: |
dist/bin/build_memory_index --data_type uint8 --dist_fn l2 --data_path data/rand_uint8_10D_10K_norm50.0.bin --index_path_prefix data/index_l2_rand_uint8_10D_10K_norm50.0
dist/bin/search_memory_index --data_type uint8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_l2_rand_uint8_10D_10K_norm50.0 --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/l2_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 -L 16 32
- name: Searching with fast_l2 distance function (float)
if: runner.os != 'Windows' && (success() || failure())
run: |
dist/bin/search_memory_index --data_type float --dist_fn fast_l2 --fail_if_recall_below 70 --index_path_prefix data/index_l2_rand_float_10D_10K_norm1.0 --query_file data/rand_float_10D_1K_norm1.0.bin --recall_at 10 --result_path temp --gt_file data/l2_rand_float_10D_10K_norm1.0_10D_1K_norm1.0_gt100 -L 16 32
- name: build and search in-memory index with MIPS metric (float)
if: success() || failure()
run: |
dist/bin/build_memory_index --data_type float --dist_fn mips --data_path data/rand_float_10D_10K_norm1.0.bin --index_path_prefix data/index_mips_rand_float_10D_10K_norm1.0
dist/bin/search_memory_index --data_type float --dist_fn mips --fail_if_recall_below 70 --index_path_prefix data/index_l2_rand_float_10D_10K_norm1.0 --query_file data/rand_float_10D_1K_norm1.0.bin --recall_at 10 --result_path temp --gt_file data/mips_rand_float_10D_10K_norm1.0_10D_1K_norm1.0_gt100 -L 16 32
- name: build and search in-memory index with cosine metric (float)
if: success() || failure()
run: |
dist/bin/build_memory_index --data_type float --dist_fn cosine --data_path data/rand_float_10D_10K_norm1.0.bin --index_path_prefix data/index_cosine_rand_float_10D_10K_norm1.0
dist/bin/search_memory_index --data_type float --dist_fn cosine --fail_if_recall_below 70 --index_path_prefix data/index_l2_rand_float_10D_10K_norm1.0 --query_file data/rand_float_10D_1K_norm1.0.bin --recall_at 10 --result_path temp --gt_file data/cosine_rand_float_10D_10K_norm1.0_10D_1K_norm1.0_gt100 -L 16 32
- name: build and search in-memory index with cosine metric (int8)
if: success() || failure()
run: |
dist/bin/build_memory_index --data_type int8 --dist_fn cosine --data_path data/rand_int8_10D_10K_norm50.0.bin --index_path_prefix data/index_cosine_rand_int8_10D_10K_norm50.0
dist/bin/search_memory_index --data_type int8 --dist_fn cosine --fail_if_recall_below 70 --index_path_prefix data/index_l2_rand_int8_10D_10K_norm50.0 --query_file data/rand_int8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/cosine_rand_int8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 -L 16 32
- name: build and search in-memory index with cosine metric
if: success() || failure()
run: |
dist/bin/build_memory_index --data_type uint8 --dist_fn cosine --data_path data/rand_uint8_10D_10K_norm50.0.bin --index_path_prefix data/index_cosine_rand_uint8_10D_10K_norm50.0
dist/bin/search_memory_index --data_type uint8 --dist_fn cosine --fail_if_recall_below 70 --index_path_prefix data/index_l2_rand_uint8_10D_10K_norm50.0 --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/cosine_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 -L 16 32
- name: upload data and bin
uses: actions/upload-artifact@v4
with:
name: in-memory-no-pq-${{matrix.os}}
path: |
./dist/**
./data/**

View File

@@ -1,56 +0,0 @@
name: In-Memory With PQ
on: [workflow_call]
jobs:
acceptance-tests-mem-pq:
name: In-Mem, PQ
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest, windows-2019, windows-latest]
runs-on: ${{matrix.os}}
defaults:
run:
shell: bash
steps:
- name: Checkout repository
if: ${{ runner.os == 'Linux' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
- name: Checkout repository
if: ${{ runner.os == 'Windows' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
submodules: true
- name: DiskANN Build CLI Applications
uses: ./.github/actions/build
- name: Generate Data
uses: ./.github/actions/generate-random
- name: build and search in-memory index with L2 metric with PQ based distance comparisons (float)
if: success() || failure()
run: |
dist/bin/build_memory_index --data_type float --dist_fn l2 --data_path data/rand_float_10D_10K_norm1.0.bin --index_path_prefix data/index_l2_rand_float_10D_10K_norm1.0_buildpq5 --build_PQ_bytes 5
dist/bin/search_memory_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_l2_rand_float_10D_10K_norm1.0_buildpq5 --query_file data/rand_float_10D_1K_norm1.0.bin --recall_at 10 --result_path temp --gt_file data/l2_rand_float_10D_10K_norm1.0_10D_1K_norm1.0_gt100 -L 16 32
- name: build and search in-memory index with L2 metrics with PQ base distance comparisons (int8)
if: success() || failure()
run: |
dist/bin/build_memory_index --data_type int8 --dist_fn l2 --data_path data/rand_int8_10D_10K_norm50.0.bin --index_path_prefix data/index_l2_rand_int8_10D_10K_norm50.0_buildpq5 --build_PQ_bytes 5
dist/bin/search_memory_index --data_type int8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_l2_rand_int8_10D_10K_norm50.0_buildpq5 --query_file data/rand_int8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/l2_rand_int8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 -L 16 32
- name: build and search in-memory index with L2 metrics with PQ base distance comparisons (uint8)
if: success() || failure()
run: |
dist/bin/build_memory_index --data_type uint8 --dist_fn l2 --data_path data/rand_uint8_10D_10K_norm50.0.bin --index_path_prefix data/index_l2_rand_uint8_10D_10K_norm50.0_buildpq5 --build_PQ_bytes 5
dist/bin/search_memory_index --data_type uint8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_l2_rand_uint8_10D_10K_norm50.0_buildpq5 --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/l2_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 -L 16 32
- name: upload data and bin
uses: actions/upload-artifact@v4
with:
name: in-memory-pq-${{matrix.os}}
path: |
./dist/**
./data/**

View File

@@ -1,120 +0,0 @@
name: Labels
on: [workflow_call]
jobs:
acceptance-tests-labels:
name: Labels
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest, windows-2019, windows-latest]
runs-on: ${{matrix.os}}
defaults:
run:
shell: bash
steps:
- name: Checkout repository
if: ${{ runner.os == 'Linux' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
- name: Checkout repository
if: ${{ runner.os == 'Windows' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
submodules: true
- name: DiskANN Build CLI Applications
uses: ./.github/actions/build
- name: Generate Data
uses: ./.github/actions/generate-random
- name: Generate Labels
run: |
echo "Generating synthetic labels and computing ground truth for filtered search with universal label"
dist/bin/generate_synthetic_labels --num_labels 50 --num_points 10000 --output_file data/rand_labels_50_10K.txt --distribution_type random
dist/bin/compute_groundtruth_for_filters --data_type uint8 --dist_fn l2 --universal_label 0 --filter_label 10 --base_file data/rand_uint8_10D_10K_norm50.0.bin --query_file data/rand_uint8_10D_1K_norm50.0.bin --label_file data/rand_labels_50_10K.txt --gt_file data/l2_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel --K 100
dist/bin/compute_groundtruth_for_filters --data_type uint8 --dist_fn mips --universal_label 0 --filter_label 10 --base_file data/rand_uint8_10D_10K_norm50.0.bin --query_file data/rand_uint8_10D_1K_norm50.0.bin --label_file data/rand_labels_50_10K.txt --gt_file data/mips_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel --K 100
dist/bin/compute_groundtruth_for_filters --data_type uint8 --dist_fn cosine --universal_label 0 --filter_label 10 --base_file data/rand_uint8_10D_10K_norm50.0.bin --query_file data/rand_uint8_10D_1K_norm50.0.bin --label_file data/rand_labels_50_10K.txt --gt_file data/cosine_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel --K 100
echo "Generating synthetic labels with a zipf distribution and computing ground truth for filtered search with universal label"
dist/bin/generate_synthetic_labels --num_labels 50 --num_points 10000 --output_file data/zipf_labels_50_10K.txt --distribution_type zipf
dist/bin/compute_groundtruth_for_filters --data_type uint8 --dist_fn l2 --universal_label 0 --filter_label 5 --base_file data/rand_uint8_10D_10K_norm50.0.bin --query_file data/rand_uint8_10D_1K_norm50.0.bin --label_file data/zipf_labels_50_10K.txt --gt_file data/l2_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel --K 100
dist/bin/compute_groundtruth_for_filters --data_type uint8 --dist_fn mips --universal_label 0 --filter_label 5 --base_file data/rand_uint8_10D_10K_norm50.0.bin --query_file data/rand_uint8_10D_1K_norm50.0.bin --label_file data/zipf_labels_50_10K.txt --gt_file data/mips_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel --K 100
dist/bin/compute_groundtruth_for_filters --data_type uint8 --dist_fn cosine --universal_label 0 --filter_label 5 --base_file data/rand_uint8_10D_10K_norm50.0.bin --query_file data/rand_uint8_10D_1K_norm50.0.bin --label_file data/zipf_labels_50_10K.txt --gt_file data/cosine_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel --K 100
echo "Generating synthetic labels and computing ground truth for filtered search without a universal label"
dist/bin/compute_groundtruth_for_filters --data_type uint8 --dist_fn l2 --filter_label 5 --base_file data/rand_uint8_10D_10K_norm50.0.bin --query_file data/rand_uint8_10D_1K_norm50.0.bin --label_file data/zipf_labels_50_10K.txt --gt_file data/l2_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel_nouniversal --K 100
dist/bin/generate_synthetic_labels --num_labels 10 --num_points 1000 --output_file data/query_labels_1K.txt --distribution_type one_per_point
dist/bin/compute_groundtruth_for_filters --data_type uint8 --dist_fn l2 --universal_label 0 --filter_label_file data/query_labels_1K.txt --base_file data/rand_uint8_10D_10K_norm50.0.bin --query_file data/rand_uint8_10D_1K_norm50.0.bin --label_file data/zipf_labels_50_10K.txt --gt_file data/combined_l2_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel --K 100
- name: build and search in-memory index with labels using L2 and Cosine metrics (random distributed labels)
if: success() || failure()
run: |
dist/bin/build_memory_index --data_type uint8 --dist_fn l2 --FilteredLbuild 90 --universal_label 0 --data_path data/rand_uint8_10D_10K_norm50.0.bin --label_file data/rand_labels_50_10K.txt --index_path_prefix data/index_l2_rand_uint8_10D_10K_norm50_wlabel
dist/bin/build_memory_index --data_type uint8 --dist_fn cosine --FilteredLbuild 90 --universal_label 0 --data_path data/rand_uint8_10D_10K_norm50.0.bin --label_file data/rand_labels_50_10K.txt --index_path_prefix data/index_cosine_rand_uint8_10D_10K_norm50_wlabel
dist/bin/search_memory_index --data_type uint8 --dist_fn l2 --filter_label 10 --fail_if_recall_below 70 --index_path_prefix data/index_l2_rand_uint8_10D_10K_norm50_wlabel --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/l2_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel -L 16 32
dist/bin/search_memory_index --data_type uint8 --dist_fn cosine --filter_label 10 --fail_if_recall_below 70 --index_path_prefix data/index_cosine_rand_uint8_10D_10K_norm50_wlabel --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/cosine_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel -L 16 32
echo "Searching without filters"
dist/bin/search_memory_index --data_type uint8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_l2_rand_uint8_10D_10K_norm50_wlabel --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/l2_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 -L 32 64
dist/bin/search_memory_index --data_type uint8 --dist_fn cosine --fail_if_recall_below 70 --index_path_prefix data/index_cosine_rand_uint8_10D_10K_norm50_wlabel --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/cosine_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 -L 32 64
- name: build and search disk index with labels using L2 and Cosine metrics (random distributed labels)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type uint8 --dist_fn l2 --universal_label 0 --FilteredLbuild 90 --data_path data/rand_uint8_10D_10K_norm50.0.bin --label_file data/rand_labels_50_10K.txt --index_path_prefix data/disk_index_l2_rand_uint8_10D_10K_norm50_wlabel -R 32 -L 5 -B 0.00003 -M 1
dist/bin/search_disk_index --data_type uint8 --dist_fn l2 --filter_label 10 --fail_if_recall_below 50 --index_path_prefix data/disk_index_l2_rand_uint8_10D_10K_norm50_wlabel --result_path temp --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/l2_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16
- name: build and search in-memory index with labels using L2 and Cosine metrics (zipf distributed labels)
if: success() || failure()
run: |
dist/bin/build_memory_index --data_type uint8 --dist_fn l2 --FilteredLbuild 90 --universal_label 0 --data_path data/rand_uint8_10D_10K_norm50.0.bin --label_file data/zipf_labels_50_10K.txt --index_path_prefix data/index_l2_zipf_uint8_10D_10K_norm50_wlabel
dist/bin/build_memory_index --data_type uint8 --dist_fn cosine --FilteredLbuild 90 --universal_label 0 --data_path data/rand_uint8_10D_10K_norm50.0.bin --label_file data/zipf_labels_50_10K.txt --index_path_prefix data/index_cosine_zipf_uint8_10D_10K_norm50_wlabel
dist/bin/search_memory_index --data_type uint8 --dist_fn l2 --filter_label 5 --fail_if_recall_below 70 --index_path_prefix data/index_l2_zipf_uint8_10D_10K_norm50_wlabel --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/l2_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel -L 16 32
dist/bin/search_memory_index --data_type uint8 --dist_fn cosine --filter_label 5 --fail_if_recall_below 70 --index_path_prefix data/index_cosine_zipf_uint8_10D_10K_norm50_wlabel --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/cosine_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel -L 16 32
echo "Searching without filters"
dist/bin/compute_groundtruth --data_type uint8 --dist_fn l2 --base_file data/rand_uint8_10D_10K_norm50.0.bin --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/l2_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 --K 100
dist/bin/compute_groundtruth --data_type uint8 --dist_fn cosine --base_file data/rand_uint8_10D_10K_norm50.0.bin --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/cosine_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 --K 100
dist/bin/search_memory_index --data_type uint8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_l2_zipf_uint8_10D_10K_norm50_wlabel --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/l2_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 -L 32 64
dist/bin/search_memory_index --data_type uint8 --dist_fn cosine --fail_if_recall_below 70 --index_path_prefix data/index_cosine_zipf_uint8_10D_10K_norm50_wlabel --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/cosine_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 -L 32 64
- name: build and search disk index with labels using L2 and Cosine metrics (zipf distributed labels)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type uint8 --dist_fn l2 --universal_label 0 --FilteredLbuild 90 --data_path data/rand_uint8_10D_10K_norm50.0.bin --label_file data/zipf_labels_50_10K.txt --index_path_prefix data/disk_index_l2_zipf_uint8_10D_10K_norm50_wlabel -R 32 -L 5 -B 0.00003 -M 1
dist/bin/search_disk_index --data_type uint8 --dist_fn l2 --filter_label 5 --fail_if_recall_below 50 --index_path_prefix data/disk_index_l2_zipf_uint8_10D_10K_norm50_wlabel --result_path temp --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/l2_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16
- name : build and search in-memory and disk index (without universal label, zipf distributed)
if: success() || failure()
run: |
dist/bin/build_memory_index --data_type uint8 --dist_fn l2 --FilteredLbuild 90 --data_path data/rand_uint8_10D_10K_norm50.0.bin --label_file data/zipf_labels_50_10K.txt --index_path_prefix data/index_l2_zipf_uint8_10D_10K_norm50_wlabel_nouniversal
dist/bin/build_disk_index --data_type uint8 --dist_fn l2 --FilteredLbuild 90 --data_path data/rand_uint8_10D_10K_norm50.0.bin --label_file data/zipf_labels_50_10K.txt --index_path_prefix data/disk_index_l2_zipf_uint8_10D_10K_norm50_wlabel_nouniversal -R 32 -L 5 -B 0.00003 -M 1
dist/bin/search_memory_index --data_type uint8 --dist_fn l2 --filter_label 5 --fail_if_recall_below 70 --index_path_prefix data/index_l2_zipf_uint8_10D_10K_norm50_wlabel_nouniversal --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/l2_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel_nouniversal -L 16 32
dist/bin/search_disk_index --data_type uint8 --dist_fn l2 --filter_label 5 --index_path_prefix data/disk_index_l2_zipf_uint8_10D_10K_norm50_wlabel_nouniversal --result_path temp --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/l2_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel_nouniversal --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16
- name: Generate combined GT for each query with a separate label and search
if: success() || failure()
run: |
dist/bin/build_memory_index --data_type uint8 --dist_fn l2 --FilteredLbuild 90 --universal_label 0 --data_path data/rand_uint8_10D_10K_norm50.0.bin --label_file data/zipf_labels_50_10K.txt --index_path_prefix data/index_l2_zipf_uint8_10D_10K_norm50_wlabel
dist/bin/search_memory_index --data_type uint8 --dist_fn l2 --query_filters_file data/query_labels_1K.txt --fail_if_recall_below 70 --index_path_prefix data/index_l2_zipf_uint8_10D_10K_norm50_wlabel --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/combined_l2_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel -L 16 32
- name: build and search in-memory index with pq_dist of 5 with 10 dimensions
if: success() || failure()
run: |
dist/bin/build_memory_index --data_type uint8 --dist_fn l2 --FilteredLbuild 90 --universal_label 0 --data_path data/rand_uint8_10D_10K_norm50.0.bin --label_file data/rand_labels_50_10K.txt --index_path_prefix data/index_l2_rand_uint8_10D_10K_norm50_wlabel --build_PQ_bytes 5
dist/bin/search_memory_index --data_type uint8 --dist_fn l2 --filter_label 10 --fail_if_recall_below 70 --index_path_prefix data/index_l2_rand_uint8_10D_10K_norm50_wlabel --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/l2_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel -L 16 32
- name: Build and search stitched vamana with random and zipf distributed labels
if: success() || failure()
run: |
dist/bin/build_stitched_index --num_threads 48 --data_type uint8 --data_path data/rand_uint8_10D_10K_norm50.0.bin --label_file data/rand_labels_50_10K.txt -R 32 -L 100 --alpha 1.2 --stitched_R 64 --index_path_prefix data/stit_rand_32_100_64_new --universal_label 0
dist/bin/build_stitched_index --num_threads 48 --data_type uint8 --data_path data/rand_uint8_10D_10K_norm50.0.bin --label_file data/zipf_labels_50_10K.txt -R 32 -L 100 --alpha 1.2 --stitched_R 64 --index_path_prefix data/stit_zipf_32_100_64_new --universal_label 0
dist/bin/search_memory_index --num_threads 48 --data_type uint8 --dist_fn l2 --filter_label 10 --index_path_prefix data/stit_rand_32_100_64_new --query_file data/rand_uint8_10D_1K_norm50.0.bin --result_path data/rand_stit_96_10_90_new --gt_file data/l2_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel -K 10 -L 16 32 150
dist/bin/search_memory_index --num_threads 48 --data_type uint8 --dist_fn l2 --filter_label 5 --index_path_prefix data/stit_zipf_32_100_64_new --query_file data/rand_uint8_10D_1K_norm50.0.bin --result_path data/zipf_stit_96_10_90_new --gt_file data/l2_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel -K 10 -L 16 32 150
- name: upload data and bin
if: success() || failure()
uses: actions/upload-artifact@v4
with:
name: labels-${{matrix.os}}
path: |
./dist/**
./data/**

