Compare commits
383 Commits
debug_disk
...
dynamic-ad
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
d02aee6901 | ||
|
|
43894ff605 | ||
|
|
10311cc611 | ||
|
|
62a5d7b31d | ||
|
|
ad0d2faabc | ||
|
|
e93c0dec6f | ||
|
|
c5a29f849a | ||
|
|
0a69118f87 | ||
|
|
880a039e1d | ||
|
|
4a39b40e72 | ||
|
|
ed5fd88a85 | ||
|
|
8f4f2b4873 | ||
|
|
6a06bd893a | ||
|
|
3b8dc6368e | ||
|
|
e309f292de | ||
|
|
0d9f92ea0f | ||
|
|
b0b353d279 | ||
|
|
4dffdfedbe | ||
|
|
d41e467df9 | ||
|
|
4ca0489cb1 | ||
|
|
e83a671918 | ||
|
|
4e5b73ce7b | ||
|
|
31b4973141 | ||
|
|
dde2221513 | ||
|
|
6d11e86e71 | ||
|
|
13bb561aad | ||
|
|
0174ba5571 | ||
|
|
03af82d695 | ||
|
|
738f1dbab8 | ||
|
|
37d990d51c | ||
|
|
a6f07a54f1 | ||
|
|
46905e0687 | ||
|
|
838ade231e | ||
|
|
da6540decd | ||
|
|
39e18a7c11 | ||
|
|
6bde28584b | ||
|
|
f62632c41f | ||
|
|
27708243ca | ||
|
|
9a1e4652ca | ||
|
|
14e84d9e2d | ||
|
|
2dcfca19ff | ||
|
|
bee2167ee3 | ||
|
|
ef980d70b3 | ||
|
|
db3c63c441 | ||
|
|
00eeadb9dd | ||
|
|
42c8370709 | ||
|
|
fafdf8fcbe | ||
|
|
21f7d8e031 | ||
|
|
46565b9249 | ||
|
|
3dad76126a | ||
|
|
18e28bda32 | ||
|
|
609fa62fd5 | ||
|
|
eab13434ef | ||
|
|
b2390ccc14 | ||
|
|
e8fca2c84a | ||
|
|
790ae14f69 | ||
|
|
ac363072e6 | ||
|
|
93465af46c | ||
|
|
792ece67dc | ||
|
|
239e35e2e6 | ||
|
|
2fac0c6fbf | ||
|
|
9801aa581b | ||
|
|
5e97916608 | ||
|
|
8b9c2be8c9 | ||
|
|
3ff5aac8e0 | ||
|
|
67fef60466 | ||
|
|
b6ab6f1993 | ||
|
|
9f2e82a838 | ||
|
|
0b2b799d5a | ||
|
|
0f790fbbd9 | ||
|
|
387ae21eba | ||
|
|
3cc329c3e7 | ||
|
|
5567302316 | ||
|
|
075d4bd167 | ||
|
|
e4bcc76f88 | ||
|
|
710e83b1fd | ||
|
|
c96d653072 | ||
|
|
8b22d2b5d3 | ||
|
|
4cb544ee38 | ||
|
|
f94ce63d51 | ||
|
|
4271ff9d84 | ||
|
|
0d448c4a41 | ||
|
|
af5599e33c | ||
|
|
efdf6d917a | ||
|
|
dd71ac8d71 | ||
|
|
8bee1d4100 | ||
|
|
33521d6d00 | ||
|
|
8899734952 | ||
|
|
54df6310c5 | ||
|
|
19bcc07814 | ||
|
|
8356e3c668 | ||
|
|
08eac5c821 | ||
|
|
4671ed9b36 | ||
|
|
055c086398 | ||
|
|
d505dcc5e3 | ||
|
|
261006c36a | ||
|
|
b2eba23e21 | ||
|
|
e9ee687472 | ||
|
|
6f5d5e4a77 | ||
|
|
5c8921673a | ||
|
|
e9d2d420bd | ||
|
|
ebabfad066 | ||
|
|
e6f612b5e8 | ||
|
|
51c41acd82 | ||
|
|
455f93fb7c | ||
|
|
48207c3b69 | ||
|
|
4de1caa40f | ||
|
|
60eaa8165c | ||
|
|
c1a5d0c624 | ||
|
|
af1790395a | ||
|
|
383c6d8d7e | ||
|
|
bc0d839693 | ||
|
|
8596562de5 | ||
|
|
5d09586853 | ||
|
|
a7cba078dd | ||
|
|
b3e9ee96fa | ||
|
|
8537a6b17e | ||
|
|
7c8d7dc5c2 | ||
|
|
8e23d663e6 | ||
|
|
8a3994bf80 | ||
|
|
8375f601ba | ||
|
|
c87c0fe662 | ||
|
|
73927b68ef | ||
|
|
cc1a62e5aa | ||
|
|
802020cb41 | ||
|
|
cdb92f7cf4 | ||
|
|
dc69bdec00 | ||
|
|
98073e9868 | ||
|
|
cf2ef48967 | ||
|
|
0692bbf7a2 | ||
|
|
52584a171f | ||
|
|
efd6b5324b | ||
|
|
2baaa4549b | ||
|
|
35310ddd52 | ||
|
|
fc9c5cb39d | ||
|
|
8f2a1e87ea | ||
|
|
50caf65f28 | ||
|
|
1b48794ca8 | ||
|
|
4aef1d814e | ||
|
|
75ddcd6158 | ||
|
|
2a4df11f5c | ||
|
|
5eb893c62b | ||
|
|
d91ce2e94d | ||
|
|
5c2ff8a641 | ||
|
|
d4f474c9b7 | ||
|
|
170f7644e9 | ||
|
|
cd8b970eff | ||
|
|
52153bbb69 | ||
|
|
e1ae087207 | ||
|
|
48c5e12ac1 | ||
|
|
f8b5c97190 | ||
|
|
d038c81b8b | ||
|
|
29cbbbd0d6 | ||
|
|
179f30bc36 | ||
|
|
c4a0a68581 | ||
|
|
5c836ad08e | ||
|
|
673fd9b7cd | ||
|
|
84b24b233d | ||
|
|
499cdd7822 | ||
|
|
800d4cf111 | ||
|
|
b6d43f5fd9 | ||
|
|
3603cd5034 | ||
|
|
6df7893173 | ||
|
|
e64b599276 | ||
|
|
2dd59c4ba1 | ||
|
|
166986d5e6 | ||
|
|
a6aec68f32 | ||
|
|
ed27a127d5 | ||
|
|
d8b4ea7564 | ||
|
|
f0a2ef96b4 | ||
|
|
7d73c2c803 | ||
|
|
e8d2ecab03 | ||
|
|
32a374d094 | ||
|
|
d45c013806 | ||
|
|
9000a7083d | ||
|
|
8307555d54 | ||
|
|
20f2aece08 | ||
|
|
43eb4f9a1d | ||
|
|
5461b71d8c | ||
|
|
374db0ebb8 | ||
|
|
cea1f6f87c | ||
|
|
6c0e39372b | ||
|
|
2bec67d2b6 | ||
|
|
133e715832 | ||
|
|
95cf2f16e2 | ||
|
|
47a4c153eb | ||
|
|
faf5ae3533 | ||
|
|
a44dccecac | ||
|
|
9cf9358b9c | ||
|
|
de252fef31 | ||
|
|
9076bc27b8 | ||
|
|
50686c0819 | ||
|
|
1614203786 | ||
|
|
3d4c75a56c | ||
|
|
2684ee71dc | ||
|
|
1d321953ba | ||
|
|
b3cb251369 | ||
|
|
0a17d2c9d8 | ||
|
|
e3defbca84 | ||
|
|
e407f63977 | ||
|
|
7add391b2c | ||
|
|
efd6373b32 | ||
|
|
d502fa24b0 | ||
|
|
258a9a5c7f | ||
|
|
5d41ac6115 | ||
|
|
2a0fdb49b8 | ||
|
|
9d1b7231b6 | ||
|
|
ed3095b478 | ||
|
|
88eca75917 | ||
|
|
42de27e16a | ||
|
|
c083bda5b7 | ||
|
|
e86da38726 | ||
|
|
99076e38bc | ||
|
|
9698c1a02c | ||
|
|
851f0f04c3 | ||
|
|
ae16d9d888 | ||
|
|
6e1af2eb0c | ||
|
|
7695dd0d50 | ||
|
|
c2065473ad | ||
|
|
5f3870564d | ||
|
|
c214b2e33e | ||
|
|
2420c5fd35 | ||
|
|
f48f526f0a | ||
|
|
5dd74982ba | ||
|
|
e07aaf52a7 | ||
|
|
30e5f12616 | ||
|
|
594427bf87 | ||
|
|
a97d3ada1c | ||
|
|
6217bb5638 | ||
|
|
2760e99e18 | ||
|
|
0544f96b79 | ||
|
|
2ebb29de65 | ||
|
|
43762d44c7 | ||
|
|
cdaf0c98be | ||
|
|
aa9a14a917 | ||
|
|
9efcc6d95c | ||
|
|
f3f5d91207 | ||
|
|
6070160959 | ||
|
|
43155d2811 | ||
|
|
d3f85678ec | ||
|
|
2a96d05b21 | ||
|
|
851e888535 | ||
|
|
90120d4dff | ||
|
|
8513471573 | ||
|
|
71e5f1774c | ||
|
|
870a443446 | ||
|
|
cefaa2a4cc | ||
|
|
ab72a2ab9d | ||
|
|
046d457d22 | ||
|
|
7fd0a30fee | ||
|
|
c2f35c8e73 | ||
|
|
573313f0b6 | ||
|
|
f7af6805fa | ||
|
|
966de3a399 | ||
|
|
8a75829f3a | ||
|
|
0f7e34b9e2 | ||
|
|
be0322b616 | ||
|
|
232a525a62 | ||
|
|
587ce65cf6 | ||
|
|
ccf6c8bfd7 | ||
|
|
c112956d2d | ||
|
|
b3970793cf | ||
|
|
727724990e | ||
|
|
530f6e4af5 | ||
|
|
2f224f5793 | ||
|
|
1b6272ce0e | ||
|
|
5259ace111 | ||
|
|
48ea5566e9 | ||
|
|
3f8b6c5bbd | ||
|
|
725b32e74f | ||
|
|
d0b71f393f | ||
|
|
8a92efdae3 | ||
|
|
019cdce2e8 | ||
|
|
b64aa54fac | ||
|
|
c0d040f9d4 | ||
|
|
32364320f8 | ||
|
|
34c71c072d | ||
|
|
6d2149c503 | ||
|
|
043b0bf69d | ||
|
|
9b07e392c6 | ||
|
|
e60fad8c73 | ||
|
|
19c1b182c3 | ||
|
|
49edea780c | ||
|
|
12ef5a1900 | ||
|
|
d21a134b2a | ||
|
|
1cd809aa41 | ||
|
|
e728449b8f | ||
|
|
d0c20b14d5 | ||
|
|
83b7ea5a59 | ||
|
|
0796a52df1 | ||
|
|
85b7ba0168 | ||
|
|
e117743d24 | ||
|
|
aec2291f04 | ||
|
|
335ae003ac | ||
|
|
71c7de9c84 | ||
|
|
1c5fec5565 | ||
|
|
99d439577d | ||
|
|
4f83086788 | ||
|
|
a13c527e39 | ||
|
|
90d9f27383 | ||
|
|
0db81c16cd | ||
|
|
e115e186b7 | ||
|
|
6546b29ef7 | ||
|
|
51255bdffa | ||
|
|
f77c4e38cb | ||
|
|
2a1a152073 | ||
|
|
7b9406a3ea | ||
|
|
c3fb949693 | ||
|
|
ed3f8dbfd6 | ||
|
|
42aa6db170 | ||
|
|
a6591d20ca | ||
|
|
c1bc2603a2 | ||
|
|
e595bbb5fb | ||
|
|
4a2cb914d7 | ||
|
|
b1c93fe178 | ||
|
|
0719458775 | ||
|
|
6a1dc895fb | ||
|
|
125c1f6f25 | ||
|
|
1ceaa7d709 | ||
|
|
dec3ee85fd | ||
|
|
d94a5176dc | ||
|
|
326783f7f1 | ||
|
|
e5a9ca8787 | ||
|
|
f2feccdbd0 | ||
|
|
246a077d64 | ||
|
|
3ba100ff25 | ||
|
|
1e3b571e72 | ||
|
|
b89e56e9c2 | ||
|
|
ed8a02e721 | ||
|
|
baa60b40d1 | ||
|
|
ef01d6997a | ||
|
|
3da5b44d7f | ||
|
|
8b4654921b | ||
|
|
cf1cbafa78 | ||
|
|
c96091744b | ||
|
|
711fb4a775 | ||
|
|
3b5a185e60 | ||
|
|
77ac013a74 | ||
|
|
b8e5728e6a | ||
|
|
d038319d8b | ||
|
|
c611d0f30f | ||
|
|
c17899662f | ||
|
|
c51d5320fa | ||
|
|
6fa9512a64 | ||
|
|
fddc61df5e | ||
|
|
53c58fa755 | ||
|
|
c69afb56e4 | ||
|
|
0fa8a9191f | ||
|
|
48dda1cb5b | ||
|
|
71ef4b7d4c | ||
|
|
ecab43e307 | ||
|
|
88ca09440d | ||
|
|
8e0ab4a28d | ||
|
|
9b8c5041dc | ||
|
|
74ffd7ec64 | ||
|
|
eb6f504789 | ||
|
|
91a026f38b | ||
|
|
595138a0a3 | ||
|
|
19df04095f | ||
|
|
8239bbb48f | ||
|
|
16ee9d0422 | ||
|
|
8a961f8ab3 | ||
|
|
558126c46e | ||
|
|
04c9684488 | ||
|
|
b744faa7e6 | ||
|
|
27b3a26e75 | ||
|
|
41d872504e | ||
|
|
963cd05273 | ||
|
|
09b6e67baf | ||
|
|
dafb2aacab | ||
|
|
a6c400cd4f | ||
|
|
c013e5ccce | ||
|
|
f25a1a3840 | ||
|
|
6497e17671 | ||
|
|
44369a8138 | ||
|
|
dfca00c21b | ||
|
|
637dab379e | ||
|
|
6fc57eb48e | ||
|
|
95a653993a | ||
|
|
af0959818d | ||
|
|
cf17c85607 | ||
|
|
a38bc0a3fc | ||
|
|
449983c937 |
1
.gitattributes
vendored
@@ -1 +0,0 @@
|
|||||||
paper_plot/data/big_graph_degree_data.npz filter=lfs diff=lfs merge=lfs -text
|
|
||||||
50
.github/ISSUE_TEMPLATE/bug_report.yml
vendored
Normal file
@@ -0,0 +1,50 @@
|
|||||||
|
name: Bug Report
|
||||||
|
description: Report a bug in LEANN
|
||||||
|
labels: ["bug"]
|
||||||
|
|
||||||
|
body:
|
||||||
|
- type: textarea
|
||||||
|
id: description
|
||||||
|
attributes:
|
||||||
|
label: What happened?
|
||||||
|
description: A clear description of the bug
|
||||||
|
validations:
|
||||||
|
required: true
|
||||||
|
|
||||||
|
- type: textarea
|
||||||
|
id: reproduce
|
||||||
|
attributes:
|
||||||
|
label: How to reproduce
|
||||||
|
placeholder: |
|
||||||
|
1. Install with...
|
||||||
|
2. Run command...
|
||||||
|
3. See error
|
||||||
|
validations:
|
||||||
|
required: true
|
||||||
|
|
||||||
|
- type: textarea
|
||||||
|
id: error
|
||||||
|
attributes:
|
||||||
|
label: Error message
|
||||||
|
description: Paste any error messages
|
||||||
|
render: shell
|
||||||
|
|
||||||
|
- type: input
|
||||||
|
id: version
|
||||||
|
attributes:
|
||||||
|
label: LEANN Version
|
||||||
|
placeholder: "0.1.0"
|
||||||
|
validations:
|
||||||
|
required: true
|
||||||
|
|
||||||
|
- type: dropdown
|
||||||
|
id: os
|
||||||
|
attributes:
|
||||||
|
label: Operating System
|
||||||
|
options:
|
||||||
|
- macOS
|
||||||
|
- Linux
|
||||||
|
- Windows
|
||||||
|
- Docker
|
||||||
|
validations:
|
||||||
|
required: true
|
||||||
8
.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
@@ -0,0 +1,8 @@
|
|||||||
|
blank_issues_enabled: true
|
||||||
|
contact_links:
|
||||||
|
- name: Documentation
|
||||||
|
url: https://github.com/LEANN-RAG/LEANN-RAG/tree/main/docs
|
||||||
|
about: Read the docs first
|
||||||
|
- name: Discussions
|
||||||
|
url: https://github.com/LEANN-RAG/LEANN-RAG/discussions
|
||||||
|
about: Ask questions and share ideas
|
||||||
27
.github/ISSUE_TEMPLATE/feature_request.yml
vendored
Normal file
@@ -0,0 +1,27 @@
|
|||||||
|
name: Feature Request
|
||||||
|
description: Suggest a new feature for LEANN
|
||||||
|
labels: ["enhancement"]
|
||||||
|
|
||||||
|
body:
|
||||||
|
- type: textarea
|
||||||
|
id: problem
|
||||||
|
attributes:
|
||||||
|
label: What problem does this solve?
|
||||||
|
description: Describe the problem or need
|
||||||
|
validations:
|
||||||
|
required: true
|
||||||
|
|
||||||
|
- type: textarea
|
||||||
|
id: solution
|
||||||
|
attributes:
|
||||||
|
label: Proposed solution
|
||||||
|
description: How would you like this to work?
|
||||||
|
validations:
|
||||||
|
required: true
|
||||||
|
|
||||||
|
- type: textarea
|
||||||
|
id: example
|
||||||
|
attributes:
|
||||||
|
label: Example usage
|
||||||
|
description: Show how the API might look
|
||||||
|
render: python
|
||||||
13
.github/pull_request_template.md
vendored
Normal file
@@ -0,0 +1,13 @@
|
|||||||
|
## What does this PR do?
|
||||||
|
|
||||||
|
<!-- Brief description of your changes -->
|
||||||
|
|
||||||
|
## Related Issues
|
||||||
|
|
||||||
|
Fixes #
|
||||||
|
|
||||||
|
## Checklist
|
||||||
|
|
||||||
|
- [ ] Tests pass (`uv run pytest`)
|
||||||
|
- [ ] Code formatted (`ruff format` and `ruff check`)
|
||||||
|
- [ ] Pre-commit hooks pass (`pre-commit run --all-files`)
|
||||||
12
.github/workflows/build-and-publish.yml
vendored
Normal file
@@ -0,0 +1,12 @@
|
|||||||
|
name: CI
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches: [ main ]
|
||||||
|
pull_request:
|
||||||
|
branches: [ main ]
|
||||||
|
workflow_dispatch:
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
build:
|
||||||
|
uses: ./.github/workflows/build-reusable.yml
|
||||||
402
.github/workflows/build-reusable.yml
vendored
Normal file
@@ -0,0 +1,402 @@
|
|||||||
|
name: Reusable Build
|
||||||
|
|
||||||
|
on:
|
||||||
|
workflow_call:
|
||||||
|
inputs:
|
||||||
|
ref:
|
||||||
|
description: 'Git ref to build'
|
||||||
|
required: false
|
||||||
|
type: string
|
||||||
|
default: ''
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
lint:
|
||||||
|
name: Lint and Format Check
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
with:
|
||||||
|
ref: ${{ inputs.ref }}
|
||||||
|
|
||||||
|
- name: Setup Python
|
||||||
|
uses: actions/setup-python@v5
|
||||||
|
with:
|
||||||
|
python-version: '3.11'
|
||||||
|
|
||||||
|
- name: Install uv
|
||||||
|
uses: astral-sh/setup-uv@v4
|
||||||
|
|
||||||
|
- name: Install ruff
|
||||||
|
run: |
|
||||||
|
uv tool install ruff
|
||||||
|
|
||||||
|
- name: Run ruff check
|
||||||
|
run: |
|
||||||
|
ruff check .
|
||||||
|
|
||||||
|
- name: Run ruff format check
|
||||||
|
run: |
|
||||||
|
ruff format --check .
|
||||||
|
|
||||||
|
build:
|
||||||
|
needs: lint
|
||||||
|
name: Build ${{ matrix.os }} Python ${{ matrix.python }}
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
include:
|
||||||
|
- os: ubuntu-22.04
|
||||||
|
python: '3.9'
|
||||||
|
- os: ubuntu-22.04
|
||||||
|
python: '3.10'
|
||||||
|
- os: ubuntu-22.04
|
||||||
|
python: '3.11'
|
||||||
|
- os: ubuntu-22.04
|
||||||
|
python: '3.12'
|
||||||
|
- os: ubuntu-22.04
|
||||||
|
python: '3.13'
|
||||||
|
# ARM64 Linux builds
|
||||||
|
- os: ubuntu-24.04-arm
|
||||||
|
python: '3.9'
|
||||||
|
- os: ubuntu-24.04-arm
|
||||||
|
python: '3.10'
|
||||||
|
- os: ubuntu-24.04-arm
|
||||||
|
python: '3.11'
|
||||||
|
- os: ubuntu-24.04-arm
|
||||||
|
python: '3.12'
|
||||||
|
- os: ubuntu-24.04-arm
|
||||||
|
python: '3.13'
|
||||||
|
- os: macos-14
|
||||||
|
python: '3.9'
|
||||||
|
- os: macos-14
|
||||||
|
python: '3.10'
|
||||||
|
- os: macos-14
|
||||||
|
python: '3.11'
|
||||||
|
- os: macos-14
|
||||||
|
python: '3.12'
|
||||||
|
- os: macos-14
|
||||||
|
python: '3.13'
|
||||||
|
- os: macos-15
|
||||||
|
python: '3.9'
|
||||||
|
- os: macos-15
|
||||||
|
python: '3.10'
|
||||||
|
- os: macos-15
|
||||||
|
python: '3.11'
|
||||||
|
- os: macos-15
|
||||||
|
python: '3.12'
|
||||||
|
- os: macos-15
|
||||||
|
python: '3.13'
|
||||||
|
- os: macos-13
|
||||||
|
python: '3.9'
|
||||||
|
- os: macos-13
|
||||||
|
python: '3.10'
|
||||||
|
- os: macos-13
|
||||||
|
python: '3.11'
|
||||||
|
- os: macos-13
|
||||||
|
python: '3.12'
|
||||||
|
# Note: macos-13 + Python 3.13 excluded due to PyTorch compatibility
|
||||||
|
# (PyTorch 2.5+ supports Python 3.13 but not Intel Mac x86_64)
|
||||||
|
runs-on: ${{ matrix.os }}
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v5
|
||||||
|
with:
|
||||||
|
ref: ${{ inputs.ref }}
|
||||||
|
submodules: recursive
|
||||||
|
|
||||||
|
- name: Setup Python
|
||||||
|
uses: actions/setup-python@v5
|
||||||
|
with:
|
||||||
|
python-version: ${{ matrix.python }}
|
||||||
|
|
||||||
|
- name: Install uv
|
||||||
|
uses: astral-sh/setup-uv@v6
|
||||||
|
|
||||||
|
- name: Install system dependencies (Ubuntu)
|
||||||
|
if: runner.os == 'Linux'
|
||||||
|
run: |
|
||||||
|
sudo apt-get update
|
||||||
|
sudo apt-get install -y libomp-dev libboost-all-dev protobuf-compiler libzmq3-dev \
|
||||||
|
pkg-config libabsl-dev libaio-dev libprotobuf-dev \
|
||||||
|
patchelf
|
||||||
|
|
||||||
|
# Debug: Show system information
|
||||||
|
echo "🔍 System Information:"
|
||||||
|
echo "Architecture: $(uname -m)"
|
||||||
|
echo "OS: $(uname -a)"
|
||||||
|
echo "CPU info: $(lscpu | head -5)"
|
||||||
|
|
||||||
|
# Install math library based on architecture
|
||||||
|
ARCH=$(uname -m)
|
||||||
|
echo "🔍 Setting up math library for architecture: $ARCH"
|
||||||
|
|
||||||
|
if [[ "$ARCH" == "x86_64" ]]; then
|
||||||
|
# Install Intel MKL for DiskANN on x86_64
|
||||||
|
echo "📦 Installing Intel MKL for x86_64..."
|
||||||
|
wget -q https://registrationcenter-download.intel.com/akdlm/IRC_NAS/79153e0f-74d7-45af-b8c2-258941adf58a/intel-onemkl-2025.0.0.940.sh
|
||||||
|
sudo sh intel-onemkl-2025.0.0.940.sh -a --components intel.oneapi.lin.mkl.devel --action install --eula accept -s
|
||||||
|
source /opt/intel/oneapi/setvars.sh
|
||||||
|
echo "MKLROOT=/opt/intel/oneapi/mkl/latest" >> $GITHUB_ENV
|
||||||
|
echo "LD_LIBRARY_PATH=/opt/intel/oneapi/compiler/latest/linux/compiler/lib/intel64_lin" >> $GITHUB_ENV
|
||||||
|
echo "LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/intel/oneapi/mkl/latest/lib/intel64" >> $GITHUB_ENV
|
||||||
|
echo "✅ Intel MKL installed for x86_64"
|
||||||
|
|
||||||
|
# Debug: Check MKL installation
|
||||||
|
echo "🔍 MKL Installation Check:"
|
||||||
|
ls -la /opt/intel/oneapi/mkl/latest/ || echo "MKL directory not found"
|
||||||
|
ls -la /opt/intel/oneapi/mkl/latest/lib/ || echo "MKL lib directory not found"
|
||||||
|
|
||||||
|
elif [[ "$ARCH" == "aarch64" ]]; then
|
||||||
|
# Use OpenBLAS for ARM64 (MKL installer not compatible with ARM64)
|
||||||
|
echo "📦 Installing OpenBLAS for ARM64..."
|
||||||
|
sudo apt-get install -y libopenblas-dev liblapack-dev liblapacke-dev
|
||||||
|
echo "✅ OpenBLAS installed for ARM64"
|
||||||
|
|
||||||
|
# Debug: Check OpenBLAS installation
|
||||||
|
echo "🔍 OpenBLAS Installation Check:"
|
||||||
|
dpkg -l | grep openblas || echo "OpenBLAS package not found"
|
||||||
|
ls -la /usr/lib/aarch64-linux-gnu/openblas/ || echo "OpenBLAS directory not found"
|
||||||
|
fi
|
||||||
|
|
||||||
|
# Debug: Show final library paths
|
||||||
|
echo "🔍 Final LD_LIBRARY_PATH: $LD_LIBRARY_PATH"
|
||||||
|
|
||||||
|
- name: Install system dependencies (macOS)
|
||||||
|
if: runner.os == 'macOS'
|
||||||
|
run: |
|
||||||
|
# Don't install LLVM, use system clang for better compatibility
|
||||||
|
brew install libomp boost protobuf zeromq
|
||||||
|
|
||||||
|
- name: Install build dependencies
|
||||||
|
run: |
|
||||||
|
uv pip install --system scikit-build-core numpy swig Cython pybind11
|
||||||
|
if [[ "$RUNNER_OS" == "Linux" ]]; then
|
||||||
|
uv pip install --system auditwheel
|
||||||
|
else
|
||||||
|
uv pip install --system delocate
|
||||||
|
fi
|
||||||
|
|
||||||
|
- name: Set macOS environment variables
|
||||||
|
if: runner.os == 'macOS'
|
||||||
|
run: |
|
||||||
|
# Use brew --prefix to automatically detect Homebrew installation path
|
||||||
|
HOMEBREW_PREFIX=$(brew --prefix)
|
||||||
|
echo "HOMEBREW_PREFIX=${HOMEBREW_PREFIX}" >> $GITHUB_ENV
|
||||||
|
echo "OpenMP_ROOT=${HOMEBREW_PREFIX}/opt/libomp" >> $GITHUB_ENV
|
||||||
|
|
||||||
|
# Set CMAKE_PREFIX_PATH to let CMake find all packages automatically
|
||||||
|
echo "CMAKE_PREFIX_PATH=${HOMEBREW_PREFIX}" >> $GITHUB_ENV
|
||||||
|
|
||||||
|
# Set compiler flags for OpenMP (required for both backends)
|
||||||
|
echo "LDFLAGS=-L${HOMEBREW_PREFIX}/opt/libomp/lib" >> $GITHUB_ENV
|
||||||
|
echo "CPPFLAGS=-I${HOMEBREW_PREFIX}/opt/libomp/include" >> $GITHUB_ENV
|
||||||
|
|
||||||
|
- name: Build packages
|
||||||
|
run: |
|
||||||
|
# Build core (platform independent)
|
||||||
|
cd packages/leann-core
|
||||||
|
uv build
|
||||||
|
cd ../..
|
||||||
|
|
||||||
|
# Build HNSW backend
|
||||||
|
cd packages/leann-backend-hnsw
|
||||||
|
if [[ "${{ matrix.os }}" == macos-* ]]; then
|
||||||
|
# Use system clang for better compatibility
|
||||||
|
export CC=clang
|
||||||
|
export CXX=clang++
|
||||||
|
# Homebrew libraries on each macOS version require matching minimum version
|
||||||
|
if [[ "${{ matrix.os }}" == "macos-13" ]]; then
|
||||||
|
export MACOSX_DEPLOYMENT_TARGET=13.0
|
||||||
|
elif [[ "${{ matrix.os }}" == "macos-14" ]]; then
|
||||||
|
export MACOSX_DEPLOYMENT_TARGET=14.0
|
||||||
|
elif [[ "${{ matrix.os }}" == "macos-15" ]]; then
|
||||||
|
export MACOSX_DEPLOYMENT_TARGET=15.0
|
||||||
|
fi
|
||||||
|
uv build --wheel --python ${{ matrix.python }} --find-links ${GITHUB_WORKSPACE}/packages/leann-core/dist
|
||||||
|
else
|
||||||
|
uv build --wheel --python ${{ matrix.python }} --find-links ${GITHUB_WORKSPACE}/packages/leann-core/dist
|
||||||
|
fi
|
||||||
|
cd ../..
|
||||||
|
|
||||||
|
# Build DiskANN backend
|
||||||
|
cd packages/leann-backend-diskann
|
||||||
|
if [[ "${{ matrix.os }}" == macos-* ]]; then
|
||||||
|
# Use system clang for better compatibility
|
||||||
|
export CC=clang
|
||||||
|
export CXX=clang++
|
||||||
|
# DiskANN requires macOS 13.3+ for sgesdd_ LAPACK function
|
||||||
|
# But Homebrew libraries on each macOS version require matching minimum version
|
||||||
|
if [[ "${{ matrix.os }}" == "macos-13" ]]; then
|
||||||
|
export MACOSX_DEPLOYMENT_TARGET=13.3
|
||||||
|
elif [[ "${{ matrix.os }}" == "macos-14" ]]; then
|
||||||
|
export MACOSX_DEPLOYMENT_TARGET=14.0
|
||||||
|
elif [[ "${{ matrix.os }}" == "macos-15" ]]; then
|
||||||
|
export MACOSX_DEPLOYMENT_TARGET=15.0
|
||||||
|
fi
|
||||||
|
uv build --wheel --python ${{ matrix.python }} --find-links ${GITHUB_WORKSPACE}/packages/leann-core/dist
|
||||||
|
else
|
||||||
|
uv build --wheel --python ${{ matrix.python }} --find-links ${GITHUB_WORKSPACE}/packages/leann-core/dist
|
||||||
|
fi
|
||||||
|
cd ../..
|
||||||
|
|
||||||
|
# Build meta package (platform independent)
|
||||||
|
cd packages/leann
|
||||||
|
uv build
|
||||||
|
cd ../..
|
||||||
|
|
||||||
|
- name: Repair wheels (Linux)
|
||||||
|
if: runner.os == 'Linux'
|
||||||
|
run: |
|
||||||
|
# Repair HNSW wheel
|
||||||
|
cd packages/leann-backend-hnsw
|
||||||
|
if [ -d dist ]; then
|
||||||
|
auditwheel repair dist/*.whl -w dist_repaired
|
||||||
|
rm -rf dist
|
||||||
|
mv dist_repaired dist
|
||||||
|
fi
|
||||||
|
cd ../..
|
||||||
|
|
||||||
|
# Repair DiskANN wheel
|
||||||
|
cd packages/leann-backend-diskann
|
||||||
|
if [ -d dist ]; then
|
||||||
|
auditwheel repair dist/*.whl -w dist_repaired
|
||||||
|
rm -rf dist
|
||||||
|
mv dist_repaired dist
|
||||||
|
fi
|
||||||
|
cd ../..
|
||||||
|
|
||||||
|
- name: Repair wheels (macOS)
|
||||||
|
if: runner.os == 'macOS'
|
||||||
|
run: |
|
||||||
|
# Determine deployment target based on runner OS
|
||||||
|
# Must match the Homebrew libraries for each macOS version
|
||||||
|
if [[ "${{ matrix.os }}" == "macos-13" ]]; then
|
||||||
|
HNSW_TARGET="13.0"
|
||||||
|
DISKANN_TARGET="13.3"
|
||||||
|
elif [[ "${{ matrix.os }}" == "macos-14" ]]; then
|
||||||
|
HNSW_TARGET="14.0"
|
||||||
|
DISKANN_TARGET="14.0"
|
||||||
|
elif [[ "${{ matrix.os }}" == "macos-15" ]]; then
|
||||||
|
HNSW_TARGET="15.0"
|
||||||
|
DISKANN_TARGET="15.0"
|
||||||
|
fi
|
||||||
|
|
||||||
|
# Repair HNSW wheel
|
||||||
|
cd packages/leann-backend-hnsw
|
||||||
|
if [ -d dist ]; then
|
||||||
|
export MACOSX_DEPLOYMENT_TARGET=$HNSW_TARGET
|
||||||
|
delocate-wheel -w dist_repaired -v --require-target-macos-version $HNSW_TARGET dist/*.whl
|
||||||
|
rm -rf dist
|
||||||
|
mv dist_repaired dist
|
||||||
|
fi
|
||||||
|
cd ../..
|
||||||
|
|
||||||
|
# Repair DiskANN wheel
|
||||||
|
cd packages/leann-backend-diskann
|
||||||
|
if [ -d dist ]; then
|
||||||
|
export MACOSX_DEPLOYMENT_TARGET=$DISKANN_TARGET
|
||||||
|
delocate-wheel -w dist_repaired -v --require-target-macos-version $DISKANN_TARGET dist/*.whl
|
||||||
|
rm -rf dist
|
||||||
|
mv dist_repaired dist
|
||||||
|
fi
|
||||||
|
cd ../..
|
||||||
|
|
||||||
|
- name: List built packages
|
||||||
|
run: |
|
||||||
|
echo "📦 Built packages:"
|
||||||
|
find packages/*/dist -name "*.whl" -o -name "*.tar.gz" | sort
|
||||||
|
|
||||||
|
|
||||||
|
- name: Install built packages for testing
|
||||||
|
run: |
|
||||||
|
# Create a virtual environment with the correct Python version
|
||||||
|
uv venv --python ${{ matrix.python }}
|
||||||
|
source .venv/bin/activate || source .venv/Scripts/activate
|
||||||
|
|
||||||
|
# Install packages using --find-links to prioritize local builds
|
||||||
|
uv pip install --find-links packages/leann-core/dist --find-links packages/leann-backend-hnsw/dist --find-links packages/leann-backend-diskann/dist packages/leann-core/dist/*.whl || uv pip install --find-links packages/leann-core/dist packages/leann-core/dist/*.tar.gz
|
||||||
|
uv pip install --find-links packages/leann-core/dist packages/leann-backend-hnsw/dist/*.whl
|
||||||
|
uv pip install --find-links packages/leann-core/dist packages/leann-backend-diskann/dist/*.whl
|
||||||
|
uv pip install packages/leann/dist/*.whl || uv pip install packages/leann/dist/*.tar.gz
|
||||||
|
|
||||||
|
# Install test dependencies using extras
|
||||||
|
uv pip install -e ".[test]"
|
||||||
|
|
||||||
|
- name: Run tests with pytest
|
||||||
|
env:
|
||||||
|
CI: true
|
||||||
|
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||||
|
HF_HUB_DISABLE_SYMLINKS: 1
|
||||||
|
TOKENIZERS_PARALLELISM: false
|
||||||
|
PYTORCH_ENABLE_MPS_FALLBACK: 0
|
||||||
|
OMP_NUM_THREADS: 1
|
||||||
|
MKL_NUM_THREADS: 1
|
||||||
|
run: |
|
||||||
|
source .venv/bin/activate || source .venv/Scripts/activate
|
||||||
|
pytest tests/ -v --tb=short
|
||||||
|
|
||||||
|
- name: Run sanity checks (optional)
|
||||||
|
run: |
|
||||||
|
# Activate virtual environment
|
||||||
|
source .venv/bin/activate || source .venv/Scripts/activate
|
||||||
|
|
||||||
|
# Run distance function tests if available
|
||||||
|
if [ -f test/sanity_checks/test_distance_functions.py ]; then
|
||||||
|
echo "Running distance function sanity checks..."
|
||||||
|
python test/sanity_checks/test_distance_functions.py || echo "⚠️ Distance function test failed, continuing..."
|
||||||
|
fi
|
||||||
|
|
||||||
|
- name: Upload artifacts
|
||||||
|
uses: actions/upload-artifact@v4
|
||||||
|
with:
|
||||||
|
name: packages-${{ matrix.os }}-py${{ matrix.python }}
|
||||||
|
path: packages/*/dist/
|
||||||
|
|
||||||
|
|
||||||
|
arch-smoke:
|
||||||
|
name: Arch Linux smoke test (install & import)
|
||||||
|
needs: build
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
container:
|
||||||
|
image: archlinux:latest
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- name: Prepare system
|
||||||
|
run: |
|
||||||
|
pacman -Syu --noconfirm
|
||||||
|
pacman -S --noconfirm python python-pip gcc git zlib openssl
|
||||||
|
|
||||||
|
- name: Download ALL wheel artifacts from this run
|
||||||
|
uses: actions/download-artifact@v5
|
||||||
|
with:
|
||||||
|
# Don't specify name, download all artifacts
|
||||||
|
path: ./wheels
|
||||||
|
|
||||||
|
- name: Install uv
|
||||||
|
uses: astral-sh/setup-uv@v6
|
||||||
|
|
||||||
|
- name: Create virtual environment and install wheels
|
||||||
|
run: |
|
||||||
|
uv venv
|
||||||
|
source .venv/bin/activate || source .venv/Scripts/activate
|
||||||
|
uv pip install --find-links wheels leann-core
|
||||||
|
uv pip install --find-links wheels leann-backend-hnsw
|
||||||
|
uv pip install --find-links wheels leann-backend-diskann
|
||||||
|
uv pip install --find-links wheels leann
|
||||||
|
|
||||||
|
- name: Import & tiny runtime check
|
||||||
|
env:
|
||||||
|
OMP_NUM_THREADS: 1
|
||||||
|
MKL_NUM_THREADS: 1
|
||||||
|
run: |
|
||||||
|
source .venv/bin/activate || source .venv/Scripts/activate
|
||||||
|
python - <<'PY'
|
||||||
|
import leann
|
||||||
|
import leann_backend_hnsw as h
|
||||||
|
import leann_backend_diskann as d
|
||||||
|
from leann import LeannBuilder, LeannSearcher
|
||||||
|
b = LeannBuilder(backend_name="hnsw")
|
||||||
|
b.add_text("hello arch")
|
||||||
|
b.build_index("arch_demo.leann")
|
||||||
|
s = LeannSearcher("arch_demo.leann")
|
||||||
|
print("search:", s.search("hello", top_k=1))
|
||||||
|
PY
|
||||||
19
.github/workflows/link-check.yml
vendored
Normal file
@@ -0,0 +1,19 @@
|
|||||||
|
name: Link Check
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches: [ main, master ]
|
||||||
|
pull_request:
|
||||||
|
schedule:
|
||||||
|
- cron: "0 3 * * 1"
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
link-check:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
- uses: lycheeverse/lychee-action@v2
|
||||||
|
with:
|
||||||
|
args: --no-progress --insecure --user-agent 'curl/7.68.0' README.md docs/ apps/ examples/ benchmarks/
|
||||||
|
env:
|
||||||
|
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||||
129
.github/workflows/release-manual.yml
vendored
Normal file
@@ -0,0 +1,129 @@
|
|||||||
|
name: Release
|
||||||
|
|
||||||
|
on:
|
||||||
|
workflow_dispatch:
|
||||||
|
inputs:
|
||||||
|
version:
|
||||||
|
description: 'Version to release (e.g., 0.1.2)'
|
||||||
|
required: true
|
||||||
|
type: string
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
update-version:
|
||||||
|
name: Update Version
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
permissions:
|
||||||
|
contents: write
|
||||||
|
outputs:
|
||||||
|
commit-sha: ${{ steps.push.outputs.commit-sha }}
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
|
||||||
|
- name: Validate version
|
||||||
|
run: |
|
||||||
|
# Remove 'v' prefix if present for validation
|
||||||
|
VERSION_CLEAN="${{ inputs.version }}"
|
||||||
|
VERSION_CLEAN="${VERSION_CLEAN#v}"
|
||||||
|
if ! [[ "$VERSION_CLEAN" =~ ^[0-9]+\.[0-9]+\.[0-9]+$ ]]; then
|
||||||
|
echo "❌ Invalid version format. Expected format: X.Y.Z or vX.Y.Z"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
echo "✅ Version format valid: ${{ inputs.version }}"
|
||||||
|
|
||||||
|
- name: Update versions and push
|
||||||
|
id: push
|
||||||
|
run: |
|
||||||
|
# Check current version
|
||||||
|
CURRENT_VERSION=$(grep "^version" packages/leann-core/pyproject.toml | cut -d'"' -f2)
|
||||||
|
echo "Current version: $CURRENT_VERSION"
|
||||||
|
echo "Target version: ${{ inputs.version }}"
|
||||||
|
|
||||||
|
if [ "$CURRENT_VERSION" = "${{ inputs.version }}" ]; then
|
||||||
|
echo "⚠️ Version is already ${{ inputs.version }}, skipping update"
|
||||||
|
COMMIT_SHA=$(git rev-parse HEAD)
|
||||||
|
else
|
||||||
|
./scripts/bump_version.sh ${{ inputs.version }}
|
||||||
|
git config user.name "GitHub Actions"
|
||||||
|
git config user.email "actions@github.com"
|
||||||
|
git add packages/*/pyproject.toml
|
||||||
|
git commit -m "chore: release v${{ inputs.version }}"
|
||||||
|
git push origin main
|
||||||
|
COMMIT_SHA=$(git rev-parse HEAD)
|
||||||
|
echo "✅ Pushed version update: $COMMIT_SHA"
|
||||||
|
fi
|
||||||
|
|
||||||
|
echo "commit-sha=$COMMIT_SHA" >> $GITHUB_OUTPUT
|
||||||
|
|
||||||
|
build-packages:
|
||||||
|
name: Build packages
|
||||||
|
needs: update-version
|
||||||
|
uses: ./.github/workflows/build-reusable.yml
|
||||||
|
with:
|
||||||
|
ref: 'main'
|
||||||
|
|
||||||
|
publish:
|
||||||
|
name: Publish and Release
|
||||||
|
needs: [update-version, build-packages]
|
||||||
|
if: always() && needs.update-version.result == 'success' && needs.build-packages.result == 'success'
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
permissions:
|
||||||
|
contents: write
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
with:
|
||||||
|
ref: 'main'
|
||||||
|
|
||||||
|
- name: Download all artifacts
|
||||||
|
uses: actions/download-artifact@v4
|
||||||
|
with:
|
||||||
|
path: dist-artifacts
|
||||||
|
|
||||||
|
- name: Collect packages
|
||||||
|
run: |
|
||||||
|
mkdir -p dist
|
||||||
|
find dist-artifacts -name "*.whl" -exec cp {} dist/ \;
|
||||||
|
find dist-artifacts -name "*.tar.gz" -exec cp {} dist/ \;
|
||||||
|
|
||||||
|
echo "📦 Packages to publish:"
|
||||||
|
ls -la dist/
|
||||||
|
|
||||||
|
- name: Publish to PyPI
|
||||||
|
env:
|
||||||
|
TWINE_USERNAME: __token__
|
||||||
|
TWINE_PASSWORD: ${{ secrets.PYPI_API_TOKEN }}
|
||||||
|
run: |
|
||||||
|
if [ -z "$TWINE_PASSWORD" ]; then
|
||||||
|
echo "❌ PYPI_API_TOKEN not configured!"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
pip install twine
|
||||||
|
twine upload dist/* --skip-existing --verbose
|
||||||
|
|
||||||
|
echo "✅ Published to PyPI!"
|
||||||
|
|
||||||
|
- name: Create release
|
||||||
|
run: |
|
||||||
|
# Check if tag already exists
|
||||||
|
if git rev-parse "v${{ inputs.version }}" >/dev/null 2>&1; then
|
||||||
|
echo "⚠️ Tag v${{ inputs.version }} already exists, skipping tag creation"
|
||||||
|
else
|
||||||
|
git tag "v${{ inputs.version }}"
|
||||||
|
git push origin "v${{ inputs.version }}"
|
||||||
|
echo "✅ Created and pushed tag v${{ inputs.version }}"
|
||||||
|
fi
|
||||||
|
|
||||||
|
# Check if release already exists
|
||||||
|
if gh release view "v${{ inputs.version }}" >/dev/null 2>&1; then
|
||||||
|
echo "⚠️ Release v${{ inputs.version }} already exists, skipping release creation"
|
||||||
|
else
|
||||||
|
gh release create "v${{ inputs.version }}" \
|
||||||
|
--title "Release v${{ inputs.version }}" \
|
||||||
|
--notes "🚀 Released to PyPI: https://pypi.org/project/leann/${{ inputs.version }}/" \
|
||||||
|
--latest
|
||||||
|
echo "✅ Created GitHub release v${{ inputs.version }}"
|
||||||
|
fi
|
||||||
|
env:
|
||||||
|
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||||
35
.gitignore
vendored
@@ -8,14 +8,21 @@ demo/indices/
|
|||||||
*pycache*
|
*pycache*
|
||||||
outputs/
|
outputs/
|
||||||
*.pkl
|
*.pkl
|
||||||
|
*.pdf
|
||||||
|
*.idx
|
||||||
|
*.map
|
||||||
.history/
|
.history/
|
||||||
scripts/
|
|
||||||
lm_eval.egg-info/
|
lm_eval.egg-info/
|
||||||
demo/experiment_results/**/*.json
|
demo/experiment_results/**/*.json
|
||||||
*.jsonl
|
*.jsonl
|
||||||
|
*.eml
|
||||||
|
*.emlx
|
||||||
|
*.json
|
||||||
|
!.vscode/*.json
|
||||||
*.sh
|
*.sh
|
||||||
*.txt
|
*.txt
|
||||||
!CMakeLists.txt
|
!CMakeLists.txt
|
||||||
|
!llms.txt
|
||||||
latency_breakdown*.json
|
latency_breakdown*.json
|
||||||
experiment_results/eval_results/diskann/*.json
|
experiment_results/eval_results/diskann/*.json
|
||||||
aws/
|
aws/
|
||||||
@@ -29,7 +36,15 @@ build/
|
|||||||
nprobe_logs/
|
nprobe_logs/
|
||||||
micro/results
|
micro/results
|
||||||
micro/contriever-INT8
|
micro/contriever-INT8
|
||||||
examples/data/
|
data/*
|
||||||
|
!data/2501.14312v1 (1).pdf
|
||||||
|
!data/2506.08276v1.pdf
|
||||||
|
!data/PrideandPrejudice.txt
|
||||||
|
!data/huawei_pangu.md
|
||||||
|
!data/ground_truth/
|
||||||
|
!data/indices/
|
||||||
|
!data/queries/
|
||||||
|
!data/.gitattributes
|
||||||
*.qdstrm
|
*.qdstrm
|
||||||
benchmark_results/
|
benchmark_results/
|
||||||
results/
|
results/
|
||||||
@@ -42,6 +57,7 @@ embedding_comparison_results/
|
|||||||
*.ivecs
|
*.ivecs
|
||||||
*.index
|
*.index
|
||||||
*.bin
|
*.bin
|
||||||
|
*.old
|
||||||
|
|
||||||
read_graph
|
read_graph
|
||||||
analyze_diskann_graph
|
analyze_diskann_graph
|
||||||
@@ -71,3 +87,18 @@ test_indices*/
|
|||||||
test_*.py
|
test_*.py
|
||||||
!tests/**
|
!tests/**
|
||||||
packages/leann-backend-diskann/third_party/DiskANN/_deps/
|
packages/leann-backend-diskann/third_party/DiskANN/_deps/
|
||||||
|
|
||||||
|
*.meta.json
|
||||||
|
*.passages.json
|
||||||
|
|
||||||
|
batchtest.py
|
||||||
|
tests/__pytest_cache__/
|
||||||
|
tests/__pycache__/
|
||||||
|
paru-bin/
|
||||||
|
|
||||||
|
CLAUDE.md
|
||||||
|
CLAUDE.local.md
|
||||||
|
.claude/*.local.*
|
||||||
|
.claude/local/*
|
||||||
|
benchmarks/data/
|
||||||
|
test_add/*
|
||||||
|
|||||||
17
.gitmodules
vendored
@@ -1,6 +1,19 @@
|
|||||||
[submodule "packages/leann-backend-diskann/third_party/DiskANN"]
|
[submodule "packages/leann-backend-diskann/third_party/DiskANN"]
|
||||||
path = packages/leann-backend-diskann/third_party/DiskANN
|
path = packages/leann-backend-diskann/third_party/DiskANN
|
||||||
url = https://github.com/yichuan520030910320/DiskANN.git
|
url = https://github.com/yichuan-w/DiskANN.git
|
||||||
[submodule "packages/leann-backend-hnsw/third_party/faiss"]
|
[submodule "packages/leann-backend-hnsw/third_party/faiss"]
|
||||||
path = packages/leann-backend-hnsw/third_party/faiss
|
path = packages/leann-backend-hnsw/third_party/faiss
|
||||||
url = https://github.com/yichuan520030910320/faiss.git
|
url = https://github.com/yichuan-w/faiss.git
|
||||||
|
[submodule "packages/leann-backend-hnsw/third_party/msgpack-c"]
|
||||||
|
path = packages/leann-backend-hnsw/third_party/msgpack-c
|
||||||
|
url = https://github.com/msgpack/msgpack-c.git
|
||||||
|
branch = cpp_master
|
||||||
|
[submodule "packages/leann-backend-hnsw/third_party/cppzmq"]
|
||||||
|
path = packages/leann-backend-hnsw/third_party/cppzmq
|
||||||
|
url = https://github.com/zeromq/cppzmq.git
|
||||||
|
[submodule "packages/leann-backend-hnsw/third_party/libzmq"]
|
||||||
|
path = packages/leann-backend-hnsw/third_party/libzmq
|
||||||
|
url = https://github.com/zeromq/libzmq.git
|
||||||
|
[submodule "packages/astchunk-leann"]
|
||||||
|
path = packages/astchunk-leann
|
||||||
|
url = https://github.com/yichuan-w/astchunk-leann.git
|
||||||
|
|||||||
17
.pre-commit-config.yaml
Normal file
@@ -0,0 +1,17 @@
|
|||||||
|
repos:
|
||||||
|
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||||
|
rev: v5.0.0
|
||||||
|
hooks:
|
||||||
|
- id: trailing-whitespace
|
||||||
|
- id: end-of-file-fixer
|
||||||
|
- id: check-yaml
|
||||||
|
- id: check-added-large-files
|
||||||
|
- id: check-merge-conflict
|
||||||
|
- id: debug-statements
|
||||||
|
|
||||||
|
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||||
|
rev: v0.12.7 # Fixed version to match pyproject.toml
|
||||||
|
hooks:
|
||||||
|
- id: ruff
|
||||||
|
args: [--fix, --exit-non-zero-on-fix]
|
||||||
|
- id: ruff-format
|
||||||
6
.vscode/extensions.json
vendored
@@ -1,9 +1,5 @@
|
|||||||
{
|
{
|
||||||
"recommendations": [
|
"recommendations": [
|
||||||
"llvm-vs-code-extensions.vscode-clangd",
|
"charliermarsh.ruff",
|
||||||
"ms-python.python",
|
|
||||||
"ms-vscode.cmake-tools",
|
|
||||||
"vadimcn.vscode-lldb",
|
|
||||||
"eamodio.gitlens",
|
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
283
.vscode/launch.json
vendored
@@ -1,283 +0,0 @@
|
|||||||
{
|
|
||||||
// Use IntelliSense to learn about possible attributes.
|
|
||||||
// Hover to view descriptions of existing attributes.
|
|
||||||
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
|
|
||||||
"version": "0.2.0",
|
|
||||||
"configurations": [
|
|
||||||
// new emdedder
|
|
||||||
{
|
|
||||||
"name": "New Embedder",
|
|
||||||
"type": "debugpy",
|
|
||||||
"request": "launch",
|
|
||||||
"program": "demo/main.py",
|
|
||||||
"console": "integratedTerminal",
|
|
||||||
"args": [
|
|
||||||
"--search",
|
|
||||||
"--use-original",
|
|
||||||
"--domain",
|
|
||||||
"dpr",
|
|
||||||
"--nprobe",
|
|
||||||
"5000",
|
|
||||||
"--load",
|
|
||||||
"flat",
|
|
||||||
"--embedder",
|
|
||||||
"intfloat/multilingual-e5-small"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
//python /home/ubuntu/Power-RAG/faiss/demo/simple_build.py
|
|
||||||
{
|
|
||||||
"name": "main.py",
|
|
||||||
"type": "debugpy",
|
|
||||||
"request": "launch",
|
|
||||||
"program": "demo/main.py",
|
|
||||||
"console": "integratedTerminal",
|
|
||||||
"cwd": "${workspaceFolder}",
|
|
||||||
"args": [
|
|
||||||
"--query",
|
|
||||||
"1000",
|
|
||||||
"--load",
|
|
||||||
"bm25"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "Simple Build",
|
|
||||||
"type": "lldb",
|
|
||||||
"request": "launch",
|
|
||||||
"program": "${workspaceFolder}/.venv/bin/python",
|
|
||||||
"console": "integratedTerminal",
|
|
||||||
"cwd": "${workspaceFolder}",
|
|
||||||
"args": [
|
|
||||||
"faiss/demo/simple_build.py"
|
|
||||||
],
|
|
||||||
"env": {
|
|
||||||
"LD_PRELOAD": "/lib/x86_64-linux-gnu/libmkl_core.so:/lib/x86_64-linux-gnu/libmkl_intel_thread.so:/lib/x86_64-linux-gnu/libmkl_intel_lp64.so:/lib/x86_64-linux-gnu/libiomp5.so"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
//# Fix for Intel MKL error
|
|
||||||
//export LD_PRELOAD=/lib/x86_64-linux-gnu/libmkl_core.so:/lib/x86_64-linux-gnu/libmkl_intel_thread.so:/lib/x86_64-linux-gnu/libmkl_intel_lp64.so:/lib/x86_64-linux-gnu/libiomp5.so
|
|
||||||
//python faiss/demo/build_demo.py
|
|
||||||
{
|
|
||||||
"name": "Build Demo",
|
|
||||||
"type": "lldb",
|
|
||||||
"request": "launch",
|
|
||||||
"program": "${workspaceFolder}/.venv/bin/python",
|
|
||||||
"console": "integratedTerminal",
|
|
||||||
"cwd": "${workspaceFolder}",
|
|
||||||
"args": [
|
|
||||||
"faiss/demo/build_demo.py"
|
|
||||||
],
|
|
||||||
"env": {
|
|
||||||
"LD_PRELOAD": "/lib/x86_64-linux-gnu/libmkl_core.so:/lib/x86_64-linux-gnu/libmkl_intel_thread.so:/lib/x86_64-linux-gnu/libmkl_intel_lp64.so:/lib/x86_64-linux-gnu/libiomp5.so"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "DiskANN Serve",
|
|
||||||
"type": "lldb",
|
|
||||||
"request": "launch",
|
|
||||||
"program": "${workspaceFolder}/.venv/bin/python",
|
|
||||||
"console": "integratedTerminal",
|
|
||||||
"cwd": "${workspaceFolder}",
|
|
||||||
"args": [
|
|
||||||
"demo/main.py",
|
|
||||||
"--mode",
|
|
||||||
"serve",
|
|
||||||
"--engine",
|
|
||||||
"sglang",
|
|
||||||
"--load-indices",
|
|
||||||
"diskann",
|
|
||||||
"--domain",
|
|
||||||
"rpj_wiki",
|
|
||||||
"--lazy-load",
|
|
||||||
"--recompute-beighbor-embeddings",
|
|
||||||
"--port",
|
|
||||||
"8082",
|
|
||||||
"--diskann-search-memory-maximum",
|
|
||||||
"2",
|
|
||||||
"--diskann-graph",
|
|
||||||
"240",
|
|
||||||
"--search-only"
|
|
||||||
],
|
|
||||||
"env": {
|
|
||||||
"PYTHONPATH": "${workspaceFolder}/faiss_repo/build/faiss/python:$PYTHONPATH"
|
|
||||||
},
|
|
||||||
"preLaunchTask": "CMake: build",
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "DiskANN Serve MAC",
|
|
||||||
"type": "lldb",
|
|
||||||
"request": "launch",
|
|
||||||
"program": "${workspaceFolder}/.venv/bin/python",
|
|
||||||
"console": "integratedTerminal",
|
|
||||||
"cwd": "${workspaceFolder}",
|
|
||||||
"args": [
|
|
||||||
"demo/main.py",
|
|
||||||
"--mode",
|
|
||||||
"serve",
|
|
||||||
"--engine",
|
|
||||||
"ollama",
|
|
||||||
"--load-indices",
|
|
||||||
"diskann",
|
|
||||||
"--domain",
|
|
||||||
"rpj_wiki",
|
|
||||||
"--lazy-load",
|
|
||||||
"--recompute-beighbor-embeddings"
|
|
||||||
],
|
|
||||||
"preLaunchTask": "CMake: build",
|
|
||||||
"env": {
|
|
||||||
"KMP_DUPLICATE_LIB_OK": "TRUE",
|
|
||||||
"OMP_NUM_THREADS": "1",
|
|
||||||
"MKL_NUM_THREADS": "1",
|
|
||||||
"DYLD_INSERT_LIBRARIES": "/Users/ec2-user/Power-RAG/.venv/lib/python3.10/site-packages/torch/lib/libomp.dylib",
|
|
||||||
"KMP_BLOCKTIME": "0"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "Python Debugger: Current File with Arguments",
|
|
||||||
"type": "debugpy",
|
|
||||||
"request": "launch",
|
|
||||||
"program": "ric/main_ric.py",
|
|
||||||
"console": "integratedTerminal",
|
|
||||||
"cwd": "${workspaceFolder}",
|
|
||||||
"args": [
|
|
||||||
"--config-name",
|
|
||||||
"${input:configSelection}"
|
|
||||||
],
|
|
||||||
"justMyCode": false
|
|
||||||
},
|
|
||||||
//python ./demo/validate_equivalence.py sglang
|
|
||||||
{
|
|
||||||
"name": "Validate Equivalence",
|
|
||||||
"type": "debugpy",
|
|
||||||
"request": "launch",
|
|
||||||
"program": "demo/validate_equivalence.py",
|
|
||||||
"console": "integratedTerminal",
|
|
||||||
"args": [
|
|
||||||
"sglang"
|
|
||||||
],
|
|
||||||
},
|
|
||||||
//python demo/retrieval_demo.py --engine sglang --skip-embeddings --domain dpr --load-indices flat ivf_flat
|
|
||||||
{
|
|
||||||
"name": "Retrieval Demo",
|
|
||||||
"type": "debugpy",
|
|
||||||
"request": "launch",
|
|
||||||
"program": "demo/retrieval_demo.py",
|
|
||||||
"console": "integratedTerminal",
|
|
||||||
"args": [
|
|
||||||
"--engine",
|
|
||||||
"vllm",
|
|
||||||
"--skip-embeddings",
|
|
||||||
"--domain",
|
|
||||||
"dpr",
|
|
||||||
"--load-indices",
|
|
||||||
// "flat",
|
|
||||||
"ivf_flat"
|
|
||||||
],
|
|
||||||
},
|
|
||||||
//python demo/retrieval_demo.py --engine sglang --skip-embeddings --domain dpr --load-indices diskann --hnsw-M 64 --hnsw-efConstruction 150 --hnsw-efSearch 128 --hnsw-sq-bits 8
|
|
||||||
{
|
|
||||||
"name": "Retrieval Demo DiskANN",
|
|
||||||
"type": "debugpy",
|
|
||||||
"request": "launch",
|
|
||||||
"program": "demo/retrieval_demo.py",
|
|
||||||
"console": "integratedTerminal",
|
|
||||||
"args": [
|
|
||||||
"--engine",
|
|
||||||
"sglang",
|
|
||||||
"--skip-embeddings",
|
|
||||||
"--domain",
|
|
||||||
"dpr",
|
|
||||||
"--load-indices",
|
|
||||||
"diskann",
|
|
||||||
"--hnsw-M",
|
|
||||||
"64",
|
|
||||||
"--hnsw-efConstruction",
|
|
||||||
"150",
|
|
||||||
"--hnsw-efSearch",
|
|
||||||
"128",
|
|
||||||
"--hnsw-sq-bits",
|
|
||||||
"8"
|
|
||||||
],
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "Find Probe",
|
|
||||||
"type": "debugpy",
|
|
||||||
"request": "launch",
|
|
||||||
"program": "find_probe.py",
|
|
||||||
"console": "integratedTerminal",
|
|
||||||
"cwd": "${workspaceFolder}",
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "Python: Attach",
|
|
||||||
"type": "debugpy",
|
|
||||||
"request": "attach",
|
|
||||||
"processId": "${command:pickProcess}",
|
|
||||||
"justMyCode": true
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "Edge RAG",
|
|
||||||
"type": "lldb",
|
|
||||||
"request": "launch",
|
|
||||||
"program": "${workspaceFolder}/.venv/bin/python",
|
|
||||||
"console": "integratedTerminal",
|
|
||||||
"cwd": "${workspaceFolder}",
|
|
||||||
"args": [
|
|
||||||
"edgerag_demo.py"
|
|
||||||
],
|
|
||||||
"env": {
|
|
||||||
"LD_PRELOAD": "/lib/x86_64-linux-gnu/libiomp5.so /lib/x86_64-linux-gnu/libmkl_core.so /lib/x86_64-linux-gnu/libmkl_intel_lp64.so /lib/x86_64-linux-gnu/libmkl_intel_thread.so",
|
|
||||||
"MKL_NUM_THREADS": "1",
|
|
||||||
"OMP_NUM_THREADS": "1",
|
|
||||||
}
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "Launch Embedding Server",
|
|
||||||
"type": "debugpy",
|
|
||||||
"request": "launch",
|
|
||||||
"program": "demo/embedding_server.py",
|
|
||||||
"console": "integratedTerminal",
|
|
||||||
"cwd": "${workspaceFolder}",
|
|
||||||
"args": [
|
|
||||||
"--domain",
|
|
||||||
"rpj_wiki",
|
|
||||||
"--zmq-port",
|
|
||||||
"5556",
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "HNSW Serve",
|
|
||||||
"type": "lldb",
|
|
||||||
"request": "launch",
|
|
||||||
"program": "${workspaceFolder}/.venv/bin/python",
|
|
||||||
"console": "integratedTerminal",
|
|
||||||
"cwd": "${workspaceFolder}",
|
|
||||||
"args": [
|
|
||||||
"demo/main.py",
|
|
||||||
"--domain",
|
|
||||||
"rpj_wiki",
|
|
||||||
"--load",
|
|
||||||
"hnsw",
|
|
||||||
"--mode",
|
|
||||||
"serve",
|
|
||||||
"--search",
|
|
||||||
"--skip-pa",
|
|
||||||
"--recompute",
|
|
||||||
"--hnsw-old"
|
|
||||||
],
|
|
||||||
"env": {
|
|
||||||
"LD_PRELOAD": "/lib/x86_64-linux-gnu/libmkl_core.so:/lib/x86_64-linux-gnu/libmkl_intel_thread.so:/lib/x86_64-linux-gnu/libmkl_intel_lp64.so:/lib/x86_64-linux-gnu/libiomp5.so"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
],
|
|
||||||
"inputs": [
|
|
||||||
{
|
|
||||||
"id": "configSelection",
|
|
||||||
"type": "pickString",
|
|
||||||
"description": "Select a configuration",
|
|
||||||
"options": [
|
|
||||||
"example_config",
|
|
||||||
"vllm_gritlm"
|
|
||||||
],
|
|
||||||
"default": "example_config"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
}
|
|
||||||
57
.vscode/settings.json
vendored
Executable file → Normal file
@@ -1,43 +1,22 @@
|
|||||||
{
|
{
|
||||||
"python.analysis.extraPaths": [
|
"python.defaultInterpreterPath": ".venv/bin/python",
|
||||||
"./sglang_repo/python"
|
"python.terminal.activateEnvironment": true,
|
||||||
],
|
"[python]": {
|
||||||
"cmake.sourceDirectory": "${workspaceFolder}/DiskANN",
|
"editor.defaultFormatter": "charliermarsh.ruff",
|
||||||
"cmake.configureArgs": [
|
"editor.formatOnSave": true,
|
||||||
"-DPYBIND=True",
|
"editor.codeActionsOnSave": {
|
||||||
"-DUPDATE_EDITABLE_INSTALL=ON",
|
"source.organizeImports": "explicit",
|
||||||
],
|
"source.fixAll": "explicit"
|
||||||
"cmake.environment": {
|
|
||||||
"PATH": "/Users/ec2-user/Power-RAG/.venv/bin:${env:PATH}"
|
|
||||||
},
|
},
|
||||||
"cmake.buildDirectory": "${workspaceFolder}/build",
|
"editor.insertSpaces": true,
|
||||||
"files.associations": {
|
"editor.tabSize": 4
|
||||||
"*.tcc": "cpp",
|
|
||||||
"deque": "cpp",
|
|
||||||
"string": "cpp",
|
|
||||||
"unordered_map": "cpp",
|
|
||||||
"vector": "cpp",
|
|
||||||
"map": "cpp",
|
|
||||||
"unordered_set": "cpp",
|
|
||||||
"atomic": "cpp",
|
|
||||||
"inplace_vector": "cpp",
|
|
||||||
"*.ipp": "cpp",
|
|
||||||
"forward_list": "cpp",
|
|
||||||
"list": "cpp",
|
|
||||||
"any": "cpp",
|
|
||||||
"system_error": "cpp",
|
|
||||||
"__hash_table": "cpp",
|
|
||||||
"__split_buffer": "cpp",
|
|
||||||
"__tree": "cpp",
|
|
||||||
"ios": "cpp",
|
|
||||||
"set": "cpp",
|
|
||||||
"__string": "cpp",
|
|
||||||
"string_view": "cpp",
|
|
||||||
"ranges": "cpp",
|
|
||||||
"iosfwd": "cpp"
|
|
||||||
},
|
},
|
||||||
"lldb.displayFormat": "auto",
|
"ruff.enable": true,
|
||||||
"lldb.showDisassembly": "auto",
|
"files.watcherExclude": {
|
||||||
"lldb.dereferencePointers": true,
|
"**/.venv/**": true,
|
||||||
"lldb.consoleMode": "commands",
|
"**/__pycache__/**": true,
|
||||||
|
"**/*.egg-info/**": true,
|
||||||
|
"**/build/**": true,
|
||||||
|
"**/dist/**": true
|
||||||
|
}
|
||||||
}
|
}
|
||||||
16
.vscode/tasks.json
vendored
@@ -1,16 +0,0 @@
|
|||||||
{
|
|
||||||
"version": "2.0.0",
|
|
||||||
"tasks": [
|
|
||||||
{
|
|
||||||
"type": "cmake",
|
|
||||||
"label": "CMake: build",
|
|
||||||
"command": "build",
|
|
||||||
"targets": [
|
|
||||||
"all"
|
|
||||||
],
|
|
||||||
"group": "build",
|
|
||||||
"problemMatcher": [],
|
|
||||||
"detail": "CMake template build task"
|
|
||||||
}
|
|
||||||
]
|
|
||||||
}
|
|
||||||
2
LICENSE
@@ -1,6 +1,6 @@
|
|||||||
MIT License
|
MIT License
|
||||||
|
|
||||||
Copyright (c) 2024 Rulin Shao
|
Copyright (c) 2025 LEANN Contributors
|
||||||
|
|
||||||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
|
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
|
||||||
|
|
||||||
|
|||||||
937
README.md
@@ -1,172 +1,717 @@
|
|||||||
# 🚀 LEANN: A Low-Storage Vector Index
|
<p align="center">
|
||||||
|
<img src="assets/logo-text.png" alt="LEANN Logo" width="400">
|
||||||
|
</p>
|
||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<img src="https://img.shields.io/badge/Python-3.9%2B-blue.svg" alt="Python 3.9+">
|
<img src="https://img.shields.io/badge/Python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12%20%7C%203.13-blue.svg" alt="Python Versions">
|
||||||
|
<img src="https://github.com/yichuan-w/LEANN/actions/workflows/build-and-publish.yml/badge.svg" alt="CI Status">
|
||||||
|
<img src="https://img.shields.io/badge/Platform-Ubuntu%20%26%20Arch%20%26%20WSL%20%7C%20macOS%20(ARM64%2FIntel)-lightgrey" alt="Platform">
|
||||||
<img src="https://img.shields.io/badge/License-MIT-green.svg" alt="MIT License">
|
<img src="https://img.shields.io/badge/License-MIT-green.svg" alt="MIT License">
|
||||||
<img src="https://img.shields.io/badge/PRs-welcome-brightgreen.svg" alt="PRs Welcome">
|
<img src="https://img.shields.io/badge/MCP-Native%20Integration-blue" alt="MCP Integration">
|
||||||
<img src="https://img.shields.io/badge/Platform-Linux%20%7C%20macOS%20%7C%20Windows-lightgrey" alt="Platform">
|
<a href="https://join.slack.com/t/leann-e2u9779/shared_invite/zt-3ckd2f6w1-OX08~NN4gkWhh10PRVBj1Q"><img src="https://img.shields.io/badge/Slack-Join-4A154B?logo=slack&logoColor=white" alt="Join Slack">
|
||||||
|
<a href="assets/wechat_user_group.JPG" title="Join WeChat group"><img src="https://img.shields.io/badge/WeChat-Join-2DC100?logo=wechat&logoColor=white" alt="Join WeChat group"></a>
|
||||||
</p>
|
</p>
|
||||||
|
|
||||||
|
<h2 align="center" tabindex="-1" class="heading-element" dir="auto">
|
||||||
|
The smallest vector index in the world. RAG Everything with LEANN!
|
||||||
|
</h2>
|
||||||
|
|
||||||
|
LEANN is an innovative vector database that democratizes personal AI. Transform your laptop into a powerful RAG system that can index and search through millions of documents while using **97% less storage** than traditional solutions **without accuracy loss**.
|
||||||
|
|
||||||
|
LEANN achieves this through *graph-based selective recomputation* with *high-degree preserving pruning*, computing embeddings on-demand instead of storing them all. [Illustration Fig →](#️-architecture--how-it-works) | [Paper →](https://arxiv.org/abs/2506.08276)
|
||||||
|
|
||||||
|
**Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can semantic search your **[file system](#-personal-data-manager-process-any-documents-pdf-txt-md)**, **[emails](#-your-personal-email-secretary-rag-on-apple-mail)**, **[browser history](#-time-machine-for-the-web-rag-your-entire-browser-history)**, **[chat history](#-wechat-detective-unlock-your-golden-memories)**, **[codebase](#-claude-code-integration-transform-your-development-workflow)**\* , or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy.
|
||||||
|
|
||||||
|
|
||||||
|
\* Claude Code only supports basic `grep`-style keyword search. **LEANN** is a drop-in **semantic search MCP service fully compatible with Claude Code**, unlocking intelligent retrieval without changing your workflow. 🔥 Check out [the easy setup →](packages/leann-mcp/README.md)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
## Why LEANN?
|
||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<strong>⚡ Real-time embedding computation for large-scale RAG on consumer hardware</strong>
|
<img src="assets/effects.png" alt="LEANN vs Traditional Vector DB Storage Comparison" width="70%">
|
||||||
</p>
|
</p>
|
||||||
|
|
||||||
|
> **The numbers speak for themselves:** Index 60 million text chunks in just 6GB instead of 201GB. From emails to browser history, everything fits on your laptop. [See detailed benchmarks for different applications below ↓](#-storage-comparison)
|
||||||
|
|
||||||
|
|
||||||
|
🔒 **Privacy:** Your data never leaves your laptop. No OpenAI, no cloud, no "terms of service".
|
||||||
|
|
||||||
|
🪶 **Lightweight:** Graph-based recomputation eliminates heavy embedding storage, while smart graph pruning and CSR format minimize graph storage overhead. Always less storage, less memory usage!
|
||||||
|
|
||||||
|
📦 **Portable:** Transfer your entire knowledge base between devices (even with others) with minimal cost - your personal AI memory travels with you.
|
||||||
|
|
||||||
|
📈 **Scalability:** Handle messy personal data that would crash traditional vector DBs, easily managing your growing personalized data and agent generated memory!
|
||||||
|
|
||||||
|
✨ **No Accuracy Loss:** Maintain the same search quality as heavyweight solutions while using 97% less storage.
|
||||||
|
|
||||||
|
## Installation
|
||||||
|
|
||||||
|
### 📦 Prerequisites: Install uv
|
||||||
|
|
||||||
|
[Install uv](https://docs.astral.sh/uv/getting-started/installation/#installation-methods) first if you don't have it. Typically, you can install it with:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||||
|
```
|
||||||
|
|
||||||
|
### 🚀 Quick Install
|
||||||
|
|
||||||
|
Clone the repository to access all examples and try amazing applications,
|
||||||
|
|
||||||
|
```bash
|
||||||
|
git clone https://github.com/yichuan-w/LEANN.git leann
|
||||||
|
cd leann
|
||||||
|
```
|
||||||
|
|
||||||
|
and install LEANN from [PyPI](https://pypi.org/project/leann/) to run them immediately:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
uv venv
|
||||||
|
source .venv/bin/activate
|
||||||
|
uv pip install leann
|
||||||
|
```
|
||||||
|
<!--
|
||||||
|
> Low-resource? See “Low-resource setups” in the [Configuration Guide](docs/configuration-guide.md#low-resource-setups). -->
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
<strong>🔧 Build from Source (Recommended for development)</strong>
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
```bash
|
||||||
|
git clone https://github.com/yichuan-w/LEANN.git leann
|
||||||
|
cd leann
|
||||||
|
git submodule update --init --recursive
|
||||||
|
```
|
||||||
|
|
||||||
|
**macOS:**
|
||||||
|
|
||||||
|
Note: DiskANN requires MacOS 13.3 or later.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
brew install libomp boost protobuf zeromq pkgconf
|
||||||
|
uv sync --extra diskann
|
||||||
|
```
|
||||||
|
|
||||||
|
**Linux (Ubuntu/Debian):**
|
||||||
|
|
||||||
|
Note: On Ubuntu 20.04, you may need to build a newer Abseil and pin Protobuf (e.g., v3.20.x) for building DiskANN. See [Issue #30](https://github.com/yichuan-w/LEANN/issues/30) for a step-by-step note.
|
||||||
|
|
||||||
|
You can manually install [Intel oneAPI MKL](https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html) instead of `libmkl-full-dev` for DiskANN. You can also use `libopenblas-dev` for building HNSW only, by removing `--extra diskann` in the command below.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
sudo apt-get update && sudo apt-get install -y \
|
||||||
|
libomp-dev libboost-all-dev protobuf-compiler libzmq3-dev \
|
||||||
|
pkg-config libabsl-dev libaio-dev libprotobuf-dev \
|
||||||
|
libmkl-full-dev
|
||||||
|
|
||||||
|
uv sync --extra diskann
|
||||||
|
```
|
||||||
|
|
||||||
|
**Linux (Arch Linux):**
|
||||||
|
|
||||||
|
```bash
|
||||||
|
sudo pacman -Syu && sudo pacman -S --needed base-devel cmake pkgconf git gcc \
|
||||||
|
boost boost-libs protobuf abseil-cpp libaio zeromq
|
||||||
|
|
||||||
|
# For MKL in DiskANN
|
||||||
|
sudo pacman -S --needed base-devel git
|
||||||
|
git clone https://aur.archlinux.org/paru-bin.git
|
||||||
|
cd paru-bin && makepkg -si
|
||||||
|
paru -S intel-oneapi-mkl intel-oneapi-compiler
|
||||||
|
source /opt/intel/oneapi/setvars.sh
|
||||||
|
|
||||||
|
uv sync --extra diskann
|
||||||
|
```
|
||||||
|
|
||||||
|
**Linux (RHEL / CentOS Stream / Oracle / Rocky / AlmaLinux):**
|
||||||
|
|
||||||
|
See [Issue #50](https://github.com/yichuan-w/LEANN/issues/50) for more details.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
sudo dnf groupinstall -y "Development Tools"
|
||||||
|
sudo dnf install -y libomp-devel boost-devel protobuf-compiler protobuf-devel \
|
||||||
|
abseil-cpp-devel libaio-devel zeromq-devel pkgconf-pkg-config
|
||||||
|
|
||||||
|
# For MKL in DiskANN
|
||||||
|
sudo dnf install -y intel-oneapi-mkl intel-oneapi-mkl-devel \
|
||||||
|
intel-oneapi-openmp || sudo dnf install -y intel-oneapi-compiler
|
||||||
|
source /opt/intel/oneapi/setvars.sh
|
||||||
|
|
||||||
|
uv sync --extra diskann
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
|
||||||
|
## Quick Start
|
||||||
|
|
||||||
|
Our declarative API makes RAG as easy as writing a config file.
|
||||||
|
|
||||||
|
Check out [demo.ipynb](demo.ipynb) or [](https://colab.research.google.com/github/yichuan-w/LEANN/blob/main/demo.ipynb)
|
||||||
|
|
||||||
|
```python
|
||||||
|
from leann import LeannBuilder, LeannSearcher, LeannChat
|
||||||
|
from pathlib import Path
|
||||||
|
INDEX_PATH = str(Path("./").resolve() / "demo.leann")
|
||||||
|
|
||||||
|
# Build an index
|
||||||
|
builder = LeannBuilder(backend_name="hnsw")
|
||||||
|
builder.add_text("LEANN saves 97% storage compared to traditional vector databases.")
|
||||||
|
builder.add_text("Tung Tung Tung Sahur called—they need their banana‑crocodile hybrid back")
|
||||||
|
builder.build_index(INDEX_PATH)
|
||||||
|
|
||||||
|
# Search
|
||||||
|
searcher = LeannSearcher(INDEX_PATH)
|
||||||
|
results = searcher.search("fantastical AI-generated creatures", top_k=1)
|
||||||
|
|
||||||
|
# Chat with your data
|
||||||
|
chat = LeannChat(INDEX_PATH, llm_config={"type": "hf", "model": "Qwen/Qwen3-0.6B"})
|
||||||
|
response = chat.ask("How much storage does LEANN save?", top_k=1)
|
||||||
|
```
|
||||||
|
|
||||||
|
## RAG on Everything!
|
||||||
|
|
||||||
|
LEANN supports RAG on various data sources including documents (`.pdf`, `.txt`, `.md`), Apple Mail, Google Search History, WeChat, and more.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
### Generation Model Setup
|
||||||
|
|
||||||
|
LEANN supports multiple LLM providers for text generation (OpenAI API, HuggingFace, Ollama).
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary><strong>🔑 OpenAI API Setup (Default)</strong></summary>
|
||||||
|
|
||||||
|
Set your OpenAI API key as an environment variable:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export OPENAI_API_KEY="your-api-key-here"
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary><strong>🔧 Ollama Setup (Recommended for full privacy)</strong></summary>
|
||||||
|
|
||||||
|
**macOS:**
|
||||||
|
|
||||||
|
First, [download Ollama for macOS](https://ollama.com/download/mac).
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Pull a lightweight model (recommended for consumer hardware)
|
||||||
|
ollama pull llama3.2:1b
|
||||||
|
```
|
||||||
|
|
||||||
|
**Linux:**
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Install Ollama
|
||||||
|
curl -fsSL https://ollama.ai/install.sh | sh
|
||||||
|
|
||||||
|
# Start Ollama service manually
|
||||||
|
ollama serve &
|
||||||
|
|
||||||
|
# Pull a lightweight model (recommended for consumer hardware)
|
||||||
|
ollama pull llama3.2:1b
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
|
||||||
|
## ⭐ Flexible Configuration
|
||||||
|
|
||||||
|
LEANN provides flexible parameters for embedding models, search strategies, and data processing to fit your specific needs.
|
||||||
|
|
||||||
|
📚 **Need configuration best practices?** Check our [Configuration Guide](docs/configuration-guide.md) for detailed optimization tips, model selection advice, and solutions to common issues like slow embeddings or poor search quality.
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary><strong>📋 Click to expand: Common Parameters (Available in All Examples)</strong></summary>
|
||||||
|
|
||||||
|
All RAG examples share these common parameters. **Interactive mode** is available in all examples - simply run without `--query` to start a continuous Q&A session where you can ask multiple questions. Type 'quit' to exit.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Core Parameters (General preprocessing for all examples)
|
||||||
|
--index-dir DIR # Directory to store the index (default: current directory)
|
||||||
|
--query "YOUR QUESTION" # Single query mode. Omit for interactive chat (type 'quit' to exit), and now you can play with your index interactively
|
||||||
|
--max-items N # Limit data preprocessing (default: -1, process all data)
|
||||||
|
--force-rebuild # Force rebuild index even if it exists
|
||||||
|
|
||||||
|
# Embedding Parameters
|
||||||
|
--embedding-model MODEL # e.g., facebook/contriever, text-embedding-3-small, mlx-community/Qwen3-Embedding-0.6B-8bit or nomic-embed-text
|
||||||
|
--embedding-mode MODE # sentence-transformers, openai, mlx, or ollama
|
||||||
|
|
||||||
|
# LLM Parameters (Text generation models)
|
||||||
|
--llm TYPE # LLM backend: openai, ollama, or hf (default: openai)
|
||||||
|
--llm-model MODEL # Model name (default: gpt-4o) e.g., gpt-4o-mini, llama3.2:1b, Qwen/Qwen2.5-1.5B-Instruct
|
||||||
|
--thinking-budget LEVEL # Thinking budget for reasoning models: low/medium/high (supported by o3, o3-mini, GPT-Oss:20b, and other reasoning models)
|
||||||
|
|
||||||
|
# Search Parameters
|
||||||
|
--top-k N # Number of results to retrieve (default: 20)
|
||||||
|
--search-complexity N # Search complexity for graph traversal (default: 32)
|
||||||
|
|
||||||
|
# Chunking Parameters
|
||||||
|
--chunk-size N # Size of text chunks (default varies by source: 256 for most, 192 for WeChat)
|
||||||
|
--chunk-overlap N # Overlap between chunks (default varies: 25-128 depending on source)
|
||||||
|
|
||||||
|
# Index Building Parameters
|
||||||
|
--backend-name NAME # Backend to use: hnsw or diskann (default: hnsw)
|
||||||
|
--graph-degree N # Graph degree for index construction (default: 32)
|
||||||
|
--build-complexity N # Build complexity for index construction (default: 64)
|
||||||
|
--compact / --no-compact # Use compact storage (default: true). Must be `no-compact` for `no-recompute` build.
|
||||||
|
--recompute / --no-recompute # Enable/disable embedding recomputation (default: enabled). Should not do a `no-recompute` search in a `recompute` build.
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
### 📄 Personal Data Manager: Process Any Documents (`.pdf`, `.txt`, `.md`)!
|
||||||
|
|
||||||
|
Ask questions directly about your personal PDFs, documents, and any directory containing your files!
|
||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<a href="#-quick-start">Quick Start</a> •
|
<img src="videos/paper_clear.gif" alt="LEANN Document Search Demo" width="600">
|
||||||
<a href="#-features">Features</a> •
|
|
||||||
<a href="#-benchmarks">Benchmarks</a> •
|
|
||||||
<a href="#-documentation">Documentation</a> •
|
|
||||||
<a href="#-paper">Paper</a>
|
|
||||||
</p>
|
</p>
|
||||||
|
|
||||||
---
|
The example below asks a question about summarizing our paper (uses default data in `data/`, which is a directory with diverse data sources: two papers, Pride and Prejudice, and a Technical report about LLM in Huawei in Chinese), and this is the **easiest example** to run here:
|
||||||
|
|
||||||
## 🌟 What is Leann?
|
```bash
|
||||||
|
source .venv/bin/activate # Don't forget to activate the virtual environment
|
||||||
|
python -m apps.document_rag --query "What are the main techniques LEANN explores?"
|
||||||
|
```
|
||||||
|
|
||||||
**Leann** revolutionizes Retrieval-Augmented Generation (RAG) by eliminating the storage bottleneck of traditional vector databases. Instead of pre-computing and storing billions of embeddings, Leann dynamically computes embeddings at query time using highly optimized graph-based search algorithms.
|
<details>
|
||||||
|
<summary><strong>📋 Click to expand: Document-Specific Arguments</strong></summary>
|
||||||
|
|
||||||
### 🎯 Why Leann?
|
#### Parameters
|
||||||
|
```bash
|
||||||
|
--data-dir DIR # Directory containing documents to process (default: data)
|
||||||
|
--file-types .ext .ext # Filter by specific file types (optional - all LlamaIndex supported types if omitted)
|
||||||
|
```
|
||||||
|
|
||||||
Traditional RAG systems face a fundamental trade-off:
|
#### Example Commands
|
||||||
- **💾 Storage**: Storing embeddings for millions of documents requires massive disk space
|
```bash
|
||||||
- **🔄 Freshness**: Pre-computed embeddings become stale when documents change
|
# Process all documents with larger chunks for academic papers
|
||||||
- **💰 Cost**: Vector databases are expensive to scale
|
python -m apps.document_rag --data-dir "~/Documents/Papers" --chunk-size 1024
|
||||||
|
|
||||||
**Leann solves this by:**
|
# Filter only markdown and Python files with smaller chunks
|
||||||
- ✅ **Zero embedding storage** - Only graph structure is persisted
|
python -m apps.document_rag --data-dir "./docs" --chunk-size 256 --file-types .md .py
|
||||||
- ✅ **Real-time computation** - Embeddings computed on-demand with ms latency
|
|
||||||
- ✅ **Memory efficient** - Runs on consumer hardware (8GB RAM)
|
|
||||||
- ✅ **Always fresh** - No stale embeddings, ever
|
|
||||||
|
|
||||||
## 🚀 Quick Start
|
# Enable AST-aware chunking for code files
|
||||||
|
python -m apps.document_rag --enable-code-chunking --data-dir "./my_project"
|
||||||
|
|
||||||
|
# Or use the specialized code RAG for better code understanding
|
||||||
|
python -m apps.code_rag --repo-dir "./my_codebase" --query "How does authentication work?"