View File

@@ -1,60 +0,0 @@
name: Disk With PQ
on: [workflow_call]
jobs:
acceptance-tests-disk-pq:
name: Disk, PQ
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest, windows-2019, windows-latest]
runs-on: ${{matrix.os}}
defaults:
run:
shell: bash
steps:
- name: Checkout repository
if: ${{ runner.os == 'Linux' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
- name: Checkout repository
if: ${{ runner.os == 'Windows' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
submodules: true
- name: DiskANN Build CLI Applications
uses: ./.github/actions/build
- name: Generate Data
uses: ./.github/actions/generate-high-dim-random
- name: build and search disk index (1020D, one shot graph build, L2, no diskPQ) (float)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type float --dist_fn l2 --data_path data/rand_float_1020D_5K_norm1.0.bin --index_path_prefix data/disk_index_l2_rand_float_1020D_5K_norm1.0_diskfull_oneshot -R 32 -L 500 -B 0.003 -M 1
dist/bin/search_disk_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_float_1020D_5K_norm1.0_diskfull_oneshot --result_path /tmp/res --query_file data/rand_float_1020D_1K_norm1.0.bin --gt_file data/l2_rand_float_1020D_5K_norm1.0_1020D_1K_norm1.0_gt100 --recall_at 5 -L 250 -W 2 --num_nodes_to_cache 100 -T 16
#- name: build and search disk index (1024D, one shot graph build, L2, no diskPQ) (float)
# if: success() || failure()
# run: |
# dist/bin/build_disk_index --data_type float --dist_fn l2 --data_path data/rand_float_1024D_5K_norm1.0.bin --index_path_prefix data/disk_index_l2_rand_float_1024D_5K_norm1.0_diskfull_oneshot -R 32 -L 500 -B 0.003 -M 1
# dist/bin/search_disk_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_float_1024D_5K_norm1.0_diskfull_oneshot --result_path /tmp/res --query_file data/rand_float_1024D_1K_norm1.0.bin --gt_file data/l2_rand_float_1024D_5K_norm1.0_1024D_1K_norm1.0_gt100 --recall_at 5 -L 250 -W 2 --num_nodes_to_cache 100 -T 16
- name: build and search disk index (1536D, one shot graph build, L2, no diskPQ) (float)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type float --dist_fn l2 --data_path data/rand_float_1536D_5K_norm1.0.bin --index_path_prefix data/disk_index_l2_rand_float_1536D_5K_norm1.0_diskfull_oneshot -R 32 -L 500 -B 0.003 -M 1
dist/bin/search_disk_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_float_1536D_5K_norm1.0_diskfull_oneshot --result_path /tmp/res --query_file data/rand_float_1536D_1K_norm1.0.bin --gt_file data/l2_rand_float_1536D_5K_norm1.0_1536D_1K_norm1.0_gt100 --recall_at 5 -L 250 -W 2 --num_nodes_to_cache 100 -T 16
- name: build and search disk index (4096D, one shot graph build, L2, no diskPQ) (int8)
if: success() || failure()
run: |
dist/bin/build_disk_index --data_type int8 --dist_fn l2 --data_path data/rand_int8_4096D_5K_norm1.0.bin --index_path_prefix data/disk_index_l2_rand_int8_4096D_5K_norm1.0_diskfull_oneshot -R 32 -L 500 -B 0.003 -M 1
dist/bin/search_disk_index --data_type int8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_int8_4096D_5K_norm1.0_diskfull_oneshot --result_path /tmp/res --query_file data/rand_int8_4096D_1K_norm1.0.bin --gt_file data/l2_rand_int8_4096D_5K_norm1.0_4096D_1K_norm1.0_gt100 --recall_at 5 -L 250 -W 2 --num_nodes_to_cache 100 -T 16
- name: upload data and bin
uses: actions/upload-artifact@v4
with:
name: multi-sector-disk-pq-${{matrix.os}}
path: |
./dist/**
./data/**

View File

@@ -1,26 +0,0 @@
name: DiskANN Nightly Performance Metrics
on:
schedule:
- cron: "41 14 * * *" # 14:41 UTC, 7:41 PDT, 8:41 PST, 08:11 IST
jobs:
perf-test:
name: Run Perf Test from main
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v3
with:
fetch-depth: 1
- name: Build Perf Container
run: |
docker build --build-arg GIT_COMMIT_ISH="$GITHUB_SHA" -t perf -f scripts/perf/Dockerfile scripts
- name: Performance Tests
run: |
mkdir metrics
docker run -v ./metrics:/app/logs perf &> ./metrics/combined_stdouterr.log
- name: Upload Metrics Logs
uses: actions/upload-artifact@v4
with:
name: metrics-${{matrix.os}}
path: |
./metrics/**

View File

@@ -1,35 +0,0 @@
name: DiskANN Pull Request Build and Test
on: [pull_request]
jobs:
common:
strategy:
fail-fast: true
name: DiskANN Common Build Checks
uses: ./.github/workflows/common.yml
unit-tests:
name: Unit tests
uses: ./.github/workflows/unit-tests.yml
in-mem-pq:
name: In-Memory with PQ
uses: ./.github/workflows/in-mem-pq.yml
in-mem-no-pq:
name: In-Memory without PQ
uses: ./.github/workflows/in-mem-no-pq.yml
disk-pq:
name: Disk with PQ
uses: ./.github/workflows/disk-pq.yml
multi-sector-disk-pq:
name: Multi-sector Disk with PQ
uses: ./.github/workflows/multi-sector-disk-pq.yml
labels:
name: Labels
uses: ./.github/workflows/labels.yml
dynamic:
name: Dynamic
uses: ./.github/workflows/dynamic.yml
dynamic-labels:
name: Dynamic Labels
uses: ./.github/workflows/dynamic-labels.yml
python:
name: Python
uses: ./.github/workflows/build-python.yml

View File

@@ -1,50 +0,0 @@
name: DiskANN Push Build
on: [push]
jobs:
common:
strategy:
fail-fast: true
name: DiskANN Common Build Checks
uses: ./.github/workflows/common.yml
build-documentation:
permissions:
contents: write
strategy:
fail-fast: true
name: DiskANN Build Documentation
uses: ./.github/workflows/build-python-pdoc.yml
build:
strategy:
fail-fast: false
matrix:
os: [ ubuntu-latest, windows-2019, windows-latest ]
name: Build for ${{matrix.os}}
runs-on: ${{matrix.os}}
defaults:
run:
shell: bash
steps:
- name: Checkout repository
if: ${{ runner.os == 'Linux' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
- name: Checkout repository
if: ${{ runner.os == 'Windows' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
submodules: true
- name: Build diskannpy dependency tree
run: |
pip install diskannpy pipdeptree
echo "dependencies" > dependencies_${{ matrix.os }}.txt
pipdeptree >> dependencies_${{ matrix.os }}.txt
- name: Archive diskannpy dependencies artifact
uses: actions/upload-artifact@v4
with:
name: dependencies_${{ matrix.os }}
path: |
dependencies_${{ matrix.os }}.txt
- name: DiskANN Build CLI Applications
uses: ./.github/actions/build

View File

@@ -1,43 +0,0 @@
name: Build and Release Python Wheels
on:
release:
types: [published]
jobs:
python-release-wheels:
name: Python
uses: ./.github/workflows/build-python.yml
build-documentation:
strategy:
fail-fast: true
name: DiskANN Build Documentation
uses: ./.github/workflows/build-python-pdoc.yml
release:
permissions:
contents: write
runs-on: ubuntu-latest
needs: python-release-wheels
steps:
- uses: actions/download-artifact@v3
with:
name: wheels
path: dist/
- name: Generate SHA256 files for each wheel
run: |
sha256sum dist/*.whl > checksums.txt
cat checksums.txt
- uses: actions/setup-python@v3
- name: Install twine
run: python -m pip install twine
- name: Publish with twine
env:
TWINE_USERNAME: ${{ secrets.PYPI_USERNAME }}
TWINE_PASSWORD: ${{ secrets.PYPI_PASSWORD }}
run: |
twine upload dist/*.whl
- name: Update release with SHA256 and Artifacts
uses: softprops/action-gh-release@v1
with:
token: ${{ secrets.GITHUB_TOKEN }}
files: |
dist/*.whl
checksums.txt

View File

@@ -1,32 +0,0 @@
name: Unit Tests
on: [workflow_call]
jobs:
acceptance-tests-labels:
name: Unit Tests
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest, windows-2019, windows-latest]
runs-on: ${{matrix.os}}
defaults:
run:
shell: bash
steps:
- name: Checkout repository
if: ${{ runner.os == 'Linux' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
- name: Checkout repository
if: ${{ runner.os == 'Windows' }}
uses: actions/checkout@v3
with:
fetch-depth: 1
submodules: true
- name: DiskANN Build CLI Applications
uses: ./.github/actions/build
- name: Run Unit Tests
run: |
cd build
ctest -C Release

View File

@@ -1,384 +0,0 @@
## Ignore Visual Studio temporary files, build results, and
## files generated by popular Visual Studio add-ons.
##
## Get latest from https://github.com/github/gitignore/blob/master/VisualStudio.gitignore
# User-specific files
*.rsuser
*.suo
*.user
*.userosscache
*.sln.docstates
# User-specific files (MonoDevelop/Xamarin Studio)
*.userprefs
# Mono auto generated files
mono_crash.*
# Build results
[Dd]ebug/
[Dd]ebugPublic/
[Rr]elease/
[Rr]eleases/
x64/
x86/
[Aa][Rr][Mm]/
[Aa][Rr][Mm]64/
bld/
[Bb]in/
[Oo]bj/
[Ll]og/
[Ll]ogs/
# Visual Studio 2015/2017 cache/options directory
.vs/
# Uncomment if you have tasks that create the project's static files in wwwroot
#wwwroot/
# Visual Studio 2017 auto generated files
Generated\ Files/
# MSTest test Results
[Tt]est[Rr]esult*/
[Bb]uild[Ll]og.*
# NUnit
*.VisualState.xml
TestResult.xml
nunit-*.xml
# Build Results of an ATL Project
[Dd]ebugPS/
[Rr]eleasePS/
dlldata.c
# Benchmark Results
BenchmarkDotNet.Artifacts/
# .NET Core
project.lock.json
project.fragment.lock.json
artifacts/
# StyleCop
StyleCopReport.xml
# Files built by Visual Studio
*_i.c
*_p.c
*_h.h
*.ilk
*.meta
*.obj
*.iobj
*.pch
*.pdb
*.ipdb
*.pgc
*.pgd
*.rsp
*.sbr
*.tlb
*.tli
*.tlh
*.tmp
*.tmp_proj
*_wpftmp.csproj
*.log
*.vspscc
*.vssscc
.builds
*.pidb
*.svclog
*.scc
# Chutzpah Test files
_Chutzpah*
# Visual C++ cache files
ipch/
*.aps
*.ncb
*.opendb
*.opensdf
*.sdf
*.cachefile
*.VC.db
*.VC.VC.opendb
# Visual Studio profiler
*.psess
*.vsp
*.vspx
*.sap
# Visual Studio Trace Files
*.e2e
# TFS 2012 Local Workspace
$tf/
# Guidance Automation Toolkit
*.gpState
# ReSharper is a .NET coding add-in
_ReSharper*/
*.[Rr]e[Ss]harper
*.DotSettings.user
# TeamCity is a build add-in
_TeamCity*
# DotCover is a Code Coverage Tool
*.dotCover
# AxoCover is a Code Coverage Tool
.axoCover/*
!.axoCover/settings.json
# Visual Studio code coverage results
*.coverage
*.coveragexml
# NCrunch
_NCrunch_*
.*crunch*.local.xml
nCrunchTemp_*
# MightyMoose
*.mm.*
AutoTest.Net/
# Web workbench (sass)
.sass-cache/
# Installshield output folder
[Ee]xpress/
# DocProject is a documentation generator add-in
DocProject/buildhelp/
DocProject/Help/*.HxT
DocProject/Help/*.HxC
DocProject/Help/*.hhc
DocProject/Help/*.hhk
DocProject/Help/*.hhp
DocProject/Help/Html2
DocProject/Help/html
# Click-Once directory
publish/
# Publish Web Output
*.[Pp]ublish.xml
*.azurePubxml
# Note: Comment the next line if you want to checkin your web deploy settings,
# but database connection strings (with potential passwords) will be unencrypted
*.pubxml
*.publishproj
# Microsoft Azure Web App publish settings. Comment the next line if you want to
# checkin your Azure Web App publish settings, but sensitive information contained
# in these scripts will be unencrypted
PublishScripts/
# NuGet Packages
*.nupkg
# NuGet Symbol Packages
*.snupkg
# The packages folder can be ignored because of Package Restore
**/[Pp]ackages/*
# except build/, which is used as an MSBuild target.
!**/[Pp]ackages/build/
# Uncomment if necessary however generally it will be regenerated when needed
#!**/[Pp]ackages/repositories.config
# NuGet v3's project.json files produces more ignorable files
*.nuget.props
*.nuget.targets
# Microsoft Azure Build Output
csx/
*.build.csdef
# Microsoft Azure Emulator
ecf/
rcf/
# Windows Store app package directories and files
AppPackages/
BundleArtifacts/
Package.StoreAssociation.xml
_pkginfo.txt
*.appx
*.appxbundle
*.appxupload
# Visual Studio cache files
# files ending in .cache can be ignored
*.[Cc]ache
# but keep track of directories ending in .cache
!?*.[Cc]ache/
# Others
ClientBin/
~$*
*~
*.dbmdl
*.dbproj.schemaview
*.jfm
*.pfx
*.publishsettings
orleans.codegen.cs
# Including strong name files can present a security risk
# (https://github.com/github/gitignore/pull/2483#issue-259490424)
#*.snk
# Since there are multiple workflows, uncomment next line to ignore bower_components
# (https://github.com/github/gitignore/pull/1529#issuecomment-104372622)
#bower_components/
# RIA/Silverlight projects
Generated_Code/
# Backup & report files from converting an old project file
# to a newer Visual Studio version. Backup files are not needed,
# because we have git ;-)
_UpgradeReport_Files/
Backup*/
UpgradeLog*.XML
UpgradeLog*.htm
ServiceFabricBackup/
*.rptproj.bak
# SQL Server files
*.mdf
*.ldf
*.ndf
# Business Intelligence projects
*.rdl.data
*.bim.layout
*.bim_*.settings
*.rptproj.rsuser
*- [Bb]ackup.rdl
*- [Bb]ackup ([0-9]).rdl
*- [Bb]ackup ([0-9][0-9]).rdl
# Microsoft Fakes
FakesAssemblies/
# GhostDoc plugin setting file
*.GhostDoc.xml
# Node.js Tools for Visual Studio
.ntvs_analysis.dat
node_modules/
# Visual Studio 6 build log
*.plg
# Visual Studio 6 workspace options file
*.opt
# Visual Studio 6 auto-generated workspace file (contains which files were open etc.)
*.vbw
# Visual Studio LightSwitch build output
**/*.HTMLClient/GeneratedArtifacts
**/*.DesktopClient/GeneratedArtifacts
**/*.DesktopClient/ModelManifest.xml
**/*.Server/GeneratedArtifacts
**/*.Server/ModelManifest.xml
_Pvt_Extensions
# Paket dependency manager
.paket/paket.exe
paket-files/
# FAKE - F# Make
.fake/
# CodeRush personal settings
.cr/personal
# Python Tools for Visual Studio (PTVS)
__pycache__/
*.pyc
# Cake - Uncomment if you are using it
# tools/**
# !tools/packages.config
# Tabs Studio
*.tss
# Telerik's JustMock configuration file
*.jmconfig
# BizTalk build output
*.btp.cs
*.btm.cs
*.odx.cs
*.xsd.cs
# OpenCover UI analysis results
OpenCover/
# Azure Stream Analytics local run output
ASALocalRun/
# MSBuild Binary and Structured Log
*.binlog
# NVidia Nsight GPU debugger configuration file
*.nvuser
# MFractors (Xamarin productivity tool) working folder
.mfractor/
# Local History for Visual Studio
.localhistory/
# BeatPulse healthcheck temp database
healthchecksdb
# Backup folder for Package Reference Convert tool in Visual Studio 2017
MigrationBackup/
# Ionide (cross platform F# VS Code tools) working folder
.ionide/
/vcproj/nsg/x64/Debug/nsg.Build.CppClean.log
/vcproj/test_recall/x64/Debug/test_recall.Build.CppClean.log
/vcproj/test_recall/test_recall.vcxproj.user
/.vs
/out/build/x64-Debug
cscope*
build/
build_linux/
!.github/actions/build
# jetbrains specific stuff
.idea/
cmake-build-debug/
#python extension module ignores
python/diskannpy.egg-info/
python/dist/
**/*.egg-info
wheelhouse/*
dist/*
venv*/**
*.swp
gperftools
# Rust
rust/target
python/src/*.so
compile_commands.json