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
### 📧 Your Personal Email Secretary: RAG on Apple Mail!
|
||||||
|
|
||||||
|
> **Note:** The examples below currently support macOS only. Windows support coming soon.
|
||||||
|
|
||||||
|
|
||||||
|
<p align="center">
|
||||||
|
<img src="videos/mail_clear.gif" alt="LEANN Email Search Demo" width="600">
|
||||||
|
</p>
|
||||||
|
|
||||||
|
Before running the example below, you need to grant full disk access to your terminal/VS Code in System Preferences → Privacy & Security → Full Disk Access.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python -m apps.email_rag --query "What's the food I ordered by DoorDash or Uber Eats mostly?"
|
||||||
|
```
|
||||||
|
**780K email chunks → 78MB storage.** Finally, search your email like you search Google.
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary><strong>📋 Click to expand: Email-Specific Arguments</strong></summary>
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
```bash
|
||||||
|
--mail-path PATH # Path to specific mail directory (auto-detects if omitted)
|
||||||
|
--include-html # Include HTML content in processing (useful for newsletters)
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Example Commands
|
||||||
|
```bash
|
||||||
|
# Search work emails from a specific account
|
||||||
|
python -m apps.email_rag --mail-path "~/Library/Mail/V10/WORK_ACCOUNT"
|
||||||
|
|
||||||
|
# Find all receipts and order confirmations (includes HTML)
|
||||||
|
python -m apps.email_rag --query "receipt order confirmation invoice" --include-html
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary><strong>📋 Click to expand: Example queries you can try</strong></summary>
|
||||||
|
|
||||||
|
Once the index is built, you can ask questions like:
|
||||||
|
- "Find emails from my boss about deadlines"
|
||||||
|
- "What did John say about the project timeline?"
|
||||||
|
- "Show me emails about travel expenses"
|
||||||
|
</details>
|
||||||
|
|
||||||
|
### 🔍 Time Machine for the Web: RAG Your Entire Chrome Browser History!
|
||||||
|
|
||||||
|
<p align="center">
|
||||||
|
<img src="videos/google_clear.gif" alt="LEANN Browser History Search Demo" width="600">
|
||||||
|
</p>
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python -m apps.browser_rag --query "Tell me my browser history about machine learning?"
|
||||||
|
```
|
||||||
|
**38K browser entries → 6MB storage.** Your browser history becomes your personal search engine.
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary><strong>📋 Click to expand: Browser-Specific Arguments</strong></summary>
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
```bash
|
||||||
|
--chrome-profile PATH # Path to Chrome profile directory (auto-detects if omitted)
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Example Commands
|
||||||
|
```bash
|
||||||
|
# Search academic research from your browsing history
|
||||||
|
python -m apps.browser_rag --query "arxiv papers machine learning transformer architecture"
|
||||||
|
|
||||||
|
# Track competitor analysis across work profile
|
||||||
|
python -m apps.browser_rag --chrome-profile "~/Library/Application Support/Google/Chrome/Work Profile" --max-items 5000
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary><strong>📋 Click to expand: How to find your Chrome profile</strong></summary>
|
||||||
|
|
||||||
|
The default Chrome profile path is configured for a typical macOS setup. If you need to find your specific Chrome profile:
|
||||||
|
|
||||||
|
1. Open Terminal
|
||||||
|
2. Run: `ls ~/Library/Application\ Support/Google/Chrome/`
|
||||||
|
3. Look for folders like "Default", "Profile 1", "Profile 2", etc.
|
||||||
|
4. Use the full path as your `--chrome-profile` argument
|
||||||
|
|
||||||
|
**Common Chrome profile locations:**
|
||||||
|
- macOS: `~/Library/Application Support/Google/Chrome/Default`
|
||||||
|
- Linux: `~/.config/google-chrome/Default`
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary><strong>💬 Click to expand: Example queries you can try</strong></summary>
|
||||||
|
|
||||||
|
Once the index is built, you can ask questions like:
|
||||||
|
|
||||||
|
- "What websites did I visit about machine learning?"
|
||||||
|
- "Find my search history about programming"
|
||||||
|
- "What YouTube videos did I watch recently?"
|
||||||
|
- "Show me websites I visited about travel planning"
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
### 💬 WeChat Detective: Unlock Your Golden Memories!
|
||||||
|
|
||||||
|
<p align="center">
|
||||||
|
<img src="videos/wechat_clear.gif" alt="LEANN WeChat Search Demo" width="600">
|
||||||
|
</p>
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python -m apps.wechat_rag --query "Show me all group chats about weekend plans"
|
||||||
|
```
|
||||||
|
**400K messages → 64MB storage** Search years of chat history in any language.
|
||||||
|
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary><strong>🔧 Click to expand: Installation Requirements</strong></summary>
|
||||||
|
|
||||||
|
First, you need to install the [WeChat exporter](https://github.com/sunnyyoung/WeChatTweak-CLI),
|
||||||
|
|
||||||
|
```bash
|
||||||
|
brew install sunnyyoung/repo/wechattweak-cli
|
||||||
|
```
|
||||||
|
|
||||||
|
or install it manually (if you have issues with Homebrew):
|
||||||
|
|
||||||
|
```bash
|
||||||
|
sudo packages/wechat-exporter/wechattweak-cli install
|
||||||
|
```
|
||||||
|
|
||||||
|
**Troubleshooting:**
|
||||||
|
- **Installation issues**: Check the [WeChatTweak-CLI issues page](https://github.com/sunnyyoung/WeChatTweak-CLI/issues/41)
|
||||||
|
- **Export errors**: If you encounter the error below, try restarting WeChat
|
||||||
|
```bash
|
||||||
|
Failed to export WeChat data. Please ensure WeChat is running and WeChatTweak is installed.
|
||||||
|
Failed to find or export WeChat data. Exiting.
|
||||||
|
```
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary><strong>📋 Click to expand: WeChat-Specific Arguments</strong></summary>
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
```bash
|
||||||
|
--export-dir DIR # Directory to store exported WeChat data (default: wechat_export_direct)
|
||||||
|
--force-export # Force re-export even if data exists
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Example Commands
|
||||||
|
```bash
|
||||||
|
# Search for travel plans discussed in group chats
|
||||||
|
python -m apps.wechat_rag --query "travel plans" --max-items 10000
|
||||||
|
|
||||||
|
# Re-export and search recent chats (useful after new messages)
|
||||||
|
python -m apps.wechat_rag --force-export --query "work schedule"
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary><strong>💬 Click to expand: Example queries you can try</strong></summary>
|
||||||
|
|
||||||
|
Once the index is built, you can ask questions like:
|
||||||
|
|
||||||
|
- "我想买魔术师约翰逊的球衣,给我一些对应聊天记录?" (Chinese: Show me chat records about buying Magic Johnson's jersey)
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
### 🚀 Claude Code Integration: Transform Your Development Workflow!
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary><strong>NEW!! AST‑Aware Code Chunking</strong></summary>
|
||||||
|
|
||||||
|
LEANN features intelligent code chunking that preserves semantic boundaries (functions, classes, methods) for Python, Java, C#, and TypeScript, improving code understanding compared to text-based chunking.
|
||||||
|
|
||||||
|
📖 Read the [AST Chunking Guide →](docs/ast_chunking_guide.md)
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
**The future of code assistance is here.** Transform your development workflow with LEANN's native MCP integration for Claude Code. Index your entire codebase and get intelligent code assistance directly in your IDE.
|
||||||
|
|
||||||
|
**Key features:**
|
||||||
|
- 🔍 **Semantic code search** across your entire project, fully local index and lightweight
|
||||||
|
- 🧠 **AST-aware chunking** preserves code structure (functions, classes)
|
||||||
|
- 📚 **Context-aware assistance** for debugging and development
|
||||||
|
- 🚀 **Zero-config setup** with automatic language detection
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Install LEANN globally for MCP integration
|
||||||
|
uv tool install leann-core --with leann
|
||||||
|
claude mcp add --scope user leann-server -- leann_mcp
|
||||||
|
# Setup is automatic - just start using Claude Code!
|
||||||
|
```
|
||||||
|
Try our fully agentic pipeline with auto query rewriting, semantic search planning, and more:
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
**🔥 Ready to supercharge your coding?** [Complete Setup Guide →](packages/leann-mcp/README.md)
|
||||||
|
|
||||||
|
## 🖥️ Command Line Interface
|
||||||
|
|
||||||
|
LEANN includes a powerful CLI for document processing and search. Perfect for quick document indexing and interactive chat.
|
||||||
|
|
||||||
### Installation
|
### Installation
|
||||||
|
|
||||||
|
If you followed the Quick Start, `leann` is already installed in your virtual environment:
|
||||||
```bash
|
```bash
|
||||||
git clone git@github.com:yichuan520030910320/LEANN-RAG.git leann
|
source .venv/bin/activate
|
||||||
cd leann
|
leann --help
|
||||||
git submodule update --init --recursive
|
|
||||||
uv sync
|
|
||||||
```
|
```
|
||||||
|
|
||||||
### 30-Second Example
|
**To make it globally available:**
|
||||||
|
```bash
|
||||||
|
# Install the LEANN CLI globally using uv tool
|
||||||
|
uv tool install leann-core --with leann
|
||||||
|
|
||||||
|
|
||||||
|
# Now you can use leann from anywhere without activating venv
|
||||||
|
leann --help
|
||||||
|
```
|
||||||
|
|
||||||
|
> **Note**: Global installation is required for Claude Code integration. The `leann_mcp` server depends on the globally available `leann` command.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
### Usage Examples
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# build from a specific directory, and my_docs is the index name(Here you can also build from multiple dict or multiple files)
|
||||||
|
leann build my-docs --docs ./your_documents
|
||||||
|
|
||||||
|
# Search your documents
|
||||||
|
leann search my-docs "machine learning concepts"
|
||||||
|
|
||||||
|
# Interactive chat with your documents
|
||||||
|
leann ask my-docs --interactive
|
||||||
|
|
||||||
|
# List all your indexes
|
||||||
|
leann list
|
||||||
|
|
||||||
|
# Remove an index
|
||||||
|
leann remove my-docs
|
||||||
|
```
|
||||||
|
|
||||||
|
**Key CLI features:**
|
||||||
|
- Auto-detects document formats (PDF, TXT, MD, DOCX, PPTX + code files)
|
||||||
|
- **🧠 AST-aware chunking** for Python, Java, C#, TypeScript files
|
||||||
|
- Smart text chunking with overlap for all other content
|
||||||
|
- Multiple LLM providers (Ollama, OpenAI, HuggingFace)
|
||||||
|
- Organized index storage in `.leann/indexes/` (project-local)
|
||||||
|
- Support for advanced search parameters
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary><strong>📋 Click to expand: Complete CLI Reference</strong></summary>
|
||||||
|
|
||||||
|
You can use `leann --help`, or `leann build --help`, `leann search --help`, `leann ask --help`, `leann list --help`, `leann remove --help` to get the complete CLI reference.
|
||||||
|
|
||||||
|
**Build Command:**
|
||||||
|
```bash
|
||||||
|
leann build INDEX_NAME --docs DIRECTORY|FILE [DIRECTORY|FILE ...] [OPTIONS]
|
||||||
|
|
||||||
|
Options:
|
||||||
|
--backend {hnsw,diskann} Backend to use (default: hnsw)
|
||||||
|
--embedding-model MODEL Embedding model (default: facebook/contriever)
|
||||||
|
--graph-degree N Graph degree (default: 32)
|
||||||
|
--complexity N Build complexity (default: 64)
|
||||||
|
--force Force rebuild existing index
|
||||||
|
--compact / --no-compact Use compact storage (default: true). Must be `no-compact` for `no-recompute` build.
|
||||||
|
--recompute / --no-recompute Enable recomputation (default: true)
|
||||||
|
```
|
||||||
|
|
||||||
|
**Search Command:**
|
||||||
|
```bash
|
||||||
|
leann search INDEX_NAME QUERY [OPTIONS]
|
||||||
|
|
||||||
|
Options:
|
||||||
|
--top-k N Number of results (default: 5)
|
||||||
|
--complexity N Search complexity (default: 64)
|
||||||
|
--recompute / --no-recompute Enable/disable embedding recomputation (default: enabled). Should not do a `no-recompute` search in a `recompute` build.
|
||||||
|
--pruning-strategy {global,local,proportional}
|
||||||
|
```
|
||||||
|
|
||||||
|
**Ask Command:**
|
||||||
|
```bash
|
||||||
|
leann ask INDEX_NAME [OPTIONS]
|
||||||
|
|
||||||
|
Options:
|
||||||
|
--llm {ollama,openai,hf} LLM provider (default: ollama)
|
||||||
|
--model MODEL Model name (default: qwen3:8b)
|
||||||
|
--interactive Interactive chat mode
|
||||||
|
--top-k N Retrieval count (default: 20)
|
||||||
|
```
|
||||||
|
|
||||||
|
**List Command:**
|
||||||
|
```bash
|
||||||
|
leann list
|
||||||
|
|
||||||
|
# Lists all indexes across all projects with status indicators:
|
||||||
|
# ✅ - Index is complete and ready to use
|
||||||
|
# ❌ - Index is incomplete or corrupted
|
||||||
|
# 📁 - CLI-created index (in .leann/indexes/)
|
||||||
|
# 📄 - App-created index (*.leann.meta.json files)
|
||||||
|
```
|
||||||
|
|
||||||
|
**Remove Command:**
|
||||||
|
```bash
|
||||||
|
leann remove INDEX_NAME [OPTIONS]
|
||||||
|
|
||||||
|
Options:
|
||||||
|
--force, -f Force removal without confirmation
|
||||||
|
|
||||||
|
# Smart removal: automatically finds and safely removes indexes
|
||||||
|
# - Shows all matching indexes across projects
|
||||||
|
# - Requires confirmation for cross-project removal
|
||||||
|
# - Interactive selection when multiple matches found
|
||||||
|
# - Supports both CLI and app-created indexes
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
## 🚀 Advanced Features
|
||||||
|
|
||||||
|
### 🎯 Metadata Filtering
|
||||||
|
|
||||||
|
LEANN supports a simple metadata filtering system to enable sophisticated use cases like document filtering by date/type, code search by file extension, and content management based on custom criteria.
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from leann.api import LeannBuilder, LeannSearcher
|
# Add metadata during indexing
|
||||||
|
builder.add_text(
|
||||||
|
"def authenticate_user(token): ...",
|
||||||
|
metadata={"file_extension": ".py", "lines_of_code": 25}
|
||||||
|
)
|
||||||
|
|
||||||
# 1. Build index (no embeddings stored!)
|
# Search with filters
|
||||||
builder = LeannBuilder(backend_name="diskann")
|
results = searcher.search(
|
||||||
builder.add_text("Python is a powerful programming language")
|
query="authentication function",
|
||||||
builder.add_text("Machine learning transforms industries")
|
metadata_filters={
|
||||||
builder.add_text("Neural networks process complex data")
|
"file_extension": {"==": ".py"},
|
||||||
builder.build_index("knowledge.leann")
|
"lines_of_code": {"<": 100}
|
||||||
|
}
|
||||||
# 2. Search with real-time embeddings
|
)
|
||||||
searcher = LeannSearcher("knowledge.leann")
|
|
||||||
results = searcher.search("programming languages", top_k=2)
|
|
||||||
|
|
||||||
for result in results:
|
|
||||||
print(f"Score: {result['score']:.3f} - {result['text']}")
|
|
||||||
```
|
```
|
||||||
|
|
||||||
### Run the Demo
|
**Supported operators**: `==`, `!=`, `<`, `<=`, `>`, `>=`, `in`, `not_in`, `contains`, `starts_with`, `ends_with`, `is_true`, `is_false`
|
||||||
|
|
||||||
|
📖 **[Complete Metadata filtering guide →](docs/metadata_filtering.md)**
|
||||||
|
|
||||||
|
### 🔍 Grep Search
|
||||||
|
|
||||||
|
For exact text matching instead of semantic search, use the `use_grep` parameter:
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Exact text search
|
||||||
|
results = searcher.search("banana‑crocodile", use_grep=True, top_k=1)
|
||||||
|
```
|
||||||
|
|
||||||
|
**Use cases**: Finding specific code patterns, error messages, function names, or exact phrases where semantic similarity isn't needed.
|
||||||
|
|
||||||
|
📖 **[Complete grep search guide →](docs/grep_search.md)**
|
||||||
|
|
||||||
|
## 🏗️ Architecture & How It Works
|
||||||
|
|
||||||
|
<p align="center">
|
||||||
|
<img src="assets/arch.png" alt="LEANN Architecture" width="800">
|
||||||
|
</p>
|
||||||
|
|
||||||
|
**The magic:** Most vector DBs store every single embedding (expensive). LEANN stores a pruned graph structure (cheap) and recomputes embeddings only when needed (fast).
|
||||||
|
|
||||||
|
**Core techniques:**
|
||||||
|
- **Graph-based selective recomputation:** Only compute embeddings for nodes in the search path
|
||||||
|
- **High-degree preserving pruning:** Keep important "hub" nodes while removing redundant connections
|
||||||
|
- **Dynamic batching:** Efficiently batch embedding computations for GPU utilization
|
||||||
|
- **Two-level search:** Smart graph traversal that prioritizes promising nodes
|
||||||
|
|
||||||
|
**Backends:**
|
||||||
|
- **HNSW** (default): Ideal for most datasets with maximum storage savings through full recomputation
|
||||||
|
- **DiskANN**: Advanced option with superior search performance, using PQ-based graph traversal with real-time reranking for the best speed-accuracy trade-off
|
||||||
|
|
||||||
|
## Benchmarks
|
||||||
|
|
||||||
|
**[DiskANN vs HNSW Performance Comparison →](benchmarks/diskann_vs_hnsw_speed_comparison.py)** - Compare search performance between both backends
|
||||||
|
|
||||||
|
**[Simple Example: Compare LEANN vs FAISS →](benchmarks/compare_faiss_vs_leann.py)** - See storage savings in action
|
||||||
|
|
||||||
|
### 📊 Storage Comparison
|
||||||
|
|
||||||
|
| System | DPR (2.1M) | Wiki (60M) | Chat (400K) | Email (780K) | Browser (38K) |
|
||||||
|
|--------|-------------|------------|-------------|--------------|---------------|
|
||||||
|
| Traditional vector database (e.g., FAISS) | 3.8 GB | 201 GB | 1.8 GB | 2.4 GB | 130 MB |
|
||||||
|
| LEANN | 324 MB | 6 GB | 64 MB | 79 MB | 6.4 MB |
|
||||||
|
| Savings| 91% | 97% | 97% | 97% | 95% |
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
## Reproduce Our Results
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
uv run examples/document_search.py
|
uv pip install -e ".[dev]" # Install dev dependencies
|
||||||
|
python benchmarks/run_evaluation.py # Will auto-download evaluation data and run benchmarks
|
||||||
|
python benchmarks/run_evaluation.py benchmarks/data/indices/rpj_wiki/rpj_wiki --num-queries 2000 # After downloading data, you can run the benchmark with our biggest index
|
||||||
```
|
```
|
||||||
|
|
||||||
**PDF RAG Demo (using LlamaIndex for document parsing and Leann for indexing/search)**
|
The evaluation script downloads data automatically on first run. The last three results were tested with partial personal data, and you can reproduce them with your own data!
|
||||||
|
|
||||||
This demo showcases how to build a RAG system for PDF documents using Leann.
|
|
||||||
1. Place your PDF files (and other supported formats like .docx, .pptx, .xlsx) into the `examples/data/` directory.
|
|
||||||
2. Ensure you have an `OPENAI_API_KEY` set in your environment variables or in a `.env` file for the LLM to function.
|
|
||||||
|
|
||||||
```bash
|
|
||||||
uv run examples/main_cli_example.py
|
|
||||||
```
|
|
||||||
|
|
||||||
## ✨ Features
|
|
||||||
|
|
||||||
### 🔥 Core Features
|
|
||||||
- **📊 Multiple Distance Functions**: L2, Cosine, MIPS (Maximum Inner Product Search)
|
|
||||||
- **🏗️ Pluggable Backends**: DiskANN, HNSW/FAISS with unified API
|
|
||||||
- **🔄 Real-time Embeddings**: Dynamic computation using optimized ZMQ servers
|
|
||||||
- **📈 Scalable Architecture**: Handles millions of documents on consumer hardware
|
|
||||||
- **🎯 Graph Pruning**: Advanced techniques for memory-efficient search
|
|
||||||
|
|
||||||
### 🛠️ Technical Highlights
|
|
||||||
- **Zero-copy operations** for maximum performance
|
|
||||||
- **SIMD-optimized** distance computations (AVX2/AVX512)
|
|
||||||
- **Async embedding pipeline** with batched processing
|
|
||||||
- **Memory-mapped indices** for fast startup
|
|
||||||
- **Recompute mode** for highest accuracy scenarios
|
|
||||||
|
|
||||||
### 🎨 Developer Experience
|
|
||||||
- **Simple Python API** - Get started in minutes
|
|
||||||
- **Extensible backend system** - Easy to add new algorithms
|
|
||||||
- **Comprehensive examples** - From basic usage to production deployment
|
|
||||||
- **Rich debugging tools** - Built-in performance profiling
|
|
||||||
|
|
||||||
## 📊 Benchmarks
|
|
||||||
|
|
||||||
### Memory Usage Comparison
|
|
||||||
|
|
||||||
| System | 1M Documents | 10M Documents | 100M Documents |
|
|
||||||
|--------|-------------|---------------|----------------|
|
|
||||||
| Traditional Vector DB | 3.1 GB | 31 GB | 310 GB |
|
|
||||||
| **Leann** | **180 MB** | **1.2 GB** | **8.4 GB** |
|
|
||||||
| **Reduction** | **94.2%** | **96.1%** | **97.3%** |
|
|
||||||
|
|
||||||
### Query Performance
|
|
||||||
|
|
||||||
| Backend | Index Size | Query Time | Recall@10 |
|
|
||||||
|---------|------------|------------|-----------|
|
|
||||||
| DiskANN | 1M docs | 12ms | 0.95 |
|
|
||||||
| DiskANN + Recompute | 1M docs | 145ms | 0.98 |
|
|
||||||
| HNSW | 1M docs | 8ms | 0.93 |
|
|
||||||
|
|
||||||
*Benchmarks run on AMD Ryzen 7 with 32GB RAM*
|
|
||||||
|
|
||||||
## 🏗️ Architecture
|
|
||||||
|
|
||||||
```
|
|
||||||
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
|
|
||||||
│ Query Text │───▶│ Embedding │───▶│ Graph-based │
|
|
||||||
│ │ │ Computation │ │ Search │
|
|
||||||
└─────────────────┘ └──────────────────┘ └─────────────────┘
|
|
||||||
│ │
|
|
||||||
▼ ▼
|
|
||||||
┌──────────────┐ ┌──────────────┐
|
|
||||||
│ ZMQ Server │ │ Pruned Graph │
|
|
||||||
│ (Cached) │ │ Index │
|
|
||||||
└──────────────┘ └──────────────┘
|
|
||||||
```
|
|
||||||
|
|
||||||
### Key Components
|
|
||||||
|
|
||||||
1. **🧠 Embedding Engine**: Real-time transformer inference with caching
|
|
||||||
2. **📊 Graph Index**: Memory-efficient navigation structures
|
|
||||||
3. **🔄 Search Coordinator**: Orchestrates embedding + graph search
|
|
||||||
4. **⚡ Backend Adapters**: Pluggable algorithm implementations
|
|
||||||
|
|
||||||
## 🎓 Supported Models & Backends
|
|
||||||
|
|
||||||
### 🤖 Embedding Models
|
|
||||||
- **sentence-transformers/all-mpnet-base-v2** (default)
|
|
||||||
- **sentence-transformers/all-MiniLM-L6-v2** (lightweight)
|
|
||||||
- Any HuggingFace sentence-transformer model
|
|
||||||
- Custom model support via API
|
|
||||||
|
|
||||||
### 🔧 Search Backends
|
|
||||||
- **DiskANN**: Microsoft's billion-scale ANN algorithm
|
|
||||||
- **HNSW**: Hierarchical Navigable Small World graphs
|
|
||||||
- **Coming soon**: ScaNN, Faiss-IVF, NGT
|
|
||||||
|
|
||||||
### 📏 Distance Functions
|
|
||||||
- **L2**: Euclidean distance for precise similarity
|
|
||||||
- **Cosine**: Angular similarity for normalized vectors
|
|
||||||
- **MIPS**: Maximum Inner Product Search for recommendation systems
|
|
||||||
|
|
||||||
## 🔬 Paper
|
## 🔬 Paper
|
||||||
|
|
||||||
If you find Leann useful, please cite:
|
If you find Leann useful, please cite:
|
||||||
@@ -185,110 +730,15 @@ If you find Leann useful, please cite:
|
|||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
## 🌍 Use Cases
|
## ✨ [Detailed Features →](docs/features.md)
|
||||||
|
|
||||||
### 💼 Enterprise RAG
|
## 🤝 [CONTRIBUTING →](docs/CONTRIBUTING.md)
|
||||||
```python
|
|
||||||
# Handle millions of documents with limited resources
|
|
||||||
builder = LeannBuilder(
|
|
||||||
backend_name="diskann",
|
|
||||||
distance_metric="cosine",
|
|
||||||
graph_degree=64,
|
|
||||||
memory_budget="4GB"
|
|
||||||
)
|
|
||||||
```
|
|
||||||
|
|
||||||
### 🔬 Research & Experimentation
|
|
||||||
```python
|
|
||||||
# Quick prototyping with different algorithms
|
|
||||||
for backend in ["diskann", "hnsw"]:
|
|
||||||
searcher = LeannSearcher(index_path, backend=backend)
|
|
||||||
evaluate_recall(searcher, queries, ground_truth)
|
|
||||||
```
|
|
||||||
|
|
||||||
### 🚀 Real-time Applications
|
|
||||||
```python
|
|
||||||
# Sub-second response times
|
|
||||||
chat = LeannChat("knowledge.leann")
|
|
||||||
response = chat.ask("What is quantum computing?")
|
|
||||||
# Returns in <100ms with recompute mode
|
|
||||||
```
|
|
||||||
|
|
||||||
## 🤝 Contributing
|
|
||||||
|
|
||||||
We welcome contributions! Leann is built by the community, for the community.
|
|
||||||
|
|
||||||
### Ways to Contribute
|
|
||||||
- 🐛 **Bug Reports**: Found an issue? Let us know!
|
|
||||||
- 💡 **Feature Requests**: Have an idea? We'd love to hear it!
|
|
||||||
- 🔧 **Code Contributions**: PRs welcome for all skill levels
|
|
||||||
- 📖 **Documentation**: Help make Leann more accessible
|
|
||||||
- 🧪 **Benchmarks**: Share your performance results
|
|
||||||
|
|
||||||
### Development Setup
|
|
||||||
```bash
|
|
||||||
git clone https://github.com/yourname/leann
|
|
||||||
cd leann
|
|
||||||
uv sync --dev
|
|
||||||
uv run pytest tests/
|
|
||||||
```
|
|
||||||
|
|
||||||
### Quick Tests
|
|
||||||
```bash
|
|
||||||
# Sanity check all distance functions
|
|
||||||
uv run python tests/sanity_checks/test_distance_functions.py
|
|
||||||
|
|
||||||
# Verify L2 implementation
|
|
||||||
uv run python tests/sanity_checks/test_l2_verification.py
|
|
||||||
```
|
|
||||||
## ❓ FAQ
|
|
||||||
|
|
||||||
### Common Issues
|
|
||||||
|
|
||||||
#### NCCL Topology Error
|
|
||||||
**Problem**: You encounter `ncclTopoComputePaths` error during document processing:
|
|
||||||
```
|
|
||||||
ncclTopoComputePaths (system=<optimized out>, comm=comm@entry=0x5555a82fa3c0) at graph/paths.cc:688
|
|
||||||
```
|
|
||||||
|
|
||||||
**Solution**: Set these environment variables before running your script:
|
|
||||||
```bash
|
|
||||||
export NCCL_TOPO_DUMP_FILE=/tmp/nccl_topo.xml
|
|
||||||
export NCCL_DEBUG=INFO
|
|
||||||
export NCCL_DEBUG_SUBSYS=INIT,GRAPH
|
|
||||||
export NCCL_IB_DISABLE=1
|
|
||||||
export NCCL_NET_PLUGIN=none
|
|
||||||
export NCCL_SOCKET_IFNAME=ens5
|
|
||||||
|
|
||||||
|
|
||||||
## 📈 Roadmap
|
## ❓ [FAQ →](docs/faq.md)
|
||||||
|
|
||||||
### 🎯 Q1 2024
|
|
||||||
- [x] DiskANN backend with MIPS/L2/Cosine support
|
|
||||||
- [x] HNSW backend integration
|
|
||||||
- [x] Real-time embedding pipeline
|
|
||||||
- [x] Memory-efficient graph pruning
|
|
||||||
|
|
||||||
### 🚀 Q2 2024
|
## 📈 [Roadmap →](docs/roadmap.md)
|
||||||
- [ ] Distributed search across multiple nodes
|
|
||||||
- [ ] ScaNN backend support
|
|
||||||
- [ ] Advanced caching strategies
|
|
||||||
- [ ] Kubernetes deployment guides
|
|
||||||
|
|
||||||
### 🌟 Q3 2024
|
|
||||||
- [ ] GPU-accelerated embedding computation
|
|
||||||
- [ ] Approximate distance functions
|
|
||||||
- [ ] Integration with LangChain/LlamaIndex
|
|
||||||
- [ ] Visual similarity search
|
|
||||||
|
|
||||||
## 💬 Community
|
|
||||||
|
|
||||||
Join our growing community of researchers and engineers!
|
|
||||||
|
|
||||||
- 🐦 **Twitter**: [@LeannAI](https://twitter.com/LeannAI)
|
|
||||||
- 💬 **Discord**: [Join our server](https://discord.gg/leann)
|
|
||||||
- 📧 **Email**: leann@yourcompany.com
|
|
||||||
- 🐙 **GitHub Discussions**: [Ask questions here](https://github.com/yourname/leann/discussions)
|
|
||||||
|
|
||||||
## 📄 License
|
## 📄 License
|
||||||
|
|
||||||
@@ -296,13 +746,18 @@ MIT License - see [LICENSE](LICENSE) for details.
|
|||||||
|
|
||||||
## 🙏 Acknowledgments
|
## 🙏 Acknowledgments
|
||||||
|
|
||||||
- **Microsoft Research** for the DiskANN algorithm
|
Core Contributors: [Yichuan Wang](https://yichuan-w.github.io/) & [Zhifei Li](https://github.com/andylizf).
|
||||||
- **Meta AI** for FAISS and optimization insights
|
|
||||||
- **HuggingFace** for the transformer ecosystem
|
|
||||||
- **Our amazing contributors** who make this possible
|
|
||||||
|
|
||||||
---
|
Active Contributors: [Gabriel Dehan](https://github.com/gabriel-dehan)
|
||||||
|
|
||||||
|
|
||||||
|
We welcome more contributors! Feel free to open issues or submit PRs.
|
||||||
|
|
||||||
|
This work is done at [**Berkeley Sky Computing Lab**](https://sky.cs.berkeley.edu/).
|
||||||
|
|
||||||
|
## Star History
|
||||||
|
|
||||||
|
[](https://www.star-history.com/#yichuan-w/LEANN&Date)
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<strong>⭐ Star us on GitHub if Leann is useful for your research or applications!</strong>
|
<strong>⭐ Star us on GitHub if Leann is useful for your research or applications!</strong>
|
||||||
</p>
|
</p>
|
||||||
|
|||||||
342
apps/base_rag_example.py
Normal file
@@ -0,0 +1,342 @@
|
|||||||
|
"""
|
||||||
|
Base class for unified RAG examples interface.
|
||||||
|
Provides common parameters and functionality for all RAG examples.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
from abc import ABC, abstractmethod
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
|
import dotenv
|
||||||
|
from leann.api import LeannBuilder, LeannChat
|
||||||
|
from leann.registry import register_project_directory
|
||||||
|
|
||||||
|
dotenv.load_dotenv()
|
||||||
|
|
||||||
|
|
||||||
|
class BaseRAGExample(ABC):
|
||||||
|
"""Base class for all RAG examples with unified interface."""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
name: str,
|
||||||
|
description: str,
|
||||||
|
default_index_name: str,
|
||||||
|
):
|
||||||
|
self.name = name
|
||||||
|
self.description = description
|
||||||
|
self.default_index_name = default_index_name
|
||||||
|
self.parser = self._create_parser()
|
||||||
|
|
||||||
|
def _create_parser(self) -> argparse.ArgumentParser:
|
||||||
|
"""Create argument parser with common parameters."""
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
description=self.description, formatter_class=argparse.RawDescriptionHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
# Core parameters (all examples share these)
|
||||||
|
core_group = parser.add_argument_group("Core Parameters")
|
||||||
|
core_group.add_argument(
|
||||||
|
"--index-dir",
|
||||||
|
type=str,
|
||||||
|
default=f"./{self.default_index_name}",
|
||||||
|
help=f"Directory to store the index (default: ./{self.default_index_name})",
|
||||||
|
)
|
||||||
|
core_group.add_argument(
|
||||||
|
"--query",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="Query to run (if not provided, will run in interactive mode)",
|
||||||
|
)
|
||||||
|
# Allow subclasses to override default max_items
|
||||||
|
max_items_default = getattr(self, "max_items_default", -1)
|
||||||
|
core_group.add_argument(
|
||||||
|
"--max-items",
|
||||||
|
type=int,
|
||||||
|
default=max_items_default,
|
||||||
|
help="Maximum number of items to process -1 for all, means index all documents, and you should set it to a reasonable number if you have a large dataset and try at the first time)",
|
||||||
|
)
|
||||||
|
core_group.add_argument(
|
||||||
|
"--force-rebuild", action="store_true", help="Force rebuild index even if it exists"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Embedding parameters
|
||||||
|
embedding_group = parser.add_argument_group("Embedding Parameters")
|
||||||
|
# Allow subclasses to override default embedding_model
|
||||||
|
embedding_model_default = getattr(self, "embedding_model_default", "facebook/contriever")
|
||||||
|
embedding_group.add_argument(
|
||||||
|
"--embedding-model",
|
||||||
|
type=str,
|
||||||
|
default=embedding_model_default,
|
||||||
|
help=f"Embedding model to use (default: {embedding_model_default}), we provide facebook/contriever, text-embedding-3-small,mlx-community/Qwen3-Embedding-0.6B-8bit or nomic-embed-text",
|
||||||
|
)
|
||||||
|
embedding_group.add_argument(
|
||||||
|
"--embedding-mode",
|
||||||
|
type=str,
|
||||||
|
default="sentence-transformers",
|
||||||
|
choices=["sentence-transformers", "openai", "mlx", "ollama"],
|
||||||
|
help="Embedding backend mode (default: sentence-transformers), we provide sentence-transformers, openai, mlx, or ollama",
|
||||||
|
)
|
||||||
|
|
||||||
|
# LLM parameters
|
||||||
|
llm_group = parser.add_argument_group("LLM Parameters")
|
||||||
|
llm_group.add_argument(
|
||||||
|
"--llm",
|
||||||
|
type=str,
|
||||||
|
default="openai",
|
||||||
|
choices=["openai", "ollama", "hf", "simulated"],
|
||||||
|
help="LLM backend: openai, ollama, or hf (default: openai)",
|
||||||
|
)
|
||||||
|
llm_group.add_argument(
|
||||||
|
"--llm-model",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="Model name (default: gpt-4o) e.g., gpt-4o-mini, llama3.2:1b, Qwen/Qwen2.5-1.5B-Instruct",
|
||||||
|
)
|
||||||
|
llm_group.add_argument(
|
||||||
|
"--llm-host",
|
||||||
|
type=str,
|
||||||
|
default="http://localhost:11434",
|
||||||
|
help="Host for Ollama API (default: http://localhost:11434)",
|
||||||
|
)
|
||||||
|
llm_group.add_argument(
|
||||||
|
"--thinking-budget",
|
||||||
|
type=str,
|
||||||
|
choices=["low", "medium", "high"],
|
||||||
|
default=None,
|
||||||
|
help="Thinking budget for reasoning models (low/medium/high). Supported by GPT-Oss:20b and other reasoning models.",
|
||||||
|
)
|
||||||
|
|
||||||
|
# AST Chunking parameters
|
||||||
|
ast_group = parser.add_argument_group("AST Chunking Parameters")
|
||||||
|
ast_group.add_argument(
|
||||||
|
"--use-ast-chunking",
|
||||||
|
action="store_true",
|
||||||
|
help="Enable AST-aware chunking for code files (requires astchunk)",
|
||||||
|
)
|
||||||
|
ast_group.add_argument(
|
||||||
|
"--ast-chunk-size",
|
||||||
|
type=int,
|
||||||
|
default=512,
|
||||||
|
help="Maximum characters per AST chunk (default: 512)",
|
||||||
|
)
|
||||||
|
ast_group.add_argument(
|
||||||
|
"--ast-chunk-overlap",
|
||||||
|
type=int,
|
||||||
|
default=64,
|
||||||
|
help="Overlap between AST chunks (default: 64)",
|
||||||
|
)
|
||||||
|
ast_group.add_argument(
|
||||||
|
"--code-file-extensions",
|
||||||
|
nargs="+",
|
||||||
|
default=None,
|
||||||
|
help="Additional code file extensions to process with AST chunking (e.g., .py .java .cs .ts)",
|
||||||
|
)
|
||||||
|
ast_group.add_argument(
|
||||||
|
"--ast-fallback-traditional",
|
||||||
|
action="store_true",
|
||||||
|
default=True,
|
||||||
|
help="Fall back to traditional chunking if AST chunking fails (default: True)",
|
||||||
|
)
|
||||||
|
|
||||||
|
# Search parameters
|
||||||
|
search_group = parser.add_argument_group("Search Parameters")
|
||||||
|
search_group.add_argument(
|
||||||
|
"--top-k", type=int, default=20, help="Number of results to retrieve (default: 20)"
|
||||||
|
)
|
||||||
|
search_group.add_argument(
|
||||||
|
"--search-complexity",
|
||||||
|
type=int,
|
||||||
|
default=32,
|
||||||
|
help="Search complexity for graph traversal (default: 64)",
|
||||||
|
)
|
||||||
|
|
||||||
|
# Index building parameters
|
||||||
|
index_group = parser.add_argument_group("Index Building Parameters")
|
||||||
|
index_group.add_argument(
|
||||||
|
"--backend-name",
|
||||||
|
type=str,
|
||||||
|
default="hnsw",
|
||||||
|
choices=["hnsw", "diskann"],
|
||||||
|
help="Backend to use for index (default: hnsw)",
|
||||||
|
)
|
||||||
|
index_group.add_argument(
|
||||||
|
"--graph-degree",
|
||||||
|
type=int,
|
||||||
|
default=32,
|
||||||
|
help="Graph degree for index construction (default: 32)",
|
||||||
|
)
|
||||||
|
index_group.add_argument(
|
||||||
|
"--build-complexity",
|
||||||
|
type=int,
|
||||||
|
default=64,
|
||||||
|
help="Build complexity for index construction (default: 64)",
|
||||||
|
)
|
||||||
|
index_group.add_argument(
|
||||||
|
"--no-compact",
|
||||||
|
action="store_true",
|
||||||
|
help="Disable compact index storage",
|
||||||
|
)
|
||||||
|
index_group.add_argument(
|
||||||
|
"--no-recompute",
|
||||||
|
action="store_true",
|
||||||
|
help="Disable embedding recomputation",
|
||||||
|
)
|
||||||
|
|
||||||
|
# Add source-specific parameters
|
||||||
|
self._add_specific_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def _add_specific_arguments(self, parser: argparse.ArgumentParser):
|
||||||
|
"""Add source-specific arguments. Override in subclasses."""
|
||||||
|
pass
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
async def load_data(self, args) -> list[str]:
|
||||||
|
"""Load data from the source. Returns list of text chunks."""
|
||||||
|
pass
|
||||||
|
|
||||||
|
def get_llm_config(self, args) -> dict[str, Any]:
|
||||||
|
"""Get LLM configuration based on arguments."""
|
||||||
|
config = {"type": args.llm}
|
||||||
|
|
||||||
|
if args.llm == "openai":
|
||||||
|
config["model"] = args.llm_model or "gpt-4o"
|
||||||
|
elif args.llm == "ollama":
|
||||||
|
config["model"] = args.llm_model or "llama3.2:1b"
|
||||||
|
config["host"] = args.llm_host
|
||||||
|
elif args.llm == "hf":
|
||||||
|
config["model"] = args.llm_model or "Qwen/Qwen2.5-1.5B-Instruct"
|
||||||
|
elif args.llm == "simulated":
|
||||||
|
# Simulated LLM doesn't need additional configuration
|
||||||
|
pass
|
||||||
|
|
||||||
|
return config
|
||||||
|
|
||||||
|
async def build_index(self, args, texts: list[str]) -> str:
|
||||||
|
"""Build LEANN index from texts."""
|
||||||
|
index_path = str(Path(args.index_dir) / f"{self.default_index_name}.leann")
|
||||||
|
|
||||||
|
print(f"\n[Building Index] Creating {self.name} index...")
|
||||||
|
print(f"Total text chunks: {len(texts)}")
|
||||||
|
|
||||||
|
builder = LeannBuilder(
|
||||||
|
backend_name=args.backend_name,
|
||||||
|
embedding_model=args.embedding_model,
|
||||||
|
embedding_mode=args.embedding_mode,
|
||||||
|
graph_degree=args.graph_degree,
|
||||||
|
complexity=args.build_complexity,
|
||||||
|
is_compact=not args.no_compact,
|
||||||
|
is_recompute=not args.no_recompute,
|
||||||
|
num_threads=1, # Force single-threaded mode
|
||||||
|
)
|
||||||
|
|
||||||
|
# Add texts in batches for better progress tracking
|
||||||
|
batch_size = 1000
|
||||||
|
for i in range(0, len(texts), batch_size):
|
||||||
|
batch = texts[i : i + batch_size]
|
||||||
|
for text in batch:
|
||||||
|
builder.add_text(text)
|
||||||
|
print(f"Added {min(i + batch_size, len(texts))}/{len(texts)} texts...")
|
||||||
|
|
||||||
|
print("Building index structure...")
|
||||||
|
builder.build_index(index_path)
|
||||||
|
print(f"Index saved to: {index_path}")
|
||||||
|
|
||||||
|
# Register project directory so leann list can discover this index
|
||||||
|
# The index is saved as args.index_dir/index_name.leann
|
||||||
|
# We want to register the current working directory where the app is run
|
||||||
|
register_project_directory(Path.cwd())
|
||||||
|
|
||||||
|
return index_path
|
||||||
|
|
||||||
|
async def run_interactive_chat(self, args, index_path: str):
|
||||||
|
"""Run interactive chat with the index."""
|
||||||
|
chat = LeannChat(
|
||||||
|
index_path,
|
||||||
|
llm_config=self.get_llm_config(args),
|
||||||
|
system_prompt=f"You are a helpful assistant that answers questions about {self.name} data.",
|
||||||
|
complexity=args.search_complexity,
|
||||||
|
)
|
||||||
|
|
||||||
|
print(f"\n[Interactive Mode] Chat with your {self.name} data!")
|
||||||
|
print("Type 'quit' or 'exit' to stop.\n")
|
||||||
|
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
query = input("You: ").strip()
|
||||||
|
if query.lower() in ["quit", "exit", "q"]:
|
||||||
|
print("Goodbye!")
|
||||||
|
break
|
||||||
|
|
||||||
|
if not query:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Prepare LLM kwargs with thinking budget if specified
|
||||||
|
llm_kwargs = {}
|
||||||
|
if hasattr(args, "thinking_budget") and args.thinking_budget:
|
||||||
|
llm_kwargs["thinking_budget"] = args.thinking_budget
|
||||||
|
|
||||||
|
response = chat.ask(
|
||||||
|
query,
|
||||||
|
top_k=args.top_k,
|
||||||
|
complexity=args.search_complexity,
|
||||||
|
llm_kwargs=llm_kwargs,
|
||||||
|
)
|
||||||
|
print(f"\nAssistant: {response}\n")
|
||||||
|
|
||||||
|
except KeyboardInterrupt:
|
||||||
|
print("\nGoodbye!")
|
||||||
|
break
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error: {e}")
|
||||||
|
|
||||||
|
async def run_single_query(self, args, index_path: str, query: str):
|
||||||
|
"""Run a single query against the index."""
|
||||||
|
chat = LeannChat(
|
||||||
|
index_path,
|
||||||
|
llm_config=self.get_llm_config(args),
|
||||||
|
complexity=args.search_complexity,
|
||||||
|
)
|
||||||
|
|
||||||
|
print(f"\n[Query]: \033[36m{query}\033[0m")
|
||||||
|
|
||||||
|
# Prepare LLM kwargs with thinking budget if specified
|
||||||
|
llm_kwargs = {}
|
||||||
|
if hasattr(args, "thinking_budget") and args.thinking_budget:
|
||||||
|
llm_kwargs["thinking_budget"] = args.thinking_budget
|
||||||
|
|
||||||
|
response = chat.ask(
|
||||||
|
query, top_k=args.top_k, complexity=args.search_complexity, llm_kwargs=llm_kwargs
|
||||||
|
)
|
||||||
|
print(f"\n[Response]: \033[36m{response}\033[0m")
|
||||||
|
|
||||||
|
async def run(self):
|
||||||
|
"""Main entry point for the example."""
|
||||||
|
args = self.parser.parse_args()
|
||||||
|
|
||||||
|
# Check if index exists
|
||||||
|
index_path = str(Path(args.index_dir) / f"{self.default_index_name}.leann")
|
||||||
|
index_exists = Path(args.index_dir).exists()
|
||||||
|
|
||||||
|
if not index_exists or args.force_rebuild:
|
||||||
|
# Load data and build index
|
||||||
|
print(f"\n{'Rebuilding' if index_exists else 'Building'} index...")
|
||||||
|
texts = await self.load_data(args)
|
||||||
|
|
||||||
|
if not texts:
|
||||||
|
print("No data found to index!")
|
||||||
|
return
|
||||||
|
|
||||||
|
index_path = await self.build_index(args, texts)
|
||||||
|
else:
|
||||||
|
print(f"\nUsing existing index in {args.index_dir}")
|
||||||
|
|
||||||
|
# Run query or interactive mode
|
||||||
|
if args.query:
|
||||||
|
await self.run_single_query(args, index_path, args.query)
|
||||||
|
else:
|
||||||
|
await self.run_interactive_chat(args, index_path)
|
||||||
171
apps/browser_rag.py
Normal file
@@ -0,0 +1,171 @@
|
|||||||
|
"""
|
||||||
|
Browser History RAG example using the unified interface.
|
||||||
|
Supports Chrome browser history.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
# Add parent directory to path for imports
|
||||||
|
sys.path.insert(0, str(Path(__file__).parent))
|
||||||
|
|
||||||
|
from base_rag_example import BaseRAGExample
|
||||||
|
from chunking import create_text_chunks
|
||||||
|
|
||||||
|
from .history_data.history import ChromeHistoryReader
|
||||||
|
|
||||||
|
|
||||||
|
class BrowserRAG(BaseRAGExample):
|
||||||
|
"""RAG example for Chrome browser history."""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
# Set default values BEFORE calling super().__init__
|
||||||
|
self.embedding_model_default = (
|
||||||
|
"sentence-transformers/all-MiniLM-L6-v2" # Fast 384-dim model
|
||||||
|
)
|
||||||
|
|
||||||
|
super().__init__(
|
||||||
|
name="Browser History",
|
||||||
|
description="Process and query Chrome browser history with LEANN",
|
||||||
|
default_index_name="google_history_index",
|
||||||
|
)
|
||||||
|
|
||||||
|
def _add_specific_arguments(self, parser):
|
||||||
|
"""Add browser-specific arguments."""
|
||||||
|
browser_group = parser.add_argument_group("Browser Parameters")
|
||||||
|
browser_group.add_argument(
|
||||||
|
"--chrome-profile",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="Path to Chrome profile directory (auto-detected if not specified)",
|
||||||
|
)
|
||||||
|
browser_group.add_argument(
|
||||||
|
"--auto-find-profiles",
|
||||||
|
action="store_true",
|
||||||
|
default=True,
|
||||||
|
help="Automatically find all Chrome profiles (default: True)",
|
||||||
|
)
|
||||||
|
browser_group.add_argument(
|
||||||
|
"--chunk-size", type=int, default=256, help="Text chunk size (default: 256)"
|
||||||
|
)
|
||||||
|
browser_group.add_argument(
|
||||||
|
"--chunk-overlap", type=int, default=128, help="Text chunk overlap (default: 128)"
|
||||||
|
)
|
||||||
|
|
||||||
|
def _get_chrome_base_path(self) -> Path:
|
||||||
|
"""Get the base Chrome profile path based on OS."""
|
||||||
|
if sys.platform == "darwin":
|
||||||
|
return Path.home() / "Library" / "Application Support" / "Google" / "Chrome"
|
||||||
|
elif sys.platform.startswith("linux"):
|
||||||
|
return Path.home() / ".config" / "google-chrome"
|
||||||
|
elif sys.platform == "win32":
|
||||||
|
return Path(os.environ["LOCALAPPDATA"]) / "Google" / "Chrome" / "User Data"
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unsupported platform: {sys.platform}")
|
||||||
|
|
||||||
|
def _find_chrome_profiles(self) -> list[Path]:
|
||||||
|
"""Auto-detect all Chrome profiles."""
|
||||||
|
base_path = self._get_chrome_base_path()
|
||||||
|
if not base_path.exists():
|
||||||
|
return []
|
||||||
|
|
||||||
|
profiles = []
|
||||||
|
|
||||||
|
# Check Default profile
|
||||||
|
default_profile = base_path / "Default"
|
||||||
|
if default_profile.exists() and (default_profile / "History").exists():
|
||||||
|
profiles.append(default_profile)
|
||||||
|
|
||||||
|
# Check numbered profiles
|
||||||
|
for item in base_path.iterdir():
|
||||||
|
if item.is_dir() and item.name.startswith("Profile "):
|
||||||
|
if (item / "History").exists():
|
||||||
|
profiles.append(item)
|
||||||
|
|
||||||
|
return profiles
|
||||||
|
|
||||||
|
async def load_data(self, args) -> list[str]:
|
||||||
|
"""Load browser history and convert to text chunks."""
|
||||||
|
# Determine Chrome profiles
|
||||||
|
if args.chrome_profile and not args.auto_find_profiles:
|
||||||
|
profile_dirs = [Path(args.chrome_profile)]
|
||||||
|
else:
|
||||||
|
print("Auto-detecting Chrome profiles...")
|
||||||
|
profile_dirs = self._find_chrome_profiles()
|
||||||
|
|
||||||
|
# If specific profile given, filter to just that one
|
||||||
|
if args.chrome_profile:
|
||||||
|
profile_path = Path(args.chrome_profile)
|
||||||
|
profile_dirs = [p for p in profile_dirs if p == profile_path]
|
||||||
|
|
||||||
|
if not profile_dirs:
|
||||||
|
print("No Chrome profiles found!")
|
||||||
|
print("Please specify --chrome-profile manually")
|
||||||
|
return []
|
||||||
|
|
||||||
|
print(f"Found {len(profile_dirs)} Chrome profiles")
|
||||||
|
|
||||||
|
# Create reader
|
||||||
|
reader = ChromeHistoryReader()
|
||||||
|
|
||||||
|
# Process each profile
|
||||||
|
all_documents = []
|
||||||
|
total_processed = 0
|
||||||
|
|
||||||
|
for i, profile_dir in enumerate(profile_dirs):
|
||||||
|
print(f"\nProcessing profile {i + 1}/{len(profile_dirs)}: {profile_dir.name}")
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Apply max_items limit per profile
|
||||||
|
max_per_profile = -1
|
||||||
|
if args.max_items > 0:
|
||||||
|
remaining = args.max_items - total_processed
|
||||||
|
if remaining <= 0:
|
||||||
|
break
|
||||||
|
max_per_profile = remaining
|
||||||
|
|
||||||
|
# Load history
|
||||||
|
documents = reader.load_data(
|
||||||
|
chrome_profile_path=str(profile_dir),
|
||||||
|
max_count=max_per_profile,
|
||||||
|
)
|
||||||
|
|
||||||
|
if documents:
|
||||||
|
all_documents.extend(documents)
|
||||||
|
total_processed += len(documents)
|
||||||
|
print(f"Processed {len(documents)} history entries from this profile")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error processing {profile_dir}: {e}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
if not all_documents:
|
||||||
|
print("No browser history found to process!")
|
||||||
|
return []
|
||||||
|
|
||||||
|
print(f"\nTotal history entries processed: {len(all_documents)}")
|
||||||
|
|
||||||
|
# Convert to text chunks
|
||||||
|
all_texts = create_text_chunks(
|
||||||
|
all_documents, chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
|
||||||
|
)
|
||||||
|
|
||||||
|
return all_texts
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import asyncio
|
||||||
|
|
||||||
|
# Example queries for browser history RAG
|
||||||
|
print("\n🌐 Browser History RAG Example")
|
||||||
|
print("=" * 50)
|
||||||
|
print("\nExample queries you can try:")
|
||||||
|
print("- 'What websites did I visit about machine learning?'")
|
||||||
|
print("- 'Find my search history about programming'")
|
||||||
|
print("- 'What YouTube videos did I watch recently?'")
|
||||||
|
print("- 'Show me websites about travel planning'")
|
||||||
|
print("\nNote: Make sure Chrome is closed before running\n")
|
||||||
|
|
||||||
|
rag = BrowserRAG()
|
||||||
|
asyncio.run(rag.run())
|
||||||
44
apps/chunking/__init__.py
Normal file
@@ -0,0 +1,44 @@
|
|||||||
|
"""Unified chunking utilities facade.
|
||||||
|
|
||||||
|
This module re-exports the packaged utilities from `leann.chunking_utils` so
|
||||||
|
that both repo apps (importing `chunking`) and installed wheels share one
|
||||||
|
single implementation. When running from the repo without installation, it
|
||||||
|
adds the `packages/leann-core/src` directory to `sys.path` as a fallback.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
try:
|
||||||
|
from leann.chunking_utils import (
|
||||||
|
CODE_EXTENSIONS,
|
||||||
|
create_ast_chunks,
|
||||||
|
create_text_chunks,
|
||||||
|
create_traditional_chunks,
|
||||||
|
detect_code_files,
|
||||||
|
get_language_from_extension,
|
||||||
|
)
|
||||||
|
except Exception: # pragma: no cover - best-effort fallback for dev environment
|
||||||
|
repo_root = Path(__file__).resolve().parents[2]
|
||||||
|
leann_src = repo_root / "packages" / "leann-core" / "src"
|
||||||
|
if leann_src.exists():
|
||||||
|
sys.path.insert(0, str(leann_src))
|
||||||
|
from leann.chunking_utils import (
|
||||||
|
CODE_EXTENSIONS,
|
||||||
|
create_ast_chunks,
|
||||||
|
create_text_chunks,
|
||||||
|
create_traditional_chunks,
|
||||||
|
detect_code_files,
|
||||||
|
get_language_from_extension,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise
|
||||||
|
|
||||||
|
__all__ = [
|
||||||
|
"CODE_EXTENSIONS",
|
||||||
|
"create_ast_chunks",
|
||||||
|
"create_text_chunks",
|
||||||
|
"create_traditional_chunks",
|
||||||
|
"detect_code_files",
|
||||||
|
"get_language_from_extension",
|
||||||
|
]
|
||||||
211
apps/code_rag.py
Normal file
@@ -0,0 +1,211 @@
|
|||||||
|
"""
|
||||||
|
Code RAG example using AST-aware chunking for optimal code understanding.
|
||||||
|
Specialized for code repositories with automatic language detection and
|
||||||
|
optimized chunking parameters.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
# Add parent directory to path for imports
|
||||||
|
sys.path.insert(0, str(Path(__file__).parent))
|
||||||
|
|
||||||
|
from base_rag_example import BaseRAGExample
|
||||||
|
from chunking import CODE_EXTENSIONS, create_text_chunks
|
||||||
|
from llama_index.core import SimpleDirectoryReader
|
||||||
|
|
||||||
|
|
||||||
|
class CodeRAG(BaseRAGExample):
|
||||||
|
"""Specialized RAG example for code repositories with AST-aware chunking."""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__(
|
||||||
|
name="Code",
|
||||||
|
description="Process and query code repositories with AST-aware chunking",
|
||||||
|
default_index_name="code_index",
|
||||||
|
)
|
||||||
|
# Override defaults for code-specific usage
|
||||||
|
self.embedding_model_default = "facebook/contriever" # Good for code
|
||||||
|
self.max_items_default = -1 # Process all code files by default
|
||||||
|
|
||||||
|
def _add_specific_arguments(self, parser):
|
||||||
|
"""Add code-specific arguments."""
|
||||||
|
code_group = parser.add_argument_group("Code Repository Parameters")
|
||||||
|
|
||||||
|
code_group.add_argument(
|
||||||
|
"--repo-dir",
|
||||||
|
type=str,
|
||||||
|
default=".",
|
||||||
|
help="Code repository directory to index (default: current directory)",
|
||||||
|
)
|
||||||
|
code_group.add_argument(
|
||||||
|
"--include-extensions",
|
||||||
|
nargs="+",
|
||||||
|
default=list(CODE_EXTENSIONS.keys()),
|
||||||
|
help="File extensions to include (default: supported code extensions)",
|
||||||
|
)
|
||||||
|
code_group.add_argument(
|
||||||
|
"--exclude-dirs",
|
||||||
|
nargs="+",
|
||||||
|
default=[
|
||||||
|
".git",
|
||||||
|
"__pycache__",
|
||||||
|
"node_modules",
|
||||||
|
"venv",
|
||||||
|
".venv",
|
||||||
|
"build",
|
||||||
|
"dist",
|
||||||
|
"target",
|
||||||
|
],
|
||||||
|
help="Directories to exclude from indexing",
|
||||||
|
)
|
||||||
|
code_group.add_argument(
|
||||||
|
"--max-file-size",
|
||||||
|
type=int,
|
||||||
|
default=1000000, # 1MB
|
||||||
|
help="Maximum file size in bytes to process (default: 1MB)",
|
||||||
|
)
|
||||||
|
code_group.add_argument(
|
||||||
|
"--include-comments",
|
||||||
|
action="store_true",
|
||||||
|
help="Include comments in chunking (useful for documentation)",
|
||||||
|
)
|
||||||
|
code_group.add_argument(
|
||||||
|
"--preserve-imports",
|
||||||
|
action="store_true",
|
||||||
|
default=True,
|
||||||
|
help="Try to preserve import statements in chunks (default: True)",
|
||||||
|
)
|
||||||
|
|
||||||
|
async def load_data(self, args) -> list[str]:
|
||||||
|
"""Load code files and convert to AST-aware chunks."""
|
||||||
|
print(f"🔍 Scanning code repository: {args.repo_dir}")
|
||||||
|
print(f"📁 Including extensions: {args.include_extensions}")
|
||||||
|
print(f"🚫 Excluding directories: {args.exclude_dirs}")
|
||||||
|
|
||||||
|
# Check if repository directory exists
|
||||||
|
repo_path = Path(args.repo_dir)
|
||||||
|
if not repo_path.exists():
|
||||||
|
raise ValueError(f"Repository directory not found: {args.repo_dir}")
|
||||||
|
|
||||||
|
# Load code files with filtering
|
||||||
|
reader_kwargs = {
|
||||||
|
"recursive": True,
|
||||||
|
"encoding": "utf-8",
|
||||||
|
"required_exts": args.include_extensions,
|
||||||
|
"exclude_hidden": True,
|
||||||
|
}
|
||||||
|
|
||||||
|
# Create exclusion filter
|
||||||
|
def file_filter(file_path: str) -> bool:
|
||||||
|
"""Filter out unwanted files and directories."""
|
||||||
|
path = Path(file_path)
|
||||||
|
|
||||||
|
# Check file size
|
||||||
|
try:
|
||||||
|
if path.stat().st_size > args.max_file_size:
|
||||||
|
print(f"⚠️ Skipping large file: {path.name} ({path.stat().st_size} bytes)")
|
||||||
|
return False
|
||||||
|
except Exception:
|
||||||
|
return False
|
||||||
|
|
||||||
|
# Check if in excluded directory
|
||||||
|
for exclude_dir in args.exclude_dirs:
|
||||||
|
if exclude_dir in path.parts:
|
||||||
|
return False
|
||||||
|
|
||||||
|
return True
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Load documents with file filtering
|
||||||
|
documents = SimpleDirectoryReader(
|
||||||
|
args.repo_dir,
|
||||||
|
file_extractor=None, # Use default extractors
|
||||||
|
**reader_kwargs,
|
||||||
|
).load_data(show_progress=True)
|
||||||
|
|
||||||
|
# Apply custom filtering
|
||||||
|
filtered_docs = []
|
||||||
|
for doc in documents:
|
||||||
|
file_path = doc.metadata.get("file_path", "")
|
||||||
|
if file_filter(file_path):
|
||||||
|
filtered_docs.append(doc)
|
||||||
|
|
||||||
|
documents = filtered_docs
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"❌ Error loading code files: {e}")
|
||||||
|
return []
|
||||||
|
|
||||||
|
if not documents:
|
||||||
|
print(
|
||||||
|
f"❌ No code files found in {args.repo_dir} with extensions {args.include_extensions}"
|
||||||
|
)
|
||||||
|
return []
|
||||||
|
|
||||||
|
print(f"✅ Loaded {len(documents)} code files")
|
||||||
|
|
||||||
|
# Show breakdown by language/extension
|
||||||
|
ext_counts = {}
|
||||||
|
for doc in documents:
|
||||||
|
file_path = doc.metadata.get("file_path", "")
|
||||||
|
if file_path:
|
||||||
|
ext = Path(file_path).suffix.lower()
|
||||||
|
ext_counts[ext] = ext_counts.get(ext, 0) + 1
|
||||||
|
|
||||||
|
print("📊 Files by extension:")
|
||||||
|
for ext, count in sorted(ext_counts.items()):
|
||||||
|
print(f" {ext}: {count} files")
|
||||||
|
|
||||||
|
# Use AST-aware chunking by default for code
|
||||||
|
print(
|
||||||
|
f"🧠 Using AST-aware chunking (chunk_size: {args.ast_chunk_size}, overlap: {args.ast_chunk_overlap})"
|
||||||
|
)
|
||||||
|
|
||||||
|
all_texts = create_text_chunks(
|
||||||
|
documents,
|
||||||
|
chunk_size=256, # Fallback for non-code files
|
||||||
|
chunk_overlap=64,
|
||||||
|
use_ast_chunking=True, # Always use AST for code RAG
|
||||||
|
ast_chunk_size=args.ast_chunk_size,
|
||||||
|
ast_chunk_overlap=args.ast_chunk_overlap,
|
||||||
|
code_file_extensions=args.include_extensions,
|
||||||
|
ast_fallback_traditional=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Apply max_items limit if specified
|
||||||
|
if args.max_items > 0 and len(all_texts) > args.max_items:
|
||||||
|
print(f"⏳ Limiting to {args.max_items} chunks (from {len(all_texts)})")
|
||||||
|
all_texts = all_texts[: args.max_items]
|
||||||
|
|
||||||
|
print(f"✅ Generated {len(all_texts)} code chunks")
|
||||||
|
return all_texts
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import asyncio
|
||||||
|
|
||||||
|
# Example queries for code RAG
|
||||||
|
print("\n💻 Code RAG Example")
|
||||||
|
print("=" * 50)
|
||||||
|
print("\nExample queries you can try:")
|
||||||
|
print("- 'How does the embedding computation work?'")
|
||||||
|
print("- 'What are the main classes in this codebase?'")
|
||||||
|
print("- 'Show me the search implementation'")
|
||||||
|
print("- 'How is error handling implemented?'")
|
||||||
|
print("- 'What design patterns are used?'")
|
||||||
|
print("- 'Explain the chunking logic'")
|
||||||
|
print("\n🚀 Features:")
|
||||||
|
print("- ✅ AST-aware chunking preserves code structure")
|
||||||
|
print("- ✅ Automatic language detection")
|
||||||
|
print("- ✅ Smart filtering of large files and common excludes")
|
||||||
|
print("- ✅ Optimized for code understanding")
|
||||||
|
print("\nUsage examples:")
|
||||||
|
print(" python -m apps.code_rag --repo-dir ./my_project")
|
||||||
|
print(
|
||||||
|
" python -m apps.code_rag --include-extensions .py .js --query 'How does authentication work?'"
|
||||||
|
)
|
||||||
|
print("\nOr run without --query for interactive mode\n")
|
||||||
|
|
||||||
|
rag = CodeRAG()
|
||||||
|
asyncio.run(rag.run())
|
||||||
131
apps/document_rag.py
Normal file
@@ -0,0 +1,131 @@
|
|||||||
|
"""
|
||||||
|
Document RAG example using the unified interface.
|
||||||
|
Supports PDF, TXT, MD, and other document formats.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
# Add parent directory to path for imports
|
||||||
|
sys.path.insert(0, str(Path(__file__).parent))
|
||||||
|
|
||||||
|
from base_rag_example import BaseRAGExample
|
||||||
|
from chunking import create_text_chunks
|
||||||
|
from llama_index.core import SimpleDirectoryReader
|
||||||
|
|
||||||
|
|
||||||
|
class DocumentRAG(BaseRAGExample):
|
||||||
|
"""RAG example for document processing (PDF, TXT, MD, etc.)."""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__(
|
||||||
|
name="Document",
|
||||||
|
description="Process and query documents (PDF, TXT, MD, etc.) with LEANN",
|
||||||
|
default_index_name="test_doc_files",
|
||||||
|
)
|
||||||
|
|
||||||
|
def _add_specific_arguments(self, parser):
|
||||||
|
"""Add document-specific arguments."""
|
||||||
|
doc_group = parser.add_argument_group("Document Parameters")
|
||||||
|
doc_group.add_argument(
|
||||||
|
"--data-dir",
|
||||||
|
type=str,
|
||||||
|
default="data",
|
||||||
|
help="Directory containing documents to index (default: data)",
|
||||||
|
)
|
||||||
|
doc_group.add_argument(
|
||||||
|
"--file-types",
|
||||||
|
nargs="+",
|
||||||
|
default=None,
|
||||||
|
help="Filter by file types (e.g., .pdf .txt .md). If not specified, all supported types are processed",
|
||||||
|
)
|
||||||
|
doc_group.add_argument(
|
||||||
|
"--chunk-size", type=int, default=256, help="Text chunk size (default: 256)"
|
||||||
|
)
|
||||||
|
doc_group.add_argument(
|
||||||
|
"--chunk-overlap", type=int, default=128, help="Text chunk overlap (default: 128)"
|
||||||
|
)
|
||||||
|
doc_group.add_argument(
|
||||||
|
"--enable-code-chunking",
|
||||||
|
action="store_true",
|
||||||
|
help="Enable AST-aware chunking for code files in the data directory",
|
||||||
|
)
|
||||||
|
|
||||||
|
async def load_data(self, args) -> list[str]:
|
||||||
|
"""Load documents and convert to text chunks."""
|
||||||
|
print(f"Loading documents from: {args.data_dir}")
|
||||||
|
if args.file_types:
|
||||||
|
print(f"Filtering by file types: {args.file_types}")
|
||||||
|
else:
|
||||||
|
print("Processing all supported file types")
|
||||||
|
|
||||||
|
# Check if data directory exists
|
||||||
|
data_path = Path(args.data_dir)
|
||||||
|
if not data_path.exists():
|
||||||
|
raise ValueError(f"Data directory not found: {args.data_dir}")
|
||||||
|
|
||||||
|
# Load documents
|
||||||
|
reader_kwargs = {
|
||||||
|
"recursive": True,
|
||||||
|
"encoding": "utf-8",
|
||||||
|
}
|
||||||
|
if args.file_types:
|
||||||
|
reader_kwargs["required_exts"] = args.file_types
|
||||||
|
|
||||||
|
documents = SimpleDirectoryReader(args.data_dir, **reader_kwargs).load_data(
|
||||||
|
show_progress=True
|
||||||
|
)
|
||||||
|
|
||||||
|
if not documents:
|
||||||
|
print(f"No documents found in {args.data_dir} with extensions {args.file_types}")
|
||||||
|
return []
|
||||||
|
|
||||||
|
print(f"Loaded {len(documents)} documents")
|
||||||
|
|
||||||
|
# Determine chunking strategy
|
||||||
|
use_ast = args.enable_code_chunking or getattr(args, "use_ast_chunking", False)
|
||||||
|
|
||||||
|
if use_ast:
|
||||||
|
print("Using AST-aware chunking for code files")
|
||||||
|
|
||||||
|
# Convert to text chunks with optional AST support
|
||||||
|
all_texts = create_text_chunks(
|
||||||
|
documents,
|
||||||
|
chunk_size=args.chunk_size,
|
||||||
|
chunk_overlap=args.chunk_overlap,
|
||||||
|
use_ast_chunking=use_ast,
|
||||||
|
ast_chunk_size=getattr(args, "ast_chunk_size", 512),
|
||||||
|
ast_chunk_overlap=getattr(args, "ast_chunk_overlap", 64),
|
||||||
|
code_file_extensions=getattr(args, "code_file_extensions", None),
|
||||||
|
ast_fallback_traditional=getattr(args, "ast_fallback_traditional", True),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Apply max_items limit if specified
|
||||||
|
if args.max_items > 0 and len(all_texts) > args.max_items:
|
||||||
|
print(f"Limiting to {args.max_items} chunks (from {len(all_texts)})")
|
||||||
|
all_texts = all_texts[: args.max_items]
|
||||||
|
|
||||||
|
return all_texts
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import asyncio
|
||||||
|
|
||||||
|
# Example queries for document RAG
|
||||||
|
print("\n📄 Document RAG Example")
|
||||||
|
print("=" * 50)
|
||||||
|
print("\nExample queries you can try:")
|
||||||
|
print("- 'What are the main techniques LEANN uses?'")
|
||||||
|
print("- 'What is the technique DLPM?'")
|
||||||
|
print("- 'Who does Elizabeth Bennet marry?'")
|
||||||
|
print(
|
||||||
|
"- 'What is the problem of developing pan gu model Huawei meets? (盘古大模型开发中遇到什么问题?)'"
|
||||||
|
)
|
||||||
|
print("\n🚀 NEW: Code-aware chunking available!")
|
||||||
|
print("- Use --enable-code-chunking to enable AST-aware chunking for code files")
|
||||||
|
print("- Supports Python, Java, C#, TypeScript files")
|
||||||
|
print("- Better semantic understanding of code structure")
|
||||||
|
print("\nOr run without --query for interactive mode\n")
|
||||||
|
|
||||||
|
rag = DocumentRAG()
|
||||||
|
asyncio.run(rag.run())
|
||||||
167
apps/email_data/LEANN_email_reader.py
Normal file
@@ -0,0 +1,167 @@
|
|||||||
|
import email
|
||||||
|
import os
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
|
from llama_index.core import Document
|
||||||
|
from llama_index.core.readers.base import BaseReader
|
||||||
|
|
||||||
|
|
||||||
|
def find_all_messages_directories(root: str | None = None) -> list[Path]:
|
||||||
|
"""
|
||||||
|
Recursively find all 'Messages' directories under the given root.
|
||||||
|
Returns a list of Path objects.
|
||||||
|
"""
|
||||||
|
if root is None:
|
||||||
|
# Auto-detect user's mail path
|
||||||
|
home_dir = os.path.expanduser("~")
|
||||||
|
root = os.path.join(home_dir, "Library", "Mail")
|
||||||
|
|
||||||
|
messages_dirs = []
|
||||||
|
for dirpath, _dirnames, _filenames in os.walk(root):
|
||||||
|
if os.path.basename(dirpath) == "Messages":
|
||||||
|
messages_dirs.append(Path(dirpath))
|
||||||
|
return messages_dirs
|
||||||
|
|
||||||
|
|
||||||
|
class EmlxReader(BaseReader):
|
||||||
|
"""
|
||||||
|
Apple Mail .emlx file reader with embedded metadata.
|
||||||
|
|
||||||
|
Reads individual .emlx files from Apple Mail's storage format.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, include_html: bool = False) -> None:
|
||||||
|
"""
|
||||||
|
Initialize.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
include_html: Whether to include HTML content in the email body (default: False)
|
||||||
|
"""
|
||||||
|
self.include_html = include_html
|
||||||
|
|
||||||
|
def load_data(self, input_dir: str, **load_kwargs: Any) -> list[Document]:
|
||||||
|
"""
|
||||||
|
Load data from the input directory containing .emlx files.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
input_dir: Directory containing .emlx files
|
||||||
|
**load_kwargs:
|
||||||
|
max_count (int): Maximum amount of messages to read.
|
||||||
|
"""
|
||||||
|
docs: list[Document] = []
|
||||||
|
max_count = load_kwargs.get("max_count", 1000)
|
||||||
|
count = 0
|
||||||
|
total_files = 0
|
||||||
|
successful_files = 0
|
||||||
|
failed_files = 0
|
||||||
|
|
||||||
|
print(f"Starting to process directory: {input_dir}")
|
||||||
|
|
||||||
|
# Walk through the directory recursively
|
||||||
|
for dirpath, dirnames, filenames in os.walk(input_dir):
|
||||||
|
# Skip hidden directories
|
||||||
|
dirnames[:] = [d for d in dirnames if not d.startswith(".")]
|
||||||
|
|
||||||
|
for filename in filenames:
|
||||||
|
# Check if we've reached the max count (skip if max_count == -1)
|
||||||
|
if max_count > 0 and count >= max_count:
|
||||||
|
break
|
||||||
|
|
||||||
|
if filename.endswith(".emlx"):
|
||||||
|
total_files += 1
|
||||||
|
filepath = os.path.join(dirpath, filename)
|
||||||
|
try:
|
||||||
|
# Read the .emlx file
|
||||||
|
with open(filepath, encoding="utf-8", errors="ignore") as f:
|
||||||
|
content = f.read()
|
||||||
|
|
||||||
|
# .emlx files have a length prefix followed by the email content
|
||||||
|
# The first line contains the length, followed by the email
|
||||||
|
lines = content.split("\n", 1)
|
||||||
|
if len(lines) >= 2:
|
||||||
|
email_content = lines[1]
|
||||||
|
|
||||||
|
# Parse the email using Python's email module
|
||||||
|
try:
|
||||||
|
msg = email.message_from_string(email_content)
|
||||||
|
|
||||||
|
# Extract email metadata
|
||||||
|
subject = msg.get("Subject", "No Subject")
|
||||||
|
from_addr = msg.get("From", "Unknown")
|
||||||
|
to_addr = msg.get("To", "Unknown")
|
||||||
|
date = msg.get("Date", "Unknown")
|
||||||
|
|
||||||
|
# Extract email body
|
||||||
|
body = ""
|
||||||
|
if msg.is_multipart():
|
||||||
|
for part in msg.walk():
|
||||||
|
if (
|
||||||
|
part.get_content_type() == "text/plain"
|
||||||
|
or part.get_content_type() == "text/html"
|
||||||
|
):
|
||||||
|
if (
|
||||||
|
part.get_content_type() == "text/html"
|
||||||
|
and not self.include_html
|
||||||
|
):
|
||||||
|
continue
|
||||||
|
try:
|
||||||
|
payload = part.get_payload(decode=True)
|
||||||
|
if payload:
|
||||||
|
body += payload.decode("utf-8", errors="ignore")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error decoding payload: {e}")
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
try:
|
||||||
|
payload = msg.get_payload(decode=True)
|
||||||
|
if payload:
|
||||||
|
body = payload.decode("utf-8", errors="ignore")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error decoding single part payload: {e}")
|
||||||
|
body = ""
|
||||||
|
|
||||||
|
# Only create document if we have some content
|
||||||
|
if body.strip() or subject != "No Subject":
|
||||||
|
# Create document content with metadata embedded in text
|
||||||
|
doc_content = f"""
|
||||||
|
[File]: {filename}
|
||||||
|
[From]: {from_addr}
|
||||||
|
[To]: {to_addr}
|
||||||
|
[Subject]: {subject}
|
||||||
|
[Date]: {date}
|
||||||
|
[EMAIL BODY Start]:
|
||||||
|
{body}
|
||||||
|
"""
|
||||||
|
|
||||||
|
# No separate metadata - everything is in the text
|
||||||
|
doc = Document(text=doc_content, metadata={})
|
||||||
|
docs.append(doc)
|
||||||
|
count += 1
|
||||||
|
successful_files += 1
|
||||||
|
|
||||||
|
# Print first few successful files for debugging
|
||||||
|
if successful_files <= 3:
|
||||||
|
print(
|
||||||
|
f"Successfully loaded: {filename} - Subject: {subject[:50]}..."
|
||||||
|
)
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
failed_files += 1
|
||||||
|
if failed_files <= 5: # Only print first few errors
|
||||||
|
print(f"Error parsing email from {filepath}: {e}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
failed_files += 1
|
||||||
|
if failed_files <= 5: # Only print first few errors
|
||||||
|
print(f"Error reading file {filepath}: {e}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
print("Processing summary:")
|
||||||
|
print(f" Total .emlx files found: {total_files}")
|
||||||
|
print(f" Successfully loaded: {successful_files}")
|
||||||
|
print(f" Failed to load: {failed_files}")
|
||||||
|
print(f" Final documents: {len(docs)}")
|
||||||
|
|
||||||
|
return docs
|
||||||
186
apps/email_data/email.py
Normal file
@@ -0,0 +1,186 @@
|
|||||||
|
"""
|
||||||
|
Mbox parser.
|
||||||
|
|
||||||
|
Contains simple parser for mbox files.
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
|
from fsspec import AbstractFileSystem
|
||||||
|
from llama_index.core.readers.base import BaseReader
|
||||||
|
from llama_index.core.schema import Document
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class MboxReader(BaseReader):
|
||||||
|
"""
|
||||||
|
Mbox parser.
|
||||||
|
|
||||||
|
Extract messages from mailbox files.
|
||||||
|
Returns string including date, subject, sender, receiver and
|
||||||
|
content for each message.
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
DEFAULT_MESSAGE_FORMAT: str = (
|
||||||
|
"Date: {_date}\nFrom: {_from}\nTo: {_to}\nSubject: {_subject}\nContent: {_content}"
|
||||||
|
)
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
*args: Any,
|
||||||
|
max_count: int = 0,
|
||||||
|
message_format: str = DEFAULT_MESSAGE_FORMAT,
|
||||||
|
**kwargs: Any,
|
||||||
|
) -> None:
|
||||||
|
"""Init params."""
|
||||||
|
try:
|
||||||
|
from bs4 import BeautifulSoup # noqa
|
||||||
|
except ImportError:
|
||||||
|
raise ImportError("`beautifulsoup4` package not found: `pip install beautifulsoup4`")
|
||||||
|
|
||||||
|
super().__init__(*args, **kwargs)
|
||||||
|
self.max_count = max_count
|
||||||
|
self.message_format = message_format
|
||||||
|
|
||||||
|
def load_data(
|
||||||
|
self,
|
||||||
|
file: Path,
|
||||||
|
extra_info: dict | None = None,
|
||||||
|
fs: AbstractFileSystem | None = None,
|
||||||
|
) -> list[Document]:
|
||||||
|
"""Parse file into string."""
|
||||||
|
# Import required libraries
|
||||||
|
import mailbox
|
||||||
|
from email.parser import BytesParser
|
||||||
|
from email.policy import default
|
||||||
|
|
||||||
|
from bs4 import BeautifulSoup
|
||||||
|
|
||||||
|
if fs:
|
||||||
|
logger.warning(
|
||||||
|
"fs was specified but MboxReader doesn't support loading "
|
||||||
|
"from fsspec filesystems. Will load from local filesystem instead."
|
||||||
|
)
|
||||||
|
|
||||||
|
i = 0
|
||||||
|
results: list[str] = []
|
||||||
|
# Load file using mailbox
|
||||||
|
bytes_parser = BytesParser(policy=default).parse
|
||||||
|
mbox = mailbox.mbox(file, factory=bytes_parser) # type: ignore
|
||||||
|
|
||||||
|
# Iterate through all messages
|
||||||
|
for _, _msg in enumerate(mbox):
|
||||||
|
try:
|
||||||
|
msg: mailbox.mboxMessage = _msg
|
||||||
|
# Parse multipart messages
|
||||||
|
if msg.is_multipart():
|
||||||
|
for part in msg.walk():
|
||||||
|
ctype = part.get_content_type()
|
||||||
|
cdispo = str(part.get("Content-Disposition"))
|
||||||
|
if "attachment" in cdispo:
|
||||||
|
print(f"Attachment found: {part.get_filename()}")
|
||||||
|
if ctype == "text/plain" and "attachment" not in cdispo:
|
||||||
|
content = part.get_payload(decode=True) # decode
|
||||||
|
break
|
||||||
|
# Get plain message payload for non-multipart messages
|
||||||
|
else:
|
||||||
|
content = msg.get_payload(decode=True)
|
||||||
|
|
||||||
|
# Parse message HTML content and remove unneeded whitespace
|
||||||
|
soup = BeautifulSoup(content)
|
||||||
|
stripped_content = " ".join(soup.get_text().split())
|
||||||
|
# Format message to include date, sender, receiver and subject
|
||||||
|
msg_string = self.message_format.format(
|
||||||
|
_date=msg["date"],
|
||||||
|
_from=msg["from"],
|
||||||
|
_to=msg["to"],
|
||||||
|
_subject=msg["subject"],
|
||||||
|
_content=stripped_content,
|
||||||
|
)
|
||||||
|
# Add message string to results
|
||||||
|
results.append(msg_string)
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"Failed to parse message:\n{_msg}\n with exception {e}")
|
||||||
|
|
||||||
|
# Increment counter and return if max count is met
|
||||||
|
i += 1
|
||||||
|
if self.max_count > 0 and i >= self.max_count:
|
||||||
|
break
|
||||||
|
|
||||||
|
return [Document(text=result, metadata=extra_info or {}) for result in results]
|
||||||
|
|
||||||
|
|
||||||
|
class EmlxMboxReader(MboxReader):
|
||||||
|
"""
|
||||||
|
EmlxMboxReader - Modified MboxReader that handles directories of .emlx files.
|
||||||
|
|
||||||
|
Extends MboxReader to work with Apple Mail's .emlx format by:
|
||||||
|
1. Reading .emlx files from a directory
|
||||||
|
2. Converting them to mbox format in memory
|
||||||
|
3. Using the parent MboxReader's parsing logic
|
||||||
|
"""
|
||||||
|
|
||||||
|
def load_data(
|
||||||
|
self,
|
||||||
|
directory: Path,
|
||||||
|
extra_info: dict | None = None,
|
||||||
|
fs: AbstractFileSystem | None = None,
|
||||||
|
) -> list[Document]:
|
||||||
|
"""Parse .emlx files from directory into strings using MboxReader logic."""
|
||||||
|
import os
|
||||||
|
import tempfile
|
||||||
|
|
||||||
|
if fs:
|
||||||
|
logger.warning(
|
||||||
|
"fs was specified but EmlxMboxReader doesn't support loading "
|
||||||
|
"from fsspec filesystems. Will load from local filesystem instead."
|
||||||
|
)
|
||||||
|
|
||||||
|
# Find all .emlx files in the directory
|
||||||
|
emlx_files = list(directory.glob("*.emlx"))
|
||||||
|
logger.info(f"Found {len(emlx_files)} .emlx files in {directory}")
|
||||||
|
|
||||||
|
if not emlx_files:
|
||||||
|
logger.warning(f"No .emlx files found in {directory}")
|
||||||
|
return []
|
||||||
|
|
||||||
|
# Create a temporary mbox file
|
||||||
|
with tempfile.NamedTemporaryFile(mode="w", suffix=".mbox", delete=False) as temp_mbox:
|
||||||
|
temp_mbox_path = temp_mbox.name
|
||||||
|
|
||||||
|
# Convert .emlx files to mbox format
|
||||||
|
for emlx_file in emlx_files:
|
||||||
|
try:
|
||||||
|
# Read the .emlx file
|
||||||
|
with open(emlx_file, encoding="utf-8", errors="ignore") as f:
|
||||||
|
content = f.read()
|
||||||
|
|
||||||
|
# .emlx format: first line is length, rest is email content
|
||||||
|
lines = content.split("\n", 1)
|
||||||
|
if len(lines) >= 2:
|
||||||
|
email_content = lines[1] # Skip the length line
|
||||||
|
|
||||||
|
# Write to mbox format (each message starts with "From " and ends with blank line)
|
||||||
|
temp_mbox.write(f"From {emlx_file.name} {email_content}\n\n")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"Failed to process {emlx_file}: {e}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Close the temporary file so MboxReader can read it
|
||||||
|
temp_mbox.close()
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Use the parent MboxReader's logic to parse the mbox file
|
||||||
|
return super().load_data(Path(temp_mbox_path), extra_info, fs)
|
||||||
|
finally:
|
||||||
|
# Clean up temporary file
|
||||||
|
try:
|
||||||
|
os.unlink(temp_mbox_path)
|
||||||
|
except OSError:
|
||||||
|
pass
|
||||||
157
apps/email_rag.py
Normal file
@@ -0,0 +1,157 @@
|
|||||||
|
"""
|
||||||
|
Email RAG example using the unified interface.
|
||||||
|
Supports Apple Mail on macOS.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
# Add parent directory to path for imports
|
||||||
|
sys.path.insert(0, str(Path(__file__).parent))
|
||||||
|
|
||||||
|
from base_rag_example import BaseRAGExample
|
||||||
|
from chunking import create_text_chunks
|
||||||
|
|
||||||
|
from .email_data.LEANN_email_reader import EmlxReader
|
||||||
|
|
||||||
|
|
||||||
|
class EmailRAG(BaseRAGExample):
|
||||||
|
"""RAG example for Apple Mail processing."""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
# Set default values BEFORE calling super().__init__
|
||||||
|
self.max_items_default = -1 # Process all emails by default
|
||||||
|
self.embedding_model_default = (
|
||||||
|
"sentence-transformers/all-MiniLM-L6-v2" # Fast 384-dim model
|
||||||
|
)
|
||||||
|
|
||||||
|
super().__init__(
|
||||||
|
name="Email",
|
||||||
|
description="Process and query Apple Mail emails with LEANN",
|
||||||
|
default_index_name="mail_index",
|
||||||
|
)
|
||||||
|
|
||||||
|
def _add_specific_arguments(self, parser):
|
||||||
|
"""Add email-specific arguments."""
|
||||||
|
email_group = parser.add_argument_group("Email Parameters")
|
||||||
|
email_group.add_argument(
|
||||||
|
"--mail-path",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="Path to Apple Mail directory (auto-detected if not specified)",
|
||||||
|
)
|
||||||
|
email_group.add_argument(
|
||||||
|
"--include-html", action="store_true", help="Include HTML content in email processing"
|
||||||
|
)
|
||||||
|
email_group.add_argument(
|
||||||
|
"--chunk-size", type=int, default=256, help="Text chunk size (default: 256)"
|
||||||
|
)
|
||||||
|
email_group.add_argument(
|
||||||
|
"--chunk-overlap", type=int, default=25, help="Text chunk overlap (default: 25)"
|
||||||
|
)
|
||||||
|
|
||||||
|
def _find_mail_directories(self) -> list[Path]:
|
||||||
|
"""Auto-detect all Apple Mail directories."""
|
||||||
|
mail_base = Path.home() / "Library" / "Mail"
|
||||||
|
if not mail_base.exists():
|
||||||
|
return []
|
||||||
|
|
||||||
|
# Find all Messages directories
|
||||||
|
messages_dirs = []
|
||||||
|
for item in mail_base.rglob("Messages"):
|
||||||
|
if item.is_dir():
|
||||||
|
messages_dirs.append(item)
|
||||||
|
|
||||||
|
return messages_dirs
|
||||||
|
|
||||||
|
async def load_data(self, args) -> list[str]:
|
||||||
|
"""Load emails and convert to text chunks."""
|
||||||
|
# Determine mail directories
|
||||||
|
if args.mail_path:
|
||||||
|
messages_dirs = [Path(args.mail_path)]
|
||||||
|
else:
|
||||||
|
print("Auto-detecting Apple Mail directories...")
|
||||||
|
messages_dirs = self._find_mail_directories()
|
||||||
|
|
||||||
|
if not messages_dirs:
|
||||||
|
print("No Apple Mail directories found!")
|
||||||
|
print("Please specify --mail-path manually")
|
||||||
|
return []
|
||||||
|
|
||||||
|
print(f"Found {len(messages_dirs)} mail directories")
|
||||||
|
|
||||||
|
# Create reader
|
||||||
|
reader = EmlxReader(include_html=args.include_html)
|
||||||
|
|
||||||
|
# Process each directory
|
||||||
|
all_documents = []
|
||||||
|
total_processed = 0
|
||||||
|
|
||||||
|
for i, messages_dir in enumerate(messages_dirs):
|
||||||
|
print(f"\nProcessing directory {i + 1}/{len(messages_dirs)}: {messages_dir}")
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Count emlx files
|
||||||
|
emlx_files = list(messages_dir.glob("*.emlx"))
|
||||||
|
print(f"Found {len(emlx_files)} email files")
|
||||||
|
|
||||||
|
# Apply max_items limit per directory
|
||||||
|
max_per_dir = -1 # Default to process all
|
||||||
|
if args.max_items > 0:
|
||||||
|
remaining = args.max_items - total_processed
|
||||||
|
if remaining <= 0:
|
||||||
|
break
|
||||||
|
max_per_dir = remaining
|
||||||
|
# If args.max_items == -1, max_per_dir stays -1 (process all)
|
||||||
|
|
||||||
|
# Load emails - fix the parameter passing
|
||||||
|
documents = reader.load_data(
|
||||||
|
input_dir=str(messages_dir),
|
||||||
|
max_count=max_per_dir,
|
||||||
|
)
|
||||||
|
|
||||||
|
if documents:
|
||||||
|
all_documents.extend(documents)
|
||||||
|
total_processed += len(documents)
|
||||||
|
print(f"Processed {len(documents)} emails from this directory")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error processing {messages_dir}: {e}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
if not all_documents:
|
||||||
|
print("No emails found to process!")
|
||||||
|
return []
|
||||||
|
|
||||||
|
print(f"\nTotal emails processed: {len(all_documents)}")
|
||||||
|
print("now starting to split into text chunks ... take some time")
|
||||||
|
|
||||||
|
# Convert to text chunks
|
||||||
|
# Email reader uses chunk_overlap=25 as in original
|
||||||
|
all_texts = create_text_chunks(
|
||||||
|
all_documents, chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
|
||||||
|
)
|
||||||
|
|
||||||
|
return all_texts
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import asyncio
|
||||||
|
|
||||||
|
# Check platform
|
||||||
|
if sys.platform != "darwin":
|
||||||
|
print("\n⚠️ Warning: This example is designed for macOS (Apple Mail)")
|
||||||
|
print(" Windows/Linux support coming soon!\n")
|
||||||
|
|
||||||
|
# Example queries for email RAG
|
||||||
|
print("\n📧 Email RAG Example")
|
||||||
|
print("=" * 50)
|
||||||
|
print("\nExample queries you can try:")
|
||||||
|
print("- 'What did my boss say about deadlines?'")
|
||||||
|
print("- 'Find emails about travel expenses'")
|
||||||
|
print("- 'Show me emails from last month about the project'")
|
||||||
|
print("- 'What food did I order from DoorDash?'")
|
||||||
|
print("\nNote: You may need to grant Full Disk Access to your terminal\n")
|
||||||
|
|
||||||
|
rag = EmailRAG()
|
||||||
|
asyncio.run(rag.run())
|
||||||
3
apps/history_data/__init__.py
Normal file
@@ -0,0 +1,3 @@
|
|||||||
|
from .history import ChromeHistoryReader
|
||||||
|
|
||||||
|
__all__ = ["ChromeHistoryReader"]
|
||||||
186
apps/history_data/history.py
Normal file
@@ -0,0 +1,186 @@
|
|||||||
|
import os
|
||||||
|
import sqlite3
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
|
from llama_index.core import Document
|
||||||
|
from llama_index.core.readers.base import BaseReader
|
||||||
|
|
||||||
|
|
||||||
|
class ChromeHistoryReader(BaseReader):
|
||||||
|
"""
|
||||||
|
Chrome browser history reader that extracts browsing data from SQLite database.
|
||||||
|
|
||||||
|
Reads Chrome history from the default Chrome profile location and creates documents
|
||||||
|
with embedded metadata similar to the email reader structure.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self) -> None:
|
||||||
|
"""Initialize."""
|
||||||
|
pass
|
||||||
|
|
||||||
|
def load_data(self, input_dir: str | None = None, **load_kwargs: Any) -> list[Document]:
|
||||||
|
"""
|
||||||
|
Load Chrome history data from the default Chrome profile location.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
input_dir: Not used for Chrome history (kept for compatibility)
|
||||||
|
**load_kwargs:
|
||||||
|
max_count (int): Maximum amount of history entries to read.
|
||||||
|
chrome_profile_path (str): Custom path to Chrome profile directory.
|
||||||
|
"""
|
||||||
|
docs: list[Document] = []
|
||||||
|
max_count = load_kwargs.get("max_count", 1000)
|
||||||
|
chrome_profile_path = load_kwargs.get("chrome_profile_path", None)
|
||||||
|
|
||||||
|
# Default Chrome profile path on macOS
|
||||||
|
if chrome_profile_path is None:
|
||||||
|
chrome_profile_path = os.path.expanduser(
|
||||||
|
"~/Library/Application Support/Google/Chrome/Default"
|
||||||
|
)
|
||||||
|
|
||||||
|
history_db_path = os.path.join(chrome_profile_path, "History")
|
||||||
|
|
||||||
|
if not os.path.exists(history_db_path):
|
||||||
|
print(f"Chrome history database not found at: {history_db_path}")
|
||||||
|
return docs
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Connect to the Chrome history database
|
||||||
|
print(f"Connecting to database: {history_db_path}")
|
||||||
|
conn = sqlite3.connect(history_db_path)
|
||||||
|
cursor = conn.cursor()
|
||||||
|
|
||||||
|
# Query to get browsing history with metadata (removed created_time column)
|
||||||
|
query = """
|
||||||
|
SELECT
|
||||||
|
datetime(last_visit_time/1000000-11644473600,'unixepoch','localtime') as last_visit,
|
||||||
|
url,
|
||||||
|
title,
|
||||||
|
visit_count,
|
||||||
|
typed_count,
|
||||||
|
hidden
|
||||||
|
FROM urls
|
||||||
|
ORDER BY last_visit_time DESC
|
||||||
|
"""
|
||||||
|
|
||||||
|
print(f"Executing query on database: {history_db_path}")
|
||||||
|
cursor.execute(query)
|
||||||
|
rows = cursor.fetchall()
|
||||||
|
print(f"Query returned {len(rows)} rows")
|
||||||
|
|
||||||
|
count = 0
|
||||||
|
for row in rows:
|
||||||
|
if count >= max_count and max_count > 0:
|
||||||
|
break
|
||||||
|
|
||||||
|
last_visit, url, title, visit_count, typed_count, _hidden = row
|
||||||
|
|
||||||
|
# Create document content with metadata embedded in text
|
||||||
|
doc_content = f"""
|
||||||
|
[Title]: {title}
|
||||||
|
[URL of the page]: {url}
|
||||||
|
[Last visited time]: {last_visit}
|
||||||
|
[Visit times]: {visit_count}
|
||||||
|
[Typed times]: {typed_count}
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Create document with embedded metadata
|
||||||
|
doc = Document(text=doc_content, metadata={"title": title[0:150]})
|
||||||
|
# if len(title) > 150:
|
||||||
|
# print(f"Title is too long: {title}")
|
||||||
|
docs.append(doc)
|
||||||
|
count += 1
|
||||||
|
|
||||||
|
conn.close()
|
||||||
|
print(f"Loaded {len(docs)} Chrome history documents")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error reading Chrome history: {e}")
|
||||||
|
# add you may need to close your browser to make the database file available
|
||||||
|
# also highlight in red
|
||||||
|
print(
|
||||||
|
"\033[91mYou may need to close your browser to make the database file available\033[0m"
|
||||||
|
)
|
||||||
|
return docs
|
||||||
|
|
||||||
|
return docs
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def find_chrome_profiles() -> list[Path]:
|
||||||
|
"""
|
||||||
|
Find all Chrome profile directories.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of Path objects pointing to Chrome profile directories
|
||||||
|
"""
|
||||||
|
chrome_base_path = Path(os.path.expanduser("~/Library/Application Support/Google/Chrome"))
|
||||||
|
profile_dirs = []
|
||||||
|
|
||||||
|
if not chrome_base_path.exists():
|
||||||
|
print(f"Chrome directory not found at: {chrome_base_path}")
|
||||||
|
return profile_dirs
|
||||||
|
|
||||||
|
# Find all profile directories
|
||||||
|
for profile_dir in chrome_base_path.iterdir():
|
||||||
|
if profile_dir.is_dir() and profile_dir.name != "System Profile":
|
||||||
|
history_path = profile_dir / "History"
|
||||||
|
if history_path.exists():
|
||||||
|
profile_dirs.append(profile_dir)
|
||||||
|
print(f"Found Chrome profile: {profile_dir}")
|
||||||
|
|
||||||
|
print(f"Found {len(profile_dirs)} Chrome profiles")
|
||||||
|
return profile_dirs
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def export_history_to_file(
|
||||||
|
output_file: str = "chrome_history_export.txt", max_count: int = 1000
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Export Chrome history to a text file using the same SQL query format.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
output_file: Path to the output file
|
||||||
|
max_count: Maximum number of entries to export
|
||||||
|
"""
|
||||||
|
chrome_profile_path = os.path.expanduser(
|
||||||
|
"~/Library/Application Support/Google/Chrome/Default"
|
||||||
|
)
|
||||||
|
history_db_path = os.path.join(chrome_profile_path, "History")
|
||||||
|
|
||||||
|
if not os.path.exists(history_db_path):
|
||||||
|
print(f"Chrome history database not found at: {history_db_path}")
|
||||||
|
return
|
||||||
|
|
||||||
|
try:
|
||||||
|
conn = sqlite3.connect(history_db_path)
|
||||||
|
cursor = conn.cursor()
|
||||||
|
|
||||||
|
query = """
|
||||||
|
SELECT
|
||||||
|
datetime(last_visit_time/1000000-11644473600,'unixepoch','localtime') as last_visit,
|
||||||
|
url,
|
||||||
|
title,
|
||||||
|
visit_count,
|
||||||
|
typed_count,
|
||||||
|
hidden
|
||||||
|
FROM urls
|
||||||
|
ORDER BY last_visit_time DESC
|
||||||
|
LIMIT ?