View File

@@ -1,3 +0,0 @@
[submodule "gperftools"]
path = gperftools
url = https://github.com/gperftools/gperftools.git

View File

@@ -1,563 +0,0 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT license.
# Parameters:
#
# BOOST_ROOT:
# Specify root of the Boost library if Boost cannot be auto-detected. On Windows, a fallback to a
# downloaded nuget version will be used if Boost cannot be found.
#
# DISKANN_RELEASE_UNUSED_TCMALLOC_MEMORY_AT_CHECKPOINTS:
# This is a work-in-progress feature, not completed yet. The core DiskANN library will be split into
# build-related and search-related functionality. In build-related functionality, when using tcmalloc,
# it's possible to release memory that's free but reserved by tcmalloc. Setting this to true enables
# such behavior.
# Contact for this feature: gopalrs.
# Some variables like MSVC are defined only after project(), so put that first.
cmake_minimum_required(VERSION 3.20)
project(diskann)
#Set option to use tcmalloc
option(USE_TCMALLOC "Use tcmalloc from gperftools" ON)
# set tcmalloc to false when on macos
if(APPLE)
set(USE_TCMALLOC OFF)
endif()
option(PYBIND "Build with Python bindings" ON)
if(PYBIND)
# Find Python
find_package(Python 3.6 COMPONENTS Interpreter Development REQUIRED)
execute_process(
COMMAND "${Python_EXECUTABLE}" -c "import pybind11; print(pybind11.get_cmake_dir())"
OUTPUT_VARIABLE pybind11_DIR
OUTPUT_STRIP_TRAILING_WHITESPACE
)
find_package(pybind11 CONFIG REQUIRED)
message(STATUS "Python include dirs: ${Python_INCLUDE_DIRS}")
message(STATUS "Pybind11 include dirs: ${pybind11_INCLUDE_DIRS}")
# Add pybind11 include directories
include_directories(SYSTEM ${pybind11_INCLUDE_DIRS} ${Python_INCLUDE_DIRS})
# Add compilation definitions
add_definitions(-DPYBIND11_EMBEDDED)
# Set visibility flags
if(NOT MSVC)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fvisibility=hidden")
endif()
endif()
set(CMAKE_STANDARD 17)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
# if(NOT MSVC)
# set(CMAKE_CXX_COMPILER g++)
# endif()
set(CMAKE_MODULE_PATH "${PROJECT_SOURCE_DIR}/cmake;${CMAKE_MODULE_PATH}")
# Install nuget packages for dependencies.
if (MSVC)
find_program(NUGET_EXE NAMES nuget)
if (NOT NUGET_EXE)
message(FATAL_ERROR "Cannot find nuget command line tool.\nPlease install it from e.g. https://www.nuget.org/downloads")
endif()
set(DISKANN_MSVC_PACKAGES_CONFIG ${CMAKE_BINARY_DIR}/packages.config)
set(DISKANN_MSVC_PACKAGES ${CMAKE_BINARY_DIR}/packages)
message(STATUS "Invoking nuget to download Boost, OpenMP and MKL dependencies...")
configure_file(${PROJECT_SOURCE_DIR}/windows/packages.config.in ${DISKANN_MSVC_PACKAGES_CONFIG})
exec_program(${NUGET_EXE} ARGS install \"${DISKANN_MSVC_PACKAGES_CONFIG}\" -ExcludeVersion -OutputDirectory \"${DISKANN_MSVC_PACKAGES}\")
if (RESTAPI)
set(DISKANN_MSVC_RESTAPI_PACKAGES_CONFIG ${CMAKE_BINARY_DIR}/restapi/packages.config)
configure_file(${PROJECT_SOURCE_DIR}/windows/packages_restapi.config.in ${DISKANN_MSVC_RESTAPI_PACKAGES_CONFIG})
exec_program(${NUGET_EXE} ARGS install \"${DISKANN_MSVC_RESTAPI_PACKAGES_CONFIG}\" -ExcludeVersion -OutputDirectory \"${DISKANN_MSVC_PACKAGES}\")
endif()
message(STATUS "Finished setting up nuget dependencies")
endif()
include_directories(${PROJECT_SOURCE_DIR}/include)
include(FetchContent)
if(USE_TCMALLOC)
FetchContent_Declare(
tcmalloc
GIT_REPOSITORY https://github.com/google/tcmalloc.git
GIT_TAG origin/master # or specify a particular version or commit
)
FetchContent_MakeAvailable(tcmalloc)
endif()
if(NOT PYBIND)
set(DISKANN_RELEASE_UNUSED_TCMALLOC_MEMORY_AT_CHECKPOINTS ON)
endif()
# It's necessary to include tcmalloc headers only if calling into MallocExtension interface.
# For using tcmalloc in DiskANN tools, it's enough to just link with tcmalloc.
if (DISKANN_RELEASE_UNUSED_TCMALLOC_MEMORY_AT_CHECKPOINTS)
include_directories(${tcmalloc_SOURCE_DIR}/src)
if (MSVC)
include_directories(${tcmalloc_SOURCE_DIR}/src/windows)
endif()
endif()
#OpenMP
if (MSVC)
# Do not use find_package here since it would use VisualStudio's built-in OpenMP, but MKL libraries
# refer to Intel's OpenMP.
#
# No extra settings are needed for compilation: it only needs /openmp flag which is set further below,
# in the common MSVC compiler options block.
include_directories(BEFORE "${DISKANN_MSVC_PACKAGES}/intelopenmp.devel.win/lib/native/include")
link_libraries("${DISKANN_MSVC_PACKAGES}/intelopenmp.devel.win/lib/native/win-x64/libiomp5md.lib")
set(OPENMP_WINDOWS_RUNTIME_FILES
"${DISKANN_MSVC_PACKAGES}/intelopenmp.redist.win/runtimes/win-x64/native/libiomp5md.dll"
"${DISKANN_MSVC_PACKAGES}/intelopenmp.redist.win/runtimes/win-x64/native/libiomp5md.pdb")
elseif(APPLE)
# Check if we're building Python bindings
if(PYBIND)
# First look for PyTorch's OpenMP to avoid conflicts
execute_process(
COMMAND ${Python_EXECUTABLE} -c "import os; import torch; print(os.path.join(os.path.dirname(torch.__file__), 'lib', 'libomp.dylib'))"
RESULT_VARIABLE TORCH_PATH_RESULT
OUTPUT_VARIABLE TORCH_LIBOMP_PATH
OUTPUT_STRIP_TRAILING_WHITESPACE
ERROR_QUIET
)
execute_process(
COMMAND brew --prefix libomp
OUTPUT_VARIABLE LIBOMP_ROOT
OUTPUT_STRIP_TRAILING_WHITESPACE
)
if(EXISTS "${TORCH_LIBOMP_PATH}")
message(STATUS "Found PyTorch's libomp: ${TORCH_LIBOMP_PATH}")
set(OpenMP_CXX_FLAGS "-Xclang -fopenmp")
set(OpenMP_C_FLAGS "-Xclang -fopenmp")
set(OpenMP_CXX_LIBRARIES "${TORCH_LIBOMP_PATH}")
set(OpenMP_C_LIBRARIES "${TORCH_LIBOMP_PATH}")
set(OpenMP_FOUND TRUE)
include_directories(${LIBOMP_ROOT}/include)
# Set compiler flags and link libraries
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OpenMP_C_FLAGS}")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}")
link_libraries("${TORCH_LIBOMP_PATH}")
else()
message(STATUS "No PyTorch's libomp found, falling back to normal OpenMP detection")
# Fallback to normal OpenMP detection
execute_process(
COMMAND brew --prefix libomp
OUTPUT_VARIABLE LIBOMP_ROOT
OUTPUT_STRIP_TRAILING_WHITESPACE
)
set(OpenMP_ROOT "${LIBOMP_ROOT}")
find_package(OpenMP)
if (OPENMP_FOUND)
set (CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OpenMP_C_FLAGS}")
set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}")
link_libraries(OpenMP::OpenMP_CXX)
else()
message(FATAL_ERROR "No OpenMP support")
endif()
endif()
else()
# Regular OpenMP setup for non-Python builds
execute_process(
COMMAND brew --prefix libomp
OUTPUT_VARIABLE LIBOMP_ROOT
OUTPUT_STRIP_TRAILING_WHITESPACE
)
set(OpenMP_ROOT "${LIBOMP_ROOT}")
find_package(OpenMP)
if (OPENMP_FOUND)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OpenMP_C_FLAGS}")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}")
link_libraries(OpenMP::OpenMP_CXX)
else()
message(FATAL_ERROR "No OpenMP support")
endif()
endif()
else()
find_package(OpenMP)
if (OPENMP_FOUND)
set (CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OpenMP_C_FLAGS}")
set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}")
else()
message(FATAL_ERROR "No OpenMP support")
endif()
endif()
# DiskANN core uses header-only libraries. Only DiskANN tools need program_options which has a linker library,
# but its size is small. Reduce number of dependent DLLs by linking statically.
if (MSVC)
set(Boost_USE_STATIC_LIBS ON)
endif()
if(NOT MSVC)
find_package(Boost COMPONENTS program_options)
endif()
# For Windows, fall back to nuget version if find_package didn't find it.
if (MSVC AND NOT Boost_FOUND)
set(DISKANN_BOOST_INCLUDE "${DISKANN_MSVC_PACKAGES}/boost/lib/native/include")
# Multi-threaded static library.
set(PROGRAM_OPTIONS_LIB_PATTERN "${DISKANN_MSVC_PACKAGES}/boost_program_options-vc${MSVC_TOOLSET_VERSION}/lib/native/libboost_program_options-vc${MSVC_TOOLSET_VERSION}-mt-x64-*.lib")
file(GLOB DISKANN_BOOST_PROGRAM_OPTIONS_LIB ${PROGRAM_OPTIONS_LIB_PATTERN})
set(PROGRAM_OPTIONS_DLIB_PATTERN "${DISKANN_MSVC_PACKAGES}/boost_program_options-vc${MSVC_TOOLSET_VERSION}/lib/native/libboost_program_options-vc${MSVC_TOOLSET_VERSION}-mt-gd-x64-*.lib")
file(GLOB DISKANN_BOOST_PROGRAM_OPTIONS_DLIB ${PROGRAM_OPTIONS_DLIB_PATTERN})
if (EXISTS ${DISKANN_BOOST_INCLUDE} AND EXISTS ${DISKANN_BOOST_PROGRAM_OPTIONS_LIB} AND EXISTS ${DISKANN_BOOST_PROGRAM_OPTIONS_DLIB})
set(Boost_FOUND ON)
set(Boost_INCLUDE_DIR ${DISKANN_BOOST_INCLUDE})
add_library(Boost::program_options STATIC IMPORTED)
set_target_properties(Boost::program_options PROPERTIES IMPORTED_LOCATION_RELEASE "${DISKANN_BOOST_PROGRAM_OPTIONS_LIB}")
set_target_properties(Boost::program_options PROPERTIES IMPORTED_LOCATION_DEBUG "${DISKANN_BOOST_PROGRAM_OPTIONS_DLIB}")
message(STATUS "Falling back to using Boost from the nuget package")
else()
message(WARNING "Couldn't find Boost. Was looking for ${DISKANN_BOOST_INCLUDE} and ${PROGRAM_OPTIONS_LIB_PATTERN}")
endif()
endif()
if (NOT Boost_FOUND)
message(FATAL_ERROR "Couldn't find Boost dependency")
endif()
include_directories(${Boost_INCLUDE_DIR})
#MKL Config
if (MSVC)
# Only the DiskANN DLL and one of the tools need MKL libraries. Additionally, only a small part of MKL is used.
# Given that and given that MKL DLLs are huge, use static linking to end up with no MKL DLL dependencies and with
# significantly smaller disk footprint.
#
# The compile options are not modified as there's already an unconditional -DMKL_ILP64 define below
# for all architectures, which is all that's needed.
set(DISKANN_MKL_INCLUDE_DIRECTORIES "${DISKANN_MSVC_PACKAGES}/intelmkl.static.win-x64/lib/native/include")
set(DISKANN_MKL_LIB_PATH "${DISKANN_MSVC_PACKAGES}/intelmkl.static.win-x64/lib/native/win-x64")
set(DISKANN_MKL_LINK_LIBRARIES
"${DISKANN_MKL_LIB_PATH}/mkl_intel_ilp64.lib"
"${DISKANN_MKL_LIB_PATH}/mkl_core.lib"
"${DISKANN_MKL_LIB_PATH}/mkl_intel_thread.lib")
elseif(APPLE)
# no mkl on non-intel devices
find_library(ACCELERATE_LIBRARY Accelerate)
message(STATUS "Found Accelerate (${ACCELERATE_LIBRARY})")
set(DISKANN_ACCEL_LINK_OPTIONS ${ACCELERATE_LIBRARY})
add_compile_definitions(ACCELERATE_NEW_LAPACK)
else()
# expected path for manual intel mkl installs
set(POSSIBLE_OMP_PATHS "/opt/intel/oneapi/compiler/2025.0/lib/libiomp5.so;/opt/intel/oneapi/compiler/latest/linux/compiler/lib/intel64_lin/libiomp5.so;/usr/lib/x86_64-linux-gnu/libiomp5.so;/opt/intel/lib/intel64_lin/libiomp5.so")
foreach(POSSIBLE_OMP_PATH ${POSSIBLE_OMP_PATHS})
if (EXISTS ${POSSIBLE_OMP_PATH})
get_filename_component(OMP_PATH ${POSSIBLE_OMP_PATH} DIRECTORY)
endif()
endforeach()
if(NOT OMP_PATH)
message(FATAL_ERROR "Could not find Intel OMP in standard locations; use -DOMP_PATH to specify the install location for your environment")
endif()
link_directories(${OMP_PATH})
set(POSSIBLE_MKL_LIB_PATHS "/opt/intel/oneapi/mkl/latest/lib/intel64/libmkl_core.so;/usr/lib/x86_64-linux-gnu/libmkl_core.so;/opt/intel/mkl/lib/intel64/libmkl_core.so")
foreach(POSSIBLE_MKL_LIB_PATH ${POSSIBLE_MKL_LIB_PATHS})
if (EXISTS ${POSSIBLE_MKL_LIB_PATH})
get_filename_component(MKL_PATH ${POSSIBLE_MKL_LIB_PATH} DIRECTORY)
endif()
endforeach()
set(POSSIBLE_MKL_INCLUDE_PATHS "/opt/intel/oneapi/mkl/latest/include;/usr/include/mkl;/opt/intel/mkl/include/;")
foreach(POSSIBLE_MKL_INCLUDE_PATH ${POSSIBLE_MKL_INCLUDE_PATHS})
if (EXISTS ${POSSIBLE_MKL_INCLUDE_PATH})
set(MKL_INCLUDE_PATH ${POSSIBLE_MKL_INCLUDE_PATH})
endif()
endforeach()
if(NOT MKL_PATH)
message(FATAL_ERROR "Could not find Intel MKL in standard locations; use -DMKL_PATH to specify the install location for your environment")
elseif(NOT MKL_INCLUDE_PATH)
message(FATAL_ERROR "Could not find Intel MKL in standard locations; use -DMKL_INCLUDE_PATH to specify the install location for headers for your environment")
endif()
if (EXISTS ${MKL_PATH}/libmkl_def.so.2)
set(MKL_DEF_SO ${MKL_PATH}/libmkl_def.so.2)
elseif(EXISTS ${MKL_PATH}/libmkl_def.so)
set(MKL_DEF_SO ${MKL_PATH}/libmkl_def.so)
else()
message(FATAL_ERROR "Despite finding MKL, libmkl_def.so was not found in expected locations.")
endif()
link_directories(${MKL_PATH})
include_directories(${MKL_INCLUDE_PATH})
# compile flags and link libraries
# if gcc/g++
if(CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
add_compile_options(-m64 -Wl,--no-as-needed)
endif()
if (NOT PYBIND)
link_libraries(mkl_intel_ilp64 mkl_intel_thread mkl_core iomp5 pthread m dl)
else()
# static linking for python so as to minimize customer dependency issues
if (CMAKE_BUILD_TYPE STREQUAL "Debug")
# In debug mode, use dynamic linking to ensure all symbols are available
link_libraries(mkl_intel_ilp64 mkl_intel_thread mkl_core ${MKL_DEF_SO} iomp5 pthread m dl)
else()
# In release mode, use static linking to minimize dependencies
link_libraries(
${MKL_PATH}/libmkl_intel_ilp64.a
${MKL_PATH}/libmkl_intel_thread.a
${MKL_PATH}/libmkl_core.a
${MKL_DEF_SO}
iomp5
pthread
m
dl
)
endif()
endif()
add_definitions(-DMKL_ILP64)
endif()
# Section for tcmalloc. The DiskANN tools are always linked to tcmalloc. For Windows, they also need to
# force-include the _tcmalloc symbol for enabling tcmalloc.
#
# The DLL itself needs to be linked to tcmalloc only if DISKANN_RELEASE_UNUSED_TCMALLOC_MEMORY_AT_CHECKPOINTS
# is enabled.
if(USE_TCMALLOC)
if (MSVC)
if (NOT EXISTS "${PROJECT_SOURCE_DIR}/gperftools/gperftools.sln")
message(FATAL_ERROR "The gperftools submodule was not found. "
"Please check-out git submodules by doing 'git submodule init' followed by 'git submodule update'")
endif()
set(TCMALLOC_LINK_LIBRARY "${PROJECT_SOURCE_DIR}/gperftools/x64/Release-Patch/libtcmalloc_minimal.lib")
set(TCMALLOC_WINDOWS_RUNTIME_FILES
"${PROJECT_SOURCE_DIR}/gperftools/x64/Release-Patch/libtcmalloc_minimal.dll"
"${PROJECT_SOURCE_DIR}/gperftools/x64/Release-Patch/libtcmalloc_minimal.pdb")
# Tell CMake how to build the tcmalloc linker library from the submodule.
add_custom_target(build_libtcmalloc_minimal DEPENDS ${TCMALLOC_LINK_LIBRARY})
add_custom_command(OUTPUT ${TCMALLOC_LINK_LIBRARY}
COMMAND ${CMAKE_VS_MSBUILD_COMMAND} gperftools.sln /m /nologo
/t:libtcmalloc_minimal /p:Configuration="Release-Patch"
/property:Platform="x64"
/p:PlatformToolset=v${MSVC_TOOLSET_VERSION}
/p:WindowsTargetPlatformVersion=${CMAKE_VS_WINDOWS_TARGET_PLATFORM_VERSION}
WORKING_DIRECTORY ${PROJECT_SOURCE_DIR}/gperftools)
add_library(libtcmalloc_minimal_for_exe STATIC IMPORTED)
add_library(libtcmalloc_minimal_for_dll STATIC IMPORTED)
set_target_properties(libtcmalloc_minimal_for_dll PROPERTIES
IMPORTED_LOCATION "${TCMALLOC_LINK_LIBRARY}")
set_target_properties(libtcmalloc_minimal_for_exe PROPERTIES
IMPORTED_LOCATION "${TCMALLOC_LINK_LIBRARY}"
INTERFACE_LINK_OPTIONS /INCLUDE:_tcmalloc)
# Ensure libtcmalloc_minimal is built before it's being used.
add_dependencies(libtcmalloc_minimal_for_dll build_libtcmalloc_minimal)
add_dependencies(libtcmalloc_minimal_for_exe build_libtcmalloc_minimal)
set(DISKANN_TOOLS_TCMALLOC_LINK_OPTIONS libtcmalloc_minimal_for_exe)
elseif(APPLE) # ! Inherited from #474, not been adjusted for TCMalloc Removal
execute_process(
COMMAND brew --prefix gperftools
OUTPUT_VARIABLE GPERFTOOLS_PREFIX
OUTPUT_STRIP_TRAILING_WHITESPACE
)
set(DISKANN_TOOLS_TCMALLOC_LINK_OPTIONS "-L${GPERFTOOLS_PREFIX}/lib -ltcmalloc")
elseif(NOT PYBIND)
set(DISKANN_TOOLS_TCMALLOC_LINK_OPTIONS "-ltcmalloc")
endif()
if (DISKANN_RELEASE_UNUSED_TCMALLOC_MEMORY_AT_CHECKPOINTS)
add_definitions(-DRELEASE_UNUSED_TCMALLOC_MEMORY_AT_CHECKPOINTS)
if (MSVC)
set(DISKANN_DLL_TCMALLOC_LINK_OPTIONS libtcmalloc_minimal_for_dll)
endif()
endif()
endif()
if (NOT MSVC AND NOT APPLE)
set(DISKANN_ASYNC_LIB aio)
endif()
#Main compiler/linker settings
if(MSVC)
#language options
add_compile_options(/permissive- /openmp:experimental /Zc:twoPhase- /Zc:inline /WX- /std:c++17 /Gd /W3 /MP /Zi /FC /nologo)
#code generation options
add_compile_options(/arch:AVX2 /fp:fast /fp:except- /EHsc /GS- /Gy)
#optimization options
add_compile_options(/Ot /Oy /Oi)
#path options
add_definitions(-DUSE_AVX2 -DUSE_ACCELERATED_PQ -D_WINDOWS -DNOMINMAX -DUNICODE)
# Linker options. Exclude VCOMP/VCOMPD.LIB which contain VisualStudio's version of OpenMP.
# MKL was linked against Intel's OpenMP and depends on the corresponding DLL.
add_link_options(/NODEFAULTLIB:VCOMP.LIB /NODEFAULTLIB:VCOMPD.LIB /DEBUG:FULL /OPT:REF /OPT:ICF)
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY_DEBUG ${PROJECT_SOURCE_DIR}/x64/Debug)
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_DEBUG ${PROJECT_SOURCE_DIR}/x64/Debug)
set(CMAKE_ARCHIVE_OUTPUT_DIRECTORY_DEBUG ${PROJECT_SOURCE_DIR}/x64/Debug)
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY_RELEASE ${PROJECT_SOURCE_DIR}/x64/Release)
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_RELEASE ${PROJECT_SOURCE_DIR}/x64/Release)
set(CMAKE_ARCHIVE_OUTPUT_DIRECTORY_RELEASE ${PROJECT_SOURCE_DIR}/x64/Release)
elseif(APPLE)
set(ENV{TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD} 500000000000)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -ftree-vectorize -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-free -Xclang -fopenmp -fopenmp-simd -funroll-loops -Wfatal-errors -Wno-inconsistent-missing-override -Wno-return-type")
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -g -DDEBUG")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -Ofast -DNDEBUG -ftree-vectorize")
if (NOT PYBIND)
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -DNDEBUG -Ofast")
if (NOT PORTABLE)
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -mtune=native")
endif()
else()
# -Ofast is not supported in a python extension module
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -DNDEBUG -fPIC")
endif()
else()
set(ENV{TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD} 500000000000)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -mavx2 -mfma -msse2 -ftree-vectorize -fopenmp -fopenmp-simd -funroll-loops -Wfatal-errors -DUSE_AVX2 -fPIC")
if(USE_TCMALLOC)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-free")
endif()
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -g -DDEBUG")
if (NOT PYBIND)
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -DNDEBUG -Ofast")
if (NOT PORTABLE)
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -march=native -mtune=native")
endif()
else()
# -Ofast is not supported in a python extension module
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -DNDEBUG")
endif()
endif()
add_subdirectory(src)
if (NOT PYBIND)
add_subdirectory(apps)
add_subdirectory(apps/utils)
endif()
if (UNIT_TEST)
enable_testing()
add_subdirectory(tests)
endif()
if (MSVC)
message(STATUS "The ${PROJECT_NAME}.sln has been created, opened it from VisualStudio to build Release or Debug configurations.\n"
"Alternatively, use MSBuild to build:\n\n"
"msbuild.exe ${PROJECT_NAME}.sln /m /nologo /t:Build /p:Configuration=\"Release\" /property:Platform=\"x64\"\n")
endif()
if (RESTAPI)
if (MSVC)
set(DISKANN_CPPRESTSDK "${DISKANN_MSVC_PACKAGES}/cpprestsdk.v142/build/native")
# expected path for apt packaged intel mkl installs
link_libraries("${DISKANN_CPPRESTSDK}/x64/lib/cpprest142_2_10.lib")
include_directories("${DISKANN_CPPRESTSDK}/include")
endif()
add_subdirectory(apps/restapi)
endif()
include(clang-format.cmake)
if(PYBIND)
add_subdirectory(python)
install(TARGETS _diskannpy
DESTINATION leann_backend_diskann
COMPONENT python_modules
)
endif()
###############################################################################
# PROTOBUF SECTION - Corrected to use CONFIG mode explicitly
###############################################################################
set(Protobuf_USE_STATIC_LIBS OFF)
find_package(ZLIB REQUIRED)
find_package(Protobuf REQUIRED)
message(STATUS "Protobuf found: ${Protobuf_VERSION}")
message(STATUS "Protobuf include dirs: ${Protobuf_INCLUDE_DIRS}")
message(STATUS "Protobuf libraries: ${Protobuf_LIBRARIES}")
message(STATUS "Protobuf protoc executable: ${Protobuf_PROTOC_EXECUTABLE}")
include_directories(${Protobuf_INCLUDE_DIRS})
set(PROTO_FILE "${CMAKE_CURRENT_SOURCE_DIR}/../embedding.proto")
protobuf_generate_cpp(PROTO_SRCS PROTO_HDRS ${PROTO_FILE})
set(generated_proto_sources ${PROTO_SRCS})
add_library(proto_embeddings STATIC ${generated_proto_sources})
target_link_libraries(proto_embeddings PUBLIC protobuf::libprotobuf)
target_include_directories(proto_embeddings PUBLIC
${CMAKE_CURRENT_BINARY_DIR}
${Protobuf_INCLUDE_DIRS}
)
target_link_libraries(diskann PRIVATE proto_embeddings protobuf::libprotobuf)
target_include_directories(diskann PRIVATE
${CMAKE_CURRENT_BINARY_DIR}
${Protobuf_INCLUDE_DIRS}
)
target_link_libraries(diskann_s PRIVATE proto_embeddings protobuf::libprotobuf)
target_include_directories(diskann_s PRIVATE
${CMAKE_CURRENT_BINARY_DIR}
${Protobuf_INCLUDE_DIRS}
)
###############################################################################
# ZEROMQ SECTION - REQUIRED
###############################################################################
find_package(ZeroMQ QUIET)
if(NOT ZeroMQ_FOUND)
find_path(ZeroMQ_INCLUDE_DIR zmq.h)
find_library(ZeroMQ_LIBRARY zmq)
if(ZeroMQ_INCLUDE_DIR AND ZeroMQ_LIBRARY)
set(ZeroMQ_FOUND TRUE)
endif()
endif()
if(ZeroMQ_FOUND)
message(STATUS "Found ZeroMQ: ${ZeroMQ_LIBRARY}")
include_directories(${ZeroMQ_INCLUDE_DIR})
target_link_libraries(diskann PRIVATE ${ZeroMQ_LIBRARY})
target_link_libraries(diskann_s PRIVATE ${ZeroMQ_LIBRARY})
add_definitions(-DUSE_ZEROMQ)
else()
message(FATAL_ERROR "ZeroMQ is required but not found. Please install ZeroMQ and try again.")
endif()
target_link_libraries(diskann ${PYBIND11_LIBRARIES})
target_link_libraries(diskann_s ${PYBIND11_LIBRARIES})

View File

@@ -1,28 +0,0 @@
{
"configurations": [
{
"name": "x64-Release",
"generator": "Ninja",
"configurationType": "Release",
"inheritEnvironments": [ "msvc_x64" ],
"buildRoot": "${projectDir}\\out\\build\\${name}",
"installRoot": "${projectDir}\\out\\install\\${name}",
"cmakeCommandArgs": "",
"buildCommandArgs": "",
"ctestCommandArgs": ""
},
{
"name": "WSL-GCC-Release",
"generator": "Ninja",
"configurationType": "RelWithDebInfo",
"buildRoot": "${projectDir}\\out\\build\\${name}",
"installRoot": "${projectDir}\\out\\install\\${name}",
"cmakeExecutable": "cmake",
"cmakeCommandArgs": "",
"buildCommandArgs": "",
"ctestCommandArgs": "",
"inheritEnvironments": [ "linux_x64" ],
"wslPath": "${defaultWSLPath}"
}
]
}

View File

@@ -1,9 +0,0 @@
# Microsoft Open Source Code of Conduct
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
Resources:
- [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/)
- [Microsoft Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/)
- Contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with questions or concerns

View File

@@ -1,9 +0,0 @@
# Contributing
This project welcomes contributions and suggestions. Most contributions require you to agree to a
Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us
the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.
When you submit a pull request, a CLA bot will automatically determine whether you need to provide
a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions
provided by the bot. You will only need to do this once across all repos using our CLA.

View File

@@ -1,17 +0,0 @@
#Copyright(c) Microsoft Corporation.All rights reserved.
#Licensed under the MIT license.
FROM ubuntu:jammy
RUN apt update
RUN apt install -y software-properties-common
RUN add-apt-repository -y ppa:git-core/ppa
RUN apt update
RUN DEBIAN_FRONTEND=noninteractive apt install -y git make cmake g++ libaio-dev libgoogle-perftools-dev libunwind-dev clang-format libboost-dev libboost-program-options-dev libmkl-full-dev libcpprest-dev python3.10
WORKDIR /app
RUN git clone https://github.com/microsoft/DiskANN.git
WORKDIR /app/DiskANN
RUN mkdir build
RUN cmake -S . -B build -DCMAKE_BUILD_TYPE=Release
RUN cmake --build build -- -j

View File

@@ -1,17 +0,0 @@
#Copyright(c) Microsoft Corporation.All rights reserved.
#Licensed under the MIT license.
FROM ubuntu:jammy
RUN apt update
RUN apt install -y software-properties-common
RUN add-apt-repository -y ppa:git-core/ppa
RUN apt update
RUN DEBIAN_FRONTEND=noninteractive apt install -y git make cmake g++ libaio-dev libgoogle-perftools-dev libunwind-dev clang-format libboost-dev libboost-program-options-dev libboost-test-dev libmkl-full-dev libcpprest-dev python3.10
WORKDIR /app
RUN git clone https://github.com/microsoft/DiskANN.git
WORKDIR /app/DiskANN
RUN mkdir build
RUN cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DUNIT_TEST=True
RUN cmake --build build -- -j

View File

@@ -1,23 +0,0 @@
DiskANN
MIT License
Copyright (c) Microsoft Corporation.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE

View File

@@ -1,12 +0,0 @@
include MANIFEST.in
include *.txt
include *.md
include setup.py
include pyproject.toml
include *.cmake
recursive-include gperftools *
recursive-include include *
recursive-include python *
recursive-include windows *
prune python/tests
recursive-include src *