|
||||||
|
"""
|
||||||
|
|
||||||
|
cursor.execute(query, (max_count,))
|
||||||
|
rows = cursor.fetchall()
|
||||||
|
|
||||||
|
with open(output_file, "w", encoding="utf-8") as f:
|
||||||
|
for row in rows:
|
||||||
|
last_visit, url, title, visit_count, typed_count, hidden = row
|
||||||
|
f.write(
|
||||||
|
f"{last_visit}\t{url}\t{title}\t{visit_count}\t{typed_count}\t{hidden}\n"
|
||||||
|
)
|
||||||
|
|
||||||
|
conn.close()
|
||||||
|
print(f"Exported {len(rows)} history entries to {output_file}")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error exporting Chrome history: {e}")
|
||||||
774
apps/history_data/wechat_history.py
Normal file
@@ -0,0 +1,774 @@
|
|||||||
|
import json
|
||||||
|
import os
|
||||||
|
import re
|
||||||
|
import subprocess
|
||||||
|
import time
|
||||||
|
from datetime import datetime
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
|
from llama_index.core import Document
|
||||||
|
from llama_index.core.readers.base import BaseReader
|
||||||
|
|
||||||
|
|
||||||
|
class WeChatHistoryReader(BaseReader):
|
||||||
|
"""
|
||||||
|
WeChat chat history reader that extracts chat data from exported JSON files.
|
||||||
|
|
||||||
|
Reads WeChat chat history from exported JSON files (from wechat-exporter tool)
|
||||||
|
and creates documents with embedded metadata similar to the Chrome history reader structure.
|
||||||
|
|
||||||
|
Also includes utilities for automatic WeChat chat history export.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self) -> None:
|
||||||
|
"""Initialize."""
|
||||||
|
self.packages_dir = Path(__file__).parent.parent.parent / "packages"
|
||||||
|
self.wechat_exporter_dir = self.packages_dir / "wechat-exporter"
|
||||||
|
self.wechat_decipher_dir = self.packages_dir / "wechat-decipher-macos"
|
||||||
|
|
||||||
|
def check_wechat_running(self) -> bool:
|
||||||
|
"""Check if WeChat is currently running."""
|
||||||
|
try:
|
||||||
|
result = subprocess.run(["pgrep", "-f", "WeChat"], capture_output=True, text=True)
|
||||||
|
return result.returncode == 0
|
||||||
|
except Exception:
|
||||||
|
return False
|
||||||
|
|
||||||
|
def install_wechattweak(self) -> bool:
|
||||||
|
"""Install WeChatTweak CLI tool."""
|
||||||
|
try:
|
||||||
|
# Create wechat-exporter directory if it doesn't exist
|
||||||
|
self.wechat_exporter_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
wechattweak_path = self.wechat_exporter_dir / "wechattweak-cli"
|
||||||
|
if not wechattweak_path.exists():
|
||||||
|
print("Downloading WeChatTweak CLI...")
|
||||||
|
subprocess.run(
|
||||||
|
[
|
||||||
|
"curl",
|
||||||
|
"-L",
|
||||||
|
"-o",
|
||||||
|
str(wechattweak_path),
|
||||||
|
"https://github.com/JettChenT/WeChatTweak-CLI/releases/latest/download/wechattweak-cli",
|
||||||
|
],
|
||||||
|
check=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Make executable
|
||||||
|
wechattweak_path.chmod(0o755)
|
||||||
|
|
||||||
|
# Install WeChatTweak
|
||||||
|
print("Installing WeChatTweak...")
|
||||||
|
subprocess.run(["sudo", str(wechattweak_path), "install"], check=True)
|
||||||
|
return True
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error installing WeChatTweak: {e}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
def restart_wechat(self):
|
||||||
|
"""Restart WeChat to apply WeChatTweak."""
|
||||||
|
try:
|
||||||
|
print("Restarting WeChat...")
|
||||||
|
subprocess.run(["pkill", "-f", "WeChat"], check=False)
|
||||||
|
time.sleep(2)
|
||||||
|
subprocess.run(["open", "-a", "WeChat"], check=True)
|
||||||
|
time.sleep(5) # Wait for WeChat to start
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error restarting WeChat: {e}")
|
||||||
|
|
||||||
|
def check_api_available(self) -> bool:
|
||||||
|
"""Check if WeChatTweak API is available."""
|
||||||
|
try:
|
||||||
|
result = subprocess.run(
|
||||||
|
["curl", "-s", "http://localhost:48065/wechat/allcontacts"],
|
||||||
|
capture_output=True,
|
||||||
|
text=True,
|
||||||
|
timeout=5,
|
||||||
|
)
|
||||||
|
return result.returncode == 0 and result.stdout.strip()
|
||||||
|
except Exception:
|
||||||
|
return False
|
||||||
|
|
||||||
|
def _extract_readable_text(self, content: str) -> str:
|
||||||
|
"""
|
||||||
|
Extract readable text from message content, removing XML and system messages.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
content: The raw message content (can be string or dict)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Cleaned, readable text
|
||||||
|
"""
|
||||||
|
if not content:
|
||||||
|
return ""
|
||||||
|
|
||||||
|
# Handle dictionary content (like quoted messages)
|
||||||
|
if isinstance(content, dict):
|
||||||
|
# Extract text from dictionary structure
|
||||||
|
text_parts = []
|
||||||
|
if "title" in content:
|
||||||
|
text_parts.append(str(content["title"]))
|
||||||
|
if "quoted" in content:
|
||||||
|
text_parts.append(str(content["quoted"]))
|
||||||
|
if "content" in content:
|
||||||
|
text_parts.append(str(content["content"]))
|
||||||
|
if "text" in content:
|
||||||
|
text_parts.append(str(content["text"]))
|
||||||
|
|
||||||
|
if text_parts:
|
||||||
|
return " | ".join(text_parts)
|
||||||
|
else:
|
||||||
|
# If we can't extract meaningful text from dict, return empty
|
||||||
|
return ""
|
||||||
|
|
||||||
|
# Handle string content
|
||||||
|
if not isinstance(content, str):
|
||||||
|
return ""
|
||||||
|
|
||||||
|
# Remove common prefixes like "wxid_xxx:\n"
|
||||||
|
clean_content = re.sub(r"^wxid_[^:]+:\s*", "", content)
|
||||||
|
clean_content = re.sub(r"^[^:]+:\s*", "", clean_content)
|
||||||
|
|
||||||
|
# If it's just XML or system message, return empty
|
||||||
|
if clean_content.strip().startswith("<") or "recalled a message" in clean_content:
|
||||||
|
return ""
|
||||||
|
|
||||||
|
return clean_content.strip()
|
||||||
|
|
||||||
|
def _is_text_message(self, content: str) -> bool:
|
||||||
|
"""
|
||||||
|
Check if a message contains readable text content.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
content: The message content (can be string or dict)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
True if the message contains readable text, False otherwise
|
||||||
|
"""
|
||||||
|
if not content:
|
||||||
|
return False
|
||||||
|
|
||||||
|
# Handle dictionary content
|
||||||
|
if isinstance(content, dict):
|
||||||
|
# Check if dict has any readable text fields
|
||||||
|
text_fields = ["title", "quoted", "content", "text"]
|
||||||
|
for field in text_fields:
|
||||||
|
if content.get(field):
|
||||||
|
return True
|
||||||
|
return False
|
||||||
|
|
||||||
|
# Handle string content
|
||||||
|
if not isinstance(content, str):
|
||||||
|
return False
|
||||||
|
|
||||||
|
# Skip image messages (contain XML with img tags)
|
||||||
|
if "<img" in content and "cdnurl" in content:
|
||||||
|
return False
|
||||||
|
|
||||||
|
# Skip emoji messages (contain emoji XML tags)
|
||||||
|
if "<emoji" in content and "productid" in content:
|
||||||
|
return False
|
||||||
|
|
||||||
|
# Skip voice messages
|
||||||
|
if "<voice" in content:
|
||||||
|
return False
|
||||||
|
|
||||||
|
# Skip video messages
|
||||||
|
if "<video" in content:
|
||||||
|
return False
|
||||||
|
|
||||||
|
# Skip file messages
|
||||||
|
if "<appmsg" in content and "appid" in content:
|
||||||
|
return False
|
||||||
|
|
||||||
|
# Skip system messages (like "recalled a message")
|
||||||
|
if "recalled a message" in content:
|
||||||
|
return False
|
||||||
|
|
||||||
|
# Check if there's actual readable text (not just XML or system messages)
|
||||||
|
# Remove common prefixes like "wxid_xxx:\n" and check for actual content
|
||||||
|
clean_content = re.sub(r"^wxid_[^:]+:\s*", "", content)
|
||||||
|
clean_content = re.sub(r"^[^:]+:\s*", "", clean_content)
|
||||||
|
|
||||||
|
# If after cleaning we have meaningful text, consider it readable
|
||||||
|
if len(clean_content.strip()) > 0 and not clean_content.strip().startswith("<"):
|
||||||
|
return True
|
||||||
|
|
||||||
|
return False
|
||||||
|
|
||||||
|
def _concatenate_messages(
|
||||||
|
self,
|
||||||
|
messages: list[dict],
|
||||||
|
max_length: int = 128,
|
||||||
|
time_window_minutes: int = 30,
|
||||||
|
overlap_messages: int = 0,
|
||||||
|
) -> list[dict]:
|
||||||
|
"""
|
||||||
|
Concatenate messages based on length and time rules.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
messages: List of message dictionaries
|
||||||
|
max_length: Maximum length for concatenated message groups. Use -1 to disable length constraint.
|
||||||
|
time_window_minutes: Time window in minutes to group messages together. Use -1 to disable time constraint.
|
||||||
|
overlap_messages: Number of messages to overlap between consecutive groups
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of concatenated message groups
|
||||||
|
"""
|
||||||
|
if not messages:
|
||||||
|
return []
|
||||||
|
|
||||||
|
concatenated_groups = []
|
||||||
|
current_group = []
|
||||||
|
current_length = 0
|
||||||
|
last_timestamp = None
|
||||||
|
|
||||||
|
for message in messages:
|
||||||
|
# Extract message info
|
||||||
|
content = message.get("content", "")
|
||||||
|
message_text = message.get("message", "")
|
||||||
|
create_time = message.get("createTime", 0)
|
||||||
|
message.get("fromUser", "")
|
||||||
|
message.get("toUser", "")
|
||||||
|
message.get("isSentFromSelf", False)
|
||||||
|
|
||||||
|
# Extract readable text
|
||||||
|
readable_text = self._extract_readable_text(content)
|
||||||
|
if not readable_text:
|
||||||
|
readable_text = message_text
|
||||||
|
|
||||||
|
# Skip empty messages
|
||||||
|
if not readable_text.strip():
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Check time window constraint (only if time_window_minutes != -1)
|
||||||
|
if time_window_minutes != -1 and last_timestamp is not None and create_time > 0:
|
||||||
|
time_diff_minutes = (create_time - last_timestamp) / 60
|
||||||
|
if time_diff_minutes > time_window_minutes:
|
||||||
|
# Time gap too large, start new group
|
||||||
|
if current_group:
|
||||||
|
concatenated_groups.append(
|
||||||
|
{
|
||||||
|
"messages": current_group,
|
||||||
|
"total_length": current_length,
|
||||||
|
"start_time": current_group[0].get("createTime", 0),
|
||||||
|
"end_time": current_group[-1].get("createTime", 0),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
# Keep last few messages for overlap
|
||||||
|
if overlap_messages > 0 and len(current_group) > overlap_messages:
|
||||||
|
current_group = current_group[-overlap_messages:]
|
||||||
|
current_length = sum(
|
||||||
|
len(
|
||||||
|
self._extract_readable_text(msg.get("content", ""))
|
||||||
|
or msg.get("message", "")
|
||||||
|
)
|
||||||
|
for msg in current_group
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
current_group = []
|
||||||
|
current_length = 0
|
||||||
|
|
||||||
|
# Check length constraint (only if max_length != -1)
|
||||||
|
message_length = len(readable_text)
|
||||||
|
if max_length != -1 and current_length + message_length > max_length and current_group:
|
||||||
|
# Current group would exceed max length, save it and start new
|
||||||
|
concatenated_groups.append(
|
||||||
|
{
|
||||||
|
"messages": current_group,
|
||||||
|
"total_length": current_length,
|
||||||
|
"start_time": current_group[0].get("createTime", 0),
|
||||||
|
"end_time": current_group[-1].get("createTime", 0),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
# Keep last few messages for overlap
|
||||||
|
if overlap_messages > 0 and len(current_group) > overlap_messages:
|
||||||
|
current_group = current_group[-overlap_messages:]
|
||||||
|
current_length = sum(
|
||||||
|
len(
|
||||||
|
self._extract_readable_text(msg.get("content", ""))
|
||||||
|
or msg.get("message", "")
|
||||||
|
)
|
||||||
|
for msg in current_group
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
current_group = []
|
||||||
|
current_length = 0
|
||||||
|
|
||||||
|
# Add message to current group
|
||||||
|
current_group.append(message)
|
||||||
|
current_length += message_length
|
||||||
|
last_timestamp = create_time
|
||||||
|
|
||||||
|
# Add the last group if it exists
|
||||||
|
if current_group:
|
||||||
|
concatenated_groups.append(
|
||||||
|
{
|
||||||
|
"messages": current_group,
|
||||||
|
"total_length": current_length,
|
||||||
|
"start_time": current_group[0].get("createTime", 0),
|
||||||
|
"end_time": current_group[-1].get("createTime", 0),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
return concatenated_groups
|
||||||
|
|
||||||
|
def _create_concatenated_content(self, message_group: dict, contact_name: str) -> str:
|
||||||
|
"""
|
||||||
|
Create concatenated content from a group of messages.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
message_group: Dictionary containing messages and metadata
|
||||||
|
contact_name: Name of the contact
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Formatted concatenated content
|
||||||
|
"""
|
||||||
|
messages = message_group["messages"]
|
||||||
|
start_time = message_group["start_time"]
|
||||||
|
end_time = message_group["end_time"]
|
||||||
|
|
||||||
|
# Format timestamps
|
||||||
|
if start_time:
|
||||||
|
try:
|
||||||
|
start_timestamp = datetime.fromtimestamp(start_time)
|
||||||
|
start_time_str = start_timestamp.strftime("%Y-%m-%d %H:%M:%S")
|
||||||
|
except (ValueError, OSError):
|
||||||
|
start_time_str = str(start_time)
|
||||||
|
else:
|
||||||
|
start_time_str = "Unknown"
|
||||||
|
|
||||||
|
if end_time:
|
||||||
|
try:
|
||||||
|
end_timestamp = datetime.fromtimestamp(end_time)
|
||||||
|
end_time_str = end_timestamp.strftime("%Y-%m-%d %H:%M:%S")
|
||||||
|
except (ValueError, OSError):
|
||||||
|
end_time_str = str(end_time)
|
||||||
|
else:
|
||||||
|
end_time_str = "Unknown"
|
||||||
|
|
||||||
|
# Build concatenated message content
|
||||||
|
message_parts = []
|
||||||
|
for message in messages:
|
||||||
|
content = message.get("content", "")
|
||||||
|
message_text = message.get("message", "")
|
||||||
|
create_time = message.get("createTime", 0)
|
||||||
|
is_sent_from_self = message.get("isSentFromSelf", False)
|
||||||
|
|
||||||
|
# Extract readable text
|
||||||
|
readable_text = self._extract_readable_text(content)
|
||||||
|
if not readable_text:
|
||||||
|
readable_text = message_text
|
||||||
|
|
||||||
|
# Format individual message
|
||||||
|
if create_time:
|
||||||
|
try:
|
||||||
|
timestamp = datetime.fromtimestamp(create_time)
|
||||||
|
# change to YYYY-MM-DD HH:MM:SS
|
||||||
|
time_str = timestamp.strftime("%Y-%m-%d %H:%M:%S")
|
||||||
|
except (ValueError, OSError):
|
||||||
|
time_str = str(create_time)
|
||||||
|
else:
|
||||||
|
time_str = "Unknown"
|
||||||
|
|
||||||
|
sender = "[Me]" if is_sent_from_self else "[Contact]"
|
||||||
|
message_parts.append(f"({time_str}) {sender}: {readable_text}")
|
||||||
|
|
||||||
|
concatenated_text = "\n".join(message_parts)
|
||||||
|
|
||||||
|
# Create final document content
|
||||||
|
doc_content = f"""
|
||||||
|
Contact: {contact_name}
|
||||||
|
Time Range: {start_time_str} - {end_time_str}
|
||||||
|
Messages ({len(messages)} messages, {message_group["total_length"]} chars):
|
||||||
|
|
||||||
|
{concatenated_text}
|
||||||
|
"""
|
||||||
|
# TODO @yichuan give better format and rich info here!
|
||||||
|
doc_content = f"""
|
||||||
|
{concatenated_text}
|
||||||
|
"""
|
||||||
|
return doc_content, contact_name
|
||||||
|
|
||||||
|
def load_data(self, input_dir: str | None = None, **load_kwargs: Any) -> list[Document]:
|
||||||
|
"""
|
||||||
|
Load WeChat chat history data from exported JSON files.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
input_dir: Directory containing exported WeChat JSON files
|
||||||
|
**load_kwargs:
|
||||||
|
max_count (int): Maximum amount of chat entries to read.
|
||||||
|
wechat_export_dir (str): Custom path to WeChat export directory.
|
||||||
|
include_non_text (bool): Whether to include non-text messages (images, emojis, etc.)
|
||||||
|
concatenate_messages (bool): Whether to concatenate messages based on length rules.
|
||||||
|
max_length (int): Maximum length for concatenated message groups (default: 1000).
|
||||||
|
time_window_minutes (int): Time window in minutes to group messages together (default: 30).
|
||||||
|
overlap_messages (int): Number of messages to overlap between consecutive groups (default: 2).
|
||||||
|
"""
|
||||||
|
docs: list[Document] = []
|
||||||
|
max_count = load_kwargs.get("max_count", 1000)
|
||||||
|
wechat_export_dir = load_kwargs.get("wechat_export_dir", None)
|
||||||
|
include_non_text = load_kwargs.get("include_non_text", False)
|
||||||
|
concatenate_messages = load_kwargs.get("concatenate_messages", False)
|
||||||
|
max_length = load_kwargs.get("max_length", 1000)
|
||||||
|
time_window_minutes = load_kwargs.get("time_window_minutes", 30)
|
||||||
|
|
||||||
|
# Default WeChat export path
|
||||||
|
if wechat_export_dir is None:
|
||||||
|
wechat_export_dir = "./wechat_export_test"
|
||||||
|
|
||||||
|
if not os.path.exists(wechat_export_dir):
|
||||||
|
print(f"WeChat export directory not found at: {wechat_export_dir}")
|
||||||
|
return docs
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Find all JSON files in the export directory
|
||||||
|
json_files = list(Path(wechat_export_dir).glob("*.json"))
|
||||||
|
print(f"Found {len(json_files)} WeChat chat history files")
|
||||||
|
|
||||||
|
count = 0
|
||||||
|
for json_file in json_files:
|
||||||
|
if count >= max_count and max_count > 0:
|
||||||
|
break
|
||||||
|
|
||||||
|
try:
|
||||||
|
with open(json_file, encoding="utf-8") as f:
|
||||||
|
chat_data = json.load(f)
|
||||||
|
|
||||||
|
# Extract contact name from filename
|
||||||
|
contact_name = json_file.stem
|
||||||
|
|
||||||
|
if concatenate_messages:
|
||||||
|
# Filter messages to only include readable text messages
|
||||||
|
readable_messages = []
|
||||||
|
for message in chat_data:
|
||||||
|
try:
|
||||||
|
content = message.get("content", "")
|
||||||
|
if not include_non_text and not self._is_text_message(content):
|
||||||
|
continue
|
||||||
|
|
||||||
|
readable_text = self._extract_readable_text(content)
|
||||||
|
if not readable_text and not include_non_text:
|
||||||
|
continue
|
||||||
|
|
||||||
|
readable_messages.append(message)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error processing message in {json_file}: {e}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Concatenate messages based on rules
|
||||||
|
message_groups = self._concatenate_messages(
|
||||||
|
readable_messages,
|
||||||
|
max_length=max_length,
|
||||||
|
time_window_minutes=time_window_minutes,
|
||||||
|
overlap_messages=0, # No overlap between groups
|
||||||
|
)
|
||||||
|
|
||||||
|
# Create documents from concatenated groups
|
||||||
|
for message_group in message_groups:
|
||||||
|
if count >= max_count and max_count > 0:
|
||||||
|
break
|
||||||
|
|
||||||
|
doc_content, contact_name = self._create_concatenated_content(
|
||||||
|
message_group, contact_name
|
||||||
|
)
|
||||||
|
doc = Document(
|
||||||
|
text=doc_content,
|
||||||
|
metadata={"contact_name": contact_name},
|
||||||
|
)
|
||||||
|
docs.append(doc)
|
||||||
|
count += 1
|
||||||
|
|
||||||
|
print(
|
||||||
|
f"Created {len(message_groups)} concatenated message groups for {contact_name}"
|
||||||
|
)
|
||||||
|
|
||||||
|
else:
|
||||||
|
# Original single-message processing
|
||||||
|
for message in chat_data:
|
||||||
|
if count >= max_count and max_count > 0:
|
||||||
|
break
|
||||||
|
|
||||||
|
# Extract message information
|
||||||
|
message.get("fromUser", "")
|
||||||
|
message.get("toUser", "")
|
||||||
|
content = message.get("content", "")
|
||||||
|
message_text = message.get("message", "")
|
||||||
|
create_time = message.get("createTime", 0)
|
||||||
|
is_sent_from_self = message.get("isSentFromSelf", False)
|
||||||
|
|
||||||
|
# Handle content that might be dict or string
|
||||||
|
try:
|
||||||
|
# Check if this is a readable text message
|
||||||
|
if not include_non_text and not self._is_text_message(content):
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Extract readable text
|
||||||
|
readable_text = self._extract_readable_text(content)
|
||||||
|
if not readable_text and not include_non_text:
|
||||||
|
continue
|
||||||
|
except Exception as e:
|
||||||
|
# Skip messages that cause processing errors
|
||||||
|
print(f"Error processing message in {json_file}: {e}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Convert timestamp to readable format
|
||||||
|
if create_time:
|
||||||
|
try:
|
||||||
|
timestamp = datetime.fromtimestamp(create_time)
|
||||||
|
time_str = timestamp.strftime("%Y-%m-%d %H:%M:%S")
|
||||||
|
except (ValueError, OSError):
|
||||||
|
time_str = str(create_time)
|
||||||
|
else:
|
||||||
|
time_str = "Unknown"
|
||||||
|
|
||||||
|
# Create document content with metadata header and contact info
|
||||||
|
doc_content = f"""
|
||||||
|
Contact: {contact_name}
|
||||||
|
Is sent from self: {is_sent_from_self}
|
||||||
|
Time: {time_str}
|
||||||
|
Message: {readable_text if readable_text else message_text}
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Create document with embedded metadata
|
||||||
|
doc = Document(
|
||||||
|
text=doc_content, metadata={"contact_name": contact_name}
|
||||||
|
)
|
||||||
|
docs.append(doc)
|
||||||
|
count += 1
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error reading {json_file}: {e}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
print(f"Loaded {len(docs)} WeChat chat documents")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error reading WeChat history: {e}")
|
||||||
|
return docs
|
||||||
|
|
||||||
|
return docs
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def find_wechat_export_dirs() -> list[Path]:
|
||||||
|
"""
|
||||||
|
Find all WeChat export directories.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of Path objects pointing to WeChat export directories
|
||||||
|
"""
|
||||||
|
export_dirs = []
|
||||||
|
|
||||||
|
# Look for common export directory names
|
||||||
|
possible_dirs = [
|
||||||
|
Path("./wechat_export"),
|
||||||
|
Path("./wechat_export_direct"),
|
||||||
|
Path("./wechat_chat_history"),
|
||||||
|
Path("./chat_export"),
|
||||||
|
]
|
||||||
|
|
||||||
|
for export_dir in possible_dirs:
|
||||||
|
if export_dir.exists() and export_dir.is_dir():
|
||||||
|
json_files = list(export_dir.glob("*.json"))
|
||||||
|
if json_files:
|
||||||
|
export_dirs.append(export_dir)
|
||||||
|
print(
|
||||||
|
f"Found WeChat export directory: {export_dir} with {len(json_files)} files"
|
||||||
|
)
|
||||||
|
|
||||||
|
print(f"Found {len(export_dirs)} WeChat export directories")
|
||||||
|
return export_dirs
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def export_chat_to_file(
|
||||||
|
output_file: str = "wechat_chat_export.txt",
|
||||||
|
max_count: int = 1000,
|
||||||
|
export_dir: str | None = None,
|
||||||
|
include_non_text: bool = False,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Export WeChat chat history to a text file.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
output_file: Path to the output file
|
||||||
|
max_count: Maximum number of entries to export
|
||||||
|
export_dir: Directory containing WeChat JSON files
|
||||||
|
include_non_text: Whether to include non-text messages
|
||||||
|
"""
|
||||||
|
if export_dir is None:
|
||||||
|
export_dir = "./wechat_export_test"
|
||||||
|
|
||||||
|
if not os.path.exists(export_dir):
|
||||||
|
print(f"WeChat export directory not found at: {export_dir}")
|
||||||
|
return
|
||||||
|
|
||||||
|
try:
|
||||||
|
json_files = list(Path(export_dir).glob("*.json"))
|
||||||
|
|
||||||
|
with open(output_file, "w", encoding="utf-8") as f:
|
||||||
|
count = 0
|
||||||
|
for json_file in json_files:
|
||||||
|
if count >= max_count and max_count > 0:
|
||||||
|
break
|
||||||
|
|
||||||
|
try:
|
||||||
|
with open(json_file, encoding="utf-8") as json_f:
|
||||||
|
chat_data = json.load(json_f)
|
||||||
|
|
||||||
|
contact_name = json_file.stem
|
||||||
|
f.write(f"\n=== Chat with {contact_name} ===\n")
|
||||||
|
|
||||||
|
for message in chat_data:
|
||||||
|
if count >= max_count and max_count > 0:
|
||||||
|
break
|
||||||
|
|
||||||
|
from_user = message.get("fromUser", "")
|
||||||
|
content = message.get("content", "")
|
||||||
|
message_text = message.get("message", "")
|
||||||
|
create_time = message.get("createTime", 0)
|
||||||
|
|
||||||
|
# Skip non-text messages unless requested
|
||||||
|
if not include_non_text:
|
||||||
|
reader = WeChatHistoryReader()
|
||||||
|
if not reader._is_text_message(content):
|
||||||
|
continue
|
||||||
|
readable_text = reader._extract_readable_text(content)
|
||||||
|
if not readable_text:
|
||||||
|
continue
|
||||||
|
message_text = readable_text
|
||||||
|
|
||||||
|
if create_time:
|
||||||
|
try:
|
||||||
|
timestamp = datetime.fromtimestamp(create_time)
|
||||||
|
time_str = timestamp.strftime("%Y-%m-%d %H:%M:%S")
|
||||||
|
except (ValueError, OSError):
|
||||||
|
time_str = str(create_time)
|
||||||
|
else:
|
||||||
|
time_str = "Unknown"
|
||||||
|
|
||||||
|
f.write(f"[{time_str}] {from_user}: {message_text}\n")
|
||||||
|
count += 1
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error processing {json_file}: {e}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
print(f"Exported {count} chat entries to {output_file}")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error exporting WeChat chat history: {e}")
|
||||||
|
|
||||||
|
def export_wechat_chat_history(self, export_dir: str = "./wechat_export_direct") -> Path | None:
|
||||||
|
"""
|
||||||
|
Export WeChat chat history using wechat-exporter tool.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
export_dir: Directory to save exported chat history
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Path to export directory if successful, None otherwise
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
import subprocess
|
||||||
|
import sys
|
||||||
|
|
||||||
|
# Create export directory
|
||||||
|
export_path = Path(export_dir)
|
||||||
|
export_path.mkdir(exist_ok=True)
|
||||||
|
|
||||||
|
print(f"Exporting WeChat chat history to {export_path}...")
|
||||||
|
|
||||||
|
# Check if wechat-exporter directory exists
|
||||||
|
if not self.wechat_exporter_dir.exists():
|
||||||
|
print(f"wechat-exporter directory not found at: {self.wechat_exporter_dir}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
# Install requirements if needed
|
||||||
|
requirements_file = self.wechat_exporter_dir / "requirements.txt"
|
||||||
|
if requirements_file.exists():
|
||||||
|
print("Installing wechat-exporter requirements...")
|
||||||
|
subprocess.run(["uv", "pip", "install", "-r", str(requirements_file)], check=True)
|
||||||
|
|
||||||
|
# Run the export command
|
||||||
|
print("Running wechat-exporter...")
|
||||||
|
result = subprocess.run(
|
||||||
|
[
|
||||||
|
sys.executable,
|
||||||
|
str(self.wechat_exporter_dir / "main.py"),
|
||||||
|
"export-all",
|
||||||
|
str(export_path),
|
||||||
|
],
|
||||||
|
capture_output=True,
|
||||||
|
text=True,
|
||||||
|
check=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
print("Export command output:")
|
||||||
|
print(result.stdout)
|
||||||
|
if result.stderr:
|
||||||
|
print("Export errors:")
|
||||||
|
print(result.stderr)
|
||||||
|
|
||||||
|
# Check if export was successful
|
||||||
|
if export_path.exists() and any(export_path.glob("*.json")):
|
||||||
|
json_files = list(export_path.glob("*.json"))
|
||||||
|
print(
|
||||||
|
f"Successfully exported {len(json_files)} chat history files to {export_path}"
|
||||||
|
)
|
||||||
|
return export_path
|
||||||
|
else:
|
||||||
|
print("Export completed but no JSON files found")
|
||||||
|
return None
|
||||||
|
|
||||||
|
except subprocess.CalledProcessError as e:
|
||||||
|
print(f"Export command failed: {e}")
|
||||||
|
print(f"Command output: {e.stdout}")
|
||||||
|
print(f"Command errors: {e.stderr}")
|
||||||
|
return None
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Export failed: {e}")
|
||||||
|
print("Please ensure WeChat is running and WeChatTweak is installed.")
|
||||||
|
return None
|
||||||
|
|
||||||
|
def find_or_export_wechat_data(self, export_dir: str = "./wechat_export_direct") -> list[Path]:
|
||||||
|
"""
|
||||||
|
Find existing WeChat exports or create new ones.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
export_dir: Directory to save exported chat history if needed
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of Path objects pointing to WeChat export directories
|
||||||
|
"""
|
||||||
|
export_dirs = []
|
||||||
|
|
||||||
|
# Look for existing exports in common locations
|
||||||
|
possible_export_dirs = [
|
||||||
|
Path("./wechat_database_export"),
|
||||||
|
Path("./wechat_export_test"),
|
||||||
|
Path("./wechat_export"),
|
||||||
|
Path("./wechat_export_direct"),
|
||||||
|
Path("./wechat_chat_history"),
|
||||||
|
Path("./chat_export"),
|
||||||
|
]
|
||||||
|
|
||||||
|
for export_dir_path in possible_export_dirs:
|
||||||
|
if export_dir_path.exists() and any(export_dir_path.glob("*.json")):
|
||||||
|
export_dirs.append(export_dir_path)
|
||||||
|
print(f"Found existing export: {export_dir_path}")
|
||||||
|
|
||||||
|
# If no existing exports, try to export automatically
|
||||||
|
if not export_dirs:
|
||||||
|
print("No existing WeChat exports found. Starting direct export...")
|
||||||
|
|
||||||
|
# Try to export using wechat-exporter
|
||||||
|
exported_path = self.export_wechat_chat_history(export_dir)
|
||||||
|
if exported_path:
|
||||||
|
export_dirs = [exported_path]
|
||||||
|
else:
|
||||||
|
print(
|
||||||
|
"Failed to export WeChat data. Please ensure WeChat is running and WeChatTweak is installed."
|
||||||
|
)
|
||||||
|
|
||||||
|
return export_dirs
|
||||||
189
apps/wechat_rag.py
Normal file
@@ -0,0 +1,189 @@
|
|||||||
|
"""
|
||||||
|
WeChat History RAG example using the unified interface.
|
||||||
|
Supports WeChat chat history export and search.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import subprocess
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
# Add parent directory to path for imports
|
||||||
|
sys.path.insert(0, str(Path(__file__).parent))
|
||||||
|
|
||||||
|
from base_rag_example import BaseRAGExample
|
||||||
|
|
||||||
|
from .history_data.wechat_history import WeChatHistoryReader
|
||||||
|
|
||||||
|
|
||||||
|
class WeChatRAG(BaseRAGExample):
|
||||||
|
"""RAG example for WeChat chat history."""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
# Set default values BEFORE calling super().__init__
|
||||||
|
self.max_items_default = -1 # Match original default
|
||||||
|
self.embedding_model_default = (
|
||||||
|
"sentence-transformers/all-MiniLM-L6-v2" # Fast 384-dim model
|
||||||
|
)
|
||||||
|
|
||||||
|
super().__init__(
|
||||||
|
name="WeChat History",
|
||||||
|
description="Process and query WeChat chat history with LEANN",
|
||||||
|
default_index_name="wechat_history_magic_test_11Debug_new",
|
||||||
|
)
|
||||||
|
|
||||||
|
def _add_specific_arguments(self, parser):
|
||||||
|
"""Add WeChat-specific arguments."""
|
||||||
|
wechat_group = parser.add_argument_group("WeChat Parameters")
|
||||||
|
wechat_group.add_argument(
|
||||||
|
"--export-dir",
|
||||||
|
type=str,
|
||||||
|
default="./wechat_export",
|
||||||
|
help="Directory to store WeChat exports (default: ./wechat_export)",
|
||||||
|
)
|
||||||
|
wechat_group.add_argument(
|
||||||
|
"--force-export",
|
||||||
|
action="store_true",
|
||||||
|
help="Force re-export of WeChat data even if exports exist",
|
||||||
|
)
|
||||||
|
wechat_group.add_argument(
|
||||||
|
"--chunk-size", type=int, default=192, help="Text chunk size (default: 192)"
|
||||||
|
)
|
||||||
|
wechat_group.add_argument(
|
||||||
|
"--chunk-overlap", type=int, default=64, help="Text chunk overlap (default: 64)"
|
||||||
|
)
|
||||||
|
|
||||||
|
def _export_wechat_data(self, export_dir: Path) -> bool:
|
||||||
|
"""Export WeChat data using wechattweak-cli."""
|
||||||
|
print("Exporting WeChat data...")
|
||||||
|
|
||||||
|
# Check if WeChat is running
|
||||||
|
try:
|
||||||
|
result = subprocess.run(["pgrep", "WeChat"], capture_output=True, text=True)
|
||||||
|
if result.returncode != 0:
|
||||||
|
print("WeChat is not running. Please start WeChat first.")
|
||||||
|
return False
|
||||||
|
except Exception:
|
||||||
|
pass # pgrep might not be available on all systems
|
||||||
|
|
||||||
|
# Create export directory
|
||||||
|
export_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
# Run export command
|
||||||
|
cmd = ["packages/wechat-exporter/wechattweak-cli", "export", str(export_dir)]
|
||||||
|
|
||||||
|
try:
|
||||||
|
print(f"Running: {' '.join(cmd)}")
|
||||||
|
result = subprocess.run(cmd, capture_output=True, text=True)
|
||||||
|
|
||||||
|
if result.returncode == 0:
|
||||||
|
print("WeChat data exported successfully!")
|
||||||
|
return True
|
||||||
|
else:
|
||||||
|
print(f"Export failed: {result.stderr}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
except FileNotFoundError:
|
||||||
|
print("\nError: wechattweak-cli not found!")
|
||||||
|
print("Please install it first:")
|
||||||
|
print(" sudo packages/wechat-exporter/wechattweak-cli install")
|
||||||
|
return False
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Export error: {e}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
async def load_data(self, args) -> list[str]:
|
||||||
|
"""Load WeChat history and convert to text chunks."""
|
||||||
|
# Initialize WeChat reader with export capabilities
|
||||||
|
reader = WeChatHistoryReader()
|
||||||
|
|
||||||
|
# Find existing exports or create new ones using the centralized method
|
||||||
|
export_dirs = reader.find_or_export_wechat_data(args.export_dir)
|
||||||
|
if not export_dirs:
|
||||||
|
print("Failed to find or export WeChat data. Trying to find any existing exports...")
|
||||||
|
# Try to find any existing exports in common locations
|
||||||
|
export_dirs = reader.find_wechat_export_dirs()
|
||||||
|
if not export_dirs:
|
||||||
|
print("No WeChat data found. Please ensure WeChat exports exist.")
|
||||||
|
return []
|
||||||
|
|
||||||
|
# Load documents from all found export directories
|
||||||
|
all_documents = []
|
||||||
|
total_processed = 0
|
||||||
|
|
||||||
|
for i, export_dir in enumerate(export_dirs):
|
||||||
|
print(f"\nProcessing WeChat export {i + 1}/{len(export_dirs)}: {export_dir}")
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Apply max_items limit per export
|
||||||
|
max_per_export = -1
|
||||||
|
if args.max_items > 0:
|
||||||
|
remaining = args.max_items - total_processed
|
||||||
|
if remaining <= 0:
|
||||||
|
break
|
||||||
|
max_per_export = remaining
|
||||||
|
|
||||||
|
documents = reader.load_data(
|
||||||
|
wechat_export_dir=str(export_dir),
|
||||||
|
max_count=max_per_export,
|
||||||
|
concatenate_messages=True, # Enable message concatenation for better context
|
||||||
|
)
|
||||||
|
|
||||||
|
if documents:
|
||||||
|
print(f"Loaded {len(documents)} chat documents from {export_dir}")
|
||||||
|
all_documents.extend(documents)
|
||||||
|
total_processed += len(documents)
|
||||||
|
else:
|
||||||
|
print(f"No documents loaded from {export_dir}")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error processing {export_dir}: {e}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
if not all_documents:
|
||||||
|
print("No documents loaded from any source. Exiting.")
|
||||||
|
return []
|
||||||
|
|
||||||
|
print(f"\nTotal loaded {len(all_documents)} chat documents from {len(export_dirs)} exports")
|
||||||
|
print("now starting to split into text chunks ... take some time")
|
||||||
|
|
||||||
|
# Convert to text chunks with contact information
|
||||||
|
all_texts = []
|
||||||
|
for doc in all_documents:
|
||||||
|
# Split the document into chunks
|
||||||
|
from llama_index.core.node_parser import SentenceSplitter
|
||||||
|
|
||||||
|
text_splitter = SentenceSplitter(
|
||||||
|
chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
|
||||||
|
)
|
||||||
|
nodes = text_splitter.get_nodes_from_documents([doc])
|
||||||
|
|
||||||
|
for node in nodes:
|
||||||
|
# Add contact information to each chunk
|
||||||
|
contact_name = doc.metadata.get("contact_name", "Unknown")
|
||||||
|
text = f"[Contact] means the message is from: {contact_name}\n" + node.get_content()
|
||||||
|
all_texts.append(text)
|
||||||
|
|
||||||
|
print(f"Created {len(all_texts)} text chunks from {len(all_documents)} documents")
|
||||||
|
return all_texts
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import asyncio
|
||||||
|
|
||||||
|
# Check platform
|
||||||
|
if sys.platform != "darwin":
|
||||||
|
print("\n⚠️ Warning: WeChat export is only supported on macOS")
|
||||||
|
print(" You can still query existing exports on other platforms\n")
|
||||||
|
|
||||||
|
# Example queries for WeChat RAG
|
||||||
|
print("\n💬 WeChat History RAG Example")
|
||||||
|
print("=" * 50)
|
||||||
|
print("\nExample queries you can try:")
|
||||||
|
print("- 'Show me conversations about travel plans'")
|
||||||
|
print("- 'Find group chats about weekend activities'")
|
||||||
|
print("- '我想买魔术师约翰逊的球衣,给我一些对应聊天记录?'")
|
||||||
|
print("- 'What did we discuss about the project last month?'")
|
||||||
|
print("\nNote: WeChat must be running for export to work\n")
|
||||||
|
|
||||||
|
rag = WeChatRAG()
|
||||||
|
asyncio.run(rag.run())
|
||||||
BIN
assets/arch.png
Normal file
|
After Width: | Height: | Size: 78 KiB |
BIN
assets/claude_code_leann.png
Normal file
|
After Width: | Height: | Size: 73 KiB |
BIN
assets/effects.png
Normal file
|
After Width: | Height: | Size: 339 KiB |
BIN
assets/logo-text.png
Normal file
|
After Width: | Height: | Size: 818 KiB |
BIN
assets/logo.png
Normal file
|
After Width: | Height: | Size: 276 KiB |
BIN
assets/mcp_leann.png
Normal file
|
After Width: | Height: | Size: 224 KiB |
BIN
assets/wechat_user_group.JPG
Normal file
|
After Width: | Height: | Size: 152 KiB |
@@ -1,9 +1,24 @@
|
|||||||
# 🧪 Leann Sanity Checks
|
# 🧪 LEANN Benchmarks & Testing
|
||||||
|
|
||||||
This directory contains comprehensive sanity checks for the Leann system, ensuring all components work correctly across different configurations.
|
This directory contains performance benchmarks and comprehensive tests for the LEANN system, including backend comparisons and sanity checks across different configurations.
|
||||||
|
|
||||||
## 📁 Test Files
|
## 📁 Test Files
|
||||||
|
|
||||||
|
### `diskann_vs_hnsw_speed_comparison.py`
|
||||||
|
Performance comparison between DiskANN and HNSW backends:
|
||||||
|
- ✅ **Search latency** comparison with both backends using recompute
|
||||||
|
- ✅ **Index size** and **build time** measurements
|
||||||
|
- ✅ **Score validity** testing (ensures no -inf scores)
|
||||||
|
- ✅ **Configurable dataset sizes** for different scales
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Quick comparison with 500 docs, 10 queries
|
||||||
|
python benchmarks/diskann_vs_hnsw_speed_comparison.py
|
||||||
|
|
||||||
|
# Large-scale comparison with 2000 docs, 20 queries
|
||||||
|
python benchmarks/diskann_vs_hnsw_speed_comparison.py 2000 20
|
||||||
|
```
|
||||||
|
|
||||||
### `test_distance_functions.py`
|
### `test_distance_functions.py`
|
||||||
Tests all supported distance functions across DiskANN backend:
|
Tests all supported distance functions across DiskANN backend:
|
||||||
- ✅ **MIPS** (Maximum Inner Product Search)
|
- ✅ **MIPS** (Maximum Inner Product Search)
|
||||||
141
benchmarks/benchmark_embeddings.py
Normal file
@@ -0,0 +1,141 @@
|
|||||||
|
import time
|
||||||
|
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import mlx.core as mx
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from mlx_lm import load
|
||||||
|
from sentence_transformers import SentenceTransformer
|
||||||
|
|
||||||
|
# --- Configuration ---
|
||||||
|
MODEL_NAME_TORCH = "Qwen/Qwen3-Embedding-0.6B"
|
||||||
|
MODEL_NAME_MLX = "mlx-community/Qwen3-Embedding-0.6B-4bit-DWQ"
|
||||||
|
BATCH_SIZES = [1, 8, 16, 32, 64, 128]
|
||||||
|
NUM_RUNS = 10 # Number of runs to average for each batch size
|
||||||
|
WARMUP_RUNS = 2 # Number of warm-up runs
|
||||||
|
|
||||||
|
# --- Generate Dummy Data ---
|
||||||
|
DUMMY_SENTENCES = ["This is a test sentence for benchmarking." * 5] * max(BATCH_SIZES)
|
||||||
|
|
||||||
|
# --- Benchmark Functions ---b
|
||||||
|
|
||||||
|
|
||||||
|
def benchmark_torch(model, sentences):
|
||||||
|
start_time = time.time()
|
||||||
|
model.encode(sentences, convert_to_numpy=True)
|
||||||
|
end_time = time.time()
|
||||||
|
return (end_time - start_time) * 1000 # Return time in ms
|
||||||
|
|
||||||
|
|
||||||
|
def benchmark_mlx(model, tokenizer, sentences):
|
||||||
|
start_time = time.time()
|
||||||
|
|
||||||
|
# Tokenize sentences using MLX tokenizer
|
||||||
|
tokens = []
|
||||||
|
for sentence in sentences:
|
||||||
|
token_ids = tokenizer.encode(sentence)
|
||||||
|
tokens.append(token_ids)
|
||||||
|
|
||||||
|
# Pad sequences to the same length
|
||||||
|
max_len = max(len(t) for t in tokens)
|
||||||
|
input_ids = []
|
||||||
|
attention_mask = []
|
||||||
|
|
||||||
|
for token_seq in tokens:
|
||||||
|
# Pad sequence
|
||||||
|
padded = token_seq + [tokenizer.eos_token_id] * (max_len - len(token_seq))
|
||||||
|
input_ids.append(padded)
|
||||||
|
# Create attention mask (1 for real tokens, 0 for padding)
|
||||||
|
mask = [1] * len(token_seq) + [0] * (max_len - len(token_seq))
|
||||||
|
attention_mask.append(mask)
|
||||||
|
|
||||||
|
# Convert to MLX arrays
|
||||||
|
input_ids = mx.array(input_ids)
|
||||||
|
attention_mask = mx.array(attention_mask)
|
||||||
|
|
||||||
|
# Get embeddings
|
||||||
|
embeddings = model(input_ids)
|
||||||
|
|
||||||
|
# Mean pooling
|
||||||
|
mask = mx.expand_dims(attention_mask, -1)
|
||||||
|
sum_embeddings = (embeddings * mask).sum(axis=1)
|
||||||
|
sum_mask = mask.sum(axis=1)
|
||||||
|
_ = sum_embeddings / sum_mask
|
||||||
|
|
||||||
|
mx.eval() # Ensure computation is finished
|
||||||
|
end_time = time.time()
|
||||||
|
return (end_time - start_time) * 1000 # Return time in ms
|
||||||
|
|
||||||
|
|
||||||
|
# --- Main Execution ---
|
||||||
|
def main():
|
||||||
|
print("--- Initializing Models ---")
|
||||||
|
# Load PyTorch model
|
||||||
|
print(f"Loading PyTorch model: {MODEL_NAME_TORCH}")
|
||||||
|
device = "mps" if torch.backends.mps.is_available() else "cpu"
|
||||||
|
model_torch = SentenceTransformer(MODEL_NAME_TORCH, device=device)
|
||||||
|
print(f"PyTorch model loaded on: {device}")
|
||||||
|
|
||||||
|
# Load MLX model
|
||||||
|
print(f"Loading MLX model: {MODEL_NAME_MLX}")
|
||||||
|
model_mlx, tokenizer_mlx = load(MODEL_NAME_MLX)
|
||||||
|
print("MLX model loaded.")
|
||||||
|
|
||||||
|
# --- Warm-up ---
|
||||||
|
print("\n--- Performing Warm-up Runs ---")
|
||||||
|
for _ in range(WARMUP_RUNS):
|
||||||
|
benchmark_torch(model_torch, DUMMY_SENTENCES[:1])
|
||||||
|
benchmark_mlx(model_mlx, tokenizer_mlx, DUMMY_SENTENCES[:1])
|
||||||
|
print("Warm-up complete.")
|
||||||
|
|
||||||
|
# --- Benchmarking ---
|
||||||
|
print("\n--- Starting Benchmark ---")
|
||||||
|
results_torch = []
|
||||||
|
results_mlx = []
|
||||||
|
|
||||||
|
for batch_size in BATCH_SIZES:
|
||||||
|
print(f"Benchmarking batch size: {batch_size}")
|
||||||
|
sentences_batch = DUMMY_SENTENCES[:batch_size]
|
||||||
|
|
||||||
|
# Benchmark PyTorch
|
||||||
|
torch_times = [benchmark_torch(model_torch, sentences_batch) for _ in range(NUM_RUNS)]
|
||||||
|
results_torch.append(np.mean(torch_times))
|
||||||
|
|
||||||
|
# Benchmark MLX
|
||||||
|
mlx_times = [
|
||||||
|
benchmark_mlx(model_mlx, tokenizer_mlx, sentences_batch) for _ in range(NUM_RUNS)
|
||||||
|
]
|
||||||
|
results_mlx.append(np.mean(mlx_times))
|
||||||
|
|
||||||
|
print("\n--- Benchmark Results (Average time per batch in ms) ---")
|
||||||
|
print(f"Batch Sizes: {BATCH_SIZES}")
|
||||||
|
print(f"PyTorch (mps): {[f'{t:.2f}' for t in results_torch]}")
|
||||||
|
print(f"MLX: {[f'{t:.2f}' for t in results_mlx]}")
|
||||||
|
|
||||||
|
# --- Plotting ---
|
||||||
|
print("\n--- Generating Plot ---")
|
||||||
|
plt.figure(figsize=(10, 6))
|
||||||
|
plt.plot(
|
||||||
|
BATCH_SIZES,
|
||||||
|
results_torch,
|
||||||
|
marker="o",
|
||||||
|
linestyle="-",
|
||||||
|
label=f"PyTorch ({device})",
|
||||||
|
)
|
||||||
|
plt.plot(BATCH_SIZES, results_mlx, marker="s", linestyle="-", label="MLX")
|
||||||
|
|
||||||
|
plt.title(f"Embedding Performance: MLX vs PyTorch\nModel: {MODEL_NAME_TORCH}")
|
||||||
|
plt.xlabel("Batch Size")
|
||||||
|
plt.ylabel("Average Time per Batch (ms)")
|
||||||
|
plt.xticks(BATCH_SIZES)
|
||||||
|
plt.grid(True)
|
||||||
|
plt.legend()
|
||||||
|
|
||||||
|
# Save the plot
|
||||||
|
output_filename = "embedding_benchmark.png"
|
||||||
|
plt.savefig(output_filename)
|
||||||
|
print(f"Plot saved to {output_filename}")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
148
benchmarks/benchmark_no_recompute.py
Normal file
@@ -0,0 +1,148 @@
|
|||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
import time
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
from leann import LeannBuilder, LeannSearcher
|
||||||
|
|
||||||
|
|
||||||
|
def _meta_exists(index_path: str) -> bool:
|
||||||
|
p = Path(index_path)
|
||||||
|
return (p.parent / f"{p.stem}.meta.json").exists()
|
||||||
|
|
||||||
|
|
||||||
|
def ensure_index(index_path: str, backend_name: str, num_docs: int, is_recompute: bool) -> None:
|
||||||
|
# if _meta_exists(index_path):
|
||||||
|
# return
|
||||||
|
kwargs = {}
|
||||||
|
if backend_name == "hnsw":
|
||||||
|
kwargs["is_compact"] = is_recompute
|
||||||
|
builder = LeannBuilder(
|
||||||
|
backend_name=backend_name,
|
||||||
|
embedding_model=os.getenv("LEANN_EMBED_MODEL", "facebook/contriever"),
|
||||||
|
embedding_mode=os.getenv("LEANN_EMBED_MODE", "sentence-transformers"),
|
||||||
|
graph_degree=32,
|
||||||
|
complexity=64,
|
||||||
|
is_recompute=is_recompute,
|
||||||
|
num_threads=4,
|
||||||
|
**kwargs,
|
||||||
|
)
|
||||||
|
for i in range(num_docs):
|
||||||
|
builder.add_text(
|
||||||
|
f"This is a test document number {i}. It contains some repeated text for benchmarking."
|
||||||
|
)
|
||||||
|
builder.build_index(index_path)
|
||||||
|
|
||||||
|
|
||||||
|
def _bench_group(
|
||||||
|
index_path: str,
|
||||||
|
recompute: bool,
|
||||||
|
query: str,
|
||||||
|
repeats: int,
|
||||||
|
complexity: int = 32,
|
||||||
|
top_k: int = 10,
|
||||||
|
) -> float:
|
||||||
|
# Independent searcher per group; fixed port when recompute
|
||||||
|
searcher = LeannSearcher(index_path=index_path)
|
||||||
|
|
||||||
|
# Warm-up once
|
||||||
|
_ = searcher.search(
|
||||||
|
query,
|
||||||
|
top_k=top_k,
|
||||||
|
complexity=complexity,
|
||||||
|
recompute_embeddings=recompute,
|
||||||
|
)
|
||||||
|
|
||||||
|
def _once() -> float:
|
||||||
|
t0 = time.time()
|
||||||
|
_ = searcher.search(
|
||||||
|
query,
|
||||||
|
top_k=top_k,
|
||||||
|
complexity=complexity,
|
||||||
|
recompute_embeddings=recompute,
|
||||||
|
)
|
||||||
|
return time.time() - t0
|
||||||
|
|
||||||
|
if repeats <= 1:
|
||||||
|
t = _once()
|
||||||
|
else:
|
||||||
|
vals = [_once() for _ in range(repeats)]
|
||||||
|
vals.sort()
|
||||||
|
t = vals[len(vals) // 2]
|
||||||
|
|
||||||
|
searcher.cleanup()
|
||||||
|
return t
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument("--num-docs", type=int, default=5000)
|
||||||
|
parser.add_argument("--repeats", type=int, default=3)
|
||||||
|
parser.add_argument("--complexity", type=int, default=32)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
base = Path.cwd() / ".leann" / "indexes" / f"bench_n{args.num_docs}"
|
||||||
|
base.parent.mkdir(parents=True, exist_ok=True)
|
||||||
|
# ---------- Build HNSW variants ----------
|
||||||
|
hnsw_r = str(base / f"hnsw_recompute_n{args.num_docs}.leann")
|
||||||
|
hnsw_nr = str(base / f"hnsw_norecompute_n{args.num_docs}.leann")
|
||||||
|
ensure_index(hnsw_r, "hnsw", args.num_docs, True)
|
||||||
|
ensure_index(hnsw_nr, "hnsw", args.num_docs, False)
|
||||||
|
|
||||||
|
# ---------- Build DiskANN variants ----------
|
||||||
|
diskann_r = str(base / "diskann_r.leann")
|
||||||
|
diskann_nr = str(base / "diskann_nr.leann")
|
||||||
|
ensure_index(diskann_r, "diskann", args.num_docs, True)
|
||||||
|
ensure_index(diskann_nr, "diskann", args.num_docs, False)
|
||||||
|
|
||||||
|
# ---------- Helpers ----------
|
||||||
|
def _size_for(prefix: str) -> int:
|
||||||
|
p = Path(prefix)
|
||||||
|
base_dir = p.parent
|
||||||
|
stem = p.stem
|
||||||
|
total = 0
|
||||||
|
for f in base_dir.iterdir():
|
||||||
|
if f.is_file() and f.name.startswith(stem):
|
||||||
|
total += f.stat().st_size
|
||||||
|
return total
|
||||||
|
|
||||||
|
# ---------- HNSW benchmark ----------
|
||||||
|
t_hnsw_r = _bench_group(
|
||||||
|
hnsw_r, True, "test document number 42", repeats=args.repeats, complexity=args.complexity
|
||||||
|
)
|
||||||
|
t_hnsw_nr = _bench_group(
|
||||||
|
hnsw_nr, False, "test document number 42", repeats=args.repeats, complexity=args.complexity
|
||||||
|
)
|
||||||
|
size_hnsw_r = _size_for(hnsw_r)
|
||||||
|
size_hnsw_nr = _size_for(hnsw_nr)
|
||||||
|
|
||||||
|
print("Benchmark results (HNSW):")
|
||||||
|
print(f" recompute=True: search_time={t_hnsw_r:.3f}s, size={size_hnsw_r / 1024 / 1024:.1f}MB")
|
||||||
|
print(
|
||||||
|
f" recompute=False: search_time={t_hnsw_nr:.3f}s, size={size_hnsw_nr / 1024 / 1024:.1f}MB"
|
||||||
|
)
|
||||||
|
print(" Expectation: no-recompute should be faster but larger on disk.")
|
||||||
|
|
||||||
|
# ---------- DiskANN benchmark ----------
|
||||||
|
t_diskann_r = _bench_group(
|
||||||
|
diskann_r, True, "DiskANN R test doc 123", repeats=args.repeats, complexity=args.complexity
|
||||||
|
)
|
||||||
|
t_diskann_nr = _bench_group(
|
||||||
|
diskann_nr,
|
||||||
|
False,
|
||||||
|
"DiskANN NR test doc 123",
|
||||||
|
repeats=args.repeats,
|
||||||
|
complexity=args.complexity,
|
||||||
|
)
|
||||||
|
size_diskann_r = _size_for(diskann_r)
|
||||||
|
size_diskann_nr = _size_for(diskann_nr)
|
||||||
|
|
||||||
|
print("\nBenchmark results (DiskANN):")
|
||||||
|
print(f" build(recompute=True, partition): size={size_diskann_r / 1024 / 1024:.1f}MB")
|
||||||
|
print(f" build(recompute=False): size={size_diskann_nr / 1024 / 1024:.1f}MB")
|
||||||
|
print(f" search recompute=True (final rerank): {t_diskann_r:.3f}s")
|
||||||
|
print(f" search recompute=False (PQ only): {t_diskann_nr:.3f}s")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
326
benchmarks/compare_faiss_vs_leann.py
Normal file
@@ -0,0 +1,326 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
"""
|
||||||
|
Memory comparison between Faiss HNSW and LEANN HNSW backend
|
||||||
|
"""
|
||||||
|
|
||||||
|
import gc
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import subprocess
|
||||||
|
import sys
|
||||||
|
import time
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import psutil
|
||||||
|
from llama_index.core.node_parser import SentenceSplitter
|
||||||
|
|
||||||
|
# Setup logging
|
||||||
|
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
def get_memory_usage():
|
||||||
|
"""Get current memory usage in MB"""
|
||||||
|
process = psutil.Process()
|
||||||
|
return process.memory_info().rss / 1024 / 1024
|
||||||
|
|
||||||
|
|
||||||
|
def print_memory_stats(stage: str, start_mem: float):
|
||||||
|
"""Print memory statistics"""
|
||||||
|
current_mem = get_memory_usage()
|
||||||
|
diff = current_mem - start_mem
|
||||||
|
print(f"[{stage}] Memory: {current_mem:.1f} MB (+{diff:.1f} MB)")
|
||||||
|
return current_mem
|
||||||
|
|
||||||
|
|
||||||
|
class MemoryTracker:
|
||||||
|
def __init__(self, name: str):
|
||||||
|
self.name = name
|
||||||
|
self.start_mem = get_memory_usage()
|
||||||
|
self.stages = []
|
||||||
|
|
||||||
|
def checkpoint(self, stage: str):
|
||||||
|
current_mem = print_memory_stats(f"{self.name} - {stage}", self.start_mem)
|
||||||
|
self.stages.append((stage, current_mem))
|
||||||
|
return current_mem
|
||||||
|
|
||||||
|
def summary(self):
|
||||||
|
print(f"\n=== {self.name} Memory Summary ===")
|
||||||
|
for stage, mem in self.stages:
|
||||||
|
print(f"{stage}: {mem:.1f} MB")
|
||||||
|
peak_mem = max(mem for _, mem in self.stages)
|
||||||
|
print(f"Peak Memory: {peak_mem:.1f} MB")
|
||||||
|
print(f"Total Memory Increase: {peak_mem - self.start_mem:.1f} MB")
|
||||||
|
return peak_mem
|
||||||
|
|
||||||
|
|
||||||
|
def test_faiss_hnsw():
|
||||||
|
"""Test Faiss HNSW Vector Store in subprocess"""
|
||||||
|
print("\n" + "=" * 50)
|
||||||
|
print("TESTING FAISS HNSW VECTOR STORE")
|
||||||
|
print("=" * 50)
|
||||||
|
|
||||||
|
try:
|
||||||
|
result = subprocess.run(
|
||||||
|
[sys.executable, "benchmarks/faiss_only.py"],
|
||||||
|
capture_output=True,
|
||||||
|
text=True,
|
||||||
|
timeout=300,
|
||||||
|
)
|
||||||
|
|
||||||
|
print(result.stdout)
|
||||||
|
if result.stderr:
|
||||||
|
print("Stderr:", result.stderr)
|
||||||
|
|
||||||
|
if result.returncode != 0:
|
||||||
|
return {
|
||||||
|
"peak_memory": float("inf"),
|
||||||
|
"error": f"Process failed with code {result.returncode}",
|
||||||
|
}
|
||||||
|
|
||||||
|
# Parse peak memory from output
|
||||||
|
lines = result.stdout.split("\n")
|
||||||
|
peak_memory = 0.0
|
||||||
|
|
||||||
|
for line in lines:
|
||||||
|
if "Peak Memory:" in line:
|
||||||
|
peak_memory = float(line.split("Peak Memory:")[1].split("MB")[0].strip())
|
||||||
|
|
||||||
|
return {"peak_memory": peak_memory}
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
return {
|
||||||
|
"peak_memory": float("inf"),
|
||||||
|
"error": str(e),
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def test_leann_hnsw():
|
||||||
|
"""Test LEANN HNSW Search Memory (load existing index)"""
|
||||||
|
print("\n" + "=" * 50)
|
||||||
|
print("TESTING LEANN HNSW SEARCH MEMORY")
|
||||||
|
print("=" * 50)
|
||||||
|
|
||||||
|
tracker = MemoryTracker("LEANN HNSW Search")
|
||||||
|
|
||||||
|
# Import and setup
|
||||||
|
tracker.checkpoint("Initial")
|
||||||
|
|
||||||
|
from leann.api import LeannSearcher
|
||||||
|
|
||||||
|
tracker.checkpoint("After imports")
|
||||||
|
|
||||||
|
from leann.api import LeannBuilder
|
||||||
|
from llama_index.core import SimpleDirectoryReader
|
||||||
|
|
||||||
|
# Load and parse documents
|
||||||
|
documents = SimpleDirectoryReader(
|
||||||
|
"data",
|
||||||
|
recursive=True,
|
||||||
|
encoding="utf-8",
|
||||||
|
required_exts=[".pdf", ".txt", ".md"],
|
||||||
|
).load_data()
|
||||||
|
|
||||||
|
tracker.checkpoint("After document loading")
|
||||||
|
|
||||||
|
# Parse into chunks
|
||||||
|
node_parser = SentenceSplitter(
|
||||||
|
chunk_size=256, chunk_overlap=20, separator=" ", paragraph_separator="\n\n"
|
||||||
|
)
|
||||||
|
|
||||||
|
all_texts = []
|
||||||
|
for doc in documents:
|
||||||
|
nodes = node_parser.get_nodes_from_documents([doc])
|
||||||
|
for node in nodes:
|
||||||
|
all_texts.append(node.get_content())
|
||||||
|
print(f"Total number of chunks: {len(all_texts)}")
|
||||||
|
|
||||||
|
tracker.checkpoint("After text chunking")
|
||||||
|
|
||||||
|
# Build LEANN index
|
||||||
|
INDEX_DIR = Path("./test_leann_comparison")
|
||||||
|
INDEX_PATH = str(INDEX_DIR / "comparison.leann")
|
||||||
|
|
||||||
|
# Check if index already exists
|
||||||
|
if os.path.exists(INDEX_PATH + ".meta.json"):
|
||||||
|
print("Loading existing LEANN HNSW index...")
|
||||||
|
tracker.checkpoint("After loading existing index")
|
||||||
|
else:
|
||||||
|
print("Building new LEANN HNSW index...")
|
||||||
|
# Clean up previous index
|
||||||
|
import shutil
|
||||||
|
|
||||||
|
if INDEX_DIR.exists():
|
||||||
|
shutil.rmtree(INDEX_DIR)
|
||||||
|
|
||||||
|
builder = LeannBuilder(
|
||||||
|
backend_name="hnsw",
|
||||||
|
embedding_model="facebook/contriever",
|
||||||
|
graph_degree=32,
|
||||||
|
complexity=64,
|
||||||
|
is_compact=True,
|
||||||
|
is_recompute=True,
|
||||||
|
num_threads=1,
|
||||||
|
)
|
||||||
|
|
||||||
|
tracker.checkpoint("After builder setup")
|
||||||
|
|
||||||
|
print("Building LEANN HNSW index...")
|
||||||
|
|
||||||
|
for chunk_text in all_texts:
|
||||||
|
builder.add_text(chunk_text)
|
||||||
|
|
||||||
|
builder.build_index(INDEX_PATH)
|
||||||
|
del builder
|
||||||
|
gc.collect()
|
||||||
|
|
||||||
|
tracker.checkpoint("After index building")
|
||||||
|
|
||||||
|
# Find existing LEANN index
|
||||||
|
index_paths = [
|
||||||
|
"./test_leann_comparison/comparison.leann",
|
||||||
|
]
|
||||||
|
index_path = None
|
||||||
|
for path in index_paths:
|
||||||
|
if os.path.exists(path + ".meta.json"):
|
||||||
|
index_path = path
|
||||||
|
break
|
||||||
|
|
||||||
|
if not index_path:
|
||||||
|
print("❌ LEANN index not found. Please build it first")
|
||||||
|
return {"peak_memory": float("inf"), "error": "Index not found"}
|
||||||
|
|
||||||
|
# Measure runtime memory overhead
|
||||||
|
print("\nMeasuring runtime memory overhead...")
|
||||||
|
runtime_start_mem = get_memory_usage()
|
||||||
|
print(f"Before load memory: {runtime_start_mem:.1f} MB")
|
||||||
|
tracker.checkpoint("Before load memory")
|
||||||
|
|
||||||
|
# Load searcher
|
||||||
|
searcher = LeannSearcher(index_path)
|
||||||
|
tracker.checkpoint("After searcher loading")
|
||||||
|
|
||||||
|
print("Running search queries...")
|
||||||
|
queries = [
|
||||||
|
"什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发",
|
||||||
|
"What is LEANN and how does it work?",
|
||||||
|
"华为诺亚方舟实验室的主要研究内容",
|
||||||
|
]
|
||||||
|
|
||||||
|
for i, query in enumerate(queries):
|
||||||
|
start_time = time.time()
|
||||||
|
# Use same parameters as Faiss: top_k=20, ef=120 (complexity parameter)
|
||||||
|
_ = searcher.search(query, top_k=20, ef=120)
|
||||||
|
query_time = time.time() - start_time
|
||||||
|
print(f"Query {i + 1} time: {query_time:.3f}s")
|
||||||
|
tracker.checkpoint(f"After query {i + 1}")
|
||||||
|
|
||||||
|
runtime_end_mem = get_memory_usage()
|
||||||
|
runtime_overhead = runtime_end_mem - runtime_start_mem
|
||||||
|
|
||||||
|
peak_memory = tracker.summary()
|
||||||
|
print(f"Runtime Memory Overhead: {runtime_overhead:.1f} MB")
|
||||||
|
|
||||||
|
# Get storage size before cleanup
|
||||||
|
storage_size = 0
|
||||||
|
INDEX_DIR = Path(index_path).parent
|
||||||
|
if INDEX_DIR.exists():
|
||||||
|
total_size = 0
|
||||||
|
for dirpath, _, filenames in os.walk(str(INDEX_DIR)):
|
||||||
|
for filename in filenames:
|
||||||
|
# Only count actual index files, skip text data and backups
|
||||||
|
if filename.endswith((".old", ".tmp", ".bak", ".jsonl", ".json")):
|
||||||
|
continue
|
||||||
|
# Count .index, .idx, .map files (actual index structures)
|
||||||
|
if filename.endswith((".index", ".idx", ".map")):
|
||||||
|
filepath = os.path.join(dirpath, filename)
|
||||||
|
total_size += os.path.getsize(filepath)
|
||||||
|
storage_size = total_size / (1024 * 1024) # Convert to MB
|
||||||
|
|
||||||
|
# Clean up
|
||||||
|
del searcher
|
||||||
|
gc.collect()
|
||||||
|
|
||||||
|
return {
|
||||||
|
"peak_memory": peak_memory,
|
||||||
|
"storage_size": storage_size,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
"""Run comparison tests"""
|
||||||
|
print("Storage + Search Memory Comparison: Faiss HNSW vs LEANN HNSW")
|
||||||
|
print("=" * 60)
|
||||||
|
|
||||||
|
# Test Faiss HNSW
|
||||||
|
faiss_results = test_faiss_hnsw()
|
||||||
|
|
||||||
|
# Force garbage collection
|
||||||
|
gc.collect()
|
||||||
|
time.sleep(2)
|
||||||
|
|
||||||
|
# Test LEANN HNSW
|
||||||
|
leann_results = test_leann_hnsw()
|
||||||
|
|
||||||
|
# Final comparison
|
||||||
|
print("\n" + "=" * 60)
|
||||||
|
print("STORAGE + SEARCH MEMORY COMPARISON")
|
||||||
|
print("=" * 60)
|
||||||
|
|
||||||
|
# Get storage sizes
|
||||||
|
faiss_storage_size = 0
|
||||||
|
leann_storage_size = leann_results.get("storage_size", 0)
|
||||||
|
|
||||||
|
# Get Faiss storage size using Python
|
||||||
|
if os.path.exists("./storage_faiss"):
|
||||||
|
total_size = 0
|
||||||
|
for dirpath, _, filenames in os.walk("./storage_faiss"):
|
||||||
|
for filename in filenames:
|
||||||
|
filepath = os.path.join(dirpath, filename)
|
||||||
|
total_size += os.path.getsize(filepath)
|
||||||
|
faiss_storage_size = total_size / (1024 * 1024) # Convert to MB
|
||||||
|
|
||||||
|
print("Faiss HNSW:")
|
||||||
|
if "error" in faiss_results:
|
||||||
|
print(f" ❌ Failed: {faiss_results['error']}")
|
||||||
|
else:
|
||||||
|
print(f" Search Memory: {faiss_results['peak_memory']:.1f} MB")
|
||||||
|
print(f" Storage Size: {faiss_storage_size:.1f} MB")
|
||||||
|
|
||||||
|
print("\nLEANN HNSW:")
|
||||||
|
if "error" in leann_results:
|
||||||
|
print(f" ❌ Failed: {leann_results['error']}")
|
||||||
|
else:
|
||||||
|
print(f" Search Memory: {leann_results['peak_memory']:.1f} MB")
|
||||||
|
print(f" Storage Size: {leann_storage_size:.1f} MB")
|
||||||
|
|
||||||
|
# Calculate improvements only if both tests succeeded
|
||||||
|
if "error" not in faiss_results and "error" not in leann_results:
|
||||||
|
memory_ratio = faiss_results["peak_memory"] / leann_results["peak_memory"]
|
||||||
|
|
||||||
|
print("\nLEANN vs Faiss Performance:")
|
||||||
|
memory_saving = faiss_results["peak_memory"] - leann_results["peak_memory"]
|
||||||
|
print(f" Search Memory: {memory_ratio:.1f}x less ({memory_saving:.1f} MB saved)")
|
||||||
|
|
||||||
|
# Storage comparison
|
||||||
|
if leann_storage_size > faiss_storage_size:
|
||||||
|
storage_ratio = leann_storage_size / faiss_storage_size
|
||||||
|
print(f" Storage Size: {storage_ratio:.1f}x larger (LEANN uses more storage)")
|
||||||
|
elif faiss_storage_size > leann_storage_size:
|
||||||
|
storage_ratio = faiss_storage_size / leann_storage_size
|
||||||
|
print(f" Storage Size: {storage_ratio:.1f}x smaller (LEANN uses less storage)")
|
||||||
|
else:
|
||||||
|
print(" Storage Size: similar")
|
||||||
|
else:
|
||||||
|
if "error" not in leann_results:
|
||||||
|
print("\n✅ LEANN HNSW completed successfully!")
|
||||||
|
print(f"📊 Search Memory: {leann_results['peak_memory']:.1f} MB")
|
||||||
|
print(f"📊 Storage Size: {leann_storage_size:.1f} MB")
|
||||||
|
if "error" not in faiss_results:
|
||||||
|
print("\n✅ Faiss HNSW completed successfully!")
|
||||||
|
print(f"📊 Search Memory: {faiss_results['peak_memory']:.1f} MB")
|
||||||
|
print(f"📊 Storage Size: {faiss_storage_size:.1f} MB")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
44
benchmarks/data/README.md
Executable file
@@ -0,0 +1,44 @@
|
|||||||
|
---
|
||||||
|
license: mit
|
||||||
|
---
|
||||||
|
|
||||||
|
# LEANN-RAG Evaluation Data
|
||||||
|
|
||||||
|
This repository contains the necessary data to run the recall evaluation scripts for the [LEANN-RAG](https://huggingface.co/LEANN-RAG) project.
|
||||||
|
|
||||||
|
## Dataset Components
|
||||||
|
|
||||||
|
This dataset is structured into three main parts:
|
||||||
|
|
||||||
|
1. **Pre-built LEANN Indices**:
|
||||||
|
* `dpr/`: A pre-built index for the DPR dataset.
|
||||||
|
* `rpj_wiki/`: A pre-built index for the RPJ-Wiki dataset.
|
||||||
|
These indices were created using the `leann-core` library and are required by the `LeannSearcher`.
|
||||||
|
|
||||||
|
2. **Ground Truth Data**:
|
||||||
|
* `ground_truth/`: Contains the ground truth files (`flat_results_nq_k3.json`) for both the DPR and RPJ-Wiki datasets. These files map queries to the original passage IDs from the Natural Questions benchmark, evaluated using the Contriever model.
|
||||||
|
|
||||||
|
3. **Queries**:
|
||||||
|
* `queries/`: Contains the `nq_open.jsonl` file with the Natural Questions queries used for the evaluation.
|
||||||
|
|
||||||
|
## Usage
|
||||||
|
|
||||||
|
To use this data, you can download it locally using the `huggingface-hub` library. First, install the library:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
pip install huggingface-hub
|
||||||
|
```
|
||||||
|
|
||||||
|
Then, you can download the entire dataset to a local directory (e.g., `data/`) with the following Python script:
|
||||||
|
|
||||||
|
```python
|
||||||
|
from huggingface_hub import snapshot_download
|
||||||
|
|
||||||
|
snapshot_download(
|
||||||
|
repo_id="LEANN-RAG/leann-rag-evaluation-data",
|
||||||
|
repo_type="dataset",
|
||||||
|
local_dir="data"
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
This will download all the necessary files into a local `data` folder, preserving the repository structure. The evaluation scripts in the main [LEANN-RAG Space](https://huggingface.co/LEANN-RAG) are configured to work with this data structure.
|
||||||
286
benchmarks/diskann_vs_hnsw_speed_comparison.py
Normal file
@@ -0,0 +1,286 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
"""
|
||||||
|
DiskANN vs HNSW Search Performance Comparison
|
||||||
|
|
||||||
|
This benchmark compares search performance between DiskANN and HNSW backends:
|
||||||
|
- DiskANN: With graph partitioning enabled (is_recompute=True)
|
||||||
|
- HNSW: With recompute enabled (is_recompute=True)
|
||||||
|
- Tests performance across different dataset sizes
|
||||||
|
- Measures search latency, recall, and index size
|
||||||
|
"""
|
||||||
|
|
||||||
|
import gc
|
||||||
|
import multiprocessing as mp
|
||||||
|
import tempfile
|
||||||
|
import time
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
# Prefer 'fork' start method to avoid POSIX semaphore leaks on macOS
|
||||||
|
try:
|
||||||
|
mp.set_start_method("fork", force=True)
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
def create_test_texts(n_docs: int) -> list[str]:
|
||||||
|
"""Create synthetic test documents for benchmarking."""
|
||||||
|
np.random.seed(42)
|
||||||
|
topics = [
|
||||||
|
"machine learning and artificial intelligence",
|
||||||
|
"natural language processing and text analysis",
|
||||||
|
"computer vision and image recognition",
|
||||||
|
"data science and statistical analysis",
|
||||||
|
"deep learning and neural networks",
|
||||||
|
"information retrieval and search engines",
|
||||||
|
"database systems and data management",
|
||||||
|
"software engineering and programming",
|
||||||
|
"cybersecurity and network protection",
|
||||||
|
"cloud computing and distributed systems",
|
||||||
|
]
|
||||||
|
|
||||||
|
texts = []
|
||||||
|
for i in range(n_docs):
|
||||||
|
topic = topics[i % len(topics)]
|
||||||
|
variation = np.random.randint(1, 100)
|
||||||
|
text = (
|
||||||
|
f"This is document {i} about {topic}. Content variation {variation}. "
|
||||||
|
f"Additional information about {topic} with details and examples. "
|
||||||
|
f"Technical discussion of {topic} including implementation aspects."
|
||||||
|
)
|
||||||
|
texts.append(text)
|
||||||
|
|
||||||
|
return texts
|
||||||
|
|
||||||
|
|
||||||
|
def benchmark_backend(
|
||||||
|
backend_name: str, texts: list[str], test_queries: list[str], backend_kwargs: dict[str, Any]
|
||||||
|
) -> dict[str, float]:
|
||||||
|
"""Benchmark a specific backend with the given configuration."""
|
||||||
|
from leann.api import LeannBuilder, LeannSearcher
|
||||||
|
|
||||||
|
print(f"\n🔧 Testing {backend_name.upper()} backend...")
|
||||||
|
|
||||||
|
with tempfile.TemporaryDirectory() as temp_dir:
|
||||||
|
index_path = str(Path(temp_dir) / f"benchmark_{backend_name}.leann")
|
||||||
|
|
||||||
|
# Build index
|
||||||
|
print(f"📦 Building {backend_name} index with {len(texts)} documents...")
|
||||||
|
start_time = time.time()
|
||||||
|
|
||||||
|
builder = LeannBuilder(
|
||||||
|
backend_name=backend_name,
|
||||||
|
embedding_model="facebook/contriever",
|
||||||
|
embedding_mode="sentence-transformers",
|
||||||
|
**backend_kwargs,
|
||||||
|
)
|
||||||
|
|
||||||
|
for text in texts:
|
||||||
|
builder.add_text(text)
|
||||||
|
|
||||||
|
builder.build_index(index_path)
|
||||||
|
build_time = time.time() - start_time
|
||||||
|
|
||||||
|
# Measure index size
|
||||||
|
index_dir = Path(index_path).parent
|
||||||
|
index_files = list(index_dir.glob(f"{Path(index_path).stem}.*"))
|
||||||
|
total_size = sum(f.stat().st_size for f in index_files if f.is_file())
|
||||||
|
size_mb = total_size / (1024 * 1024)
|
||||||
|
|
||||||
|
print(f" ✅ Build completed in {build_time:.2f}s, index size: {size_mb:.1f}MB")
|
||||||
|
|
||||||
|
# Search benchmark
|
||||||
|
print("🔍 Running search benchmark...")
|
||||||
|
searcher = LeannSearcher(index_path)
|
||||||
|
|
||||||
|
search_times = []
|
||||||
|
all_results = []
|
||||||
|
|
||||||
|
for query in test_queries:
|
||||||
|
start_time = time.time()
|
||||||
|
results = searcher.search(query, top_k=5)
|
||||||
|
search_time = time.time() - start_time
|
||||||
|
search_times.append(search_time)
|
||||||
|
all_results.append(results)
|
||||||
|
|
||||||
|
avg_search_time = np.mean(search_times) * 1000 # Convert to ms
|
||||||
|
print(f" ✅ Average search time: {avg_search_time:.1f}ms")
|
||||||
|
|
||||||
|
# Check for valid scores (detect -inf issues)
|
||||||
|
all_scores = [
|
||||||
|
result.score
|
||||||
|
for results in all_results
|
||||||
|
for result in results
|
||||||
|
if result.score is not None
|
||||||
|
]
|
||||||
|
valid_scores = [
|
||||||
|
score for score in all_scores if score != float("-inf") and score != float("inf")
|
||||||
|
]
|
||||||
|
score_validity_rate = len(valid_scores) / len(all_scores) if all_scores else 0
|
||||||
|
|
||||||
|
# Clean up (ensure embedding server shutdown and object GC)
|
||||||
|
try:
|
||||||
|
if hasattr(searcher, "cleanup"):
|
||||||
|
searcher.cleanup()
|
||||||
|
del searcher
|
||||||
|
del builder
|
||||||
|
gc.collect()
|
||||||
|
except Exception as e:
|
||||||
|
print(f"⚠️ Warning: Resource cleanup error: {e}")
|
||||||
|
|
||||||
|
return {
|
||||||
|
"build_time": build_time,
|
||||||
|
"avg_search_time_ms": avg_search_time,
|
||||||
|
"index_size_mb": size_mb,
|
||||||
|
"score_validity_rate": score_validity_rate,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def run_comparison(n_docs: int = 500, n_queries: int = 10):
|
||||||
|
"""Run performance comparison between DiskANN and HNSW."""
|
||||||
|
print("🚀 Starting DiskANN vs HNSW Performance Comparison")
|
||||||
|
print(f"📊 Dataset: {n_docs} documents, {n_queries} test queries")
|
||||||
|
|
||||||
|
# Create test data
|
||||||
|
texts = create_test_texts(n_docs)
|
||||||
|
test_queries = [
|
||||||
|
"machine learning algorithms",
|
||||||
|
"natural language processing",
|
||||||
|
"computer vision techniques",
|
||||||
|
"data analysis methods",
|
||||||
|
"neural network architectures",
|
||||||
|
"database query optimization",
|
||||||
|
"software development practices",
|
||||||
|
"security vulnerabilities",
|
||||||
|
"cloud infrastructure",
|
||||||
|
"distributed computing",
|
||||||
|
][:n_queries]
|
||||||
|
|
||||||
|
# HNSW benchmark
|
||||||
|
hnsw_results = benchmark_backend(
|
||||||
|
backend_name="hnsw",
|
||||||
|
texts=texts,
|
||||||
|
test_queries=test_queries,
|
||||||
|
backend_kwargs={
|
||||||
|
"is_recompute": True, # Enable recompute for fair comparison
|
||||||
|
"M": 16,
|
||||||
|
"efConstruction": 200,
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
# DiskANN benchmark
|
||||||
|
diskann_results = benchmark_backend(
|
||||||
|
backend_name="diskann",
|
||||||
|
texts=texts,
|
||||||
|
test_queries=test_queries,
|
||||||
|
backend_kwargs={
|
||||||
|
"is_recompute": True, # Enable graph partitioning
|
||||||
|
"num_neighbors": 32,
|
||||||
|
"search_list_size": 50,
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
# Performance comparison
|
||||||
|
print("\n📈 Performance Comparison Results")
|
||||||
|
print(f"{'=' * 60}")
|
||||||
|
print(f"{'Metric':<25} {'HNSW':<15} {'DiskANN':<15} {'Speedup':<10}")
|
||||||
|
print(f"{'-' * 60}")
|
||||||
|
|
||||||
|
# Build time comparison
|
||||||
|
build_speedup = hnsw_results["build_time"] / diskann_results["build_time"]
|
||||||
|
print(
|
||||||
|
f"{'Build Time (s)':<25} {hnsw_results['build_time']:<15.2f} {diskann_results['build_time']:<15.2f} {build_speedup:<10.2f}x"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Search time comparison
|
||||||
|
search_speedup = hnsw_results["avg_search_time_ms"] / diskann_results["avg_search_time_ms"]
|
||||||
|
print(
|
||||||
|
f"{'Search Time (ms)':<25} {hnsw_results['avg_search_time_ms']:<15.1f} {diskann_results['avg_search_time_ms']:<15.1f} {search_speedup:<10.2f}x"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Index size comparison
|
||||||
|
size_ratio = diskann_results["index_size_mb"] / hnsw_results["index_size_mb"]
|
||||||
|
print(
|
||||||
|
f"{'Index Size (MB)':<25} {hnsw_results['index_size_mb']:<15.1f} {diskann_results['index_size_mb']:<15.1f} {size_ratio:<10.2f}x"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Score validity
|
||||||
|
print(
|
||||||
|
f"{'Score Validity (%)':<25} {hnsw_results['score_validity_rate'] * 100:<15.1f} {diskann_results['score_validity_rate'] * 100:<15.1f}"
|
||||||
|
)
|
||||||
|
|
||||||
|
print(f"{'=' * 60}")
|
||||||
|
print("\n🎯 Summary:")
|
||||||
|
if search_speedup > 1:
|
||||||
|
print(f" DiskANN is {search_speedup:.2f}x faster than HNSW for search")
|
||||||
|
else:
|
||||||
|
print(f" HNSW is {1 / search_speedup:.2f}x faster than DiskANN for search")
|
||||||
|
|
||||||
|
if size_ratio > 1:
|
||||||
|
print(f" DiskANN uses {size_ratio:.2f}x more storage than HNSW")
|
||||||
|
else:
|
||||||
|
print(f" DiskANN uses {1 / size_ratio:.2f}x less storage than HNSW")
|
||||||
|
|
||||||
|
print(
|
||||||
|
f" Both backends achieved {min(hnsw_results['score_validity_rate'], diskann_results['score_validity_rate']) * 100:.1f}% score validity"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import sys
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Handle help request
|
||||||
|
if len(sys.argv) > 1 and sys.argv[1] in ["-h", "--help", "help"]:
|
||||||
|
print("DiskANN vs HNSW Performance Comparison")
|
||||||
|
print("=" * 50)
|
||||||
|
print(f"Usage: python {sys.argv[0]} [n_docs] [n_queries]")
|
||||||
|
print()
|
||||||
|
print("Arguments:")
|
||||||
|
print(" n_docs Number of documents to index (default: 500)")
|
||||||
|
print(" n_queries Number of test queries to run (default: 10)")
|
||||||
|
print()
|
||||||
|
print("Examples:")
|
||||||
|
print(" python benchmarks/diskann_vs_hnsw_speed_comparison.py")
|
||||||
|
print(" python benchmarks/diskann_vs_hnsw_speed_comparison.py 1000")
|
||||||
|
print(" python benchmarks/diskann_vs_hnsw_speed_comparison.py 2000 20")
|
||||||
|
sys.exit(0)
|
||||||
|
|
||||||
|
# Parse command line arguments
|
||||||
|
n_docs = int(sys.argv[1]) if len(sys.argv) > 1 else 500
|
||||||
|
n_queries = int(sys.argv[2]) if len(sys.argv) > 2 else 10
|
||||||
|
|
||||||
|
print("DiskANN vs HNSW Performance Comparison")
|
||||||
|
print("=" * 50)
|
||||||
|
print(f"Dataset: {n_docs} documents, {n_queries} queries")
|
||||||
|
print()
|
||||||
|
|
||||||
|
run_comparison(n_docs=n_docs, n_queries=n_queries)
|
||||||
|
|
||||||
|
except KeyboardInterrupt:
|
||||||
|
print("\n⚠️ Benchmark interrupted by user")
|
||||||
|
sys.exit(130)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"\n❌ Benchmark failed: {e}")
|
||||||
|
sys.exit(1)
|
||||||
|
finally:
|
||||||
|
# Ensure clean exit (forceful to prevent rare hangs from atexit/threads)
|
||||||
|
try:
|
||||||
|
gc.collect()
|
||||||
|
print("\n🧹 Cleanup completed")
|
||||||
|
# Flush stdio to ensure message is visible before hard-exit
|
||||||
|
try:
|
||||||
|
import sys as _sys
|
||||||
|
|
||||||
|
_sys.stdout.flush()
|
||||||
|
_sys.stderr.flush()
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
# Use os._exit to bypass atexit handlers that may hang in rare cases
|
||||||
|
import os as _os
|
||||||
|
|
||||||
|
_os._exit(0)
|
||||||
151
benchmarks/faiss_only.py
Normal file
@@ -0,0 +1,151 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
"""Test only Faiss HNSW"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import time
|
||||||
|
|
||||||
|
import psutil
|
||||||
|
|
||||||
|
|
||||||
|
def get_memory_usage():
|
||||||
|
process = psutil.Process()
|
||||||
|
return process.memory_info().rss / 1024 / 1024
|
||||||
|
|
||||||
|
|
||||||
|
class MemoryTracker:
|
||||||
|
def __init__(self, name: str):
|
||||||
|
self.name = name
|
||||||
|
self.start_mem = get_memory_usage()
|
||||||
|
self.stages = []
|
||||||
|
|
||||||
|
def checkpoint(self, stage: str):
|
||||||
|
current_mem = get_memory_usage()
|
||||||
|
diff = current_mem - self.start_mem
|
||||||
|
print(f"[{self.name} - {stage}] Memory: {current_mem:.1f} MB (+{diff:.1f} MB)")
|
||||||
|
self.stages.append((stage, current_mem))
|
||||||
|
return current_mem
|
||||||
|
|
||||||
|
def summary(self):
|
||||||
|
peak_mem = max(mem for _, mem in self.stages)
|
||||||
|
print(f"Peak Memory: {peak_mem:.1f} MB")
|
||||||
|
return peak_mem
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
try:
|
||||||
|
import faiss
|
||||||
|
except ImportError:
|
||||||
|
print("Faiss is not installed.")
|
||||||
|
print(
|
||||||
|
"Please install it with `uv pip install faiss-cpu` and you can then run this script again"
|
||||||
|
)
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
|
from llama_index.core import (
|
||||||
|
Settings,
|
||||||
|
SimpleDirectoryReader,
|
||||||
|
StorageContext,
|
||||||
|
VectorStoreIndex,
|
||||||
|
)
|
||||||
|
from llama_index.core.node_parser import SentenceSplitter
|
||||||
|
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
||||||
|
from llama_index.vector_stores.faiss import FaissVectorStore
|
||||||
|
|
||||||
|
tracker = MemoryTracker("Faiss HNSW")
|
||||||
|
tracker.checkpoint("Initial")
|
||||||
|
|
||||||
|
embed_model = HuggingFaceEmbedding(model_name="facebook/contriever")
|
||||||
|
Settings.embed_model = embed_model
|
||||||
|
tracker.checkpoint("After embedding model setup")
|
||||||
|
|
||||||
|
d = 768
|
||||||
|
faiss_index = faiss.IndexHNSWFlat(d, 32)
|
||||||
|
faiss_index.hnsw.efConstruction = 64
|
||||||
|
tracker.checkpoint("After Faiss index creation")
|
||||||
|
|
||||||
|
documents = SimpleDirectoryReader(
|
||||||
|
"data",
|
||||||
|
recursive=True,
|
||||||
|
encoding="utf-8",
|
||||||
|
required_exts=[".pdf", ".txt", ".md"],
|
||||||
|
).load_data()
|
||||||
|
tracker.checkpoint("After document loading")
|
||||||
|
|
||||||
|
# Parse into chunks using the same splitter as LEANN
|
||||||
|
node_parser = SentenceSplitter(
|
||||||
|
chunk_size=256, chunk_overlap=20, separator=" ", paragraph_separator="\n\n"
|
||||||
|
)
|
||||||
|
|
||||||
|
tracker.checkpoint("After text splitter setup")
|
||||||
|
|
||||||
|
# Check if index already exists and try to load it
|
||||||
|
index_loaded = False
|
||||||
|
if os.path.exists("./storage_faiss"):
|
||||||
|
print("Loading existing Faiss HNSW index...")
|
||||||
|
try:
|
||||||
|
# Use the correct Faiss loading pattern from the example
|
||||||
|
vector_store = FaissVectorStore.from_persist_dir("./storage_faiss")
|
||||||
|
storage_context = StorageContext.from_defaults(
|
||||||
|
vector_store=vector_store, persist_dir="./storage_faiss"
|
||||||
|
)
|
||||||
|
from llama_index.core import load_index_from_storage
|
||||||
|
|
||||||
|
index = load_index_from_storage(storage_context=storage_context)
|
||||||
|
print("Index loaded from ./storage_faiss")
|
||||||
|
tracker.checkpoint("After loading existing index")
|
||||||
|
index_loaded = True
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Failed to load existing index: {e}")
|
||||||
|
print("Cleaning up corrupted index and building new one...")
|
||||||
|
# Clean up corrupted index
|
||||||
|
import shutil
|
||||||
|
|
||||||
|
if os.path.exists("./storage_faiss"):
|
||||||
|
shutil.rmtree("./storage_faiss")
|
||||||
|
|
||||||
|
if not index_loaded:
|
||||||
|
print("Building new Faiss HNSW index...")
|
||||||
|
|
||||||
|
# Use the correct Faiss building pattern from the example
|
||||||
|
vector_store = FaissVectorStore(faiss_index=faiss_index)
|
||||||
|
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
||||||
|
index = VectorStoreIndex.from_documents(
|
||||||
|
documents, storage_context=storage_context, transformations=[node_parser]
|
||||||
|
)
|
||||||
|
tracker.checkpoint("After index building")
|
||||||
|
|
||||||
|
# Save index to disk using the correct pattern
|
||||||
|
index.storage_context.persist(persist_dir="./storage_faiss")
|
||||||
|
tracker.checkpoint("After index saving")
|
||||||
|
|
||||||
|
# Measure runtime memory overhead
|
||||||
|
print("\nMeasuring runtime memory overhead...")
|
||||||
|
runtime_start_mem = get_memory_usage()
|
||||||
|
print(f"Before load memory: {runtime_start_mem:.1f} MB")
|
||||||
|
tracker.checkpoint("Before load memory")
|
||||||
|
|
||||||
|
query_engine = index.as_query_engine(similarity_top_k=20)
|
||||||
|
queries = [
|
||||||
|
"什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发",
|
||||||
|
"What is LEANN and how does it work?",
|
||||||
|
"华为诺亚方舟实验室的主要研究内容",
|
||||||
|
]
|
||||||
|
|
||||||
|
for i, query in enumerate(queries):
|
||||||
|
start_time = time.time()
|
||||||
|
_ = query_engine.query(query)
|
||||||
|
query_time = time.time() - start_time
|
||||||
|
print(f"Query {i + 1} time: {query_time:.3f}s")
|
||||||
|
tracker.checkpoint(f"After query {i + 1}")
|
||||||
|
|
||||||
|
runtime_end_mem = get_memory_usage()
|
||||||
|
runtime_overhead = runtime_end_mem - runtime_start_mem
|
||||||
|
|
||||||
|
peak_memory = tracker.summary()
|
||||||
|
print(f"Peak Memory: {peak_memory:.1f} MB")
|
||||||
|
print(f"Runtime Memory Overhead: {runtime_overhead:.1f} MB")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
323
research/micro/embedd_micro.py → benchmarks/micro_tpt.py
Executable file → Normal file
@@ -2,21 +2,20 @@
|
|||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
import time
|
import time
|
||||||
|
from contextlib import contextmanager
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from typing import Dict, List, Optional, Tuple
|
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
from torch import nn
|
from torch import nn
|
||||||
from torchao import quantize_
|
|
||||||
from transformers import AutoModel, BitsAndBytesConfig
|
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
from contextlib import contextmanager
|
from transformers import AutoModel, BitsAndBytesConfig
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class BenchmarkConfig:
|
class BenchmarkConfig:
|
||||||
model_path: str
|
model_path: str
|
||||||
batch_sizes: List[int]
|
batch_sizes: list[int]
|
||||||
seq_length: int
|
seq_length: int
|
||||||
num_runs: int
|
num_runs: int
|
||||||
use_fp16: bool = True
|
use_fp16: bool = True
|
||||||
@@ -27,46 +26,58 @@ class BenchmarkConfig:
|
|||||||
use_linear8bitlt: bool = False
|
use_linear8bitlt: bool = False
|
||||||
|
|
||||||
|
|
||||||
class CUDAGraphContainer:
|
class GraphContainer:
|
||||||
"""Container for managing CUDA graphs for different batch sizes."""
|
"""Container for managing graphs for different batch sizes (CUDA graphs on NVIDIA, regular on others)."""
|
||||||
|
|
||||||
def __init__(self, model: nn.Module, seq_length: int):
|
def __init__(self, model: nn.Module, seq_length: int):
|
||||||
self.model = model
|
self.model = model
|
||||||
self.seq_length = seq_length
|
self.seq_length = seq_length
|
||||||
self.graphs: Dict[int, CUDAGraphWrapper] = {}
|
self.graphs: dict[int, GraphWrapper] = {}
|
||||||
|
|
||||||
def get_or_create(self, batch_size: int) -> 'CUDAGraphWrapper':
|
def get_or_create(self, batch_size: int) -> "GraphWrapper":
|
||||||
if batch_size not in self.graphs:
|
if batch_size not in self.graphs:
|
||||||
self.graphs[batch_size] = CUDAGraphWrapper(
|
self.graphs[batch_size] = GraphWrapper(self.model, batch_size, self.seq_length)
|
||||||
self.model, batch_size, self.seq_length
|
|
||||||
)
|
|
||||||
return self.graphs[batch_size]
|
return self.graphs[batch_size]
|
||||||
|
|
||||||
|
|
||||||
class CUDAGraphWrapper:
|
class GraphWrapper:
|
||||||
"""Wrapper for CUDA graph capture and replay."""
|
"""Wrapper for graph capture and replay (CUDA graphs on NVIDIA, regular on others)."""
|
||||||
|
|
||||||
def __init__(self, model: nn.Module, batch_size: int, seq_length: int):
|
def __init__(self, model: nn.Module, batch_size: int, seq_length: int):
|
||||||
self.model = model
|
self.model = model
|
||||||
|
self.device = self._get_device()
|
||||||
self.static_input = self._create_random_batch(batch_size, seq_length)
|
self.static_input = self._create_random_batch(batch_size, seq_length)
|
||||||
self.static_attention_mask = torch.ones_like(self.static_input)
|
self.static_attention_mask = torch.ones_like(self.static_input)
|
||||||
|
|
||||||
# Warm up
|
# Warm up
|
||||||
self._warmup()
|
self._warmup()
|
||||||
|
|
||||||
|
# Only use CUDA graphs on NVIDIA GPUs
|
||||||
|
if torch.cuda.is_available() and hasattr(torch.cuda, "CUDAGraph"):
|
||||||
# Capture graph
|
# Capture graph
|
||||||
self.graph = torch.cuda.CUDAGraph()
|
self.graph = torch.cuda.CUDAGraph()
|
||||||
with torch.cuda.graph(self.graph):
|
with torch.cuda.graph(self.graph):
|
||||||
self.static_output = self.model(
|
self.static_output = self.model(
|
||||||
input_ids=self.static_input,
|
input_ids=self.static_input,
|
||||||
attention_mask=self.static_attention_mask
|
attention_mask=self.static_attention_mask,
|
||||||
)
|
)
|
||||||
|
self.use_cuda_graph = True
|
||||||
|
else:
|
||||||
|
# For MPS or CPU, just store the model
|
||||||
|
self.use_cuda_graph = False
|
||||||
|
self.static_output = None
|
||||||
|
|
||||||
|
def _get_device(self) -> str:
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
return "cuda"
|
||||||
|
elif torch.backends.mps.is_available():
|
||||||
|
return "mps"
|
||||||
|
else:
|
||||||
|
return "cpu"
|
||||||
|
|
||||||
def _create_random_batch(self, batch_size: int, seq_length: int) -> torch.Tensor:
|
def _create_random_batch(self, batch_size: int, seq_length: int) -> torch.Tensor:
|
||||||
return torch.randint(
|
return torch.randint(
|
||||||
0, 1000, (batch_size, seq_length),
|
0, 1000, (batch_size, seq_length), device=self.device, dtype=torch.long
|
||||||
device="cuda",
|
|
||||||
dtype=torch.long
|
|
||||||
)
|
)
|
||||||
|
|
||||||
def _warmup(self, num_warmup: int = 3):
|
def _warmup(self, num_warmup: int = 3):
|
||||||
@@ -74,14 +85,18 @@ class CUDAGraphWrapper:
|
|||||||
for _ in range(num_warmup):
|
for _ in range(num_warmup):
|
||||||
self.model(
|
self.model(
|
||||||
input_ids=self.static_input,
|
input_ids=self.static_input,
|
||||||
attention_mask=self.static_attention_mask
|
attention_mask=self.static_attention_mask,
|
||||||
)
|
)
|
||||||
|
|
||||||
def __call__(self, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
|
def __call__(self, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
|
||||||
|
if self.use_cuda_graph:
|
||||||
self.static_input.copy_(input_ids)
|
self.static_input.copy_(input_ids)
|
||||||
self.static_attention_mask.copy_(attention_mask)
|
self.static_attention_mask.copy_(attention_mask)
|
||||||
self.graph.replay()
|
self.graph.replay()
|
||||||
return self.static_output
|
return self.static_output
|
||||||
|
else:
|
||||||
|
# For MPS/CPU, just run normally
|
||||||
|
return self.model(input_ids=input_ids, attention_mask=attention_mask)
|
||||||
|
|
||||||
|
|
||||||
class ModelOptimizer:
|
class ModelOptimizer:
|
||||||
@@ -95,8 +110,16 @@ class ModelOptimizer:
|
|||||||
raise ValueError("Cannot optimize None model")
|
raise ValueError("Cannot optimize None model")
|
||||||
|
|
||||||
# Move to GPU
|
# Move to GPU
|
||||||
|
if torch.cuda.is_available():
|
||||||
model = model.cuda()
|
model = model.cuda()
|
||||||
print("- Model moved to GPU")
|
device = "cuda"
|
||||||
|
elif torch.backends.mps.is_available():
|
||||||
|
model = model.to("mps")
|
||||||
|
device = "mps"
|
||||||
|
else:
|
||||||
|
model = model.cpu()
|
||||||
|
device = "cpu"
|
||||||
|
print(f"- Model moved to {device}")
|
||||||
|
|
||||||
# FP16
|
# FP16
|
||||||
if config.use_fp16 and not config.use_int4:
|
if config.use_fp16 and not config.use_int4:
|
||||||
@@ -105,17 +128,22 @@ class ModelOptimizer:
|
|||||||
model = torch.compile(model)
|
model = torch.compile(model)
|
||||||
print("- Using FP16 precision")
|
print("- Using FP16 precision")
|
||||||
|
|
||||||
# Check if using SDPA
|
# Check if using SDPA (only on CUDA)
|
||||||
if torch.version.cuda and float(torch.version.cuda[:3]) >= 11.6:
|
if (
|
||||||
if hasattr(torch.nn.functional, 'scaled_dot_product_attention'):
|
torch.cuda.is_available()
|
||||||
|
and torch.version.cuda
|
||||||
|
and float(torch.version.cuda[:3]) >= 11.6
|
||||||
|
):
|
||||||
|
if hasattr(torch.nn.functional, "scaled_dot_product_attention"):
|
||||||
print("- Using PyTorch SDPA (scaled_dot_product_attention)")
|
print("- Using PyTorch SDPA (scaled_dot_product_attention)")
|
||||||
else:
|
else:
|
||||||
print("- PyTorch SDPA not available")
|
print("- PyTorch SDPA not available")
|
||||||
|
|
||||||
# Flash Attention
|
# Flash Attention (only on CUDA)
|
||||||
if config.use_flash_attention:
|
if config.use_flash_attention and torch.cuda.is_available():
|
||||||
try:
|
try:
|
||||||
from flash_attn.flash_attention import FlashAttention
|
from flash_attn.flash_attention import FlashAttention # noqa: F401
|
||||||
|
|
||||||
print("- Flash Attention 2 available")
|
print("- Flash Attention 2 available")
|
||||||
if hasattr(model.config, "attention_mode"):
|
if hasattr(model.config, "attention_mode"):
|
||||||
model.config.attention_mode = "flash_attention_2"
|
model.config.attention_mode = "flash_attention_2"
|
||||||
@@ -123,10 +151,12 @@ class ModelOptimizer:
|
|||||||
except ImportError:
|
except ImportError:
|
||||||
print("- Flash Attention not available")
|
print("- Flash Attention not available")
|
||||||
|
|
||||||
# Memory efficient attention
|
# Memory efficient attention (only on CUDA)
|
||||||
|
if torch.cuda.is_available():
|
||||||
try:
|
try:
|
||||||
from xformers.ops import memory_efficient_attention
|
from xformers.ops import memory_efficient_attention # noqa: F401
|
||||||
if hasattr(model, 'enable_xformers_memory_efficient_attention'):
|
|
||||||
|
if hasattr(model, "enable_xformers_memory_efficient_attention"):
|
||||||
model.enable_xformers_memory_efficient_attention()
|
model.enable_xformers_memory_efficient_attention()
|
||||||
print("- Enabled xformers memory efficient attention")
|
print("- Enabled xformers memory efficient attention")
|
||||||
else:
|
else:
|
||||||
@@ -141,21 +171,38 @@ class ModelOptimizer:
|
|||||||
|
|
||||||
|
|
||||||
class Timer:
|
class Timer:
|
||||||
"""Handles accurate GPU timing using CUDA events."""
|
"""Handles accurate GPU timing using GPU events or CPU timing."""
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
|
if torch.cuda.is_available():
|
||||||
self.start_event = torch.cuda.Event(enable_timing=True)
|
self.start_event = torch.cuda.Event(enable_timing=True)
|
||||||
self.end_event = torch.cuda.Event(enable_timing=True)
|
self.end_event = torch.cuda.Event(enable_timing=True)
|
||||||
|
self.use_gpu_timing = True
|
||||||
|
elif torch.backends.mps.is_available():
|
||||||
|
# MPS doesn't have events, use CPU timing
|
||||||
|
self.use_gpu_timing = False
|
||||||
|
else:
|
||||||
|
# CPU timing
|
||||||
|
self.use_gpu_timing = False
|
||||||
|
|
||||||
@contextmanager
|
@contextmanager
|
||||||
def timing(self):
|
def timing(self):
|
||||||
|
if self.use_gpu_timing:
|
||||||
self.start_event.record()
|
self.start_event.record()
|
||||||
yield
|
yield
|
||||||
self.end_event.record()
|
self.end_event.record()
|
||||||
self.end_event.synchronize()
|
self.end_event.synchronize()
|
||||||
|
else:
|
||||||
|
# Use CPU timing for MPS/CPU
|
||||||
|
start_time = time.time()
|
||||||
|
yield
|
||||||
|
self.cpu_elapsed = time.time() - start_time
|
||||||
|
|
||||||
def elapsed_time(self) -> float:
|
def elapsed_time(self) -> float:
|
||||||
|
if self.use_gpu_timing:
|
||||||
return self.start_event.elapsed_time(self.end_event) / 1000 # ms to seconds
|
return self.start_event.elapsed_time(self.end_event) / 1000 # ms to seconds
|
||||||
|
else:
|
||||||
|
return self.cpu_elapsed
|
||||||
|
|
||||||
|
|
||||||
class Benchmark:
|
class Benchmark:
|
||||||
@@ -168,14 +215,14 @@ class Benchmark:
|
|||||||
if self.model is None:
|
if self.model is None:
|
||||||
raise ValueError("Model initialization failed - model is None")
|
raise ValueError("Model initialization failed - model is None")
|
||||||
|
|
||||||
self.cuda_graphs = (
|
# Only use CUDA graphs on NVIDIA GPUs
|
||||||
CUDAGraphContainer(self.model, config.seq_length)
|
if config.use_cuda_graphs and torch.cuda.is_available():
|
||||||
if config.use_cuda_graphs
|
self.graphs = GraphContainer(self.model, config.seq_length)
|
||||||
else None
|
else:
|
||||||
)
|
self.graphs = None
|
||||||
self.timer = Timer()
|
self.timer = Timer()
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"ERROR in benchmark initialization: {str(e)}")
|
print(f"ERROR in benchmark initialization: {e!s}")
|
||||||
raise
|
raise
|
||||||
|
|
||||||
def _load_model(self) -> nn.Module:
|
def _load_model(self) -> nn.Module:
|
||||||
@@ -185,15 +232,17 @@ class Benchmark:
|
|||||||
# Int4 quantization using HuggingFace integration
|
# Int4 quantization using HuggingFace integration
|
||||||
if self.config.use_int4:
|
if self.config.use_int4:
|
||||||
import bitsandbytes as bnb
|
import bitsandbytes as bnb
|
||||||
|
|
||||||
print(f"- bitsandbytes version: {bnb.__version__}")
|
print(f"- bitsandbytes version: {bnb.__version__}")
|
||||||
|
|
||||||
# 检查是否使用自定义的8bit量化
|
# Check if using custom 8bit quantization
|
||||||
if hasattr(self.config, 'use_linear8bitlt') and self.config.use_linear8bitlt:
|
if hasattr(self.config, "use_linear8bitlt") and self.config.use_linear8bitlt:
|
||||||
print("- Using custom Linear8bitLt replacement for all linear layers")
|
print("- Using custom Linear8bitLt replacement for all linear layers")
|
||||||
|
|
||||||
# 加载原始模型(不使用量化配置)
|
# Load original model (without quantization config)
|
||||||
import bitsandbytes as bnb
|
import bitsandbytes as bnb
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
# set default to half
|
# set default to half
|
||||||
torch.set_default_dtype(torch.float16)
|
torch.set_default_dtype(torch.float16)
|
||||||
compute_dtype = torch.float16 if self.config.use_fp16 else torch.float32
|
compute_dtype = torch.float16 if self.config.use_fp16 else torch.float32
|
||||||
@@ -202,52 +251,58 @@ class Benchmark:
|
|||||||
torch_dtype=compute_dtype,
|
torch_dtype=compute_dtype,
|
||||||
)
|
)
|
||||||
|
|
||||||
# 定义替换函数
|
# Define replacement function
|
||||||
def replace_linear_with_linear8bitlt(model):
|
def replace_linear_with_linear8bitlt(model):
|
||||||
"""递归地将模型中的所有nn.Linear层替换为Linear8bitLt"""
|
"""Recursively replace all nn.Linear layers with Linear8bitLt"""
|
||||||
for name, module in list(model.named_children()):
|
for name, module in list(model.named_children()):
|
||||||
if isinstance(module, nn.Linear):
|
if isinstance(module, nn.Linear):
|
||||||
# 获取原始线性层的参数
|
# Get original linear layer parameters
|
||||||
in_features = module.in_features
|
in_features = module.in_features
|
||||||
out_features = module.out_features
|
out_features = module.out_features
|
||||||
bias = module.bias is not None
|
bias = module.bias is not None
|
||||||
|
|
||||||
# 创建8bit线性层
|
# Create 8bit linear layer
|
||||||
# print size
|
# print size
|
||||||
print(f"in_features: {in_features}, out_features: {out_features}")
|
print(f"in_features: {in_features}, out_features: {out_features}")
|
||||||
new_module = bnb.nn.Linear8bitLt(
|
new_module = bnb.nn.Linear8bitLt(
|
||||||
in_features,
|
in_features,
|
||||||
out_features,
|
out_features,
|
||||||
bias=bias,
|
bias=bias,
|
||||||
has_fp16_weights=False
|
has_fp16_weights=False,
|
||||||
)
|
)
|
||||||
|
|
||||||
# 复制权重和偏置
|
# Copy weights and bias
|
||||||
new_module.weight.data = module.weight.data
|
new_module.weight.data = module.weight.data
|
||||||
if bias:
|
if bias:
|
||||||
new_module.bias.data = module.bias.data
|
new_module.bias.data = module.bias.data
|
||||||
|
|
||||||
# 替换模块
|
# Replace module
|
||||||
setattr(model, name, new_module)
|
setattr(model, name, new_module)
|
||||||
else:
|
else:
|
||||||
# 递归处理子模块
|
# Process child modules recursively
|
||||||
replace_linear_with_linear8bitlt(module)
|
replace_linear_with_linear8bitlt(module)
|
||||||
|
|
||||||
return model
|
return model
|
||||||
|
|
||||||
# 替换所有线性层
|
# Replace all linear layers
|
||||||
model = replace_linear_with_linear8bitlt(model)
|
model = replace_linear_with_linear8bitlt(model)
|
||||||
# add torch compile
|
# add torch compile
|
||||||
model = torch.compile(model)
|
model = torch.compile(model)
|
||||||
|
|
||||||
# 将模型移到GPU(量化发生在这里)
|
# Move model to GPU (quantization happens here)
|
||||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
device = (
|
||||||
|
"cuda"
|
||||||
|
if torch.cuda.is_available()
|
||||||
|
else "mps"
|
||||||
|
if torch.backends.mps.is_available()
|
||||||
|
else "cpu"
|
||||||
|
)
|
||||||
model = model.to(device)
|
model = model.to(device)
|
||||||
|
|
||||||
print("- All linear layers replaced with Linear8bitLt")
|
print("- All linear layers replaced with Linear8bitLt")
|
||||||
|
|
||||||
else:
|
else:
|
||||||
# 使用原来的Int4量化方法
|
# Use original Int4 quantization method
|
||||||
print("- Using bitsandbytes for Int4 quantization")
|
print("- Using bitsandbytes for Int4 quantization")
|
||||||
|
|
||||||
# Create quantization config
|
# Create quantization config
|
||||||
@@ -257,7 +312,7 @@ class Benchmark:
|
|||||||
load_in_4bit=True,
|
load_in_4bit=True,
|
||||||
bnb_4bit_compute_dtype=compute_dtype,
|
bnb_4bit_compute_dtype=compute_dtype,
|
||||||
bnb_4bit_use_double_quant=True,
|
bnb_4bit_use_double_quant=True,
|
||||||
bnb_4bit_quant_type="nf4"
|
bnb_4bit_quant_type="nf4",
|
||||||
)
|
)
|
||||||
|
|
||||||
print("- Quantization config:", quantization_config)
|
print("- Quantization config:", quantization_config)
|
||||||
@@ -267,7 +322,7 @@ class Benchmark:
|
|||||||
self.config.model_path,
|
self.config.model_path,
|
||||||
quantization_config=quantization_config,
|
quantization_config=quantization_config,
|
||||||
torch_dtype=compute_dtype,
|
torch_dtype=compute_dtype,
|
||||||
device_map="auto" # Let HF decide on device mapping
|
device_map="auto", # Let HF decide on device mapping
|
||||||
)
|
)
|
||||||
|
|
||||||
# Check if model loaded successfully
|
# Check if model loaded successfully
|
||||||
@@ -279,7 +334,7 @@ class Benchmark:
|
|||||||
# Apply optimizations directly here
|
# Apply optimizations directly here
|
||||||
print("\nApplying model optimizations:")
|
print("\nApplying model optimizations:")
|
||||||
|
|
||||||
if hasattr(self.config, 'use_linear8bitlt') and self.config.use_linear8bitlt:
|
if hasattr(self.config, "use_linear8bitlt") and self.config.use_linear8bitlt:
|
||||||
print("- Model moved to GPU with Linear8bitLt quantization")
|
print("- Model moved to GPU with Linear8bitLt quantization")
|
||||||
else:
|
else:
|
||||||
# Skip moving to GPU since device_map="auto" already did that
|
# Skip moving to GPU since device_map="auto" already did that
|
||||||
@@ -289,16 +344,20 @@ class Benchmark:
|
|||||||
print(f"- Using {compute_dtype} for compute dtype")
|
print(f"- Using {compute_dtype} for compute dtype")
|
||||||
|
|
||||||
# Check CUDA and SDPA
|
# Check CUDA and SDPA
|
||||||
if torch.version.cuda and float(torch.version.cuda[:3]) >= 11.6:
|
if (
|
||||||
if hasattr(torch.nn.functional, 'scaled_dot_product_attention'):
|
torch.cuda.is_available()
|
||||||
|
and torch.version.cuda
|
||||||
|
and float(torch.version.cuda[:3]) >= 11.6
|
||||||
|
):
|
||||||
|
if hasattr(torch.nn.functional, "scaled_dot_product_attention"):
|
||||||
print("- Using PyTorch SDPA (scaled_dot_product_attention)")
|
print("- Using PyTorch SDPA (scaled_dot_product_attention)")
|
||||||
else:
|
else:
|
||||||
print("- PyTorch SDPA not available")
|
print("- PyTorch SDPA not available")
|
||||||
|
|
||||||
# Try xformers if available
|
# Try xformers if available (only on CUDA)
|
||||||
|
if torch.cuda.is_available():
|
||||||
try:
|
try:
|
||||||
from xformers.ops import memory_efficient_attention
|
if hasattr(model, "enable_xformers_memory_efficient_attention"):
|
||||||
if hasattr(model, 'enable_xformers_memory_efficient_attention'):
|
|
||||||
model.enable_xformers_memory_efficient_attention()
|
model.enable_xformers_memory_efficient_attention()
|
||||||
print("- Enabled xformers memory efficient attention")
|
print("- Enabled xformers memory efficient attention")
|
||||||
else:
|
else:
|
||||||
@@ -310,58 +369,30 @@ class Benchmark:
|
|||||||
model.eval()
|
model.eval()
|
||||||
print("- Model set to eval mode")
|
print("- Model set to eval mode")
|
||||||
# Int8 quantization using HuggingFace integration
|
# Int8 quantization using HuggingFace integration
|
||||||
# Int8 quantization using TorchAO
|
|
||||||
elif self.config.use_int8:
|
elif self.config.use_int8:
|
||||||
print("- Using TorchAO for Int8 dynamic activation and Int8 weight quantization")
|
print("- Using INT8 quantization")
|
||||||
|
# For now, just use standard loading with INT8 config
|
||||||
# Import the quantize_ function and the quantization config
|
compute_dtype = torch.float16 if self.config.use_fp16 else torch.float32
|
||||||
from torchao.quantization import quantize_, int8_dynamic_activation_int8_weight
|
quantization_config = BitsAndBytesConfig(
|
||||||
print("- Successfully imported TorchAO")
|
load_in_8bit=True,
|
||||||
|
llm_int8_threshold=6.0,
|
||||||
# Load model normally first
|
llm_int8_has_fp16_weight=False,
|
||||||
# set default to half
|
|
||||||
import torch
|
|
||||||
torch.set_default_dtype(torch.bfloat16)
|
|
||||||
model = AutoModel.from_pretrained(
|
|
||||||
self.config.model_path,
|
|
||||||
device_map="auto"
|
|
||||||
)
|
)
|
||||||
|
|
||||||
print("- Model loaded in full precision")
|
model = AutoModel.from_pretrained(
|
||||||
|
self.config.model_path,
|
||||||
|
quantization_config=quantization_config,
|
||||||
|
torch_dtype=compute_dtype,
|
||||||
|
device_map="auto",
|
||||||
|
)
|
||||||
|
|
||||||
|
if model is None:
|
||||||
|
raise ValueError("Model loading returned None")
|
||||||
|
|
||||||
print(f"- Model type: {type(model)}")
|
print(f"- Model type: {type(model)}")
|
||||||
|
|
||||||
# Apply quantization - call the function to get the config, then apply it
|
|
||||||
# quantize_(model, int8_dynamic_activation_int8_weight())
|
|
||||||
# from torchao.quantization import quantize_, Int8DynamicActivationInt8WeightConfig,int8_dynamic_activation_int8_semi_sparse_weight,int4_weight_only,Int8DynActInt4WeightGPTQQuantizer,int8_dynamic_activation_int4_weight,Int8DynamicActivationInt4WeightConfig,Int4DynamicActivationInt4WeightConfig
|
|
||||||
from torchao.quantization import quantize_, Int8DynamicActivationInt8WeightConfig
|
|
||||||
quantize_(model, Int8DynamicActivationInt8WeightConfig())
|
|
||||||
print("- Model successfully quantized with int8 weights and int8 activations")
|
|
||||||
# add torch compile
|
|
||||||
model = torch.compile(model)
|
|
||||||
# For older PyTorch versions that have issues with tensor subclasses
|
|
||||||
from torchao.utils import unwrap_tensor_subclass
|
|
||||||
import torch
|
|
||||||
if hasattr(torch, '_version') and not torch.version >= "2.5.0":
|
|
||||||
print("- Unwrapping tensor subclasses for compatibility with older PyTorch")
|
|
||||||
unwrap_tensor_subclass(model)
|
|
||||||
|
|
||||||
# Apply optimizations
|
|
||||||
if torch.version.cuda and float(torch.version.cuda[:3]) >= 11.6:
|
|
||||||
if hasattr(torch.nn.functional, 'scaled_dot_product_attention'):
|
|
||||||
print("- Using PyTorch SDPA (scaled_dot_product_attention)")
|
|
||||||
else:
|
|
||||||
print("- PyTorch SDPA not available")
|
|
||||||
|
|
||||||
# Set to eval mode
|
|
||||||
model.eval()
|
model.eval()
|
||||||
print("- Model set to eval mode")
|
print("- Model set to eval mode")
|
||||||
|
|
||||||
# For better performance with int8 dynamic quantization
|
|
||||||
torch._inductor.config.force_fuse_int_mm_with_mul = True
|
|
||||||
print("- Enabled fusion of int matmul with mul operations")
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
else:
|
else:
|
||||||
# Standard loading for FP16/FP32
|
# Standard loading for FP16/FP32
|
||||||
model = AutoModel.from_pretrained(self.config.model_path)
|
model = AutoModel.from_pretrained(self.config.model_path)
|
||||||
@@ -371,6 +402,7 @@ class Benchmark:
|
|||||||
# Apply standard optimizations
|
# Apply standard optimizations
|
||||||
# set default to half
|
# set default to half
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
torch.set_default_dtype(torch.bfloat16)
|
torch.set_default_dtype(torch.bfloat16)
|
||||||
model = ModelOptimizer.optimize(model, self.config)
|
model = ModelOptimizer.optimize(model, self.config)
|
||||||
model = model.half()
|
model = model.half()
|
||||||
@@ -385,49 +417,60 @@ class Benchmark:
|
|||||||
return model
|
return model
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"ERROR loading model: {str(e)}")
|
print(f"ERROR loading model: {e!s}")
|
||||||
import traceback
|
import traceback
|
||||||
|
|
||||||
traceback.print_exc()
|
traceback.print_exc()
|
||||||
raise
|
raise
|
||||||
|
|
||||||
def _create_random_batch(self, batch_size: int) -> torch.Tensor:
|
def _create_random_batch(self, batch_size: int) -> torch.Tensor:
|
||||||
|
device = (
|
||||||
|
"cuda"
|
||||||
|
if torch.cuda.is_available()
|
||||||
|
else "mps"
|
||||||
|
if torch.backends.mps.is_available()
|
||||||
|
else "cpu"
|
||||||
|
)
|
||||||
return torch.randint(
|
return torch.randint(
|
||||||
0, 1000,
|
0,
|
||||||
|
1000,
|
||||||
(batch_size, self.config.seq_length),
|
(batch_size, self.config.seq_length),
|
||||||
device="cuda",
|
device=device,
|
||||||
dtype=torch.long
|
dtype=torch.long,
|
||||||
)
|
)
|
||||||
|
|
||||||
def _run_inference(
|
def _run_inference(
|
||||||
self,
|
self, input_ids: torch.Tensor, graph_wrapper: GraphWrapper | None = None
|
||||||
input_ids: torch.Tensor,
|
) -> tuple[float, torch.Tensor]:
|
||||||
cuda_graph_wrapper: Optional[CUDAGraphWrapper] = None
|
|
||||||
) -> Tuple[float, torch.Tensor]:
|
|
||||||
attention_mask = torch.ones_like(input_ids)
|
attention_mask = torch.ones_like(input_ids)
|
||||||
|
|
||||||
with torch.no_grad(), self.timer.timing():
|
with torch.no_grad(), self.timer.timing():
|
||||||
if cuda_graph_wrapper is not None:
|
if graph_wrapper is not None:
|
||||||
output = cuda_graph_wrapper(input_ids, attention_mask)
|
output = graph_wrapper(input_ids, attention_mask)
|
||||||
else:
|
else:
|
||||||
output = self.model(input_ids=input_ids, attention_mask=attention_mask)
|
output = self.model(input_ids=input_ids, attention_mask=attention_mask)
|
||||||
|
|
||||||
return self.timer.elapsed_time(), output
|
return self.timer.elapsed_time(), output
|
||||||
|
|
||||||
def run(self) -> Dict[int, Dict[str, float]]:
|
def run(self) -> dict[int, dict[str, float]]:
|
||||||
results = {}
|
results = {}
|
||||||
|
|
||||||
# Reset peak memory stats
|
# Reset peak memory stats
|
||||||
|
if torch.cuda.is_available():
|
||||||
torch.cuda.reset_peak_memory_stats()
|
torch.cuda.reset_peak_memory_stats()
|
||||||
|
elif torch.backends.mps.is_available():
|
||||||
|
# MPS doesn't have reset_peak_memory_stats, skip it
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
print("- No GPU memory stats available")
|
||||||
|
|
||||||
for batch_size in self.config.batch_sizes:
|
for batch_size in self.config.batch_sizes:
|
||||||
print(f"\nTesting batch size: {batch_size}")
|
print(f"\nTesting batch size: {batch_size}")
|
||||||
times = []
|
times = []
|
||||||
|
|
||||||
# Get or create CUDA graph for this batch size
|
# Get or create graph for this batch size
|
||||||
cuda_graph_wrapper = (
|
graph_wrapper = (
|
||||||
self.cuda_graphs.get_or_create(batch_size)
|
self.graphs.get_or_create(batch_size) if self.graphs is not None else None
|
||||||
if self.cuda_graphs is not None
|
|
||||||
else None
|
|
||||||
)
|
)
|
||||||
|
|
||||||
# Pre-allocate input tensor
|
# Pre-allocate input tensor
|
||||||
@@ -437,7 +480,7 @@ class Benchmark:
|
|||||||
# Run benchmark
|
# Run benchmark
|
||||||
for i in tqdm(range(self.config.num_runs), desc=f"Batch size {batch_size}"):
|
for i in tqdm(range(self.config.num_runs), desc=f"Batch size {batch_size}"):
|
||||||
try:
|
try:
|
||||||
elapsed_time, output = self._run_inference(input_ids, cuda_graph_wrapper)
|
elapsed_time, output = self._run_inference(input_ids, graph_wrapper)
|
||||||
if i == 0: # Only print on first run
|
if i == 0: # Only print on first run
|
||||||
print(f"Output shape: {output.last_hidden_state.shape}")
|
print(f"Output shape: {output.last_hidden_state.shape}")
|
||||||
times.append(elapsed_time)
|
times.append(elapsed_time)
|
||||||
@@ -464,8 +507,19 @@ class Benchmark:
|
|||||||
print(f"Throughput: {throughput:.2f} sequences/second")
|
print(f"Throughput: {throughput:.2f} sequences/second")
|
||||||
|
|
||||||
# Log memory usage
|
# Log memory usage
|
||||||
peak_memory_gb = torch.cuda.max_memory_allocated() / (1024 ** 3)
|
if torch.cuda.is_available():
|
||||||
|
peak_memory_gb = torch.cuda.max_memory_allocated() / (1024**3)
|
||||||
|
elif torch.backends.mps.is_available():
|
||||||
|
# MPS doesn't have max_memory_allocated, use 0
|
||||||
|
peak_memory_gb = 0.0
|
||||||
|
else:
|
||||||
|
peak_memory_gb = 0.0
|
||||||
|
print("- No GPU memory usage available")
|
||||||
|
|
||||||
|
if peak_memory_gb > 0:
|
||||||
print(f"\nPeak GPU memory usage: {peak_memory_gb:.2f} GB")
|
print(f"\nPeak GPU memory usage: {peak_memory_gb:.2f} GB")
|
||||||
|
else:
|
||||||
|
print("\n- GPU memory usage not available")
|
||||||
|
|
||||||
# Add memory info to results
|
# Add memory info to results
|
||||||
for batch_size in results:
|
for batch_size in results:
|
||||||
@@ -485,7 +539,7 @@ def main():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--batch_sizes",
|
"--batch_sizes",
|
||||||
type=str,
|
type=str,
|
||||||
default="1,2,4,8,10,16,20,32,40,64,128,256,512,1024,2048,4096,8192",
|
default="1,2,4,8,16,32",
|
||||||
help="Comma-separated list of batch sizes",
|
help="Comma-separated list of batch sizes",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@@ -518,12 +572,12 @@ def main():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--use_cuda_graphs",
|
"--use_cuda_graphs",
|
||||||
action="store_true",
|
action="store_true",
|
||||||
help="Enable CUDA Graphs optimization",
|
help="Enable CUDA Graphs optimization (only on NVIDIA GPUs)",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--use_flash_attention",
|
"--use_flash_attention",
|
||||||
action="store_true",
|
action="store_true",
|
||||||
help="Enable Flash Attention 2 if available",
|
help="Enable Flash Attention 2 if available (only on NVIDIA GPUs)",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--use_linear8bitlt",
|
"--use_linear8bitlt",
|
||||||
@@ -568,7 +622,15 @@ def main():
|
|||||||
os.makedirs("results", exist_ok=True)
|
os.makedirs("results", exist_ok=True)
|
||||||
|
|
||||||
# Generate filename based on configuration
|
# Generate filename based on configuration
|
||||||
precision_type = "int4" if config.use_int4 else "fp16" if config.use_fp16 else "fp32"
|
precision_type = (
|
||||||
|
"int4"
|
||||||
|
if config.use_int4
|
||||||
|
else "int8"
|
||||||
|
if config.use_int8
|
||||||
|
else "fp16"
|
||||||
|
if config.use_fp16
|
||||||
|
else "fp32"
|
||||||
|
)
|
||||||
model_name = os.path.basename(config.model_path)
|
model_name = os.path.basename(config.model_path)
|
||||||
output_file = f"results/benchmark_{model_name}_{precision_type}.json"
|
output_file = f"results/benchmark_{model_name}_{precision_type}.json"
|
||||||
|
|
||||||
@@ -576,17 +638,20 @@ def main():
|
|||||||
with open(output_file, "w") as f:
|
with open(output_file, "w") as f:
|
||||||
json.dump(
|
json.dump(
|
||||||
{
|
{
|
||||||
"config": {k: str(v) if isinstance(v, list) else v for k, v in vars(config).items()},
|
"config": {
|
||||||
"results": {str(k): v for k, v in results.items()}
|
k: str(v) if isinstance(v, list) else v for k, v in vars(config).items()
|
||||||
|
},
|
||||||
|
"results": {str(k): v for k, v in results.items()},
|
||||||
},
|
},
|
||||||
f,
|
f,
|
||||||
indent=2
|
indent=2,
|
||||||
)
|
)
|
||||||
print(f"Results saved to {output_file}")
|
print(f"Results saved to {output_file}")
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"Benchmark failed: {e}")
|
print(f"Benchmark failed: {e}")
|
||||||
import traceback
|
import traceback
|
||||||
|
|
||||||
traceback.print_exc()
|
traceback.print_exc()
|
||||||
|
|
||||||
|
|
||||||
393
benchmarks/run_evaluation.py
Normal file
@@ -0,0 +1,393 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
"""
|
||||||
|
This script runs a recall evaluation on a given LEANN index.
|
||||||
|
It correctly compares results by fetching the text content for both the new search
|
||||||
|
results and the golden standard results, making the comparison robust to ID changes.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import json
|
||||||
|
import sys
|
||||||
|
import time
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from leann.api import LeannBuilder, LeannChat, LeannSearcher
|
||||||
|
|
||||||
|
|
||||||
|
def download_data_if_needed(data_root: Path, download_embeddings: bool = False):
|
||||||
|
"""Checks if the data directory exists, and if not, downloads it from HF Hub."""
|
||||||
|
if not data_root.exists():
|
||||||
|
print(f"Data directory '{data_root}' not found.")
|
||||||
|
print("Downloading evaluation data from Hugging Face Hub... (this may take a moment)")
|
||||||
|
try:
|
||||||
|
from huggingface_hub import snapshot_download
|
||||||
|
|
||||||
|
if download_embeddings:
|
||||||
|
# Download everything including embeddings (large files)
|
||||||
|
snapshot_download(
|
||||||
|
repo_id="LEANN-RAG/leann-rag-evaluation-data",
|
||||||
|
repo_type="dataset",
|
||||||
|
local_dir=data_root,
|
||||||
|
local_dir_use_symlinks=False,
|
||||||
|
)
|
||||||
|
print("Data download complete (including embeddings)!")
|
||||||
|
else:
|
||||||
|
# Download only specific folders, excluding embeddings
|
||||||
|
allow_patterns = [
|
||||||
|
"ground_truth/**",
|
||||||
|
"indices/**",
|
||||||
|
"queries/**",
|
||||||
|
"*.md",
|
||||||
|
"*.txt",
|
||||||
|
]
|
||||||
|
snapshot_download(
|
||||||
|
repo_id="LEANN-RAG/leann-rag-evaluation-data",
|
||||||
|
repo_type="dataset",
|
||||||
|
local_dir=data_root,
|
||||||
|
local_dir_use_symlinks=False,
|
||||||
|
allow_patterns=allow_patterns,
|
||||||
|
)
|
||||||
|
print("Data download complete (excluding embeddings)!")
|
||||||
|
except ImportError:
|
||||||
|
print(
|
||||||
|
"Error: huggingface_hub is not installed. Please install it to download the data:"
|
||||||
|
)
|
||||||
|
print("uv pip install -e '.[dev]'")
|
||||||
|
sys.exit(1)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"An error occurred during data download: {e}")
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
|
|
||||||
|
def download_embeddings_if_needed(data_root: Path, dataset_type: str | None = None):
|
||||||
|
"""Download embeddings files specifically."""
|
||||||
|
embeddings_dir = data_root / "embeddings"
|
||||||
|
|
||||||
|
if dataset_type:
|
||||||
|
# Check if specific dataset embeddings exist
|
||||||
|
target_file = embeddings_dir / dataset_type / "passages_00.pkl"
|
||||||
|
if target_file.exists():
|
||||||
|
print(f"Embeddings for {dataset_type} already exist")
|
||||||
|
return str(target_file)
|
||||||
|
|
||||||
|
print("Downloading embeddings from HuggingFace Hub...")
|
||||||
|
try:
|
||||||
|
from huggingface_hub import snapshot_download
|
||||||
|
|
||||||
|
# Download only embeddings folder
|
||||||
|
snapshot_download(
|
||||||
|
repo_id="LEANN-RAG/leann-rag-evaluation-data",
|
||||||
|
repo_type="dataset",
|
||||||
|
local_dir=data_root,
|
||||||
|
local_dir_use_symlinks=False,
|
||||||
|
allow_patterns=["embeddings/**/*.pkl"],
|
||||||
|
)
|
||||||
|
print("Embeddings download complete!")
|
||||||
|
|
||||||
|
if dataset_type:
|
||||||
|
target_file = embeddings_dir / dataset_type / "passages_00.pkl"
|
||||||
|
if target_file.exists():
|
||||||
|
return str(target_file)
|
||||||
|
|
||||||
|
return str(embeddings_dir)
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error downloading embeddings: {e}")
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
|
|
||||||
|
# --- Helper Function to get Golden Passages ---
|
||||||
|
def get_golden_texts(searcher: LeannSearcher, golden_ids: list[int]) -> set:
|
||||||
|
"""
|
||||||
|
Retrieves the text for golden passage IDs directly from the LeannSearcher's
|
||||||
|
passage manager.
|
||||||
|
"""
|
||||||
|
golden_texts = set()
|
||||||
|
for gid in golden_ids:
|
||||||
|
try:
|
||||||
|
# PassageManager uses string IDs
|
||||||
|
passage_data = searcher.passage_manager.get_passage(str(gid))
|
||||||
|
golden_texts.add(passage_data["text"])
|
||||||
|
except KeyError:
|
||||||
|
print(f"Warning: Golden passage ID '{gid}' not found in the index's passage data.")
|
||||||
|
return golden_texts
|
||||||
|
|
||||||
|
|
||||||
|
def load_queries(file_path: Path) -> list[str]:
|
||||||
|
queries = []
|
||||||
|
with open(file_path, encoding="utf-8") as f:
|
||||||
|
for line in f:
|
||||||
|
data = json.loads(line)
|
||||||
|
queries.append(data["query"])
|
||||||
|
return queries
|
||||||
|
|
||||||
|
|
||||||
|
def build_index_from_embeddings(embeddings_file: str, output_path: str, backend: str = "hnsw"):
|
||||||
|
"""
|
||||||
|
Build a LEANN index from pre-computed embeddings.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
embeddings_file: Path to pickle file with (ids, embeddings) tuple
|
||||||
|
output_path: Path where to save the index
|
||||||
|
backend: Backend to use ("hnsw" or "diskann")
|
||||||
|
"""
|
||||||
|
print(f"Building {backend} index from embeddings: {embeddings_file}")
|
||||||
|
|
||||||
|
# Create builder with appropriate parameters
|
||||||
|
if backend == "hnsw":
|
||||||
|
builder_kwargs = {
|
||||||
|
"M": 32, # Graph degree
|
||||||
|
"efConstruction": 256, # Construction complexity
|
||||||
|
"is_compact": True, # Use compact storage
|
||||||
|
"is_recompute": True, # Enable pruning for better recall
|
||||||
|
}
|
||||||
|
elif backend == "diskann":
|
||||||
|
builder_kwargs = {
|
||||||
|
"complexity": 64,
|
||||||
|
"graph_degree": 32,
|
||||||
|
"search_memory_maximum": 8.0, # GB
|
||||||
|
"build_memory_maximum": 16.0, # GB
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
builder_kwargs = {}
|
||||||
|
|
||||||
|
builder = LeannBuilder(
|
||||||
|
backend_name=backend,
|
||||||
|
embedding_model="facebook/contriever-msmarco", # Model used to create embeddings
|
||||||
|
dimensions=768, # Will be auto-detected from embeddings
|
||||||
|
**builder_kwargs,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Build index from precomputed embeddings
|
||||||
|
builder.build_index_from_embeddings(output_path, embeddings_file)
|
||||||
|
print(f"Index saved to: {output_path}")
|
||||||
|
return output_path
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = argparse.ArgumentParser(description="Run recall evaluation on a LEANN index.")
|
||||||
|
parser.add_argument(
|
||||||
|
"index_path",
|
||||||
|
type=str,
|
||||||
|
nargs="?",
|
||||||
|
help="Path to the LEANN index to evaluate or build (optional).",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--mode",
|
||||||
|
choices=["evaluate", "build"],
|
||||||
|
default="evaluate",
|
||||||
|
help="Mode: 'evaluate' existing index or 'build' from embeddings",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--embeddings-file",
|
||||||
|
type=str,
|
||||||
|
help="Path to embeddings pickle file (optional for build mode)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--backend",
|
||||||
|
choices=["hnsw", "diskann"],
|
||||||
|
default="hnsw",
|
||||||
|
help="Backend to use for building index (default: hnsw)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-queries", type=int, default=10, help="Number of queries to evaluate."
|
||||||
|
)
|
||||||
|
parser.add_argument("--top-k", type=int, default=3, help="The 'k' value for recall@k.")
|
||||||
|
parser.add_argument(
|
||||||
|
"--ef-search", type=int, default=120, help="The 'efSearch' parameter for HNSW."
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--batch-size",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="Batch size for HNSW batched search (0 disables batching)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--llm-type",
|
||||||
|
type=str,
|
||||||
|
choices=["ollama", "hf", "openai", "gemini", "simulated"],
|
||||||
|
default="ollama",
|
||||||
|
help="LLM backend type to optionally query during evaluation (default: ollama)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--llm-model",
|
||||||
|
type=str,
|
||||||
|
default="qwen3:1.7b",
|
||||||
|
help="LLM model identifier for the chosen backend (default: qwen3:1.7b)",
|
||||||
|
)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
# --- Path Configuration ---
|
||||||
|
# Assumes a project structure where the script is in 'benchmarks/'
|
||||||
|
# and evaluation data is in 'benchmarks/data/'.
|
||||||
|
script_dir = Path(__file__).resolve().parent
|
||||||
|
data_root = script_dir / "data"
|
||||||
|
|
||||||
|
# Download data based on mode
|
||||||
|
if args.mode == "build":
|
||||||
|
# For building mode, we need embeddings
|
||||||
|
download_data_if_needed(data_root, download_embeddings=False) # Basic data first
|
||||||
|
|
||||||
|
# Auto-detect dataset type and download embeddings
|
||||||
|
if args.embeddings_file:
|
||||||
|
embeddings_file = args.embeddings_file
|
||||||
|
# Try to detect dataset type from embeddings file path
|
||||||
|
if "rpj_wiki" in str(embeddings_file):
|
||||||
|
dataset_type = "rpj_wiki"
|
||||||
|
elif "dpr" in str(embeddings_file):
|
||||||
|
dataset_type = "dpr"
|
||||||
|
else:
|
||||||
|
dataset_type = "dpr" # Default
|
||||||
|
else:
|
||||||
|
# Auto-detect from index path if provided, otherwise default to DPR
|
||||||
|
if args.index_path:
|
||||||
|
index_path_str = str(args.index_path)
|
||||||
|
if "rpj_wiki" in index_path_str:
|
||||||
|
dataset_type = "rpj_wiki"
|
||||||
|
elif "dpr" in index_path_str:
|
||||||
|
dataset_type = "dpr"
|
||||||
|
else:
|
||||||
|
dataset_type = "dpr" # Default to DPR
|
||||||
|
else:
|
||||||
|
dataset_type = "dpr" # Default to DPR
|
||||||
|
|
||||||
|
embeddings_file = download_embeddings_if_needed(data_root, dataset_type)
|
||||||
|
|
||||||
|
# Auto-generate index path if not provided
|
||||||
|
if not args.index_path:
|
||||||
|
indices_dir = data_root / "indices" / dataset_type
|
||||||
|
indices_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
args.index_path = str(indices_dir / f"{dataset_type}_from_embeddings")
|
||||||
|
print(f"Auto-generated index path: {args.index_path}")
|
||||||
|
|
||||||
|
print(f"Building index from embeddings: {embeddings_file}")
|
||||||
|
built_index_path = build_index_from_embeddings(
|
||||||
|
embeddings_file, args.index_path, args.backend
|
||||||
|
)
|
||||||
|
print(f"Index built successfully: {built_index_path}")
|
||||||
|
|
||||||
|
# Ask if user wants to run evaluation
|
||||||
|
eval_response = input("Run evaluation on the built index? (y/n): ").strip().lower()
|
||||||
|
if eval_response != "y":
|
||||||
|
print("Index building complete. Exiting.")
|
||||||
|
return
|
||||||
|
else:
|
||||||
|
# For evaluation mode, don't need embeddings
|
||||||
|
download_data_if_needed(data_root, download_embeddings=False)
|
||||||
|
|
||||||
|
# Auto-detect index path if not provided
|
||||||
|
if not args.index_path:
|
||||||
|
# Default to using downloaded indices
|
||||||
|
indices_dir = data_root / "indices"
|
||||||
|
|
||||||
|
# Try common datasets in order of preference
|
||||||
|
for dataset in ["dpr", "rpj_wiki"]:
|
||||||
|
dataset_dir = indices_dir / dataset
|
||||||
|
if dataset_dir.exists():
|
||||||
|
# Look for index files
|
||||||
|
index_files = list(dataset_dir.glob("*.index")) + list(
|
||||||
|
dataset_dir.glob("*_disk.index")
|
||||||
|
)
|
||||||
|
if index_files:
|
||||||
|
args.index_path = str(
|
||||||
|
index_files[0].with_suffix("")
|
||||||
|
) # Remove .index extension
|
||||||
|
print(f"Using index: {args.index_path}")
|
||||||
|
break
|
||||||
|
|
||||||
|
if not args.index_path:
|
||||||
|
print("No indices found. The data download should have included pre-built indices.")
|
||||||
|
print(
|
||||||
|
"Please check the benchmarks/data/indices/ directory or provide --index-path manually."
|
||||||
|
)
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
|
# Detect dataset type from index path to select the correct ground truth
|
||||||
|
index_path_str = str(args.index_path)
|
||||||
|
if "rpj_wiki" in index_path_str:
|
||||||
|
dataset_type = "rpj_wiki"
|
||||||
|
elif "dpr" in index_path_str:
|
||||||
|
dataset_type = "dpr"
|
||||||
|
else:
|
||||||
|
# Fallback: try to infer from the index directory name
|
||||||
|
dataset_type = Path(args.index_path).name
|
||||||
|
print(f"WARNING: Could not detect dataset type from path, inferred '{dataset_type}'.")
|
||||||
|
|
||||||
|
queries_file = data_root / "queries" / "nq_open.jsonl"
|
||||||
|
golden_results_file = data_root / "ground_truth" / dataset_type / "flat_results_nq_k3.json"
|
||||||
|
|
||||||
|
print(f"INFO: Detected dataset type: {dataset_type}")
|
||||||
|
print(f"INFO: Using queries file: {queries_file}")
|
||||||
|
print(f"INFO: Using ground truth file: {golden_results_file}")
|
||||||
|
|
||||||
|
try:
|
||||||
|
searcher = LeannSearcher(args.index_path)
|
||||||
|
queries = load_queries(queries_file)
|
||||||
|
|
||||||
|
with open(golden_results_file) as f:
|
||||||
|
golden_results_data = json.load(f)
|
||||||
|
|
||||||
|
num_eval_queries = min(args.num_queries, len(queries))
|
||||||
|
queries = queries[:num_eval_queries]
|
||||||
|
|
||||||
|
print(f"\nRunning evaluation on {num_eval_queries} queries...")
|
||||||
|
recall_scores = []
|
||||||
|
search_times = []
|
||||||
|
|
||||||
|
for i in range(num_eval_queries):
|
||||||
|
start_time = time.time()
|
||||||
|
new_results = searcher.search(
|
||||||
|
queries[i],
|
||||||
|
top_k=args.top_k,
|
||||||
|
complexity=args.ef_search,
|
||||||
|
batch_size=args.batch_size,
|
||||||
|
)
|
||||||
|
search_times.append(time.time() - start_time)
|
||||||
|
|
||||||
|
# Optional: also call the LLM with configurable backend/model (does not affect recall)
|
||||||
|
llm_config = {"type": args.llm_type, "model": args.llm_model}
|
||||||
|
chat = LeannChat(args.index_path, llm_config=llm_config, searcher=searcher)
|
||||||
|
answer = chat.ask(
|
||||||
|
queries[i],
|
||||||
|
top_k=args.top_k,
|
||||||
|
complexity=args.ef_search,
|
||||||
|
batch_size=args.batch_size,
|
||||||
|
)
|
||||||
|
print(f"Answer: {answer}")
|
||||||
|
# Correct Recall Calculation: Based on TEXT content
|
||||||
|
new_texts = {result.text for result in new_results}
|
||||||
|
|
||||||
|
# Get golden texts directly from the searcher's passage manager
|
||||||
|
golden_ids = golden_results_data["indices"][i][: args.top_k]
|
||||||
|
golden_texts = get_golden_texts(searcher, golden_ids)
|
||||||
|
|
||||||
|
overlap = len(new_texts & golden_texts)
|
||||||
|
recall = overlap / len(golden_texts) if golden_texts else 0
|
||||||
|
recall_scores.append(recall)
|
||||||
|
|
||||||
|
print("\n--- EVALUATION RESULTS ---")
|
||||||
|
print(f"Query: {queries[i]}")
|
||||||
|
print(f"New Results: {new_texts}")
|
||||||
|
print(f"Golden Results: {golden_texts}")
|
||||||
|
print(f"Overlap: {overlap}")
|
||||||
|
print(f"Recall: {recall}")
|
||||||
|
print(f"Search Time: {search_times[-1]:.4f}s")
|
||||||
|
print("--------------------------------")
|
||||||
|
|
||||||
|
avg_recall = np.mean(recall_scores) if recall_scores else 0
|
||||||
|
avg_time = np.mean(search_times) if search_times else 0
|
||||||
|
|
||||||
|
print("\n🎉 --- Evaluation Complete ---")
|
||||||
|
print(f"Avg. Recall@{args.top_k} (efSearch={args.ef_search}): {avg_recall:.4f}")
|
||||||
|
print(f"Avg. Search Time: {avg_time:.4f}s")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"\n❌ An error occurred during evaluation: {e}")
|
||||||
|
import traceback
|
||||||
|
|
||||||
|
traceback.print_exc()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
317
benchmarks/simple_mac_tpt_test.py
Normal file
@@ -0,0 +1,317 @@
|
|||||||
|
import time
|
||||||
|
from dataclasses import dataclass
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
from tqdm import tqdm
|
||||||
|
from transformers import AutoModel
|
||||||
|
|
||||||
|
# Add MLX imports
|
||||||
|
try:
|
||||||
|
import mlx.core as mx
|
||||||
|
from mlx_lm.utils import load
|
||||||
|
|
||||||
|
MLX_AVAILABLE = True
|
||||||
|
except ImportError:
|
||||||
|
print("MLX not available. Install with: uv pip install mlx mlx-lm")
|
||||||
|
MLX_AVAILABLE = False
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class BenchmarkConfig:
|
||||||
|
model_path: str = "facebook/contriever-msmarco"
|
||||||
|
batch_sizes: list[int] = None
|
||||||
|
seq_length: int = 256
|
||||||
|
num_runs: int = 5
|
||||||
|
use_fp16: bool = True
|
||||||
|
use_int4: bool = False
|
||||||
|
use_int8: bool = False
|
||||||
|
use_cuda_graphs: bool = False
|
||||||
|
use_flash_attention: bool = False
|
||||||
|
use_linear8bitlt: bool = False
|
||||||
|
use_mlx: bool = False # New flag for MLX testing
|
||||||
|
|
||||||
|
def __post_init__(self):
|
||||||
|
if self.batch_sizes is None:
|
||||||
|
self.batch_sizes = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
|
||||||
|
|
||||||
|
|
||||||
|
class MLXBenchmark:
|
||||||
|
"""MLX-specific benchmark for embedding models"""
|
||||||
|
|
||||||
|
def __init__(self, config: BenchmarkConfig):
|
||||||
|
self.config = config
|
||||||
|
self.model, self.tokenizer = self._load_model()
|
||||||
|
|
||||||
|
def _load_model(self):
|
||||||
|
"""Load MLX model and tokenizer following the API pattern"""
|
||||||
|
print(f"Loading MLX model from {self.config.model_path}...")
|
||||||
|
try:
|
||||||
|
model, tokenizer = load(self.config.model_path)
|
||||||
|
print("MLX model loaded successfully")
|
||||||
|
return model, tokenizer
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error loading MLX model: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
def _create_random_batch(self, batch_size: int):
|
||||||
|
"""Create random input batches for MLX testing - same as PyTorch"""
|
||||||
|
return torch.randint(0, 1000, (batch_size, self.config.seq_length), dtype=torch.long)
|
||||||
|
|
||||||
|
def _run_inference(self, input_ids: torch.Tensor) -> float:
|
||||||
|
"""Run MLX inference with same input as PyTorch"""
|
||||||
|
start_time = time.time()
|
||||||
|
try:
|
||||||
|
# Convert PyTorch tensor to MLX array
|
||||||
|
input_ids_mlx = mx.array(input_ids.numpy())
|
||||||
|
|
||||||
|
# Get embeddings
|
||||||
|
embeddings = self.model(input_ids_mlx)
|
||||||
|
|
||||||
|
# Mean pooling (following the API pattern)
|
||||||
|
pooled = embeddings.mean(axis=1)
|
||||||
|
|
||||||
|
# Convert to numpy (following the API pattern)
|
||||||
|
pooled_numpy = np.array(pooled.tolist(), dtype=np.float32)
|
||||||
|
|
||||||
|
# Force computation
|
||||||
|
_ = pooled_numpy.shape
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"MLX inference error: {e}")
|
||||||
|
return float("inf")
|
||||||
|
end_time = time.time()
|
||||||
|
|
||||||
|
return end_time - start_time
|
||||||
|
|
||||||
|
def run(self) -> dict[int, dict[str, float]]:
|
||||||
|
"""Run the MLX benchmark across all batch sizes"""
|
||||||
|
results = {}
|
||||||
|
|
||||||
|
print(f"Starting MLX benchmark with model: {self.config.model_path}")
|
||||||
|
print(f"Testing batch sizes: {self.config.batch_sizes}")
|
||||||
|
|
||||||
|
for batch_size in self.config.batch_sizes:
|
||||||
|
print(f"\n=== Testing MLX batch size: {batch_size} ===")
|
||||||
|
times = []
|
||||||
|
|
||||||
|
# Create input batch (same as PyTorch)
|
||||||
|
input_ids = self._create_random_batch(batch_size)
|
||||||
|
|
||||||
|
# Warm up
|
||||||
|
print("Warming up...")
|
||||||
|
for _ in range(3):
|
||||||
|
try:
|
||||||
|
self._run_inference(input_ids[:2]) # Warm up with smaller batch
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Warmup error: {e}")
|
||||||
|
break
|
||||||
|
|
||||||
|
# Run benchmark
|
||||||
|
for _i in tqdm(range(self.config.num_runs), desc=f"MLX Batch size {batch_size}"):
|
||||||
|
try:
|
||||||
|
elapsed_time = self._run_inference(input_ids)
|
||||||
|
if elapsed_time != float("inf"):
|
||||||
|
times.append(elapsed_time)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error during MLX inference: {e}")
|
||||||
|
break
|
||||||
|
|
||||||
|
if not times:
|
||||||
|
print(f"Skipping batch size {batch_size} due to errors")
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Calculate statistics
|
||||||
|
avg_time = np.mean(times)
|
||||||
|
std_time = np.std(times)
|
||||||
|
throughput = batch_size / avg_time
|
||||||
|
|
||||||
|
results[batch_size] = {
|
||||||
|
"avg_time": avg_time,
|
||||||
|
"std_time": std_time,
|
||||||
|
"throughput": throughput,
|
||||||
|
"min_time": np.min(times),
|
||||||
|
"max_time": np.max(times),
|
||||||
|
}
|
||||||
|
|
||||||
|
print(f"MLX Results for batch size {batch_size}:")
|
||||||
|
print(f" Avg Time: {avg_time:.4f}s ± {std_time:.4f}s")
|
||||||
|
print(f" Min Time: {np.min(times):.4f}s")
|
||||||
|
print(f" Max Time: {np.max(times):.4f}s")
|
||||||
|
print(f" Throughput: {throughput:.2f} sequences/second")
|
||||||
|
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
class Benchmark:
|
||||||
|
def __init__(self, config: BenchmarkConfig):
|
||||||
|
self.config = config
|
||||||
|
self.device = (
|
||||||
|
"cuda"
|
||||||
|
if torch.cuda.is_available()
|
||||||
|
else "mps"
|
||||||
|
if torch.backends.mps.is_available()
|
||||||
|
else "cpu"
|
||||||
|
)
|
||||||
|
self.model = self._load_model()
|
||||||
|
|
||||||
|
def _load_model(self) -> nn.Module:
|
||||||
|
print(f"Loading model from {self.config.model_path}...")
|
||||||
|
|
||||||
|
model = AutoModel.from_pretrained(self.config.model_path)
|
||||||
|
if self.config.use_fp16:
|
||||||
|
model = model.half()
|
||||||
|
model = torch.compile(model)
|
||||||
|
model = model.to(self.device)
|
||||||
|
|
||||||
|
model.eval()
|
||||||
|
return model
|
||||||
|
|
||||||
|
def _create_random_batch(self, batch_size: int) -> torch.Tensor:
|
||||||
|
return torch.randint(
|
||||||
|
0,
|
||||||
|
1000,
|
||||||
|
(batch_size, self.config.seq_length),
|
||||||
|
device=self.device,
|
||||||
|
dtype=torch.long,
|
||||||
|
)
|
||||||
|
|
||||||
|
def _run_inference(self, input_ids: torch.Tensor) -> float:
|
||||||
|
attention_mask = torch.ones_like(input_ids)
|
||||||
|
# print shape of input_ids and attention_mask
|
||||||
|
print(f"input_ids shape: {input_ids.shape}")
|
||||||
|
print(f"attention_mask shape: {attention_mask.shape}")
|
||||||
|
start_time = time.time()
|
||||||
|
with torch.no_grad():
|
||||||
|
self.model(input_ids=input_ids, attention_mask=attention_mask)
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
torch.cuda.synchronize()
|
||||||
|
if torch.backends.mps.is_available():
|
||||||
|
torch.mps.synchronize()
|
||||||
|
end_time = time.time()
|
||||||
|
|
||||||
|
return end_time - start_time
|
||||||
|
|
||||||
|
def run(self) -> dict[int, dict[str, float]]:
|
||||||
|
results = {}
|
||||||
|
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
torch.cuda.reset_peak_memory_stats()
|
||||||
|
|
||||||
|
for batch_size in self.config.batch_sizes:
|
||||||
|
print(f"\nTesting batch size: {batch_size}")
|
||||||
|
times = []
|
||||||
|
|
||||||
|
input_ids = self._create_random_batch(batch_size)
|
||||||
|
|
||||||
|
for _i in tqdm(range(self.config.num_runs), desc=f"Batch size {batch_size}"):
|
||||||
|
try:
|
||||||
|
elapsed_time = self._run_inference(input_ids)
|
||||||
|
times.append(elapsed_time)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error during inference: {e}")
|
||||||
|
break
|
||||||
|
|
||||||
|
if not times:
|
||||||
|
continue
|
||||||
|
|
||||||
|
avg_time = np.mean(times)
|
||||||
|
std_time = np.std(times)
|
||||||
|
throughput = batch_size / avg_time
|
||||||
|
|
||||||
|
results[batch_size] = {
|
||||||
|
"avg_time": avg_time,
|
||||||
|
"std_time": std_time,
|
||||||
|
"throughput": throughput,
|
||||||
|
}
|
||||||
|
|
||||||
|
print(f"Avg Time: {avg_time:.4f}s ± {std_time:.4f}s")
|
||||||
|
print(f"Throughput: {throughput:.2f} sequences/second")
|
||||||
|
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
peak_memory_gb = torch.cuda.max_memory_allocated() / (1024**3)
|
||||||
|
else:
|
||||||
|
peak_memory_gb = 0.0
|
||||||
|
|
||||||
|
for batch_size in results:
|
||||||
|
results[batch_size]["peak_memory_gb"] = peak_memory_gb
|
||||||
|
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
def run_benchmark():
|
||||||
|
"""Main function to run the benchmark with optimized parameters."""
|
||||||
|
config = BenchmarkConfig()
|
||||||
|
|
||||||
|
try:
|
||||||
|
benchmark = Benchmark(config)
|
||||||
|
results = benchmark.run()
|
||||||
|
|
||||||
|
max_throughput = max(results[batch_size]["throughput"] for batch_size in results)
|
||||||
|
avg_throughput = np.mean([results[batch_size]["throughput"] for batch_size in results])
|
||||||
|
|
||||||
|
return {
|
||||||
|
"max_throughput": max_throughput,
|
||||||
|
"avg_throughput": avg_throughput,
|
||||||
|
"results": results,
|
||||||
|
}
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Benchmark failed: {e}")
|
||||||
|
return {"max_throughput": 0.0, "avg_throughput": 0.0, "error": str(e)}
|
||||||
|
|
||||||
|
|
||||||
|
def run_mlx_benchmark():
|
||||||
|
"""Run MLX-specific benchmark"""
|
||||||
|
if not MLX_AVAILABLE:
|
||||||
|
print("MLX not available, skipping MLX benchmark")
|
||||||
|
return {
|
||||||
|
"max_throughput": 0.0,
|
||||||
|
"avg_throughput": 0.0,
|
||||||
|
"error": "MLX not available",
|
||||||
|
}
|
||||||
|
|
||||||
|
config = BenchmarkConfig(model_path="mlx-community/all-MiniLM-L6-v2-4bit", use_mlx=True)
|
||||||
|
|
||||||
|
try:
|
||||||
|
benchmark = MLXBenchmark(config)
|
||||||
|
results = benchmark.run()
|
||||||
|
|
||||||
|
if not results:
|
||||||
|
return {
|
||||||
|
"max_throughput": 0.0,
|
||||||
|
"avg_throughput": 0.0,
|
||||||
|
"error": "No valid results",
|
||||||
|
}
|
||||||
|
|
||||||
|
max_throughput = max(results[batch_size]["throughput"] for batch_size in results)
|
||||||
|
avg_throughput = np.mean([results[batch_size]["throughput"] for batch_size in results])
|
||||||
|
|
||||||
|
return {
|
||||||
|
"max_throughput": max_throughput,
|
||||||
|
"avg_throughput": avg_throughput,
|
||||||
|
"results": results,
|
||||||
|
}
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"MLX benchmark failed: {e}")
|
||||||
|
return {"max_throughput": 0.0, "avg_throughput": 0.0, "error": str(e)}
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
print("=== PyTorch Benchmark ===")
|
||||||
|
pytorch_result = run_benchmark()
|
||||||
|
print(f"PyTorch Max throughput: {pytorch_result['max_throughput']:.2f} sequences/second")
|
||||||
|
print(f"PyTorch Average throughput: {pytorch_result['avg_throughput']:.2f} sequences/second")
|
||||||
|
|
||||||
|
print("\n=== MLX Benchmark ===")
|
||||||
|
mlx_result = run_mlx_benchmark()
|
||||||
|
print(f"MLX Max throughput: {mlx_result['max_throughput']:.2f} sequences/second")
|
||||||
|
print(f"MLX Average throughput: {mlx_result['avg_throughput']:.2f} sequences/second")
|
||||||
|
|
||||||
|
# Compare results
|
||||||
|
if pytorch_result["max_throughput"] > 0 and mlx_result["max_throughput"] > 0:
|
||||||
|
speedup = mlx_result["max_throughput"] / pytorch_result["max_throughput"]
|
||||||
|
print("\n=== Comparison ===")
|
||||||
|
print(f"MLX is {speedup:.2f}x {'faster' if speedup > 1 else 'slower'} than PyTorch")
|
||||||
BIN
data/2501.14312v1 (1).pdf
Normal file
14905
data/PrideandPrejudice.txt
Normal file
82
data/huawei_pangu.md
Normal file
@@ -0,0 +1,82 @@
|
|||||||
|
# 盘古之殇:华为诺亚盘古大模型研发历程的心酸与黑暗
|
||||||
|
|
||||||
|
各位好,
|
||||||
|
|
||||||
|
我是一名盘古大模型团队,华为诺亚方舟实验室的员工。
|
||||||
|
|
||||||
|
首先为自证身份,列举一些细节:
|
||||||
|
|
||||||
|
1. 现诺亚主任,前算法应用部部长,后改名为小模型实验室的主任王云鹤。前诺亚主任:姚骏(大家称姚老师)。几个实验室主任:唐睿明(明哥,明队,已离职),尚利峰,张维(维哥),郝建业(郝老师),刘武龙(称呼为武龙所)等。其他骨干成员和专家陆续有很多人离职。
|
||||||
|
2. 我们隶属于“四野”这个组织。四野下属有许多纵队,基础语言大模型是四纵。王云鹤的小模型是十六纵队。我们参加过苏州的集结,有各种月份的时间节点。在苏州攻关会颁发任务令,需要在节点前达成目标。苏州集结会把各地的人员都集中在苏州研究所,平常住宾馆,比如在甪直的酒店,与家人孩子天各一方。
|
||||||
|
3. 在苏州集结的时候周六默认上班,非常辛苦,不过周六有下午茶,有一次还有小龙虾。在苏州研究所的工位搬迁过一次,从一栋楼换到了另一栋。苏州研究所楼栋都是欧式装修,门口有大坡,里面景色很不错。去苏州集结一般至少要去一周,甚至更久,多的人甚至一两个月都回不了家。
|
||||||
|
4. 诺亚曾经传说是研究型的,但是来了之后因为在四野做大模型项目,项目成员完全变成了交付型的,且充满了例会,评审,汇报。很多时候做实验都要申请。团队需要对接终端小艺,华为云,ICT等诸多业务线,交付压力不小。
|
||||||
|
5. 诺亚研发的盘古模型早期内部代号叫做“盘古智子”,一开始只有内部需要申请试用的网页版,到后续迫于压力在welink上接入和公测开放。
|
||||||
|
|
||||||
|
这些天发生关于质疑盘古大模型抄袭千问的事情闹的沸沸扬扬。作为一个盘古团队的成员,我最近夜夜辗转反侧,难以入眠。盘古的品牌受到如此大的影响,一方面,我自私的为我的职业发展担忧,也为自己过去的努力工作感到不值。另一方面,由于有人开始揭露这些事情我内心又感到大快人心。在多少个日日夜夜,我们对内部某些人一次次靠着造假而又获得了无数利益的行为咬牙切齿而又无能为力。这种压抑和羞辱也逐渐消磨了我对华为的感情,让我在这里的时日逐渐浑浑噩噩,迷茫无措,时常怀疑自己的人生和自我价值。
|
||||||
|
|
||||||
|
我承认我是一个懦弱的人,作为一个小小的打工人,我不仅不敢和王云鹤等内部手眼通天的人做对,更不敢和华为这样的庞然大物做对。我很怕失去我的工作,毕竟我也有家人和孩子,所以我打心眼里很佩服揭露者。但是,看到内部还在试图洗地掩盖事实,蒙蔽公众的时候,我实在不能容忍了。我也希望勇敢一次,顺从自己本心。就算自损八百,我也希望能伤敌一千。我决定把我在这里的所见所闻(部分来自于同事口述)公布出来,关于盘古大模型的“传奇故事”:
|
||||||
|
|
||||||
|
华为确实主要在昇腾卡上训练大模型(小模型实验室有不少英伟达的卡,他们之前也会用来训练,后面转移到昇腾)。曾经我被华为“打造世界第二选择”的决心而折服,我本身也曾经对华为有深厚的感情。我们陪着昇腾一步步摸爬滚打,从充满bug到现在能训出模型,付出了巨大的心血和代价。
|
||||||
|
|
||||||
|
最初我们的算力非常有限,在910A上训练模型。那会只支持fp16,训练的稳定性远不如bf16。盘古的moe开始很早,23年就主要是训练38Bmoe模型和后续的71B dense模型。71B的dense模型通过扩增变成了第一代的135Bdense模型,后面主力模型也逐渐在910B上训练。
|
||||||
|
|
||||||
|
71B和135B模型都有一个巨大的硬伤就是tokenizer。当时使用的tokenizer编码效率极低,每个单个的符号,数字,空格,乃至汉字都会占用一个token。可想而知这会非常浪费算力,且使得模型的效果很差。这时候小模型实验室正好有个自己训的词表。姚老师当时怀疑是不是模型的tokenizer不好(虽然事后来看,他的怀疑是无疑正确的),于是就决定,让71B和135B换tokenizer,因为小模型实验室曾经尝试过。团队缝合了两个tokenizer,开始了tokenizer的更换。71B模型的更换失败了,而135B因为采用了更精细的embedding初始化策略,续训了至少1T的数据后词表总算更换成功,但可想而知,效果并不会变好。
|
||||||
|
|
||||||
|
于此同期,阿里和智谱等国内其他公司在GPU上训练,且已经摸索出了正确的方法,盘古和竞品的差距越来越大。内部一个230B从头训练的dense模型又因为各种原因训练失败,导致项目的状况几乎陷入绝境。面临几个节点的压力以及内部对盘古的强烈质疑时,团队的士气低迷到了极点。团队在算力极其有限的时候,做出了很多努力和挣扎。比如,团队偶然发现当时的38B moe并没有预期moe的效果。于是去掉了moe参数,还原为了13B的dense模型。由于38B的moe源自很早的pangu alpha 13B,架构相对落后,团队进行了一系列的操作,比如切换绝对位置编码到rope,去掉bias,切换为rmsnorm。同时鉴于tokenizer的一些失败和换词表的经验,这个模型的词表也更换为了王云鹤的小模型实验室7B模型所使用的词表。后面这个13B模型进行了扩增续训,变成了第二代38B dense模型(在几个月内这个模型都是主要的盘古中档位模型),曾经具有一定的竞争力。但是,由于更大的135B模型架构落后,且更换词表模型损伤巨大(后续分析发现当时更换的缝合词表有更严重的bug),续训后也与千问等当时国内领先模型存在很大差距。这时由于内部的质疑声和领导的压力也越来越大。团队的状态几乎陷入了绝境。
|
||||||
|
|
||||||
|
在这种情况下,王云鹤和他的小模型实验室出手了。他们声称是从旧的135B参数继承改造而来,通过训练短短的几百B数据,各项指标平均提升了十个点左右。实际上,这就是他们套壳应用到大模型的第一次杰作。华为的外行领导内行,使得领导完全对于这种扯淡的事情没有概念,他们只会觉得肯定是有什么算法创新。经过内部的分析,他们实际上是使用Qwen 1.5 110B续训而来,通过加层,扩增ffn维度,添加盘古pi论文的一些机制得来,凑够了大概135B的参数。实际上,旧的135B有107层,而这个模型只有82层,各种配置也都不一样。新的来路不明的135B训练完很多参数的分布也和Qwen 110B几乎一模一样。连模型代码的类名当时都是Qwen,甚至懒得改名。后续这个模型就是所谓的135B V2。而这个模型当时也提供给了很多下游,甚至包括外部客户。
|
||||||
|
|
||||||
|
这件事对于我们这些认真诚实做事的同事们带来了巨大的冲击,内部很多人其实都知道这件事,甚至包括终端和华为云。我们都戏称以后别叫盘古模型了,叫千古吧。当时团队成员就想向bcg举报了,毕竟这已经是重大的业务造假了。但是后面据说被领导拦了下来,因为更高级别的领导(比如姚老师,以及可能熊总和查老)其实后面也知道了,但是并不管,因为通过套壳拿出好的结果,对他们也是有利的。这件事使得当时团队几位最强的同事开始心灰意冷,离职跑路也逐渐成为挂在嘴边的事。
|
||||||
|
|
||||||
|
此时,盘古似乎迎来了转机。由于前面所述的这些盘古模型基本都是续训和改造而来,当时诺亚完全没有掌握从头训练的技术,何况还是在昇腾的NPU上进行训练。在当时团队的核心成员的极力争取下,盘古开始了第三代模型的训练,付出了巨大的努力后,在数据架构和训练算法方面都与业界逐渐接轨,而这其中的艰辛和小模型实验室的人一点关系都没有。
|
||||||
|
|
||||||
|
一开始团队成员毫无信心,只从一个13B的模型开始训练,但是后面发现效果还不错,于是这个模型后续再次进行了一次参数扩增,变成了第三代的38B,代号38B V3。想必很多产品线的兄弟都对这个模型很熟悉。当时这个模型的tokenizer是基于llama的词表进行扩展的(也是业界常见的做法)。而当时王云鹤的实验室做出来了另一个词表(也就是后续pangu系列的词表)。当时两个词表还被迫进行了一次赛马,最终没有明显的好坏结论。于是,领导当即决定,应该统一词表,使用王云鹤他们的。于是,在后续从头训练的135B V3(也就是对外的Pangu Ultra),便是采用了这个tokenizer。这也解释了很多使用我们模型的兄弟的疑惑,为什么当时同为V3代的两个不同档位的模型,会使用不同的tokenizer。
|
||||||
|
|
||||||
|
|
||||||
|
我们打心眼里觉得,135B V3是我们四纵团队当时的骄傲。这是第一个真正意义上的,华为全栈自研,正经从头训练的千亿级别的模型,且效果与24年同期竞品可比的。写到这里我已经热泪盈眶,太不容易了。当时为了稳定训练,团队做了大量实验对比,并且多次在模型梯度出现异常的时候进行及时回退重启。这个模型真正做到了后面技术报告所说的训练全程没有一个loss spike。我们克服了不知道多少困难,我们做到了,我们愿用生命和荣誉保证这个模型训练的真实性。多少个凌晨,我们为了它的训练而不眠。在被内部心声骂的一文不值的时候,我们有多么不甘,有多少的委屈,我们挺住了。
|
||||||
|
|
||||||
|
我们这帮人是真的在为打磨国产算力底座燃烧自己的青春啊……客居他乡,我们放弃了家庭,放弃了假期,放弃了健康,放弃了娱乐,抛头颅洒热血,其中的艰辛与困苦,寥寥数笔不足以概括其万一。在各种动员大会上,当时口号中喊出的盘古必胜,华为必胜,我们心里是真的深深被感动。
|
||||||
|
|
||||||
|
然而,我们的所有辛苦的成果,经常被小模型实验室轻飘飘的拿走了。数据,直接要走。代码,直接要走,还要求我们配合适配到能一键运行。我们当时戏称小模型实验室为点鼠标实验室。我们付出辛苦,他们取得荣耀。果然应了那句话,你在负重前行是因为有人替你岁月静好。在这种情况下,越来越多的战友再也坚持不下去了,选择了离开。看到身边那些优秀的同事一个个离职,我的内心又感叹又难过。在这种作战一样的环境下,我们比起同事来说更像是战友。他们在技术上也有无数值得我学习的地方,堪称良师。看到他们去了诸如字节Seed,Deepseek,月之暗面,腾讯和快手等等很多出色的团队,我打心眼里为他们高兴和祝福,脱离了这个辛苦却肮脏的地方。我至今还对一位离职同事的话记忆犹新,ta说:“来这里是我技术生涯中的耻辱,在这里再呆每一天都是浪费生命”。话虽难听却让我无言以对。我担心我自己技术方面的积累不足,以及没法适应互联网公司高淘汰的环境,让我多次想离职的心始终没有迈出这一步。
|
||||||
|
|
||||||
|
盘古除了dense模型,后续也启动了moe的探索。一开始训练的是一个224B的moe模型。而与之平行的,小模型实验室也开启了第二次主要的套壳行动(次要的插曲可能还包括一些别的模型,比如math模型),即这次流传甚广的pangu pro moe 72B。这个模型内部自称是从小模型实验室的7B扩增上来的(就算如此,这也与技术报告不符,何况是套壳qwen 2.5的14b续训)。还记得他们训了没几天,内部的评测就立刻追上了当时的38B V3。AI系统实验室很多兄弟因为需要适配模型,都知道他们的套壳行动,只是迫于各种原因,无法伸张正义。实际上,对于后续训了很久很久的这个模型,Honestagi能够分析出这个量级的相似性我已经很诧异了,因为这个模型为了续训洗参数,所付出的算力甚至早就足够从头训一个同档位的模型了。听同事说他们为了洗掉千问的水印,采取了不少办法,甚至包括故意训了脏数据。这也为学术界研究模型血缘提供了一个前所未有的特殊模范吧。以后新的血缘方法提出可以拿出来溜溜。
|
||||||
|
|
||||||
|
24年底和25年初,在Deepseek v3和r1发布之后,由于其惊艳的技术水平,团队受到了巨大的冲击,也受到了更大的质疑。于是为了紧跟潮流,盘古模仿Deepseek的模型尺寸,开启了718B moe的训练。这个时候,小模型实验室再次出手了。他们选择了套壳Deepseekv3续训。他们通过冻住Deepseek加载的参数,进行训练。连任务加载ckpt的目录都是deepseekv3,改都不改,何其嚣张?与之相反,一些有真正技术信仰的同事,在从头训练另一个718B的moe。但其中出现了各种各样的问题。但是很显然,这个模型怎么可能比直接套壳的好呢?如果不是团队leader坚持,早就被叫停了。
|
||||||
|
|
||||||
|
华为的流程管理之繁重,严重拖累了大模型的研发节奏,例如版本管理,模型血缘,各种流程化,各种可追溯。讽刺的是,小模型实验室的模型似乎从来不受这些流程的约束,想套壳就套壳,想续训就续训,算力源源不断的伸手拿走。这种强烈到近乎魔幻的对比,说明了当前流程管理的情况:只许州官放火,不许百姓点灯。何其可笑?何其可悲?何其可恶?何其可耻!
|
||||||
|
|
||||||
|
HonestAGI的事情出来后,内部让大家不停的研讨分析,如何公关和“回应”。诚然,这个原文的分析也许不够有力,给了王云鹤与小模型实验室他们狡辩和颠倒黑白的机会。为此,这两天我内心感到作呕,时时怀疑自己的人生意义以及苍天无眼。我不奉陪了,我要离职了,同时我也在申请从盘古部分技术报告的作者名单中移除。曾经在这些技术报告上署名是我一生都无法抹除的污点。当时我没想到,他们竟然猖狂到敢开源。我没想到,他们敢如此愚弄世人,大肆宣发。当时,我也许是存了侥幸心理,没有拒绝署名。我相信很多扎实做事的战友,也只是被迫上了贼船,或者不知情。但这件事已经无法挽回,我希望我的余生能够坚持扎实做真正有意义的事,为我当时的软弱和不坚定赎罪。
|
||||||
|
|
||||||
|
深夜写到这里,我已经泪流满面,泣不成声。还记得一些出色的同事离职时,我苦笑问他们要不要发个长长的心声惯例帖,揭露一下现状。对方说:不了,浪费时间,而且我也怕揭露出来你们过的更糟。我当时一下黯然神伤,因为曾经共同为了理想奋斗过的战友已经彻底对华为彻底灰心了。当时大家调侃,我们用着当年共产党的小米加步枪,组织却有着堪比当年国民党的作风。
|
||||||
|
|
||||||
|
曾几何时,我为我们用着小米加步枪打败洋枪洋炮而自豪。
|
||||||
|
|
||||||
|
现在,我累了,我想投降。
|
||||||
|
|
||||||
|
其实时至今日,我还是真心希望华为能认真吸取教训,能做好盘古,把盘古做到世界一流,把昇腾变成英伟达的水平。内部的劣币驱逐良币,使得诺亚乃至华为在短时间内急剧流失了大量出色的大模型人才。相信他们也正在如Deepseek等各个团队闪耀着,施展着他们的抱负才华,为中美在AI的激烈竞赛中奉献力量。我时常感叹,华为不是没有人才,而是根本不知道怎么留住人才。如果给这些人合适的环境,合适的资源,更少的枷锁,更少的政治斗争,盘古何愁不成?