View File

@@ -1,135 +0,0 @@
# DiskANN
[![DiskANN Main](https://github.com/microsoft/DiskANN/actions/workflows/push-test.yml/badge.svg?branch=main)](https://github.com/microsoft/DiskANN/actions/workflows/push-test.yml)
[![PyPI version](https://img.shields.io/pypi/v/diskannpy.svg)](https://pypi.org/project/diskannpy/)
[![Downloads shield](https://pepy.tech/badge/diskannpy)](https://pepy.tech/project/diskannpy)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![DiskANN Paper](https://img.shields.io/badge/Paper-NeurIPS%3A_DiskANN-blue)](https://papers.nips.cc/paper/9527-rand-nsg-fast-accurate-billion-point-nearest-neighbor-search-on-a-single-node.pdf)
[![DiskANN Paper](https://img.shields.io/badge/Paper-Arxiv%3A_Fresh--DiskANN-blue)](https://arxiv.org/abs/2105.09613)
[![DiskANN Paper](https://img.shields.io/badge/Paper-Filtered--DiskANN-blue)](https://harsha-simhadri.org/pubs/Filtered-DiskANN23.pdf)
DiskANN is a suite of scalable, accurate and cost-effective approximate nearest neighbor search algorithms for large-scale vector search that support real-time changes and simple filters.
This code is based on ideas from the [DiskANN](https://papers.nips.cc/paper/9527-rand-nsg-fast-accurate-billion-point-nearest-neighbor-search-on-a-single-node.pdf), [Fresh-DiskANN](https://arxiv.org/abs/2105.09613) and the [Filtered-DiskANN](https://harsha-simhadri.org/pubs/Filtered-DiskANN23.pdf) papers with further improvements.
This code forked off from [code for NSG](https://github.com/ZJULearning/nsg) algorithm.
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or
contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.
See [guidelines](CONTRIBUTING.md) for contributing to this project.
## Linux build:
Install the following packages through apt-get
```bash
sudo apt install make cmake g++ libaio-dev libgoogle-perftools-dev clang-format libboost-all-dev
```
### Install Intel MKL
#### Ubuntu 20.04 or newer
```bash
sudo apt install libmkl-full-dev
```
#### Earlier versions of Ubuntu
Install Intel MKL either by downloading the [oneAPI MKL installer](https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html) or using [apt](https://software.intel.com/en-us/articles/installing-intel-free-libs-and-python-apt-repo) (we tested with build 2019.4-070 and 2022.1.2.146).
```
# OneAPI MKL Installer
wget https://registrationcenter-download.intel.com/akdlm/irc_nas/18487/l_BaseKit_p_2022.1.2.146.sh
sudo sh l_BaseKit_p_2022.1.2.146.sh -a --components intel.oneapi.lin.mkl.devel --action install --eula accept -s
```
### Build
```bash
mkdir build && cd build && cmake -DCMAKE_BUILD_TYPE=Release .. && make -j
```
## Windows build:
The Windows version has been tested with Enterprise editions of Visual Studio 2022, 2019 and 2017. It should work with the Community and Professional editions as well without any changes.
**Prerequisites:**
* CMake 3.15+ (available in VisualStudio 2019+ or from https://cmake.org)
* NuGet.exe (install from https://www.nuget.org/downloads)
* The build script will use NuGet to get MKL, OpenMP and Boost packages.
* DiskANN git repository checked out together with submodules. To check out submodules after git clone:
```
git submodule init
git submodule update
```
* Environment variables:
* [optional] If you would like to override the Boost library listed in windows/packages.config.in, set BOOST_ROOT to your Boost folder.
**Build steps:**
* Open the "x64 Native Tools Command Prompt for VS 2019" (or corresponding version) and change to DiskANN folder
* Create a "build" directory inside it
* Change to the "build" directory and run
```
cmake ..
```
OR for Visual Studio 2017 and earlier:
```
<full-path-to-installed-cmake>\cmake ..
```
**This will create a diskann.sln solution**. Now you can:
- Open it from VisualStudio and build either Release or Debug configuration.
- `<full-path-to-installed-cmake>\cmake --build build`
- Use MSBuild:
```
msbuild.exe diskann.sln /m /nologo /t:Build /p:Configuration="Release" /property:Platform="x64"
```
* This will also build gperftools submodule for libtcmalloc_minimal dependency.
* Generated binaries are stored in the x64/Release or x64/Debug directories.
## macOS Build
### Prerequisites
* Apple Silicon. The code should still work on Intel-based Macs, but there are no guarantees.
* macOS >= 12.0
* XCode Command Line Tools (install with `xcode-select --install`)
* [homebrew](https://brew.sh/)
### Install Required Packages
```zsh
brew install cmake
brew install boost
brew install gperftools
brew install libomp
```
### Build DiskANN
```zsh
# same as ubuntu instructions
mkdir build && cd build && cmake -DCMAKE_BUILD_TYPE=Release .. && make -j
```
## Usage:
Please see the following pages on using the compiled code:
- [Commandline interface for building and search SSD based indices](workflows/SSD_index.md)
- [Commandline interface for building and search in memory indices](workflows/in_memory_index.md)
- [Commandline examples for using in-memory streaming indices](workflows/dynamic_index.md)
- [Commandline interface for building and search in memory indices with label data and filters](workflows/filtered_in_memory.md)
- [Commandline interface for building and search SSD based indices with label data and filters](workflows/filtered_ssd_index.md)
- [diskannpy - DiskANN as a python extension module](python/README.md)
Please cite this software in your work as:
```
@misc{diskann-github,
author = {Simhadri, Harsha Vardhan and Krishnaswamy, Ravishankar and Srinivasa, Gopal and Subramanya, Suhas Jayaram and Antonijevic, Andrija and Pryce, Dax and Kaczynski, David and Williams, Shane and Gollapudi, Siddarth and Sivashankar, Varun and Karia, Neel and Singh, Aditi and Jaiswal, Shikhar and Mahapatro, Neelam and Adams, Philip and Tower, Bryan and Patel, Yash}},
title = {{DiskANN: Graph-structured Indices for Scalable, Fast, Fresh and Filtered Approximate Nearest Neighbor Search}},
url = {https://github.com/Microsoft/DiskANN},
version = {0.6.1},
year = {2023}
}
```

View File

@@ -1,41 +0,0 @@
<!-- BEGIN MICROSOFT SECURITY.MD V0.0.5 BLOCK -->
## Security
Microsoft takes the security of our software products and services seriously, which includes all source code repositories managed through our GitHub organizations, which include [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), and [our GitHub organizations](https://opensource.microsoft.com/).
If you believe you have found a security vulnerability in any Microsoft-owned repository that meets [Microsoft's definition of a security vulnerability](https://docs.microsoft.com/en-us/previous-versions/tn-archive/cc751383(v=technet.10)), please report it to us as described below.
## Reporting Security Issues
**Please do not report security vulnerabilities through public GitHub issues.**
Instead, please report them to the Microsoft Security Response Center (MSRC) at [https://msrc.microsoft.com/create-report](https://msrc.microsoft.com/create-report).
If you prefer to submit without logging in, send email to [secure@microsoft.com](mailto:secure@microsoft.com). If possible, encrypt your message with our PGP key; please download it from the [Microsoft Security Response Center PGP Key page](https://www.microsoft.com/en-us/msrc/pgp-key-msrc).
You should receive a response within 24 hours. If for some reason you do not, please follow up via email to ensure we received your original message. Additional information can be found at [microsoft.com/msrc](https://www.microsoft.com/msrc).
Please include the requested information listed below (as much as you can provide) to help us better understand the nature and scope of the possible issue:
* Type of issue (e.g. buffer overflow, SQL injection, cross-site scripting, etc.)
* Full paths of source file(s) related to the manifestation of the issue
* The location of the affected source code (tag/branch/commit or direct URL)
* Any special configuration required to reproduce the issue
* Step-by-step instructions to reproduce the issue
* Proof-of-concept or exploit code (if possible)
* Impact of the issue, including how an attacker might exploit the issue
This information will help us triage your report more quickly.
If you are reporting for a bug bounty, more complete reports can contribute to a higher bounty award. Please visit our [Microsoft Bug Bounty Program](https://microsoft.com/msrc/bounty) page for more details about our active programs.
## Preferred Languages
We prefer all communications to be in English.
## Policy
Microsoft follows the principle of [Coordinated Vulnerability Disclosure](https://www.microsoft.com/en-us/msrc/cvd).
<!-- END MICROSOFT SECURITY.MD BLOCK -->

View File

@@ -1,42 +0,0 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT license.
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_COMPILE_WARNING_AS_ERROR ON)
add_executable(build_memory_index build_memory_index.cpp)
target_link_libraries(build_memory_index ${PROJECT_NAME} ${DISKANN_TOOLS_TCMALLOC_LINK_OPTIONS} Boost::program_options)
add_executable(build_stitched_index build_stitched_index.cpp)
target_link_libraries(build_stitched_index ${PROJECT_NAME} ${DISKANN_TOOLS_TCMALLOC_LINK_OPTIONS} Boost::program_options)
add_executable(search_memory_index search_memory_index.cpp)
target_link_libraries(search_memory_index ${PROJECT_NAME} ${DISKANN_ASYNC_LIB} ${DISKANN_TOOLS_TCMALLOC_LINK_OPTIONS} Boost::program_options)
add_executable(build_disk_index build_disk_index.cpp)
target_link_libraries(build_disk_index ${PROJECT_NAME} ${DISKANN_TOOLS_TCMALLOC_LINK_OPTIONS} ${DISKANN_ASYNC_LIB} Boost::program_options)
add_executable(search_disk_index search_disk_index.cpp)
target_link_libraries(search_disk_index ${PROJECT_NAME} ${DISKANN_ASYNC_LIB} ${DISKANN_TOOLS_TCMALLOC_LINK_OPTIONS} Boost::program_options)
add_executable(range_search_disk_index range_search_disk_index.cpp)
target_link_libraries(range_search_disk_index ${PROJECT_NAME} ${DISKANN_ASYNC_LIB} ${DISKANN_TOOLS_TCMALLOC_LINK_OPTIONS} Boost::program_options)
add_executable(test_streaming_scenario test_streaming_scenario.cpp)
target_link_libraries(test_streaming_scenario ${PROJECT_NAME} ${DISKANN_TOOLS_TCMALLOC_LINK_OPTIONS} Boost::program_options)
add_executable(test_insert_deletes_consolidate test_insert_deletes_consolidate.cpp)
target_link_libraries(test_insert_deletes_consolidate ${PROJECT_NAME} ${DISKANN_TOOLS_TCMALLOC_LINK_OPTIONS} Boost::program_options)
if (NOT MSVC)
install(TARGETS build_memory_index
build_stitched_index
search_memory_index
build_disk_index
search_disk_index
range_search_disk_index
test_streaming_scenario
test_insert_deletes_consolidate
RUNTIME
)
endif()

View File

@@ -1,191 +0,0 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT license.
#include <omp.h>
#include <boost/program_options.hpp>
#include "utils.h"
#include "disk_utils.h"
#include "math_utils.h"
#include "index.h"
#include "partition.h"
#include "program_options_utils.hpp"
namespace po = boost::program_options;
int main(int argc, char **argv)
{
std::string data_type, dist_fn, data_path, index_path_prefix, codebook_prefix, label_file, universal_label,
label_type;
uint32_t num_threads, R, L, disk_PQ, build_PQ, QD, Lf, filter_threshold;
float B, M;
bool append_reorder_data = false;
bool use_opq = false;
po::options_description desc{
program_options_utils::make_program_description("build_disk_index", "Build a disk-based index.")};
try
{
desc.add_options()("help,h", "Print information on arguments");
// Required parameters
po::options_description required_configs("Required");
required_configs.add_options()("data_type", po::value<std::string>(&data_type)->required(),
program_options_utils::DATA_TYPE_DESCRIPTION);
required_configs.add_options()("dist_fn", po::value<std::string>(&dist_fn)->required(),
program_options_utils::DISTANCE_FUNCTION_DESCRIPTION);
required_configs.add_options()("index_path_prefix", po::value<std::string>(&index_path_prefix)->required(),
program_options_utils::INDEX_PATH_PREFIX_DESCRIPTION);
required_configs.add_options()("data_path", po::value<std::string>(&data_path)->required(),
program_options_utils::INPUT_DATA_PATH);
required_configs.add_options()("search_DRAM_budget,B", po::value<float>(&B)->required(),
"DRAM budget in GB for searching the index to set the "
"compressed level for data while search happens");
required_configs.add_options()("build_DRAM_budget,M", po::value<float>(&M)->required(),
"DRAM budget in GB for building the index");
// Optional parameters
po::options_description optional_configs("Optional");
optional_configs.add_options()("num_threads,T",
po::value<uint32_t>(&num_threads)->default_value(omp_get_num_procs()),
program_options_utils::NUMBER_THREADS_DESCRIPTION);
optional_configs.add_options()("max_degree,R", po::value<uint32_t>(&R)->default_value(64),
program_options_utils::MAX_BUILD_DEGREE);
optional_configs.add_options()("Lbuild,L", po::value<uint32_t>(&L)->default_value(100),
program_options_utils::GRAPH_BUILD_COMPLEXITY);
optional_configs.add_options()("QD", po::value<uint32_t>(&QD)->default_value(0),
" Quantized Dimension for compression");
optional_configs.add_options()("codebook_prefix", po::value<std::string>(&codebook_prefix)->default_value(""),
"Path prefix for pre-trained codebook");
optional_configs.add_options()("PQ_disk_bytes", po::value<uint32_t>(&disk_PQ)->default_value(0),
"Number of bytes to which vectors should be compressed "
"on SSD; 0 for no compression");
optional_configs.add_options()("append_reorder_data", po::bool_switch()->default_value(false),
"Include full precision data in the index. Use only in "
"conjuction with compressed data on SSD.");
optional_configs.add_options()("build_PQ_bytes", po::value<uint32_t>(&build_PQ)->default_value(0),
program_options_utils::BUIlD_GRAPH_PQ_BYTES);
optional_configs.add_options()("use_opq", po::bool_switch()->default_value(false),
program_options_utils::USE_OPQ);
optional_configs.add_options()("label_file", po::value<std::string>(&label_file)->default_value(""),
program_options_utils::LABEL_FILE);
optional_configs.add_options()("universal_label", po::value<std::string>(&universal_label)->default_value(""),
program_options_utils::UNIVERSAL_LABEL);
optional_configs.add_options()("FilteredLbuild", po::value<uint32_t>(&Lf)->default_value(0),
program_options_utils::FILTERED_LBUILD);
optional_configs.add_options()("filter_threshold,F", po::value<uint32_t>(&filter_threshold)->default_value(0),
"Threshold to break up the existing nodes to generate new graph "
"internally where each node has a maximum F labels.");
optional_configs.add_options()("label_type", po::value<std::string>(&label_type)->default_value("uint"),
program_options_utils::LABEL_TYPE_DESCRIPTION);
// Merge required and optional parameters
desc.add(required_configs).add(optional_configs);
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
if (vm.count("help"))
{
std::cout << desc;
return 0;
}
po::notify(vm);
if (vm["append_reorder_data"].as<bool>())
append_reorder_data = true;
if (vm["use_opq"].as<bool>())
use_opq = true;
}
catch (const std::exception &ex)
{
std::cerr << ex.what() << '\n';
return -1;
}
bool use_filters = (label_file != "") ? true : false;
diskann::Metric metric;
if (dist_fn == std::string("l2"))
metric = diskann::Metric::L2;
else if (dist_fn == std::string("mips"))
metric = diskann::Metric::INNER_PRODUCT;
else if (dist_fn == std::string("cosine"))
metric = diskann::Metric::COSINE;
else
{
std::cout << "Error. Only l2 and mips distance functions are supported" << std::endl;
return -1;
}
if (append_reorder_data)
{
if (disk_PQ == 0)
{
std::cout << "Error: It is not necessary to append data for reordering "
"when vectors are not compressed on disk."
<< std::endl;
return -1;
}
if (data_type != std::string("float"))
{
std::cout << "Error: Appending data for reordering currently only "
"supported for float data type."
<< std::endl;
return -1;
}
}
std::string params = std::string(std::to_string(R)) + " " + std::string(std::to_string(L)) + " " +
std::string(std::to_string(B)) + " " + std::string(std::to_string(M)) + " " +
std::string(std::to_string(num_threads)) + " " + std::string(std::to_string(disk_PQ)) + " " +
std::string(std::to_string(append_reorder_data)) + " " +
std::string(std::to_string(build_PQ)) + " " + std::string(std::to_string(QD));
try
{
if (label_file != "" && label_type == "ushort")
{
if (data_type == std::string("int8"))
return diskann::build_disk_index<int8_t>(data_path.c_str(), index_path_prefix.c_str(), params.c_str(),
metric, use_opq, codebook_prefix, use_filters, label_file,
universal_label, filter_threshold, Lf);
else if (data_type == std::string("uint8"))
return diskann::build_disk_index<uint8_t, uint16_t>(
data_path.c_str(), index_path_prefix.c_str(), params.c_str(), metric, use_opq, codebook_prefix,
use_filters, label_file, universal_label, filter_threshold, Lf);
else if (data_type == std::string("float"))
return diskann::build_disk_index<float, uint16_t>(
data_path.c_str(), index_path_prefix.c_str(), params.c_str(), metric, use_opq, codebook_prefix,
use_filters, label_file, universal_label, filter_threshold, Lf);
else
{
diskann::cerr << "Error. Unsupported data type" << std::endl;
return -1;
}
}
else
{
if (data_type == std::string("int8"))
return diskann::build_disk_index<int8_t>(data_path.c_str(), index_path_prefix.c_str(), params.c_str(),
metric, use_opq, codebook_prefix, use_filters, label_file,
universal_label, filter_threshold, Lf);
else if (data_type == std::string("uint8"))
return diskann::build_disk_index<uint8_t>(data_path.c_str(), index_path_prefix.c_str(), params.c_str(),
metric, use_opq, codebook_prefix, use_filters, label_file,
universal_label, filter_threshold, Lf);
else if (data_type == std::string("float"))
return diskann::build_disk_index<float>(data_path.c_str(), index_path_prefix.c_str(), params.c_str(),
metric, use_opq, codebook_prefix, use_filters, label_file,
universal_label, filter_threshold, Lf);
else
{
diskann::cerr << "Error. Unsupported data type" << std::endl;
return -1;
}
}
}
catch (const std::exception &e)
{
std::cout << std::string(e.what()) << std::endl;
diskann::cerr << "Index build failed." << std::endl;
return -1;
}
}