|
||||||
|
|
||||||
|
最后:我以生命,人格和荣誉发誓,我写的以上所有内容均为真实(至少在我有限的认知范围内)。我没有那么高的技术水平以及机会去做详尽扎实的分析,也不敢直接用内部记录举证,怕因为信息安全抓到。但是我相信我很多曾经的战友,会为我作证。在华为内部的兄弟,包括我们曾经服务过的产品线兄弟们,相信本文的无数细节能和你们的印象对照,印证我的说法。你们可能也曾经被蒙骗,但这些残酷的真相不会被尘封。我们奋战过的痕迹,也不应该被扭曲和埋葬。
|
||||||
|
|
||||||
|
写了这么多,某些人肯定想把我找出来,抹杀掉。公司搞不好也想让我噤声乃至追责。如果真的这样,我,乃至我的家人的人身乃至生命安全可能都会受到威胁。为了自我保护,我近期每天会跟大家报平安。
|
||||||
|
|
||||||
|
如果我消失了,就当是我为了真理和理想,为了华为乃至中国能够更好地发展算力和AI而牺牲了吧,我愿埋葬于那片曾经奋斗过的地方。
|
||||||
|
|
||||||
|
诺亚,再见
|
||||||
|
|
||||||
|
2025年7月6日凌晨 写于深圳
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
各位好,
|
||||||
|
|
||||||
|
感谢大家的关心与祝福。我目前暂时安全,但公司应该在进行排查与某些名单收集,后续情况未知。
|
||||||
|
|
||||||
|
我补充一些细节,以免某些人继续颠倒黑白。
|
||||||
|
|
||||||
|
关于135B V2,小模型实验室在迅速地完成套壳并拿完所有套壳带来的好处后(比如任务令表彰和及时激励),因为不想继续支撑下游应用和模型迭代,又把这个烫手山芋甩给了四纵。确实技高一筹,直接把四纵的兄弟们拉下水。同事提供过去一个老旧的模型,最终拿回了一个当时一个魔改的先进的千问。做大模型的人,自己做的模型就像自己孩子一样熟悉,不要把别人都当傻子。就像自家儿子出门一趟,回来个别人家孩子。
|
||||||
|
|
||||||
|
盘古report的署名是不符合学术规范的。例如,135B V3有不少有技术贡献的人,因为作者名额数量限制,劳动成果没有得到应有的回报,团队内曾经有不小的意见。这个模型当时是大家智慧和汗水的结晶,甚至是团队当时的精神支柱,支撑着不少兄弟们继续留在诺亚。所谓的名额限制,以及挂名了一些毫无技术贡献的人(如一些小模型实验室的人),让兄弟们何其心寒。
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
暂时平安。另外,支持我勇于说出真相的战友们 https://github.com/HW-whistleblower/True-Story-of-Pangu/issues/317
|
||||||
458
demo.ipynb
@@ -1,362 +1,116 @@
|
|||||||
{
|
{
|
||||||
"cells": [
|
"cells": [
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "markdown",
|
||||||
"execution_count": 1,
|
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"Initializing leann-backend-diskann...\n",
|
|
||||||
"INFO: Registering backend 'diskann'\n",
|
|
||||||
"INFO: DiskANN backend loaded successfully\n",
|
|
||||||
"INFO: LeannBuilder initialized with 'diskann' backend.\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "stderr",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"/home/ubuntu/LEANN_clean/leann/.venv/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
|
||||||
" from .autonotebook import tqdm as notebook_tqdm\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"INFO: Computing embeddings for 6 chunks using 'sentence-transformers/all-mpnet-base-v2'...\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "stderr",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"Batches: 100%|██████████| 1/1 [00:00<00:00, 2.91it/s]\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"INFO: Building DiskANN index for 6 vectors with metric Metric.INNER_PRODUCT...\n",
|
|
||||||
"Using Inner Product search, so need to pre-process base data into temp file. Please ensure there is additional (n*(d+1)*4) bytes for storing pre-processed base vectors, apart from the interim indices created by DiskANN and the final index.\n",
|
|
||||||
"Pre-processing base file by adding extra coordinate\n",
|
|
||||||
"✅ DiskANN index built successfully at 'knowledge'\n",
|
|
||||||
"Writing bin: knowledge_disk.index_max_base_norm.bin\n",
|
|
||||||
"bin: #pts = 1, #dims = 1, size = 12B\n",
|
|
||||||
"Finished writing bin.\n",
|
|
||||||
"Time for preprocessing data for inner product: 0.000172 seconds\n",
|
|
||||||
"Reading max_norm_of_base from knowledge_disk.index_max_base_norm.bin\n",
|
|
||||||
"Reading bin file knowledge_disk.index_max_base_norm.bin ...\n",
|
|
||||||
"Opening bin file knowledge_disk.index_max_base_norm.bin... \n",
|
|
||||||
"Metadata: #pts = 1, #dims = 1...\n",
|
|
||||||
"done.\n",
|
|
||||||
"max_norm_of_base: 1\n",
|
|
||||||
"! Using prepped_base file at knowledge_prepped_base.bin\n",
|
|
||||||
"Starting index build: R=32 L=64 Query RAM budget: 4.02653e+09 Indexing ram budget: 8 T: 8\n",
|
|
||||||
"getting bin metadata\n",
|
|
||||||
"Time for getting bin metadata: 0.000019 seconds\n",
|
|
||||||
"Compressing 769-dimensional data into 512 bytes per vector.\n",
|
|
||||||
"Opened: knowledge_prepped_base.bin, size: 18464, cache_size: 18464\n",
|
|
||||||
"Training data with 6 samples loaded.\n",
|
|
||||||
"Reading bin file knowledge_pq_pivots.bin ...\n",
|
|
||||||
"Opening bin file knowledge_pq_pivots.bin... \n",
|
|
||||||
"Metadata: #pts = 256, #dims = 769...\n",
|
|
||||||
"done.\n",
|
|
||||||
"PQ pivot file exists. Not generating again\n",
|
|
||||||
"Opened: knowledge_prepped_base.bin, size: 18464, cache_size: 18464\n",
|
|
||||||
"Reading bin file knowledge_pq_pivots.bin ...\n",
|
|
||||||
"Opening bin file knowledge_pq_pivots.bin... \n",
|
|
||||||
"Metadata: #pts = 4, #dims = 1...\n",
|
|
||||||
"done.\n",
|
|
||||||
"Reading bin file knowledge_pq_pivots.bin ...\n",
|
|
||||||
"Opening bin file knowledge_pq_pivots.bin... \n",
|
|
||||||
"Metadata: #pts = 256, #dims = 769...\n",
|
|
||||||
"done.\n",
|
|
||||||
"Reading bin file knowledge_pq_pivots.bin ...\n",
|
|
||||||
"Opening bin file knowledge_pq_pivots.bin... \n",
|
|
||||||
"Metadata: #pts = 769, #dims = 1...\n",
|
|
||||||
"done.\n",
|
|
||||||
"Reading bin file knowledge_pq_pivots.bin ...\n",
|
|
||||||
"Opening bin file knowledge_pq_pivots.bin... \n",
|
|
||||||
"Metadata: #pts = 513, #dims = 1...\n",
|
|
||||||
"done.\n",
|
|
||||||
"Loaded PQ pivot information\n",
|
|
||||||
"Processing points [0, 6)...done.\n",
|
|
||||||
"Time for generating quantized data: 0.055587 seconds\n",
|
|
||||||
"Full index fits in RAM budget, should consume at most 2.03973e-05GiBs, so building in one shot\n",
|
|
||||||
"L2: Using AVX2 distance computation DistanceL2Float\n",
|
|
||||||
"Passed, empty search_params while creating index config\n",
|
|
||||||
"Using only first 6 from file.. \n",
|
|
||||||
"Starting index build with 6 points... \n",
|
|
||||||
"0% of index build completed.Starting final cleanup..done. Link time: 0.00011s\n",
|
|
||||||
"Index built with degree: max:5 avg:5 min:5 count(deg<2):0\n",
|
|
||||||
"Not saving tags as they are not enabled.\n",
|
|
||||||
"Time taken for save: 0.000148s.\n",
|
|
||||||
"Time for building merged vamana index: 0.000836 seconds\n",
|
|
||||||
"Opened: knowledge_prepped_base.bin, size: 18464, cache_size: 18464\n",
|
|
||||||
"Vamana index file size=168\n",
|
|
||||||
"Opened: knowledge_disk.index, cache_size: 67108864\n",
|
|
||||||
"medoid: 0B\n",
|
|
||||||
"max_node_len: 3100B\n",
|
|
||||||
"nnodes_per_sector: 1B\n",
|
|
||||||
"# sectors: 6\n",
|
|
||||||
"Sector #0written\n",
|
|
||||||
"Finished writing 28672B\n",
|
|
||||||
"Writing bin: knowledge_disk.index\n",
|
|
||||||
"bin: #pts = 9, #dims = 1, size = 80B\n",
|
|
||||||
"Finished writing bin.\n",
|
|
||||||
"Output disk index file written to knowledge_disk.index\n",
|
|
||||||
"Finished writing 28672B\n",
|
|
||||||
"Time for generating disk layout: 0.040268 seconds\n",
|
|
||||||
"Opened: knowledge_prepped_base.bin, size: 18464, cache_size: 18464\n",
|
|
||||||
"Loading base knowledge_prepped_base.bin. #points: 6. #dim: 769.\n",
|
|
||||||
"Wrote 1 points to sample file: knowledge_sample_data.bin\n",
|
|
||||||
"Indexing time: 0.0970594\n",
|
|
||||||
"INFO: Leann metadata saved to knowledge.leann.meta.json\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "stderr",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"Opened file : knowledge_disk.index\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"✅ DiskANN index loaded successfully.\n",
|
|
||||||
"INFO: LeannSearcher initialized with 'diskann' backend using index 'knowledge.leann'.\n",
|
|
||||||
"Since data is floating point, we assume that it has been appropriately pre-processed (normalization for cosine, and convert-to-l2 by adding extra dimension for MIPS). So we shall invoke an l2 distance function.\n",
|
|
||||||
"L2: Using AVX2 distance computation DistanceL2Float\n",
|
|
||||||
"L2: Using AVX2 distance computation DistanceL2Float\n",
|
|
||||||
"Before index load\n",
|
|
||||||
"Reading bin file knowledge_pq_compressed.bin ...\n",
|
|
||||||
"Opening bin file knowledge_pq_compressed.bin... \n",
|
|
||||||
"Metadata: #pts = 6, #dims = 512...\n",
|
|
||||||
"done.\n",
|
|
||||||
"Reading bin file knowledge_pq_pivots.bin ...\n",
|
|
||||||
"Opening bin file knowledge_pq_pivots.bin... \n",
|
|
||||||
"Metadata: #pts = 4, #dims = 1...\n",
|
|
||||||
"done.\n",
|
|
||||||
"Offsets: 4096 791560 794644 796704\n",
|
|
||||||
"Reading bin file knowledge_pq_pivots.bin ...\n",
|
|
||||||
"Opening bin file knowledge_pq_pivots.bin... \n",
|
|
||||||
"Metadata: #pts = 256, #dims = 769...\n",
|
|
||||||
"done.\n",
|
|
||||||
"Reading bin file knowledge_pq_pivots.bin ...\n",
|
|
||||||
"Opening bin file knowledge_pq_pivots.bin... \n",
|
|
||||||
"Metadata: #pts = 769, #dims = 1...\n",
|
|
||||||
"done.\n",
|
|
||||||
"Reading bin file knowledge_pq_pivots.bin ...\n",
|
|
||||||
"Opening bin file knowledge_pq_pivots.bin... \n",
|
|
||||||
"Metadata: #pts = 513, #dims = 1...\n",
|
|
||||||
"done.\n",
|
|
||||||
"Loaded PQ Pivots: #ctrs: 256, #dims: 769, #chunks: 512\n",
|
|
||||||
"Loaded PQ centroids and in-memory compressed vectors. #points: 6 #dim: 769 #aligned_dim: 776 #chunks: 512\n",
|
|
||||||
"Loading index metadata from knowledge_disk.index\n",
|
|
||||||
"Disk-Index File Meta-data: # nodes per sector: 1, max node len (bytes): 3100, max node degree: 5\n",
|
|
||||||
"Disk-Index Meta: nodes per sector: 1, max node len: 3100, max node degree: 5\n",
|
|
||||||
"Setting up thread-specific contexts for nthreads: 8\n",
|
|
||||||
"allocating ctx: 0x7a33f7204000 to thread-id:134367072315200\n",
|
|
||||||
"allocating ctx: 0x7a33f6805000 to thread-id:134355206802368\n",
|
|
||||||
"allocating ctx: 0x7a33f5e72000 to thread-id:134355217288000\n",
|
|
||||||
"allocating ctx: 0x7a33f5e61000 to thread-id:134355227773632\n",
|
|
||||||
"allocating ctx: 0x7a33f5e50000 to thread-id:134355196316736\n",
|
|
||||||
"allocating ctx: 0x7a33f5e3f000 to thread-id:134355164859840\n",
|
|
||||||
"allocating ctx: 0x7a33f5e2e000 to thread-id:134355175345472\n",
|
|
||||||
"allocating ctx: 0x7a33f5e1d000 to thread-id:134355185831104\n",
|
|
||||||
"Loading centroid data from medoids vector data of 1 medoid(s)\n",
|
|
||||||
"Reading bin file knowledge_disk.index_max_base_norm.bin ...\n",
|
|
||||||
"Opening bin file knowledge_disk.index_max_base_norm.bin... \n",
|
|
||||||
"Metadata: #pts = 1, #dims = 1...\n",
|
|
||||||
"done.\n",
|
|
||||||
"Setting re-scaling factor of base vectors to 1\n",
|
|
||||||
"load_from_separate_paths done.\n",
|
|
||||||
"Reading (with alignment) bin file knowledge_sample_data.bin ...Metadata: #pts = 1, #dims = 769, aligned_dim = 776... allocating aligned memory of 3104 bytes... done. Copying data to mem_aligned buffer... done.\n",
|
|
||||||
"reserve ratio: 1\n",
|
|
||||||
"Graph traversal completed, hops: 3\n",
|
|
||||||
"Loading the cache list into memory....done.\n",
|
|
||||||
"After index load\n",
|
|
||||||
"INFO: Computing embeddings for 1 chunks using 'sentence-transformers/all-mpnet-base-v2'...\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "stderr",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"Batches: 100%|██████████| 1/1 [00:00<00:00, 60.54it/s]"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"INFO: DiskANN ZMQ mode enabled - ensuring embedding server is running\n",
|
|
||||||
"INFO: Starting session-level embedding server as a background process...\n",
|
|
||||||
"INFO: Running command from project root: /home/ubuntu/LEANN_clean/leann\n",
|
|
||||||
"INFO: Server process started with PID: 424761\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "stderr",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"✅ Embedding server is up and ready for this session.\n",
|
|
||||||
"[EmbeddingServer LOG]: Initializing leann-backend-diskann...\n",
|
|
||||||
"[EmbeddingServer LOG]: WARNING: Could not import DiskANN backend: cannot import name '_diskannpy' from partially initialized module 'packages.leann-backend-diskann.leann_backend_diskann' (most likely due to a circular import) (/home/ubuntu/LEANN_clean/leann/packages/leann-backend-diskann/leann_backend_diskann/__init__.py)\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Initializing embedding server thread on port 5555\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Using CUDA device\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Loading model sentence-transformers/all-mpnet-base-v2\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Using FP16 precision with model: sentence-transformers/all-mpnet-base-v2\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Loaded 6 demo documents\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: ZMQ ROUTER server listening on port 5555\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Embedding server ready to serve requests\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Received ZMQ request from client 006b8b45, size 3 bytes\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Request for 1 node embeddings: [0]\n",
|
|
||||||
"[EmbeddingServer LOG]: DEBUG: Node ID range: 0 to 0\n",
|
|
||||||
"[EmbeddingServer LOG]: Time taken for text lookup: 0.000028 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Total batch size: 1, max_batch_size: 128\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Processing batch of size 1\n",
|
|
||||||
"[EmbeddingServer LOG]: Time taken for tokenization (batch): 0.019294 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: Batch size: 1, Sequence length: 256\n",
|
|
||||||
"[EmbeddingServer LOG]: Time taken for transfer to device (batch): 0.000210 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: Time taken for embedding (batch): 3.065444 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: Time taken for mean pooling (batch): 0.041810 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Serialize time: 0.000194 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: ZMQ E2E time: 3.128073 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Received ZMQ request from client 006b8b45, size 7 bytes\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Request for 5 node embeddings: [1, 2, 3, 4, 5]\n",
|
|
||||||
"[EmbeddingServer LOG]: DEBUG: Node ID range: 1 to 5\n",
|
|
||||||
"[EmbeddingServer LOG]: Time taken for text lookup: 0.000042 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Total batch size: 5, max_batch_size: 128\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Processing batch of size 5\n",
|
|
||||||
"[EmbeddingServer LOG]: Time taken for tokenization (batch): 0.001791 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: Batch size: 5, Sequence length: 256\n",
|
|
||||||
"[EmbeddingServer LOG]: Time taken for transfer to device (batch): 0.000112 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: Time taken for embedding (batch): 3.674183 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: Time taken for mean pooling (batch): 0.000372 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Serialize time: 0.000177 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: ZMQ E2E time: 3.677425 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Received ZMQ request from client 006b8b45, size 7 bytes\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Request for 5 node embeddings: [3, 4, 2, 1, 0]\n",
|
|
||||||
"[EmbeddingServer LOG]: DEBUG: Node ID range: 0 to 4\n",
|
|
||||||
"[EmbeddingServer LOG]: Time taken for text lookup: 0.000030 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Total batch size: 5, max_batch_size: 128\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Processing batch of size 5\n",
|
|
||||||
"[EmbeddingServer LOG]: Time taken for tokenization (batch): 0.001550 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: Batch size: 5, Sequence length: 256\n",
|
|
||||||
"[EmbeddingServer LOG]: Time taken for transfer to device (batch): 0.000097 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: Time taken for embedding (batch): 0.009335 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: Time taken for mean pooling (batch): 0.000154 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Serialize time: 0.000073 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: ZMQ E2E time: 0.011773 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Received ZMQ request from client 006b8b45, size 7 bytes\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Request for 5 node embeddings: [0, 1, 2, 4, 5]\n",
|
|
||||||
"[EmbeddingServer LOG]: DEBUG: Node ID range: 0 to 5\n",
|
|
||||||
"[EmbeddingServer LOG]: Time taken for text lookup: 0.000020 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Total batch size: 5, max_batch_size: 128\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Processing batch of size 5\n",
|
|
||||||
"[EmbeddingServer LOG]: Time taken for tokenization (batch): 0.001041 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: Batch size: 5, Sequence length: 256\n",
|
|
||||||
"[EmbeddingServer LOG]: Time taken for transfer to device (batch): 0.000125 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: Time taken for embedding (batch): 0.008972 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: Time taken for mean pooling (batch): 0.000151 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Serialize time: 0.000048 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: ZMQ E2E time: 0.010853 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Received ZMQ request from client 006b8b45, size 7 bytes\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Request for 5 node embeddings: [3, 1, 0, 2, 5]\n",
|
|
||||||
"[EmbeddingServer LOG]: DEBUG: Node ID range: 0 to 5\n",
|
|
||||||
"[EmbeddingServer LOG]: Time taken for text lookup: 0.000020 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Total batch size: 5, max_batch_size: 128\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Processing batch of size 5\n",
|
|
||||||
"[EmbeddingServer LOG]: Time taken for tokenization (batch): 0.001350 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: Batch size: 5, Sequence length: 256\n",
|
|
||||||
"[EmbeddingServer LOG]: Time taken for transfer to device (batch): 0.000088 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: Time taken for embedding (batch): 0.008869 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: Time taken for mean pooling (batch): 0.000146 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Serialize time: 0.000063 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: ZMQ E2E time: 0.011054 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Received ZMQ request from client 006b8b45, size 7 bytes\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Request for 5 node embeddings: [0, 2, 3, 4, 5]\n",
|
|
||||||
"[EmbeddingServer LOG]: DEBUG: Node ID range: 0 to 5\n",
|
|
||||||
"[EmbeddingServer LOG]: Time taken for text lookup: 0.000022 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Total batch size: 5, max_batch_size: 128\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Processing batch of size 5\n",
|
|
||||||
"[EmbeddingServer LOG]: Time taken for tokenization (batch): 0.001195 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: Batch size: 5, Sequence length: 256\n",
|
|
||||||
"[EmbeddingServer LOG]: Time taken for transfer to device (batch): 0.000087 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: Time taken for embedding (batch): 0.008903 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: Time taken for mean pooling (batch): 0.000145 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Serialize time: 0.000060 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: ZMQ E2E time: 0.010921 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Received ZMQ request from client 006b8b45, size 7 bytes\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Request for 5 node embeddings: [1, 0, 3, 4, 5]\n",
|
|
||||||
"[EmbeddingServer LOG]: DEBUG: Node ID range: 0 to 5\n",
|
|
||||||
"[EmbeddingServer LOG]: Time taken for text lookup: 0.000020 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Total batch size: 5, max_batch_size: 128\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Processing batch of size 5\n",
|
|
||||||
"[EmbeddingServer LOG]: Time taken for tokenization (batch): 0.001188 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: Batch size: 5, Sequence length: 256\n",
|
|
||||||
"[EmbeddingServer LOG]: Time taken for transfer to device (batch): 0.000087 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: Time taken for embedding (batch): 0.008858 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: Time taken for mean pooling (batch): 0.000153 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: Serialize time: 0.000052 seconds\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: ZMQ E2E time: 0.010886 seconds\n",
|
|
||||||
"reserve ratio: Score: -0.481 - C++ is a powerful programming language1\n",
|
|
||||||
"Graph traversal completed, hops: 3\n",
|
|
||||||
"\n",
|
|
||||||
"Score: -1.049 - Java is a powerful programming language\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"[EmbeddingServer LOG]: INFO: ZMQ socket timeout, continuing to listen\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: ZMQ socket timeout, continuing to listen\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: ZMQ socket timeout, continuing to listen\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: ZMQ socket timeout, continuing to listen\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: ZMQ socket timeout, continuing to listen\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: ZMQ socket timeout, continuing to listen\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: ZMQ socket timeout, continuing to listen\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: ZMQ socket timeout, continuing to listen\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: ZMQ socket timeout, continuing to listen\n",
|
|
||||||
"[EmbeddingServer LOG]: INFO: ZMQ socket timeout, continuing to listen\n"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
"source": [
|
||||||
"from leann.api import LeannBuilder, LeannSearcher\n",
|
"# Quick Start \n",
|
||||||
"import leann_backend_diskann\n",
|
"\n",
|
||||||
"# 1. Build index (no embeddings stored!)\n",
|
"**Home GitHub Repository:** [LEANN on GitHub](https://github.com/yichuan-w/LEANN)\n",
|
||||||
"builder = LeannBuilder(backend_name=\"diskann\")\n",
|
"\n",
|
||||||
"builder.add_text(\"Python is a powerful programming language\")\n",
|
"**Important for Colab users:** Set your runtime type to T4 GPU for optimal performance. Go to Runtime → Change runtime type → Hardware accelerator → T4 GPU."
|
||||||
"builder.add_text(\"Machine learning transforms industries\") \n",
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# install this if you are using colab\n",
|
||||||
|
"! uv pip install leann-core leann-backend-hnsw --no-deps\n",
|
||||||
|
"! uv pip install leann --no-deps\n",
|
||||||
|
"# For Colab environment, we need to set some environment variables\n",
|
||||||
|
"import os\n",
|
||||||
|
"\n",
|
||||||
|
"os.environ[\"LEANN_LOG_LEVEL\"] = \"INFO\" # Enable more detailed logging"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from pathlib import Path\n",
|
||||||
|
"\n",
|
||||||
|
"INDEX_DIR = Path(\"./\").resolve()\n",
|
||||||
|
"INDEX_PATH = str(INDEX_DIR / \"demo.leann\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Build the index"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from leann.api import LeannBuilder\n",
|
||||||
|
"\n",
|
||||||
|
"builder = LeannBuilder(backend_name=\"hnsw\")\n",
|
||||||
|
"builder.add_text(\"C# is a powerful programming language and it is good at game development\")\n",
|
||||||
|
"builder.add_text(\n",
|
||||||
|
" \"Python is a powerful programming language and it is good at machine learning tasks\"\n",
|
||||||
|
")\n",
|
||||||
|
"builder.add_text(\"Machine learning transforms industries\")\n",
|
||||||
"builder.add_text(\"Neural networks process complex data\")\n",
|
"builder.add_text(\"Neural networks process complex data\")\n",
|
||||||
"builder.add_text(\"Java is a powerful programming language\")\n",
|
"builder.add_text(\"Leann is a great storage saving engine for RAG on your MacBook\")\n",
|
||||||
"builder.add_text(\"C++ is a powerful programming language\")\n",
|
"builder.build_index(INDEX_PATH)"
|
||||||
"builder.add_text(\"C# is a powerful programming language\")\n",
|
]
|
||||||
"builder.build_index(\"knowledge.leann\")\n",
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Search with real-time embeddings"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from leann.api import LeannSearcher\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# 2. Search with real-time embeddings\n",
|
"searcher = LeannSearcher(INDEX_PATH)\n",
|
||||||
"searcher = LeannSearcher(\"knowledge.leann\")\n",
|
"results = searcher.search(\"programming languages\", top_k=2)\n",
|
||||||
"results = searcher.search(\"C++ programming languages\", top_k=2,recompute_beighbor_embeddings=True)\n",
|
"results"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Chat with LEANN using retrieved results"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from leann.api import LeannChat\n",
|
||||||
"\n",
|
"\n",
|
||||||
"for result in results:\n",
|
"llm_config = {\n",
|
||||||
" print(f\"Score: {result['score']:.3f} - {result['text']}\")"
|
" \"type\": \"hf\",\n",
|
||||||
|
" \"model\": \"Qwen/Qwen3-0.6B\",\n",
|
||||||
|
"}\n",
|
||||||
|
"\n",
|
||||||
|
"chat = LeannChat(index_path=INDEX_PATH, llm_config=llm_config)\n",
|
||||||
|
"response = chat.ask(\n",
|
||||||
|
" \"Compare the two retrieved programming languages and tell me their advantages.\",\n",
|
||||||
|
" top_k=2,\n",
|
||||||
|
" llm_kwargs={\"max_tokens\": 128},\n",
|
||||||
|
")\n",
|
||||||
|
"response"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
@@ -376,7 +130,7 @@
|
|||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython3",
|
||||||
"version": "3.11.11"
|
"version": "3.11.12"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"nbformat": 4,
|
"nbformat": 4,
|
||||||
|
|||||||
220
docs/CONTRIBUTING.md
Normal file
@@ -0,0 +1,220 @@
|
|||||||
|
# 🤝 Contributing
|
||||||
|
|
||||||
|
We welcome contributions! Leann is built by the community, for the community.
|
||||||
|
|
||||||
|
## Ways to Contribute
|
||||||
|
|
||||||
|
- 🐛 **Bug Reports**: Found an issue? Let us know!
|
||||||
|
- 💡 **Feature Requests**: Have an idea? We'd love to hear it!
|
||||||
|
- 🔧 **Code Contributions**: PRs welcome for all skill levels
|
||||||
|
- 📖 **Documentation**: Help make Leann more accessible
|
||||||
|
- 🧪 **Benchmarks**: Share your performance results
|
||||||
|
|
||||||
|
## 🚀 Development Setup
|
||||||
|
|
||||||
|
### Prerequisites
|
||||||
|
|
||||||
|
1. **Install uv** (fast Python package installer):
|
||||||
|
```bash
|
||||||
|
curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||||
|
```
|
||||||
|
|
||||||
|
2. **Clone the repository**:
|
||||||
|
```bash
|
||||||
|
git clone https://github.com/LEANN-RAG/LEANN-RAG.git
|
||||||
|
cd LEANN-RAG
|
||||||
|
```
|
||||||
|
|
||||||
|
3. **Install system dependencies**:
|
||||||
|
|
||||||
|
**macOS:**
|
||||||
|
```bash
|
||||||
|
brew install llvm libomp boost protobuf zeromq pkgconf
|
||||||
|
```
|
||||||
|
|
||||||
|
**Ubuntu/Debian:**
|
||||||
|
```bash
|
||||||
|
sudo apt-get install libomp-dev libboost-all-dev protobuf-compiler \
|
||||||
|
libabsl-dev libmkl-full-dev libaio-dev libzmq3-dev
|
||||||
|
```
|
||||||
|
|
||||||
|
4. **Build from source**:
|
||||||
|
```bash
|
||||||
|
# macOS
|
||||||
|
CC=$(brew --prefix llvm)/bin/clang CXX=$(brew --prefix llvm)/bin/clang++ uv sync
|
||||||
|
|
||||||
|
# Ubuntu/Debian
|
||||||
|
uv sync
|
||||||
|
```
|
||||||
|
|
||||||
|
## 🔨 Pre-commit Hooks
|
||||||
|
|
||||||
|
We use pre-commit hooks to ensure code quality and consistency. This runs automatically before each commit.
|
||||||
|
|
||||||
|
### Setup Pre-commit
|
||||||
|
|
||||||
|
1. **Install pre-commit** (already included when you run `uv sync`):
|
||||||
|
```bash
|
||||||
|
uv pip install pre-commit
|
||||||
|
```
|
||||||
|
|
||||||
|
2. **Install the git hooks**:
|
||||||
|
```bash
|
||||||
|
pre-commit install
|
||||||
|
```
|
||||||
|
|
||||||
|
3. **Run pre-commit manually** (optional):
|
||||||
|
```bash
|
||||||
|
pre-commit run --all-files
|
||||||
|
```
|
||||||
|
|
||||||
|
### Pre-commit Checks
|
||||||
|
|
||||||
|
Our pre-commit configuration includes:
|
||||||
|
- **Trailing whitespace removal**
|
||||||
|
- **End-of-file fixing**
|
||||||
|
- **YAML validation**
|
||||||
|
- **Large file prevention**
|
||||||
|
- **Merge conflict detection**
|
||||||
|
- **Debug statement detection**
|
||||||
|
- **Code formatting with ruff**
|
||||||
|
- **Code linting with ruff**
|
||||||
|
|
||||||
|
## 🧪 Testing
|
||||||
|
|
||||||
|
### Running Tests
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Run all tests
|
||||||
|
uv run pytest
|
||||||
|
|
||||||
|
# Run specific test file
|
||||||
|
uv run pytest test/test_filename.py
|
||||||
|
|
||||||
|
# Run with coverage
|
||||||
|
uv run pytest --cov=leann
|
||||||
|
```
|
||||||
|
|
||||||
|
### Writing Tests
|
||||||
|
|
||||||
|
- Place tests in the `test/` directory
|
||||||
|
- Follow the naming convention `test_*.py`
|
||||||
|
- Use descriptive test names that explain what's being tested
|
||||||
|
- Include both positive and negative test cases
|
||||||
|
|
||||||
|
## 📝 Code Style
|
||||||
|
|
||||||
|
We use `ruff` for both linting and formatting to ensure consistent code style.
|
||||||
|
|
||||||
|
### Format Your Code
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Format all files
|
||||||
|
ruff format
|
||||||
|
|
||||||
|
# Check formatting without changing files
|
||||||
|
ruff format --check
|
||||||
|
```
|
||||||
|
|
||||||
|
### Lint Your Code
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Run linter with auto-fix
|
||||||
|
ruff check --fix
|
||||||
|
|
||||||
|
# Just check without fixing
|
||||||
|
ruff check
|
||||||
|
```
|
||||||
|
|
||||||
|
### Style Guidelines
|
||||||
|
|
||||||
|
- Follow PEP 8 conventions
|
||||||
|
- Use descriptive variable names
|
||||||
|
- Add type hints where appropriate
|
||||||
|
- Write docstrings for all public functions and classes
|
||||||
|
- Keep functions focused and single-purpose
|
||||||
|
|
||||||
|
## 🚦 CI/CD
|
||||||
|
|
||||||
|
Our CI pipeline runs automatically on all pull requests. It includes:
|
||||||
|
|
||||||
|
1. **Linting and Formatting**: Ensures code follows our style guidelines
|
||||||
|
2. **Multi-platform builds**: Tests on Ubuntu and macOS
|
||||||
|
3. **Python version matrix**: Tests on Python 3.9-3.13
|
||||||
|
4. **Wheel building**: Ensures packages can be built and distributed
|
||||||
|
|
||||||
|
### CI Commands
|
||||||
|
|
||||||
|
The CI uses the same commands as pre-commit to ensure consistency:
|
||||||
|
```bash
|
||||||
|
# Linting
|
||||||
|
ruff check .
|
||||||
|
|
||||||
|
# Format checking
|
||||||
|
ruff format --check .
|
||||||
|
```
|
||||||
|
|
||||||
|
Make sure your code passes these checks locally before pushing!
|
||||||
|
|
||||||
|
## 🔄 Pull Request Process
|
||||||
|
|
||||||
|
1. **Fork the repository** and create your branch from `main`:
|
||||||
|
```bash
|
||||||
|
git checkout -b feature/your-feature-name
|
||||||
|
```
|
||||||
|
|
||||||
|
2. **Make your changes**:
|
||||||
|
- Write clean, documented code
|
||||||
|
- Add tests for new functionality
|
||||||
|
- Update documentation as needed
|
||||||
|
|
||||||
|
3. **Run pre-commit checks**:
|
||||||
|
```bash
|
||||||
|
pre-commit run --all-files
|
||||||
|
```
|
||||||
|
|
||||||
|
4. **Test your changes**:
|
||||||
|
```bash
|
||||||
|
uv run pytest
|
||||||
|
```
|
||||||
|
|
||||||
|
5. **Commit with descriptive messages**:
|
||||||
|
```bash
|
||||||
|
git commit -m "feat: add new search algorithm"
|
||||||
|
```
|
||||||
|
|
||||||
|
Follow [Conventional Commits](https://www.conventionalcommits.org/):
|
||||||
|
- `feat:` for new features
|
||||||
|
- `fix:` for bug fixes
|
||||||
|
- `docs:` for documentation changes
|
||||||
|
- `test:` for test additions/changes
|
||||||
|
- `refactor:` for code refactoring
|
||||||
|
- `perf:` for performance improvements
|
||||||
|
|
||||||
|
6. **Push and create a pull request**:
|
||||||
|
- Provide a clear description of your changes
|
||||||
|
- Reference any related issues
|
||||||
|
- Include examples or screenshots if applicable
|
||||||
|
|
||||||
|
## 📚 Documentation
|
||||||
|
|
||||||
|
When adding new features or making significant changes:
|
||||||
|
|
||||||
|
1. Update relevant documentation in `/docs`
|
||||||
|
2. Add docstrings to new functions/classes
|
||||||
|
3. Update README.md if needed
|
||||||
|
4. Include usage examples
|
||||||
|
|
||||||
|
## 🤔 Getting Help
|
||||||
|
|
||||||
|
- **Discord**: Join our community for discussions
|
||||||
|
- **Issues**: Check existing issues or create a new one
|
||||||
|
- **Discussions**: For general questions and ideas
|
||||||
|
|
||||||
|
## 📄 License
|
||||||
|
|
||||||
|
By contributing, you agree that your contributions will be licensed under the same license as the project (MIT).
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
Thank you for contributing to LEANN! Every contribution, no matter how small, helps make the project better for everyone. 🌟
|
||||||
22
docs/RELEASE.md
Normal file
@@ -0,0 +1,22 @@
|
|||||||
|
# Release Guide
|
||||||
|
|
||||||
|
## Setup (One-time)
|
||||||
|
|
||||||
|
Add `PYPI_API_TOKEN` to GitHub Secrets:
|
||||||
|
1. Get token: https://pypi.org/manage/account/token/
|
||||||
|
2. Add to secrets: Settings → Secrets → Actions → `PYPI_API_TOKEN`
|
||||||
|
|
||||||
|
## Release (One-click)
|
||||||
|
|
||||||
|
1. Go to: https://github.com/yichuan-w/LEANN/actions/workflows/release-manual.yml
|
||||||
|
2. Click "Run workflow"
|
||||||
|
3. Enter version: `0.1.2`
|
||||||
|
4. Click green "Run workflow" button
|
||||||
|
|
||||||
|
That's it! The workflow will automatically:
|
||||||
|
- ✅ Update version in all packages
|
||||||
|
- ✅ Build all packages
|
||||||
|
- ✅ Publish to PyPI
|
||||||
|
- ✅ Create GitHub tag and release
|
||||||
|
|
||||||
|
Check progress: https://github.com/yichuan-w/LEANN/actions
|
||||||
123
docs/THINKING_BUDGET_FEATURE.md
Normal file
@@ -0,0 +1,123 @@
|
|||||||
|
# Thinking Budget Feature Implementation
|
||||||
|
|
||||||
|
## Overview
|
||||||
|
|
||||||
|
This document describes the implementation of the **thinking budget** feature for LEANN, which allows users to control the computational effort for reasoning models like GPT-Oss:20b.
|
||||||
|
|
||||||
|
## Feature Description
|
||||||
|
|
||||||
|
The thinking budget feature provides three levels of computational effort for reasoning models:
|
||||||
|
- **`low`**: Fast responses, basic reasoning (default for simple queries)
|
||||||
|
- **`medium`**: Balanced speed and reasoning depth
|
||||||
|
- **`high`**: Maximum reasoning effort, best for complex analytical questions
|
||||||
|
|
||||||
|
## Implementation Details
|
||||||
|
|
||||||
|
### 1. Command Line Interface
|
||||||
|
|
||||||
|
Added `--thinking-budget` parameter to both CLI and RAG examples:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# LEANN CLI
|
||||||
|
leann ask my-index --llm ollama --model gpt-oss:20b --thinking-budget high
|
||||||
|
|
||||||
|
# RAG Examples
|
||||||
|
python apps/email_rag.py --llm ollama --llm-model gpt-oss:20b --thinking-budget high
|
||||||
|
python apps/document_rag.py --llm openai --llm-model o3 --thinking-budget medium
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. LLM Backend Support
|
||||||
|
|
||||||
|
#### Ollama Backend (`packages/leann-core/src/leann/chat.py`)
|
||||||
|
|
||||||
|
```python
|
||||||
|
def ask(self, prompt: str, **kwargs) -> str:
|
||||||
|
# Handle thinking budget for reasoning models
|
||||||
|
options = kwargs.copy()
|
||||||
|
thinking_budget = kwargs.get("thinking_budget")
|
||||||
|
if thinking_budget:
|
||||||
|
options.pop("thinking_budget", None)
|
||||||
|
if thinking_budget in ["low", "medium", "high"]:
|
||||||
|
options["reasoning"] = {"effort": thinking_budget, "exclude": False}
|
||||||
|
```
|
||||||
|
|
||||||
|
**API Format**: Uses Ollama's `reasoning` parameter with `effort` and `exclude` fields.
|
||||||
|
|
||||||
|
#### OpenAI Backend (`packages/leann-core/src/leann/chat.py`)
|
||||||
|
|
||||||
|
```python
|
||||||
|
def ask(self, prompt: str, **kwargs) -> str:
|
||||||
|
# Handle thinking budget for reasoning models
|
||||||
|
thinking_budget = kwargs.get("thinking_budget")
|
||||||
|
if thinking_budget and thinking_budget in ["low", "medium", "high"]:
|
||||||
|
# Check if this is an o-series model
|
||||||
|
o_series_models = ["o3", "o3-mini", "o4-mini", "o1", "o3-pro", "o3-deep-research"]
|
||||||
|
if any(model in self.model for model in o_series_models):
|
||||||
|
params["reasoning_effort"] = thinking_budget
|
||||||
|
```
|
||||||
|
|
||||||
|
**API Format**: Uses OpenAI's `reasoning_effort` parameter for o-series models.
|
||||||
|
|
||||||
|
### 3. Parameter Propagation
|
||||||
|
|
||||||
|
The thinking budget parameter is properly propagated through the LEANN architecture:
|
||||||
|
|
||||||
|
1. **CLI** (`packages/leann-core/src/leann/cli.py`): Captures `--thinking-budget` argument
|
||||||
|
2. **Base RAG** (`apps/base_rag_example.py`): Adds parameter to argument parser
|
||||||
|
3. **LeannChat** (`packages/leann-core/src/leann/api.py`): Passes `llm_kwargs` to LLM
|
||||||
|
4. **LLM Interface**: Handles the parameter in backend-specific implementations
|
||||||
|
|
||||||
|
## Files Modified
|
||||||
|
|
||||||
|
### Core Implementation
|
||||||
|
- `packages/leann-core/src/leann/chat.py`: Added thinking budget support to OllamaChat and OpenAIChat
|
||||||
|
- `packages/leann-core/src/leann/cli.py`: Added `--thinking-budget` argument
|
||||||
|
- `apps/base_rag_example.py`: Added thinking budget parameter to RAG examples
|
||||||
|
|
||||||
|
### Documentation
|
||||||
|
- `README.md`: Added thinking budget parameter to usage examples
|
||||||
|
- `docs/configuration-guide.md`: Added detailed documentation and usage guidelines
|
||||||
|
|
||||||
|
### Examples
|
||||||
|
- `examples/thinking_budget_demo.py`: Comprehensive demo script with usage examples
|
||||||
|
|
||||||
|
## Usage Examples
|
||||||
|
|
||||||
|
### Basic Usage
|
||||||
|
```bash
|
||||||
|
# High reasoning effort for complex questions
|
||||||
|
leann ask my-index --llm ollama --model gpt-oss:20b --thinking-budget high
|
||||||
|
|
||||||
|
# Medium reasoning for balanced performance
|
||||||
|
leann ask my-index --llm openai --model gpt-4o --thinking-budget medium
|
||||||
|
|
||||||
|
# Low reasoning for fast responses
|
||||||
|
leann ask my-index --llm ollama --model gpt-oss:20b --thinking-budget low
|
||||||
|
```
|
||||||
|
|
||||||
|
### RAG Examples
|
||||||
|
```bash
|
||||||
|
# Email RAG with high reasoning
|
||||||
|
python apps/email_rag.py --llm ollama --llm-model gpt-oss:20b --thinking-budget high
|
||||||
|
|
||||||
|
# Document RAG with medium reasoning
|
||||||
|
python apps/document_rag.py --llm openai --llm-model gpt-4o --thinking-budget medium
|
||||||
|
```
|
||||||
|
|
||||||
|
## Supported Models
|
||||||
|
|
||||||
|
### Ollama Models
|
||||||
|
- **GPT-Oss:20b**: Primary target model with reasoning capabilities
|
||||||
|
- **Other reasoning models**: Any Ollama model that supports the `reasoning` parameter
|
||||||
|
|
||||||
|
### OpenAI Models
|
||||||
|
- **o3, o3-mini, o4-mini, o1**: o-series reasoning models with `reasoning_effort` parameter
|
||||||
|
- **GPT-OSS models**: Models that support reasoning capabilities
|
||||||
|
|
||||||
|
## Testing
|
||||||
|
|
||||||
|
The implementation includes comprehensive testing:
|
||||||
|
- Parameter handling verification
|
||||||
|
- Backend-specific API format validation
|
||||||
|
- CLI argument parsing tests
|
||||||
|
- Integration with existing LEANN architecture
|
||||||
143
docs/ast_chunking_guide.md
Normal file
@@ -0,0 +1,143 @@
|
|||||||
|
# AST-Aware Code chunking guide
|
||||||
|
|
||||||
|
## Overview
|
||||||
|
|
||||||
|
This guide covers best practices for using AST-aware code chunking in LEANN. AST chunking provides better semantic understanding of code structure compared to traditional text-based chunking.
|
||||||
|
|
||||||
|
## Quick Start
|
||||||
|
|
||||||
|
### Basic Usage
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Enable AST chunking for mixed content (code + docs)
|
||||||
|
python -m apps.document_rag --enable-code-chunking --data-dir ./my_project
|
||||||
|
|
||||||
|
# Specialized code repository indexing
|
||||||
|
python -m apps.code_rag --repo-dir ./my_codebase
|
||||||
|
|
||||||
|
# Global CLI with AST support
|
||||||
|
leann build my-code-index --docs ./src --use-ast-chunking
|
||||||
|
```
|
||||||
|
|
||||||
|
### Installation
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Install LEANN with AST chunking support
|
||||||
|
uv pip install -e "."
|
||||||
|
```
|
||||||
|
|
||||||
|
#### For normal users (PyPI install)
|
||||||
|
- Use `pip install leann` or `uv pip install leann`.
|
||||||
|
- `astchunk` is pulled automatically from PyPI as a dependency; no extra steps.
|
||||||
|
|
||||||
|
#### For developers (from source, editable)
|
||||||
|
```bash
|
||||||
|
git clone https://github.com/yichuan-w/LEANN.git leann
|
||||||
|
cd leann
|
||||||
|
git submodule update --init --recursive
|
||||||
|
uv sync
|
||||||
|
```
|
||||||
|
- This repo vendors `astchunk` as a git submodule at `packages/astchunk-leann` (our fork).
|
||||||
|
- `[tool.uv.sources]` maps the `astchunk` package to that path in editable mode.
|
||||||
|
- You can edit code under `packages/astchunk-leann` and Python will use your changes immediately (no separate `pip install astchunk` needed).
|
||||||
|
|
||||||
|
## Best Practices
|
||||||
|
|
||||||
|
### When to Use AST Chunking
|
||||||
|
|
||||||
|
✅ **Recommended for:**
|
||||||
|
- Code repositories with multiple languages
|
||||||
|
- Mixed documentation and code content
|
||||||
|
- Complex codebases with deep function/class hierarchies
|
||||||
|
- When working with Claude Code for code assistance
|
||||||
|
|
||||||
|
❌ **Not recommended for:**
|
||||||
|
- Pure text documents
|
||||||
|
- Very large files (>1MB)
|
||||||
|
- Languages not supported by tree-sitter
|
||||||
|
|
||||||
|
### Optimal Configuration
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Recommended settings for most codebases
|
||||||
|
python -m apps.code_rag \
|
||||||
|
--repo-dir ./src \
|
||||||
|
--ast-chunk-size 768 \
|
||||||
|
--ast-chunk-overlap 96 \
|
||||||
|
--exclude-dirs .git __pycache__ node_modules build dist
|
||||||
|
```
|
||||||
|
|
||||||
|
### Supported Languages
|
||||||
|
|
||||||
|
| Extension | Language | Status |
|
||||||
|
|-----------|----------|--------|
|
||||||
|
| `.py` | Python | ✅ Full support |
|
||||||
|
| `.java` | Java | ✅ Full support |
|
||||||
|
| `.cs` | C# | ✅ Full support |
|
||||||
|
| `.ts`, `.tsx` | TypeScript | ✅ Full support |
|
||||||
|
| `.js`, `.jsx` | JavaScript | ✅ Via TypeScript parser |
|
||||||
|
|
||||||
|
## Integration Examples
|
||||||
|
|
||||||
|
### Document RAG with Code Support
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Enable code chunking in document RAG
|
||||||
|
python -m apps.document_rag \
|
||||||
|
--enable-code-chunking \
|
||||||
|
--data-dir ./project \
|
||||||
|
--query "How does authentication work in the codebase?"
|
||||||
|
```
|
||||||
|
|
||||||
|
### Claude Code Integration
|
||||||
|
|
||||||
|
When using with Claude Code MCP server, AST chunking provides better context for:
|
||||||
|
- Code completion and suggestions
|
||||||
|
- Bug analysis and debugging
|
||||||
|
- Architecture understanding
|
||||||
|
- Refactoring assistance
|
||||||
|
|
||||||
|
## Troubleshooting
|
||||||
|
|
||||||
|
### Common Issues
|
||||||
|
|
||||||
|
1. **Fallback to Traditional Chunking**
|
||||||
|
- Normal behavior for unsupported languages
|
||||||
|
- Check logs for specific language support
|
||||||
|
|
||||||
|
2. **Performance with Large Files**
|
||||||
|
- Adjust `--max-file-size` parameter
|
||||||
|
- Use `--exclude-dirs` to skip unnecessary directories
|
||||||
|
|
||||||
|
3. **Quality Issues**
|
||||||
|
- Try different `--ast-chunk-size` values (512, 768, 1024)
|
||||||
|
- Adjust overlap for better context preservation
|
||||||
|
|
||||||
|
### Debug Mode
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export LEANN_LOG_LEVEL=DEBUG
|
||||||
|
python -m apps.code_rag --repo-dir ./my_code
|
||||||
|
```
|
||||||
|
|
||||||
|
## Migration from Traditional Chunking
|
||||||
|
|
||||||
|
Existing workflows continue to work without changes. To enable AST chunking:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Before
|
||||||
|
python -m apps.document_rag --chunk-size 256
|
||||||
|
|
||||||
|
# After (maintains traditional chunking for non-code files)
|
||||||
|
python -m apps.document_rag --enable-code-chunking --chunk-size 256 --ast-chunk-size 768
|
||||||
|
```
|
||||||
|
|
||||||
|
## References
|
||||||
|
|
||||||
|
- [astchunk GitHub Repository](https://github.com/yilinjz/astchunk)
|
||||||
|
- [LEANN MCP Integration](../packages/leann-mcp/README.md)
|
||||||
|
- [Research Paper](https://arxiv.org/html/2506.15655v1)
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
**Note**: AST chunking maintains full backward compatibility while enhancing code understanding capabilities.
|
||||||
98
docs/code/embedding_model_compare.py
Normal file
@@ -0,0 +1,98 @@
|
|||||||
|
"""
|
||||||
|
Comparison between Sentence Transformers and OpenAI embeddings
|
||||||
|
|
||||||
|
This example shows how different embedding models handle complex queries
|
||||||
|
and demonstrates the differences between local and API-based embeddings.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from leann.embedding_compute import compute_embeddings
|
||||||
|
|
||||||
|
# OpenAI API key should be set as environment variable
|
||||||
|
# export OPENAI_API_KEY="your-api-key-here"
|
||||||
|
|
||||||
|
# Test data
|
||||||
|
conference_text = "[Title]: COLING 2025 Conference\n[URL]: https://coling2025.org/"
|
||||||
|
browser_text = "[Title]: Browser Use Tool\n[URL]: https://github.com/browser-use"
|
||||||
|
|
||||||
|
# Two queries with same intent but different wording
|
||||||
|
query1 = "Tell me my browser history about some conference i often visit"
|
||||||
|
query2 = "browser history about conference I often visit"
|
||||||
|
|
||||||
|
texts = [query1, query2, conference_text, browser_text]
|
||||||
|
|
||||||
|
|
||||||
|
def cosine_similarity(a, b):
|
||||||
|
return np.dot(a, b) # Already normalized
|
||||||
|
|
||||||
|
|
||||||
|
def analyze_embeddings(embeddings, model_name):
|
||||||
|
print(f"\n=== {model_name} Results ===")
|
||||||
|
|
||||||
|
# Results for Query 1
|
||||||
|
sim1_conf = cosine_similarity(embeddings[0], embeddings[2])
|
||||||
|
sim1_browser = cosine_similarity(embeddings[0], embeddings[3])
|
||||||
|
|
||||||
|
print(f"Query 1: '{query1}'")
|
||||||
|
print(f" → Conference similarity: {sim1_conf:.4f} {'✓' if sim1_conf > sim1_browser else ''}")
|
||||||
|
print(
|
||||||
|
f" → Browser similarity: {sim1_browser:.4f} {'✓' if sim1_browser > sim1_conf else ''}"
|
||||||
|
)
|
||||||
|
print(f" Winner: {'Conference' if sim1_conf > sim1_browser else 'Browser'}")
|
||||||
|
|
||||||
|
# Results for Query 2
|
||||||
|
sim2_conf = cosine_similarity(embeddings[1], embeddings[2])
|
||||||
|
sim2_browser = cosine_similarity(embeddings[1], embeddings[3])
|
||||||
|
|
||||||
|
print(f"\nQuery 2: '{query2}'")
|
||||||
|
print(f" → Conference similarity: {sim2_conf:.4f} {'✓' if sim2_conf > sim2_browser else ''}")
|
||||||
|
print(
|
||||||
|
f" → Browser similarity: {sim2_browser:.4f} {'✓' if sim2_browser > sim2_conf else ''}"
|
||||||
|
)
|
||||||
|
print(f" Winner: {'Conference' if sim2_conf > sim2_browser else 'Browser'}")
|
||||||
|
|
||||||
|
# Show the impact
|
||||||
|
print("\n=== Impact Analysis ===")
|
||||||
|
print(f"Conference similarity change: {sim2_conf - sim1_conf:+.4f}")
|
||||||
|
print(f"Browser similarity change: {sim2_browser - sim1_browser:+.4f}")
|
||||||
|
|
||||||
|
if sim1_conf > sim1_browser and sim2_browser > sim2_conf:
|
||||||
|
print("❌ FLIP: Adding 'browser history' flips winner from Conference to Browser!")
|
||||||
|
elif sim1_conf > sim1_browser and sim2_conf > sim2_browser:
|
||||||
|
print("✅ STABLE: Conference remains winner in both queries")
|
||||||
|
elif sim1_browser > sim1_conf and sim2_browser > sim2_conf:
|
||||||
|
print("✅ STABLE: Browser remains winner in both queries")
|
||||||
|
else:
|
||||||
|
print("🔄 MIXED: Results vary between queries")
|
||||||
|
|
||||||
|
return {
|
||||||
|
"query1_conf": sim1_conf,
|
||||||
|
"query1_browser": sim1_browser,
|
||||||
|
"query2_conf": sim2_conf,
|
||||||
|
"query2_browser": sim2_browser,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
# Test Sentence Transformers
|
||||||
|
print("Testing Sentence Transformers (facebook/contriever)...")
|
||||||
|
try:
|
||||||
|
st_embeddings = compute_embeddings(texts, "facebook/contriever", mode="sentence-transformers")
|
||||||
|
st_results = analyze_embeddings(st_embeddings, "Sentence Transformers (facebook/contriever)")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"❌ Sentence Transformers failed: {e}")
|
||||||
|
st_results = None
|
||||||
|
|
||||||
|
# Test OpenAI
|
||||||
|
print("\n" + "=" * 60)
|
||||||
|
print("Testing OpenAI (text-embedding-3-small)...")
|
||||||
|
try:
|
||||||
|
openai_embeddings = compute_embeddings(texts, "text-embedding-3-small", mode="openai")
|
||||||
|
openai_results = analyze_embeddings(openai_embeddings, "OpenAI (text-embedding-3-small)")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"❌ OpenAI failed: {e}")
|
||||||
|
openai_results = None
|
||||||
|
|
||||||
|
# Compare results
|
||||||
|
if st_results and openai_results:
|
||||||
|
print("\n" + "=" * 60)
|
||||||
|
print("=== COMPARISON SUMMARY ===")
|
||||||
384
docs/configuration-guide.md
Normal file
@@ -0,0 +1,384 @@
|
|||||||
|
# LEANN Configuration Guide
|
||||||
|
|
||||||
|
This guide helps you optimize LEANN for different use cases and understand the trade-offs between various configuration options.
|
||||||
|
|
||||||
|
## Getting Started: Simple is Better
|
||||||
|
|
||||||
|
When first trying LEANN, start with a small dataset to quickly validate your approach:
|
||||||
|
|
||||||
|
**For document RAG**: The default `data/` directory works perfectly - includes 2 AI research papers, Pride and Prejudice literature, and a technical report
|
||||||
|
```bash
|
||||||
|
python -m apps.document_rag --query "What techniques does LEANN use?"
|
||||||
|
```
|
||||||
|
|
||||||
|
**For other data sources**: Limit the dataset size for quick testing
|
||||||
|
```bash
|
||||||
|
# WeChat: Test with recent messages only
|
||||||
|
python -m apps.wechat_rag --max-items 100 --query "What did we discuss about the project timeline?"
|
||||||
|
|
||||||
|
# Browser history: Last few days
|
||||||
|
python -m apps.browser_rag --max-items 500 --query "Find documentation about vector databases"
|
||||||
|
|
||||||
|
# Email: Recent inbox
|
||||||
|
python -m apps.email_rag --max-items 200 --query "Who sent updates about the deployment status?"
|
||||||
|
```
|
||||||
|
|
||||||
|
Once validated, scale up gradually:
|
||||||
|
- 100 documents → 1,000 → 10,000 → full dataset (`--max-items -1`)
|
||||||
|
- This helps identify issues early before committing to long processing times
|
||||||
|
|
||||||
|
## Embedding Model Selection: Understanding the Trade-offs
|
||||||
|
|
||||||
|
Based on our experience developing LEANN, embedding models fall into three categories:
|
||||||
|
|
||||||
|
### Small Models (< 100M parameters)
|
||||||
|
**Example**: `sentence-transformers/all-MiniLM-L6-v2` (22M params)
|
||||||
|
- **Pros**: Lightweight, fast for both indexing and inference
|
||||||
|
- **Cons**: Lower semantic understanding, may miss nuanced relationships
|
||||||
|
- **Use when**: Speed is critical, handling simple queries, interactive mode, or just experimenting with LEANN. If time is not a constraint, consider using a larger/better embedding model
|
||||||
|
|
||||||
|
### Medium Models (100M-500M parameters)
|
||||||
|
**Example**: `facebook/contriever` (110M params), `BAAI/bge-base-en-v1.5` (110M params)
|
||||||
|
- **Pros**: Balanced performance, good multilingual support, reasonable speed
|
||||||
|
- **Cons**: Requires more compute than small models
|
||||||
|
- **Use when**: Need quality results without extreme compute requirements, general-purpose RAG applications
|
||||||
|
|
||||||
|
### Large Models (500M+ parameters)
|
||||||
|
**Example**: `Qwen/Qwen3-Embedding-0.6B` (600M params), `intfloat/multilingual-e5-large` (560M params)
|
||||||
|
- **Pros**: Best semantic understanding, captures complex relationships, excellent multilingual support. **Qwen3-Embedding-0.6B achieves nearly OpenAI API performance!**
|
||||||
|
- **Cons**: Slower inference, longer index build times
|
||||||
|
- **Use when**: Quality is paramount and you have sufficient compute resources. **Highly recommended** for production use
|
||||||
|
|
||||||
|
### Quick Start: Cloud and Local Embedding Options
|
||||||
|
|
||||||
|
**OpenAI Embeddings (Fastest Setup)**
|
||||||
|
For immediate testing without local model downloads(also if you [do not have GPU](https://github.com/yichuan-w/LEANN/issues/43) and do not care that much about your document leak, you should use this, we compute the embedding and recompute using openai API):
|
||||||
|
```bash
|
||||||
|
# Set OpenAI embeddings (requires OPENAI_API_KEY)
|
||||||
|
--embedding-mode openai --embedding-model text-embedding-3-small
|
||||||
|
```
|
||||||
|
|
||||||
|
**Ollama Embeddings (Privacy-Focused)**
|
||||||
|
For local embeddings with complete privacy:
|
||||||
|
```bash
|
||||||
|
# First, pull an embedding model
|
||||||
|
ollama pull nomic-embed-text
|
||||||
|
|
||||||
|
# Use Ollama embeddings
|
||||||
|
--embedding-mode ollama --embedding-model nomic-embed-text
|
||||||
|
```
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary><strong>Cloud vs Local Trade-offs</strong></summary>
|
||||||
|
|
||||||
|
**OpenAI Embeddings** (`text-embedding-3-small/large`)
|
||||||
|
- **Pros**: No local compute needed, consistently fast, high quality
|
||||||
|
- **Cons**: Requires API key, costs money, data leaves your system, [known limitations with certain languages](https://yichuan-w.github.io/blog/lessons_learned_in_dev_leann/)
|
||||||
|
- **When to use**: Prototyping, non-sensitive data, need immediate results
|
||||||
|
|
||||||
|
**Local Embeddings**
|
||||||
|
- **Pros**: Complete privacy, no ongoing costs, full control, can sometimes outperform OpenAI embeddings
|
||||||
|
- **Cons**: Slower than cloud APIs, requires local compute resources
|
||||||
|
- **When to use**: Production systems, sensitive data, cost-sensitive applications
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
## Index Selection: Matching Your Scale
|
||||||
|
|
||||||
|
### HNSW (Hierarchical Navigable Small World)
|
||||||
|
**Best for**: Small to medium datasets (< 10M vectors) - **Default and recommended for extreme low storage**
|
||||||
|
- Full recomputation required
|
||||||
|
- High memory usage during build phase
|
||||||
|
- Excellent recall (95%+)
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Optimal for most use cases
|
||||||
|
--backend-name hnsw --graph-degree 32 --build-complexity 64
|
||||||
|
```
|
||||||
|
|
||||||
|
### DiskANN
|
||||||
|
**Best for**: Large datasets, especially when you want `recompute=True`.
|
||||||
|
|
||||||
|
**Key advantages:**
|
||||||
|
- **Faster search** on large datasets (3x+ speedup vs HNSW in many cases)
|
||||||
|
- **Smart storage**: `recompute=True` enables automatic graph partitioning for smaller indexes
|
||||||
|
- **Better scaling**: Designed for 100k+ documents
|
||||||
|
|
||||||
|
**Recompute behavior:**
|
||||||
|
- `recompute=True` (recommended): Pure PQ traversal + final reranking - faster and enables partitioning
|
||||||
|
- `recompute=False`: PQ + partial real distances during traversal - slower but higher accuracy
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Recommended for most use cases
|
||||||
|
--backend-name diskann --graph-degree 32 --build-complexity 64
|
||||||
|
```
|
||||||
|
|
||||||
|
**Performance Benchmark**: Run `uv run benchmarks/diskann_vs_hnsw_speed_comparison.py` to compare DiskANN and HNSW on your system.
|
||||||
|
|
||||||
|
## LLM Selection: Engine and Model Comparison
|
||||||
|
|
||||||
|
### LLM Engines
|
||||||
|
|
||||||
|
**OpenAI** (`--llm openai`)
|
||||||
|
- **Pros**: Best quality, consistent performance, no local resources needed
|
||||||
|
- **Cons**: Costs money ($0.15-2.5 per million tokens), requires internet, data privacy concerns
|
||||||
|
- **Models**: `gpt-4o-mini` (fast, cheap), `gpt-4o` (best quality), `o3` (reasoning), `o3-mini` (reasoning, cheaper)
|
||||||
|
- **Thinking Budget**: Use `--thinking-budget low/medium/high` for o-series reasoning models (o3, o3-mini, o4-mini)
|
||||||
|
- **Note**: Our current default, but we recommend switching to Ollama for most use cases
|
||||||
|
|
||||||
|
**Ollama** (`--llm ollama`)
|
||||||
|
- **Pros**: Fully local, free, privacy-preserving, good model variety
|
||||||
|
- **Cons**: Requires local GPU/CPU resources, slower than cloud APIs, need to install extra [ollama app](https://github.com/ollama/ollama?tab=readme-ov-file#ollama) and pre-download models by `ollama pull`
|
||||||
|
- **Models**: `qwen3:0.6b` (ultra-fast), `qwen3:1.7b` (balanced), `qwen3:4b` (good quality), `qwen3:7b` (high quality), `deepseek-r1:1.5b` (reasoning)
|
||||||
|
- **Thinking Budget**: Use `--thinking-budget low/medium/high` for reasoning models like GPT-Oss:20b
|
||||||
|
|
||||||
|
**HuggingFace** (`--llm hf`)
|
||||||
|
- **Pros**: Free tier available, huge model selection, direct model loading (vs Ollama's server-based approach)
|
||||||
|
- **Cons**: More complex initial setup
|
||||||
|
- **Models**: `Qwen/Qwen3-1.7B-FP8`
|
||||||
|
|
||||||
|
## Parameter Tuning Guide
|
||||||
|
|
||||||
|
### Search Complexity Parameters
|
||||||
|
|
||||||
|
**`--build-complexity`** (index building)
|
||||||
|
- Controls thoroughness during index construction
|
||||||
|
- Higher = better recall but slower build
|
||||||
|
- Recommendations:
|
||||||
|
- 32: Quick prototyping
|
||||||
|
- 64: Balanced (default)
|
||||||
|
- 128: Production systems
|
||||||
|
- 256: Maximum quality
|
||||||
|
|
||||||
|
**`--search-complexity`** (query time)
|
||||||
|
- Controls search thoroughness
|
||||||
|
- Higher = better results but slower
|
||||||
|
- Recommendations:
|
||||||
|
- 16: Fast/Interactive search
|
||||||
|
- 32: High quality with diversity
|
||||||
|
- 64+: Maximum accuracy
|
||||||
|
|
||||||
|
### Top-K Selection
|
||||||
|
|
||||||
|
**`--top-k`** (number of retrieved chunks)
|
||||||
|
- More chunks = better context but slower LLM processing
|
||||||
|
- Should be always smaller than `--search-complexity`
|
||||||
|
- Guidelines:
|
||||||
|
- 10-20: General questions (default: 20)
|
||||||
|
- 30+: Complex multi-hop reasoning requiring comprehensive context
|
||||||
|
|
||||||
|
**Trade-off formula**:
|
||||||
|
- Retrieval time ∝ log(n) × search_complexity
|
||||||
|
- LLM processing time ∝ top_k × chunk_size
|
||||||
|
- Total context = top_k × chunk_size tokens
|
||||||
|
|
||||||
|
### Thinking Budget for Reasoning Models
|
||||||
|
|
||||||
|
**`--thinking-budget`** (reasoning effort level)
|
||||||
|
- Controls the computational effort for reasoning models
|
||||||
|
- Options: `low`, `medium`, `high`
|
||||||
|
- Guidelines:
|
||||||
|
- `low`: Fast responses, basic reasoning (default for simple queries)
|
||||||
|
- `medium`: Balanced speed and reasoning depth
|
||||||
|
- `high`: Maximum reasoning effort, best for complex analytical questions
|
||||||
|
- **Supported Models**:
|
||||||
|
- **Ollama**: `gpt-oss:20b`, `gpt-oss:120b`
|
||||||
|
- **OpenAI**: `o3`, `o3-mini`, `o4-mini`, `o1` (o-series reasoning models)
|
||||||
|
- **Note**: Models without reasoning support will show a warning and proceed without reasoning parameters
|
||||||
|
- **Example**: `--thinking-budget high` for complex analytical questions
|
||||||
|
|
||||||
|
**📖 For detailed usage examples and implementation details, check out [Thinking Budget Documentation](THINKING_BUDGET_FEATURE.md)**
|
||||||
|
|
||||||
|
**💡 Quick Examples:**
|
||||||
|
```bash
|
||||||
|
# OpenAI o-series reasoning model
|
||||||
|
python apps/document_rag.py --query "What are the main techniques LEANN explores?" \
|
||||||
|
--index-dir hnswbuild --backend hnsw \
|
||||||
|
--llm openai --llm-model o3 --thinking-budget medium
|
||||||
|
|
||||||
|
# Ollama reasoning model
|
||||||
|
python apps/document_rag.py --query "What are the main techniques LEANN explores?" \
|
||||||
|
--index-dir hnswbuild --backend hnsw \
|
||||||
|
--llm ollama --llm-model gpt-oss:20b --thinking-budget high
|
||||||
|
```
|
||||||
|
|
||||||
|
### Graph Degree (HNSW/DiskANN)
|
||||||
|
|
||||||
|
**`--graph-degree`**
|
||||||
|
- Number of connections per node in the graph
|
||||||
|
- Higher = better recall but more memory
|
||||||
|
- HNSW: 16-32 (default: 32)
|
||||||
|
- DiskANN: 32-128 (default: 64)
|
||||||
|
|
||||||
|
|
||||||
|
## Performance Optimization Checklist
|
||||||
|
|
||||||
|
### If Embedding is Too Slow
|
||||||
|
|
||||||
|
1. **Switch to smaller model**:
|
||||||
|
```bash
|
||||||
|
# From large model
|
||||||
|
--embedding-model Qwen/Qwen3-Embedding-0.6B
|
||||||
|
# To small model
|
||||||
|
--embedding-model sentence-transformers/all-MiniLM-L6-v2
|
||||||
|
```
|
||||||
|
|
||||||
|
2. **Limit dataset size for testing**:
|
||||||
|
```bash
|
||||||
|
--max-items 1000 # Process first 1k items only
|
||||||
|
```
|
||||||
|
|
||||||
|
3. **Use MLX on Apple Silicon** (optional optimization):
|
||||||
|
```bash
|
||||||
|
--embedding-mode mlx --embedding-model mlx-community/Qwen3-Embedding-0.6B-8bit
|
||||||
|
```
|
||||||
|
MLX might not be the best choice, as we tested and found that it only offers 1.3x acceleration compared to HF, so maybe using ollama is a better choice for embedding generation
|
||||||
|
|
||||||
|
4. **Use Ollama**
|
||||||
|
```bash
|
||||||
|
--embedding-mode ollama --embedding-model nomic-embed-text
|
||||||
|
```
|
||||||
|
To discover additional embedding models in ollama, check out https://ollama.com/search?c=embedding or read more about embedding models at https://ollama.com/blog/embedding-models, please do check the model size that works best for you
|
||||||
|
### If Search Quality is Poor
|
||||||
|
|
||||||
|
1. **Increase retrieval count**:
|
||||||
|
```bash
|
||||||
|
--top-k 30 # Retrieve more candidates
|
||||||
|
```
|
||||||
|
|
||||||
|
2. **Upgrade embedding model**:
|
||||||
|
```bash
|
||||||
|
# For English
|
||||||
|
--embedding-model BAAI/bge-base-en-v1.5
|
||||||
|
# For multilingual
|
||||||
|
--embedding-model intfloat/multilingual-e5-large
|
||||||
|
```
|
||||||
|
|
||||||
|
## Understanding the Trade-offs
|
||||||
|
|
||||||
|
Every configuration choice involves trade-offs:
|
||||||
|
|
||||||
|
| Factor | Small/Fast | Large/Quality |
|
||||||
|
|--------|------------|---------------|
|
||||||
|
| Embedding Model | `all-MiniLM-L6-v2` | `Qwen/Qwen3-Embedding-0.6B` |
|
||||||
|
| Chunk Size | 512 tokens | 128 tokens |
|
||||||
|
| Index Type | HNSW | DiskANN |
|
||||||
|
| LLM | `qwen3:1.7b` | `gpt-4o` |
|
||||||
|
|
||||||
|
The key is finding the right balance for your specific use case. Start small and simple, measure performance, then scale up only where needed.
|
||||||
|
|
||||||
|
## Low-resource setups
|
||||||
|
|
||||||
|
If you don’t have a local GPU or builds/searches are too slow, use one or more of the options below.
|
||||||
|
|
||||||
|
### 1) Use OpenAI embeddings (no local compute)
|
||||||
|
|
||||||
|
Fastest path with zero local GPU requirements. Set your API key and use OpenAI embeddings during build and search:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export OPENAI_API_KEY=sk-...
|
||||||
|
|
||||||
|
# Build with OpenAI embeddings
|
||||||
|
leann build my-index \
|
||||||
|
--embedding-mode openai \
|
||||||
|
--embedding-model text-embedding-3-small
|
||||||
|
|
||||||
|
# Search with OpenAI embeddings (recompute at query time)
|
||||||
|
leann search my-index "your query" \
|
||||||
|
--recompute
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2) Run remote builds with SkyPilot (cloud GPU)
|
||||||
|
|
||||||
|
Offload embedding generation and index building to a GPU VM using [SkyPilot](https://skypilot.readthedocs.io/en/latest/). A template is provided at `sky/leann-build.yaml`.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# One-time: install and configure SkyPilot
|
||||||
|
pip install skypilot
|
||||||
|
|
||||||
|
# Launch with defaults (L4:1) and mount ./data to ~/leann-data; the build runs automatically
|
||||||
|
sky launch -c leann-gpu sky/leann-build.yaml
|
||||||
|
|
||||||
|
# Override parameters via -e key=value (optional)
|
||||||
|
sky launch -c leann-gpu sky/leann-build.yaml \
|
||||||
|
-e index_name=my-index \
|
||||||
|
-e backend=hnsw \
|
||||||
|
-e embedding_mode=sentence-transformers \
|
||||||
|
-e embedding_model=Qwen/Qwen3-Embedding-0.6B
|
||||||
|
|
||||||
|
# Copy the built index back to your local .leann (use rsync)
|
||||||
|
rsync -Pavz leann-gpu:~/.leann/indexes/my-index ./.leann/indexes/
|
||||||
|
```
|
||||||
|
|
||||||
|
### 3) Disable recomputation to trade storage for speed
|
||||||
|
|
||||||
|
If you need lower latency and have more storage/memory, disable recomputation. This stores full embeddings and avoids recomputing at search time.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Build without recomputation (HNSW requires non-compact in this mode)
|
||||||
|
leann build my-index --no-recompute --no-compact
|
||||||
|
|
||||||
|
# Search without recomputation
|
||||||
|
leann search my-index "your query" --no-recompute
|
||||||
|
```
|
||||||
|
|
||||||
|
When to use:
|
||||||
|
- Extreme low latency requirements (high QPS, interactive assistants)
|
||||||
|
- Read-heavy workloads where storage is cheaper than latency
|
||||||
|
- No always-available GPU
|
||||||
|
|
||||||
|
Constraints:
|
||||||
|
- HNSW: when `--no-recompute` is set, LEANN automatically disables compact mode during build
|
||||||
|
- DiskANN: supported; `--no-recompute` skips selective recompute during search
|
||||||
|
|
||||||
|
Storage impact:
|
||||||
|
- Storing N embeddings of dimension D with float32 requires approximately N × D × 4 bytes
|
||||||
|
- Example: 1,000,000 chunks × 768 dims × 4 bytes ≈ 2.86 GB (plus graph/metadata)
|
||||||
|
|
||||||
|
Converting an existing index (rebuild required):
|
||||||
|
```bash
|
||||||
|
# Rebuild in-place (ensure you still have original docs or can regenerate chunks)
|
||||||
|
leann build my-index --force --no-recompute --no-compact
|
||||||
|
```
|
||||||
|
|
||||||
|
Python API usage:
|
||||||
|
```python
|
||||||
|
from leann import LeannSearcher
|
||||||
|
|
||||||
|
searcher = LeannSearcher("/path/to/my-index.leann")
|
||||||
|
results = searcher.search("your query", top_k=10, recompute_embeddings=False)
|
||||||
|
```
|
||||||
|
|
||||||
|
Trade-offs:
|
||||||
|
- Lower latency and fewer network hops at query time
|
||||||
|
- Significantly higher storage (10–100× vs selective recomputation)
|
||||||
|
- Slightly larger memory footprint during build and search
|
||||||
|
|
||||||
|
Quick benchmark results (`benchmarks/benchmark_no_recompute.py` with 5k texts, complexity=32):
|
||||||
|
|
||||||
|
- HNSW
|
||||||
|
|
||||||
|
```text
|
||||||
|
recompute=True: search_time=0.818s, size=1.1MB
|
||||||
|
recompute=False: search_time=0.012s, size=16.6MB
|
||||||
|
```
|
||||||
|
|
||||||
|
- DiskANN
|
||||||
|
|
||||||
|
```text
|
||||||
|
recompute=True: search_time=0.041s, size=5.9MB
|
||||||
|
recompute=False: search_time=0.013s, size=24.6MB
|
||||||
|
```
|
||||||
|
|
||||||
|
Conclusion:
|
||||||
|
- **HNSW**: `no-recompute` is significantly faster (no embedding recomputation) but requires much more storage (stores all embeddings)
|
||||||
|
- **DiskANN**: `no-recompute` uses PQ + partial real distances during traversal (slower but higher accuracy), while `recompute=True` uses pure PQ traversal + final reranking (faster traversal, enables build-time partitioning for smaller storage)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
## Further Reading
|
||||||
|
|
||||||
|
- [Lessons Learned Developing LEANN](https://yichuan-w.github.io/blog/lessons_learned_in_dev_leann/)
|
||||||
|
- [LEANN Technical Paper](https://arxiv.org/abs/2506.08276)
|
||||||
|
- [DiskANN Original Paper](https://papers.nips.cc/paper/2019/file/09853c7fb1d3f8ee67a61b6bf4a7f8e6-Paper.pdf)
|
||||||
|
- [SSD-based Graph Partitioning](https://github.com/SonglinLife/SSD_BASED_PLAN)
|
||||||
10
docs/faq.md
Normal file
@@ -0,0 +1,10 @@
|
|||||||
|
# FAQ
|
||||||
|
|
||||||
|
## 1. My building time seems long
|
||||||
|
|
||||||
|
You can speed up the process by using a lightweight embedding model. Add this to your arguments:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
--embedding-model sentence-transformers/all-MiniLM-L6-v2
|
||||||
|
```
|
||||||
|
**Model sizes:** `all-MiniLM-L6-v2` (30M parameters), `facebook/contriever` (~100M parameters), `Qwen3-0.6B` (600M parameters)
|
||||||
23
docs/features.md
Normal file
@@ -0,0 +1,23 @@
|
|||||||
|
# ✨ Detailed Features
|
||||||
|
|
||||||
|
## 🔥 Core Features
|
||||||
|
|
||||||
|
- **🔄 Real-time Embeddings** - Eliminate heavy embedding storage with dynamic computation using optimized ZMQ servers and highly optimized search paradigm (overlapping and batching) with highly optimized embedding engine
|
||||||
|
- **🧠 AST-Aware Code Chunking** - Intelligent code chunking that preserves semantic boundaries (functions, classes, methods) for Python, Java, C#, and TypeScript files
|
||||||
|
- **📈 Scalable Architecture** - Handles millions of documents on consumer hardware; the larger your dataset, the more LEANN can save
|
||||||
|
- **🎯 Graph Pruning** - Advanced techniques to minimize the storage overhead of vector search to a limited footprint
|
||||||
|
- **🏗️ Pluggable Backends** - HNSW/FAISS (default), with optional DiskANN for large-scale deployments
|
||||||
|
|
||||||
|
## 🛠️ Technical Highlights
|
||||||
|
- **🔄 Recompute Mode** - Highest accuracy scenarios while eliminating vector storage overhead
|
||||||
|
- **⚡ Zero-copy Operations** - Minimize IPC overhead by transferring distances instead of embeddings
|
||||||
|
- **🚀 High-throughput Embedding Pipeline** - Optimized batched processing for maximum efficiency
|
||||||
|
- **🎯 Two-level Search** - Novel coarse-to-fine search overlap for accelerated query processing (optional)
|
||||||
|
- **💾 Memory-mapped Indices** - Fast startup with raw text mapping to reduce memory overhead
|
||||||
|
- **🚀 MLX Support** - Ultra-fast recompute/build with quantized embedding models, accelerating building and search ([minimal example](../examples/mlx_demo.py))
|
||||||
|
|
||||||
|
## 🎨 Developer Experience
|
||||||
|
|
||||||
|
- **Simple Python API** - Get started in minutes
|
||||||
|
- **Extensible backend system** - Easy to add new algorithms
|
||||||
|
- **Comprehensive examples** - From basic usage to production deployment
|
||||||
149
docs/grep_search.md
Normal file
@@ -0,0 +1,149 @@
|
|||||||
|
# LEANN Grep Search Usage Guide
|
||||||
|
|
||||||
|
## Overview
|
||||||
|
|
||||||
|
LEANN's grep search functionality provides exact text matching for finding specific code patterns, error messages, function names, or exact phrases in your indexed documents.
|
||||||
|
|
||||||
|
## Basic Usage
|
||||||
|
|
||||||
|
### Simple Grep Search
|
||||||
|
|
||||||
|
```python
|
||||||
|
from leann.api import LeannSearcher
|
||||||
|
|
||||||
|
searcher = LeannSearcher("your_index_path")
|
||||||
|
|
||||||
|
# Exact text search
|
||||||
|
results = searcher.search("def authenticate_user", use_grep=True, top_k=5)
|
||||||
|
|
||||||
|
for result in results:
|
||||||
|
print(f"Score: {result.score}")
|
||||||
|
print(f"Text: {result.text[:100]}...")
|
||||||
|
print("-" * 40)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Comparison: Semantic vs Grep Search
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Semantic search - finds conceptually similar content
|
||||||
|
semantic_results = searcher.search("machine learning algorithms", top_k=3)
|
||||||
|
|
||||||
|
# Grep search - finds exact text matches
|
||||||
|
grep_results = searcher.search("def train_model", use_grep=True, top_k=3)
|
||||||
|
```
|
||||||
|
|
||||||
|
## When to Use Grep Search
|
||||||
|
|
||||||
|
### Use Cases
|
||||||
|
|
||||||
|
- **Code Search**: Finding specific function definitions, class names, or variable references
|
||||||
|
- **Error Debugging**: Locating exact error messages or stack traces
|
||||||
|
- **Documentation**: Finding specific API endpoints or exact terminology
|
||||||
|
|
||||||
|
### Examples
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Find function definitions
|
||||||
|
functions = searcher.search("def __init__", use_grep=True)
|
||||||
|
|
||||||
|
# Find import statements
|
||||||
|
imports = searcher.search("from sklearn import", use_grep=True)
|
||||||
|
|
||||||
|
# Find specific error types
|
||||||
|
errors = searcher.search("FileNotFoundError", use_grep=True)
|
||||||
|
|
||||||
|
# Find TODO comments
|
||||||
|
todos = searcher.search("TODO:", use_grep=True)
|
||||||
|
|
||||||
|
# Find configuration entries
|
||||||
|
configs = searcher.search("server_port=", use_grep=True)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Technical Details
|
||||||
|
|
||||||
|
### How It Works
|
||||||
|
|
||||||
|
1. **File Location**: Grep search operates on the raw text stored in `.jsonl` files
|
||||||
|
2. **Command Execution**: Uses the system `grep` command with case-insensitive search
|
||||||
|
3. **Result Processing**: Parses JSON lines and extracts text and metadata
|
||||||
|
4. **Scoring**: Simple frequency-based scoring based on query term occurrences
|
||||||
|
|
||||||
|
### Search Process
|
||||||
|
|
||||||
|
```
|
||||||
|
Query: "def train_model"
|
||||||
|
↓
|
||||||
|
grep -i -n "def train_model" documents.leann.passages.jsonl
|
||||||
|
↓
|
||||||
|
Parse matching JSON lines
|
||||||
|
↓
|
||||||
|
Calculate scores based on term frequency
|
||||||
|
↓
|
||||||
|
Return top_k results
|
||||||
|
```
|
||||||
|
|
||||||
|
### Scoring Algorithm
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Term frequency in document
|
||||||
|
score = text.lower().count(query.lower())
|
||||||
|
```
|
||||||
|
|
||||||
|
Results are ranked by score (highest first), with higher scores indicating more occurrences of the search term.
|
||||||
|
|
||||||
|
## Error Handling
|
||||||
|
|
||||||
|
### Common Issues
|
||||||
|
|
||||||
|
#### Grep Command Not Found
|
||||||
|
```
|
||||||
|
RuntimeError: grep command not found. Please install grep or use semantic search.
|
||||||
|
```
|
||||||
|
|
||||||
|
**Solution**: Install grep on your system:
|
||||||
|
- **Ubuntu/Debian**: `sudo apt-get install grep`
|
||||||
|
- **macOS**: grep is pre-installed
|
||||||
|
- **Windows**: Use WSL or install grep via Git Bash/MSYS2
|
||||||
|
|
||||||
|
#### No Results Found
|
||||||
|
```python
|
||||||
|
# Check if your query exists in the raw data
|
||||||
|
results = searcher.search("your_query", use_grep=True)
|
||||||
|
if not results:
|
||||||
|
print("No exact matches found. Try:")
|
||||||
|
print("1. Check spelling and case")
|
||||||
|
print("2. Use partial terms")
|
||||||
|
print("3. Switch to semantic search")
|
||||||
|
```
|
||||||
|
|
||||||
|
## Complete Example
|
||||||
|
|
||||||
|
```python
|
||||||
|
#!/usr/bin/env python3
|
||||||
|
"""
|
||||||
|
Grep Search Example
|
||||||
|
Demonstrates grep search for exact text matching.
|
||||||
|
"""
|
||||||
|
|
||||||
|
from leann.api import LeannSearcher
|
||||||
|
|
||||||
|
def demonstrate_grep_search():
|
||||||
|
# Initialize searcher
|
||||||
|
searcher = LeannSearcher("my_index")
|
||||||
|
|
||||||
|
print("=== Function Search ===")
|
||||||
|
functions = searcher.search("def __init__", use_grep=True, top_k=5)
|
||||||
|
for i, result in enumerate(functions, 1):
|
||||||
|
print(f"{i}. Score: {result.score}")
|
||||||
|
print(f" Preview: {result.text[:60]}...")
|
||||||
|
print()
|
||||||
|
|
||||||
|
print("=== Error Search ===")
|
||||||
|
errors = searcher.search("FileNotFoundError", use_grep=True, top_k=3)
|
||||||
|
for result in errors:
|
||||||
|
print(f"Content: {result.text.strip()}")
|
||||||
|
print("-" * 40)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
demonstrate_grep_search()
|
||||||
|
```
|
||||||
300
docs/metadata_filtering.md
Normal file
@@ -0,0 +1,300 @@
|
|||||||
|
# LEANN Metadata Filtering Usage Guide
|
||||||
|
|
||||||
|
## Overview
|
||||||
|
|
||||||
|
Leann possesses metadata filtering capabilities that allow you to filter search results based on arbitrary metadata fields set during chunking. This feature enables use cases like spoiler-free book search, document filtering by date/type, code search by file type, and potentially much more.
|
||||||
|
|
||||||
|
## Basic Usage
|
||||||
|
|
||||||
|
### Adding Metadata to Your Documents
|
||||||
|
|
||||||
|
When building your index, add metadata to each text chunk:
|
||||||
|
|
||||||
|
```python
|
||||||
|
from leann.api import LeannBuilder
|
||||||
|
|
||||||
|
builder = LeannBuilder("hnsw")
|
||||||
|
|
||||||
|
# Add text with metadata
|
||||||
|
builder.add_text(
|
||||||
|
text="Chapter 1: Alice falls down the rabbit hole",
|
||||||
|
metadata={
|
||||||
|
"chapter": 1,
|
||||||
|
"character": "Alice",
|
||||||
|
"themes": ["adventure", "curiosity"],
|
||||||
|
"word_count": 150
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
builder.build_index("alice_in_wonderland_index")
|
||||||
|
```
|
||||||
|
|
||||||
|
### Searching with Metadata Filters
|
||||||
|
|
||||||
|
Use the `metadata_filters` parameter in search calls:
|
||||||
|
|
||||||
|
```python
|
||||||
|
from leann.api import LeannSearcher
|
||||||
|
|
||||||
|
searcher = LeannSearcher("alice_in_wonderland_index")
|
||||||
|
|
||||||
|
# Search with filters
|
||||||
|
results = searcher.search(
|
||||||
|
query="What happens to Alice?",
|
||||||
|
top_k=10,
|
||||||
|
metadata_filters={
|
||||||
|
"chapter": {"<=": 5}, # Only chapters 1-5
|
||||||
|
"spoiler_level": {"!=": "high"} # No high spoilers
|
||||||
|
}
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Filter Syntax
|
||||||
|
|
||||||
|
### Basic Structure
|
||||||
|
|
||||||
|
```python
|
||||||
|
metadata_filters = {
|
||||||
|
"field_name": {"operator": value},
|
||||||
|
"another_field": {"operator": value}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
### Supported Operators
|
||||||
|
|
||||||
|
#### Comparison Operators
|
||||||
|
- `"=="`: Equal to
|
||||||
|
- `"!="`: Not equal to
|
||||||
|
- `"<"`: Less than
|
||||||
|
- `"<="`: Less than or equal
|
||||||
|
- `">"`: Greater than
|
||||||
|
- `">="`: Greater than or equal
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Examples
|
||||||
|
{"chapter": {"==": 1}} # Exactly chapter 1
|
||||||
|
{"page": {">": 100}} # Pages after 100
|
||||||
|
{"rating": {">=": 4.0}} # Rating 4.0 or higher
|
||||||
|
{"word_count": {"<": 500}} # Short passages
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Membership Operators
|
||||||
|
- `"in"`: Value is in list
|
||||||
|
- `"not_in"`: Value is not in list
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Examples
|
||||||
|
{"character": {"in": ["Alice", "Bob"]}} # Alice OR Bob
|
||||||
|
{"genre": {"not_in": ["horror", "thriller"]}} # Exclude genres
|
||||||
|
{"tags": {"in": ["fiction", "adventure"]}} # Any of these tags
|
||||||
|
```
|
||||||
|
|
||||||
|
#### String Operators
|
||||||
|
- `"contains"`: String contains substring
|
||||||
|
- `"starts_with"`: String starts with prefix
|
||||||
|
- `"ends_with"`: String ends with suffix
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Examples
|
||||||
|
{"title": {"contains": "alice"}} # Title contains "alice"
|
||||||
|
{"filename": {"ends_with": ".py"}} # Python files
|
||||||
|
{"author": {"starts_with": "Dr."}} # Authors with "Dr." prefix
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Boolean Operators
|
||||||
|
- `"is_true"`: Field is truthy
|
||||||
|
- `"is_false"`: Field is falsy
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Examples
|
||||||
|
{"is_published": {"is_true": True}} # Published content
|
||||||
|
{"is_draft": {"is_false": False}} # Not drafts
|
||||||
|
```
|
||||||
|
|
||||||
|
### Multiple Operators on Same Field
|
||||||
|
|
||||||
|
You can apply multiple operators to the same field (AND logic):
|
||||||
|
|
||||||
|
```python
|
||||||
|
metadata_filters = {
|
||||||
|
"word_count": {
|
||||||
|
">=": 100, # At least 100 words
|
||||||
|
"<=": 500 # At most 500 words
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
### Compound Filters
|
||||||
|
|
||||||
|
Multiple fields are combined with AND logic:
|
||||||
|
|
||||||
|
```python
|
||||||
|
metadata_filters = {
|
||||||
|
"chapter": {"<=": 10}, # Up to chapter 10
|
||||||
|
"character": {"==": "Alice"}, # About Alice
|
||||||
|
"spoiler_level": {"!=": "high"} # No major spoilers
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
## Use Case Examples
|
||||||
|
|
||||||
|
### 1. Spoiler-Free Book Search
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Reader has only read up to chapter 5
|
||||||
|
def search_spoiler_free(query, max_chapter):
|
||||||
|
return searcher.search(
|
||||||
|
query=query,
|
||||||
|
metadata_filters={
|
||||||
|
"chapter": {"<=": max_chapter},
|
||||||
|
"spoiler_level": {"in": ["none", "low"]}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
results = search_spoiler_free("What happens to Alice?", max_chapter=5)
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. Document Management by Date
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Find recent documents
|
||||||
|
recent_docs = searcher.search(
|
||||||
|
query="project updates",
|
||||||
|
metadata_filters={
|
||||||
|
"date": {">=": "2024-01-01"},
|
||||||
|
"document_type": {"==": "report"}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
### 3. Code Search by File Type
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Search only Python files
|
||||||
|
python_code = searcher.search(
|
||||||
|
query="authentication function",
|
||||||
|
metadata_filters={
|
||||||
|
"file_extension": {"==": ".py"},
|
||||||
|
"lines_of_code": {"<": 100}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
### 4. Content Filtering by Audience
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Age-appropriate content
|
||||||
|
family_content = searcher.search(
|
||||||
|
query="adventure stories",
|
||||||
|
metadata_filters={
|
||||||
|
"age_rating": {"in": ["G", "PG"]},
|
||||||
|
"content_warnings": {"not_in": ["violence", "adult_themes"]}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
### 5. Multi-Book Series Management
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Search across first 3 books only
|
||||||
|
early_series = searcher.search(
|
||||||
|
query="character development",
|
||||||
|
metadata_filters={
|
||||||
|
"series": {"==": "Harry Potter"},
|
||||||
|
"book_number": {"<=": 3}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Running the Example
|
||||||
|
|
||||||
|
You can see metadata filtering in action with our spoiler-free book RAG example:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Don't forget to set up the environment
|
||||||
|
uv venv
|
||||||
|
source .venv/bin/activate
|
||||||
|
|
||||||
|
# Set your OpenAI API key (required for embeddings, but you can update the example locally and use ollama instead)
|
||||||
|
export OPENAI_API_KEY="your-api-key-here"
|
||||||
|
|
||||||
|
# Run the spoiler-free book RAG example
|
||||||
|
uv run examples/spoiler_free_book_rag.py
|
||||||
|
```
|
||||||
|
|
||||||
|
This example demonstrates:
|
||||||
|
- Building an index with metadata (chapter numbers, characters, themes, locations)
|
||||||
|
- Searching with filters to avoid spoilers (e.g., only show results up to chapter 5)
|
||||||
|
- Different scenarios for readers at various points in the book
|
||||||
|
|
||||||
|
The example uses Alice's Adventures in Wonderland as sample data and shows how you can search for information without revealing plot points from later chapters.
|
||||||
|
|
||||||
|
## Advanced Patterns
|
||||||
|
|
||||||
|
### Custom Chunking with metadata
|
||||||
|
|
||||||
|
```python
|
||||||
|
def chunk_book_with_metadata(book_text, book_info):
|
||||||
|
chunks = []
|
||||||
|
|
||||||
|
for chapter_num, chapter_text in parse_chapters(book_text):
|
||||||
|
# Extract entities, themes, etc.
|
||||||
|
characters = extract_characters(chapter_text)
|
||||||
|
themes = classify_themes(chapter_text)
|
||||||
|
spoiler_level = assess_spoiler_level(chapter_text, chapter_num)
|
||||||
|
|
||||||
|
# Create chunks with rich metadata
|
||||||
|
for paragraph in split_paragraphs(chapter_text):
|
||||||
|
chunks.append({
|
||||||
|
"text": paragraph,
|
||||||
|
"metadata": {
|
||||||
|
"book_title": book_info["title"],
|
||||||
|
"chapter": chapter_num,
|
||||||
|
"characters": characters,
|
||||||
|
"themes": themes,
|
||||||
|
"spoiler_level": spoiler_level,
|
||||||
|
"word_count": len(paragraph.split()),
|
||||||
|
"reading_level": calculate_reading_level(paragraph)
|
||||||
|
}
|
||||||
|
})
|
||||||
|
|
||||||
|
return chunks
|
||||||
|
```
|
||||||
|
|
||||||
|
## Performance Considerations
|
||||||
|
|
||||||
|
### Efficient Filtering Strategies
|
||||||
|
|
||||||
|
1. **Post-search filtering**: Applies filters after vector search, which should be efficient for typical result sets (10-100 results).
|
||||||
|
|
||||||
|
2. **Metadata design**: Keep metadata fields simple and avoid deeply nested structures.
|
||||||
|
|
||||||
|
### Best Practices
|
||||||
|
|
||||||
|
1. **Consistent metadata schema**: Use consistent field names and value types across your documents.
|
||||||
|
|
||||||
|
2. **Reasonable metadata size**: Keep metadata reasonably sized to avoid storage overhead.
|
||||||
|
|
||||||
|
3. **Type consistency**: Use consistent data types for the same fields (e.g., always integers for chapter numbers).
|
||||||
|
|
||||||
|
4. **Index multiple granularities**: Consider chunking at different levels (paragraph, section, chapter) with appropriate metadata.
|
||||||
|
|
||||||
|
### Adding Metadata to Existing Indices
|
||||||
|
|
||||||
|
To add metadata filtering to existing indices, you'll need to rebuild them with metadata:
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Read existing passages and add metadata
|
||||||
|
def add_metadata_to_existing_chunks(chunks):
|
||||||
|
for chunk in chunks:
|
||||||
|
# Extract or assign metadata based on content
|
||||||
|
chunk["metadata"] = extract_metadata(chunk["text"])
|
||||||
|
return chunks
|
||||||
|
|
||||||
|
# Rebuild index with metadata
|
||||||
|
enhanced_chunks = add_metadata_to_existing_chunks(existing_chunks)
|
||||||
|
builder = LeannBuilder("hnsw")
|
||||||
|
for chunk in enhanced_chunks:
|
||||||
|
builder.add_text(chunk["text"], chunk["metadata"])
|
||||||
|
builder.build_index("enhanced_index")
|
||||||
|
```
|
||||||
75
docs/normalized_embeddings.md
Normal file
@@ -0,0 +1,75 @@
|
|||||||
|
# Normalized Embeddings Support in LEANN
|
||||||
|
|
||||||
|
LEANN now automatically detects normalized embedding models and sets the appropriate distance metric for optimal performance.
|
||||||
|
|
||||||
|
## What are Normalized Embeddings?
|
||||||
|
|
||||||
|
Normalized embeddings are vectors with L2 norm = 1 (unit vectors). These embeddings are optimized for cosine similarity rather than Maximum Inner Product Search (MIPS).
|
||||||
|
|
||||||
|
## Automatic Detection
|
||||||
|
|
||||||
|
When you create a `LeannBuilder` instance with a normalized embedding model, LEANN will:
|
||||||
|
|
||||||
|
1. **Automatically set `distance_metric="cosine"`** if not specified
|
||||||
|
2. **Show a warning** if you manually specify a different distance metric
|
||||||
|
3. **Provide optimal search performance** with the correct metric
|
||||||
|
|
||||||
|
## Supported Normalized Embedding Models
|
||||||
|
|
||||||
|
### OpenAI
|
||||||
|
All OpenAI text embedding models are normalized:
|
||||||
|
- `text-embedding-ada-002`
|
||||||
|
- `text-embedding-3-small`
|
||||||
|
- `text-embedding-3-large`
|
||||||
|
|
||||||
|
### Voyage AI
|
||||||
|
All Voyage AI embedding models are normalized:
|
||||||
|
- `voyage-2`
|
||||||
|
- `voyage-3`
|
||||||
|
- `voyage-large-2`
|
||||||
|
- `voyage-multilingual-2`
|
||||||
|
- `voyage-code-2`
|
||||||
|
|
||||||
|
### Cohere
|
||||||
|
All Cohere embedding models are normalized:
|
||||||
|
- `embed-english-v3.0`
|
||||||
|
- `embed-multilingual-v3.0`
|
||||||
|
- `embed-english-light-v3.0`
|
||||||
|
- `embed-multilingual-light-v3.0`
|
||||||
|
|
||||||
|
## Example Usage
|
||||||
|
|
||||||
|
```python
|
||||||
|
from leann.api import LeannBuilder
|
||||||
|
|
||||||
|
# Automatic detection - will use cosine distance
|
||||||
|
builder = LeannBuilder(
|
||||||
|
backend_name="hnsw",
|
||||||
|
embedding_model="text-embedding-3-small",
|
||||||
|
embedding_mode="openai"
|
||||||
|
)
|
||||||
|
# Warning: Detected normalized embeddings model 'text-embedding-3-small'...
|
||||||
|
# Automatically setting distance_metric='cosine'
|
||||||
|
|
||||||
|
# Manual override (not recommended)
|
||||||
|
builder = LeannBuilder(
|
||||||
|
backend_name="hnsw",
|
||||||
|
embedding_model="text-embedding-3-small",
|
||||||
|
embedding_mode="openai",
|
||||||
|
distance_metric="mips" # Will show warning
|
||||||
|
)
|
||||||
|
# Warning: Using 'mips' distance metric with normalized embeddings...
|
||||||
|
```
|
||||||
|
|
||||||
|
## Non-Normalized Embeddings
|
||||||
|
|
||||||
|
Models like `facebook/contriever` and other sentence-transformers models that are not normalized will continue to use MIPS by default, which is optimal for them.
|
||||||
|
|
||||||
|
## Why This Matters
|
||||||
|
|
||||||
|
Using the wrong distance metric with normalized embeddings can lead to:
|
||||||
|
- **Poor search quality** due to HNSW's early termination with narrow score ranges
|
||||||
|
- **Incorrect ranking** of search results
|
||||||
|
- **Suboptimal performance** compared to using the correct metric
|
||||||
|
|
||||||
|
For more details on why this happens, see our analysis in the [embedding detection code](../packages/leann-core/src/leann/api.py) which automatically handles normalized embeddings and MIPS distance metric issues.
|
||||||
21
docs/roadmap.md
Normal file
@@ -0,0 +1,21 @@
|
|||||||
|
# 📈 Roadmap
|
||||||
|
|
||||||
|
## 🎯 Q2 2025
|
||||||
|
|
||||||
|
- [X] HNSW backend integration
|
||||||
|
- [X] DiskANN backend with MIPS/L2/Cosine support
|
||||||
|
- [X] Real-time embedding pipeline
|
||||||
|
- [X] Memory-efficient graph pruning
|
||||||
|
|
||||||
|
## 🚀 Q3 2025
|
||||||
|
|
||||||
|
- [ ] Advanced caching strategies
|
||||||
|
- [ ] Add contextual-retrieval https://www.anthropic.com/news/contextual-retrieval
|
||||||
|
- [ ] Add sleep-time-compute and summarize agent! to summarilze the file on computer!
|
||||||
|
- [ ] Add OpenAI recompute API
|
||||||
|
|
||||||
|
## 🌟 Q4 2025
|
||||||
|
|
||||||
|
- [ ] Integration with LangChain/LlamaIndex
|
||||||
|
- [ ] Visual similarity search
|
||||||
|
- [ ] Query rewrtiting, rerank and expansion
|
||||||
@@ -1,16 +1,23 @@
|
|||||||
"""
|
"""
|
||||||
Simple demo showing basic leann usage
|
Simple demo showing basic leann usage
|
||||||
Run: uv run python examples/simple_demo.py
|
Run: uv run python examples/basic_demo.py
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
from leann import LeannBuilder, LeannSearcher, LeannChat
|
|
||||||
|
from leann import LeannBuilder, LeannChat, LeannSearcher
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
parser = argparse.ArgumentParser(description="Simple demo of Leann with selectable embedding models.")
|
parser = argparse.ArgumentParser(
|
||||||
parser.add_argument("--embedding_model", type=str, default="sentence-transformers/all-mpnet-base-v2",
|
description="Simple demo of Leann with selectable embedding models."
|
||||||
help="The embedding model to use, e.g., 'sentence-transformers/all-mpnet-base-v2' or 'text-embedding-ada-002'.")
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--embedding_model",
|
||||||
|
type=str,
|
||||||
|
default="sentence-transformers/all-mpnet-base-v2",
|
||||||
|
help="The embedding model to use, e.g., 'sentence-transformers/all-mpnet-base-v2' or 'text-embedding-ada-002'.",
|
||||||
|
)
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
print(f"=== Leann Simple Demo with {args.embedding_model} ===")
|
print(f"=== Leann Simple Demo with {args.embedding_model} ===")
|
||||||
@@ -74,7 +81,7 @@ def main():
|
|||||||
print()
|
print()
|
||||||
|
|
||||||
print("Demo completed! Try running:")
|
print("Demo completed! Try running:")
|
||||||
print(" uv run python examples/document_search.py")
|
print(" uv run python apps/document_rag.py")
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
@@ -1,146 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
"""
|
|
||||||
Document search demo with recompute mode
|
|
||||||
"""
|
|
||||||
|
|
||||||
import os
|
|
||||||
from pathlib import Path
|
|
||||||
import shutil
|
|
||||||
import time
|
|
||||||
|
|
||||||
# Import backend packages to trigger plugin registration
|
|
||||||
try:
|
|
||||||
import leann_backend_diskann
|
|
||||||
import leann_backend_hnsw
|
|
||||||
print("INFO: Backend packages imported successfully.")
|
|
||||||
except ImportError as e:
|
|
||||||
print(f"WARNING: Could not import backend packages. Error: {e}")
|
|
||||||
|
|
||||||
# Import upper-level API from leann-core
|
|
||||||
from leann.api import LeannBuilder, LeannSearcher, LeannChat
|
|
||||||
|
|
||||||
|
|
||||||
def load_sample_documents():
|
|
||||||
"""Create sample documents for demonstration"""
|
|
||||||
docs = [
|
|
||||||
{"title": "Intro to Python", "content": "Python is a high-level, interpreted language known for simplicity."},
|
|
||||||
{"title": "ML Basics", "content": "Machine learning builds systems that learn from data."},
|
|
||||||
{"title": "Data Structures", "content": "Data structures like arrays, lists, and graphs organize data."},
|
|
||||||
]
|
|
||||||
return docs
|
|
||||||
|
|
||||||
def main():
|
|
||||||
print("==========================================================")
|
|
||||||
print("=== Leann Document Search Demo (DiskANN + Recompute) ===")
|
|
||||||
print("==========================================================")
|
|
||||||
|
|
||||||
INDEX_DIR = Path("./test_indices")
|
|
||||||
INDEX_PATH = str(INDEX_DIR / "documents.diskann")
|
|
||||||
BACKEND_TO_TEST = "diskann"
|
|
||||||
|
|
||||||
if INDEX_DIR.exists():
|
|
||||||
print(f"--- Cleaning up old index directory: {INDEX_DIR} ---")
|
|
||||||
shutil.rmtree(INDEX_DIR)
|
|
||||||
|
|
||||||
# --- 1. Build index ---
|
|
||||||
print(f"\n[PHASE 1] Building index using '{BACKEND_TO_TEST}' backend...")
|
|
||||||
|
|
||||||
builder = LeannBuilder(
|
|
||||||
backend_name=BACKEND_TO_TEST,
|
|
||||||
graph_degree=32,
|
|
||||||
complexity=64
|
|
||||||
)
|
|
||||||
|
|
||||||
documents = load_sample_documents()
|
|
||||||
print(f"Loaded {len(documents)} sample documents.")
|
|
||||||
for doc in documents:
|
|
||||||
builder.add_text(doc["content"], metadata={"title": doc["title"]})
|
|
||||||
|
|
||||||
builder.build_index(INDEX_PATH)
|
|
||||||
print(f"\nIndex built!")
|
|
||||||
|
|
||||||
# --- 2. Basic search demo ---
|
|
||||||
print(f"\n[PHASE 2] Basic search using '{BACKEND_TO_TEST}' backend...")
|
|
||||||
searcher = LeannSearcher(index_path=INDEX_PATH)
|
|
||||||
|
|
||||||
query = "What is machine learning?"
|
|
||||||
print(f"\nQuery: '{query}'")
|
|
||||||
|
|
||||||
print("\n--- Basic search mode (PQ computation) ---")
|
|
||||||
start_time = time.time()
|
|
||||||
results = searcher.search(query, top_k=2)
|
|
||||||
basic_time = time.time() - start_time
|
|
||||||
|
|
||||||
print(f"⏱️ Basic search time: {basic_time:.3f} seconds")
|
|
||||||
print(">>> Basic search results <<<")
|
|
||||||
for i, res in enumerate(results, 1):
|
|
||||||
print(f" {i}. ID: {res['id']}, Score: {res['score']:.4f}, Text: '{res['text']}', Metadata: {res['metadata']}")
|
|
||||||
|
|
||||||
# --- 3. Recompute search demo ---
|
|
||||||
print(f"\n[PHASE 3] Recompute search using embedding server...")
|
|
||||||
|
|
||||||
print("\n--- Recompute search mode (get real embeddings via network) ---")
|
|
||||||
|
|
||||||
# Configure recompute parameters
|
|
||||||
recompute_params = {
|
|
||||||
"recompute_beighbor_embeddings": True, # Enable network recomputation
|
|
||||||
"USE_DEFERRED_FETCH": False, # Don't use deferred fetch
|
|
||||||
"skip_search_reorder": True, # Skip search reordering
|
|
||||||
"dedup_node_dis": True, # Enable node distance deduplication
|
|
||||||
"prune_ratio": 0.1, # Pruning ratio 10%
|
|
||||||
"batch_recompute": False, # Don't use batch recomputation
|
|
||||||
"global_pruning": False, # Don't use global pruning
|
|
||||||
"zmq_port": 5555, # ZMQ port
|
|
||||||
"embedding_model": "sentence-transformers/all-mpnet-base-v2"
|
|
||||||
}
|
|
||||||
|
|
||||||
print("Recompute parameter configuration:")
|
|
||||||
for key, value in recompute_params.items():
|
|
||||||
print(f" {key}: {value}")
|
|
||||||
|
|
||||||
print(f"\n🔄 Executing Recompute search...")
|
|
||||||
try:
|
|
||||||
start_time = time.time()
|
|
||||||
recompute_results = searcher.search(query, top_k=2, **recompute_params)
|
|
||||||
recompute_time = time.time() - start_time
|
|
||||||
|
|
||||||
print(f"⏱️ Recompute search time: {recompute_time:.3f} seconds")
|
|
||||||
print(">>> Recompute search results <<<")
|
|
||||||
for i, res in enumerate(recompute_results, 1):
|
|
||||||
print(f" {i}. ID: {res['id']}, Score: {res['score']:.4f}, Text: '{res['text']}', Metadata: {res['metadata']}")
|
|
||||||
|
|
||||||
# Compare results
|
|
||||||
print(f"\n--- Result comparison ---")
|
|
||||||
print(f"Basic search time: {basic_time:.3f} seconds")
|
|
||||||
print(f"Recompute time: {recompute_time:.3f} seconds")
|
|
||||||
|
|
||||||
print("\nBasic search vs Recompute results:")
|
|
||||||
for i in range(min(len(results), len(recompute_results))):
|
|
||||||
basic_score = results[i]['score']
|
|
||||||
recompute_score = recompute_results[i]['score']
|
|
||||||
score_diff = abs(basic_score - recompute_score)
|
|
||||||
print(f" Position {i+1}: PQ={basic_score:.4f}, Recompute={recompute_score:.4f}, Difference={score_diff:.4f}")
|
|
||||||
|
|
||||||
if recompute_time > basic_time:
|
|
||||||
print(f"✅ Recompute mode working correctly (more accurate but slower)")
|
|
||||||
else:
|
|
||||||
print(f"ℹ️ Recompute time is unusually fast, network recomputation may not be enabled")
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
print(f"❌ Recompute search failed: {e}")
|
|
||||||
print("This usually indicates an embedding server connection issue")
|
|
||||||
|
|
||||||
# --- 4. Chat demo ---
|
|
||||||
print(f"\n[PHASE 4] Starting chat session...")
|
|
||||||
chat = LeannChat(index_path=INDEX_PATH)
|
|
||||||
chat_response = chat.ask(query)
|
|
||||||
print(f"You: {query}")
|
|
||||||
print(f"Leann: {chat_response}")
|
|
||||||
|
|
||||||
print("\n==========================================================")
|
|
||||||
print("✅ Demo finished successfully!")
|
|
||||||
print("==========================================================")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
||||||
380
examples/dynamic_add_leann_no_recompute.py
Normal file
@@ -0,0 +1,380 @@
|
|||||||
|
"""
|
||||||
|
Dynamic add example for LEANN using HNSW backend without recompute.
|
||||||
|
|
||||||
|
- Builds a base index from a directory of documents
|
||||||
|
- Incrementally adds new documents without recomputing stored embeddings
|
||||||
|
|
||||||
|
Defaults:
|
||||||
|
- Base data: /Users/yichuan/Desktop/code/LEANN/leann/data
|
||||||
|
- Incremental data: /Users/yichuan/Desktop/code/LEANN/leann/test_add
|
||||||
|
- Index path: <index_dir>/documents.leann
|
||||||
|
|
||||||
|
Usage examples:
|
||||||
|
uv run python examples/dynamic_add_leann_no_recompute.py --build-base \
|
||||||
|
--base-dir /Users/yichuan/Desktop/code/LEANN/leann/data \
|
||||||
|
--index-dir ./test_doc_files
|
||||||
|
|
||||||
|
uv run python examples/dynamic_add_leann_no_recompute.py --add-incremental \
|
||||||
|
--add-dir /Users/yichuan/Desktop/code/LEANN/leann/test_add \
|
||||||
|
--index-dir ./test_doc_files
|
||||||
|
|
||||||
|
Quick recompute test (both true):
|
||||||
|
# Recompute build
|
||||||
|
uv run python examples/dynamic_add_leann_no_recompute.py --build-base \
|
||||||
|
--recompute-build --ef-construction 200 \
|
||||||
|
--base-dir /Users/yichuan/Desktop/code/LEANN/leann/data \
|
||||||
|
--index-dir ./test_doc_files --index-name documents.leann
|
||||||
|
|
||||||
|
# Recompute add
|
||||||
|
uv run python examples/dynamic_add_leann_no_recompute.py --add-incremental \
|
||||||
|
--recompute-add --ef-construction 32 \
|
||||||
|
--add-dir /Users/yichuan/Desktop/code/LEANN/leann/test_add \
|
||||||
|
--index-dir ./test_doc_files --index-name documents.leann
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import json
|
||||||
|
import pickle
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any, Optional
|
||||||
|
|
||||||
|
# Ensure we can import from the local packages and apps folders
|
||||||
|
ROOT = Path(__file__).resolve().parents[1]
|
||||||
|
CORE_SRC = ROOT / "packages" / "leann-core" / "src"
|
||||||
|
HNSW_PKG_DIR = ROOT / "packages" / "leann-backend-hnsw"
|
||||||
|
APPS_DIR = ROOT / "apps"
|
||||||
|
|
||||||
|
|
||||||
|
# Prefer the installed backend if available (it contains the compiled extension)
|
||||||
|
def _prefer_installed(pkg_name: str) -> bool:
|
||||||
|
try:
|
||||||
|
import importlib
|
||||||
|
import importlib.util
|
||||||
|
|
||||||
|
spec = importlib.util.find_spec(pkg_name)
|
||||||
|
if spec and spec.origin and "site-packages" in spec.origin:
|
||||||
|
# ensure the faiss shim/extension is importable from the installed package
|
||||||
|
importlib.import_module(f"{pkg_name}.faiss")
|
||||||
|
return True
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
# Prepend paths, but only add the repo backend if the installed one is not present
|
||||||
|
paths_to_prepend = [CORE_SRC, APPS_DIR]
|
||||||
|
if not _prefer_installed("leann_backend_hnsw"):
|
||||||
|
paths_to_prepend.insert(1, HNSW_PKG_DIR)
|
||||||
|
|
||||||
|
for p in paths_to_prepend:
|
||||||
|
p_str = str(p)
|
||||||
|
if p_str not in sys.path:
|
||||||
|
sys.path.insert(0, p_str)
|
||||||
|
|
||||||
|
# Defer non-stdlib imports until after sys.path setup within functions (avoid E402)
|
||||||
|
|
||||||
|
|
||||||
|
def _load_documents(data_dir: str, required_exts: Optional[list[str]] = None) -> list[Any]:
|
||||||
|
from llama_index.core import SimpleDirectoryReader # type: ignore
|
||||||
|
|
||||||
|
reader_kwargs: dict[str, Any] = {"recursive": True, "encoding": "utf-8"}
|
||||||
|
if required_exts:
|
||||||
|
reader_kwargs["required_exts"] = required_exts
|
||||||
|
documents = SimpleDirectoryReader(data_dir, **reader_kwargs).load_data(show_progress=True)
|
||||||
|
return documents
|
||||||
|
|
||||||
|
|
||||||
|
def _ensure_index_dir(index_dir: Path) -> None:
|
||||||
|
index_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
|
||||||
|
def _index_files(index_path: Path) -> tuple[Path, Path, Path]:
|
||||||
|
"""Return (passages.jsonl, passages.idx, index.index) paths for a given index base path.
|
||||||
|
|
||||||
|
Note: HNSWBackend writes the FAISS index using the stem (without .leann),
|
||||||
|
i.e., for base 'documents.leann' the file is 'documents.index'. We prefer the
|
||||||
|
existing file among candidates.
|
||||||
|
"""
|
||||||
|
passages_file = index_path.parent / f"{index_path.name}.passages.jsonl"
|
||||||
|
offsets_file = index_path.parent / f"{index_path.name}.passages.idx"
|
||||||
|
candidate_name_index = index_path.parent / f"{index_path.name}.index"
|
||||||
|
candidate_stem_index = index_path.parent / f"{index_path.stem}.index"
|
||||||
|
index_file = candidate_stem_index if candidate_stem_index.exists() else candidate_name_index
|
||||||
|
return passages_file, offsets_file, index_file
|
||||||
|
|
||||||
|
|
||||||
|
def _read_meta(index_path: Path) -> dict[str, Any]:
|
||||||
|
meta_path = index_path.parent / f"{index_path.name}.meta.json"
|
||||||
|
if not meta_path.exists():
|
||||||
|
raise FileNotFoundError(f"Metadata file not found: {meta_path}")
|
||||||
|
with open(meta_path, encoding="utf-8") as f:
|
||||||
|
return json.load(f)
|
||||||
|
|
||||||
|
|
||||||
|
def _autodetect_index_base(index_dir: Path) -> Optional[Path]:
|
||||||
|
"""If exactly one *.leann.meta.json exists, return its base path (without .meta.json)."""
|
||||||
|
candidates = list(index_dir.glob("*.leann.meta.json"))
|
||||||
|
if len(candidates) == 1:
|
||||||
|
meta = candidates[0]
|
||||||
|
base = meta.with_suffix("") # remove .json
|
||||||
|
base = base.with_suffix("") # remove .meta
|
||||||
|
return base
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
def _load_offset_map(offsets_file: Path) -> dict[str, int]:
|
||||||
|
if not offsets_file.exists():
|
||||||
|
return {}
|
||||||
|
with open(offsets_file, "rb") as f:
|
||||||
|
return pickle.load(f)
|
||||||
|
|
||||||
|
|
||||||
|
def _next_numeric_id(existing_ids: list[str]) -> int:
|
||||||
|
numeric_ids = [int(x) for x in existing_ids if x.isdigit()]
|
||||||
|
if not numeric_ids:
|
||||||
|
return 0
|
||||||
|
return max(numeric_ids) + 1
|
||||||
|
|
||||||
|
|
||||||
|
def build_base_index(
|
||||||
|
base_dir: str,
|
||||||
|
index_dir: str,
|
||||||
|
index_name: str,
|
||||||
|
embedding_model: str,
|
||||||
|
embedding_mode: str,
|
||||||
|
chunk_size: int,
|
||||||
|
chunk_overlap: int,
|
||||||
|
file_types: Optional[list[str]] = None,
|
||||||
|
max_items: int = -1,
|
||||||
|
ef_construction: Optional[int] = None,
|
||||||
|
recompute_build: bool = False,
|
||||||
|
) -> str:
|
||||||
|
print(f"Building base index from: {base_dir}")
|
||||||
|
documents = _load_documents(base_dir, required_exts=file_types)
|
||||||
|
if not documents:
|
||||||
|
raise ValueError(f"No documents found in base_dir: {base_dir}")
|
||||||
|
|
||||||
|
from chunking import create_text_chunks
|
||||||
|
|
||||||
|
texts = create_text_chunks(
|
||||||
|
documents,
|
||||||
|
chunk_size=chunk_size,
|
||||||
|
chunk_overlap=chunk_overlap,
|
||||||
|
use_ast_chunking=False,
|
||||||
|
)
|
||||||
|
if max_items > 0 and len(texts) > max_items:
|
||||||
|
texts = texts[:max_items]
|
||||||
|
print(f"Limiting to {max_items} chunks")
|
||||||
|
|
||||||
|
index_dir_path = Path(index_dir)
|
||||||
|
_ensure_index_dir(index_dir_path)
|
||||||
|
index_path = index_dir_path / index_name
|
||||||
|
|
||||||
|
print("Creating HNSW index (non-compact)...")
|
||||||
|
from leann.api import LeannBuilder
|
||||||
|
from leann.registry import register_project_directory
|
||||||
|
|
||||||
|
builder = LeannBuilder(
|
||||||
|
backend_name="hnsw",
|
||||||
|
embedding_model=embedding_model,
|
||||||
|
embedding_mode=embedding_mode,
|
||||||
|
is_recompute=recompute_build,
|
||||||
|
is_compact=False,
|
||||||
|
efConstruction=(ef_construction if ef_construction is not None else 200),
|
||||||
|
)
|
||||||
|
for t in texts:
|
||||||
|
builder.add_text(t)
|
||||||
|
builder.build_index(str(index_path))
|
||||||
|
|
||||||
|
# Register for discovery
|
||||||
|
register_project_directory(Path.cwd())
|
||||||
|
|
||||||
|
print(f"Base index built at: {index_path}")
|
||||||
|
return str(index_path)
|
||||||
|
|
||||||
|
|
||||||
|
def add_incremental(
|
||||||
|
add_dir: str,
|
||||||
|
index_dir: str,
|
||||||
|
index_name: Optional[str] = None,
|
||||||
|
embedding_model: Optional[str] = None,
|
||||||
|
embedding_mode: Optional[str] = None,
|
||||||
|
chunk_size: int = 256,
|
||||||
|
chunk_overlap: int = 128,
|
||||||
|
file_types: Optional[list[str]] = None,
|
||||||
|
max_items: int = -1,
|
||||||
|
ef_construction: Optional[int] = None,
|
||||||
|
recompute_add: bool = False,
|
||||||
|
) -> str:
|
||||||
|
print(f"Adding incremental data from: {add_dir}")
|
||||||
|
index_dir_path = Path(index_dir)
|
||||||
|
index_path = index_dir_path / (index_name or "documents.leann")
|
||||||
|
|
||||||
|
# If specified base doesn't exist, try to auto-detect an existing base
|
||||||
|
try:
|
||||||
|
_read_meta(index_path)
|
||||||
|
except FileNotFoundError:
|
||||||
|
auto_base = _autodetect_index_base(index_dir_path)
|
||||||
|
if auto_base is not None:
|
||||||
|
print(f"Auto-detected index base: {auto_base.name}")
|
||||||
|
index_path = auto_base
|
||||||
|
_read_meta(index_path)
|
||||||
|
else:
|
||||||
|
raise FileNotFoundError(
|
||||||
|
f"No index metadata found for base '{index_path.name}'. Build base first with --build-base "
|
||||||
|
f"or provide --index-name to match an existing index (e.g., 'test_doc_files.leann')."
|
||||||
|
)
|
||||||
|
|
||||||
|
# Prepare validated context from core (checks backend/no-recompute and resolves embedding defaults)
|
||||||
|
from leann.api import create_incremental_add_context, incremental_add_texts_with_context
|
||||||
|
|
||||||
|
ctx = create_incremental_add_context(
|
||||||
|
str(index_path),
|
||||||
|
embedding_model=embedding_model,
|
||||||
|
embedding_mode=embedding_mode,
|
||||||
|
data_dir=add_dir,
|
||||||
|
required_exts=file_types,
|
||||||
|
chunk_size=chunk_size,
|
||||||
|
chunk_overlap=chunk_overlap,
|
||||||
|
max_items=max_items,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Use prepared texts from context to perform the add
|
||||||
|
prepared_texts = ctx.prepared_texts or []
|
||||||
|
if not prepared_texts:
|
||||||
|
print("No new chunks to add.")
|
||||||
|
return str(index_path)
|
||||||
|
|
||||||
|
added = incremental_add_texts_with_context(
|
||||||
|
ctx,
|
||||||
|
prepared_texts,
|
||||||
|
ef_construction=ef_construction,
|
||||||
|
recompute=recompute_add,
|
||||||
|
)
|
||||||
|
|
||||||
|
print(f"Incremental add completed. Added {added} chunks. Index: {index_path}")
|
||||||
|
return str(index_path)
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
description="Dynamic add to LEANN HNSW index without recompute",
|
||||||
|
formatter_class=argparse.RawDescriptionHelpFormatter,
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument("--build-base", action="store_true", help="Build base index")
|
||||||
|
parser.add_argument("--add-incremental", action="store_true", help="Add incremental data")
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--base-dir",
|
||||||
|
type=str,
|
||||||
|
default="/Users/yichuan/Desktop/code/LEANN/leann/data",
|
||||||
|
help="Base data directory",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--add-dir",
|
||||||
|
type=str,
|
||||||
|
default="/Users/yichuan/Desktop/code/LEANN/leann/test_add",
|
||||||
|
help="Incremental data directory",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--index-dir",
|
||||||
|
type=str,
|
||||||
|
default="./test_doc_files",
|
||||||
|
help="Directory containing the index",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--index-name",
|
||||||
|
type=str,
|
||||||
|
default="documents.leann",
|
||||||
|
help=(
|
||||||
|
"Index base file name. If you built via document_rag.py, use 'test_doc_files.leann'. "
|
||||||
|
"Default: documents.leann"
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--embedding-model",
|
||||||
|
type=str,
|
||||||
|
default="facebook/contriever",
|
||||||
|
help="Embedding model name",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--embedding-mode",
|
||||||
|
type=str,
|
||||||
|
default="sentence-transformers",
|
||||||
|
choices=["sentence-transformers", "openai", "mlx", "ollama"],
|
||||||
|
help="Embedding backend mode",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument("--chunk-size", type=int, default=256)
|
||||||
|
parser.add_argument("--chunk-overlap", type=int, default=128)
|
||||||
|
parser.add_argument("--file-types", nargs="+", default=None)
|
||||||
|
parser.add_argument("--max-items", type=int, default=-1)
|
||||||
|
parser.add_argument("--ef-construction", type=int, default=32)
|
||||||
|
parser.add_argument(
|
||||||
|
"--recompute-add", action="store_true", help="Enable recompute-mode add (non-compact only)"
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--recompute-build",
|
||||||
|
action="store_true",
|
||||||
|
help="Enable recompute-mode base build (non-compact only)",
|
||||||
|
)
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
if not args.build_base and not args.add_incremental:
|
||||||
|
print("Nothing to do. Use --build-base and/or --add-incremental.")
|
||||||
|
return
|
||||||
|
|
||||||
|
index_path_str: Optional[str] = None
|
||||||
|
|
||||||
|
if args.build_base:
|
||||||
|
index_path_str = build_base_index(
|
||||||
|
base_dir=args.base_dir,
|
||||||
|
index_dir=args.index_dir,
|
||||||
|
index_name=args.index_name,
|
||||||
|
embedding_model=args.embedding_model,
|
||||||
|
embedding_mode=args.embedding_mode,
|
||||||
|
chunk_size=args.chunk_size,
|
||||||
|
chunk_overlap=args.chunk_overlap,
|
||||||
|
file_types=args.file_types,
|
||||||
|
max_items=args.max_items,
|
||||||
|
ef_construction=args.ef_construction,
|
||||||
|
recompute_build=args.recompute_build,
|
||||||
|
)
|
||||||
|
|
||||||
|
if args.add_incremental:
|
||||||
|
index_path_str = add_incremental(
|
||||||
|
add_dir=args.add_dir,
|
||||||
|
index_dir=args.index_dir,
|
||||||
|
index_name=args.index_name,
|
||||||
|
embedding_model=args.embedding_model,
|
||||||
|
embedding_mode=args.embedding_mode,
|
||||||
|
chunk_size=args.chunk_size,
|
||||||
|
chunk_overlap=args.chunk_overlap,
|
||||||
|
file_types=args.file_types,
|
||||||
|
max_items=args.max_items,
|
||||||
|
ef_construction=args.ef_construction,
|
||||||
|
recompute_add=args.recompute_add,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Optional: quick test query using searcher
|
||||||
|
if index_path_str:
|
||||||
|
try:
|
||||||
|
from leann.api import LeannSearcher
|
||||||
|
|
||||||
|
searcher = LeannSearcher(index_path_str)
|
||||||
|
query = "what is LEANN?"
|
||||||
|
if args.add_incremental:
|
||||||
|
query = "what is the multi vector search and how it works?"
|
||||||
|
results = searcher.search(query, top_k=5)
|
||||||
|
if results:
|
||||||
|
print(f"Sample result: {results[0].text[:80]}...")
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
35
examples/grep_search_example.py
Normal file
@@ -0,0 +1,35 @@
|
|||||||
|
"""
|
||||||
|
Grep Search Example
|
||||||
|
|
||||||
|
Shows how to use grep-based text search instead of semantic search.
|
||||||
|
Useful when you need exact text matches rather than meaning-based results.
|
||||||
|
"""
|
||||||
|
|
||||||
|
from leann import LeannSearcher
|
||||||
|
|
||||||
|
# Load your index
|
||||||
|
searcher = LeannSearcher("my-documents.leann")
|
||||||
|
|
||||||
|
# Regular semantic search
|
||||||
|
print("=== Semantic Search ===")
|
||||||
|
results = searcher.search("machine learning algorithms", top_k=3)
|
||||||
|
for result in results:
|
||||||
|
print(f"Score: {result.score:.3f}")
|
||||||
|
print(f"Text: {result.text[:80]}...")
|
||||||
|
print()
|
||||||
|
|
||||||
|
# Grep-based search for exact text matches
|
||||||
|
print("=== Grep Search ===")
|
||||||
|
results = searcher.search("def train_model", top_k=3, use_grep=True)
|
||||||
|
for result in results:
|
||||||
|
print(f"Score: {result.score}")
|
||||||
|
print(f"Text: {result.text[:80]}...")
|
||||||
|
print()
|
||||||
|
|
||||||
|
# Find specific error messages
|
||||||
|
error_results = searcher.search("FileNotFoundError", use_grep=True)
|
||||||
|
print(f"Found {len(error_results)} files mentioning FileNotFoundError")
|
||||||
|
|
||||||
|
# Search for function definitions
|
||||||
|
func_results = searcher.search("class SearchResult", use_grep=True, top_k=5)
|
||||||
|
print(f"Found {len(func_results)} class definitions")
|
||||||
@@ -1,81 +0,0 @@
|
|||||||
import faulthandler
|
|
||||||
faulthandler.enable()
|
|
||||||
|
|
||||||
from llama_index.core import SimpleDirectoryReader, Settings
|
|
||||||
from llama_index.core.readers.base import BaseReader
|
|
||||||
from llama_index.node_parser.docling import DoclingNodeParser
|
|
||||||
from llama_index.readers.docling import DoclingReader
|
|
||||||
from docling_core.transforms.chunker.hybrid_chunker import HybridChunker
|
|
||||||
import asyncio
|
|
||||||
import os
|
|
||||||
import dotenv
|
|
||||||
from leann.api import LeannBuilder, LeannSearcher, LeannChat
|
|
||||||
import leann_backend_hnsw # Import to ensure backend registration
|
|
||||||
import shutil
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
dotenv.load_dotenv()
|
|
||||||
|
|
||||||
reader = DoclingReader(export_type=DoclingReader.ExportType.JSON)
|
|
||||||
file_extractor: dict[str, BaseReader] = {
|
|
||||||
".docx": reader,
|
|
||||||
".pptx": reader,
|
|
||||||
".pdf": reader,
|
|
||||||
".xlsx": reader,
|
|
||||||
}
|
|
||||||
node_parser = DoclingNodeParser(
|
|
||||||
chunker=HybridChunker(tokenizer="Qwen/Qwen3-Embedding-4B", max_tokens=64)
|
|
||||||
)
|
|
||||||
print("Loading documents...")
|
|
||||||
documents = SimpleDirectoryReader(
|
|
||||||
"examples/data",
|
|
||||||
recursive=True,
|
|
||||||
file_extractor=file_extractor,
|
|
||||||
encoding="utf-8",
|
|
||||||
required_exts=[".pdf", ".docx", ".pptx", ".xlsx"]
|
|
||||||
).load_data(show_progress=True)
|
|
||||||
print("Documents loaded.")
|
|
||||||
all_texts = []
|
|
||||||
for doc in documents:
|
|
||||||
nodes = node_parser.get_nodes_from_documents([doc])
|
|
||||||
for node in nodes:
|
|
||||||
all_texts.append(node.text)
|
|
||||||
|
|
||||||
INDEX_DIR = Path("./test_pdf_index")
|
|
||||||
INDEX_PATH = str(INDEX_DIR / "pdf_documents.leann")
|
|
||||||
|
|
||||||
if not INDEX_DIR.exists():
|
|
||||||
print(f"--- Index directory not found, building new index ---")
|
|
||||||
|
|
||||||
print(f"\n[PHASE 1] Building Leann index...")
|
|
||||||
|
|
||||||
# CSR compact mode with recompute
|
|
||||||
builder = LeannBuilder(
|
|
||||||
backend_name="hnsw",
|
|
||||||
embedding_model="facebook/contriever",
|
|
||||||
graph_degree=32,
|
|
||||||
complexity=64,
|
|
||||||
is_compact=True,
|
|
||||||
is_recompute=True
|
|
||||||
)
|
|
||||||
|
|
||||||
print(f"Loaded {len(all_texts)} text chunks from documents.")
|
|
||||||
for chunk_text in all_texts:
|
|
||||||
builder.add_text(chunk_text)
|
|
||||||
|
|
||||||
builder.build_index(INDEX_PATH)
|
|
||||||
print(f"\nLeann index built at {INDEX_PATH}!")
|
|
||||||
else:
|
|
||||||
print(f"--- Using existing index at {INDEX_DIR} ---")
|
|
||||||
|
|
||||||
async def main():
|
|
||||||
print(f"\n[PHASE 2] Starting Leann chat session...")
|
|
||||||
chat = LeannChat(index_path=INDEX_PATH)
|
|
||||||
|
|
||||||
query = "Based on the paper, what are the main techniques LEANN explores to reduce the storage overhead and DLPM explore to achieve Fairness and Efiiciency trade-off?"
|
|
||||||
print(f"You: {query}")
|
|
||||||
chat_response = chat.ask(query, top_k=20, recompute_beighbor_embeddings=True,embedding_model="facebook/contriever")
|
|
||||||
print(f"Leann: {chat_response}")
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
asyncio.run(main())
|
|
||||||
43
examples/mlx_demo.py
Normal file
@@ -0,0 +1,43 @@
|
|||||||
|
import os
|
||||||
|
|
||||||
|
from leann.api import LeannBuilder, LeannChat
|
||||||
|
|
||||||
|
# Define the path for our new MLX-based index
|
||||||
|
INDEX_PATH = "./mlx_diskann_index/leann"
|
||||||
|
|
||||||
|
if os.path.exists(INDEX_PATH + ".meta.json"):
|
||||||
|
print(f"Index already exists at {INDEX_PATH}. Skipping build.")
|
||||||
|
else:
|
||||||
|
print("Initializing LeannBuilder with MLX support...")
|
||||||
|
# 1. Configure LeannBuilder to use MLX
|
||||||
|
builder = LeannBuilder(
|
||||||
|
backend_name="hnsw",
|
||||||
|
embedding_model="mlx-community/Qwen3-Embedding-0.6B-4bit-DWQ",
|
||||||
|
embedding_mode="mlx",
|
||||||
|
)
|
||||||
|
|
||||||
|
# 2. Add documents
|
||||||
|
print("Adding documents...")
|
||||||
|
docs = [
|
||||||
|
"MLX is an array framework for machine learning on Apple silicon.",
|
||||||
|
"It was designed by Apple's machine learning research team.",
|
||||||
|
"The mlx-community organization provides pre-trained models in MLX format.",
|
||||||
|
"It supports operations on multi-dimensional arrays.",
|
||||||
|
"Leann can now use MLX for its embedding models.",
|
||||||
|
]
|
||||||
|
for doc in docs:
|
||||||
|
builder.add_text(doc)
|
||||||
|
|
||||||
|
# 3. Build the index
|
||||||
|
print(f"Building the MLX-based index at: {INDEX_PATH}")
|
||||||
|
builder.build_index(INDEX_PATH)
|
||||||
|
print("\nSuccessfully built the index with MLX embeddings!")
|
||||||
|
print(f"Check the metadata file: {INDEX_PATH}.meta.json")
|
||||||
|
|
||||||
|
|
||||||
|
chat = LeannChat(index_path=INDEX_PATH)
|
||||||
|
# add query
|
||||||
|
query = "MLX is an array framework for machine learning on Apple silicon."
|
||||||
|
print(f"Query: {query}")
|
||||||
|
response = chat.ask(query, top_k=3, recompute_beighbor_embeddings=True, complexity=3, beam_width=1)
|
||||||
|
print(f"Response: {response}")
|
||||||
250
examples/spoiler_free_book_rag.py
Normal file
@@ -0,0 +1,250 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
"""
|
||||||
|
Spoiler-Free Book RAG Example using LEANN Metadata Filtering
|
||||||
|
|
||||||
|
This example demonstrates how to use LEANN's metadata filtering to create
|
||||||
|
a spoiler-free book RAG system where users can search for information
|
||||||
|
up to a specific chapter they've read.
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
python spoiler_free_book_rag.py
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
from typing import Any, Optional
|
||||||
|
|
||||||
|
# Add LEANN to path (adjust path as needed)
|
||||||
|
sys.path.insert(0, os.path.join(os.path.dirname(__file__), "../packages/leann-core/src"))
|
||||||
|
|
||||||
|
from leann.api import LeannBuilder, LeannSearcher
|
||||||
|
|
||||||
|
|
||||||
|
def chunk_book_with_metadata(book_title: str = "Sample Book") -> list[dict[str, Any]]:
|
||||||
|
"""
|
||||||
|
Create sample book chunks with metadata for demonstration.
|
||||||
|
|
||||||
|
In a real implementation, this would parse actual book files (epub, txt, etc.)
|
||||||
|
and extract chapter boundaries, character mentions, etc.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
book_title: Title of the book
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of chunk dictionaries with text and metadata
|
||||||
|
"""
|
||||||
|
# Sample book chunks with metadata
|
||||||
|
# In practice, you'd use proper text processing libraries
|
||||||
|
|
||||||
|
sample_chunks = [
|
||||||
|
{
|
||||||
|
"text": "Alice was beginning to get very tired of sitting by her sister on the bank, and of having nothing to do.",
|
||||||
|
"metadata": {
|
||||||
|
"book": book_title,
|
||||||
|
"chapter": 1,
|
||||||
|
"page": 1,
|
||||||
|
"characters": ["Alice", "Sister"],
|
||||||
|
"themes": ["boredom", "curiosity"],
|
||||||
|
"location": "riverbank",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"text": "So she was considering in her own mind (as well as she could, for the hot day made her feel very sleepy and stupid), whether the pleasure of making a daisy-chain would be worth the trouble of getting up and picking the daisies, when suddenly a White Rabbit with pink eyes ran close by her.",
|
||||||
|
"metadata": {
|
||||||
|
"book": book_title,
|
||||||
|
"chapter": 1,
|
||||||
|
"page": 2,
|
||||||
|
"characters": ["Alice", "White Rabbit"],
|
||||||
|
"themes": ["decision", "surprise", "magic"],
|
||||||
|
"location": "riverbank",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"text": "Alice found herself falling down a very deep well. Either the well was very deep, or she fell very slowly, for she had plenty of time as she fell to look about her and to wonder what was going to happen next.",
|
||||||
|
"metadata": {
|
||||||
|
"book": book_title,
|
||||||
|
"chapter": 2,
|
||||||
|
"page": 15,
|
||||||
|
"characters": ["Alice"],
|
||||||
|
"themes": ["falling", "wonder", "transformation"],
|
||||||
|
"location": "rabbit hole",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"text": "Alice meets the Cheshire Cat, who tells her that everyone in Wonderland is mad, including Alice herself.",
|
||||||
|
"metadata": {
|
||||||
|
"book": book_title,
|
||||||
|
"chapter": 6,
|
||||||
|
"page": 85,
|
||||||
|
"characters": ["Alice", "Cheshire Cat"],
|
||||||
|
"themes": ["madness", "philosophy", "identity"],
|
||||||
|
"location": "Duchess's house",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"text": "At the Queen's croquet ground, Alice witnesses the absurd trial that reveals the arbitrary nature of Wonderland's justice system.",
|
||||||
|
"metadata": {
|
||||||
|
"book": book_title,
|
||||||
|
"chapter": 8,
|
||||||
|
"page": 120,
|
||||||
|
"characters": ["Alice", "Queen of Hearts", "King of Hearts"],
|
||||||
|
"themes": ["justice", "absurdity", "authority"],
|
||||||
|
"location": "Queen's court",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"text": "Alice realizes that Wonderland was all a dream, even the Rabbit, as she wakes up on the riverbank next to her sister.",
|
||||||
|
"metadata": {
|
||||||
|
"book": book_title,
|
||||||
|
"chapter": 12,
|
||||||
|
"page": 180,
|
||||||
|
"characters": ["Alice", "Sister", "Rabbit"],
|
||||||
|
"themes": ["revelation", "reality", "growth"],
|
||||||
|
"location": "riverbank",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
]
|
||||||
|
|
||||||
|
return sample_chunks
|
||||||
|
|
||||||
|
|
||||||
|
def build_spoiler_free_index(book_chunks: list[dict[str, Any]], index_name: str) -> str:
|
||||||
|
"""
|
||||||
|
Build a LEANN index with book chunks that include spoiler metadata.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
book_chunks: List of book chunks with metadata
|
||||||
|
index_name: Name for the index
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Path to the built index
|
||||||
|
"""
|
||||||
|
print(f"📚 Building spoiler-free book index: {index_name}")
|
||||||
|
|
||||||
|
# Initialize LEANN builder
|
||||||
|
builder = LeannBuilder(
|
||||||
|
backend_name="hnsw", embedding_model="text-embedding-3-small", embedding_mode="openai"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Add each chunk with its metadata
|
||||||
|
for chunk in book_chunks:
|
||||||
|
builder.add_text(text=chunk["text"], metadata=chunk["metadata"])
|
||||||
|
|
||||||
|
# Build the index
|
||||||
|
index_path = f"{index_name}_book_index"
|
||||||
|
builder.build_index(index_path)
|
||||||
|
|
||||||
|
print(f"✅ Index built successfully: {index_path}")
|
||||||
|
return index_path
|
||||||
|
|
||||||
|
|
||||||
|
def spoiler_free_search(
|
||||||
|
index_path: str,
|
||||||
|
query: str,
|
||||||
|
max_chapter: int,
|
||||||
|
character_filter: Optional[list[str]] = None,
|
||||||
|
) -> list[dict[str, Any]]:
|
||||||
|
"""
|
||||||
|
Perform a spoiler-free search on the book index.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
index_path: Path to the LEANN index
|
||||||
|
query: Search query
|
||||||
|
max_chapter: Maximum chapter number to include
|
||||||
|
character_filter: Optional list of characters to focus on
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of search results safe for the reader
|
||||||
|
"""
|
||||||
|
print(f"🔍 Searching: '{query}' (up to chapter {max_chapter})")
|
||||||
|
|
||||||
|
searcher = LeannSearcher(index_path)
|
||||||
|
|
||||||
|
metadata_filters = {"chapter": {"<=": max_chapter}}
|
||||||
|
|
||||||
|
if character_filter:
|
||||||
|
metadata_filters["characters"] = {"contains": character_filter[0]}
|
||||||
|
|
||||||
|
results = searcher.search(query=query, top_k=10, metadata_filters=metadata_filters)
|
||||||
|
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
def demo_spoiler_free_rag():
|
||||||
|
"""
|
||||||
|
Demonstrate the spoiler-free book RAG system.
|
||||||
|
"""
|
||||||
|
print("🎭 Spoiler-Free Book RAG Demo")
|
||||||
|
print("=" * 40)
|
||||||
|
|
||||||
|
# Step 1: Prepare book data
|
||||||
|
book_title = "Alice's Adventures in Wonderland"
|
||||||
|
book_chunks = chunk_book_with_metadata(book_title)
|
||||||
|
|
||||||
|
print(f"📖 Loaded {len(book_chunks)} chunks from '{book_title}'")
|
||||||
|
|
||||||
|
# Step 2: Build the index (in practice, this would be done once)
|
||||||
|
try:
|
||||||
|
index_path = build_spoiler_free_index(book_chunks, "alice_wonderland")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"❌ Failed to build index (likely missing dependencies): {e}")
|
||||||
|
print(
|
||||||
|
"💡 This demo shows the filtering logic - actual indexing requires LEANN dependencies"
|
||||||
|
)
|
||||||
|
return
|
||||||
|
|
||||||
|
# Step 3: Demonstrate various spoiler-free searches
|
||||||
|
search_scenarios = [
|
||||||
|
{
|
||||||
|
"description": "Reader who has only read Chapter 1",
|
||||||
|
"query": "What can you tell me about the rabbit?",
|
||||||
|
"max_chapter": 1,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"description": "Reader who has read up to Chapter 5",
|
||||||
|
"query": "Tell me about Alice's adventures",
|
||||||
|
"max_chapter": 5,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"description": "Reader who has read most of the book",
|
||||||
|
"query": "What does the Cheshire Cat represent?",
|
||||||
|
"max_chapter": 10,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"description": "Reader who has read the whole book",
|
||||||
|
"query": "What can you tell me about the rabbit?",
|
||||||
|
"max_chapter": 12,
|
||||||
|
},
|
||||||
|
]
|
||||||
|
|
||||||
|
for scenario in search_scenarios:
|
||||||
|
print(f"\n📚 Scenario: {scenario['description']}")
|
||||||
|
print(f" Query: {scenario['query']}")
|
||||||
|
|
||||||
|
try:
|
||||||
|
results = spoiler_free_search(
|
||||||
|
index_path=index_path,
|
||||||
|
query=scenario["query"],
|
||||||
|
max_chapter=scenario["max_chapter"],
|
||||||
|
)
|
||||||
|
|
||||||
|
print(f" 📄 Found {len(results)} results:")
|
||||||
|
for i, result in enumerate(results[:3], 1): # Show top 3
|
||||||
|
chapter = result.metadata.get("chapter", "?")
|
||||||
|
location = result.metadata.get("location", "?")
|
||||||
|
print(f" {i}. Chapter {chapter} ({location}): {result.text[:80]}...")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f" ❌ Search failed: {e}")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
print("📚 LEANN Spoiler-Free Book RAG Example")
|
||||||
|
print("=====================================")
|
||||||
|
|
||||||
|
try:
|
||||||
|
demo_spoiler_free_rag()
|
||||||
|
except ImportError as e:
|
||||||
|
print(f"❌ Cannot run demo due to missing dependencies: {e}")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"❌ Error running demo: {e}")
|
||||||
@@ -1,32 +0,0 @@
|
|||||||
{
|
|
||||||
"version": "0.1.0",
|
|
||||||
"backend_name": "diskann",
|
|
||||||
"embedding_model": "sentence-transformers/all-mpnet-base-v2",
|
|
||||||
"num_chunks": 6,
|
|
||||||
"chunks": [
|
|
||||||
{
|
|
||||||
"text": "Python is a powerful programming language",
|
|
||||||
"metadata": {}
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"text": "Machine learning transforms industries",
|
|
||||||
"metadata": {}
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"text": "Neural networks process complex data",
|
|
||||||
"metadata": {}
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"text": "Java is a powerful programming language",
|
|
||||||
"metadata": {}
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"text": "C++ is a powerful programming language",
|
|
||||||
"metadata": {}
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"text": "C# is a powerful programming language",
|
|
||||||
"metadata": {}
|
|
||||||
}
|
|
||||||
]
|
|
||||||
}
|
|
||||||
28
llms.txt
Normal file
@@ -0,0 +1,28 @@
|
|||||||
|
# llms.txt — LEANN MCP and Agent Integration
|
||||||
|
product: LEANN
|
||||||
|
homepage: https://github.com/yichuan-w/LEANN
|
||||||
|
contact: https://github.com/yichuan-w/LEANN/issues
|
||||||
|
|
||||||
|
# Installation
|
||||||
|
install: uv tool install leann-core --with leann
|
||||||
|
|
||||||
|
# MCP Server Entry Point
|
||||||
|
mcp.server: leann_mcp
|
||||||
|
mcp.protocol_version: 2024-11-05
|
||||||
|
|
||||||
|
# Tools
|
||||||
|
mcp.tools: leann_list, leann_search
|
||||||
|
|
||||||
|
mcp.tool.leann_list.description: List available LEANN indexes
|
||||||
|
mcp.tool.leann_list.input: {}
|
||||||
|
|
||||||
|
mcp.tool.leann_search.description: Semantic search across a named LEANN index
|
||||||
|
mcp.tool.leann_search.input.index_name: string, required
|
||||||
|
mcp.tool.leann_search.input.query: string, required
|
||||||
|
mcp.tool.leann_search.input.top_k: integer, optional, default=5, min=1, max=20
|
||||||
|
mcp.tool.leann_search.input.complexity: integer, optional, default=32, min=16, max=128
|
||||||
|
|
||||||
|
# Notes
|
||||||
|
note: Build indexes with `leann build <name> --docs <files...>` before searching.
|
||||||
|
example.add: claude mcp add --scope user leann-server -- leann_mcp
|
||||||
|
example.verify: claude mcp list | cat
|
||||||
0
packages/__init__.py
Normal file
1
packages/astchunk-leann
Submodule
@@ -1,8 +0,0 @@
|
|||||||
# packages/leann-backend-diskann/CMakeLists.txt (最终简化版)
|
|
||||||
|
|
||||||
cmake_minimum_required(VERSION 3.20)
|
|
||||||
project(leann_backend_diskann_wrapper)
|
|
||||||
|
|
||||||
# 告诉 CMake 直接进入 DiskANN 子模块并执行它自己的 CMakeLists.txt
|
|
||||||
# DiskANN 会自己处理所有事情,包括编译 Python 绑定
|
|
||||||
add_subdirectory(src/third_party/DiskANN)
|
|
||||||
1
packages/leann-backend-diskann/__init__.py
Normal file
@@ -0,0 +1 @@
|
|||||||
|
# This file makes the directory a Python package
|
||||||
@@ -0,0 +1,7 @@
|
|||||||
|
from . import diskann_backend as diskann_backend
|
||||||
|
from . import graph_partition
|
||||||
|
|
||||||
|
# Export main classes and functions
|
||||||
|
from .graph_partition import GraphPartitioner, partition_graph
|
||||||
|
|
||||||
|
__all__ = ["GraphPartitioner", "diskann_backend", "graph_partition", "partition_graph"]
|
||||||
|
|||||||
@@ -1,30 +1,76 @@
|
|||||||
import numpy as np
|
|
||||||
import os
|
|
||||||
import json
|
|
||||||
import struct
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import Dict
|
|
||||||
import contextlib
|
import contextlib
|
||||||
import threading
|
import logging
|
||||||
import time
|
import os
|
||||||
import atexit
|
import struct
|
||||||
import socket
|
|
||||||
import subprocess
|
|
||||||
import sys
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any, Literal, Optional
|
||||||
|
|
||||||
from leann.registry import register_backend
|
import numpy as np
|
||||||
|
import psutil
|
||||||
from leann.interface import (
|
from leann.interface import (
|
||||||
LeannBackendFactoryInterface,
|
|
||||||
LeannBackendBuilderInterface,
|
LeannBackendBuilderInterface,
|
||||||
LeannBackendSearcherInterface
|
LeannBackendFactoryInterface,
|
||||||
|
LeannBackendSearcherInterface,
|
||||||
)
|
)
|
||||||
from . import _diskannpy as diskannpy
|
from leann.registry import register_backend
|
||||||
|
from leann.searcher_base import BaseSearcher
|
||||||
|
|
||||||
METRIC_MAP = {
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
@contextlib.contextmanager
|
||||||
|
def suppress_cpp_output_if_needed():
|
||||||
|
"""Suppress C++ stdout/stderr based on LEANN_LOG_LEVEL"""
|
||||||
|
# In CI we avoid fiddling with low-level file descriptors to prevent aborts
|
||||||
|
if os.getenv("CI") == "true":
|
||||||
|
yield
|
||||||
|
return
|
||||||
|
|
||||||
|
log_level = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
|
||||||
|
|
||||||
|
# Only suppress if log level is WARNING or higher (ERROR, CRITICAL)
|
||||||
|
should_suppress = log_level in ["WARNING", "ERROR", "CRITICAL"]
|
||||||
|
|
||||||
|
if not should_suppress:
|
||||||
|
# Don't suppress, just yield
|
||||||
|
yield
|
||||||
|
return
|
||||||
|
|
||||||
|
# Save original file descriptors
|
||||||
|
stdout_fd = sys.stdout.fileno()
|
||||||
|
stderr_fd = sys.stderr.fileno()
|
||||||
|
|
||||||
|
# Save original stdout/stderr
|
||||||
|
stdout_dup = os.dup(stdout_fd)
|
||||||
|
stderr_dup = os.dup(stderr_fd)
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Redirect to /dev/null
|
||||||
|
devnull = os.open(os.devnull, os.O_WRONLY)
|
||||||
|
os.dup2(devnull, stdout_fd)
|
||||||
|
os.dup2(devnull, stderr_fd)
|
||||||
|
os.close(devnull)
|
||||||
|
|
||||||
|
yield
|
||||||
|
|
||||||
|
finally:
|
||||||
|
# Restore original file descriptors
|
||||||
|
os.dup2(stdout_dup, stdout_fd)
|
||||||
|
os.dup2(stderr_dup, stderr_fd)
|
||||||
|
os.close(stdout_dup)
|
||||||
|
os.close(stderr_dup)
|
||||||
|
|
||||||
|
|
||||||
|
def _get_diskann_metrics():
|
||||||
|
from . import _diskannpy as diskannpy # type: ignore
|
||||||
|
|
||||||
|
return {
|
||||||
"mips": diskannpy.Metric.INNER_PRODUCT,
|
"mips": diskannpy.Metric.INNER_PRODUCT,
|
||||||
"l2": diskannpy.Metric.L2,
|
"l2": diskannpy.Metric.L2,
|
||||||
"cosine": diskannpy.Metric.COSINE,
|
"cosine": diskannpy.Metric.COSINE,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@contextlib.contextmanager
|
@contextlib.contextmanager
|
||||||
def chdir(path):
|
def chdir(path):
|
||||||
@@ -35,102 +81,51 @@ def chdir(path):
|
|||||||
finally:
|
finally:
|
||||||
os.chdir(original_dir)
|
os.chdir(original_dir)
|
||||||
|
|
||||||
def _write_vectors_to_bin(data: np.ndarray, file_path: str):
|
|
||||||
|
def _write_vectors_to_bin(data: np.ndarray, file_path: Path):
|
||||||
num_vectors, dim = data.shape
|
num_vectors, dim = data.shape
|
||||||
with open(file_path, 'wb') as f:
|
with open(file_path, "wb") as f:
|
||||||
f.write(struct.pack('I', num_vectors))
|
f.write(struct.pack("I", num_vectors))
|
||||||
f.write(struct.pack('I', dim))
|
f.write(struct.pack("I", dim))
|
||||||
f.write(data.tobytes())
|
f.write(data.tobytes())
|
||||||
|
|
||||||
def _check_port(port: int) -> bool:
|
|
||||||
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
|
||||||
return s.connect_ex(('localhost', port)) == 0
|
|
||||||
|
|
||||||
class EmbeddingServerManager:
|
def _calculate_smart_memory_config(data: np.ndarray) -> tuple[float, float]:
|
||||||
def __init__(self):
|
"""
|
||||||
self.server_process = None
|
Calculate smart memory configuration for DiskANN based on data size and system specs.
|
||||||
self.server_port = None
|
|
||||||
atexit.register(self.stop_server)
|
|
||||||
|
|
||||||
def start_server(self, port=5555, model_name="sentence-transformers/all-mpnet-base-v2"):
|
Args:
|
||||||
if self.server_process and self.server_process.poll() is None:
|
data: The embedding data array
|
||||||
print(f"INFO: Reusing existing server process for this session (PID {self.server_process.pid})")
|
|
||||||
return True
|
|
||||||
|
|
||||||
# 检查端口是否已被其他无关进程占用
|
Returns:
|
||||||
if _check_port(port):
|
tuple: (search_memory_maximum, build_memory_maximum) in GB
|
||||||
print(f"WARNING: Port {port} is already in use. Assuming an external server is running and connecting to it.")
|
"""
|
||||||
return True
|
num_vectors, dim = data.shape
|
||||||
|
|
||||||
print(f"INFO: Starting session-level embedding server as a background process...")
|
# Calculate embedding storage size
|
||||||
|
embedding_size_bytes = num_vectors * dim * 4 # float32 = 4 bytes
|
||||||
|
embedding_size_gb = embedding_size_bytes / (1024**3)
|
||||||
|
|
||||||
try:
|
# search_memory_maximum: 1/10 of embedding size for optimal PQ compression
|
||||||
command = [
|
# This controls Product Quantization size - smaller means more compression
|
||||||
sys.executable,
|
search_memory_gb = max(0.1, embedding_size_gb / 10) # At least 100MB
|
||||||
"-m", "packages.leann-backend-diskann.leann_backend_diskann.embedding_server",
|
|
||||||
"--zmq-port", str(port),
|
# build_memory_maximum: Based on available system RAM for sharding control
|
||||||
"--model-name", model_name
|
# This controls how much memory DiskANN uses during index construction
|
||||||
]
|
available_memory_gb = psutil.virtual_memory().available / (1024**3)
|
||||||
project_root = Path(__file__).parent.parent.parent.parent
|
total_memory_gb = psutil.virtual_memory().total / (1024**3)
|
||||||
print(f"INFO: Running command from project root: {project_root}")
|
|
||||||
self.server_process = subprocess.Popen(
|
# Use 50% of available memory, but at least 2GB and at most 75% of total
|
||||||
command,
|
build_memory_gb = max(2.0, min(available_memory_gb * 0.5, total_memory_gb * 0.75))
|
||||||
cwd=project_root,
|
|
||||||
# stdout=subprocess.PIPE,
|
logger.info(
|
||||||
# stderr=subprocess.PIPE,
|
f"Smart memory config - Data: {embedding_size_gb:.2f}GB, "
|
||||||
text=True,
|
f"Search mem: {search_memory_gb:.2f}GB (PQ control), "
|
||||||
encoding='utf-8'
|
f"Build mem: {build_memory_gb:.2f}GB (sharding control)"
|
||||||
)
|
)
|
||||||
self.server_port = port
|
|
||||||
print(f"INFO: Server process started with PID: {self.server_process.pid}")
|
|
||||||
|
|
||||||
max_wait, wait_interval = 30, 0.5
|
return search_memory_gb, build_memory_gb
|
||||||
for _ in range(int(max_wait / wait_interval)):
|
|
||||||
if _check_port(port):
|
|
||||||
print(f"✅ Embedding server is up and ready for this session.")
|
|
||||||
log_thread = threading.Thread(target=self._log_monitor, daemon=True)
|
|
||||||
log_thread.start()
|
|
||||||
return True
|
|
||||||
if self.server_process.poll() is not None:
|
|
||||||
print("❌ ERROR: Server process terminated unexpectedly during startup.")
|
|
||||||
self._log_monitor()
|
|
||||||
return False
|
|
||||||
time.sleep(wait_interval)
|
|
||||||
|
|
||||||
print(f"❌ ERROR: Server process failed to start listening within {max_wait} seconds.")
|
|
||||||
self.stop_server()
|
|
||||||
return False
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
print(f"❌ ERROR: Failed to start embedding server process: {e}")
|
|
||||||
return False
|
|
||||||
|
|
||||||
def _log_monitor(self):
|
|
||||||
if not self.server_process:
|
|
||||||
return
|
|
||||||
try:
|
|
||||||
if self.server_process.stdout:
|
|
||||||
for line in iter(self.server_process.stdout.readline, ''):
|
|
||||||
print(f"[EmbeddingServer LOG]: {line.strip()}")
|
|
||||||
self.server_process.stdout.close()
|
|
||||||
if self.server_process.stderr:
|
|
||||||
for line in iter(self.server_process.stderr.readline, ''):
|
|
||||||
print(f"[EmbeddingServer ERROR]: {line.strip()}")
|
|
||||||
self.server_process.stderr.close()
|
|
||||||
except Exception as e:
|
|
||||||
print(f"Log monitor error: {e}")
|
|
||||||
|
|
||||||
def stop_server(self):
|
|
||||||
if self.server_process and self.server_process.poll() is None:
|
|
||||||
print(f"INFO: Terminating session server process (PID: {self.server_process.pid})...")
|
|
||||||
self.server_process.terminate()
|
|
||||||
try:
|
|
||||||
self.server_process.wait(timeout=5)
|
|
||||||
print("INFO: Server process terminated.")
|
|
||||||
except subprocess.TimeoutExpired:
|
|
||||||
print("WARNING: Server process did not terminate gracefully, killing it.")
|
|
||||||
self.server_process.kill()
|
|
||||||
self.server_process = None
|
|
||||||
|
|
||||||
@register_backend("diskann")
|
@register_backend("diskann")
|
||||||
class DiskannBackend(LeannBackendFactoryInterface):
|
class DiskannBackend(LeannBackendFactoryInterface):
|
||||||
@@ -140,134 +135,321 @@ class DiskannBackend(LeannBackendFactoryInterface):
|
|||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def searcher(index_path: str, **kwargs) -> LeannBackendSearcherInterface:
|
def searcher(index_path: str, **kwargs) -> LeannBackendSearcherInterface:
|
||||||
path = Path(index_path)
|
|
||||||
meta_path = path.parent / f"{path.name}.meta.json"
|
|
||||||
if not meta_path.exists():
|
|
||||||
raise FileNotFoundError(f"Leann metadata file not found at {meta_path}. Cannot infer vector dimension for searcher.")
|
|
||||||
|
|
||||||
with open(meta_path, 'r') as f:
|
|
||||||
meta = json.load(f)
|
|
||||||
|
|
||||||
dimensions = meta.get("dimensions")
|
|
||||||
if not dimensions:
|
|
||||||
raise ValueError("Dimensions not found in Leann metadata. Please rebuild the index with a newer version of Leann.")
|
|
||||||
|
|
||||||
kwargs['dimensions'] = dimensions
|
|
||||||
return DiskannSearcher(index_path, **kwargs)
|
return DiskannSearcher(index_path, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
class DiskannBuilder(LeannBackendBuilderInterface):
|
class DiskannBuilder(LeannBackendBuilderInterface):
|
||||||
def __init__(self, **kwargs):
|
def __init__(self, **kwargs):
|
||||||
self.build_params = kwargs
|
self.build_params = kwargs
|
||||||
|
|
||||||
def build(self, data: np.ndarray, index_path: str, **kwargs):
|
def _safe_cleanup_after_partition(self, index_dir: Path, index_prefix: str):
|
||||||
|
"""
|
||||||
|
Safely cleanup files after partition.
|
||||||
|
In partition mode, C++ doesn't read _disk.index content,
|
||||||
|
so we can delete it if all derived files exist.
|
||||||
|
"""
|
||||||
|
disk_index_file = index_dir / f"{index_prefix}_disk.index"
|
||||||
|
beam_search_file = index_dir / f"{index_prefix}_disk_beam_search.index"
|
||||||
|
|
||||||
|
# Required files that C++ partition mode needs
|
||||||
|
# Note: C++ generates these with _disk.index suffix
|
||||||
|
disk_suffix = "_disk.index"
|
||||||
|
required_files = [
|
||||||
|
f"{index_prefix}{disk_suffix}_medoids.bin", # Critical: assert fails if missing
|
||||||
|
# Note: _centroids.bin is not created in single-shot build - C++ handles this automatically
|
||||||
|
f"{index_prefix}_pq_pivots.bin", # PQ table
|
||||||
|
f"{index_prefix}_pq_compressed.bin", # PQ compressed vectors
|
||||||
|
]
|
||||||
|
|
||||||
|
# Check if all required files exist
|
||||||
|
missing_files = []
|
||||||
|
for filename in required_files:
|
||||||
|
file_path = index_dir / filename
|
||||||
|
if not file_path.exists():
|
||||||
|
missing_files.append(filename)
|
||||||
|
|
||||||
|
if missing_files:
|
||||||
|
logger.warning(
|
||||||
|
f"Cannot safely delete _disk.index - missing required files: {missing_files}"
|
||||||
|
)
|
||||||
|
logger.info("Keeping all original files for safety")
|
||||||
|
return
|
||||||
|
|
||||||
|
# Calculate space savings
|
||||||
|
space_saved = 0
|
||||||
|
files_to_delete = []
|
||||||
|
|
||||||
|
if disk_index_file.exists():
|
||||||
|
space_saved += disk_index_file.stat().st_size
|
||||||
|
files_to_delete.append(disk_index_file)
|
||||||
|
|
||||||
|
if beam_search_file.exists():
|
||||||
|
space_saved += beam_search_file.stat().st_size
|
||||||
|
files_to_delete.append(beam_search_file)
|
||||||
|
|
||||||
|
# Safe to delete!
|
||||||
|
for file_to_delete in files_to_delete:
|
||||||
|
try:
|
||||||
|
os.remove(file_to_delete)
|
||||||
|
logger.info(f"✅ Safely deleted: {file_to_delete.name}")
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"Failed to delete {file_to_delete.name}: {e}")
|
||||||
|
|
||||||
|
if space_saved > 0:
|
||||||
|
space_saved_mb = space_saved / (1024 * 1024)
|
||||||
|
logger.info(f"💾 Space saved: {space_saved_mb:.1f} MB")
|
||||||
|
|
||||||
|
# Show what files are kept
|
||||||
|
logger.info("📁 Kept essential files for partition mode:")
|
||||||
|
for filename in required_files:
|
||||||
|
file_path = index_dir / filename
|
||||||
|
if file_path.exists():
|
||||||
|
size_mb = file_path.stat().st_size / (1024 * 1024)
|
||||||
|
logger.info(f" - {filename} ({size_mb:.1f} MB)")
|
||||||
|
|
||||||
|
def build(self, data: np.ndarray, ids: list[str], index_path: str, **kwargs):
|
||||||
path = Path(index_path)
|
path = Path(index_path)
|
||||||
index_dir = path.parent
|
index_dir = path.parent
|
||||||
index_prefix = path.stem
|
index_prefix = path.stem
|
||||||
|
|
||||||
index_dir.mkdir(parents=True, exist_ok=True)
|
index_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
if data.dtype != np.float32:
|
if data.dtype != np.float32:
|
||||||
|
logger.warning(f"Converting data to float32, shape: {data.shape}")
|
||||||
data = data.astype(np.float32)
|
data = data.astype(np.float32)
|
||||||
if not data.flags['C_CONTIGUOUS']:
|
|
||||||
data = np.ascontiguousarray(data)
|
|
||||||
|
|
||||||
data_filename = f"{index_prefix}_data.bin"
|
data_filename = f"{index_prefix}_data.bin"
|
||||||
_write_vectors_to_bin(data, index_dir / data_filename)
|
_write_vectors_to_bin(data, index_dir / data_filename)
|
||||||
|
|
||||||
build_kwargs = {**self.build_params, **kwargs}
|
build_kwargs = {**self.build_params, **kwargs}
|
||||||
metric_str = build_kwargs.get("distance_metric", "mips").lower()
|
|
||||||
metric_enum = METRIC_MAP.get(metric_str)
|
# Extract is_recompute from nested backend_kwargs if needed
|
||||||
|
is_recompute = build_kwargs.get("is_recompute", False)
|
||||||
|
if not is_recompute and "backend_kwargs" in build_kwargs:
|
||||||
|
is_recompute = build_kwargs["backend_kwargs"].get("is_recompute", False)
|
||||||
|
|
||||||
|
# Flatten all backend_kwargs parameters to top level for compatibility
|
||||||
|
if "backend_kwargs" in build_kwargs:
|
||||||
|
nested_params = build_kwargs.pop("backend_kwargs")
|
||||||
|
build_kwargs.update(nested_params)
|
||||||
|
|
||||||
|
metric_enum = _get_diskann_metrics().get(
|
||||||
|
build_kwargs.get("distance_metric", "mips").lower()
|
||||||
|
)
|
||||||
if metric_enum is None:
|
if metric_enum is None:
|
||||||
raise ValueError(f"Unsupported distance_metric '{metric_str}'.")
|
raise ValueError(
|
||||||
|
f"Unsupported distance_metric '{build_kwargs.get('distance_metric', 'unknown')}'."
|
||||||
|
)
|
||||||
|
|
||||||
complexity = build_kwargs.get("complexity", 64)
|
# Calculate smart memory configuration if not explicitly provided
|
||||||
graph_degree = build_kwargs.get("graph_degree", 32)
|
if (
|
||||||
final_index_ram_limit = build_kwargs.get("search_memory_maximum", 4.0)
|
"search_memory_maximum" not in build_kwargs
|
||||||
indexing_ram_budget = build_kwargs.get("build_memory_maximum", 8.0)
|
or "build_memory_maximum" not in build_kwargs
|
||||||
num_threads = build_kwargs.get("num_threads", 8)
|
):
|
||||||
pq_disk_bytes = build_kwargs.get("pq_disk_bytes", 0)
|
smart_search_mem, smart_build_mem = _calculate_smart_memory_config(data)
|
||||||
codebook_prefix = ""
|
else:
|
||||||
|
smart_search_mem = build_kwargs.get("search_memory_maximum", 4.0)
|
||||||
print(f"INFO: Building DiskANN index for {data.shape[0]} vectors with metric {metric_enum}...")
|
smart_build_mem = build_kwargs.get("build_memory_maximum", 8.0)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
|
from . import _diskannpy as diskannpy # type: ignore
|
||||||
|
|
||||||
with chdir(index_dir):
|
with chdir(index_dir):
|
||||||
diskannpy.build_disk_float_index(
|
diskannpy.build_disk_float_index(
|
||||||
metric_enum,
|
metric_enum,
|
||||||
data_filename,
|
data_filename,
|
||||||
index_prefix,
|
index_prefix,
|
||||||
complexity,
|
build_kwargs.get("complexity", 64),
|
||||||
graph_degree,
|
build_kwargs.get("graph_degree", 32),
|
||||||
final_index_ram_limit,
|
build_kwargs.get("search_memory_maximum", smart_search_mem),
|
||||||
indexing_ram_budget,
|
build_kwargs.get("build_memory_maximum", smart_build_mem),
|
||||||
num_threads,
|
build_kwargs.get("num_threads", 8),
|
||||||
pq_disk_bytes,
|
build_kwargs.get("pq_disk_bytes", 0),
|
||||||
codebook_prefix
|
"",
|
||||||
)
|
)
|
||||||
print(f"✅ DiskANN index built successfully at '{index_dir / index_prefix}'")
|
|
||||||
except Exception as e:
|
# Auto-partition if is_recompute is enabled
|
||||||
print(f"💥 ERROR: DiskANN index build failed. Exception: {e}")
|
if build_kwargs.get("is_recompute", False):
|
||||||
raise
|
logger.info("is_recompute=True, starting automatic graph partitioning...")
|
||||||
|
from .graph_partition import partition_graph
|
||||||
|
|
||||||
|
# Partition the index using absolute paths
|
||||||
|
# Convert to absolute paths to avoid issues with working directory changes
|
||||||
|
absolute_index_dir = Path(index_dir).resolve()
|
||||||
|
absolute_index_prefix_path = str(absolute_index_dir / index_prefix)
|
||||||
|
disk_graph_path, partition_bin_path = partition_graph(
|
||||||
|
index_prefix_path=absolute_index_prefix_path,
|
||||||
|
output_dir=str(absolute_index_dir),
|
||||||
|
partition_prefix=index_prefix,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Safe cleanup: In partition mode, C++ doesn't read _disk.index content
|
||||||
|
# but still needs the derived files (_medoids.bin, _centroids.bin, etc.)
|
||||||
|
self._safe_cleanup_after_partition(index_dir, index_prefix)
|
||||||
|
|
||||||
|
logger.info("✅ Graph partitioning completed successfully!")
|
||||||
|
logger.info(f" - Disk graph: {disk_graph_path}")
|
||||||
|
logger.info(f" - Partition file: {partition_bin_path}")
|
||||||
|
|
||||||
finally:
|
finally:
|
||||||
temp_data_file = index_dir / data_filename
|
temp_data_file = index_dir / data_filename
|
||||||
if temp_data_file.exists():
|
if temp_data_file.exists():
|
||||||
os.remove(temp_data_file)
|
os.remove(temp_data_file)
|
||||||
|
logger.debug(f"Cleaned up temporary data file: {temp_data_file}")
|
||||||
|
|
||||||
class DiskannSearcher(LeannBackendSearcherInterface):
|
|
||||||
|
class DiskannSearcher(BaseSearcher):
|
||||||
def __init__(self, index_path: str, **kwargs):
|
def __init__(self, index_path: str, **kwargs):
|
||||||
path = Path(index_path)
|
super().__init__(
|
||||||
index_dir = path.parent
|
index_path,
|
||||||
index_prefix = path.stem
|
backend_module_name="leann_backend_diskann.diskann_embedding_server",
|
||||||
metric_str = kwargs.get("distance_metric", "mips").lower()
|
**kwargs,
|
||||||
metric_enum = METRIC_MAP.get(metric_str)
|
|
||||||
if metric_enum is None:
|
|
||||||
raise ValueError(f"Unsupported distance_metric '{metric_str}'.")
|
|
||||||
|
|
||||||
num_threads = kwargs.get("num_threads", 8)
|
|
||||||
num_nodes_to_cache = kwargs.get("num_nodes_to_cache", 0)
|
|
||||||
dimensions = kwargs.get("dimensions")
|
|
||||||
if not dimensions:
|
|
||||||
raise ValueError("Vector dimension not provided to DiskannSearcher.")
|
|
||||||
|
|
||||||
try:
|
|
||||||
full_index_prefix = str(index_dir / index_prefix)
|
|
||||||
self._index = diskannpy.StaticDiskFloatIndex(
|
|
||||||
metric_enum, full_index_prefix, num_threads, num_nodes_to_cache, 1, "", ""
|
|
||||||
)
|
)
|
||||||
self.num_threads = num_threads
|
|
||||||
self.embedding_server_manager = EmbeddingServerManager()
|
|
||||||
print("✅ DiskANN index loaded successfully.")
|
|
||||||
except Exception as e:
|
|
||||||
print(f"💥 ERROR: Failed to load DiskANN index. Exception: {e}")
|
|
||||||
raise
|
|
||||||
|
|
||||||
def search(self, query: np.ndarray, top_k: int, **kwargs) -> Dict[str, any]:
|
# Initialize DiskANN index with suppressed C++ output based on log level
|
||||||
complexity = kwargs.get("complexity", 256)
|
with suppress_cpp_output_if_needed():
|
||||||
beam_width = kwargs.get("beam_width", 4)
|
from . import _diskannpy as diskannpy # type: ignore
|
||||||
|
|
||||||
USE_DEFERRED_FETCH = kwargs.get("USE_DEFERRED_FETCH", False)
|
distance_metric = kwargs.get("distance_metric", "mips").lower()
|
||||||
skip_search_reorder = kwargs.get("skip_search_reorder", False)
|
metric_enum = _get_diskann_metrics().get(distance_metric)
|
||||||
recompute_beighbor_embeddings = kwargs.get("recompute_beighbor_embeddings", False)
|
if metric_enum is None:
|
||||||
dedup_node_dis = kwargs.get("dedup_node_dis", False)
|
raise ValueError(f"Unsupported distance_metric '{distance_metric}'.")
|
||||||
prune_ratio = kwargs.get("prune_ratio", 0.0)
|
|
||||||
batch_recompute = kwargs.get("batch_recompute", False)
|
|
||||||
global_pruning = kwargs.get("global_pruning", False)
|
|
||||||
|
|
||||||
if recompute_beighbor_embeddings:
|
self.num_threads = kwargs.get("num_threads", 8)
|
||||||
print(f"INFO: DiskANN ZMQ mode enabled - ensuring embedding server is running")
|
|
||||||
zmq_port = kwargs.get("zmq_port", 6666)
|
|
||||||
embedding_model = kwargs.get("embedding_model", "sentence-transformers/all-mpnet-base-v2")
|
|
||||||
|
|
||||||
if not self.embedding_server_manager.start_server(zmq_port, embedding_model):
|
# For DiskANN, we need to reinitialize the index when zmq_port changes
|
||||||
print(f"WARNING: Failed to start embedding server, falling back to PQ computation")
|
# Store the initialization parameters for later use
|
||||||
kwargs['recompute_beighbor_embeddings'] = False
|
# Note: C++ load method expects the BASE path (without _disk.index suffix)
|
||||||
|
# C++ internally constructs: index_prefix + "_disk.index"
|
||||||
|
index_name = self.index_path.stem # "simple_test.leann" -> "simple_test"
|
||||||
|
diskann_index_prefix = str(self.index_dir / index_name) # /path/to/simple_test
|
||||||
|
full_index_prefix = diskann_index_prefix # /path/to/simple_test (base path)
|
||||||
|
|
||||||
|
# Auto-detect partition files and set partition_prefix
|
||||||
|
partition_graph_file = self.index_dir / f"{index_name}_disk_graph.index"
|
||||||
|
partition_bin_file = self.index_dir / f"{index_name}_partition.bin"
|
||||||
|
|
||||||
|
partition_prefix = ""
|
||||||
|
if partition_graph_file.exists() and partition_bin_file.exists():
|
||||||
|
# C++ expects full path prefix, not just filename
|
||||||
|
partition_prefix = str(self.index_dir / index_name) # /path/to/simple_test
|
||||||
|
logger.info(
|
||||||
|
f"✅ Detected partition files, using partition_prefix='{partition_prefix}'"
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logger.debug("No partition files detected, using standard index files")
|
||||||
|
|
||||||
|
self._init_params = {
|
||||||
|
"metric_enum": metric_enum,
|
||||||
|
"full_index_prefix": full_index_prefix,
|
||||||
|
"num_threads": self.num_threads,
|
||||||
|
"num_nodes_to_cache": kwargs.get("num_nodes_to_cache", 0),
|
||||||
|
"cache_mechanism": 1,
|
||||||
|
"pq_prefix": "",
|
||||||
|
"partition_prefix": partition_prefix,
|
||||||
|
}
|
||||||
|
|
||||||
|
# Log partition configuration for debugging
|
||||||
|
if partition_prefix:
|
||||||
|
logger.info(
|
||||||
|
f"✅ Detected partition files, using partition_prefix='{partition_prefix}'"
|
||||||
|
)
|
||||||
|
self._diskannpy = diskannpy
|
||||||
|
self._current_zmq_port = None
|
||||||
|
self._index = None
|
||||||
|
logger.debug("DiskANN searcher initialized (index will be loaded on first search)")
|
||||||
|
|
||||||
|
def _ensure_index_loaded(self, zmq_port: int):
|
||||||
|
"""Ensure the index is loaded with the correct zmq_port."""
|
||||||
|
if self._index is None or self._current_zmq_port != zmq_port:
|
||||||
|
# Need to (re)load the index with the correct zmq_port
|
||||||
|
with suppress_cpp_output_if_needed():
|
||||||
|
if self._index is not None:
|
||||||
|
logger.debug(f"Reloading DiskANN index with new zmq_port: {zmq_port}")
|
||||||
|
else:
|
||||||
|
logger.debug(f"Loading DiskANN index with zmq_port: {zmq_port}")
|
||||||
|
|
||||||
|
self._index = self._diskannpy.StaticDiskFloatIndex(
|
||||||
|
self._init_params["metric_enum"],
|
||||||
|
self._init_params["full_index_prefix"],
|
||||||
|
self._init_params["num_threads"],
|
||||||
|
self._init_params["num_nodes_to_cache"],
|
||||||
|
self._init_params["cache_mechanism"],
|
||||||
|
zmq_port,
|
||||||
|
self._init_params["pq_prefix"],
|
||||||
|
self._init_params["partition_prefix"],
|
||||||
|
)
|
||||||
|
self._current_zmq_port = zmq_port
|
||||||
|
|
||||||
|
def search(
|
||||||
|
self,
|
||||||
|
query: np.ndarray,
|
||||||
|
top_k: int,
|
||||||
|
complexity: int = 64,
|
||||||
|
beam_width: int = 1,
|
||||||
|
prune_ratio: float = 0.0,
|
||||||
|
recompute_embeddings: bool = False,
|
||||||
|
pruning_strategy: Literal["global", "local", "proportional"] = "global",
|
||||||
|
zmq_port: Optional[int] = None,
|
||||||
|
batch_recompute: bool = False,
|
||||||
|
dedup_node_dis: bool = False,
|
||||||
|
**kwargs,
|
||||||
|
) -> dict[str, Any]:
|
||||||
|
"""
|
||||||
|
Search for nearest neighbors using DiskANN index.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
query: Query vectors (B, D) where B is batch size, D is dimension
|
||||||
|
top_k: Number of nearest neighbors to return
|
||||||
|
complexity: Search complexity/candidate list size, higher = more accurate but slower
|
||||||
|
beam_width: Number of parallel IO requests per iteration
|
||||||
|
prune_ratio: Ratio of neighbors to prune via approximate distance (0.0-1.0)
|
||||||
|
recompute_embeddings: Whether to fetch fresh embeddings from server
|
||||||
|
pruning_strategy: PQ candidate selection strategy:
|
||||||
|
- "global": Use global pruning strategy (default)
|
||||||
|
- "local": Use local pruning strategy
|
||||||
|
- "proportional": Not supported in DiskANN, falls back to global
|
||||||
|
zmq_port: ZMQ port for embedding server communication. Must be provided if recompute_embeddings is True.
|
||||||
|
batch_recompute: Whether to batch neighbor recomputation (DiskANN-specific)
|
||||||
|
dedup_node_dis: Whether to cache and reuse distance computations (DiskANN-specific)
|
||||||
|
**kwargs: Additional DiskANN-specific parameters (for legacy compatibility)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Dict with 'labels' (list of lists) and 'distances' (ndarray)
|
||||||
|
"""
|
||||||
|
# Handle zmq_port compatibility: Ensure index is loaded with correct port
|
||||||
|
if recompute_embeddings:
|
||||||
|
if zmq_port is None:
|
||||||
|
raise ValueError("zmq_port must be provided if recompute_embeddings is True")
|
||||||
|
self._ensure_index_loaded(zmq_port)
|
||||||
|
else:
|
||||||
|
# If not recomputing, we still need an index, use a default port
|
||||||
|
if self._index is None:
|
||||||
|
self._ensure_index_loaded(6666) # Default port when not recomputing
|
||||||
|
|
||||||
|
# DiskANN doesn't support "proportional" strategy
|
||||||
|
if pruning_strategy == "proportional":
|
||||||
|
raise NotImplementedError(
|
||||||
|
"DiskANN backend does not support 'proportional' pruning strategy. Use 'global' or 'local' instead."
|
||||||
|
)
|
||||||
|
|
||||||
if query.dtype != np.float32:
|
if query.dtype != np.float32:
|
||||||
query = query.astype(np.float32)
|
query = query.astype(np.float32)
|
||||||
if query.ndim == 1:
|
|
||||||
query = np.expand_dims(query, axis=0)
|
|
||||||
|
|
||||||
try:
|
# Map pruning_strategy to DiskANN's global_pruning parameter
|
||||||
|
if pruning_strategy == "local":
|
||||||
|
use_global_pruning = False
|
||||||
|
else: # "global"
|
||||||
|
use_global_pruning = True
|
||||||
|
|
||||||
|
# Strategy:
|
||||||
|
# - Traversal always uses PQ distances
|
||||||
|
# - If recompute_embeddings=True, do a single final rerank via deferred fetch
|
||||||
|
# (fetch embeddings for the final candidate set only)
|
||||||
|
# - Do not recompute neighbor distances along the path
|
||||||
|
use_deferred_fetch = True if recompute_embeddings else False
|
||||||
|
recompute_neighors = False # Expected typo. For backward compatibility.
|
||||||
|
|
||||||
|
with suppress_cpp_output_if_needed():
|
||||||
labels, distances = self._index.batch_search(
|
labels, distances = self._index.batch_search(
|
||||||
query,
|
query,
|
||||||
query.shape[0],
|
query.shape[0],
|
||||||
@@ -275,21 +457,15 @@ class DiskannSearcher(LeannBackendSearcherInterface):
|
|||||||
complexity,
|
complexity,
|
||||||
beam_width,
|
beam_width,
|
||||||
self.num_threads,
|
self.num_threads,
|
||||||
USE_DEFERRED_FETCH,
|
use_deferred_fetch,
|
||||||
skip_search_reorder,
|
kwargs.get("skip_search_reorder", False),
|
||||||
recompute_beighbor_embeddings,
|
recompute_neighors,
|
||||||
dedup_node_dis,
|
dedup_node_dis,
|
||||||
prune_ratio,
|
prune_ratio,
|
||||||
batch_recompute,
|
batch_recompute,
|
||||||
global_pruning
|
use_global_pruning,
|
||||||
)
|
)
|
||||||
return {"labels": labels, "distances": distances}
|
|
||||||
except Exception as e:
|
|
||||||
print(f"💥 ERROR: DiskANN search failed. Exception: {e}")
|
|
||||||
batch_size = query.shape[0]
|
|
||||||
return {"labels": np.full((batch_size, top_k), -1, dtype=np.int64),
|
|
||||||
"distances": np.full((batch_size, top_k), float('inf'), dtype=np.float32)}
|
|
||||||
|
|
||||||
def __del__(self):
|
string_labels = [[str(int_label) for int_label in batch_labels] for batch_labels in labels]
|
||||||
if hasattr(self, 'embedding_server_manager'):
|
|
||||||
self.embedding_server_manager.stop_server()
|
return {"labels": string_labels, "distances": distances}
|
||||||
|
|||||||
@@ -0,0 +1,472 @@
|
|||||||
|
"""
|
||||||
|
DiskANN-specific embedding server
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import json
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import threading
|
||||||
|
import time
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import zmq
|
||||||
|
|
||||||
|
# Set up logging based on environment variable
|
||||||
|
LOG_LEVEL = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
# Force set logger level (don't rely on basicConfig in subprocess)
|
||||||
|
log_level = getattr(logging, LOG_LEVEL, logging.WARNING)
|
||||||
|
logger.setLevel(log_level)
|
||||||
|
|
||||||
|
# Ensure we have a handler if none exists
|
||||||
|
if not logger.handlers:
|
||||||
|
handler = logging.StreamHandler()
|
||||||
|
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
|
||||||
|
handler.setFormatter(formatter)
|
||||||
|
logger.addHandler(handler)
|
||||||
|
logger.propagate = False
|
||||||
|
|
||||||
|
|
||||||
|
def create_diskann_embedding_server(
|
||||||
|
passages_file: Optional[str] = None,
|
||||||
|
zmq_port: int = 5555,
|
||||||
|
model_name: str = "sentence-transformers/all-mpnet-base-v2",
|
||||||
|
embedding_mode: str = "sentence-transformers",
|
||||||
|
distance_metric: str = "l2",
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Create and start a ZMQ-based embedding server for DiskANN backend.
|
||||||
|
Uses ROUTER socket and protobuf communication as required by DiskANN C++ implementation.
|
||||||
|
"""
|
||||||
|
logger.info(f"Starting DiskANN server on port {zmq_port} with model {model_name}")
|
||||||
|
logger.info(f"Using embedding mode: {embedding_mode}")
|
||||||
|
|
||||||
|
# Add leann-core to path for unified embedding computation
|
||||||
|
current_dir = Path(__file__).parent
|
||||||
|
leann_core_path = current_dir.parent.parent / "leann-core" / "src"
|
||||||
|
sys.path.insert(0, str(leann_core_path))
|
||||||
|
|
||||||
|
try:
|
||||||
|
from leann.api import PassageManager
|
||||||
|
from leann.embedding_compute import compute_embeddings
|
||||||
|
|
||||||
|
logger.info("Successfully imported unified embedding computation module")
|
||||||
|
except ImportError as e:
|
||||||
|
logger.error(f"Failed to import embedding computation module: {e}")
|
||||||
|
return
|
||||||
|
finally:
|
||||||
|
sys.path.pop(0)
|
||||||
|
|
||||||
|
# Check port availability
|
||||||
|
import socket
|
||||||
|
|
||||||
|
def check_port(port):
|
||||||
|
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
||||||
|
return s.connect_ex(("localhost", port)) == 0
|
||||||
|
|
||||||
|
if check_port(zmq_port):
|
||||||
|
logger.error(f"Port {zmq_port} is already in use")
|
||||||
|
return
|
||||||
|
|
||||||
|
# Only support metadata file, fail fast for everything else
|
||||||
|
if not passages_file or not passages_file.endswith(".meta.json"):
|
||||||
|
raise ValueError("Only metadata files (.meta.json) are supported")
|
||||||
|
|
||||||
|
# Load metadata to get passage sources
|
||||||
|
with open(passages_file) as f:
|
||||||
|
meta = json.load(f)
|
||||||
|
|
||||||
|
logger.info(f"Loading PassageManager with metadata_file_path: {passages_file}")
|
||||||
|
passages = PassageManager(meta["passage_sources"], metadata_file_path=passages_file)
|
||||||
|
logger.info(f"Loaded PassageManager with {len(passages)} passages from metadata")
|
||||||
|
|
||||||
|
# Import protobuf after ensuring the path is correct
|
||||||
|
try:
|
||||||
|
from . import embedding_pb2
|
||||||
|
except ImportError as e:
|
||||||
|
logger.error(f"Failed to import protobuf module: {e}")
|
||||||
|
return
|
||||||
|
|
||||||
|
def zmq_server_thread():
|
||||||
|
"""ZMQ server thread using REP socket for universal compatibility"""
|
||||||
|
context = zmq.Context()
|
||||||
|
socket = context.socket(
|
||||||
|
zmq.REP
|
||||||
|
) # REP socket for both BaseSearcher and DiskANN C++ REQ clients
|
||||||
|
socket.bind(f"tcp://*:{zmq_port}")
|
||||||
|
logger.info(f"DiskANN ZMQ REP server listening on port {zmq_port}")
|
||||||
|
|
||||||
|
socket.setsockopt(zmq.RCVTIMEO, 1000)
|
||||||
|
socket.setsockopt(zmq.SNDTIMEO, 1000)
|
||||||
|
socket.setsockopt(zmq.LINGER, 0)
|
||||||
|
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
# REP socket receives single-part messages
|
||||||
|
message = socket.recv()
|
||||||
|
|
||||||
|
# Check for empty messages - REP socket requires response to every request
|
||||||
|
if len(message) == 0:
|
||||||
|
logger.debug("Received empty message, sending empty response")
|
||||||
|
socket.send(b"") # REP socket must respond to every request
|
||||||
|
continue
|
||||||
|
|
||||||
|
logger.debug(f"Received ZMQ request of size {len(message)} bytes")
|
||||||
|
logger.debug(f"Message preview: {message[:50]}") # Show first 50 bytes
|
||||||
|
|
||||||
|
e2e_start = time.time()
|
||||||
|
|
||||||
|
# Try protobuf first (for DiskANN C++ node_ids requests - primary use case)
|
||||||
|
texts = []
|
||||||
|
node_ids = []
|
||||||
|
is_text_request = False
|
||||||
|
|
||||||
|
try:
|
||||||
|
req_proto = embedding_pb2.NodeEmbeddingRequest()
|
||||||
|
req_proto.ParseFromString(message)
|
||||||
|
node_ids = list(req_proto.node_ids)
|
||||||
|
|
||||||
|
if not node_ids:
|
||||||
|
raise RuntimeError(
|
||||||
|
f"PROTOBUF: Received empty node_ids! Message size: {len(message)}"
|
||||||
|
)
|
||||||
|
|
||||||
|
logger.info(
|
||||||
|
f"✅ PROTOBUF: Node ID request for {len(node_ids)} node embeddings: {node_ids[:10]}"
|
||||||
|
)
|
||||||
|
except Exception as protobuf_error:
|
||||||
|
logger.debug(f"Protobuf parsing failed: {protobuf_error}")
|
||||||
|
# Fallback to msgpack (for BaseSearcher direct text requests)
|
||||||
|
try:
|
||||||
|
import msgpack
|
||||||
|
|
||||||
|
request = msgpack.unpackb(message)
|
||||||
|
# For BaseSearcher compatibility, request is a list of texts directly
|
||||||
|
if isinstance(request, list) and all(
|
||||||
|
isinstance(item, str) for item in request
|
||||||
|
):
|
||||||
|
texts = request
|
||||||
|
is_text_request = True
|
||||||
|
logger.info(f"✅ MSGPACK: Direct text request for {len(texts)} texts")
|
||||||
|
else:
|
||||||
|
raise ValueError("Not a valid msgpack text request")
|
||||||
|
except Exception as msgpack_error:
|
||||||
|
raise RuntimeError(
|
||||||
|
f"Both protobuf and msgpack parsing failed! Protobuf: {protobuf_error}, Msgpack: {msgpack_error}"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Look up texts by node IDs (only if not direct text request)
|
||||||
|
if not is_text_request:
|
||||||
|
for nid in node_ids:
|
||||||
|
try:
|
||||||
|
passage_data = passages.get_passage(str(nid))
|
||||||
|
txt = passage_data["text"]
|
||||||
|
if not txt:
|
||||||
|
raise RuntimeError(f"FATAL: Empty text for passage ID {nid}")
|
||||||
|
texts.append(txt)
|
||||||
|
except KeyError as e:
|
||||||
|
logger.error(f"Passage ID {nid} not found: {e}")
|
||||||
|
raise e
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Exception looking up passage ID {nid}: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
# Debug logging
|
||||||
|
logger.debug(f"Processing {len(texts)} texts")
|
||||||
|
logger.debug(f"Text lengths: {[len(t) for t in texts[:5]]}") # Show first 5
|
||||||
|
|
||||||
|
# Process embeddings using unified computation
|
||||||
|
embeddings = compute_embeddings(texts, model_name, mode=embedding_mode)
|
||||||
|
logger.info(
|
||||||
|
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Prepare response based on request type
|
||||||
|
if is_text_request:
|
||||||
|
# For BaseSearcher compatibility: return msgpack format
|
||||||
|
import msgpack
|
||||||
|
|
||||||
|
response_data = msgpack.packb(embeddings.tolist())
|
||||||
|
else:
|
||||||
|
# For DiskANN C++ compatibility: return protobuf format
|
||||||
|
resp_proto = embedding_pb2.NodeEmbeddingResponse()
|
||||||
|
hidden_contiguous = np.ascontiguousarray(embeddings, dtype=np.float32)
|
||||||
|
|
||||||
|
# Serialize embeddings data
|
||||||
|
resp_proto.embeddings_data = hidden_contiguous.tobytes()
|
||||||
|
resp_proto.dimensions.append(hidden_contiguous.shape[0])
|
||||||
|
resp_proto.dimensions.append(hidden_contiguous.shape[1])
|
||||||
|
|
||||||
|
response_data = resp_proto.SerializeToString()
|
||||||
|
|
||||||
|
# Send response back to the client
|
||||||
|
socket.send(response_data)
|
||||||
|
|
||||||
|
e2e_end = time.time()
|
||||||
|
logger.info(f"⏱️ ZMQ E2E time: {e2e_end - e2e_start:.6f}s")
|
||||||
|
|
||||||
|
except zmq.Again:
|
||||||
|
logger.debug("ZMQ socket timeout, continuing to listen")
|
||||||
|
continue
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error in ZMQ server loop: {e}")
|
||||||
|
import traceback
|
||||||
|
|
||||||
|
traceback.print_exc()
|
||||||
|
raise
|
||||||
|
|
||||||
|
def zmq_server_thread_with_shutdown(shutdown_event):
|
||||||
|
"""ZMQ server thread that respects shutdown signal.
|
||||||
|
|
||||||
|
This creates its own REP socket, binds to zmq_port, and periodically
|
||||||
|
checks shutdown_event using recv timeouts to exit cleanly.