View File

@@ -1,164 +0,0 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT license.
#include <omp.h>
#include <cstring>
#include <boost/program_options.hpp>
#include "index.h"
#include "utils.h"
#include "program_options_utils.hpp"
#ifndef _WINDOWS
#include <sys/mman.h>
#include <unistd.h>
#else
#include <Windows.h>
#endif
#include "memory_mapper.h"
#include "ann_exception.h"
#include "index_factory.h"
namespace po = boost::program_options;
int main(int argc, char **argv)
{
std::string data_type, dist_fn, data_path, index_path_prefix, label_file, universal_label, label_type;
uint32_t num_threads, R, L, Lf, build_PQ_bytes;
float alpha;
bool use_pq_build, use_opq;
po::options_description desc{
program_options_utils::make_program_description("build_memory_index", "Build a memory-based DiskANN index.")};
try
{
desc.add_options()("help,h", "Print information on arguments");
// Required parameters
po::options_description required_configs("Required");
required_configs.add_options()("data_type", po::value<std::string>(&data_type)->required(),
program_options_utils::DATA_TYPE_DESCRIPTION);
required_configs.add_options()("dist_fn", po::value<std::string>(&dist_fn)->required(),
program_options_utils::DISTANCE_FUNCTION_DESCRIPTION);
required_configs.add_options()("index_path_prefix", po::value<std::string>(&index_path_prefix)->required(),
program_options_utils::INDEX_PATH_PREFIX_DESCRIPTION);
required_configs.add_options()("data_path", po::value<std::string>(&data_path)->required(),
program_options_utils::INPUT_DATA_PATH);
// Optional parameters
po::options_description optional_configs("Optional");
optional_configs.add_options()("num_threads,T",
po::value<uint32_t>(&num_threads)->default_value(omp_get_num_procs()),
program_options_utils::NUMBER_THREADS_DESCRIPTION);
optional_configs.add_options()("max_degree,R", po::value<uint32_t>(&R)->default_value(64),
program_options_utils::MAX_BUILD_DEGREE);
optional_configs.add_options()("Lbuild,L", po::value<uint32_t>(&L)->default_value(100),
program_options_utils::GRAPH_BUILD_COMPLEXITY);
optional_configs.add_options()("alpha", po::value<float>(&alpha)->default_value(1.2f),
program_options_utils::GRAPH_BUILD_ALPHA);
optional_configs.add_options()("build_PQ_bytes", po::value<uint32_t>(&build_PQ_bytes)->default_value(0),
program_options_utils::BUIlD_GRAPH_PQ_BYTES);
optional_configs.add_options()("use_opq", po::bool_switch()->default_value(false),
program_options_utils::USE_OPQ);
optional_configs.add_options()("label_file", po::value<std::string>(&label_file)->default_value(""),
program_options_utils::LABEL_FILE);
optional_configs.add_options()("universal_label", po::value<std::string>(&universal_label)->default_value(""),
program_options_utils::UNIVERSAL_LABEL);
optional_configs.add_options()("FilteredLbuild", po::value<uint32_t>(&Lf)->default_value(0),
program_options_utils::FILTERED_LBUILD);
optional_configs.add_options()("label_type", po::value<std::string>(&label_type)->default_value("uint"),
program_options_utils::LABEL_TYPE_DESCRIPTION);
// Merge required and optional parameters
desc.add(required_configs).add(optional_configs);
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
if (vm.count("help"))
{
std::cout << desc;
return 0;
}
po::notify(vm);
use_pq_build = (build_PQ_bytes > 0);
use_opq = vm["use_opq"].as<bool>();
}
catch (const std::exception &ex)
{
std::cerr << ex.what() << '\n';
return -1;
}
diskann::Metric metric;
if (dist_fn == std::string("mips"))
{
metric = diskann::Metric::INNER_PRODUCT;
}
else if (dist_fn == std::string("l2"))
{
metric = diskann::Metric::L2;
}
else if (dist_fn == std::string("cosine"))
{
metric = diskann::Metric::COSINE;
}
else
{
std::cout << "Unsupported distance function. Currently only L2/ Inner "
"Product/Cosine are supported."
<< std::endl;
return -1;
}
try
{
diskann::cout << "Starting index build with R: " << R << " Lbuild: " << L << " alpha: " << alpha
<< " #threads: " << num_threads << std::endl;
size_t data_num, data_dim;
diskann::get_bin_metadata(data_path, data_num, data_dim);
auto index_build_params = diskann::IndexWriteParametersBuilder(L, R)
.with_filter_list_size(Lf)
.with_alpha(alpha)
.with_saturate_graph(false)
.with_num_threads(num_threads)
.build();
auto filter_params = diskann::IndexFilterParamsBuilder()
.with_universal_label(universal_label)
.with_label_file(label_file)
.with_save_path_prefix(index_path_prefix)
.build();
auto config = diskann::IndexConfigBuilder()
.with_metric(metric)
.with_dimension(data_dim)
.with_max_points(data_num)
.with_data_load_store_strategy(diskann::DataStoreStrategy::MEMORY)
.with_graph_load_store_strategy(diskann::GraphStoreStrategy::MEMORY)
.with_data_type(data_type)
.with_label_type(label_type)
.is_dynamic_index(false)
.with_index_write_params(index_build_params)
.is_enable_tags(false)
.is_use_opq(use_opq)
.is_pq_dist_build(use_pq_build)
.with_num_pq_chunks(build_PQ_bytes)
.build();
auto index_factory = diskann::IndexFactory(config);
auto index = index_factory.create_instance();
index->build(data_path, data_num, filter_params);
index->save(index_path_prefix.c_str());
index.reset();
return 0;
}
catch (const std::exception &e)
{
std::cout << std::string(e.what()) << std::endl;
diskann::cerr << "Index build failed." << std::endl;
return -1;
}
}

View File

@@ -1,441 +0,0 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT license.
#include <boost/program_options.hpp>
#include <chrono>
#include <cstdio>
#include <cstring>
#include <random>
#include <string>
#include <tuple>
#include "filter_utils.h"
#include <omp.h>
#ifndef _WINDOWS
#include <sys/uio.h>
#endif
#include "index.h"
#include "memory_mapper.h"
#include "parameters.h"
#include "utils.h"
#include "program_options_utils.hpp"
namespace po = boost::program_options;
typedef std::tuple<std::vector<std::vector<uint32_t>>, uint64_t> stitch_indices_return_values;
/*
* Inline function to display progress bar.
*/
inline void print_progress(double percentage)
{
int val = (int)(percentage * 100);
int lpad = (int)(percentage * PBWIDTH);
int rpad = PBWIDTH - lpad;
printf("\r%3d%% [%.*s%*s]", val, lpad, PBSTR, rpad, "");
fflush(stdout);
}
/*
* Inline function to generate a random integer in a range.
*/
inline size_t random(size_t range_from, size_t range_to)
{
std::random_device rand_dev;
std::mt19937 generator(rand_dev());
std::uniform_int_distribution<size_t> distr(range_from, range_to);
return distr(generator);
}
/*
* function to handle command line parsing.
*
* Arguments are merely the inputs from the command line.
*/
void handle_args(int argc, char **argv, std::string &data_type, path &input_data_path, path &final_index_path_prefix,
path &label_data_path, std::string &universal_label, uint32_t &num_threads, uint32_t &R, uint32_t &L,
uint32_t &stitched_R, float &alpha)
{
po::options_description desc{
program_options_utils::make_program_description("build_stitched_index", "Build a stitched DiskANN index.")};
try
{
desc.add_options()("help,h", "Print information on arguments");
// Required parameters
po::options_description required_configs("Required");
required_configs.add_options()("data_type", po::value<std::string>(&data_type)->required(),
program_options_utils::DATA_TYPE_DESCRIPTION);
required_configs.add_options()("index_path_prefix",
po::value<std::string>(&final_index_path_prefix)->required(),
program_options_utils::INDEX_PATH_PREFIX_DESCRIPTION);
required_configs.add_options()("data_path", po::value<std::string>(&input_data_path)->required(),
program_options_utils::INPUT_DATA_PATH);
// Optional parameters
po::options_description optional_configs("Optional");
optional_configs.add_options()("num_threads,T",
po::value<uint32_t>(&num_threads)->default_value(omp_get_num_procs()),
program_options_utils::NUMBER_THREADS_DESCRIPTION);
optional_configs.add_options()("max_degree,R", po::value<uint32_t>(&R)->default_value(64),
program_options_utils::MAX_BUILD_DEGREE);
optional_configs.add_options()("Lbuild,L", po::value<uint32_t>(&L)->default_value(100),
program_options_utils::GRAPH_BUILD_COMPLEXITY);
optional_configs.add_options()("alpha", po::value<float>(&alpha)->default_value(1.2f),
program_options_utils::GRAPH_BUILD_ALPHA);
optional_configs.add_options()("label_file", po::value<std::string>(&label_data_path)->default_value(""),
program_options_utils::LABEL_FILE);
optional_configs.add_options()("universal_label", po::value<std::string>(&universal_label)->default_value(""),
program_options_utils::UNIVERSAL_LABEL);
optional_configs.add_options()("stitched_R", po::value<uint32_t>(&stitched_R)->default_value(100),
"Degree to prune final graph down to");
// Merge required and optional parameters
desc.add(required_configs).add(optional_configs);
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
if (vm.count("help"))
{
std::cout << desc;
exit(0);
}
po::notify(vm);
}
catch (const std::exception &ex)
{
std::cerr << ex.what() << '\n';
throw;
}
}
/*
* Custom index save to write the in-memory index to disk.
* Also writes required files for diskANN API -
* 1. labels_to_medoids
* 2. universal_label
* 3. data (redundant for static indices)
* 4. labels (redundant for static indices)
*/
void save_full_index(path final_index_path_prefix, path input_data_path, uint64_t final_index_size,
std::vector<std::vector<uint32_t>> stitched_graph,
tsl::robin_map<std::string, uint32_t> entry_points, std::string universal_label,
path label_data_path)
{
// aux. file 1
auto saving_index_timer = std::chrono::high_resolution_clock::now();
std::ifstream original_label_data_stream;
original_label_data_stream.exceptions(std::ios::badbit | std::ios::failbit);
original_label_data_stream.open(label_data_path, std::ios::binary);
std::ofstream new_label_data_stream;
new_label_data_stream.exceptions(std::ios::badbit | std::ios::failbit);
new_label_data_stream.open(final_index_path_prefix + "_labels.txt", std::ios::binary);
new_label_data_stream << original_label_data_stream.rdbuf();
original_label_data_stream.close();
new_label_data_stream.close();
// aux. file 2
std::ifstream original_input_data_stream;
original_input_data_stream.exceptions(std::ios::badbit | std::ios::failbit);
original_input_data_stream.open(input_data_path, std::ios::binary);
std::ofstream new_input_data_stream;
new_input_data_stream.exceptions(std::ios::badbit | std::ios::failbit);
new_input_data_stream.open(final_index_path_prefix + ".data", std::ios::binary);
new_input_data_stream << original_input_data_stream.rdbuf();
original_input_data_stream.close();
new_input_data_stream.close();
// aux. file 3
std::ofstream labels_to_medoids_writer;
labels_to_medoids_writer.exceptions(std::ios::badbit | std::ios::failbit);
labels_to_medoids_writer.open(final_index_path_prefix + "_labels_to_medoids.txt");
for (auto iter : entry_points)
labels_to_medoids_writer << iter.first << ", " << iter.second << std::endl;
labels_to_medoids_writer.close();
// aux. file 4 (only if we're using a universal label)
if (universal_label != "")
{
std::ofstream universal_label_writer;
universal_label_writer.exceptions(std::ios::badbit | std::ios::failbit);
universal_label_writer.open(final_index_path_prefix + "_universal_label.txt");
universal_label_writer << universal_label << std::endl;
universal_label_writer.close();
}
// main index
uint64_t index_num_frozen_points = 0, index_num_edges = 0;
uint32_t index_max_observed_degree = 0, index_entry_point = 0;
const size_t METADATA = 2 * sizeof(uint64_t) + 2 * sizeof(uint32_t);
for (auto &point_neighbors : stitched_graph)
{
index_max_observed_degree = std::max(index_max_observed_degree, (uint32_t)point_neighbors.size());
}
std::ofstream stitched_graph_writer;
stitched_graph_writer.exceptions(std::ios::badbit | std::ios::failbit);
stitched_graph_writer.open(final_index_path_prefix, std::ios_base::binary);
stitched_graph_writer.write((char *)&final_index_size, sizeof(uint64_t));
stitched_graph_writer.write((char *)&index_max_observed_degree, sizeof(uint32_t));
stitched_graph_writer.write((char *)&index_entry_point, sizeof(uint32_t));
stitched_graph_writer.write((char *)&index_num_frozen_points, sizeof(uint64_t));
size_t bytes_written = METADATA;
for (uint32_t node_point = 0; node_point < stitched_graph.size(); node_point++)
{
uint32_t current_node_num_neighbors = (uint32_t)stitched_graph[node_point].size();
std::vector<uint32_t> current_node_neighbors = stitched_graph[node_point];
stitched_graph_writer.write((char *)&current_node_num_neighbors, sizeof(uint32_t));
bytes_written += sizeof(uint32_t);
for (const auto &current_node_neighbor : current_node_neighbors)
{
stitched_graph_writer.write((char *)&current_node_neighbor, sizeof(uint32_t));
bytes_written += sizeof(uint32_t);
}
index_num_edges += current_node_num_neighbors;
}
if (bytes_written != final_index_size)
{
std::cerr << "Error: written bytes does not match allocated space" << std::endl;
throw;
}
stitched_graph_writer.close();
std::chrono::duration<double> saving_index_time = std::chrono::high_resolution_clock::now() - saving_index_timer;
std::cout << "Stitched graph written in " << saving_index_time.count() << " seconds" << std::endl;
std::cout << "Stitched graph average degree: " << ((float)index_num_edges) / ((float)(stitched_graph.size()))
<< std::endl;
std::cout << "Stitched graph max degree: " << index_max_observed_degree << std::endl << std::endl;
}
/*
* Unions the per-label graph indices together via the following policy:
* - any two nodes can only have at most one edge between them -
*
* Returns the "stitched" graph and its expected file size.
*/
template <typename T>
stitch_indices_return_values stitch_label_indices(
path final_index_path_prefix, uint32_t total_number_of_points, label_set all_labels,
tsl::robin_map<std::string, uint32_t> labels_to_number_of_points,
tsl::robin_map<std::string, uint32_t> &label_entry_points,
tsl::robin_map<std::string, std::vector<uint32_t>> label_id_to_orig_id_map)
{
size_t final_index_size = 0;
std::vector<std::vector<uint32_t>> stitched_graph(total_number_of_points);
auto stitching_index_timer = std::chrono::high_resolution_clock::now();
for (const auto &lbl : all_labels)
{
path curr_label_index_path(final_index_path_prefix + "_" + lbl);
std::vector<std::vector<uint32_t>> curr_label_index;
uint64_t curr_label_index_size;
uint32_t curr_label_entry_point;
std::tie(curr_label_index, curr_label_index_size) =
diskann::load_label_index(curr_label_index_path, labels_to_number_of_points[lbl]);
curr_label_entry_point = (uint32_t)random(0, curr_label_index.size());
label_entry_points[lbl] = label_id_to_orig_id_map[lbl][curr_label_entry_point];
for (uint32_t node_point = 0; node_point < curr_label_index.size(); node_point++)
{
uint32_t original_point_id = label_id_to_orig_id_map[lbl][node_point];
for (auto &node_neighbor : curr_label_index[node_point])
{
uint32_t original_neighbor_id = label_id_to_orig_id_map[lbl][node_neighbor];
std::vector<uint32_t> curr_point_neighbors = stitched_graph[original_point_id];
if (std::find(curr_point_neighbors.begin(), curr_point_neighbors.end(), original_neighbor_id) ==
curr_point_neighbors.end())
{
stitched_graph[original_point_id].push_back(original_neighbor_id);
final_index_size += sizeof(uint32_t);
}
}
}
}
const size_t METADATA = 2 * sizeof(uint64_t) + 2 * sizeof(uint32_t);
final_index_size += (total_number_of_points * sizeof(uint32_t) + METADATA);
std::chrono::duration<double> stitching_index_time =
std::chrono::high_resolution_clock::now() - stitching_index_timer;
std::cout << "stitched graph generated in memory in " << stitching_index_time.count() << " seconds" << std::endl;
return std::make_tuple(stitched_graph, final_index_size);
}
/*
* Applies the prune_neighbors function from src/index.cpp to
* every node in the stitched graph.
*
* This is an optional step, hence the saving of both the full
* and pruned graph.
*/
template <typename T>
void prune_and_save(path final_index_path_prefix, path full_index_path_prefix, path input_data_path,
std::vector<std::vector<uint32_t>> stitched_graph, uint32_t stitched_R,
tsl::robin_map<std::string, uint32_t> label_entry_points, std::string universal_label,
path label_data_path, uint32_t num_threads)
{
size_t dimension, number_of_label_points;
auto diskann_cout_buffer = diskann::cout.rdbuf(nullptr);
auto std_cout_buffer = std::cout.rdbuf(nullptr);
auto pruning_index_timer = std::chrono::high_resolution_clock::now();
diskann::get_bin_metadata(input_data_path, number_of_label_points, dimension);
diskann::Index<T> index(diskann::Metric::L2, dimension, number_of_label_points, nullptr, nullptr, 0, false, false,
false, false, 0, false);
// not searching this index, set search_l to 0
index.load(full_index_path_prefix.c_str(), num_threads, 1);
std::cout << "parsing labels" << std::endl;
index.prune_all_neighbors(stitched_R, 750, 1.2);
index.save((final_index_path_prefix).c_str());
diskann::cout.rdbuf(diskann_cout_buffer);
std::cout.rdbuf(std_cout_buffer);
std::chrono::duration<double> pruning_index_time = std::chrono::high_resolution_clock::now() - pruning_index_timer;
std::cout << "pruning performed in " << pruning_index_time.count() << " seconds\n" << std::endl;
}
/*
* Delete all temporary artifacts.
* In the process of creating the stitched index, some temporary artifacts are
* created:
* 1. the separate bin files for each labels' points
* 2. the separate diskANN indices built for each label
* 3. the '.data' file created while generating the indices
*/
void clean_up_artifacts(path input_data_path, path final_index_path_prefix, label_set all_labels)
{
for (const auto &lbl : all_labels)
{
path curr_label_input_data_path(input_data_path + "_" + lbl);
path curr_label_index_path(final_index_path_prefix + "_" + lbl);
path curr_label_index_path_data(curr_label_index_path + ".data");
if (std::remove(curr_label_index_path.c_str()) != 0)
throw;
if (std::remove(curr_label_input_data_path.c_str()) != 0)
throw;
if (std::remove(curr_label_index_path_data.c_str()) != 0)
throw;
}
}
int main(int argc, char **argv)
{
// 1. handle cmdline inputs
std::string data_type;
path input_data_path, final_index_path_prefix, label_data_path;
std::string universal_label;
uint32_t num_threads, R, L, stitched_R;
float alpha;
auto index_timer = std::chrono::high_resolution_clock::now();
handle_args(argc, argv, data_type, input_data_path, final_index_path_prefix, label_data_path, universal_label,
num_threads, R, L, stitched_R, alpha);
path labels_file_to_use = final_index_path_prefix + "_label_formatted.txt";
path labels_map_file = final_index_path_prefix + "_labels_map.txt";
convert_labels_string_to_int(label_data_path, labels_file_to_use, labels_map_file, universal_label);
// 2. parse label file and create necessary data structures
std::vector<label_set> point_ids_to_labels;
tsl::robin_map<std::string, uint32_t> labels_to_number_of_points;
label_set all_labels;
std::tie(point_ids_to_labels, labels_to_number_of_points, all_labels) =
diskann::parse_label_file(labels_file_to_use, universal_label);
// 3. for each label, make a separate data file
tsl::robin_map<std::string, std::vector<uint32_t>> label_id_to_orig_id_map;
uint32_t total_number_of_points = (uint32_t)point_ids_to_labels.size();
#ifndef _WINDOWS
if (data_type == "uint8")
label_id_to_orig_id_map = diskann::generate_label_specific_vector_files<uint8_t>(
input_data_path, labels_to_number_of_points, point_ids_to_labels, all_labels);
else if (data_type == "int8")
label_id_to_orig_id_map = diskann::generate_label_specific_vector_files<int8_t>(
input_data_path, labels_to_number_of_points, point_ids_to_labels, all_labels);
else if (data_type == "float")
label_id_to_orig_id_map = diskann::generate_label_specific_vector_files<float>(
input_data_path, labels_to_number_of_points, point_ids_to_labels, all_labels);
else
throw;
#else
if (data_type == "uint8")
label_id_to_orig_id_map = diskann::generate_label_specific_vector_files_compat<uint8_t>(
input_data_path, labels_to_number_of_points, point_ids_to_labels, all_labels);
else if (data_type == "int8")
label_id_to_orig_id_map = diskann::generate_label_specific_vector_files_compat<int8_t>(
input_data_path, labels_to_number_of_points, point_ids_to_labels, all_labels);
else if (data_type == "float")
label_id_to_orig_id_map = diskann::generate_label_specific_vector_files_compat<float>(
input_data_path, labels_to_number_of_points, point_ids_to_labels, all_labels);
else
throw;
#endif
// 4. for each created data file, create a vanilla diskANN index
if (data_type == "uint8")
diskann::generate_label_indices<uint8_t>(input_data_path, final_index_path_prefix, all_labels, R, L, alpha,
num_threads);
else if (data_type == "int8")
diskann::generate_label_indices<int8_t>(input_data_path, final_index_path_prefix, all_labels, R, L, alpha,
num_threads);
else if (data_type == "float")
diskann::generate_label_indices<float>(input_data_path, final_index_path_prefix, all_labels, R, L, alpha,
num_threads);
else
throw;
// 5. "stitch" the indices together
std::vector<std::vector<uint32_t>> stitched_graph;
tsl::robin_map<std::string, uint32_t> label_entry_points;
uint64_t stitched_graph_size;
if (data_type == "uint8")
std::tie(stitched_graph, stitched_graph_size) =
stitch_label_indices<uint8_t>(final_index_path_prefix, total_number_of_points, all_labels,
labels_to_number_of_points, label_entry_points, label_id_to_orig_id_map);
else if (data_type == "int8")
std::tie(stitched_graph, stitched_graph_size) =
stitch_label_indices<int8_t>(final_index_path_prefix, total_number_of_points, all_labels,
labels_to_number_of_points, label_entry_points, label_id_to_orig_id_map);
else if (data_type == "float")
std::tie(stitched_graph, stitched_graph_size) =
stitch_label_indices<float>(final_index_path_prefix, total_number_of_points, all_labels,
labels_to_number_of_points, label_entry_points, label_id_to_orig_id_map);
else
throw;
path full_index_path_prefix = final_index_path_prefix + "_full";
// 5a. save the stitched graph to disk
save_full_index(full_index_path_prefix, input_data_path, stitched_graph_size, stitched_graph, label_entry_points,
universal_label, labels_file_to_use);
// 6. run a prune on the stitched index, and save to disk
if (data_type == "uint8")
prune_and_save<uint8_t>(final_index_path_prefix, full_index_path_prefix, input_data_path, stitched_graph,
stitched_R, label_entry_points, universal_label, labels_file_to_use, num_threads);
else if (data_type == "int8")
prune_and_save<int8_t>(final_index_path_prefix, full_index_path_prefix, input_data_path, stitched_graph,
stitched_R, label_entry_points, universal_label, labels_file_to_use, num_threads);
else if (data_type == "float")
prune_and_save<float>(final_index_path_prefix, full_index_path_prefix, input_data_path, stitched_graph,
stitched_R, label_entry_points, universal_label, labels_file_to_use, num_threads);
else
throw;
std::chrono::duration<double> index_time = std::chrono::high_resolution_clock::now() - index_timer;
std::cout << "pruned/stitched graph generated in " << index_time.count() << " seconds" << std::endl;
clean_up_artifacts(input_data_path, final_index_path_prefix, all_labels);
}