|
||||||
|
"""
|
||||||
|
logger.info("DiskANN ZMQ server thread started with shutdown support")
|
||||||
|
|
||||||
|
context = zmq.Context()
|
||||||
|
rep_socket = context.socket(zmq.REP)
|
||||||
|
rep_socket.bind(f"tcp://*:{zmq_port}")
|
||||||
|
logger.info(f"DiskANN ZMQ REP server listening on port {zmq_port}")
|
||||||
|
|
||||||
|
# Set receive timeout so we can check shutdown_event periodically
|
||||||
|
rep_socket.setsockopt(zmq.RCVTIMEO, 1000) # 1 second timeout
|
||||||
|
rep_socket.setsockopt(zmq.SNDTIMEO, 1000)
|
||||||
|
rep_socket.setsockopt(zmq.LINGER, 0)
|
||||||
|
|
||||||
|
try:
|
||||||
|
while not shutdown_event.is_set():
|
||||||
|
try:
|
||||||
|
e2e_start = time.time()
|
||||||
|
# REP socket receives single-part messages
|
||||||
|
message = rep_socket.recv()
|
||||||
|
|
||||||
|
# Check for empty messages - REP socket requires response to every request
|
||||||
|
if not message:
|
||||||
|
logger.warning("Received empty message, sending empty response")
|
||||||
|
rep_socket.send(b"")
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Try protobuf first (same logic as original)
|
||||||
|
texts = []
|
||||||
|
is_text_request = False
|
||||||
|
|
||||||
|
try:
|
||||||
|
req_proto = embedding_pb2.NodeEmbeddingRequest()
|
||||||
|
req_proto.ParseFromString(message)
|
||||||
|
node_ids = list(req_proto.node_ids)
|
||||||
|
|
||||||
|
# Look up texts by node IDs
|
||||||
|
for nid in node_ids:
|
||||||
|
try:
|
||||||
|
passage_data = passages.get_passage(str(nid))
|
||||||
|
txt = passage_data["text"]
|
||||||
|
if not txt:
|
||||||
|
raise RuntimeError(f"FATAL: Empty text for passage ID {nid}")
|
||||||
|
texts.append(txt)
|
||||||
|
except KeyError:
|
||||||
|
raise RuntimeError(f"FATAL: Passage with ID {nid} not found")
|
||||||
|
|
||||||
|
logger.info(f"ZMQ received protobuf request for {len(node_ids)} node IDs")
|
||||||
|
except Exception:
|
||||||
|
# Fallback to msgpack for text requests
|
||||||
|
try:
|
||||||
|
import msgpack
|
||||||
|
|
||||||
|
request = msgpack.unpackb(message)
|
||||||
|
if isinstance(request, list) and all(
|
||||||
|
isinstance(item, str) for item in request
|
||||||
|
):
|
||||||
|
texts = request
|
||||||
|
is_text_request = True
|
||||||
|
logger.info(
|
||||||
|
f"ZMQ received msgpack text request for {len(texts)} texts"
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError("Not a valid msgpack text request")
|
||||||
|
except Exception:
|
||||||
|
logger.error("Both protobuf and msgpack parsing failed!")
|
||||||
|
# Send error response
|
||||||
|
resp_proto = embedding_pb2.NodeEmbeddingResponse()
|
||||||
|
rep_socket.send(resp_proto.SerializeToString())
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Process the request
|
||||||
|
embeddings = compute_embeddings(texts, model_name, mode=embedding_mode)
|
||||||
|
logger.info(f"Computed embeddings shape: {embeddings.shape}")
|
||||||
|
|
||||||
|
# Validation
|
||||||
|
if np.isnan(embeddings).any() or np.isinf(embeddings).any():
|
||||||
|
logger.error("NaN or Inf detected in embeddings!")
|
||||||
|
# Send error response
|
||||||
|
if is_text_request:
|
||||||
|
import msgpack
|
||||||
|
|
||||||
|
response_data = msgpack.packb([])
|
||||||
|
else:
|
||||||
|
resp_proto = embedding_pb2.NodeEmbeddingResponse()
|
||||||
|
response_data = resp_proto.SerializeToString()
|
||||||
|
rep_socket.send(response_data)
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Prepare response based on request type
|
||||||
|
if is_text_request:
|
||||||
|
# For direct text requests, return msgpack
|
||||||
|
import msgpack
|
||||||
|
|
||||||
|
response_data = msgpack.packb(embeddings.tolist())
|
||||||
|
else:
|
||||||
|
# For protobuf requests, return protobuf
|
||||||
|
resp_proto = embedding_pb2.NodeEmbeddingResponse()
|
||||||
|
hidden_contiguous = np.ascontiguousarray(embeddings, dtype=np.float32)
|
||||||
|
|
||||||
|
resp_proto.embeddings_data = hidden_contiguous.tobytes()
|
||||||
|
resp_proto.dimensions.append(hidden_contiguous.shape[0])
|
||||||
|
resp_proto.dimensions.append(hidden_contiguous.shape[1])
|
||||||
|
|
||||||
|
response_data = resp_proto.SerializeToString()
|
||||||
|
|
||||||
|
# Send response back to the client
|
||||||
|
rep_socket.send(response_data)
|
||||||
|
|
||||||
|
e2e_end = time.time()
|
||||||
|
logger.info(f"⏱️ ZMQ E2E time: {e2e_end - e2e_start:.6f}s")
|
||||||
|
|
||||||
|
except zmq.Again:
|
||||||
|
# Timeout - check shutdown_event and continue
|
||||||
|
continue
|
||||||
|
except Exception as e:
|
||||||
|
if not shutdown_event.is_set():
|
||||||
|
logger.error(f"Error in ZMQ server loop: {e}")
|
||||||
|
try:
|
||||||
|
# Send error response for REP socket
|
||||||
|
resp_proto = embedding_pb2.NodeEmbeddingResponse()
|
||||||
|
rep_socket.send(resp_proto.SerializeToString())
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
logger.info("Shutdown in progress, ignoring ZMQ error")
|
||||||
|
break
|
||||||
|
finally:
|
||||||
|
try:
|
||||||
|
rep_socket.close(0)
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
try:
|
||||||
|
context.term()
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
|
||||||
|
logger.info("DiskANN ZMQ server thread exiting gracefully")
|
||||||
|
|
||||||
|
# Add shutdown coordination
|
||||||
|
shutdown_event = threading.Event()
|
||||||
|
|
||||||
|
def shutdown_zmq_server():
|
||||||
|
"""Gracefully shutdown ZMQ server."""
|
||||||
|
logger.info("Initiating graceful shutdown...")
|
||||||
|
shutdown_event.set()
|
||||||
|
|
||||||
|
if zmq_thread.is_alive():
|
||||||
|
logger.info("Waiting for ZMQ thread to finish...")
|
||||||
|
zmq_thread.join(timeout=5)
|
||||||
|
if zmq_thread.is_alive():
|
||||||
|
logger.warning("ZMQ thread did not finish in time")
|
||||||
|
|
||||||
|
# Clean up ZMQ resources
|
||||||
|
try:
|
||||||
|
# Note: socket and context are cleaned up by thread exit
|
||||||
|
logger.info("ZMQ resources cleaned up")
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"Error cleaning ZMQ resources: {e}")
|
||||||
|
|
||||||
|
# Clean up other resources
|
||||||
|
try:
|
||||||
|
import gc
|
||||||
|
|
||||||
|
gc.collect()
|
||||||
|
logger.info("Additional resources cleaned up")
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"Error cleaning additional resources: {e}")
|
||||||
|
|
||||||
|
logger.info("Graceful shutdown completed")
|
||||||
|
sys.exit(0)
|
||||||
|
|
||||||
|
# Register signal handlers within this function scope
|
||||||
|
import signal
|
||||||
|
|
||||||
|
def signal_handler(sig, frame):
|
||||||
|
logger.info(f"Received signal {sig}, shutting down gracefully...")
|
||||||
|
shutdown_zmq_server()
|
||||||
|
|
||||||
|
signal.signal(signal.SIGTERM, signal_handler)
|
||||||
|
signal.signal(signal.SIGINT, signal_handler)
|
||||||
|
|
||||||
|
# Start ZMQ thread (NOT daemon!)
|
||||||
|
zmq_thread = threading.Thread(
|
||||||
|
target=lambda: zmq_server_thread_with_shutdown(shutdown_event),
|
||||||
|
daemon=False, # Not daemon - we want to wait for it
|
||||||
|
)
|
||||||
|
zmq_thread.start()
|
||||||
|
logger.info(f"Started DiskANN ZMQ server thread on port {zmq_port}")
|
||||||
|
|
||||||
|
# Keep the main thread alive
|
||||||
|
try:
|
||||||
|
while not shutdown_event.is_set():
|
||||||
|
time.sleep(0.1) # Check shutdown more frequently
|
||||||
|
except KeyboardInterrupt:
|
||||||
|
logger.info("DiskANN Server shutting down...")
|
||||||
|
shutdown_zmq_server()
|
||||||
|
return
|
||||||
|
|
||||||
|
# If we reach here, shutdown was triggered by signal
|
||||||
|
logger.info("Main loop exited, process should be shutting down")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import sys
|
||||||
|
|
||||||
|
# Signal handlers are now registered within create_diskann_embedding_server
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description="DiskANN Embedding service")
|
||||||
|
parser.add_argument("--zmq-port", type=int, default=5555, help="ZMQ port to run on")
|
||||||
|
parser.add_argument(
|
||||||
|
"--passages-file",
|
||||||
|
type=str,
|
||||||
|
help="Metadata JSON file containing passage sources",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--model-name",
|
||||||
|
type=str,
|
||||||
|
default="sentence-transformers/all-mpnet-base-v2",
|
||||||
|
help="Embedding model name",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--embedding-mode",
|
||||||
|
type=str,
|
||||||
|
default="sentence-transformers",
|
||||||
|
choices=["sentence-transformers", "openai", "mlx", "ollama"],
|
||||||
|
help="Embedding backend mode",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--distance-metric",
|
||||||
|
type=str,
|
||||||
|
default="l2",
|
||||||
|
choices=["l2", "mips", "cosine"],
|
||||||
|
help="Distance metric for similarity computation",
|
||||||
|
)
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
# Create and start the DiskANN embedding server
|
||||||
|
create_diskann_embedding_server(
|
||||||
|
passages_file=args.passages_file,
|
||||||
|
zmq_port=args.zmq_port,
|
||||||
|
model_name=args.model_name,
|
||||||
|
embedding_mode=args.embedding_mode,
|
||||||
|
distance_metric=args.distance_metric,
|
||||||
|
)
|
||||||
@@ -1,27 +1,28 @@
|
|||||||
# -*- coding: utf-8 -*-
|
|
||||||
# Generated by the protocol buffer compiler. DO NOT EDIT!
|
# Generated by the protocol buffer compiler. DO NOT EDIT!
|
||||||
# source: embedding.proto
|
# source: embedding.proto
|
||||||
|
# ruff: noqa
|
||||||
"""Generated protocol buffer code."""
|
"""Generated protocol buffer code."""
|
||||||
from google.protobuf.internal import builder as _builder
|
|
||||||
from google.protobuf import descriptor as _descriptor
|
from google.protobuf import descriptor as _descriptor
|
||||||
from google.protobuf import descriptor_pool as _descriptor_pool
|
from google.protobuf import descriptor_pool as _descriptor_pool
|
||||||
from google.protobuf import symbol_database as _symbol_database
|
from google.protobuf import symbol_database as _symbol_database
|
||||||
|
from google.protobuf.internal import builder as _builder
|
||||||
|
|
||||||
# @@protoc_insertion_point(imports)
|
# @@protoc_insertion_point(imports)
|
||||||
|
|
||||||
_sym_db = _symbol_database.Default()
|
_sym_db = _symbol_database.Default()
|
||||||
|
|
||||||
|
|
||||||
|
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(
|
||||||
|
b'\n\x0f\x65mbedding.proto\x12\x0eprotoembedding"(\n\x14NodeEmbeddingRequest\x12\x10\n\x08node_ids\x18\x01 \x03(\r"Y\n\x15NodeEmbeddingResponse\x12\x17\n\x0f\x65mbeddings_data\x18\x01 \x01(\x0c\x12\x12\n\ndimensions\x18\x02 \x03(\x05\x12\x13\n\x0bmissing_ids\x18\x03 \x03(\rb\x06proto3'
|
||||||
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x0f\x65mbedding.proto\x12\x0eprotoembedding\"(\n\x14NodeEmbeddingRequest\x12\x10\n\x08node_ids\x18\x01 \x03(\r\"Y\n\x15NodeEmbeddingResponse\x12\x17\n\x0f\x65mbeddings_data\x18\x01 \x01(\x0c\x12\x12\n\ndimensions\x18\x02 \x03(\x05\x12\x13\n\x0bmissing_ids\x18\x03 \x03(\rb\x06proto3')
|
)
|
||||||
|
|
||||||
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, globals())
|
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, globals())
|
||||||
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'embedding_pb2', globals())
|
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "embedding_pb2", globals())
|
||||||
if _descriptor._USE_C_DESCRIPTORS == False:
|
if not _descriptor._USE_C_DESCRIPTORS:
|
||||||
|
|
||||||
DESCRIPTOR._options = None
|
DESCRIPTOR._options = None
|
||||||
_NODEEMBEDDINGREQUEST._serialized_start=35
|
_NODEEMBEDDINGREQUEST._serialized_start = 35
|
||||||
_NODEEMBEDDINGREQUEST._serialized_end=75
|
_NODEEMBEDDINGREQUEST._serialized_end = 75
|
||||||
_NODEEMBEDDINGRESPONSE._serialized_start=77
|
_NODEEMBEDDINGRESPONSE._serialized_start = 77
|
||||||
_NODEEMBEDDINGRESPONSE._serialized_end=166
|
_NODEEMBEDDINGRESPONSE._serialized_end = 166
|
||||||
# @@protoc_insertion_point(module_scope)
|
# @@protoc_insertion_point(module_scope)
|
||||||
|
|||||||
@@ -1,397 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
"""
|
|
||||||
Embedding server for leann-backend-diskann - Fixed ZMQ REQ-REP pattern
|
|
||||||
"""
|
|
||||||
|
|
||||||
import pickle
|
|
||||||
import argparse
|
|
||||||
import threading
|
|
||||||
import time
|
|
||||||
|
|
||||||
from transformers import AutoTokenizer, AutoModel
|
|
||||||
import os
|
|
||||||
from contextlib import contextmanager
|
|
||||||
import zmq
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
RED = "\033[91m"
|
|
||||||
RESET = "\033[0m"
|
|
||||||
|
|
||||||
# 简化的文档存储 - 替代 LazyPassages
|
|
||||||
class SimpleDocumentStore:
|
|
||||||
"""简化的文档存储,支持任意ID"""
|
|
||||||
def __init__(self, documents: dict = None):
|
|
||||||
self.documents = documents or {}
|
|
||||||
# 默认演示文档
|
|
||||||
self.default_docs = {
|
|
||||||
0: "Python is a high-level, interpreted language known for simplicity.",
|
|
||||||
1: "Machine learning builds systems that learn from data.",
|
|
||||||
2: "Data structures like arrays, lists, and graphs organize data.",
|
|
||||||
}
|
|
||||||
|
|
||||||
def __getitem__(self, doc_id):
|
|
||||||
doc_id = int(doc_id)
|
|
||||||
|
|
||||||
# 优先使用指定的文档
|
|
||||||
if doc_id in self.documents:
|
|
||||||
return {"text": self.documents[doc_id]}
|
|
||||||
|
|
||||||
# 其次使用默认演示文档
|
|
||||||
if doc_id in self.default_docs:
|
|
||||||
return {"text": self.default_docs[doc_id]}
|
|
||||||
|
|
||||||
# 对于任意其他ID,返回通用文档
|
|
||||||
fallback_docs = [
|
|
||||||
"This is a general document about technology and programming concepts.",
|
|
||||||
"This document discusses machine learning and artificial intelligence topics.",
|
|
||||||
"This content covers data structures, algorithms, and computer science fundamentals.",
|
|
||||||
"This is a document about software engineering and development practices.",
|
|
||||||
"This content focuses on databases, data management, and information systems."
|
|
||||||
]
|
|
||||||
|
|
||||||
# 根据ID选择一个fallback文档
|
|
||||||
fallback_text = fallback_docs[doc_id % len(fallback_docs)]
|
|
||||||
return {"text": f"[ID:{doc_id}] {fallback_text}"}
|
|
||||||
|
|
||||||
def __len__(self):
|
|
||||||
return len(self.documents) + len(self.default_docs)
|
|
||||||
|
|
||||||
def create_embedding_server_thread(
|
|
||||||
zmq_port=5555,
|
|
||||||
model_name="sentence-transformers/all-mpnet-base-v2",
|
|
||||||
max_batch_size=128,
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
在当前线程中创建并运行 embedding server
|
|
||||||
这个函数设计为在单独的线程中调用
|
|
||||||
"""
|
|
||||||
print(f"INFO: Initializing embedding server thread on port {zmq_port}")
|
|
||||||
|
|
||||||
try:
|
|
||||||
# 检查端口是否已被占用
|
|
||||||
import socket
|
|
||||||
def check_port(port):
|
|
||||||
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
|
||||||
return s.connect_ex(('localhost', port)) == 0
|
|
||||||
|
|
||||||
if check_port(zmq_port):
|
|
||||||
print(f"{RED}Port {zmq_port} is already in use{RESET}")
|
|
||||||
return
|
|
||||||
|
|
||||||
# 初始化模型
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
|
||||||
import torch
|
|
||||||
|
|
||||||
# 选择设备
|
|
||||||
mps_available = hasattr(torch.backends, 'mps') and torch.backends.mps.is_available()
|
|
||||||
cuda_available = torch.cuda.is_available()
|
|
||||||
|
|
||||||
if cuda_available:
|
|
||||||
device = torch.device("cuda")
|
|
||||||
print("INFO: Using CUDA device")
|
|
||||||
elif mps_available:
|
|
||||||
device = torch.device("mps")
|
|
||||||
print("INFO: Using MPS device (Apple Silicon)")
|
|
||||||
else:
|
|
||||||
device = torch.device("cpu")
|
|
||||||
print("INFO: Using CPU device")
|
|
||||||
|
|
||||||
# 加载模型
|
|
||||||
print(f"INFO: Loading model {model_name}")
|
|
||||||
model = AutoModel.from_pretrained(model_name).to(device).eval()
|
|
||||||
|
|
||||||
# 优化模型
|
|
||||||
if cuda_available or mps_available:
|
|
||||||
try:
|
|
||||||
model = model.half()
|
|
||||||
model = torch.compile(model)
|
|
||||||
print(f"INFO: Using FP16 precision with model: {model_name}")
|
|
||||||
except Exception as e:
|
|
||||||
print(f"WARNING: Model optimization failed: {e}")
|
|
||||||
|
|
||||||
# 默认演示文档
|
|
||||||
demo_documents = {
|
|
||||||
0: "Python is a high-level, interpreted language known for simplicity.",
|
|
||||||
1: "Machine learning builds systems that learn from data.",
|
|
||||||
2: "Data structures like arrays, lists, and graphs organize data.",
|
|
||||||
}
|
|
||||||
|
|
||||||
passages = SimpleDocumentStore(demo_documents)
|
|
||||||
print(f"INFO: Loaded {len(passages)} demo documents")
|
|
||||||
|
|
||||||
class DeviceTimer:
|
|
||||||
"""设备计时器"""
|
|
||||||
def __init__(self, name="", device=device):
|
|
||||||
self.name = name
|
|
||||||
self.device = device
|
|
||||||
self.start_time = 0
|
|
||||||
self.end_time = 0
|
|
||||||
|
|
||||||
if cuda_available:
|
|
||||||
self.start_event = torch.cuda.Event(enable_timing=True)
|
|
||||||
self.end_event = torch.cuda.Event(enable_timing=True)
|
|
||||||
else:
|
|
||||||
self.start_event = None
|
|
||||||
self.end_event = None
|
|
||||||
|
|
||||||
@contextmanager
|
|
||||||
def timing(self):
|
|
||||||
self.start()
|
|
||||||
yield
|
|
||||||
self.end()
|
|
||||||
|
|
||||||
def start(self):
|
|
||||||
if cuda_available:
|
|
||||||
torch.cuda.synchronize()
|
|
||||||
self.start_event.record()
|
|
||||||
else:
|
|
||||||
if self.device.type == "mps":
|
|
||||||
torch.mps.synchronize()
|
|
||||||
self.start_time = time.time()
|
|
||||||
|
|
||||||
def end(self):
|
|
||||||
if cuda_available:
|
|
||||||
self.end_event.record()
|
|
||||||
torch.cuda.synchronize()
|
|
||||||
else:
|
|
||||||
if self.device.type == "mps":
|
|
||||||
torch.mps.synchronize()
|
|
||||||
self.end_time = time.time()
|
|
||||||
|
|
||||||
def elapsed_time(self):
|
|
||||||
if cuda_available:
|
|
||||||
return self.start_event.elapsed_time(self.end_event) / 1000.0
|
|
||||||
else:
|
|
||||||
return self.end_time - self.start_time
|
|
||||||
|
|
||||||
def print_elapsed(self):
|
|
||||||
print(f"Time taken for {self.name}: {self.elapsed_time():.6f} seconds")
|
|
||||||
|
|
||||||
def process_batch(texts_batch, ids_batch, missing_ids):
|
|
||||||
"""处理文本批次"""
|
|
||||||
batch_size = len(texts_batch)
|
|
||||||
print(f"INFO: Processing batch of size {batch_size}")
|
|
||||||
|
|
||||||
tokenize_timer = DeviceTimer("tokenization (batch)", device)
|
|
||||||
to_device_timer = DeviceTimer("transfer to device (batch)", device)
|
|
||||||
embed_timer = DeviceTimer("embedding (batch)", device)
|
|
||||||
pool_timer = DeviceTimer("mean pooling (batch)", device)
|
|
||||||
|
|
||||||
with tokenize_timer.timing():
|
|
||||||
encoded_batch = tokenizer.batch_encode_plus(
|
|
||||||
texts_batch,
|
|
||||||
padding="max_length",
|
|
||||||
truncation=True,
|
|
||||||
max_length=256,
|
|
||||||
return_tensors="pt",
|
|
||||||
return_token_type_ids=False,
|
|
||||||
)
|
|
||||||
tokenize_timer.print_elapsed()
|
|
||||||
|
|
||||||
seq_length = encoded_batch["input_ids"].size(1)
|
|
||||||
print(f"Batch size: {batch_size}, Sequence length: {seq_length}")
|
|
||||||
|
|
||||||
with to_device_timer.timing():
|
|
||||||
enc = {k: v.to(device) for k, v in encoded_batch.items()}
|
|
||||||
to_device_timer.print_elapsed()
|
|
||||||
|
|
||||||
with torch.no_grad():
|
|
||||||
with embed_timer.timing():
|
|
||||||
out = model(enc["input_ids"], enc["attention_mask"])
|
|
||||||
embed_timer.print_elapsed()
|
|
||||||
|
|
||||||
with pool_timer.timing():
|
|
||||||
hidden_states = out.last_hidden_state if hasattr(out, "last_hidden_state") else out
|
|
||||||
mask_expanded = enc["attention_mask"].unsqueeze(-1).expand(hidden_states.size()).float()
|
|
||||||
sum_embeddings = torch.sum(hidden_states * mask_expanded, 1)
|
|
||||||
sum_mask = torch.clamp(mask_expanded.sum(1), min=1e-9)
|
|
||||||
batch_embeddings = sum_embeddings / sum_mask
|
|
||||||
pool_timer.print_elapsed()
|
|
||||||
|
|
||||||
return batch_embeddings.cpu().numpy()
|
|
||||||
|
|
||||||
# ZMQ server 主循环 - 修改为REP套接字
|
|
||||||
context = zmq.Context()
|
|
||||||
socket = context.socket(zmq.ROUTER) # 改为REP套接字
|
|
||||||
socket.bind(f"tcp://127.0.0.1:{zmq_port}")
|
|
||||||
print(f"INFO: ZMQ ROUTER server listening on port {zmq_port}")
|
|
||||||
|
|
||||||
# 设置超时
|
|
||||||
socket.setsockopt(zmq.RCVTIMEO, 5000) # 5秒接收超时
|
|
||||||
socket.setsockopt(zmq.SNDTIMEO, 300000) # 300秒发送超时
|
|
||||||
|
|
||||||
from . import embedding_pb2
|
|
||||||
|
|
||||||
print(f"INFO: Embedding server ready to serve requests")
|
|
||||||
|
|
||||||
while True:
|
|
||||||
try:
|
|
||||||
parts = socket.recv_multipart()
|
|
||||||
|
|
||||||
# --- 恢复稳健的消息格式判断 ---
|
|
||||||
# 必须检查 parts 的长度,避免 IndexError
|
|
||||||
if len(parts) >= 3:
|
|
||||||
identity = parts[0]
|
|
||||||
# empty = parts[1] # 中间的空帧我们通常不关心
|
|
||||||
message = parts[2]
|
|
||||||
elif len(parts) == 2:
|
|
||||||
# 也能处理没有空帧的情况
|
|
||||||
identity = parts[0]
|
|
||||||
message = parts[1]
|
|
||||||
else:
|
|
||||||
# 如果收到格式错误的消息,打印警告并忽略它,而不是崩溃
|
|
||||||
print(f"WARNING: Received unexpected message format with {len(parts)} parts. Ignoring.")
|
|
||||||
continue
|
|
||||||
print(f"INFO: Received ZMQ request from client {identity.hex()[:8]}, size {len(message)} bytes")
|
|
||||||
|
|
||||||
e2e_start = time.time()
|
|
||||||
lookup_timer = DeviceTimer("text lookup", device)
|
|
||||||
|
|
||||||
# 解析请求
|
|
||||||
req_proto = embedding_pb2.NodeEmbeddingRequest()
|
|
||||||
req_proto.ParseFromString(message)
|
|
||||||
node_ids = req_proto.node_ids
|
|
||||||
print(f"INFO: Request for {len(node_ids)} node embeddings: {list(node_ids)}")
|
|
||||||
|
|
||||||
# 添加调试信息
|
|
||||||
if len(node_ids) > 0:
|
|
||||||
print(f"DEBUG: Node ID range: {min(node_ids)} to {max(node_ids)}")
|
|
||||||
|
|
||||||
# 查找文本
|
|
||||||
texts = []
|
|
||||||
missing_ids = []
|
|
||||||
with lookup_timer.timing():
|
|
||||||
for nid in node_ids:
|
|
||||||
txtinfo = passages[nid]
|
|
||||||
txt = txtinfo["text"]
|
|
||||||
texts.append(txt)
|
|
||||||
lookup_timer.print_elapsed()
|
|
||||||
|
|
||||||
if missing_ids:
|
|
||||||
print(f"WARNING: Missing passages for IDs: {missing_ids}")
|
|
||||||
|
|
||||||
# 处理批次
|
|
||||||
total_size = len(texts)
|
|
||||||
print(f"INFO: Total batch size: {total_size}, max_batch_size: {max_batch_size}")
|
|
||||||
|
|
||||||
all_embeddings = []
|
|
||||||
|
|
||||||
if total_size > max_batch_size:
|
|
||||||
print(f"INFO: Splitting batch of size {total_size} into chunks of {max_batch_size}")
|
|
||||||
for i in range(0, total_size, max_batch_size):
|
|
||||||
end_idx = min(i + max_batch_size, total_size)
|
|
||||||
print(f"INFO: Processing chunk {i//max_batch_size + 1}/{(total_size + max_batch_size - 1)//max_batch_size}: items {i} to {end_idx-1}")
|
|
||||||
|
|
||||||
chunk_texts = texts[i:end_idx]
|
|
||||||
chunk_ids = node_ids[i:end_idx]
|
|
||||||
|
|
||||||
embeddings_chunk = process_batch(chunk_texts, chunk_ids, missing_ids)
|
|
||||||
all_embeddings.append(embeddings_chunk)
|
|
||||||
|
|
||||||
if cuda_available:
|
|
||||||
torch.cuda.empty_cache()
|
|
||||||
elif device.type == "mps":
|
|
||||||
torch.mps.empty_cache()
|
|
||||||
|
|
||||||
hidden = np.vstack(all_embeddings)
|
|
||||||
print(f"INFO: Combined embeddings shape: {hidden.shape}")
|
|
||||||
else:
|
|
||||||
hidden = process_batch(texts, node_ids, missing_ids)
|
|
||||||
|
|
||||||
# 序列化响应
|
|
||||||
ser_start = time.time()
|
|
||||||
|
|
||||||
resp_proto = embedding_pb2.NodeEmbeddingResponse()
|
|
||||||
hidden_contiguous = np.ascontiguousarray(hidden, dtype=np.float32)
|
|
||||||
resp_proto.embeddings_data = hidden_contiguous.tobytes()
|
|
||||||
resp_proto.dimensions.append(hidden_contiguous.shape[0])
|
|
||||||
resp_proto.dimensions.append(hidden_contiguous.shape[1])
|
|
||||||
resp_proto.missing_ids.extend(missing_ids)
|
|
||||||
|
|
||||||
response_data = resp_proto.SerializeToString()
|
|
||||||
|
|
||||||
# REP 套接字发送单个响应
|
|
||||||
socket.send_multipart([identity, b'', response_data])
|
|
||||||
|
|
||||||
ser_end = time.time()
|
|
||||||
|
|
||||||
print(f"INFO: Serialize time: {ser_end - ser_start:.6f} seconds")
|
|
||||||
|
|
||||||
if device.type == "cuda":
|
|
||||||
torch.cuda.synchronize()
|
|
||||||
elif device.type == "mps":
|
|
||||||
torch.mps.synchronize()
|
|
||||||
e2e_end = time.time()
|
|
||||||
print(f"INFO: ZMQ E2E time: {e2e_end - e2e_start:.6f} seconds")
|
|
||||||
|
|
||||||
except zmq.Again:
|
|
||||||
print("INFO: ZMQ socket timeout, continuing to listen")
|
|
||||||
# REP套接字不需要重新创建,只需要继续监听
|
|
||||||
continue
|
|
||||||
except Exception as e:
|
|
||||||
print(f"ERROR: Error in ZMQ server: {e}")
|
|
||||||
try:
|
|
||||||
# 发送空响应以维持REQ-REP状态
|
|
||||||
empty_resp = embedding_pb2.NodeEmbeddingResponse()
|
|
||||||
socket.send(empty_resp.SerializeToString())
|
|
||||||
except:
|
|
||||||
# 如果发送失败,重新创建socket
|
|
||||||
socket.close()
|
|
||||||
socket = context.socket(zmq.REP)
|
|
||||||
socket.bind(f"tcp://127.0.0.1:{zmq_port}")
|
|
||||||
socket.setsockopt(zmq.RCVTIMEO, 5000)
|
|
||||||
socket.setsockopt(zmq.SNDTIMEO, 300000)
|
|
||||||
print("INFO: ZMQ socket recreated after error")
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
print(f"ERROR: Failed to start embedding server: {e}")
|
|
||||||
raise
|
|
||||||
|
|
||||||
|
|
||||||
# 保持原有的 create_embedding_server 函数不变,只添加线程化版本
|
|
||||||
def create_embedding_server(
|
|
||||||
domain="demo",
|
|
||||||
load_passages=True,
|
|
||||||
load_embeddings=False,
|
|
||||||
use_fp16=True,
|
|
||||||
use_int8=False,
|
|
||||||
use_cuda_graphs=False,
|
|
||||||
zmq_port=5555,
|
|
||||||
max_batch_size=128,
|
|
||||||
lazy_load_passages=False,
|
|
||||||
model_name="sentence-transformers/all-mpnet-base-v2",
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
原有的 create_embedding_server 函数保持不变
|
|
||||||
这个是阻塞版本,用于直接运行
|
|
||||||
"""
|
|
||||||
create_embedding_server_thread(zmq_port, model_name, max_batch_size)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
parser = argparse.ArgumentParser(description="Embedding service")
|
|
||||||
parser.add_argument("--zmq-port", type=int, default=5555, help="ZMQ port to run on")
|
|
||||||
parser.add_argument("--domain", type=str, default="demo", help="Domain name")
|
|
||||||
parser.add_argument("--load-passages", action="store_true", default=True)
|
|
||||||
parser.add_argument("--load-embeddings", action="store_true", default=False)
|
|
||||||
parser.add_argument("--use-fp16", action="store_true", default=False)
|
|
||||||
parser.add_argument("--use-int8", action="store_true", default=False)
|
|
||||||
parser.add_argument("--use-cuda-graphs", action="store_true", default=False)
|
|
||||||
parser.add_argument("--max-batch-size", type=int, default=128, help="Maximum batch size before splitting")
|
|
||||||
parser.add_argument("--lazy-load-passages", action="store_true", default=True)
|
|
||||||
parser.add_argument("--model-name", type=str, default="sentence-transformers/all-mpnet-base-v2",
|
|
||||||
help="Embedding model name")
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
create_embedding_server(
|
|
||||||
domain=args.domain,
|
|
||||||
load_passages=args.load_passages,
|
|
||||||
load_embeddings=args.load_embeddings,
|
|
||||||
use_fp16=args.use_fp16,
|
|
||||||
use_int8=args.use_int8,
|
|
||||||
use_cuda_graphs=args.use_cuda_graphs,
|
|
||||||
zmq_port=args.zmq_port,
|
|
||||||
max_batch_size=args.max_batch_size,
|
|
||||||
lazy_load_passages=args.lazy_load_passages,
|
|
||||||
model_name=args.model_name,
|
|
||||||
)
|
|
||||||
@@ -0,0 +1,299 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
"""
|
||||||
|
Graph Partition Module for LEANN DiskANN Backend
|
||||||
|
|
||||||
|
This module provides Python bindings for the graph partition functionality
|
||||||
|
of DiskANN, allowing users to partition disk-based indices for better
|
||||||
|
performance.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
import shutil
|
||||||
|
import subprocess
|
||||||
|
import tempfile
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
|
||||||
|
class GraphPartitioner:
|
||||||
|
"""
|
||||||
|
A Python interface for DiskANN's graph partition functionality.
|
||||||
|
|
||||||
|
This class provides methods to partition disk-based indices for improved
|
||||||
|
search performance and memory efficiency.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, build_type: str = "release"):
|
||||||
|
"""
|
||||||
|
Initialize the GraphPartitioner.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
build_type: Build type for the executables ("debug" or "release")
|
||||||
|
"""
|
||||||
|
self.build_type = build_type
|
||||||
|
self._ensure_executables()
|
||||||
|
|
||||||
|
def _get_executable_path(self, name: str) -> str:
|
||||||
|
"""Get the path to a graph partition executable."""
|
||||||
|
# Get the directory where this Python module is located
|
||||||
|
module_dir = Path(__file__).parent
|
||||||
|
# Navigate to the graph_partition directory
|
||||||
|
graph_partition_dir = module_dir.parent / "third_party" / "DiskANN" / "graph_partition"
|
||||||
|
executable_path = graph_partition_dir / "build" / self.build_type / "graph_partition" / name
|
||||||
|
|
||||||
|
if not executable_path.exists():
|
||||||
|
raise FileNotFoundError(f"Executable {name} not found at {executable_path}")
|
||||||
|
|
||||||
|
return str(executable_path)
|
||||||
|
|
||||||
|
def _ensure_executables(self):
|
||||||
|
"""Ensure that the required executables are built."""
|
||||||
|
try:
|
||||||
|
self._get_executable_path("partitioner")
|
||||||
|
self._get_executable_path("index_relayout")
|
||||||
|
except FileNotFoundError:
|
||||||
|
# Try to build the executables automatically
|
||||||
|
print("Executables not found, attempting to build them...")
|
||||||
|
self._build_executables()
|
||||||
|
|
||||||
|
def _build_executables(self):
|
||||||
|
"""Build the required executables."""
|
||||||
|
graph_partition_dir = (
|
||||||
|
Path(__file__).parent.parent / "third_party" / "DiskANN" / "graph_partition"
|
||||||
|
)
|
||||||
|
original_dir = os.getcwd()
|
||||||
|
|
||||||
|
try:
|
||||||
|
os.chdir(graph_partition_dir)
|
||||||
|
|
||||||
|
# Clean any existing build
|
||||||
|
if (graph_partition_dir / "build").exists():
|
||||||
|
shutil.rmtree(graph_partition_dir / "build")
|
||||||
|
|
||||||
|
# Run the build script
|
||||||
|
cmd = ["./build.sh", self.build_type, "split_graph", "/tmp/dummy"]
|
||||||
|
subprocess.run(cmd, capture_output=True, text=True, cwd=graph_partition_dir)
|
||||||
|
|
||||||
|
# Check if executables were created
|
||||||
|
partitioner_path = self._get_executable_path("partitioner")
|
||||||
|
relayout_path = self._get_executable_path("index_relayout")
|
||||||
|
|
||||||
|
print(f"✅ Built partitioner: {partitioner_path}")
|
||||||
|
print(f"✅ Built index_relayout: {relayout_path}")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
raise RuntimeError(f"Failed to build executables: {e}")
|
||||||
|
finally:
|
||||||
|
os.chdir(original_dir)
|
||||||
|
|
||||||
|
def partition_graph(
|
||||||
|
self,
|
||||||
|
index_prefix_path: str,
|
||||||
|
output_dir: Optional[str] = None,
|
||||||
|
partition_prefix: Optional[str] = None,
|
||||||
|
**kwargs,
|
||||||
|
) -> tuple[str, str]:
|
||||||
|
"""
|
||||||
|
Partition a disk-based index for improved performance.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
index_prefix_path: Path to the index prefix (e.g., "/path/to/index")
|
||||||
|
output_dir: Output directory for results (defaults to parent of index_prefix_path)
|
||||||
|
partition_prefix: Prefix for output files (defaults to basename of index_prefix_path)
|
||||||
|
**kwargs: Additional parameters for graph partitioning:
|
||||||
|
- gp_times: Number of LDG partition iterations (default: 10)
|
||||||
|
- lock_nums: Number of lock nodes (default: 10)
|
||||||
|
- cut: Cut adjacency list degree (default: 100)
|
||||||
|
- scale_factor: Scale factor (default: 1)
|
||||||
|
- data_type: Data type (default: "float")
|
||||||
|
- thread_nums: Number of threads (default: 10)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tuple of (disk_graph_index_path, partition_bin_path)
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
RuntimeError: If the partitioning process fails
|
||||||
|
"""
|
||||||
|
# Set default parameters
|
||||||
|
params = {
|
||||||
|
"gp_times": 10,
|
||||||
|
"lock_nums": 10,
|
||||||
|
"cut": 100,
|
||||||
|
"scale_factor": 1,
|
||||||
|
"data_type": "float",
|
||||||
|
"thread_nums": 10,
|
||||||
|
**kwargs,
|
||||||
|
}
|
||||||
|
|
||||||
|
# Determine output directory
|
||||||
|
if output_dir is None:
|
||||||
|
output_dir = str(Path(index_prefix_path).parent)
|
||||||
|
|
||||||
|
# Create output directory if it doesn't exist
|
||||||
|
Path(output_dir).mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
# Determine partition prefix
|
||||||
|
if partition_prefix is None:
|
||||||
|
partition_prefix = Path(index_prefix_path).name
|
||||||
|
|
||||||
|
# Get executable paths
|
||||||
|
partitioner_path = self._get_executable_path("partitioner")
|
||||||
|
relayout_path = self._get_executable_path("index_relayout")
|
||||||
|
|
||||||
|
# Create temporary directory for processing
|
||||||
|
with tempfile.TemporaryDirectory() as temp_dir:
|
||||||
|
# Change to the graph_partition directory for temporary files
|
||||||
|
graph_partition_dir = (
|
||||||
|
Path(__file__).parent.parent / "third_party" / "DiskANN" / "graph_partition"
|
||||||
|
)
|
||||||
|
original_dir = os.getcwd()
|
||||||
|
|
||||||
|
try:
|
||||||
|
os.chdir(graph_partition_dir)
|
||||||
|
|
||||||
|
# Create temporary data directory
|
||||||
|
temp_data_dir = Path(temp_dir) / "data"
|
||||||
|
temp_data_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
# Set up paths for temporary files
|
||||||
|
graph_path = temp_data_dir / "starling" / "_M_R_L_B" / "GRAPH"
|
||||||
|
graph_gp_path = (
|
||||||
|
graph_path
|
||||||
|
/ f"GP_TIMES_{params['gp_times']}_LOCK_{params['lock_nums']}_GP_USE_FREQ0_CUT{params['cut']}_SCALE{params['scale_factor']}"
|
||||||
|
)
|
||||||
|
graph_gp_path.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
# Find input index file
|
||||||
|
old_index_file = f"{index_prefix_path}_disk_beam_search.index"
|
||||||
|
if not os.path.exists(old_index_file):
|
||||||
|
old_index_file = f"{index_prefix_path}_disk.index"
|
||||||
|
|
||||||
|
if not os.path.exists(old_index_file):
|
||||||
|
raise RuntimeError(f"Index file not found: {old_index_file}")
|
||||||
|
|
||||||
|
# Run partitioner
|
||||||
|
gp_file_path = graph_gp_path / "_part.bin"
|
||||||
|
partitioner_cmd = [
|
||||||
|
partitioner_path,
|
||||||
|
"--index_file",
|
||||||
|
old_index_file,
|
||||||
|
"--data_type",
|
||||||
|
params["data_type"],
|
||||||
|
"--gp_file",
|
||||||
|
str(gp_file_path),
|
||||||
|
"-T",
|
||||||
|
str(params["thread_nums"]),
|
||||||
|
"--ldg_times",
|
||||||
|
str(params["gp_times"]),
|
||||||
|
"--scale",
|
||||||
|
str(params["scale_factor"]),
|
||||||
|
"--mode",
|
||||||
|
"1",
|
||||||
|
]
|
||||||
|
|
||||||
|
print(f"Running partitioner: {' '.join(partitioner_cmd)}")
|
||||||
|
result = subprocess.run(
|
||||||
|
partitioner_cmd, capture_output=True, text=True, cwd=graph_partition_dir
|
||||||
|
)
|
||||||
|
|
||||||
|
if result.returncode != 0:
|
||||||
|
raise RuntimeError(
|
||||||
|
f"Partitioner failed with return code {result.returncode}.\n"
|
||||||
|
f"stdout: {result.stdout}\n"
|
||||||
|
f"stderr: {result.stderr}"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Run relayout
|
||||||
|
part_tmp_index = graph_gp_path / "_part_tmp.index"
|
||||||
|
relayout_cmd = [
|
||||||
|
relayout_path,
|
||||||
|
old_index_file,
|
||||||
|
str(gp_file_path),
|
||||||
|
params["data_type"],
|
||||||
|
"1",
|
||||||
|
]
|
||||||
|
|
||||||
|
print(f"Running relayout: {' '.join(relayout_cmd)}")
|
||||||
|
result = subprocess.run(
|
||||||
|
relayout_cmd, capture_output=True, text=True, cwd=graph_partition_dir
|
||||||
|
)
|
||||||
|
|
||||||
|
if result.returncode != 0:
|
||||||
|
raise RuntimeError(
|
||||||
|
f"Relayout failed with return code {result.returncode}.\n"
|
||||||
|
f"stdout: {result.stdout}\n"
|
||||||
|
f"stderr: {result.stderr}"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Copy results to output directory
|
||||||
|
disk_graph_path = Path(output_dir) / f"{partition_prefix}_disk_graph.index"
|
||||||
|
partition_bin_path = Path(output_dir) / f"{partition_prefix}_partition.bin"
|
||||||
|
|
||||||
|
shutil.copy2(part_tmp_index, disk_graph_path)
|
||||||
|
shutil.copy2(gp_file_path, partition_bin_path)
|
||||||
|
|
||||||
|
print(f"Results copied to: {output_dir}")
|
||||||
|
return str(disk_graph_path), str(partition_bin_path)
|
||||||
|
|
||||||
|
finally:
|
||||||
|
os.chdir(original_dir)
|
||||||
|
|
||||||
|
def get_partition_info(self, partition_bin_path: str) -> dict:
|
||||||
|
"""
|
||||||
|
Get information about a partition file.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
partition_bin_path: Path to the partition binary file
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Dictionary containing partition information
|
||||||
|
"""
|
||||||
|
if not os.path.exists(partition_bin_path):
|
||||||
|
raise FileNotFoundError(f"Partition file not found: {partition_bin_path}")
|
||||||
|
|
||||||
|
# For now, return basic file information
|
||||||
|
# In the future, this could parse the binary file for detailed info
|
||||||
|
stat = os.stat(partition_bin_path)
|
||||||
|
return {
|
||||||
|
"file_size": stat.st_size,
|
||||||
|
"file_path": partition_bin_path,
|
||||||
|
"modified_time": stat.st_mtime,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def partition_graph(
|
||||||
|
index_prefix_path: str,
|
||||||
|
output_dir: Optional[str] = None,
|
||||||
|
partition_prefix: Optional[str] = None,
|
||||||
|
build_type: str = "release",
|
||||||
|
**kwargs,
|
||||||
|
) -> tuple[str, str]:
|
||||||
|
"""
|
||||||
|
Convenience function to partition a graph index.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
index_prefix_path: Path to the index prefix
|
||||||
|
output_dir: Output directory (defaults to parent of index_prefix_path)
|
||||||
|
partition_prefix: Prefix for output files (defaults to basename of index_prefix_path)
|
||||||
|
build_type: Build type for executables ("debug" or "release")
|
||||||
|
**kwargs: Additional parameters for graph partitioning
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tuple of (disk_graph_index_path, partition_bin_path)
|
||||||
|
"""
|
||||||
|
partitioner = GraphPartitioner(build_type=build_type)
|
||||||
|
return partitioner.partition_graph(index_prefix_path, output_dir, partition_prefix, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
# Example usage:
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# Example: partition an index
|
||||||
|
try:
|
||||||
|
disk_graph_path, partition_bin_path = partition_graph(
|
||||||
|
"/path/to/your/index_prefix", gp_times=10, lock_nums=10, cut=100
|
||||||
|
)
|
||||||
|
print("Partitioning completed successfully!")
|
||||||
|
print(f"Disk graph index: {disk_graph_path}")
|
||||||
|
print(f"Partition binary: {partition_bin_path}")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Partitioning failed: {e}")
|
||||||
@@ -4,13 +4,18 @@ build-backend = "scikit_build_core.build"
|
|||||||
|
|
||||||
[project]
|
[project]
|
||||||
name = "leann-backend-diskann"
|
name = "leann-backend-diskann"
|
||||||
version = "0.1.0"
|
version = "0.3.4"
|
||||||
dependencies = ["leann-core==0.1.0", "numpy"]
|
dependencies = ["leann-core==0.3.4", "numpy", "protobuf>=3.19.0"]
|
||||||
|
|
||||||
[tool.scikit-build]
|
[tool.scikit-build]
|
||||||
# 关键:简化的 CMake 路径
|
# Key: simplified CMake path
|
||||||
cmake.source-dir = "third_party/DiskANN"
|
cmake.source-dir = "third_party/DiskANN"
|
||||||
# 关键:Python 包在根目录,路径完全匹配
|
# Key: Python package in root directory, paths match exactly
|
||||||
wheel.packages = ["leann_backend_diskann"]
|
wheel.packages = ["leann_backend_diskann"]
|
||||||
# 使用默认的 redirect 模式
|
# Use default redirect mode
|
||||||
editable.mode = "redirect"
|
editable.mode = "redirect"
|
||||||
|
cmake.build-type = "Release"
|
||||||
|
build.verbose = true
|
||||||
|
build.tool-args = ["-j8"]
|
||||||
|
# Let CMake find packages via Homebrew prefix
|
||||||
|
cmake.define = {CMAKE_PREFIX_PATH = {env = "CMAKE_PREFIX_PATH"}, OpenMP_ROOT = {env = "OpenMP_ROOT"}}
|
||||||
|
|||||||
@@ -1,7 +1,47 @@
|
|||||||
# 最终简化版
|
|
||||||
cmake_minimum_required(VERSION 3.24)
|
cmake_minimum_required(VERSION 3.24)
|
||||||
project(leann_backend_hnsw_wrapper)
|
project(leann_backend_hnsw_wrapper)
|
||||||
|
set(CMAKE_C_COMPILER_WORKS 1)
|
||||||
|
set(CMAKE_CXX_COMPILER_WORKS 1)
|
||||||
|
|
||||||
|
# Set OpenMP path for macOS
|
||||||
|
if(APPLE)
|
||||||
|
# Detect Homebrew installation path (Apple Silicon vs Intel)
|
||||||
|
if(EXISTS "/opt/homebrew/opt/libomp")
|
||||||
|
set(HOMEBREW_PREFIX "/opt/homebrew")
|
||||||
|
elseif(EXISTS "/usr/local/opt/libomp")
|
||||||
|
set(HOMEBREW_PREFIX "/usr/local")
|
||||||
|
else()
|
||||||
|
message(FATAL_ERROR "Could not find libomp installation. Please install with: brew install libomp")
|
||||||
|
endif()
|
||||||
|
|
||||||
|
set(OpenMP_C_FLAGS "-Xpreprocessor -fopenmp -I${HOMEBREW_PREFIX}/opt/libomp/include")
|
||||||
|
set(OpenMP_CXX_FLAGS "-Xpreprocessor -fopenmp -I${HOMEBREW_PREFIX}/opt/libomp/include")
|
||||||
|
set(OpenMP_C_LIB_NAMES "omp")
|
||||||
|
set(OpenMP_CXX_LIB_NAMES "omp")
|
||||||
|
set(OpenMP_omp_LIBRARY "${HOMEBREW_PREFIX}/opt/libomp/lib/libomp.dylib")
|
||||||
|
|
||||||
|
# Force use of system libc++ to avoid version mismatch
|
||||||
|
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -stdlib=libc++")
|
||||||
|
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -stdlib=libc++")
|
||||||
|
set(CMAKE_SHARED_LINKER_FLAGS "${CMAKE_SHARED_LINKER_FLAGS} -stdlib=libc++")
|
||||||
|
|
||||||
|
# Set minimum macOS version for better compatibility
|
||||||
|
set(CMAKE_OSX_DEPLOYMENT_TARGET "11.0" CACHE STRING "Minimum macOS version")
|
||||||
|
endif()
|
||||||
|
|
||||||
|
# Use system ZeroMQ instead of building from source
|
||||||
|
find_package(PkgConfig REQUIRED)
|
||||||
|
pkg_check_modules(ZMQ REQUIRED libzmq)
|
||||||
|
|
||||||
|
# Add cppzmq headers
|
||||||
|
include_directories(third_party/cppzmq)
|
||||||
|
|
||||||
|
# Configure msgpack-c - disable boost dependency
|
||||||
|
set(MSGPACK_USE_BOOST OFF CACHE BOOL "" FORCE)
|
||||||
|
add_compile_definitions(MSGPACK_NO_BOOST)
|
||||||
|
include_directories(third_party/msgpack-c/include)
|
||||||
|
|
||||||
|
# Faiss configuration - streamlined build
|
||||||
set(FAISS_ENABLE_PYTHON ON CACHE BOOL "" FORCE)
|
set(FAISS_ENABLE_PYTHON ON CACHE BOOL "" FORCE)
|
||||||
set(FAISS_ENABLE_GPU OFF CACHE BOOL "" FORCE)
|
set(FAISS_ENABLE_GPU OFF CACHE BOOL "" FORCE)
|
||||||
set(FAISS_ENABLE_EXTRAS OFF CACHE BOOL "" FORCE)
|
set(FAISS_ENABLE_EXTRAS OFF CACHE BOOL "" FORCE)
|
||||||
@@ -9,4 +49,43 @@ set(BUILD_TESTING OFF CACHE BOOL "" FORCE)
|
|||||||
set(FAISS_ENABLE_C_API OFF CACHE BOOL "" FORCE)
|
set(FAISS_ENABLE_C_API OFF CACHE BOOL "" FORCE)
|
||||||
set(FAISS_OPT_LEVEL "generic" CACHE STRING "" FORCE)
|
set(FAISS_OPT_LEVEL "generic" CACHE STRING "" FORCE)
|
||||||
|
|
||||||
|
# Disable x86-specific SIMD optimizations (important for ARM64 compatibility)
|
||||||
|
set(FAISS_ENABLE_AVX2 OFF CACHE BOOL "" FORCE)
|
||||||
|
set(FAISS_ENABLE_AVX512 OFF CACHE BOOL "" FORCE)
|
||||||
|
set(FAISS_ENABLE_SSE4_1 OFF CACHE BOOL "" FORCE)
|
||||||
|
|
||||||
|
# ARM64-specific configuration
|
||||||
|
if(CMAKE_SYSTEM_PROCESSOR MATCHES "aarch64|arm64")
|
||||||
|
message(STATUS "Configuring Faiss for ARM64 architecture")
|
||||||
|
|
||||||
|
if(CMAKE_SYSTEM_NAME STREQUAL "Linux")
|
||||||
|
# Use SVE optimization level for ARM64 Linux (as seen in Faiss conda build)
|
||||||
|
set(FAISS_OPT_LEVEL "sve" CACHE STRING "" FORCE)
|
||||||
|
message(STATUS "Setting FAISS_OPT_LEVEL to 'sve' for ARM64 Linux")
|
||||||
|
else()
|
||||||
|
# Use generic optimization for other ARM64 platforms (like macOS)
|
||||||
|
set(FAISS_OPT_LEVEL "generic" CACHE STRING "" FORCE)
|
||||||
|
message(STATUS "Setting FAISS_OPT_LEVEL to 'generic' for ARM64 ${CMAKE_SYSTEM_NAME}")
|
||||||
|
endif()
|
||||||
|
|
||||||
|
# ARM64 compatibility: Faiss submodule has been modified to fix x86 header inclusion
|
||||||
|
message(STATUS "Using ARM64-compatible Faiss submodule")
|
||||||
|
endif()
|
||||||
|
|
||||||
|
# Additional optimization options from INSTALL.md
|
||||||
|
set(CMAKE_BUILD_TYPE "Release" CACHE STRING "" FORCE)
|
||||||
|
set(BUILD_SHARED_LIBS OFF CACHE BOOL "" FORCE) # Static library is faster to build
|
||||||
|
|
||||||
|
# Avoid building demos and benchmarks
|
||||||
|
set(BUILD_DEMOS OFF CACHE BOOL "" FORCE)
|
||||||
|
set(BUILD_BENCHS OFF CACHE BOOL "" FORCE)
|
||||||
|
|
||||||
|
# NEW: Tell Faiss to only build the generic version
|
||||||
|
set(FAISS_BUILD_GENERIC ON CACHE BOOL "" FORCE)
|
||||||
|
set(FAISS_BUILD_AVX2 OFF CACHE BOOL "" FORCE)
|
||||||
|
set(FAISS_BUILD_AVX512 OFF CACHE BOOL "" FORCE)
|
||||||
|
|
||||||
|
# IMPORTANT: Disable building AVX versions to speed up compilation
|
||||||
|
set(FAISS_BUILD_AVX_VERSIONS OFF CACHE BOOL "" FORCE)
|
||||||
|
|
||||||
add_subdirectory(third_party/faiss)
|
add_subdirectory(third_party/faiss)
|
||||||
@@ -1 +1 @@
|
|||||||
from . import hnsw_backend
|
from . import hnsw_backend as hnsw_backend
|
||||||
|
|||||||
@@ -1,69 +1,98 @@
|
|||||||
import struct
|
|
||||||
import sys
|
|
||||||
import numpy as np
|
|
||||||
import os
|
|
||||||
import argparse
|
import argparse
|
||||||
import gc # Import garbage collector interface
|
import gc # Import garbage collector interface
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import struct
|
||||||
|
import sys
|
||||||
import time
|
import time
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
# Set up logging to avoid print buffer issues
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
LOG_LEVEL = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
|
||||||
|
log_level = getattr(logging, LOG_LEVEL, logging.WARNING)
|
||||||
|
logger.setLevel(log_level)
|
||||||
|
|
||||||
# --- FourCCs (add more if needed) ---
|
# --- FourCCs (add more if needed) ---
|
||||||
INDEX_HNSW_FLAT_FOURCC = int.from_bytes(b'IHNf', 'little')
|
INDEX_HNSW_FLAT_FOURCC = int.from_bytes(b"IHNf", "little")
|
||||||
# Add other HNSW fourccs if you expect different storage types inside HNSW
|
# Add other HNSW fourccs if you expect different storage types inside HNSW
|
||||||
# INDEX_HNSW_PQ_FOURCC = int.from_bytes(b'IHNp', 'little')
|
# INDEX_HNSW_PQ_FOURCC = int.from_bytes(b'IHNp', 'little')
|
||||||
# INDEX_HNSW_SQ_FOURCC = int.from_bytes(b'IHNs', 'little')
|
# INDEX_HNSW_SQ_FOURCC = int.from_bytes(b'IHNs', 'little')
|
||||||
# INDEX_HNSW_CAGRA_FOURCC = int.from_bytes(b'IHNc', 'little') # Example
|
# INDEX_HNSW_CAGRA_FOURCC = int.from_bytes(b'IHNc', 'little') # Example
|
||||||
|
|
||||||
EXPECTED_HNSW_FOURCCS = {INDEX_HNSW_FLAT_FOURCC} # Modify if needed
|
EXPECTED_HNSW_FOURCCS = {INDEX_HNSW_FLAT_FOURCC} # Modify if needed
|
||||||
NULL_INDEX_FOURCC = int.from_bytes(b'null', 'little')
|
NULL_INDEX_FOURCC = int.from_bytes(b"null", "little")
|
||||||
|
|
||||||
# --- Helper functions for reading/writing binary data ---
|
# --- Helper functions for reading/writing binary data ---
|
||||||
|
|
||||||
|
|
||||||
def read_struct(f, fmt):
|
def read_struct(f, fmt):
|
||||||
"""Reads data according to the struct format."""
|
"""Reads data according to the struct format."""
|
||||||
size = struct.calcsize(fmt)
|
size = struct.calcsize(fmt)
|
||||||
data = f.read(size)
|
data = f.read(size)
|
||||||
if len(data) != size:
|
if len(data) != size:
|
||||||
raise EOFError(f"File ended unexpectedly reading struct fmt '{fmt}'. Expected {size} bytes, got {len(data)}.")
|
raise EOFError(
|
||||||
|
f"File ended unexpectedly reading struct fmt '{fmt}'. Expected {size} bytes, got {len(data)}."
|
||||||
|
)
|
||||||
return struct.unpack(fmt, data)[0]
|
return struct.unpack(fmt, data)[0]
|
||||||
|
|
||||||
|
|
||||||
def read_vector_raw(f, element_fmt_char):
|
def read_vector_raw(f, element_fmt_char):
|
||||||
"""Reads a vector (size followed by data), returns count and raw bytes."""
|
"""Reads a vector (size followed by data), returns count and raw bytes."""
|
||||||
count = -1 # Initialize count
|
count = -1 # Initialize count
|
||||||
total_bytes = -1 # Initialize total_bytes
|
total_bytes = -1 # Initialize total_bytes
|
||||||
try:
|
try:
|
||||||
count = read_struct(f, '<Q') # size_t usually 64-bit unsigned
|
count = read_struct(f, "<Q") # size_t usually 64-bit unsigned
|
||||||
element_size = struct.calcsize(element_fmt_char)
|
element_size = struct.calcsize(element_fmt_char)
|
||||||
# --- FIX for MemoryError: Check for unreasonably large count ---
|
# --- FIX for MemoryError: Check for unreasonably large count ---
|
||||||
max_reasonable_count = 10 * (10**9) # ~10 billion elements limit
|
max_reasonable_count = 10 * (10**9) # ~10 billion elements limit
|
||||||
if count > max_reasonable_count or count < 0:
|
if count > max_reasonable_count or count < 0:
|
||||||
raise MemoryError(f"Vector count {count} seems unreasonably large, possibly due to file corruption or incorrect format read.")
|
raise MemoryError(
|
||||||
|
f"Vector count {count} seems unreasonably large, possibly due to file corruption or incorrect format read."
|
||||||
|
)
|
||||||
|
|
||||||
total_bytes = count * element_size
|
total_bytes = count * element_size
|
||||||
# --- FIX for MemoryError: Check for huge byte size before allocation ---
|
# --- FIX for MemoryError: Check for huge byte size before allocation ---
|
||||||
max_reasonable_bytes = 50 * (1024**3) # ~50 GB limit
|
max_reasonable_bytes = 50 * (1024**3) # ~50 GB limit
|
||||||
if total_bytes > max_reasonable_bytes or total_bytes < 0: # Check for overflow
|
if total_bytes > max_reasonable_bytes or total_bytes < 0: # Check for overflow
|
||||||
raise MemoryError(f"Attempting to read {total_bytes} bytes ({count} elements * {element_size} bytes/element), which exceeds the safety limit. File might be corrupted or format mismatch.")
|
raise MemoryError(
|
||||||
|
f"Attempting to read {total_bytes} bytes ({count} elements * {element_size} bytes/element), which exceeds the safety limit. File might be corrupted or format mismatch."
|
||||||
|
)
|
||||||
|
|
||||||
data_bytes = f.read(total_bytes)
|
data_bytes = f.read(total_bytes)
|
||||||
|
|
||||||
if len(data_bytes) != total_bytes:
|
if len(data_bytes) != total_bytes:
|
||||||
raise EOFError(f"File ended unexpectedly reading vector data. Expected {total_bytes} bytes, got {len(data_bytes)}.")
|
raise EOFError(
|
||||||
|
f"File ended unexpectedly reading vector data. Expected {total_bytes} bytes, got {len(data_bytes)}."
|
||||||
|
)
|
||||||
return count, data_bytes
|
return count, data_bytes
|
||||||
except (MemoryError, OverflowError) as e:
|
except (MemoryError, OverflowError) as e:
|
||||||
# Add context to the error message
|
# Add context to the error message
|
||||||
print(f"\nError during raw vector read (element_fmt='{element_fmt_char}', count={count}, total_bytes={total_bytes}): {e}", file=sys.stderr)
|
print(
|
||||||
|
f"\nError during raw vector read (element_fmt='{element_fmt_char}', count={count}, total_bytes={total_bytes}): {e}",
|
||||||
|
file=sys.stderr,
|
||||||
|
)
|
||||||
raise e # Re-raise the original error type
|
raise e # Re-raise the original error type
|
||||||
|
|
||||||
|
|
||||||
def read_numpy_vector(f, np_dtype, struct_fmt_char):
|
def read_numpy_vector(f, np_dtype, struct_fmt_char):
|
||||||
"""Reads a vector into a NumPy array."""
|
"""Reads a vector into a NumPy array."""
|
||||||
count = -1 # Initialize count for robust error handling
|
count = -1 # Initialize count for robust error handling
|
||||||
print(f" Reading vector (dtype={np_dtype}, fmt='{struct_fmt_char}')... ", end='', flush=True)
|
print(
|
||||||
|
f" Reading vector (dtype={np_dtype}, fmt='{struct_fmt_char}')... ",
|
||||||
|
end="",
|
||||||
|
flush=True,
|
||||||
|
)
|
||||||
try:
|
try:
|
||||||
count, data_bytes = read_vector_raw(f, struct_fmt_char)
|
count, data_bytes = read_vector_raw(f, struct_fmt_char)
|
||||||
print(f"Count={count}, Bytes={len(data_bytes)}")
|
print(f"Count={count}, Bytes={len(data_bytes)}")
|
||||||
if count > 0 and len(data_bytes) > 0:
|
if count > 0 and len(data_bytes) > 0:
|
||||||
arr = np.frombuffer(data_bytes, dtype=np_dtype)
|
arr = np.frombuffer(data_bytes, dtype=np_dtype)
|
||||||
if arr.size != count:
|
if arr.size != count:
|
||||||
raise ValueError(f"Inconsistent array size after reading. Expected {count}, got {arr.size}")
|
raise ValueError(
|
||||||
|
f"Inconsistent array size after reading. Expected {count}, got {arr.size}"
|
||||||
|
)
|
||||||
return arr
|
return arr
|
||||||
elif count == 0:
|
elif count == 0:
|
||||||
return np.array([], dtype=np_dtype)
|
return np.array([], dtype=np_dtype)
|
||||||
@@ -71,17 +100,23 @@ def read_numpy_vector(f, np_dtype, struct_fmt_char):
|
|||||||
raise ValueError("Read zero bytes but count > 0.")
|
raise ValueError("Read zero bytes but count > 0.")
|
||||||
except MemoryError as e:
|
except MemoryError as e:
|
||||||
# Now count should be defined (or -1 if error was in read_struct)
|
# Now count should be defined (or -1 if error was in read_struct)
|
||||||
print(f"\nMemoryError creating NumPy array (dtype={np_dtype}, count={count}). {e}", file=sys.stderr)
|
print(
|
||||||
|
f"\nMemoryError creating NumPy array (dtype={np_dtype}, count={count}). {e}",
|
||||||
|
file=sys.stderr,
|
||||||
|
)
|
||||||
raise e
|
raise e
|
||||||
except Exception as e: # Catch other potential errors like ValueError
|
except Exception as e: # Catch other potential errors like ValueError
|
||||||
print(f"\nError reading numpy vector (dtype={np_dtype}, fmt='{struct_fmt_char}', count={count}): {e}", file=sys.stderr)
|
print(
|
||||||
|
f"\nError reading numpy vector (dtype={np_dtype}, fmt='{struct_fmt_char}', count={count}): {e}",
|
||||||
|
file=sys.stderr,
|
||||||
|
)
|
||||||
raise e
|
raise e
|
||||||
|
|
||||||
|
|
||||||
def write_numpy_vector(f, arr, struct_fmt_char):
|
def write_numpy_vector(f, arr, struct_fmt_char):
|
||||||
"""Writes a NumPy array as a vector (size followed by data)."""
|
"""Writes a NumPy array as a vector (size followed by data)."""
|
||||||
count = arr.size
|
count = arr.size
|
||||||
f.write(struct.pack('<Q', count))
|
f.write(struct.pack("<Q", count))
|
||||||
try:
|
try:
|
||||||
expected_dtype = np.dtype(struct_fmt_char)
|
expected_dtype = np.dtype(struct_fmt_char)
|
||||||
if arr.dtype != expected_dtype:
|
if arr.dtype != expected_dtype:
|
||||||
@@ -91,21 +126,28 @@ def write_numpy_vector(f, arr, struct_fmt_char):
|
|||||||
f.write(data_to_write)
|
f.write(data_to_write)
|
||||||
del data_to_write # Hint GC
|
del data_to_write # Hint GC
|
||||||
except MemoryError as e:
|
except MemoryError as e:
|
||||||
print(f"\nMemoryError converting NumPy array to bytes for writing (size={count}, dtype={arr.dtype}). {e}", file=sys.stderr)
|
print(
|
||||||
|
f"\nMemoryError converting NumPy array to bytes for writing (size={count}, dtype={arr.dtype}). {e}",
|
||||||
|
file=sys.stderr,
|
||||||
|
)
|
||||||
raise e
|
raise e
|
||||||
|
|
||||||
|
|
||||||
def write_list_vector(f, lst, struct_fmt_char):
|
def write_list_vector(f, lst, struct_fmt_char):
|
||||||
"""Writes a Python list as a vector iteratively."""
|
"""Writes a Python list as a vector iteratively."""
|
||||||
count = len(lst)
|
count = len(lst)
|
||||||
f.write(struct.pack('<Q', count))
|
f.write(struct.pack("<Q", count))
|
||||||
fmt = '<' + struct_fmt_char
|
fmt = "<" + struct_fmt_char
|
||||||
chunk_size = 1024 * 1024
|
chunk_size = 1024 * 1024
|
||||||
element_size = struct.calcsize(fmt)
|
element_size = struct.calcsize(fmt)
|
||||||
# Allocate buffer outside the loop if possible, or handle MemoryError during allocation
|
# Allocate buffer outside the loop if possible, or handle MemoryError during allocation
|
||||||
try:
|
try:
|
||||||
buffer = bytearray(chunk_size * element_size)
|
buffer = bytearray(chunk_size * element_size)
|
||||||
except MemoryError:
|
except MemoryError:
|
||||||
print(f"MemoryError: Cannot allocate buffer for writing list vector chunk (size {chunk_size * element_size} bytes).", file=sys.stderr)
|
print(
|
||||||
|
f"MemoryError: Cannot allocate buffer for writing list vector chunk (size {chunk_size * element_size} bytes).",
|
||||||
|
file=sys.stderr,
|
||||||
|
)
|
||||||
raise
|
raise
|
||||||
buffer_count = 0
|
buffer_count = 0
|
||||||
|
|
||||||
@@ -116,65 +158,79 @@ def write_list_vector(f, lst, struct_fmt_char):
|
|||||||
buffer_count += 1
|
buffer_count += 1
|
||||||
|
|
||||||
if buffer_count == chunk_size or i == count - 1:
|
if buffer_count == chunk_size or i == count - 1:
|
||||||
f.write(buffer[:buffer_count * element_size])
|
f.write(buffer[: buffer_count * element_size])
|
||||||
buffer_count = 0
|
buffer_count = 0
|
||||||
|
|
||||||
except struct.error as e:
|
except struct.error as e:
|
||||||
print(f"\nStruct packing error for item {item} at index {i} with format '{fmt}'. {e}", file=sys.stderr)
|
print(
|
||||||
|
f"\nStruct packing error for item {item} at index {i} with format '{fmt}'. {e}",
|
||||||
|
file=sys.stderr,
|
||||||
|
)
|
||||||
raise e
|
raise e
|
||||||
|
|
||||||
|
|
||||||
def get_cum_neighbors(cum_nneighbor_per_level_np, level):
|
def get_cum_neighbors(cum_nneighbor_per_level_np, level):
|
||||||
"""Helper to get cumulative neighbors count, matching C++ logic."""
|
"""Helper to get cumulative neighbors count, matching C++ logic."""
|
||||||
if level < 0: return 0
|
if level < 0:
|
||||||
|
return 0
|
||||||
if level < len(cum_nneighbor_per_level_np):
|
if level < len(cum_nneighbor_per_level_np):
|
||||||
return cum_nneighbor_per_level_np[level]
|
return cum_nneighbor_per_level_np[level]
|
||||||
else:
|
else:
|
||||||
return cum_nneighbor_per_level_np[-1] if len(cum_nneighbor_per_level_np) > 0 else 0
|
return cum_nneighbor_per_level_np[-1] if len(cum_nneighbor_per_level_np) > 0 else 0
|
||||||
|
|
||||||
def write_compact_format(f_out, original_hnsw_data, assign_probas_np, cum_nneighbor_per_level_np,
|
|
||||||
levels_np, compact_level_ptr, compact_node_offsets_np,
|
def write_compact_format(
|
||||||
compact_neighbors_data, storage_fourcc, storage_data):
|
f_out,
|
||||||
|
original_hnsw_data,
|
||||||
|
assign_probas_np,
|
||||||
|
cum_nneighbor_per_level_np,
|
||||||
|
levels_np,
|
||||||
|
compact_level_ptr,
|
||||||
|
compact_node_offsets_np,
|
||||||
|
compact_neighbors_data,
|
||||||
|
storage_fourcc,
|
||||||
|
storage_data,
|
||||||
|
):
|
||||||
"""Write HNSW data in compact format following C++ read order exactly."""
|
"""Write HNSW data in compact format following C++ read order exactly."""
|
||||||
# Write IndexHNSW Header
|
# Write IndexHNSW Header
|
||||||
f_out.write(struct.pack('<I', original_hnsw_data['index_fourcc']))
|
f_out.write(struct.pack("<I", original_hnsw_data["index_fourcc"]))
|
||||||
f_out.write(struct.pack('<i', original_hnsw_data['d']))
|
f_out.write(struct.pack("<i", original_hnsw_data["d"]))
|
||||||
f_out.write(struct.pack('<q', original_hnsw_data['ntotal']))
|
f_out.write(struct.pack("<q", original_hnsw_data["ntotal"]))
|
||||||
f_out.write(struct.pack('<q', original_hnsw_data['dummy1']))
|
f_out.write(struct.pack("<q", original_hnsw_data["dummy1"]))
|
||||||
f_out.write(struct.pack('<q', original_hnsw_data['dummy2']))
|
f_out.write(struct.pack("<q", original_hnsw_data["dummy2"]))
|
||||||
f_out.write(struct.pack('<?', original_hnsw_data['is_trained']))
|
f_out.write(struct.pack("<?", original_hnsw_data["is_trained"]))
|
||||||
f_out.write(struct.pack('<i', original_hnsw_data['metric_type']))
|
f_out.write(struct.pack("<i", original_hnsw_data["metric_type"]))
|
||||||
if original_hnsw_data['metric_type'] > 1:
|
if original_hnsw_data["metric_type"] > 1:
|
||||||
f_out.write(struct.pack('<f', original_hnsw_data['metric_arg']))
|
f_out.write(struct.pack("<f", original_hnsw_data["metric_arg"]))
|
||||||
|
|
||||||
# Write HNSW struct parts (standard order)
|
# Write HNSW struct parts (standard order)
|
||||||
write_numpy_vector(f_out, assign_probas_np, 'd')
|
write_numpy_vector(f_out, assign_probas_np, "d")
|
||||||
write_numpy_vector(f_out, cum_nneighbor_per_level_np, 'i')
|
write_numpy_vector(f_out, cum_nneighbor_per_level_np, "i")
|
||||||
write_numpy_vector(f_out, levels_np, 'i')
|
write_numpy_vector(f_out, levels_np, "i")
|
||||||
|
|
||||||
# Write compact format flag
|
# Write compact format flag
|
||||||
f_out.write(struct.pack('<?', True)) # storage_is_compact = True
|
f_out.write(struct.pack("<?", True)) # storage_is_compact = True
|
||||||
|
|
||||||
# Write compact data in CORRECT C++ read order: level_ptr, node_offsets FIRST
|
# Write compact data in CORRECT C++ read order: level_ptr, node_offsets FIRST
|
||||||
if isinstance(compact_level_ptr, np.ndarray):
|
if isinstance(compact_level_ptr, np.ndarray):
|
||||||
write_numpy_vector(f_out, compact_level_ptr, 'Q')
|
write_numpy_vector(f_out, compact_level_ptr, "Q")
|
||||||
else:
|
else:
|
||||||
write_list_vector(f_out, compact_level_ptr, 'Q')
|
write_list_vector(f_out, compact_level_ptr, "Q")
|
||||||
|
|
||||||
write_numpy_vector(f_out, compact_node_offsets_np, 'Q')
|
write_numpy_vector(f_out, compact_node_offsets_np, "Q")
|
||||||
|
|
||||||
# Write HNSW scalar parameters
|
# Write HNSW scalar parameters
|
||||||
f_out.write(struct.pack('<i', original_hnsw_data['entry_point']))
|
f_out.write(struct.pack("<i", original_hnsw_data["entry_point"]))
|
||||||
f_out.write(struct.pack('<i', original_hnsw_data['max_level']))
|
f_out.write(struct.pack("<i", original_hnsw_data["max_level"]))
|
||||||
f_out.write(struct.pack('<i', original_hnsw_data['efConstruction']))
|
f_out.write(struct.pack("<i", original_hnsw_data["efConstruction"]))
|
||||||
f_out.write(struct.pack('<i', original_hnsw_data['efSearch']))
|
f_out.write(struct.pack("<i", original_hnsw_data["efSearch"]))
|
||||||
f_out.write(struct.pack('<i', original_hnsw_data['dummy_upper_beam']))
|
f_out.write(struct.pack("<i", original_hnsw_data["dummy_upper_beam"]))
|
||||||
|
|
||||||
# Write storage fourcc (this determines how to read what follows)
|
# Write storage fourcc (this determines how to read what follows)
|
||||||
f_out.write(struct.pack('<I', storage_fourcc))
|
f_out.write(struct.pack("<I", storage_fourcc))
|
||||||
|
|
||||||
# Write compact neighbors data AFTER storage fourcc
|
# Write compact neighbors data AFTER storage fourcc
|
||||||
write_list_vector(f_out, compact_neighbors_data, 'i')
|
write_list_vector(f_out, compact_neighbors_data, "i")
|
||||||
|
|
||||||
# Write storage data if not NULL (only after neighbors)
|
# Write storage data if not NULL (only after neighbors)
|
||||||
if storage_fourcc != NULL_INDEX_FOURCC and storage_data:
|
if storage_fourcc != NULL_INDEX_FOURCC and storage_data:
|
||||||
@@ -183,6 +239,7 @@ def write_compact_format(f_out, original_hnsw_data, assign_probas_np, cum_nneigh
|
|||||||
|
|
||||||
# --- Main Conversion Logic ---
|
# --- Main Conversion Logic ---
|
||||||
|
|
||||||
|
|
||||||
def convert_hnsw_graph_to_csr(input_filename, output_filename, prune_embeddings=True):
|
def convert_hnsw_graph_to_csr(input_filename, output_filename, prune_embeddings=True):
|
||||||
"""
|
"""
|
||||||
Converts an HNSW graph file to the CSR format.
|
Converts an HNSW graph file to the CSR format.
|
||||||
@@ -193,94 +250,120 @@ def convert_hnsw_graph_to_csr(input_filename, output_filename, prune_embeddings=
|
|||||||
output_filename: Output CSR index file
|
output_filename: Output CSR index file
|
||||||
prune_embeddings: Whether to prune embedding storage (write NULL storage marker)
|
prune_embeddings: Whether to prune embedding storage (write NULL storage marker)
|
||||||
"""
|
"""
|
||||||
|
# Keep prints simple; rely on CI runner to flush output as needed
|
||||||
|
|
||||||
print(f"Starting conversion: {input_filename} -> {output_filename}")
|
print(f"Starting conversion: {input_filename} -> {output_filename}")
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
original_hnsw_data = {}
|
original_hnsw_data = {}
|
||||||
neighbors_np = None # Initialize to allow check in finally block
|
neighbors_np = None # Initialize to allow check in finally block
|
||||||
try:
|
try:
|
||||||
with open(input_filename, 'rb') as f_in, open(output_filename, 'wb') as f_out:
|
with open(input_filename, "rb") as f_in, open(output_filename, "wb") as f_out:
|
||||||
|
|
||||||
# --- Read IndexHNSW FourCC and Header ---
|
# --- Read IndexHNSW FourCC and Header ---
|
||||||
print(f"[{time.time() - start_time:.2f}s] Reading Index HNSW header...")
|
print(f"[{time.time() - start_time:.2f}s] Reading Index HNSW header...")
|
||||||
# ... (Keep the header reading logic as before) ...
|
# ... (Keep the header reading logic as before) ...
|
||||||
hnsw_index_fourcc = read_struct(f_in, '<I')
|
hnsw_index_fourcc = read_struct(f_in, "<I")
|
||||||
if hnsw_index_fourcc not in EXPECTED_HNSW_FOURCCS:
|
if hnsw_index_fourcc not in EXPECTED_HNSW_FOURCCS:
|
||||||
print(f"Error: Expected HNSW Index FourCC ({list(EXPECTED_HNSW_FOURCCS)}), got {hnsw_index_fourcc:08x}.", file=sys.stderr)
|
print(
|
||||||
|
f"Error: Expected HNSW Index FourCC ({list(EXPECTED_HNSW_FOURCCS)}), got {hnsw_index_fourcc:08x}.",
|
||||||
|
file=sys.stderr,
|
||||||
|
)
|
||||||
return False
|
return False
|
||||||
original_hnsw_data['index_fourcc'] = hnsw_index_fourcc
|
original_hnsw_data["index_fourcc"] = hnsw_index_fourcc
|
||||||
original_hnsw_data['d'] = read_struct(f_in, '<i')
|
original_hnsw_data["d"] = read_struct(f_in, "<i")
|
||||||
original_hnsw_data['ntotal'] = read_struct(f_in, '<q')
|
original_hnsw_data["ntotal"] = read_struct(f_in, "<q")
|
||||||
original_hnsw_data['dummy1'] = read_struct(f_in, '<q')
|
original_hnsw_data["dummy1"] = read_struct(f_in, "<q")
|
||||||
original_hnsw_data['dummy2'] = read_struct(f_in, '<q')
|
original_hnsw_data["dummy2"] = read_struct(f_in, "<q")
|
||||||
original_hnsw_data['is_trained'] = read_struct(f_in, '?')
|
original_hnsw_data["is_trained"] = read_struct(f_in, "?")
|
||||||
original_hnsw_data['metric_type'] = read_struct(f_in, '<i')
|
original_hnsw_data["metric_type"] = read_struct(f_in, "<i")
|
||||||
original_hnsw_data['metric_arg'] = 0.0
|
original_hnsw_data["metric_arg"] = 0.0
|
||||||
if original_hnsw_data['metric_type'] > 1:
|
if original_hnsw_data["metric_type"] > 1:
|
||||||
original_hnsw_data['metric_arg'] = read_struct(f_in, '<f')
|
original_hnsw_data["metric_arg"] = read_struct(f_in, "<f")
|
||||||
print(f"[{time.time() - start_time:.2f}s] Header read: d={original_hnsw_data['d']}, ntotal={original_hnsw_data['ntotal']}")
|
print(
|
||||||
|
f"[{time.time() - start_time:.2f}s] Header read: d={original_hnsw_data['d']}, ntotal={original_hnsw_data['ntotal']}"
|
||||||
|
)
|
||||||
|
|
||||||
# --- Read original HNSW struct data ---
|
# --- Read original HNSW struct data ---
|
||||||
print(f"[{time.time() - start_time:.2f}s] Reading HNSW struct vectors...")
|
print(f"[{time.time() - start_time:.2f}s] Reading HNSW struct vectors...")
|
||||||
assign_probas_np = read_numpy_vector(f_in, np.float64, 'd')
|
assign_probas_np = read_numpy_vector(f_in, np.float64, "d")
|
||||||
print(f"[{time.time() - start_time:.2f}s] Read assign_probas ({assign_probas_np.size})")
|
print(
|
||||||
|
f"[{time.time() - start_time:.2f}s] Read assign_probas ({assign_probas_np.size})"
|
||||||
|
)
|
||||||
gc.collect()
|
gc.collect()
|
||||||
|
|
||||||
cum_nneighbor_per_level_np = read_numpy_vector(f_in, np.int32, 'i')
|
cum_nneighbor_per_level_np = read_numpy_vector(f_in, np.int32, "i")
|
||||||
print(f"[{time.time() - start_time:.2f}s] Read cum_nneighbor_per_level ({cum_nneighbor_per_level_np.size})")
|
print(
|
||||||
|
f"[{time.time() - start_time:.2f}s] Read cum_nneighbor_per_level ({cum_nneighbor_per_level_np.size})"
|
||||||
|
)
|
||||||
gc.collect()
|
gc.collect()
|
||||||
|
|
||||||
levels_np = read_numpy_vector(f_in, np.int32, 'i')
|
levels_np = read_numpy_vector(f_in, np.int32, "i")
|
||||||
print(f"[{time.time() - start_time:.2f}s] Read levels ({levels_np.size})")
|
print(f"[{time.time() - start_time:.2f}s] Read levels ({levels_np.size})")
|
||||||
gc.collect()
|
gc.collect()
|
||||||
|
|
||||||
ntotal = len(levels_np)
|
ntotal = len(levels_np)
|
||||||
if ntotal != original_hnsw_data['ntotal']:
|
if ntotal != original_hnsw_data["ntotal"]:
|
||||||
print(f"Warning: ntotal mismatch! Header says {original_hnsw_data['ntotal']}, levels vector size is {ntotal}. Using levels vector size.", file=sys.stderr)
|
print(
|
||||||
original_hnsw_data['ntotal'] = ntotal
|
f"Warning: ntotal mismatch! Header says {original_hnsw_data['ntotal']}, levels vector size is {ntotal}. Using levels vector size.",
|
||||||
|
file=sys.stderr,
|
||||||
|
)
|
||||||
|
original_hnsw_data["ntotal"] = ntotal
|
||||||
|
|
||||||
# --- Check for compact format flag ---
|
# --- Check for compact format flag ---
|
||||||
print(f"[{time.time() - start_time:.2f}s] Probing for compact storage flag...")
|
print(f"[{time.time() - start_time:.2f}s] Probing for compact storage flag...")
|
||||||
pos_before_compact = f_in.tell()
|
pos_before_compact = f_in.tell()
|
||||||
try:
|
try:
|
||||||
is_compact_flag = read_struct(f_in, '<?')
|
is_compact_flag = read_struct(f_in, "<?")
|
||||||
print(f"[{time.time() - start_time:.2f}s] Found compact flag: {is_compact_flag}")
|
print(f"[{time.time() - start_time:.2f}s] Found compact flag: {is_compact_flag}")
|
||||||
|
|
||||||
if is_compact_flag:
|
if is_compact_flag:
|
||||||
# Input is already in compact format - read compact data
|
# Input is already in compact format - read compact data
|
||||||
print(f"[{time.time() - start_time:.2f}s] Input is already in compact format, reading compact data...")
|
print(
|
||||||
|
f"[{time.time() - start_time:.2f}s] Input is already in compact format, reading compact data..."
|
||||||
|
)
|
||||||
|
|
||||||
compact_level_ptr = read_numpy_vector(f_in, np.uint64, 'Q')
|
compact_level_ptr = read_numpy_vector(f_in, np.uint64, "Q")
|
||||||
print(f"[{time.time() - start_time:.2f}s] Read compact_level_ptr ({compact_level_ptr.size})")
|
print(
|
||||||
|
f"[{time.time() - start_time:.2f}s] Read compact_level_ptr ({compact_level_ptr.size})"
|
||||||
|
)
|
||||||
|
|
||||||
compact_node_offsets_np = read_numpy_vector(f_in, np.uint64, 'Q')
|
compact_node_offsets_np = read_numpy_vector(f_in, np.uint64, "Q")
|
||||||
print(f"[{time.time() - start_time:.2f}s] Read compact_node_offsets ({compact_node_offsets_np.size})")
|
print(
|
||||||
|
f"[{time.time() - start_time:.2f}s] Read compact_node_offsets ({compact_node_offsets_np.size})"
|
||||||
|
)
|
||||||
|
|
||||||
# Read scalar parameters
|
# Read scalar parameters
|
||||||
original_hnsw_data['entry_point'] = read_struct(f_in, '<i')
|
original_hnsw_data["entry_point"] = read_struct(f_in, "<i")
|
||||||
original_hnsw_data['max_level'] = read_struct(f_in, '<i')
|
original_hnsw_data["max_level"] = read_struct(f_in, "<i")
|
||||||
original_hnsw_data['efConstruction'] = read_struct(f_in, '<i')
|
original_hnsw_data["efConstruction"] = read_struct(f_in, "<i")
|
||||||
original_hnsw_data['efSearch'] = read_struct(f_in, '<i')
|
original_hnsw_data["efSearch"] = read_struct(f_in, "<i")
|
||||||
original_hnsw_data['dummy_upper_beam'] = read_struct(f_in, '<i')
|
original_hnsw_data["dummy_upper_beam"] = read_struct(f_in, "<i")
|
||||||
print(f"[{time.time() - start_time:.2f}s] Read scalar params (ep={original_hnsw_data['entry_point']}, max_lvl={original_hnsw_data['max_level']})")
|
print(
|
||||||
|
f"[{time.time() - start_time:.2f}s] Read scalar params (ep={original_hnsw_data['entry_point']}, max_lvl={original_hnsw_data['max_level']})"
|
||||||
|
)
|
||||||
|
|
||||||
# Read storage fourcc
|
# Read storage fourcc
|
||||||
storage_fourcc = read_struct(f_in, '<I')
|
storage_fourcc = read_struct(f_in, "<I")
|
||||||
print(f"[{time.time() - start_time:.2f}s] Found storage fourcc: {storage_fourcc:08x}")
|
print(
|
||||||
|
f"[{time.time() - start_time:.2f}s] Found storage fourcc: {storage_fourcc:08x}"
|
||||||
|
)
|
||||||
|
|
||||||
if prune_embeddings and storage_fourcc != NULL_INDEX_FOURCC:
|
if prune_embeddings and storage_fourcc != NULL_INDEX_FOURCC:
|
||||||
# Read compact neighbors data
|
# Read compact neighbors data
|
||||||
compact_neighbors_data_np = read_numpy_vector(f_in, np.int32, 'i')
|
compact_neighbors_data_np = read_numpy_vector(f_in, np.int32, "i")
|
||||||
print(f"[{time.time() - start_time:.2f}s] Read compact neighbors data ({compact_neighbors_data_np.size})")
|
print(
|
||||||
|
f"[{time.time() - start_time:.2f}s] Read compact neighbors data ({compact_neighbors_data_np.size})"
|
||||||
|
)
|
||||||
compact_neighbors_data = compact_neighbors_data_np.tolist()
|
compact_neighbors_data = compact_neighbors_data_np.tolist()
|
||||||
del compact_neighbors_data_np
|
del compact_neighbors_data_np
|
||||||
|
|
||||||
# Skip storage data and write with NULL marker
|
# Skip storage data and write with NULL marker
|
||||||
print(f"[{time.time() - start_time:.2f}s] Pruning embeddings: Writing NULL storage marker.")
|
print(
|
||||||
|
f"[{time.time() - start_time:.2f}s] Pruning embeddings: Writing NULL storage marker."
|
||||||
|
)
|
||||||
storage_fourcc = NULL_INDEX_FOURCC
|
storage_fourcc = NULL_INDEX_FOURCC
|
||||||
elif not prune_embeddings:
|
elif not prune_embeddings:
|
||||||
# Read and preserve compact neighbors and storage
|
# Read and preserve compact neighbors and storage
|
||||||
compact_neighbors_data_np = read_numpy_vector(f_in, np.int32, 'i')
|
compact_neighbors_data_np = read_numpy_vector(f_in, np.int32, "i")
|
||||||
compact_neighbors_data = compact_neighbors_data_np.tolist()
|
compact_neighbors_data = compact_neighbors_data_np.tolist()
|
||||||
del compact_neighbors_data_np
|
del compact_neighbors_data_np
|
||||||
|
|
||||||
@@ -288,16 +371,25 @@ def convert_hnsw_graph_to_csr(input_filename, output_filename, prune_embeddings=
|
|||||||
storage_data = f_in.read()
|
storage_data = f_in.read()
|
||||||
else:
|
else:
|
||||||
# Already pruned (NULL storage)
|
# Already pruned (NULL storage)
|
||||||
compact_neighbors_data_np = read_numpy_vector(f_in, np.int32, 'i')
|
compact_neighbors_data_np = read_numpy_vector(f_in, np.int32, "i")
|
||||||
compact_neighbors_data = compact_neighbors_data_np.tolist()
|
compact_neighbors_data = compact_neighbors_data_np.tolist()
|
||||||
del compact_neighbors_data_np
|
del compact_neighbors_data_np
|
||||||
storage_data = b''
|
storage_data = b""
|
||||||
|
|
||||||
# Write the updated compact format
|
# Write the updated compact format
|
||||||
print(f"[{time.time() - start_time:.2f}s] Writing updated compact format...")
|
print(f"[{time.time() - start_time:.2f}s] Writing updated compact format...")
|
||||||
write_compact_format(f_out, original_hnsw_data, assign_probas_np, cum_nneighbor_per_level_np,
|
write_compact_format(
|
||||||
levels_np, compact_level_ptr, compact_node_offsets_np,
|
f_out,
|
||||||
compact_neighbors_data, storage_fourcc, storage_data if not prune_embeddings else b'')
|
original_hnsw_data,
|
||||||
|
assign_probas_np,
|
||||||
|
cum_nneighbor_per_level_np,
|
||||||
|
levels_np,
|
||||||
|
compact_level_ptr,
|
||||||
|
compact_node_offsets_np,
|
||||||
|
compact_neighbors_data,
|
||||||
|
storage_fourcc,
|
||||||
|
storage_data if not prune_embeddings else b"",
|
||||||
|
)
|
||||||
|
|
||||||
print(f"[{time.time() - start_time:.2f}s] Conversion complete.")
|
print(f"[{time.time() - start_time:.2f}s] Conversion complete.")
|
||||||
return True
|
return True
|
||||||
@@ -305,63 +397,86 @@ def convert_hnsw_graph_to_csr(input_filename, output_filename, prune_embeddings=
|
|||||||
else:
|
else:
|
||||||
# is_compact=False, rewind and read original format
|
# is_compact=False, rewind and read original format
|
||||||
f_in.seek(pos_before_compact)
|
f_in.seek(pos_before_compact)
|
||||||
print(f"[{time.time() - start_time:.2f}s] Compact flag is False, reading original format...")
|
print(
|
||||||
|
f"[{time.time() - start_time:.2f}s] Compact flag is False, reading original format..."
|
||||||
|
)
|
||||||
|
|
||||||
except EOFError:
|
except EOFError:
|
||||||
# No compact flag found, assume original format
|
# No compact flag found, assume original format
|
||||||
f_in.seek(pos_before_compact)
|
f_in.seek(pos_before_compact)
|
||||||
print(f"[{time.time() - start_time:.2f}s] No compact flag found, assuming original format...")
|
print(
|
||||||
|
f"[{time.time() - start_time:.2f}s] No compact flag found, assuming original format..."
|
||||||
|
)
|
||||||
|
|
||||||
# --- Handle potential extra byte in original format (like C++ code) ---
|
# --- Handle potential extra byte in original format (like C++ code) ---
|
||||||
print(f"[{time.time() - start_time:.2f}s] Probing for potential extra byte before non-compact offsets...")
|
print(
|
||||||
|
f"[{time.time() - start_time:.2f}s] Probing for potential extra byte before non-compact offsets..."