View File

@@ -1,46 +0,0 @@
<!-- Copyright (c) Microsoft Corporation. All rights reserved.
Licensed under the MIT license. -->
# Integration Tests
The following tests use Python to prepare, run, verify, and tear down the rest api services.
We do make use of the built-in `unittest` library, but that's only to take advantage of test reporting purposes.
These are decidedly **not** _unit_ tests. These are end to end integration tests.
## Caveats
This has only been tested or built for Linux, though we have written platform agnostic Python for the smoke test
(i.e. using `os.path.join`, etc)
It has been tested on Python 3.9 and 3.10, but should work on Python 3.6+.
## How to Run
First, build the DiskANN RestAPI code; see $REPOSITORY_ROOT/workflows/rest_api.md for detailed instructions.
```bash
cd tests/python
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
export DISKANN_BUILD_DIR=/path/to/your/diskann/build
python -m unittest
```
## Smoke Test Failed, Now What?
The smoke test written takes advantage of temporary directories that are only valid during the
lifetime of the test. The contents of these directories include:
- Randomized vectors (first in tsv, then bin form) used to build the PQFlashIndex
- The PQFlashIndex files
It is useful to keep these around. By setting some environment variables, you can control whether an ephemeral,
temporary directory is used (and deleted on test completion), or left as an exercise for the developer to
clean up.
The valid environment variables are:
- `DISKANN_REST_TEST_WORKING_DIR` (example: `$USER/DiskANNRestTest`)
- If this is specified, it **must exist** and **must be writeable**. Any existing files will be clobbered.
- `DISKANN_REST_SERVER` (example: `http://127.0.0.1:10067`)
- Note that if this is set, no data will be generated, nor will a server be started; it is presumed you have done
all the work in creating and starting the rest server prior to running the test and just submits requests against it.

View File

@@ -1,67 +0,0 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT license.
import numpy as np
import os
import subprocess
def output_vectors(
diskann_build_path: str,
temporary_file_path: str,
vectors: np.ndarray,
timeout: int = 60
) -> str:
vectors_as_tsv_path = os.path.join(temporary_file_path, "vectors.tsv")
with open(vectors_as_tsv_path, "w") as vectors_tsv_out:
for vector in vectors:
as_str = "\t".join((str(component) for component in vector))
print(as_str, file=vectors_tsv_out)
# there is probably a clever way to have numpy write out C++ friendly floats, so feel free to remove this in
# favor of something more sane later
vectors_as_bin_path = os.path.join(temporary_file_path, "vectors.bin")
tsv_to_bin_path = os.path.join(diskann_build_path, "apps", "utils", "tsv_to_bin")
number_of_points, dimensions = vectors.shape
args = [
tsv_to_bin_path,
"float",
vectors_as_tsv_path,
vectors_as_bin_path,
str(dimensions),
str(number_of_points)
]
completed = subprocess.run(args, timeout=timeout)
if completed.returncode != 0:
raise Exception(f"Unable to convert tsv to binary using tsv_to_bin, completed_process: {completed}")
return vectors_as_bin_path
def build_ssd_index(
diskann_build_path: str,
temporary_file_path: str,
vectors: np.ndarray,
per_process_timeout: int = 60 # this may not be long enough if you're doing something larger
):
vectors_as_bin_path = output_vectors(diskann_build_path, temporary_file_path, vectors, timeout=per_process_timeout)
ssd_builder_path = os.path.join(diskann_build_path, "apps", "build_disk_index")
args = [
ssd_builder_path,
"--data_type", "float",
"--dist_fn", "l2",
"--data_path", vectors_as_bin_path,
"--index_path_prefix", os.path.join(temporary_file_path, "smoke_test"),
"-R", "64",
"-L", "100",
"--search_DRAM_budget", "1",
"--build_DRAM_budget", "1",
"--num_threads", "1",
"--PQ_disk_bytes", "0"
]
completed = subprocess.run(args, timeout=per_process_timeout)
if completed.returncode != 0:
command_run = " ".join(args)
raise Exception(f"Unable to build a disk index with the command: '{command_run}'\ncompleted_process: {completed}\nstdout: {completed.stdout}\nstderr: {completed.stderr}")
# index is now built inside of temporary_file_path

View File

@@ -1,379 +0,0 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT license.
#include <atomic>
#include <cstring>
#include <iomanip>
#include <omp.h>
#include <set>
#include <boost/program_options.hpp>
#include "index.h"
#include "disk_utils.h"
#include "math_utils.h"
#include "memory_mapper.h"
#include "pq_flash_index.h"
#include "partition.h"
#include "timer.h"
#include "program_options_utils.hpp"
#ifndef _WINDOWS
#include <sys/mman.h>
#include <sys/stat.h>
#include <unistd.h>
#include "linux_aligned_file_reader.h"
#else
#ifdef USE_BING_INFRA
#include "bing_aligned_file_reader.h"
#else
#include "windows_aligned_file_reader.h"
#endif
#endif
namespace po = boost::program_options;
#define WARMUP false
void print_stats(std::string category, std::vector<float> percentiles, std::vector<float> results)
{
diskann::cout << std::setw(20) << category << ": " << std::flush;
for (uint32_t s = 0; s < percentiles.size(); s++)
{
diskann::cout << std::setw(8) << percentiles[s] << "%";
}
diskann::cout << std::endl;
diskann::cout << std::setw(22) << " " << std::flush;
for (uint32_t s = 0; s < percentiles.size(); s++)
{
diskann::cout << std::setw(9) << results[s];
}
diskann::cout << std::endl;
}
template <typename T, typename LabelT = uint32_t>
int search_disk_index(diskann::Metric &metric, const std::string &index_path_prefix, const std::string &query_file,
std::string &gt_file, const uint32_t num_threads, const float search_range,
const uint32_t beamwidth, const uint32_t num_nodes_to_cache, const std::vector<uint32_t> &Lvec)
{
std::string pq_prefix = index_path_prefix + "_pq";
std::string disk_index_file = index_path_prefix + "_disk.index";
std::string warmup_query_file = index_path_prefix + "_sample_data.bin";
diskann::cout << "Search parameters: #threads: " << num_threads << ", ";
if (beamwidth <= 0)
diskann::cout << "beamwidth to be optimized for each L value" << std::endl;
else
diskann::cout << " beamwidth: " << beamwidth << std::endl;
// load query bin
T *query = nullptr;
std::vector<std::vector<uint32_t>> groundtruth_ids;
size_t query_num, query_dim, query_aligned_dim, gt_num;
diskann::load_aligned_bin<T>(query_file, query, query_num, query_dim, query_aligned_dim);
bool calc_recall_flag = false;
if (gt_file != std::string("null") && file_exists(gt_file))
{
diskann::load_range_truthset(gt_file, groundtruth_ids,
gt_num); // use for range search type of truthset
// diskann::prune_truthset_for_range(gt_file, search_range,
// groundtruth_ids, gt_num); // use for traditional truthset
if (gt_num != query_num)
{
diskann::cout << "Error. Mismatch in number of queries and ground truth data" << std::endl;
return -1;
}
calc_recall_flag = true;
}
std::shared_ptr<AlignedFileReader> reader = nullptr;
#ifdef _WINDOWS
#ifndef USE_BING_INFRA
reader.reset(new WindowsAlignedFileReader());
#else
reader.reset(new diskann::BingAlignedFileReader());
#endif
#else
reader.reset(new LinuxAlignedFileReader());
#endif
std::unique_ptr<diskann::PQFlashIndex<T, LabelT>> _pFlashIndex(
new diskann::PQFlashIndex<T, LabelT>(reader, metric));
int res = _pFlashIndex->load(num_threads, index_path_prefix.c_str());
if (res != 0)
{
return res;
}
// cache bfs levels
std::vector<uint32_t> node_list;
diskann::cout << "Caching " << num_nodes_to_cache << " BFS nodes around medoid(s)" << std::endl;
_pFlashIndex->cache_bfs_levels(num_nodes_to_cache, node_list);
// _pFlashIndex->generate_cache_list_from_sample_queries(
// warmup_query_file, 15, 6, num_nodes_to_cache, num_threads,
// node_list);
_pFlashIndex->load_cache_list(node_list);
node_list.clear();
node_list.shrink_to_fit();
omp_set_num_threads(num_threads);
uint64_t warmup_L = 20;
uint64_t warmup_num = 0, warmup_dim = 0, warmup_aligned_dim = 0;
T *warmup = nullptr;
if (WARMUP)
{
if (file_exists(warmup_query_file))
{
diskann::load_aligned_bin<T>(warmup_query_file, warmup, warmup_num, warmup_dim, warmup_aligned_dim);
}
else
{
warmup_num = (std::min)((uint32_t)150000, (uint32_t)15000 * num_threads);
warmup_dim = query_dim;
warmup_aligned_dim = query_aligned_dim;
diskann::alloc_aligned(((void **)&warmup), warmup_num * warmup_aligned_dim * sizeof(T), 8 * sizeof(T));
std::memset(warmup, 0, warmup_num * warmup_aligned_dim * sizeof(T));
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<> dis(-128, 127);
for (uint32_t i = 0; i < warmup_num; i++)
{
for (uint32_t d = 0; d < warmup_dim; d++)
{
warmup[i * warmup_aligned_dim + d] = (T)dis(gen);
}
}
}
diskann::cout << "Warming up index... " << std::flush;
std::vector<uint64_t> warmup_result_ids_64(warmup_num, 0);
std::vector<float> warmup_result_dists(warmup_num, 0);
#pragma omp parallel for schedule(dynamic, 1)
for (int64_t i = 0; i < (int64_t)warmup_num; i++)
{
_pFlashIndex->cached_beam_search(warmup + (i * warmup_aligned_dim), 1, warmup_L,
warmup_result_ids_64.data() + (i * 1),
warmup_result_dists.data() + (i * 1), 4);
}
diskann::cout << "..done" << std::endl;
}
diskann::cout.setf(std::ios_base::fixed, std::ios_base::floatfield);
diskann::cout.precision(2);
std::string recall_string = "Recall@rng=" + std::to_string(search_range);
diskann::cout << std::setw(6) << "L" << std::setw(12) << "Beamwidth" << std::setw(16) << "QPS" << std::setw(16)
<< "Mean Latency" << std::setw(16) << "99.9 Latency" << std::setw(16) << "Mean IOs" << std::setw(16)
<< "CPU (s)";
if (calc_recall_flag)
{
diskann::cout << std::setw(16) << recall_string << std::endl;
}
else
diskann::cout << std::endl;
diskann::cout << "==============================================================="
"==========================================="
<< std::endl;
std::vector<std::vector<std::vector<uint32_t>>> query_result_ids(Lvec.size());
uint32_t optimized_beamwidth = 2;
uint32_t max_list_size = 10000;
for (uint32_t test_id = 0; test_id < Lvec.size(); test_id++)
{
uint32_t L = Lvec[test_id];
if (beamwidth <= 0)
{
optimized_beamwidth =
optimize_beamwidth(_pFlashIndex, warmup, warmup_num, warmup_aligned_dim, L, optimized_beamwidth);
}
else
optimized_beamwidth = beamwidth;
query_result_ids[test_id].clear();
query_result_ids[test_id].resize(query_num);
diskann::QueryStats *stats = new diskann::QueryStats[query_num];
auto s = std::chrono::high_resolution_clock::now();
#pragma omp parallel for schedule(dynamic, 1)
for (int64_t i = 0; i < (int64_t)query_num; i++)
{
std::vector<uint64_t> indices;
std::vector<float> distances;
uint32_t res_count =
_pFlashIndex->range_search(query + (i * query_aligned_dim), search_range, L, max_list_size, indices,
distances, optimized_beamwidth, stats + i);
query_result_ids[test_id][i].reserve(res_count);
query_result_ids[test_id][i].resize(res_count);
for (uint32_t idx = 0; idx < res_count; idx++)
query_result_ids[test_id][i][idx] = (uint32_t)indices[idx];
}
auto e = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> diff = e - s;
auto qps = (1.0 * query_num) / (1.0 * diff.count());
auto mean_latency = diskann::get_mean_stats<float>(
stats, query_num, [](const diskann::QueryStats &stats) { return stats.total_us; });
auto latency_999 = diskann::get_percentile_stats<float>(
stats, query_num, 0.999, [](const diskann::QueryStats &stats) { return stats.total_us; });
auto mean_ios = diskann::get_mean_stats<uint32_t>(stats, query_num,
[](const diskann::QueryStats &stats) { return stats.n_ios; });
double mean_cpuus = diskann::get_mean_stats<float>(
stats, query_num, [](const diskann::QueryStats &stats) { return stats.cpu_us; });
double recall = 0;
double ratio_of_sums = 0;
if (calc_recall_flag)
{
recall =
diskann::calculate_range_search_recall((uint32_t)query_num, groundtruth_ids, query_result_ids[test_id]);
uint32_t total_true_positive = 0;
uint32_t total_positive = 0;
for (uint32_t i = 0; i < query_num; i++)
{
total_true_positive += (uint32_t)query_result_ids[test_id][i].size();
total_positive += (uint32_t)groundtruth_ids[i].size();
}
ratio_of_sums = (1.0 * total_true_positive) / (1.0 * total_positive);
}
diskann::cout << std::setw(6) << L << std::setw(12) << optimized_beamwidth << std::setw(16) << qps
<< std::setw(16) << mean_latency << std::setw(16) << latency_999 << std::setw(16) << mean_ios
<< std::setw(16) << mean_cpuus;
if (calc_recall_flag)
{
diskann::cout << std::setw(16) << recall << "," << ratio_of_sums << std::endl;
}
else
diskann::cout << std::endl;
}
diskann::cout << "Done searching. " << std::endl;
diskann::aligned_free(query);
if (warmup != nullptr)
diskann::aligned_free(warmup);
return 0;
}
int main(int argc, char **argv)
{
std::string data_type, dist_fn, index_path_prefix, result_path_prefix, query_file, gt_file;
uint32_t num_threads, W, num_nodes_to_cache;
std::vector<uint32_t> Lvec;
float range;
po::options_description desc{program_options_utils::make_program_description(
"range_search_disk_index", "Searches disk DiskANN indexes using ranges")};
try
{
desc.add_options()("help,h", "Print information on arguments");
// Required parameters
po::options_description required_configs("Required");
required_configs.add_options()("data_type", po::value<std::string>(&data_type)->required(),
program_options_utils::DATA_TYPE_DESCRIPTION);
required_configs.add_options()("dist_fn", po::value<std::string>(&dist_fn)->required(),
program_options_utils::DISTANCE_FUNCTION_DESCRIPTION);
required_configs.add_options()("index_path_prefix", po::value<std::string>(&index_path_prefix)->required(),
program_options_utils::INDEX_PATH_PREFIX_DESCRIPTION);
required_configs.add_options()("query_file", po::value<std::string>(&query_file)->required(),
program_options_utils::QUERY_FILE_DESCRIPTION);
required_configs.add_options()("search_list,L",
po::value<std::vector<uint32_t>>(&Lvec)->multitoken()->required(),
program_options_utils::SEARCH_LIST_DESCRIPTION);
required_configs.add_options()("range_threshold,K", po::value<float>(&range)->required(),
"Number of neighbors to be returned");
// Optional parameters
po::options_description optional_configs("Optional");
optional_configs.add_options()("num_threads,T",
po::value<uint32_t>(&num_threads)->default_value(omp_get_num_procs()),
program_options_utils::NUMBER_THREADS_DESCRIPTION);
optional_configs.add_options()("gt_file", po::value<std::string>(&gt_file)->default_value(std::string("null")),
program_options_utils::GROUND_TRUTH_FILE_DESCRIPTION);
optional_configs.add_options()("num_nodes_to_cache", po::value<uint32_t>(&num_nodes_to_cache)->default_value(0),
program_options_utils::NUMBER_OF_NODES_TO_CACHE);
optional_configs.add_options()("beamwidth,W", po::value<uint32_t>(&W)->default_value(2),
program_options_utils::BEAMWIDTH);
// Merge required and optional parameters
desc.add(required_configs).add(optional_configs);
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
if (vm.count("help"))
{
std::cout << desc;
return 0;
}
po::notify(vm);
}
catch (const std::exception &ex)
{
std::cerr << ex.what() << '\n';
return -1;
}
diskann::Metric metric;
if (dist_fn == std::string("mips"))
{
metric = diskann::Metric::INNER_PRODUCT;
}
else if (dist_fn == std::string("l2"))
{
metric = diskann::Metric::L2;
}
else if (dist_fn == std::string("cosine"))
{
metric = diskann::Metric::COSINE;
}
else
{
std::cout << "Unsupported distance function. Currently only L2/ Inner "
"Product/Cosine are supported."
<< std::endl;
return -1;
}
if ((data_type != std::string("float")) && (metric == diskann::Metric::INNER_PRODUCT))
{
std::cout << "Currently support only floating point data for Inner Product." << std::endl;
return -1;
}
try
{
if (data_type == std::string("float"))
return search_disk_index<float>(metric, index_path_prefix, query_file, gt_file, num_threads, range, W,
num_nodes_to_cache, Lvec);
else if (data_type == std::string("int8"))
return search_disk_index<int8_t>(metric, index_path_prefix, query_file, gt_file, num_threads, range, W,
num_nodes_to_cache, Lvec);
else if (data_type == std::string("uint8"))
return search_disk_index<uint8_t>(metric, index_path_prefix, query_file, gt_file, num_threads, range, W,
num_nodes_to_cache, Lvec);
else
{
std::cerr << "Unsupported data type. Use float or int8 or uint8" << std::endl;
return -1;
}
}
catch (const std::exception &e)
{
std::cout << std::string(e.what()) << std::endl;
diskann::cerr << "Index search failed." << std::endl;
return -1;
}
}

View File

@@ -1,40 +0,0 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT license.
set(CMAKE_CXX_STANDARD 17)
add_executable(inmem_server inmem_server.cpp)
if(MSVC)
target_link_options(inmem_server PRIVATE /MACHINE:x64)
target_link_libraries(inmem_server debug ${CMAKE_LIBRARY_OUTPUT_DIRECTORY_DEBUG}/diskann_dll.lib Boost::program_options)
target_link_libraries(inmem_server optimized ${CMAKE_LIBRARY_OUTPUT_DIRECTORY_RELEASE}/diskann_dll.lib Boost::program_options)
else()
target_link_libraries(inmem_server ${PROJECT_NAME} aio -ltcmalloc -lboost_system -lcrypto -lssl -lcpprest Boost::program_options)
endif()
add_executable(ssd_server ssd_server.cpp)
if(MSVC)
target_link_options(ssd_server PRIVATE /MACHINE:x64)
target_link_libraries(ssd_server debug ${CMAKE_LIBRARY_OUTPUT_DIRECTORY_DEBUG}/diskann_dll.lib Boost::program_options)
target_link_libraries(ssd_server optimized ${CMAKE_LIBRARY_OUTPUT_DIRECTORY_RELEASE}/diskann_dll.lib Boost::program_options)
else()
target_link_libraries(ssd_server ${PROJECT_NAME} aio -ltcmalloc -lboost_system -lcrypto -lssl -lcpprest Boost::program_options)
endif()
add_executable(multiple_ssdindex_server multiple_ssdindex_server.cpp)
if(MSVC)
target_link_options(multiple_ssdindex_server PRIVATE /MACHINE:x64)
target_link_libraries(multiple_ssdindex_server debug ${CMAKE_LIBRARY_OUTPUT_DIRECTORY_DEBUG}/diskann_dll.lib Boost::program_options)
target_link_libraries(multiple_ssdindex_server optimized ${CMAKE_LIBRARY_OUTPUT_DIRECTORY_RELEASE}/diskann_dll.lib Boost::program_options)
else()
target_link_libraries(multiple_ssdindex_server ${PROJECT_NAME} aio -ltcmalloc -lboost_system -lcrypto -lssl -lcpprest Boost::program_options)
endif()
add_executable(client client.cpp)
if(MSVC)
target_link_options(client PRIVATE /MACHINE:x64)
target_link_libraries(client debug ${CMAKE_LIBRARY_OUTPUT_DIRECTORY_DEBUG}/diskann_dll.lib Boost::program_options)
target_link_libraries(client optimized ${CMAKE_LIBRARY_OUTPUT_DIRECTORY_RELEASE}/diskann_dll.lib Boost::program_options)
else()
target_link_libraries(client ${PROJECT_NAME} -lboost_system -lcrypto -lssl -lcpprest Boost::program_options)
endif()

View File

@@ -1,124 +0,0 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT license.
#include <ctime>
#include <functional>
#include <iomanip>
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT license.
#include <string>
#include <cstdlib>
#include <codecvt>
#include <boost/program_options.hpp>
#include <cpprest/http_client.h>
#include <restapi/common.h>
using namespace web;
using namespace web::http;
using namespace web::http::client;
using namespace diskann;
namespace po = boost::program_options;
template <typename T>
void query_loop(const std::string &ip_addr_port, const std::string &query_file, const unsigned nq, const unsigned Ls,
const unsigned k_value)
{
web::http::client::http_client client(U(ip_addr_port));
T *data;
size_t npts = 1, ndims = 128, rounded_dim = 128;
diskann::load_aligned_bin<T>(query_file, data, npts, ndims, rounded_dim);
for (unsigned i = 0; i < nq; ++i)
{
T *vec = data + i * rounded_dim;
web::http::http_request http_query(methods::POST);
web::json::value queryJson = web::json::value::object();
queryJson[QUERY_ID_KEY] = i;
queryJson[K_KEY] = k_value;
queryJson[L_KEY] = Ls;
for (size_t i = 0; i < ndims; ++i)
{
queryJson[VECTOR_KEY][i] = web::json::value::number(vec[i]);
}
http_query.set_body(queryJson);
client.request(http_query)
.then([](web::http::http_response response) -> pplx::task<utility::string_t> {
if (response.status_code() == status_codes::OK)
{
return response.extract_string();
}
std::cerr << "Query failed" << std::endl;
return pplx::task_from_result(utility::string_t());
})
.then([](pplx::task<utility::string_t> previousTask) {
try
{
std::cout << previousTask.get() << std::endl;
}
catch (http_exception const &e)
{
std::wcout << e.what() << std::endl;
}
})
.wait();
}
}
int main(int argc, char *argv[])
{
std::string data_type, query_file, address;
uint32_t num_queries;
uint32_t l_search, k_value;
po::options_description desc{"Arguments"};
try
{
desc.add_options()("help,h", "Print information on arguments");
desc.add_options()("data_type", po::value<std::string>(&data_type)->required(), "data type <int8/uint8/float>");
desc.add_options()("address", po::value<std::string>(&address)->required(), "Web server address");
desc.add_options()("query_file", po::value<std::string>(&query_file)->required(),
"File containing the queries to search");
desc.add_options()("num_queries,Q", po::value<uint32_t>(&num_queries)->required(),
"Number of queries to search");
desc.add_options()("l_search", po::value<uint32_t>(&l_search)->required(), "Value of L");
desc.add_options()("k_value,K", po::value<uint32_t>(&k_value)->default_value(10), "Value of K (default 10)");
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
if (vm.count("help"))
{
std::cout << desc;
return 0;
}
po::notify(vm);
}
catch (const std::exception &ex)
{
std::cerr << ex.what() << std::endl;
return -1;
}
if (data_type == std::string("float"))
{
query_loop<float>(address, query_file, num_queries, l_search, k_value);
}
else if (data_type == std::string("int8"))
{
query_loop<int8_t>(address, query_file, num_queries, l_search, k_value);
}
else if (data_type == std::string("uint8"))
{
query_loop<uint8_t>(address, query_file, num_queries, l_search, k_value);
}
else
{
std::cerr << "Unsupported type " << argv[2] << std::endl;
return -1;
}
return 0;
}

View File

@@ -1,138 +0,0 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT license.
#include <ctime>
#include <functional>
#include <iomanip>
#include <string>
#include <cstdlib>
#include <codecvt>
#include <boost/program_options.hpp>
#include <restapi/server.h>
using namespace diskann;
namespace po = boost::program_options;
std::unique_ptr<Server> g_httpServer(nullptr);
std::vector<std::unique_ptr<diskann::BaseSearch>> g_inMemorySearch;
void setup(const utility::string_t &address, const std::string &typestring)
{
web::http::uri_builder uriBldr(address);
auto uri = uriBldr.to_uri();
std::cout << "Attempting to start server on " << uri.to_string() << std::endl;
g_httpServer = std::unique_ptr<Server>(new Server(uri, g_inMemorySearch, typestring));
std::cout << "Created a server object" << std::endl;
g_httpServer->open().wait();
ucout << U"Listening for requests on: " << address << std::endl;
}
void teardown(const utility::string_t &address)
{
g_httpServer->close().wait();
}
int main(int argc, char *argv[])
{
std::string data_type, index_file, data_file, address, dist_fn, tags_file;
uint32_t num_threads;
uint32_t l_search;
po::options_description desc{"Arguments"};
try
{
desc.add_options()("help,h", "Print information on arguments");
desc.add_options()("data_type", po::value<std::string>(&data_type)->required(), "data type <int8/uint8/float>");
desc.add_options()("address", po::value<std::string>(&address)->required(), "Web server address");
desc.add_options()("data_file", po::value<std::string>(&data_file)->required(),
"File containing the data found in the index");
desc.add_options()("index_path_prefix", po::value<std::string>(&index_file)->required(),
"Path prefix for saving index file components");
desc.add_options()("num_threads,T", po::value<uint32_t>(&num_threads)->required(),
"Number of threads used for building index");
desc.add_options()("l_search", po::value<uint32_t>(&l_search)->required(), "Value of L");
desc.add_options()("dist_fn", po::value<std::string>(&dist_fn)->default_value("l2"),
"distance function <l2/mips>");
desc.add_options()("tags_file", po::value<std::string>(&tags_file)->default_value(std::string()),
"Tags file location");
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
if (vm.count("help"))
{
std::cout << desc;
return 0;
}
po::notify(vm);
}
catch (const std::exception &ex)
{
std::cerr << ex.what() << std::endl;
return -1;
}
diskann::Metric metric;
if (dist_fn == std::string("l2"))
metric = diskann::Metric::L2;
else if (dist_fn == std::string("mips"))
metric = diskann::Metric::INNER_PRODUCT;
else
{
std::cout << "Error. Only l2 and mips distance functions are supported" << std::endl;
return -1;
}
if (data_type == std::string("float"))
{
auto searcher = std::unique_ptr<diskann::BaseSearch>(
new diskann::InMemorySearch<float>(data_file, index_file, tags_file, metric, num_threads, l_search));
g_inMemorySearch.push_back(std::move(searcher));
}
else if (data_type == std::string("int8"))
{
auto searcher = std::unique_ptr<diskann::BaseSearch>(
new diskann::InMemorySearch<int8_t>(data_file, index_file, tags_file, metric, num_threads, l_search));
g_inMemorySearch.push_back(std::move(searcher));
}
else if (data_type == std::string("uint8"))
{
auto searcher = std::unique_ptr<diskann::BaseSearch>(
new diskann::InMemorySearch<uint8_t>(data_file, index_file, tags_file, metric, num_threads, l_search));
g_inMemorySearch.push_back(std::move(searcher));
}
else
{
std::cerr << "Unsupported data type " << argv[2] << std::endl;
}
while (1)
{
try
{
setup(address, data_type);
std::cout << "Type 'exit' (case-sensitive) to exit" << std::endl;
std::string line;
std::getline(std::cin, line);
if (line == "exit")
{
teardown(address);
g_httpServer->close().wait();
exit(0);
}
}
catch (const std::exception &ex)
{
std::cerr << "Exception occurred: " << ex.what() << std::endl;
std::cerr << "Restarting HTTP server";
teardown(address);
}
catch (...)
{
std::cerr << "Unknown exception occurreed" << std::endl;
std::cerr << "Restarting HTTP server";
teardown(address);
}
}
}

Some files were not shown because too many files have changed in this diff Show More