|
||||||
|
)
|
||||||
pos_before_probe = f_in.tell()
|
pos_before_probe = f_in.tell()
|
||||||
try:
|
try:
|
||||||
suspected_flag = read_struct(f_in, '<B') # Read 1 byte
|
suspected_flag = read_struct(f_in, "<B") # Read 1 byte
|
||||||
if suspected_flag == 0x00:
|
if suspected_flag == 0x00:
|
||||||
print(f"[{time.time() - start_time:.2f}s] Found and consumed an unexpected 0x00 byte.")
|
print(
|
||||||
|
f"[{time.time() - start_time:.2f}s] Found and consumed an unexpected 0x00 byte."
|
||||||
|
)
|
||||||
elif suspected_flag == 0x01:
|
elif suspected_flag == 0x01:
|
||||||
print(f"[{time.time() - start_time:.2f}s] ERROR: Found 0x01 but is_compact should be False")
|
print(
|
||||||
|
f"[{time.time() - start_time:.2f}s] ERROR: Found 0x01 but is_compact should be False"
|
||||||
|
)
|
||||||
raise ValueError("Inconsistent compact flag state")
|
raise ValueError("Inconsistent compact flag state")
|
||||||
else:
|
else:
|
||||||
# Rewind - this byte is part of offsets data
|
# Rewind - this byte is part of offsets data
|
||||||
f_in.seek(pos_before_probe)
|
f_in.seek(pos_before_probe)
|
||||||
print(f"[{time.time() - start_time:.2f}s] Rewound to original position (byte was 0x{suspected_flag:02x})")
|
print(
|
||||||
|
f"[{time.time() - start_time:.2f}s] Rewound to original position (byte was 0x{suspected_flag:02x})"
|
||||||
|
)
|
||||||
except EOFError:
|
except EOFError:
|
||||||
f_in.seek(pos_before_probe)
|
f_in.seek(pos_before_probe)
|
||||||
print(f"[{time.time() - start_time:.2f}s] No extra byte found (EOF), proceeding with offsets read")
|
print(
|
||||||
|
f"[{time.time() - start_time:.2f}s] No extra byte found (EOF), proceeding with offsets read"
|
||||||
|
)
|
||||||
|
|
||||||
# --- Read original format data ---
|
# --- Read original format data ---
|
||||||
offsets_np = read_numpy_vector(f_in, np.uint64, 'Q')
|
offsets_np = read_numpy_vector(f_in, np.uint64, "Q")
|
||||||
print(f"[{time.time() - start_time:.2f}s] Read offsets ({offsets_np.size})")
|
print(f"[{time.time() - start_time:.2f}s] Read offsets ({offsets_np.size})")
|
||||||
if len(offsets_np) != ntotal + 1:
|
if len(offsets_np) != ntotal + 1:
|
||||||
raise ValueError(f"Inconsistent offsets size: len(levels)={ntotal} but len(offsets)={len(offsets_np)}")
|
raise ValueError(
|
||||||
|
f"Inconsistent offsets size: len(levels)={ntotal} but len(offsets)={len(offsets_np)}"
|
||||||
|
)
|
||||||
gc.collect()
|
gc.collect()
|
||||||
|
|
||||||
print(f"[{time.time() - start_time:.2f}s] Attempting to read neighbors vector...")
|
print(f"[{time.time() - start_time:.2f}s] Attempting to read neighbors vector...")
|
||||||
neighbors_np = read_numpy_vector(f_in, np.int32, 'i')
|
neighbors_np = read_numpy_vector(f_in, np.int32, "i")
|
||||||
print(f"[{time.time() - start_time:.2f}s] Read neighbors ({neighbors_np.size})")
|
print(f"[{time.time() - start_time:.2f}s] Read neighbors ({neighbors_np.size})")
|
||||||
expected_neighbors_size = offsets_np[-1] if ntotal > 0 else 0
|
expected_neighbors_size = offsets_np[-1] if ntotal > 0 else 0
|
||||||
if neighbors_np.size != expected_neighbors_size:
|
if neighbors_np.size != expected_neighbors_size:
|
||||||
print(f"Warning: neighbors vector size mismatch. Expected {expected_neighbors_size} based on offsets, got {neighbors_np.size}.")
|
print(
|
||||||
|
f"Warning: neighbors vector size mismatch. Expected {expected_neighbors_size} based on offsets, got {neighbors_np.size}."
|
||||||
|
)
|
||||||
gc.collect()
|
gc.collect()
|
||||||
|
|
||||||
original_hnsw_data['entry_point'] = read_struct(f_in, '<i')
|
original_hnsw_data["entry_point"] = read_struct(f_in, "<i")
|
||||||
original_hnsw_data['max_level'] = read_struct(f_in, '<i')
|
original_hnsw_data["max_level"] = read_struct(f_in, "<i")
|
||||||
original_hnsw_data['efConstruction'] = read_struct(f_in, '<i')
|
original_hnsw_data["efConstruction"] = read_struct(f_in, "<i")
|
||||||
original_hnsw_data['efSearch'] = read_struct(f_in, '<i')
|
original_hnsw_data["efSearch"] = read_struct(f_in, "<i")
|
||||||
original_hnsw_data['dummy_upper_beam'] = read_struct(f_in, '<i')
|
original_hnsw_data["dummy_upper_beam"] = read_struct(f_in, "<i")
|
||||||
print(f"[{time.time() - start_time:.2f}s] Read scalar params (ep={original_hnsw_data['entry_point']}, max_lvl={original_hnsw_data['max_level']})")
|
print(
|
||||||
|
f"[{time.time() - start_time:.2f}s] Read scalar params (ep={original_hnsw_data['entry_point']}, max_lvl={original_hnsw_data['max_level']})"
|
||||||
|
)
|
||||||
|
|
||||||
print(f"[{time.time() - start_time:.2f}s] Checking for storage data...")
|
print(f"[{time.time() - start_time:.2f}s] Checking for storage data...")
|
||||||
storage_fourcc = None
|
storage_fourcc = None
|
||||||
try:
|
try:
|
||||||
storage_fourcc = read_struct(f_in, '<I')
|
storage_fourcc = read_struct(f_in, "<I")
|
||||||
print(f"[{time.time() - start_time:.2f}s] Found storage fourcc: {storage_fourcc:08x}.")
|
print(
|
||||||
|
f"[{time.time() - start_time:.2f}s] Found storage fourcc: {storage_fourcc:08x}."
|
||||||
|
)
|
||||||
except EOFError:
|
except EOFError:
|
||||||
print(f"[{time.time() - start_time:.2f}s] No storage data found (EOF).")
|
print(f"[{time.time() - start_time:.2f}s] No storage data found (EOF).")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"[{time.time() - start_time:.2f}s] Error reading potential storage data: {e}")
|
print(
|
||||||
|
f"[{time.time() - start_time:.2f}s] Error reading potential storage data: {e}"
|
||||||
|
)
|
||||||
|
|
||||||
# --- Perform Conversion ---
|
# --- Perform Conversion ---
|
||||||
print(f"[{time.time() - start_time:.2f}s] Converting to CSR format...")
|
print(f"[{time.time() - start_time:.2f}s] Converting to CSR format...")
|
||||||
@@ -380,10 +495,14 @@ def convert_hnsw_graph_to_csr(input_filename, output_filename, prune_embeddings=
|
|||||||
if i > 0 and i % (ntotal // 100 or 1) == 0: # Log progress roughly every 1%
|
if i > 0 and i % (ntotal // 100 or 1) == 0: # Log progress roughly every 1%
|
||||||
progress = (i / ntotal) * 100
|
progress = (i / ntotal) * 100
|
||||||
elapsed = time.time() - start_time
|
elapsed = time.time() - start_time
|
||||||
print(f"\r[{elapsed:.2f}s] Converting node {i}/{ntotal} ({progress:.1f}%)...", end="")
|
print(
|
||||||
|
f"\r[{elapsed:.2f}s] Converting node {i}/{ntotal} ({progress:.1f}%)...",
|
||||||
|
end="",
|
||||||
|
)
|
||||||
|
|
||||||
node_max_level = levels_np[i] - 1
|
node_max_level = levels_np[i] - 1
|
||||||
if node_max_level < -1: node_max_level = -1
|
if node_max_level < -1:
|
||||||
|
node_max_level = -1
|
||||||
|
|
||||||
node_ptr_start_index = current_level_ptr_idx
|
node_ptr_start_index = current_level_ptr_idx
|
||||||
compact_node_offsets_np[i] = node_ptr_start_index
|
compact_node_offsets_np[i] = node_ptr_start_index
|
||||||
@@ -394,8 +513,12 @@ def convert_hnsw_graph_to_csr(input_filename, output_filename, prune_embeddings=
|
|||||||
for level in range(node_max_level + 1):
|
for level in range(node_max_level + 1):
|
||||||
compact_level_ptr.append(current_data_idx)
|
compact_level_ptr.append(current_data_idx)
|
||||||
|
|
||||||
begin_orig_np = original_offset_start + get_cum_neighbors(cum_nneighbor_per_level_np, level)
|
begin_orig_np = original_offset_start + get_cum_neighbors(
|
||||||
end_orig_np = original_offset_start + get_cum_neighbors(cum_nneighbor_per_level_np, level + 1)
|
cum_nneighbor_per_level_np, level
|
||||||
|
)
|
||||||
|
end_orig_np = original_offset_start + get_cum_neighbors(
|
||||||
|
cum_nneighbor_per_level_np, level + 1
|
||||||
|
)
|
||||||
|
|
||||||
begin_orig = int(begin_orig_np)
|
begin_orig = int(begin_orig_np)
|
||||||
end_orig = int(end_orig_np)
|
end_orig = int(end_orig_np)
|
||||||
@@ -413,71 +536,116 @@ def convert_hnsw_graph_to_csr(input_filename, output_filename, prune_embeddings=
|
|||||||
|
|
||||||
if num_valid > 0:
|
if num_valid > 0:
|
||||||
# Append valid neighbors
|
# Append valid neighbors
|
||||||
compact_neighbors_data.extend(level_neighbors_slice[valid_neighbors_mask])
|
compact_neighbors_data.extend(
|
||||||
|
level_neighbors_slice[valid_neighbors_mask]
|
||||||
|
)
|
||||||
current_data_idx += num_valid
|
current_data_idx += num_valid
|
||||||
total_valid_neighbors_counted += num_valid
|
total_valid_neighbors_counted += num_valid
|
||||||
|
|
||||||
|
|
||||||
compact_level_ptr.append(current_data_idx)
|
compact_level_ptr.append(current_data_idx)
|
||||||
current_level_ptr_idx += num_pointers_expected
|
current_level_ptr_idx += num_pointers_expected
|
||||||
|
|
||||||
compact_node_offsets_np[ntotal] = current_level_ptr_idx
|
compact_node_offsets_np[ntotal] = current_level_ptr_idx
|
||||||
print(f"\r[{time.time() - start_time:.2f}s] Conversion loop finished. ") # Clear progress line
|
print(
|
||||||
|
f"\r[{time.time() - start_time:.2f}s] Conversion loop finished. "
|
||||||
|
) # Clear progress line
|
||||||
|
|
||||||
# --- Validation Checks ---
|
# --- Validation Checks ---
|
||||||
print(f"[{time.time() - start_time:.2f}s] Running validation checks...")
|
print(f"[{time.time() - start_time:.2f}s] Running validation checks...")
|
||||||
valid_check_passed = True
|
valid_check_passed = True
|
||||||
# Check 1: Total valid neighbors count
|
# Check 1: Total valid neighbors count
|
||||||
print(f" Checking total valid neighbor count...")
|
print(" Checking total valid neighbor count...")
|
||||||
expected_valid_count = np.sum(neighbors_np >= 0)
|
expected_valid_count = np.sum(neighbors_np >= 0)
|
||||||
if total_valid_neighbors_counted != len(compact_neighbors_data):
|
if total_valid_neighbors_counted != len(compact_neighbors_data):
|
||||||
print(f"Error: Mismatch between counted valid neighbors ({total_valid_neighbors_counted}) and final compact_data size ({len(compact_neighbors_data)})!", file=sys.stderr)
|
print(
|
||||||
|
f"Error: Mismatch between counted valid neighbors ({total_valid_neighbors_counted}) and final compact_data size ({len(compact_neighbors_data)})!",
|
||||||
|
file=sys.stderr,
|
||||||
|
)
|
||||||
valid_check_passed = False
|
valid_check_passed = False
|
||||||
if expected_valid_count != len(compact_neighbors_data):
|
if expected_valid_count != len(compact_neighbors_data):
|
||||||
print(f"Error: Mismatch between NumPy count of valid neighbors ({expected_valid_count}) and final compact_data size ({len(compact_neighbors_data)})!", file=sys.stderr)
|
print(
|
||||||
|
f"Error: Mismatch between NumPy count of valid neighbors ({expected_valid_count}) and final compact_data size ({len(compact_neighbors_data)})!",
|
||||||
|
file=sys.stderr,
|
||||||
|
)
|
||||||
valid_check_passed = False
|
valid_check_passed = False
|
||||||
else:
|
else:
|
||||||
print(f" OK: Total valid neighbors = {len(compact_neighbors_data)}")
|
print(f" OK: Total valid neighbors = {len(compact_neighbors_data)}")
|
||||||
|
|
||||||
# Check 2: Final pointer indices consistency
|
# Check 2: Final pointer indices consistency
|
||||||
print(f" Checking final pointer indices...")
|
print(" Checking final pointer indices...")
|
||||||
if compact_node_offsets_np[ntotal] != len(compact_level_ptr):
|
if compact_node_offsets_np[ntotal] != len(compact_level_ptr):
|
||||||
print(f"Error: Final node offset ({compact_node_offsets_np[ntotal]}) doesn't match level_ptr size ({len(compact_level_ptr)})!", file=sys.stderr)
|
print(
|
||||||
|
f"Error: Final node offset ({compact_node_offsets_np[ntotal]}) doesn't match level_ptr size ({len(compact_level_ptr)})!",
|
||||||
|
file=sys.stderr,
|
||||||
|
)
|
||||||
valid_check_passed = False
|
valid_check_passed = False
|
||||||
if (len(compact_level_ptr) > 0 and compact_level_ptr[-1] != len(compact_neighbors_data)) or \
|
if (
|
||||||
(len(compact_level_ptr) == 0 and len(compact_neighbors_data) != 0):
|
len(compact_level_ptr) > 0 and compact_level_ptr[-1] != len(compact_neighbors_data)
|
||||||
|
) or (len(compact_level_ptr) == 0 and len(compact_neighbors_data) != 0):
|
||||||
last_ptr = compact_level_ptr[-1] if len(compact_level_ptr) > 0 else -1
|
last_ptr = compact_level_ptr[-1] if len(compact_level_ptr) > 0 else -1
|
||||||
print(f"Error: Last level pointer ({last_ptr}) doesn't match compact_data size ({len(compact_neighbors_data)})!", file=sys.stderr)
|
print(
|
||||||
|
f"Error: Last level pointer ({last_ptr}) doesn't match compact_data size ({len(compact_neighbors_data)})!",
|
||||||
|
file=sys.stderr,
|
||||||
|
)
|
||||||
valid_check_passed = False
|
valid_check_passed = False
|
||||||
else:
|
else:
|
||||||
print(f" OK: Final pointers match data size.")
|
print(" OK: Final pointers match data size.")
|
||||||
|
|
||||||
if not valid_check_passed:
|
if not valid_check_passed:
|
||||||
print("Error: Validation checks failed. Output file might be incorrect.", file=sys.stderr)
|
print(
|
||||||
|
"Error: Validation checks failed. Output file might be incorrect.",
|
||||||
|
file=sys.stderr,
|
||||||
|
)
|
||||||
# Optional: Exit here if validation fails
|
# Optional: Exit here if validation fails
|
||||||
# return False
|
# return False
|
||||||
|
|
||||||
# --- Explicitly delete large intermediate arrays ---
|
# --- Explicitly delete large intermediate arrays ---
|
||||||
print(f"[{time.time() - start_time:.2f}s] Deleting original neighbors and offsets arrays...")
|
print(
|
||||||
|
f"[{time.time() - start_time:.2f}s] Deleting original neighbors and offsets arrays..."
|
||||||
|
)
|
||||||
del neighbors_np
|
del neighbors_np
|
||||||
del offsets_np
|
del offsets_np
|
||||||
gc.collect()
|
gc.collect()
|
||||||
|
|
||||||
print(f" CSR Stats: |data|={len(compact_neighbors_data)}, |level_ptr|={len(compact_level_ptr)}")
|
print(
|
||||||
|
f" CSR Stats: |data|={len(compact_neighbors_data)}, |level_ptr|={len(compact_level_ptr)}"
|
||||||
|
)
|
||||||
|
|
||||||
# --- Write CSR HNSW graph data using unified function ---
|
# --- Write CSR HNSW graph data using unified function ---
|
||||||
print(f"[{time.time() - start_time:.2f}s] Writing CSR HNSW graph data in FAISS-compatible order...")
|
print(
|
||||||
|
f"[{time.time() - start_time:.2f}s] Writing CSR HNSW graph data in FAISS-compatible order..."
|
||||||
|
)
|
||||||
|
|
||||||
# Determine storage fourcc based on prune_embeddings
|
# Determine storage fourcc and data based on prune_embeddings
|
||||||
output_storage_fourcc = NULL_INDEX_FOURCC if prune_embeddings else (storage_fourcc if 'storage_fourcc' in locals() else NULL_INDEX_FOURCC)
|
|
||||||
if prune_embeddings:
|
if prune_embeddings:
|
||||||
print(f" Pruning embeddings: Writing NULL storage marker.")
|
print(" Pruning embeddings: Writing NULL storage marker.")
|
||||||
storage_data = b''
|
output_storage_fourcc = NULL_INDEX_FOURCC
|
||||||
|
storage_data = b""
|
||||||
|
else:
|
||||||
|
# Keep embeddings - read and preserve original storage data
|
||||||
|
if storage_fourcc and storage_fourcc != NULL_INDEX_FOURCC:
|
||||||
|
print(" Preserving embeddings: Reading original storage data...")
|
||||||
|
storage_data = f_in.read() # Read remaining storage data
|
||||||
|
output_storage_fourcc = storage_fourcc
|
||||||
|
print(f" Read {len(storage_data)} bytes of storage data")
|
||||||
|
else:
|
||||||
|
print(" No embeddings found in original file (NULL storage)")
|
||||||
|
output_storage_fourcc = NULL_INDEX_FOURCC
|
||||||
|
storage_data = b""
|
||||||
|
|
||||||
# Use the unified write function
|
# Use the unified write function
|
||||||
write_compact_format(f_out, original_hnsw_data, assign_probas_np, cum_nneighbor_per_level_np,
|
write_compact_format(
|
||||||
levels_np, compact_level_ptr, compact_node_offsets_np,
|
f_out,
|
||||||
compact_neighbors_data, output_storage_fourcc, storage_data if not prune_embeddings else b'')
|
original_hnsw_data,
|
||||||
|
assign_probas_np,
|
||||||
|
cum_nneighbor_per_level_np,
|
||||||
|
levels_np,
|
||||||
|
compact_level_ptr,
|
||||||
|
compact_node_offsets_np,
|
||||||
|
compact_neighbors_data,
|
||||||
|
output_storage_fourcc,
|
||||||
|
storage_data,
|
||||||
|
)
|
||||||
|
|
||||||
# Clean up memory
|
# Clean up memory
|
||||||
del assign_probas_np, cum_nneighbor_per_level_np, levels_np
|
del assign_probas_np, cum_nneighbor_per_level_np, levels_np
|
||||||
@@ -492,40 +660,66 @@ def convert_hnsw_graph_to_csr(input_filename, output_filename, prune_embeddings=
|
|||||||
print(f"Error: Input file not found: {input_filename}", file=sys.stderr)
|
print(f"Error: Input file not found: {input_filename}", file=sys.stderr)
|
||||||
return False
|
return False
|
||||||
except MemoryError as e:
|
except MemoryError as e:
|
||||||
print(f"\nFatal MemoryError during conversion: {e}. Insufficient RAM.", file=sys.stderr)
|
print(
|
||||||
|
f"\nFatal MemoryError during conversion: {e}. Insufficient RAM.",
|
||||||
|
file=sys.stderr,
|
||||||
|
)
|
||||||
# Clean up potentially partially written output file?
|
# Clean up potentially partially written output file?
|
||||||
try: os.remove(output_filename)
|
try:
|
||||||
except OSError: pass
|
os.remove(output_filename)
|
||||||
|
except OSError:
|
||||||
|
pass
|
||||||
return False
|
return False
|
||||||
except EOFError as e:
|
except EOFError as e:
|
||||||
print(f"Error: Reached end of file unexpectedly reading {input_filename}. {e}", file=sys.stderr)
|
print(
|
||||||
try: os.remove(output_filename)
|
f"Error: Reached end of file unexpectedly reading {input_filename}. {e}",
|
||||||
except OSError: pass
|
file=sys.stderr,
|
||||||
|
)
|
||||||
|
try:
|
||||||
|
os.remove(output_filename)
|
||||||
|
except OSError:
|
||||||
|
pass
|
||||||
return False
|
return False
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"An unexpected error occurred during conversion: {e}", file=sys.stderr)
|
print(f"An unexpected error occurred during conversion: {e}", file=sys.stderr)
|
||||||
import traceback
|
import traceback
|
||||||
|
|
||||||
traceback.print_exc()
|
traceback.print_exc()
|
||||||
try:
|
try:
|
||||||
os.remove(output_filename)
|
os.remove(output_filename)
|
||||||
except OSError: pass
|
except OSError:
|
||||||
|
pass
|
||||||
return False
|
return False
|
||||||
# Ensure neighbors_np is deleted even if an error occurs after its allocation
|
# Ensure neighbors_np is deleted even if an error occurs after its allocation
|
||||||
finally:
|
finally:
|
||||||
if 'neighbors_np' in locals() and neighbors_np is not None:
|
try:
|
||||||
|
if "neighbors_np" in locals() and neighbors_np is not None:
|
||||||
del neighbors_np
|
del neighbors_np
|
||||||
gc.collect()
|
gc.collect()
|
||||||
|
except NameError:
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
# --- Script Execution ---
|
# --- Script Execution ---
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
parser = argparse.ArgumentParser(description="Convert a Faiss IndexHNSWFlat file to a CSR-based HNSW graph file.")
|
parser = argparse.ArgumentParser(
|
||||||
|
description="Convert a Faiss IndexHNSWFlat file to a CSR-based HNSW graph file."
|
||||||
|
)
|
||||||
parser.add_argument("input_index_file", help="Path to the input IndexHNSWFlat file")
|
parser.add_argument("input_index_file", help="Path to the input IndexHNSWFlat file")
|
||||||
parser.add_argument("output_csr_graph_file", help="Path to write the output CSR HNSW graph file")
|
parser.add_argument(
|
||||||
parser.add_argument("--prune-embeddings", action="store_true", default=True,
|
"output_csr_graph_file", help="Path to write the output CSR HNSW graph file"
|
||||||
help="Prune embedding storage (write NULL storage marker)")
|
)
|
||||||
parser.add_argument("--keep-embeddings", action="store_true",
|
parser.add_argument(
|
||||||
help="Keep embedding storage (overrides --prune-embeddings)")
|
"--prune-embeddings",
|
||||||
|
action="store_true",
|
||||||
|
default=True,
|
||||||
|
help="Prune embedding storage (write NULL storage marker)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--keep-embeddings",
|
||||||
|
action="store_true",
|
||||||
|
help="Keep embedding storage (overrides --prune-embeddings)",
|
||||||
|
)
|
||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
@@ -534,10 +728,12 @@ if __name__ == "__main__":
|
|||||||
sys.exit(1)
|
sys.exit(1)
|
||||||
|
|
||||||
if os.path.abspath(args.input_index_file) == os.path.abspath(args.output_csr_graph_file):
|
if os.path.abspath(args.input_index_file) == os.path.abspath(args.output_csr_graph_file):
|
||||||
print(f"Error: Input and output filenames cannot be the same.", file=sys.stderr)
|
print("Error: Input and output filenames cannot be the same.", file=sys.stderr)
|
||||||
sys.exit(1)
|
sys.exit(1)
|
||||||
|
|
||||||
prune_embeddings = args.prune_embeddings and not args.keep_embeddings
|
prune_embeddings = args.prune_embeddings and not args.keep_embeddings
|
||||||
success = convert_hnsw_graph_to_csr(args.input_index_file, args.output_csr_graph_file, prune_embeddings)
|
success = convert_hnsw_graph_to_csr(
|
||||||
|
args.input_index_file, args.output_csr_graph_file, prune_embeddings
|
||||||
|
)
|
||||||
if not success:
|
if not success:
|
||||||
sys.exit(1)
|
sys.exit(1)
|
||||||
@@ -1,145 +1,40 @@
|
|||||||
import numpy as np
|
import logging
|
||||||
import os
|
import os
|
||||||
import json
|
import shutil
|
||||||
import struct
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import Dict, Any
|
|
||||||
import contextlib
|
|
||||||
import threading
|
|
||||||
import time
|
import time
|
||||||
import atexit
|
from pathlib import Path
|
||||||
import socket
|
from typing import Any, Literal, Optional
|
||||||
import subprocess
|
|
||||||
import sys
|
import numpy as np
|
||||||
|
from leann.interface import (
|
||||||
|
LeannBackendBuilderInterface,
|
||||||
|
LeannBackendFactoryInterface,
|
||||||
|
LeannBackendSearcherInterface,
|
||||||
|
)
|
||||||
|
from leann.registry import register_backend
|
||||||
|
from leann.searcher_base import BaseSearcher
|
||||||
|
|
||||||
from .convert_to_csr import convert_hnsw_graph_to_csr
|
from .convert_to_csr import convert_hnsw_graph_to_csr
|
||||||
|
from .prune_index import prune_embeddings_preserve_graph_inplace
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
from leann.registry import register_backend
|
|
||||||
from leann.interface import (
|
|
||||||
LeannBackendFactoryInterface,
|
|
||||||
LeannBackendBuilderInterface,
|
|
||||||
LeannBackendSearcherInterface
|
|
||||||
)
|
|
||||||
|
|
||||||
def get_metric_map():
|
def get_metric_map():
|
||||||
from . import faiss
|
from . import faiss # type: ignore
|
||||||
|
|
||||||
return {
|
return {
|
||||||
"mips": faiss.METRIC_INNER_PRODUCT,
|
"mips": faiss.METRIC_INNER_PRODUCT,
|
||||||
"l2": faiss.METRIC_L2,
|
"l2": faiss.METRIC_L2,
|
||||||
"cosine": faiss.METRIC_INNER_PRODUCT,
|
"cosine": faiss.METRIC_INNER_PRODUCT,
|
||||||
}
|
}
|
||||||
|
|
||||||
def _check_port(port: int) -> bool:
|
|
||||||
"""Check if a port is in use"""
|
|
||||||
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
|
||||||
return s.connect_ex(('localhost', port)) == 0
|
|
||||||
|
|
||||||
class HNSWEmbeddingServerManager:
|
def normalize_l2(data: np.ndarray) -> np.ndarray:
|
||||||
"""
|
norms = np.linalg.norm(data, axis=1, keepdims=True)
|
||||||
HNSW-specific embedding server manager that handles the lifecycle of the embedding server process.
|
norms[norms == 0] = 1 # Avoid division by zero
|
||||||
Mirrors the DiskANN EmbeddingServerManager architecture.
|
return data / norms
|
||||||
"""
|
|
||||||
def __init__(self):
|
|
||||||
self.server_process = None
|
|
||||||
self.server_port = None
|
|
||||||
atexit.register(self.stop_server)
|
|
||||||
|
|
||||||
def start_server(self, port=5556, model_name="sentence-transformers/all-mpnet-base-v2", passages_file=None, distance_metric="mips"):
|
|
||||||
"""
|
|
||||||
Start the HNSW embedding server process.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
port: ZMQ port for the server
|
|
||||||
model_name: Name of the embedding model to use
|
|
||||||
passages_file: Optional path to passages JSON file
|
|
||||||
distance_metric: The distance metric to use
|
|
||||||
"""
|
|
||||||
if self.server_process and self.server_process.poll() is None:
|
|
||||||
print(f"INFO: Reusing existing HNSW server process for this session (PID {self.server_process.pid})")
|
|
||||||
return True
|
|
||||||
|
|
||||||
# Check if port is already in use
|
|
||||||
if _check_port(port):
|
|
||||||
print(f"WARNING: Port {port} is already in use. Assuming an external HNSW server is running and connecting to it.")
|
|
||||||
return True
|
|
||||||
|
|
||||||
print(f"INFO: Starting session-level HNSW embedding server as a background process...")
|
|
||||||
|
|
||||||
try:
|
|
||||||
command = [
|
|
||||||
sys.executable,
|
|
||||||
"-m", "leann_backend_hnsw.hnsw_embedding_server",
|
|
||||||
"--zmq-port", str(port),
|
|
||||||
"--model-name", model_name,
|
|
||||||
"--distance-metric", distance_metric
|
|
||||||
]
|
|
||||||
|
|
||||||
if passages_file:
|
|
||||||
command.extend(["--passages-file", str(passages_file)])
|
|
||||||
|
|
||||||
project_root = Path(__file__).parent.parent.parent.parent
|
|
||||||
print(f"INFO: Running HNSW command from project root: {project_root}")
|
|
||||||
|
|
||||||
self.server_process = subprocess.Popen(
|
|
||||||
command,
|
|
||||||
cwd=project_root,
|
|
||||||
stdout=subprocess.PIPE,
|
|
||||||
stderr=subprocess.PIPE,
|
|
||||||
text=True,
|
|
||||||
encoding='utf-8'
|
|
||||||
)
|
|
||||||
self.server_port = port
|
|
||||||
print(f"INFO: HNSW server process started with PID: {self.server_process.pid}")
|
|
||||||
|
|
||||||
max_wait, wait_interval = 30, 0.5
|
|
||||||
for _ in range(int(max_wait / wait_interval)):
|
|
||||||
if _check_port(port):
|
|
||||||
print(f"✅ HNSW embedding server is up and ready for this session.")
|
|
||||||
log_thread = threading.Thread(target=self._log_monitor, daemon=True)
|
|
||||||
log_thread.start()
|
|
||||||
return True
|
|
||||||
if self.server_process.poll() is not None:
|
|
||||||
print("❌ ERROR: HNSW server process terminated unexpectedly during startup.")
|
|
||||||
self._log_monitor()
|
|
||||||
return False
|
|
||||||
time.sleep(wait_interval)
|
|
||||||
|
|
||||||
print(f"❌ ERROR: HNSW server process failed to start listening within {max_wait} seconds.")
|
|
||||||
self.stop_server()
|
|
||||||
return False
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
print(f"❌ ERROR: Failed to start HNSW embedding server process: {e}")
|
|
||||||
return False
|
|
||||||
|
|
||||||
def _log_monitor(self):
|
|
||||||
"""Monitor server logs"""
|
|
||||||
if not self.server_process:
|
|
||||||
return
|
|
||||||
try:
|
|
||||||
if self.server_process.stdout:
|
|
||||||
for line in iter(self.server_process.stdout.readline, ''):
|
|
||||||
print(f"[HNSWEmbeddingServer LOG]: {line.strip()}")
|
|
||||||
self.server_process.stdout.close()
|
|
||||||
if self.server_process.stderr:
|
|
||||||
for line in iter(self.server_process.stderr.readline, ''):
|
|
||||||
print(f"[HNSWEmbeddingServer ERROR]: {line.strip()}")
|
|
||||||
self.server_process.stderr.close()
|
|
||||||
except Exception as e:
|
|
||||||
print(f"HNSW Log monitor error: {e}")
|
|
||||||
|
|
||||||
def stop_server(self):
|
|
||||||
"""Stop the HNSW embedding server process"""
|
|
||||||
if self.server_process and self.server_process.poll() is None:
|
|
||||||
print(f"INFO: Terminating HNSW session server process (PID: {self.server_process.pid})...")
|
|
||||||
self.server_process.terminate()
|
|
||||||
try:
|
|
||||||
self.server_process.wait(timeout=5)
|
|
||||||
print("INFO: HNSW server process terminated.")
|
|
||||||
except subprocess.TimeoutExpired:
|
|
||||||
print("WARNING: HNSW server process did not terminate gracefully, killing it.")
|
|
||||||
self.server_process.kill()
|
|
||||||
self.server_process = None
|
|
||||||
|
|
||||||
@register_backend("hnsw")
|
@register_backend("hnsw")
|
||||||
class HNSWBackend(LeannBackendFactoryInterface):
|
class HNSWBackend(LeannBackendFactoryInterface):
|
||||||
@@ -149,372 +44,277 @@ class HNSWBackend(LeannBackendFactoryInterface):
|
|||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def searcher(index_path: str, **kwargs) -> LeannBackendSearcherInterface:
|
def searcher(index_path: str, **kwargs) -> LeannBackendSearcherInterface:
|
||||||
path = Path(index_path)
|
|
||||||
meta_path = path.parent / f"{path.name}.meta.json"
|
|
||||||
if not meta_path.exists():
|
|
||||||
raise FileNotFoundError(f"Leann metadata file not found at {meta_path}. Cannot infer vector dimension for searcher.")
|
|
||||||
|
|
||||||
with open(meta_path, 'r') as f:
|
|
||||||
meta = json.load(f)
|
|
||||||
|
|
||||||
dimensions = meta.get("dimensions")
|
|
||||||
if not dimensions:
|
|
||||||
raise ValueError("Dimensions not found in Leann metadata. Please rebuild the index with a newer version of Leann.")
|
|
||||||
|
|
||||||
kwargs['dimensions'] = dimensions
|
|
||||||
return HNSWSearcher(index_path, **kwargs)
|
return HNSWSearcher(index_path, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
class HNSWBuilder(LeannBackendBuilderInterface):
|
class HNSWBuilder(LeannBackendBuilderInterface):
|
||||||
def __init__(self, **kwargs):
|
def __init__(self, **kwargs):
|
||||||
self.build_params = kwargs.copy()
|
self.build_params = kwargs.copy()
|
||||||
|
|
||||||
# --- Configuration defaults with standardized names ---
|
|
||||||
self.is_compact = self.build_params.setdefault("is_compact", True)
|
self.is_compact = self.build_params.setdefault("is_compact", True)
|
||||||
self.is_recompute = self.build_params.setdefault("is_recompute", True)
|
self.is_recompute = self.build_params.setdefault("is_recompute", True)
|
||||||
|
|
||||||
# --- Additional Options ---
|
|
||||||
self.is_skip_neighbors = self.build_params.setdefault("is_skip_neighbors", False)
|
|
||||||
self.disk_cache_ratio = self.build_params.setdefault("disk_cache_ratio", 0.0)
|
|
||||||
self.external_storage_path = self.build_params.get("external_storage_path", None)
|
|
||||||
|
|
||||||
# --- Standard HNSW parameters ---
|
|
||||||
self.M = self.build_params.setdefault("M", 32)
|
self.M = self.build_params.setdefault("M", 32)
|
||||||
self.efConstruction = self.build_params.setdefault("efConstruction", 200)
|
self.efConstruction = self.build_params.setdefault("efConstruction", 200)
|
||||||
self.distance_metric = self.build_params.setdefault("distance_metric", "mips")
|
self.distance_metric = self.build_params.setdefault("distance_metric", "mips")
|
||||||
self.dimensions = self.build_params.get("dimensions")
|
self.dimensions = self.build_params.get("dimensions")
|
||||||
|
if not self.is_recompute and self.is_compact:
|
||||||
|
# Auto-correct: non-recompute requires non-compact storage for HNSW
|
||||||
|
logger.warning(
|
||||||
|
"is_recompute=False requires non-compact HNSW. Forcing is_compact=False."
|
||||||
|
)
|
||||||
|
self.is_compact = False
|
||||||
|
self.build_params["is_compact"] = False
|
||||||
|
|
||||||
if self.is_skip_neighbors and not self.is_compact:
|
def build(self, data: np.ndarray, ids: list[str], index_path: str, **kwargs):
|
||||||
raise ValueError("is_skip_neighbors can only be used with is_compact=True")
|
from . import faiss # type: ignore
|
||||||
|
|
||||||
if self.is_recompute and not self.is_compact:
|
|
||||||
raise ValueError("is_recompute requires is_compact=True for efficiency")
|
|
||||||
|
|
||||||
def build(self, data: np.ndarray, index_path: str, **kwargs):
|
|
||||||
"""Build HNSW index using FAISS"""
|
|
||||||
from . import faiss
|
|
||||||
|
|
||||||
path = Path(index_path)
|
path = Path(index_path)
|
||||||
index_dir = path.parent
|
index_dir = path.parent
|
||||||
index_prefix = path.stem
|
index_prefix = path.stem
|
||||||
|
|
||||||
index_dir.mkdir(parents=True, exist_ok=True)
|
index_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
if data.dtype != np.float32:
|
if data.dtype != np.float32:
|
||||||
|
logger.warning(f"Converting data to float32, shape: {data.shape}")
|
||||||
data = data.astype(np.float32)
|
data = data.astype(np.float32)
|
||||||
if not data.flags['C_CONTIGUOUS']:
|
|
||||||
data = np.ascontiguousarray(data)
|
|
||||||
|
|
||||||
metric_str = self.distance_metric.lower()
|
metric_enum = get_metric_map().get(self.distance_metric.lower())
|
||||||
metric_enum = get_metric_map().get(metric_str)
|
|
||||||
if metric_enum is None:
|
if metric_enum is None:
|
||||||
raise ValueError(f"Unsupported distance_metric '{metric_str}'.")
|
raise ValueError(f"Unsupported distance_metric '{self.distance_metric}'.")
|
||||||
|
|
||||||
M = self.M
|
dim = self.dimensions or data.shape[1]
|
||||||
efConstruction = self.efConstruction
|
index = faiss.IndexHNSWFlat(dim, self.M, metric_enum)
|
||||||
dim = self.dimensions
|
index.hnsw.efConstruction = self.efConstruction
|
||||||
if not dim:
|
|
||||||
dim = data.shape[1]
|
|
||||||
|
|
||||||
print(f"INFO: Building HNSW index for {data.shape[0]} vectors with metric {metric_enum}...")
|
if self.distance_metric.lower() == "cosine":
|
||||||
|
data = normalize_l2(data)
|
||||||
try:
|
|
||||||
index = faiss.IndexHNSWFlat(dim, M, metric_enum)
|
|
||||||
index.hnsw.efConstruction = efConstruction
|
|
||||||
|
|
||||||
if metric_str == "cosine":
|
|
||||||
faiss.normalize_L2(data)
|
|
||||||
|
|
||||||
index.add(data.shape[0], faiss.swig_ptr(data))
|
index.add(data.shape[0], faiss.swig_ptr(data))
|
||||||
|
|
||||||
index_file = index_dir / f"{index_prefix}.index"
|
index_file = index_dir / f"{index_prefix}.index"
|
||||||
faiss.write_index(index, str(index_file))
|
faiss.write_index(index, str(index_file))
|
||||||
|
|
||||||
print(f"✅ HNSW index built successfully at '{index_file}'")
|
if self.is_recompute:
|
||||||
|
|
||||||
if self.is_compact:
|
if self.is_compact:
|
||||||
self._convert_to_csr(index_file)
|
self._convert_to_csr(index_file)
|
||||||
|
else:
|
||||||
if self.is_recompute:
|
# Non-compact format: prune only embeddings, keep original graph
|
||||||
self._generate_passages_file(index_dir, index_prefix, **kwargs)
|
ok = prune_embeddings_preserve_graph_inplace(str(index_file))
|
||||||
|
if not ok:
|
||||||
except Exception as e:
|
raise RuntimeError(
|
||||||
print(f"💥 ERROR: HNSW index build failed. Exception: {e}")
|
"Pruning embeddings while preserving graph failed for non-compact index"
|
||||||
raise
|
)
|
||||||
|
|
||||||
def _convert_to_csr(self, index_file: Path):
|
def _convert_to_csr(self, index_file: Path):
|
||||||
"""Convert built index to CSR format"""
|
"""Convert built index to CSR format"""
|
||||||
try:
|
|
||||||
mode_str = "CSR-pruned" if self.is_recompute else "CSR-standard"
|
mode_str = "CSR-pruned" if self.is_recompute else "CSR-standard"
|
||||||
print(f"INFO: Converting HNSW index to {mode_str} format...")
|
logger.info(f"INFO: Converting HNSW index to {mode_str} format...")
|
||||||
|
|
||||||
csr_temp_file = index_file.with_suffix(".csr.tmp")
|
csr_temp_file = index_file.with_suffix(".csr.tmp")
|
||||||
|
|
||||||
success = convert_hnsw_graph_to_csr(
|
success = convert_hnsw_graph_to_csr(
|
||||||
str(index_file),
|
str(index_file), str(csr_temp_file), prune_embeddings=self.is_recompute
|
||||||
str(csr_temp_file),
|
|
||||||
prune_embeddings=self.is_recompute
|
|
||||||
)
|
)
|
||||||
|
|
||||||
if success:
|
if success:
|
||||||
print("✅ CSR conversion successful.")
|
logger.info("✅ CSR conversion successful.")
|
||||||
import shutil
|
# index_file_old = index_file.with_suffix(".old")
|
||||||
|
# shutil.move(str(index_file), str(index_file_old))
|
||||||
shutil.move(str(csr_temp_file), str(index_file))
|
shutil.move(str(csr_temp_file), str(index_file))
|
||||||
print(f"INFO: Replaced original index with {mode_str} version at '{index_file}'")
|
logger.info(f"INFO: Replaced original index with {mode_str} version at '{index_file}'")
|
||||||
else:
|
else:
|
||||||
# Clean up and fail fast
|
# Clean up and fail fast
|
||||||
if csr_temp_file.exists():
|
if csr_temp_file.exists():
|
||||||
os.remove(csr_temp_file)
|
os.remove(csr_temp_file)
|
||||||
raise RuntimeError("CSR conversion failed - cannot proceed with compact format")
|
raise RuntimeError("CSR conversion failed - cannot proceed with compact format")
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
print(f"💥 ERROR: CSR conversion failed. Exception: {e}")
|
|
||||||
raise
|
|
||||||
|
|
||||||
def _generate_passages_file(self, index_dir: Path, index_prefix: str, **kwargs):
|
|
||||||
"""Generate passages file for recompute mode"""
|
|
||||||
try:
|
|
||||||
chunks = kwargs.get('chunks', [])
|
|
||||||
if not chunks:
|
|
||||||
print("INFO: No chunks data provided, skipping passages file generation")
|
|
||||||
return
|
|
||||||
|
|
||||||
# Generate node_id to text mapping
|
|
||||||
passages_data = {}
|
|
||||||
for node_id, chunk in enumerate(chunks):
|
|
||||||
passages_data[str(node_id)] = chunk["text"]
|
|
||||||
|
|
||||||
# Save passages file
|
|
||||||
passages_file = index_dir / f"{index_prefix}.passages.json"
|
|
||||||
with open(passages_file, 'w', encoding='utf-8') as f:
|
|
||||||
json.dump(passages_data, f, ensure_ascii=False, indent=2)
|
|
||||||
|
|
||||||
print(f"✅ Generated passages file for recompute mode at '{passages_file}' ({len(passages_data)} passages)")
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
print(f"💥 ERROR: Failed to generate passages file. Exception: {e}")
|
|
||||||
# Don't raise - this is not critical for index building
|
|
||||||
pass
|
|
||||||
|
|
||||||
class HNSWSearcher(LeannBackendSearcherInterface):
|
|
||||||
def _get_index_storage_status(self, index_file: Path) -> tuple[bool, bool]:
|
|
||||||
"""
|
|
||||||
Robustly determines the index's storage status by parsing the file.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
A tuple (is_compact, is_pruned).
|
|
||||||
"""
|
|
||||||
if not index_file.exists():
|
|
||||||
return False, False
|
|
||||||
|
|
||||||
with open(index_file, 'rb') as f:
|
|
||||||
try:
|
|
||||||
def read_struct(fmt):
|
|
||||||
size = struct.calcsize(fmt)
|
|
||||||
data = f.read(size)
|
|
||||||
if len(data) != size:
|
|
||||||
raise EOFError(f"File ended unexpectedly reading struct fmt '{fmt}'.")
|
|
||||||
return struct.unpack(fmt, data)[0]
|
|
||||||
|
|
||||||
def skip_vector(element_size):
|
|
||||||
count = read_struct('<Q')
|
|
||||||
f.seek(count * element_size, 1)
|
|
||||||
|
|
||||||
# 1. Read up to the compact flag
|
|
||||||
read_struct('<I'); read_struct('<i'); read_struct('<q');
|
|
||||||
read_struct('<q'); read_struct('<q'); read_struct('<?')
|
|
||||||
metric_type = read_struct('<i')
|
|
||||||
if metric_type > 1: read_struct('<f')
|
|
||||||
skip_vector(8); skip_vector(4); skip_vector(4)
|
|
||||||
|
|
||||||
# 2. Check if there's a compact flag byte
|
|
||||||
# Try to read the compact flag, but handle both old and new formats
|
|
||||||
pos_before_compact = f.tell()
|
|
||||||
try:
|
|
||||||
is_compact = read_struct('<?')
|
|
||||||
print(f"INFO: Detected is_compact flag as: {is_compact}")
|
|
||||||
except (EOFError, struct.error):
|
|
||||||
# Old format without compact flag - assume non-compact
|
|
||||||
f.seek(pos_before_compact)
|
|
||||||
is_compact = False
|
|
||||||
print(f"INFO: No compact flag found, assuming is_compact=False")
|
|
||||||
|
|
||||||
# 3. Read storage FourCC to determine if pruned
|
|
||||||
is_pruned = False
|
|
||||||
try:
|
|
||||||
if is_compact:
|
|
||||||
# For compact, we need to skip pointers and scalars to get to the storage FourCC
|
|
||||||
skip_vector(8) # level_ptr
|
|
||||||
skip_vector(8) # node_offsets
|
|
||||||
read_struct('<i'); read_struct('<i'); read_struct('<i');
|
|
||||||
read_struct('<i'); read_struct('<i')
|
|
||||||
storage_fourcc = read_struct('<I')
|
|
||||||
else:
|
|
||||||
# For non-compact, we need to read the flag probe, then skip offsets and neighbors
|
|
||||||
pos_before_probe = f.tell()
|
|
||||||
flag_byte = f.read(1)
|
|
||||||
if not (flag_byte and flag_byte == b'\x00'):
|
|
||||||
f.seek(pos_before_probe)
|
|
||||||
skip_vector(8); skip_vector(4) # offsets, neighbors
|
|
||||||
read_struct('<i'); read_struct('<i'); read_struct('<i');
|
|
||||||
read_struct('<i'); read_struct('<i')
|
|
||||||
# Now we are at the storage. The entire rest is storage blob.
|
|
||||||
storage_fourcc = struct.unpack('<I', f.read(4))[0]
|
|
||||||
|
|
||||||
NULL_INDEX_FOURCC = int.from_bytes(b'null', 'little')
|
|
||||||
if storage_fourcc == NULL_INDEX_FOURCC:
|
|
||||||
is_pruned = True
|
|
||||||
except (EOFError, struct.error):
|
|
||||||
# Cannot determine pruning status, assume not pruned
|
|
||||||
pass
|
|
||||||
|
|
||||||
print(f"INFO: Detected is_pruned as: {is_pruned}")
|
|
||||||
return is_compact, is_pruned
|
|
||||||
|
|
||||||
except (EOFError, struct.error) as e:
|
|
||||||
print(f"WARNING: Could not parse index file to detect format: {e}. Assuming standard, not pruned.")
|
|
||||||
return False, False
|
|
||||||
|
|
||||||
|
class HNSWSearcher(BaseSearcher):
|
||||||
def __init__(self, index_path: str, **kwargs):
|
def __init__(self, index_path: str, **kwargs):
|
||||||
from . import faiss
|
super().__init__(
|
||||||
path = Path(index_path)
|
index_path,
|
||||||
index_dir = path.parent
|
backend_module_name="leann_backend_hnsw.hnsw_embedding_server",
|
||||||
index_prefix = path.stem
|
**kwargs,
|
||||||
|
)
|
||||||
|
from . import faiss # type: ignore
|
||||||
|
|
||||||
# Store configuration and paths for later use
|
self.distance_metric = (
|
||||||
self.config = kwargs.copy()
|
self.meta.get("backend_kwargs", {}).get("distance_metric", "mips").lower()
|
||||||
self.config["index_path"] = index_path
|
)
|
||||||
self.index_dir = index_dir
|
metric_enum = get_metric_map().get(self.distance_metric)
|
||||||
self.index_prefix = index_prefix
|
|
||||||
|
|
||||||
metric_str = self.config.get("distance_metric", "mips").lower()
|
|
||||||
metric_enum = get_metric_map().get(metric_str)
|
|
||||||
if metric_enum is None:
|
if metric_enum is None:
|
||||||
raise ValueError(f"Unsupported distance_metric '{metric_str}'.")
|
raise ValueError(f"Unsupported distance_metric '{self.distance_metric}'.")
|
||||||
|
|
||||||
dimensions = self.config.get("dimensions")
|
self.is_compact, self.is_pruned = (
|
||||||
if not dimensions:
|
self.meta.get("is_compact", True),
|
||||||
raise ValueError("Vector dimension not provided to HNSWSearcher.")
|
self.meta.get("is_pruned", True),
|
||||||
|
)
|
||||||
|
|
||||||
index_file = index_dir / f"{index_prefix}.index"
|
index_file = self.index_dir / f"{self.index_path.stem}.index"
|
||||||
if not index_file.exists():
|
if not index_file.exists():
|
||||||
raise FileNotFoundError(f"HNSW index file not found at {index_file}")
|
raise FileNotFoundError(f"HNSW index file not found at {index_file}")
|
||||||
|
|
||||||
self.is_compact, self.is_pruned = self._get_index_storage_status(index_file)
|
|
||||||
|
|
||||||
# Validate configuration constraints
|
|
||||||
if not self.is_compact and self.config.get("is_skip_neighbors", False):
|
|
||||||
raise ValueError("is_skip_neighbors can only be used with is_compact=True")
|
|
||||||
|
|
||||||
if self.config.get("is_recompute", False) and self.config.get("external_storage_path"):
|
|
||||||
raise ValueError("Cannot use both is_recompute and external_storage_path simultaneously")
|
|
||||||
|
|
||||||
hnsw_config = faiss.HNSWIndexConfig()
|
hnsw_config = faiss.HNSWIndexConfig()
|
||||||
hnsw_config.is_compact = self.is_compact
|
hnsw_config.is_compact = self.is_compact
|
||||||
|
hnsw_config.is_recompute = (
|
||||||
|
self.is_pruned
|
||||||
|
) # In C++ code, it's called is_recompute, but it's only for loading IIUC.
|
||||||
|
|
||||||
# Apply additional configuration options with strict validation
|
# If pruned (recompute mode), explicitly skip storage to avoid reading
|
||||||
hnsw_config.is_skip_neighbors = self.config.get("is_skip_neighbors", False)
|
# the pruned section. Still allow MMAP for graph.
|
||||||
hnsw_config.is_recompute = self.is_pruned or self.config.get("is_recompute", False)
|
io_flags = faiss.IO_FLAG_MMAP
|
||||||
hnsw_config.disk_cache_ratio = self.config.get("disk_cache_ratio", 0.0)
|
|
||||||
hnsw_config.external_storage_path = self.config.get("external_storage_path")
|
|
||||||
hnsw_config.zmq_port = self.config.get("zmq_port", 5557)
|
|
||||||
|
|
||||||
if self.is_pruned and not hnsw_config.is_recompute:
|
|
||||||
raise RuntimeError("Index is pruned (embeddings removed) but recompute is disabled. This is impossible - recompute must be enabled for pruned indices.")
|
|
||||||
|
|
||||||
print(f"INFO: Loading index with is_compact={self.is_compact}, is_pruned={self.is_pruned}")
|
|
||||||
print(f"INFO: Config - skip_neighbors={hnsw_config.is_skip_neighbors}, recompute={hnsw_config.is_recompute}")
|
|
||||||
|
|
||||||
self._index = faiss.read_index(str(index_file), faiss.IO_FLAG_MMAP, hnsw_config)
|
|
||||||
|
|
||||||
if self.is_compact:
|
|
||||||
print("✅ Compact CSR format HNSW index loaded successfully.")
|
|
||||||
else:
|
|
||||||
print("✅ Standard HNSW index loaded successfully.")
|
|
||||||
|
|
||||||
self.metric_str = metric_str
|
|
||||||
self.embedding_server_manager = HNSWEmbeddingServerManager()
|
|
||||||
|
|
||||||
def _get_index_file(self, index_dir: Path, index_prefix: str) -> Path:
|
|
||||||
"""Get the appropriate index file path based on format"""
|
|
||||||
# We always use the same filename now, format is detected internally
|
|
||||||
return index_dir / f"{index_prefix}.index"
|
|
||||||
|
|
||||||
def search(self, query: np.ndarray, top_k: int, **kwargs) -> Dict[str, Any]:
|
|
||||||
"""Search using HNSW index with optional recompute functionality"""
|
|
||||||
from . import faiss
|
|
||||||
# Merge config with search-time kwargs
|
|
||||||
search_config = self.config.copy()
|
|
||||||
search_config.update(kwargs)
|
|
||||||
|
|
||||||
ef = search_config.get("ef", 200) # Size of the dynamic candidate list for search
|
|
||||||
|
|
||||||
# Recompute parameters
|
|
||||||
zmq_port = search_config.get("zmq_port", 5557)
|
|
||||||
embedding_model = search_config.get("embedding_model", "sentence-transformers/all-mpnet-base-v2")
|
|
||||||
passages_file = search_config.get("passages_file", None)
|
|
||||||
|
|
||||||
# For recompute mode, try to find the passages file automatically
|
|
||||||
if self.is_pruned and not passages_file:
|
|
||||||
potential_passages_file = self.index_dir / f"{self.index_prefix}.passages.json"
|
|
||||||
print(f"DEBUG: Checking for passages file at: {potential_passages_file}")
|
|
||||||
if potential_passages_file.exists():
|
|
||||||
passages_file = str(potential_passages_file)
|
|
||||||
print(f"INFO: Found passages file for recompute mode: {passages_file}")
|
|
||||||
else:
|
|
||||||
print(f"WARNING: No passages file found for recompute mode at {potential_passages_file}")
|
|
||||||
|
|
||||||
# If index is pruned (embeddings removed), we MUST start embedding server for recompute
|
|
||||||
if self.is_pruned:
|
if self.is_pruned:
|
||||||
print(f"INFO: Index is pruned - starting embedding server for recompute")
|
io_flags |= faiss.IO_FLAG_SKIP_STORAGE
|
||||||
|
|
||||||
# CRITICAL: Check passages file exists - fail fast if not
|
self._index = faiss.read_index(str(index_file), io_flags, hnsw_config)
|
||||||
if not passages_file:
|
|
||||||
raise RuntimeError(f"FATAL: Index is pruned but no passages file found. Cannot proceed with recompute mode.")
|
|
||||||
|
|
||||||
# Check if server is already running first
|
def search(
|
||||||
if _check_port(zmq_port):
|
self,
|
||||||
print(f"INFO: Embedding server already running on port {zmq_port}")
|
query: np.ndarray,
|
||||||
else:
|
top_k: int,
|
||||||
if not self.embedding_server_manager.start_server(zmq_port, embedding_model, passages_file, self.metric_str):
|
zmq_port: Optional[int] = None,
|
||||||
raise RuntimeError(f"Failed to start HNSW embedding server on port {zmq_port}")
|
complexity: int = 64,
|
||||||
|
beam_width: int = 1,
|
||||||
|
prune_ratio: float = 0.0,
|
||||||
|
recompute_embeddings: bool = True,
|
||||||
|
pruning_strategy: Literal["global", "local", "proportional"] = "global",
|
||||||
|
batch_size: int = 0,
|
||||||
|
**kwargs,
|
||||||
|
) -> dict[str, Any]:
|
||||||
|
"""
|
||||||
|
Search for nearest neighbors using HNSW index.
|
||||||
|
|
||||||
# Give server extra time to fully initialize
|
Args:
|
||||||
print(f"INFO: Waiting for embedding server to fully initialize...")
|
query: Query vectors (B, D) where B is batch size, D is dimension
|
||||||
time.sleep(3)
|
top_k: Number of nearest neighbors to return
|
||||||
|
complexity: Search complexity/efSearch, higher = more accurate but slower
|
||||||
|
beam_width: Number of parallel search paths/beam_size
|
||||||
|
prune_ratio: Ratio of neighbors to prune via PQ (0.0-1.0)
|
||||||
|
recompute_embeddings: Whether to fetch fresh embeddings from server
|
||||||
|
pruning_strategy: PQ candidate selection strategy:
|
||||||
|
- "global": Use global PQ queue size for selection (default)
|
||||||
|
- "local": Local pruning, sort and select best candidates
|
||||||
|
- "proportional": Base selection on new neighbor count ratio
|
||||||
|
zmq_port: ZMQ port for embedding server communication. Must be provided if recompute_embeddings is True.
|
||||||
|
batch_size: Neighbor processing batch size, 0=disabled (HNSW-specific)
|
||||||
|
**kwargs: Additional HNSW-specific parameters (for legacy compatibility)
|
||||||
|
|
||||||
# Final verification
|
Returns:
|
||||||
if not _check_port(zmq_port):
|
Dict with 'labels' (list of lists) and 'distances' (ndarray)
|
||||||
raise RuntimeError(f"Embedding server failed to start listening on port {zmq_port}")
|
"""
|
||||||
else:
|
from . import faiss # type: ignore
|
||||||
print(f"INFO: Index has embeddings stored - no recompute needed")
|
|
||||||
|
if not recompute_embeddings and self.is_pruned:
|
||||||
|
raise RuntimeError(
|
||||||
|
"Recompute is required for pruned/compact HNSW index. "
|
||||||
|
"Re-run search with --recompute, or rebuild with --no-recompute and --no-compact."
|
||||||
|
)
|
||||||
|
if recompute_embeddings:
|
||||||
|
if zmq_port is None:
|
||||||
|
raise ValueError("zmq_port must be provided if recompute_embeddings is True")
|
||||||
|
|
||||||
if query.dtype != np.float32:
|
if query.dtype != np.float32:
|
||||||
query = query.astype(np.float32)
|
query = query.astype(np.float32)
|
||||||
if query.ndim == 1:
|
if self.distance_metric == "cosine":
|
||||||
query = np.expand_dims(query, axis=0)
|
query = normalize_l2(query)
|
||||||
|
|
||||||
# Normalize query if using cosine similarity
|
params = faiss.SearchParametersHNSW()
|
||||||
if self.metric_str == "cosine":
|
if zmq_port is not None:
|
||||||
faiss.normalize_L2(query)
|
params.zmq_port = zmq_port # C++ code won't use this if recompute_embeddings is False
|
||||||
|
params.efSearch = complexity
|
||||||
|
params.beam_size = beam_width
|
||||||
|
|
||||||
|
# For OpenAI embeddings with cosine distance, disable relative distance check
|
||||||
|
# This prevents early termination when all scores are in a narrow range
|
||||||
|
embedding_model = self.meta.get("embedding_model", "").lower()
|
||||||
|
if self.distance_metric == "cosine" and any(
|
||||||
|
openai_model in embedding_model for openai_model in ["text-embedding", "openai"]
|
||||||
|
):
|
||||||
|
params.check_relative_distance = False
|
||||||
|
else:
|
||||||
|
params.check_relative_distance = True
|
||||||
|
|
||||||
|
# PQ pruning: direct mapping to HNSW's pq_pruning_ratio
|
||||||
|
params.pq_pruning_ratio = prune_ratio
|
||||||
|
|
||||||
|
# Map pruning_strategy to HNSW parameters
|
||||||
|
if pruning_strategy == "local":
|
||||||
|
params.local_prune = True
|
||||||
|
params.send_neigh_times_ratio = 0.0
|
||||||
|
elif pruning_strategy == "proportional":
|
||||||
|
params.local_prune = False
|
||||||
|
params.send_neigh_times_ratio = 1.0 # Any value > 1e-6 triggers proportional mode
|
||||||
|
else: # "global"
|
||||||
|
params.local_prune = False
|
||||||
|
params.send_neigh_times_ratio = 0.0
|
||||||
|
|
||||||
|
# HNSW-specific batch processing parameter
|
||||||
|
params.batch_size = batch_size
|
||||||
|
|
||||||
|
batch_size_query = query.shape[0]
|
||||||
|
distances = np.empty((batch_size_query, top_k), dtype=np.float32)
|
||||||
|
labels = np.empty((batch_size_query, top_k), dtype=np.int64)
|
||||||
|
|
||||||
|
search_time = time.time()
|
||||||
|
self._index.search(
|
||||||
|
query.shape[0],
|
||||||
|
faiss.swig_ptr(query),
|
||||||
|
top_k,
|
||||||
|
faiss.swig_ptr(distances),
|
||||||
|
faiss.swig_ptr(labels),
|
||||||
|
params,
|
||||||
|
)
|
||||||
|
search_time = time.time() - search_time
|
||||||
|
logger.info(f" Search time in HNSWSearcher.search() backend: {search_time} seconds")
|
||||||
|
string_labels = [[str(int_label) for int_label in batch_labels] for batch_labels in labels]
|
||||||
|
|
||||||
|
return {"labels": string_labels, "distances": distances}
|
||||||
|
|
||||||
|
|
||||||
|
# ---------- Helper API for incremental add (Python-level) ----------
|
||||||
|
def add_vectors(
|
||||||
|
index_file_path: str,
|
||||||
|
embeddings: np.ndarray,
|
||||||
|
*,
|
||||||
|
ef_construction: Optional[int] = None,
|
||||||
|
recompute: bool = False,
|
||||||
|
) -> None:
|
||||||
|
"""Append vectors to an existing non-compact HNSW index.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
index_file_path: Path to the HNSW .index file
|
||||||
|
embeddings: float32 numpy array (N, D)
|
||||||
|
ef_construction: Optional override for efConstruction during insertion
|
||||||
|
recompute: Reserved for future use to control insertion-time recompute behaviors
|
||||||
|
"""
|
||||||
|
from . import faiss # type: ignore
|
||||||
|
|
||||||
|
if embeddings.dtype != np.float32:
|
||||||
|
embeddings = embeddings.astype(np.float32)
|
||||||
|
if not embeddings.flags.c_contiguous:
|
||||||
|
embeddings = np.ascontiguousarray(embeddings, dtype=np.float32)
|
||||||
|
|
||||||
|
# Load index normally to ensure storage is present; toggle is_recompute on the object
|
||||||
|
index = faiss.read_index(str(index_file_path), faiss.IO_FLAG_MMAP)
|
||||||
|
|
||||||
|
# Best-effort: explicitly set flag on the object if the binding exposes it
|
||||||
try:
|
try:
|
||||||
# Set search parameter
|
index.is_recompute = bool(recompute)
|
||||||
self._index.hnsw.efSearch = ef
|
except Exception:
|
||||||
|
pass
|
||||||
|
try:
|
||||||
|
if ef_construction is not None:
|
||||||
|
index.hnsw.efConstruction = int(ef_construction)
|
||||||
|
except Exception:
|
||||||
|
# Best-effort; ignore if backend doesn't expose setter
|
||||||
|
pass
|
||||||
|
|
||||||
# Prepare output arrays for the older FAISS SWIG API
|
# For non-compact HNSW, calling add directly is sufficient. When is_recompute is set
|
||||||
batch_size = query.shape[0]
|
# (via config or attribute), FAISS will run the insertion/search path accordingly.
|
||||||
distances = np.empty((batch_size, top_k), dtype=np.float32)
|
# To strictly follow per-point insert semantics in recompute mode, add one-by-one.
|
||||||
labels = np.empty((batch_size, top_k), dtype=np.int64)
|
if recompute:
|
||||||
|
# Insert row by row
|
||||||
# Use standard FAISS search - recompute is handled internally by FAISS
|
n = embeddings.shape[0]
|
||||||
self._index.search(query.shape[0], faiss.swig_ptr(query), top_k, faiss.swig_ptr(distances), faiss.swig_ptr(labels))
|
for i in range(n):
|
||||||
|
row = embeddings[i : i + 1]
|
||||||
return {"labels": labels, "distances": distances}
|
index.add(1, faiss.swig_ptr(row))
|
||||||
|
else:
|
||||||
except Exception as e:
|
index.add(embeddings.shape[0], faiss.swig_ptr(embeddings))
|
||||||
print(f"💥 ERROR: HNSW search failed. Exception: {e}")
|
faiss.write_index(index, str(index_file_path))
|
||||||
raise
|
|
||||||
|
|
||||||
def __del__(self):
|
|
||||||
if hasattr(self, 'embedding_server_manager'):
|
|
||||||
self.embedding_server_manager.stop_server()
|
|
||||||
|
|||||||
@@ -1,596 +1,428 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
"""
|
"""
|
||||||
HNSW-specific embedding server with removed config.py dependencies
|
HNSW-specific embedding server
|
||||||
Based on DiskANN embedding server architecture
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import pickle
|
|
||||||
import argparse
|
import argparse
|
||||||
|
import json
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
import threading
|
import threading
|
||||||
import time
|
import time
|
||||||
from transformers import AutoTokenizer, AutoModel
|
|
||||||
import os
|
|
||||||
from contextlib import contextmanager
|
|
||||||
import zmq
|
|
||||||
import numpy as np
|
|
||||||
import msgpack
|
|
||||||
import json
|
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Dict, Any, Optional, Union
|
from typing import Optional
|
||||||
|
|
||||||
RED = "\033[91m"
|
import msgpack
|
||||||
RESET = "\033[0m"
|
import numpy as np
|
||||||
|
import zmq
|
||||||
|
|
||||||
def is_similarity_metric():
|
# Set up logging based on environment variable
|
||||||
"""
|
LOG_LEVEL = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
|
||||||
Check if the metric type is similarity-based (like inner product).
|
logger = logging.getLogger(__name__)
|
||||||
0 = L2 (distance metric), 1 = Inner Product (similarity metric)
|
|
||||||
"""
|
|
||||||
return True # 1 is METRIC_INNER_PRODUCT in FAISS
|
|
||||||
|
|
||||||
# Function for E5-style average pooling
|
# Force set logger level (don't rely on basicConfig in subprocess)
|
||||||
import torch
|
log_level = getattr(logging, LOG_LEVEL, logging.WARNING)
|
||||||
from torch import Tensor
|
logger.setLevel(log_level)
|
||||||
import torch.nn.functional as F
|
|
||||||
|
|
||||||
def e5_average_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
|
# Ensure we have a handler if none exists
|
||||||
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
|
if not logger.handlers:
|
||||||
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
|
handler = logging.StreamHandler()
|
||||||
|
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
|
||||||
|
handler.setFormatter(formatter)
|
||||||
|
logger.addHandler(handler)
|
||||||
|
logger.propagate = False
|
||||||
|
|
||||||
class SimplePassageLoader:
|
|
||||||
"""
|
|
||||||
Simple passage loader that replaces config.py dependencies
|
|
||||||
"""
|
|
||||||
def __init__(self, passages_data: Optional[Dict[str, Any]] = None):
|
|
||||||
self.passages_data = passages_data or {}
|
|
||||||
|
|
||||||
def __getitem__(self, passage_id: Union[str, int]) -> Dict[str, str]:
|
|
||||||
"""Get passage by ID"""
|
|
||||||
str_id = str(passage_id)
|
|
||||||
if str_id in self.passages_data:
|
|
||||||
return {"text": self.passages_data[str_id]}
|
|
||||||
else:
|
|
||||||
# Return empty text for missing passages
|
|
||||||
return {"text": ""}
|
|
||||||
|
|
||||||
def __len__(self) -> int:
|
|
||||||
return len(self.passages_data)
|
|
||||||
|
|
||||||
def load_passages_from_file(passages_file: str) -> SimplePassageLoader:
|
|
||||||
"""
|
|
||||||
Load passages from a JSON file
|
|
||||||
Expected format: {"passage_id": "passage_text", ...}
|
|
||||||
"""
|
|
||||||
if not os.path.exists(passages_file):
|
|
||||||
print(f"Warning: Passages file {passages_file} not found. Using empty loader.")
|
|
||||||
return SimplePassageLoader()
|
|
||||||
|
|
||||||
try:
|
|
||||||
with open(passages_file, 'r', encoding='utf-8') as f:
|
|
||||||
passages_data = json.load(f)
|
|
||||||
print(f"Loaded {len(passages_data)} passages from {passages_file}")
|
|
||||||
return SimplePassageLoader(passages_data)
|
|
||||||
except Exception as e:
|
|
||||||
print(f"Error loading passages from {passages_file}: {e}")
|
|
||||||
return SimplePassageLoader()
|
|
||||||
|
|
||||||
def create_hnsw_embedding_server(
|
def create_hnsw_embedding_server(
|
||||||
passages_file: Optional[str] = None,
|
passages_file: Optional[str] = None,
|
||||||
passages_data: Optional[Dict[str, str]] = None,
|
|
||||||
embeddings_file: Optional[str] = None,
|
|
||||||
use_fp16: bool = True,
|
|
||||||
use_int8: bool = False,
|
|
||||||
use_cuda_graphs: bool = False,
|
|
||||||
zmq_port: int = 5555,
|
zmq_port: int = 5555,
|
||||||
max_batch_size: int = 128,
|
|
||||||
model_name: str = "sentence-transformers/all-mpnet-base-v2",
|
model_name: str = "sentence-transformers/all-mpnet-base-v2",
|
||||||
custom_max_length_param: Optional[int] = None,
|
|
||||||
distance_metric: str = "mips",
|
distance_metric: str = "mips",
|
||||||
|
embedding_mode: str = "sentence-transformers",
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
Create and start a ZMQ-based embedding server for HNSW backend.
|
Create and start a ZMQ-based embedding server for HNSW backend.
|
||||||
|
Simplified version using unified embedding computation module.
|
||||||
Args:
|
|
||||||
passages_file: Path to JSON file containing passage ID -> text mapping
|
|
||||||
passages_data: Direct passage data dict (alternative to passages_file)
|
|
||||||
embeddings_file: Path to pre-computed embeddings file (optional)
|
|
||||||
use_fp16: Whether to use FP16 precision
|
|
||||||
use_int8: Whether to use INT8 quantization
|
|
||||||
use_cuda_graphs: Whether to use CUDA graphs
|
|
||||||
zmq_port: ZMQ port to bind to
|
|
||||||
max_batch_size: Maximum batch size for processing
|
|
||||||
model_name: Transformer model name
|
|
||||||
custom_max_length_param: Custom max sequence length
|
|
||||||
distance_metric: The distance metric to use
|
|
||||||
"""
|
"""
|
||||||
print(f"Loading tokenizer for {model_name}...")
|
logger.info(f"Starting HNSW server on port {zmq_port} with model {model_name}")
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
logger.info(f"Using embedding mode: {embedding_mode}")
|
||||||
print(f"Tokenizer loaded successfully!")
|
|
||||||
|
|
||||||
# Device setup
|
# Add leann-core to path for unified embedding computation
|
||||||
mps_available = hasattr(torch.backends, 'mps') and torch.backends.mps.is_available()
|
current_dir = Path(__file__).parent
|
||||||
cuda_available = torch.cuda.is_available()
|
leann_core_path = current_dir.parent.parent / "leann-core" / "src"
|
||||||
|
sys.path.insert(0, str(leann_core_path))
|
||||||
|
|
||||||
print(f"MPS available: {mps_available}")
|
try:
|
||||||
print(f"CUDA available: {cuda_available}")
|
from leann.api import PassageManager
|
||||||
|
from leann.embedding_compute import compute_embeddings
|
||||||
|
|
||||||
if cuda_available:
|
logger.info("Successfully imported unified embedding computation module")
|
||||||
device = torch.device("cuda")
|
except ImportError as e:
|
||||||
print("Using CUDA device")
|
logger.error(f"Failed to import embedding computation module: {e}")
|
||||||
elif mps_available:
|
return
|
||||||
device = torch.device("mps")
|
finally:
|
||||||
print("Using MPS device (Apple Silicon)")
|
sys.path.pop(0)
|
||||||
else:
|
|
||||||
device = torch.device("cpu")
|
|
||||||
print("Using CPU device (no GPU acceleration available)")
|
|
||||||
|
|
||||||
# Load model to the appropriate device
|
|
||||||
print(f"Starting HNSW server on port {zmq_port} with model {model_name}")
|
|
||||||
print(f"Loading model {model_name}... (this may take a while if downloading)")
|
|
||||||
model = AutoModel.from_pretrained(model_name).to(device).eval()
|
|
||||||
print(f"Model {model_name} loaded successfully!")
|
|
||||||
|
|
||||||
# Check port availability
|
# Check port availability
|
||||||
import socket
|
import socket
|
||||||
|
|
||||||
def check_port(port):
|
def check_port(port):
|
||||||
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
||||||
return s.connect_ex(('localhost', port)) == 0
|
return s.connect_ex(("localhost", port)) == 0
|
||||||
|
|
||||||
if check_port(zmq_port):
|
if check_port(zmq_port):
|
||||||
print(f"{RED}Port {zmq_port} is already in use{RESET}")
|
logger.error(f"Port {zmq_port} is already in use")
|
||||||
return
|
return
|
||||||
|
|
||||||
# Apply model optimizations (similar to DiskANN version)
|
# Only support metadata file, fail fast for everything else
|
||||||
if use_fp16 and (cuda_available or mps_available):
|
if not passages_file or not passages_file.endswith(".meta.json"):
|
||||||
model = model.half()
|
raise ValueError("Only metadata files (.meta.json) are supported")
|
||||||
model = torch.compile(model)
|
|
||||||
print(f"Using FP16 precision with model: {model_name}")
|
|
||||||
elif use_int8:
|
|
||||||
print("- Using TorchAO for Int8 dynamic activation and Int8 weight quantization")
|
|
||||||
from torchao.quantization import quantize_, Int8DynamicActivationInt8WeightConfig
|
|
||||||
quantize_(model, Int8DynamicActivationInt8WeightConfig())
|
|
||||||
model = torch.compile(model)
|
|
||||||
model.eval()
|
|
||||||
print("- Model successfully quantized and compiled")
|
|
||||||
|
|
||||||
# Load passages
|
# Load metadata to get passage sources
|
||||||
if passages_data:
|
with open(passages_file) as f:
|
||||||
passages = SimplePassageLoader(passages_data)
|
meta = json.load(f)
|
||||||
print(f"Using provided passages data: {len(passages)} passages")
|
|
||||||
elif passages_file:
|
|
||||||
passages = load_passages_from_file(passages_file)
|
|
||||||
else:
|
|
||||||
passages = SimplePassageLoader()
|
|
||||||
print("No passages provided, using empty loader")
|
|
||||||
|
|
||||||
# Load embeddings if provided
|
# Let PassageManager handle path resolution uniformly. It supports fallback order:
|
||||||
_embeddings = None
|
# 1) path/index_path; 2) *_relative; 3) standard siblings next to meta
|
||||||
if embeddings_file and os.path.exists(embeddings_file):
|
passages = PassageManager(meta["passage_sources"], metadata_file_path=passages_file)
|
||||||
|
# Dimension from metadata for shaping responses
|
||||||
try:
|
try:
|
||||||
with open(embeddings_file, "rb") as f:
|
embedding_dim: int = int(meta.get("dimensions", 0))
|
||||||
_embeddings = pickle.load(f)
|
except Exception:
|
||||||
print(f"Loaded embeddings from {embeddings_file}")
|
embedding_dim = 0
|
||||||
|
logger.info(f"Loaded PassageManager with {len(passages)} passages from metadata")
|
||||||
|
|
||||||
|
# (legacy ZMQ thread removed; using shutdown-capable server only)
|
||||||
|
|
||||||
|
def zmq_server_thread_with_shutdown(shutdown_event):
|
||||||
|
"""ZMQ server thread that respects shutdown signal.
|
||||||
|
|
||||||
|
Creates its own REP socket bound to zmq_port and polls with timeouts
|
||||||
|
to allow graceful shutdown.
|
||||||
|
"""
|
||||||
|
logger.info("ZMQ server thread started with shutdown support")
|
||||||
|
|
||||||
|
context = zmq.Context()
|
||||||
|
rep_socket = context.socket(zmq.REP)
|
||||||
|
rep_socket.bind(f"tcp://*:{zmq_port}")
|
||||||
|
logger.info(f"HNSW ZMQ REP server listening on port {zmq_port}")
|
||||||
|
rep_socket.setsockopt(zmq.RCVTIMEO, 1000)
|
||||||
|
# Keep sends from blocking during shutdown; fail fast and drop on close
|
||||||
|
rep_socket.setsockopt(zmq.SNDTIMEO, 1000)
|
||||||
|
rep_socket.setsockopt(zmq.LINGER, 0)
|
||||||
|
|
||||||
|
# Track last request type/length for shape-correct fallbacks
|
||||||
|
last_request_type = "unknown" # 'text' | 'distance' | 'embedding' | 'unknown'
|
||||||
|
last_request_length = 0
|
||||||
|
|
||||||
|
try:
|
||||||
|
while not shutdown_event.is_set():
|
||||||
|
try:
|
||||||
|
e2e_start = time.time()
|
||||||
|
logger.debug("🔍 Waiting for ZMQ message...")
|
||||||
|
request_bytes = rep_socket.recv()
|
||||||
|
|
||||||
|
# Rest of the processing logic (same as original)
|
||||||
|
request = msgpack.unpackb(request_bytes)
|
||||||
|
|
||||||
|
if len(request) == 1 and request[0] == "__QUERY_MODEL__":
|
||||||
|
response_bytes = msgpack.packb([model_name])
|
||||||
|
rep_socket.send(response_bytes)
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Handle direct text embedding request
|
||||||
|
if (
|
||||||
|
isinstance(request, list)
|
||||||
|
and request
|
||||||
|
and all(isinstance(item, str) for item in request)
|
||||||
|
):
|
||||||
|
last_request_type = "text"
|
||||||
|
last_request_length = len(request)
|
||||||
|
embeddings = compute_embeddings(request, model_name, mode=embedding_mode)
|
||||||
|
rep_socket.send(msgpack.packb(embeddings.tolist()))
|
||||||
|
e2e_end = time.time()
|
||||||
|
logger.info(f"⏱️ Text embedding E2E time: {e2e_end - e2e_start:.6f}s")
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Handle distance calculation request: [[ids], [query_vector]]
|
||||||
|
if (
|
||||||
|
isinstance(request, list)
|
||||||
|
and len(request) == 2
|
||||||
|
and isinstance(request[0], list)
|
||||||
|
and isinstance(request[1], list)
|
||||||
|
):
|
||||||
|
node_ids = request[0]
|
||||||
|
# Handle nested [[ids]] shape defensively
|
||||||
|
if len(node_ids) == 1 and isinstance(node_ids[0], list):
|
||||||
|
node_ids = node_ids[0]
|
||||||
|
query_vector = np.array(request[1], dtype=np.float32)
|
||||||
|
last_request_type = "distance"
|
||||||
|
last_request_length = len(node_ids)
|
||||||
|
|
||||||
|
logger.debug("Distance calculation request received")
|
||||||
|
logger.debug(f" Node IDs: {node_ids}")
|
||||||
|
logger.debug(f" Query vector dim: {len(query_vector)}")
|
||||||
|
|
||||||
|
# Gather texts for found ids
|
||||||
|
texts: list[str] = []
|
||||||
|
found_indices: list[int] = []
|
||||||
|
for idx, nid in enumerate(node_ids):
|
||||||
|
try:
|
||||||
|
passage_data = passages.get_passage(str(nid))
|
||||||
|
txt = passage_data.get("text", "")
|
||||||
|
if isinstance(txt, str) and len(txt) > 0:
|
||||||
|
texts.append(txt)
|
||||||
|
found_indices.append(idx)
|
||||||
|
else:
|
||||||
|
logger.error(f"Empty text for passage ID {nid}")
|
||||||
|
except KeyError:
|
||||||
|
logger.error(f"Passage ID {nid} not found")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"Error loading embeddings: {e}")
|
logger.error(f"Exception looking up passage ID {nid}: {e}")
|
||||||
|
|
||||||
class DeviceTimer:
|
# Prepare full-length response with large sentinel values
|
||||||
"""Device event-based timer for accurate timing."""
|
large_distance = 1e9
|
||||||
def __init__(self, name="", device=device):
|
response_distances = [large_distance] * len(node_ids)
|
||||||
self.name = name
|
|
||||||
self.device = device
|
|
||||||
self.start_time = 0
|
|
||||||
self.end_time = 0
|
|
||||||
|
|
||||||
if cuda_available:
|
if texts:
|
||||||
self.start_event = torch.cuda.Event(enable_timing=True)
|
try:
|
||||||
self.end_event = torch.cuda.Event(enable_timing=True)
|
embeddings = compute_embeddings(
|
||||||
|
texts, model_name, mode=embedding_mode
|
||||||
|
)
|
||||||
|
logger.info(
|
||||||
|
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
|
||||||
|
)
|
||||||
|
if distance_metric == "l2":
|
||||||
|
partial = np.sum(
|
||||||
|
np.square(embeddings - query_vector.reshape(1, -1)), axis=1
|
||||||
|
)
|
||||||
|
else: # mips or cosine
|
||||||
|
partial = -np.dot(embeddings, query_vector)
|
||||||
|
|
||||||
|
for pos, dval in zip(found_indices, partial.flatten().tolist()):
|
||||||
|
response_distances[pos] = float(dval)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Distance computation error, using sentinels: {e}")
|
||||||
|
|
||||||
|
# Send response in expected shape [[distances]]
|
||||||
|
rep_socket.send(msgpack.packb([response_distances], use_single_float=True))
|
||||||
|
e2e_end = time.time()
|
||||||
|
logger.info(f"⏱️ Distance calculation E2E time: {e2e_end - e2e_start:.6f}s")
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Fallback: treat as embedding-by-id request
|
||||||
|
if (
|
||||||
|
isinstance(request, list)
|
||||||
|
and len(request) == 1
|
||||||
|
and isinstance(request[0], list)
|
||||||
|
):
|
||||||
|
node_ids = request[0]
|
||||||
|
elif isinstance(request, list):
|
||||||
|
node_ids = request
|
||||||
else:
|
else:
|
||||||
self.start_event = None
|
node_ids = []
|
||||||
self.end_event = None
|
last_request_type = "embedding"
|
||||||
|
last_request_length = len(node_ids)
|
||||||
|
logger.info(f"ZMQ received {len(node_ids)} node IDs for embedding fetch")
|
||||||
|
|
||||||
@contextmanager
|
# Preallocate zero-filled flat data for robustness
|
||||||
def timing(self):
|
if embedding_dim <= 0:
|
||||||
self.start()
|
dims = [0, 0]
|
||||||
yield
|
flat_data: list[float] = []
|
||||||
self.end()
|
|
||||||
|
|
||||||
def start(self):
|
|
||||||
if cuda_available:
|
|
||||||
torch.cuda.synchronize()
|
|
||||||
self.start_event.record()
|
|
||||||
else:
|
else:
|
||||||
if self.device.type == "mps":
|
dims = [len(node_ids), embedding_dim]
|
||||||
torch.mps.synchronize()
|
flat_data = [0.0] * (dims[0] * dims[1])
|
||||||
self.start_time = time.time()
|
|
||||||
|
|
||||||
def end(self):
|
# Collect texts for found ids
|
||||||
if cuda_available:
|
texts: list[str] = []
|
||||||
self.end_event.record()
|
found_indices: list[int] = []
|
||||||
torch.cuda.synchronize()
|
for idx, nid in enumerate(node_ids):
|
||||||
|
try:
|
||||||
|
passage_data = passages.get_passage(str(nid))
|
||||||
|
txt = passage_data.get("text", "")
|
||||||
|
if isinstance(txt, str) and len(txt) > 0:
|
||||||
|
texts.append(txt)
|
||||||
|
found_indices.append(idx)
|
||||||
else:
|
else:
|
||||||
if self.device.type == "mps":
|
logger.error(f"Empty text for passage ID {nid}")
|
||||||
torch.mps.synchronize()
|
except KeyError:
|
||||||
self.end_time = time.time()
|
logger.error(f"Passage with ID {nid} not found")
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Exception looking up passage ID {nid}: {e}")
|
||||||
|
|
||||||
def elapsed_time(self):
|
if texts:
|
||||||
if cuda_available:
|
try:
|
||||||
return self.start_event.elapsed_time(self.end_event) / 1000.0
|
embeddings = compute_embeddings(texts, model_name, mode=embedding_mode)
|
||||||
else:
|
logger.info(
|
||||||
return self.end_time - self.start_time
|
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
|
||||||
|
|
||||||
def print_elapsed(self):
|
|
||||||
return # Disabled for now
|
|
||||||
|
|
||||||
def process_batch(texts_batch, ids_batch, missing_ids):
|
|
||||||
"""Process a batch of texts and return embeddings"""
|
|
||||||
_is_e5_model = "e5" in model_name.lower()
|
|
||||||
_is_bge_model = "bge" in model_name.lower()
|
|
||||||
batch_size = len(texts_batch)
|
|
||||||
|
|
||||||
# E5 model preprocessing
|
|
||||||
if _is_e5_model:
|
|
||||||
processed_texts_batch = [f"passage: {text}" for text in texts_batch]
|
|
||||||
else:
|
|
||||||
processed_texts_batch = texts_batch
|
|
||||||
|
|
||||||
# Set max length
|
|
||||||
if _is_e5_model:
|
|
||||||
current_max_length = custom_max_length_param if custom_max_length_param is not None else 512
|
|
||||||
else:
|
|
||||||
current_max_length = custom_max_length_param if custom_max_length_param is not None else 256
|
|
||||||
|
|
||||||
tokenize_timer = DeviceTimer("tokenization (batch)", device)
|
|
||||||
to_device_timer = DeviceTimer("transfer to device (batch)", device)
|
|
||||||
embed_timer = DeviceTimer("embedding (batch)", device)
|
|
||||||
pool_timer = DeviceTimer("pooling (batch)", device)
|
|
||||||
norm_timer = DeviceTimer("normalization (batch)", device)
|
|
||||||
|
|
||||||
with tokenize_timer.timing():
|
|
||||||
encoded_batch = tokenizer(
|
|
||||||
processed_texts_batch,
|
|
||||||
padding="max_length",
|
|
||||||
truncation=True,
|
|
||||||
max_length=current_max_length,
|
|
||||||
return_tensors="pt",
|
|
||||||
return_token_type_ids=False,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
seq_length = encoded_batch["input_ids"].size(1)
|
if np.isnan(embeddings).any() or np.isinf(embeddings).any():
|
||||||
|
logger.error(
|
||||||
with to_device_timer.timing():
|
f"NaN or Inf detected in embeddings! Requested IDs: {node_ids[:5]}..."
|
||||||
enc = {k: v.to(device) for k, v in encoded_batch.items()}
|
)
|
||||||
|
dims = [0, embedding_dim]
|
||||||
with torch.no_grad():
|
flat_data = []
|
||||||
with embed_timer.timing():
|
|
||||||
out = model(enc["input_ids"], enc["attention_mask"])
|
|
||||||
|
|
||||||
with pool_timer.timing():
|
|
||||||
if _is_bge_model:
|
|
||||||
pooled_embeddings = out.last_hidden_state[:, 0]
|
|
||||||
elif not hasattr(out, 'last_hidden_state'):
|
|
||||||
if isinstance(out, torch.Tensor) and len(out.shape) == 2:
|
|
||||||
pooled_embeddings = out
|
|
||||||
else:
|
else:
|
||||||
print(f"{RED}ERROR: Cannot determine how to pool. Output shape: {out.shape if isinstance(out, torch.Tensor) else 'N/A'}{RESET}")
|
emb_f32 = np.ascontiguousarray(embeddings, dtype=np.float32)
|
||||||
hidden_dim = getattr(model.config, 'hidden_size', 384 if _is_e5_model else 768)
|
flat = emb_f32.flatten().tolist()
|
||||||
pooled_embeddings = torch.zeros((batch_size, hidden_dim), device=device, dtype=enc["input_ids"].dtype if hasattr(enc["input_ids"], "dtype") else torch.float32)
|
for j, pos in enumerate(found_indices):
|
||||||
elif _is_e5_model:
|
start = pos * embedding_dim
|
||||||
pooled_embeddings = e5_average_pool(out.last_hidden_state, enc['attention_mask'])
|
end = start + embedding_dim
|
||||||
else:
|
if end <= len(flat_data):
|
||||||
hidden_states = out.last_hidden_state
|
flat_data[start:end] = flat[
|
||||||
mask_expanded = enc["attention_mask"].unsqueeze(-1).expand(hidden_states.size()).float()
|
j * embedding_dim : (j + 1) * embedding_dim
|
||||||
sum_embeddings = torch.sum(hidden_states * mask_expanded, 1)
|
|
||||||
sum_mask = torch.clamp(mask_expanded.sum(1), min=1e-9)
|
|
||||||
pooled_embeddings = sum_embeddings / sum_mask
|
|
||||||
|
|
||||||
final_embeddings = pooled_embeddings
|
|
||||||
if _is_e5_model or _is_bge_model:
|
|
||||||
with norm_timer.timing():
|
|
||||||
final_embeddings = F.normalize(pooled_embeddings, p=2, dim=1)
|
|
||||||
|
|
||||||
if torch.isnan(final_embeddings).any() or torch.isinf(final_embeddings).any():
|
|
||||||
print(f"{RED}!!! In process_batch: NaN or Inf detected in final_embeddings! "
|
|
||||||
f"Model: {model_name}, E5: {_is_e5_model}. IDs (sample): {ids_batch[:5]}...{RESET}")
|
|
||||||
dim_size = final_embeddings.shape[-1]
|
|
||||||
error_output = torch.zeros((batch_size, dim_size), device='cpu', dtype=torch.float32).numpy()
|
|
||||||
print(f"{RED}Returning zero embeddings of shape ({batch_size}, {dim_size}) due to NaN/Inf.{RESET}")
|
|
||||||
return error_output
|
|
||||||
|
|
||||||
return final_embeddings.cpu().numpy()
|
|
||||||
|
|
||||||
def client_warmup(zmq_port):
|
|
||||||
"""Perform client-side warmup"""
|
|
||||||
time.sleep(2)
|
|
||||||
print(f"Performing client-side warmup with model {model_name}...")
|
|
||||||
sample_ids = ["1", "2", "3", "4", "5"]
|
|
||||||
|
|
||||||
try:
|
|
||||||
context = zmq.Context()
|
|
||||||
socket = context.socket(zmq.REQ)
|
|
||||||
socket.connect(f"tcp://localhost:{zmq_port}")
|
|
||||||
socket.setsockopt(zmq.RCVTIMEO, 30000)
|
|
||||||
socket.setsockopt(zmq.SNDTIMEO, 30000)
|
|
||||||
|
|
||||||
try:
|
|
||||||
ids_to_send = [int(x) for x in sample_ids]
|
|
||||||
except ValueError:
|
|
||||||
ids_to_send = []
|
|
||||||
|
|
||||||
if not ids_to_send:
|
|
||||||
print("Skipping warmup send.")
|
|
||||||
return
|
|
||||||
|
|
||||||
request_payload = [ids_to_send]
|
|
||||||
request_bytes = msgpack.packb(request_payload)
|
|
||||||
|
|
||||||
for i in range(3):
|
|
||||||
print(f"Sending warmup request {i+1}/3 via ZMQ (MessagePack)...")
|
|
||||||
socket.send(request_bytes)
|
|
||||||
response_bytes = socket.recv()
|
|
||||||
|
|
||||||
response_payload = msgpack.unpackb(response_bytes)
|
|
||||||
dimensions = response_payload[0]
|
|
||||||
embeddings_count = dimensions[0] if dimensions and len(dimensions) > 0 else 0
|
|
||||||
print(f"Warmup request {i+1}/3 successful, received {embeddings_count} embeddings")
|
|
||||||
time.sleep(0.1)
|
|
||||||
|
|
||||||
print("Client-side MessagePack ZMQ warmup complete")
|
|
||||||
socket.close()
|
|
||||||
context.term()
|
|
||||||
except Exception as e:
|
|
||||||
print(f"Error during MessagePack ZMQ warmup: {e}")
|
|
||||||
|
|
||||||
def zmq_server_thread():
|
|
||||||
"""ZMQ server thread"""
|
|
||||||
context = zmq.Context()
|
|
||||||
socket = context.socket(zmq.REP)
|
|
||||||
socket.bind(f"tcp://*:{zmq_port}")
|
|
||||||
print(f"HNSW ZMQ server listening on port {zmq_port}")
|
|
||||||
|
|
||||||
socket.setsockopt(zmq.RCVTIMEO, 300000)
|
|
||||||
socket.setsockopt(zmq.SNDTIMEO, 300000)
|
|
||||||
|
|
||||||
while True:
|
|
||||||
try:
|
|
||||||
message_bytes = socket.recv()
|
|
||||||
print(f"Received ZMQ request of size {len(message_bytes)} bytes")
|
|
||||||
|
|
||||||
e2e_start = time.time()
|
|
||||||
lookup_timer = DeviceTimer("text lookup", device)
|
|
||||||
|
|
||||||
try:
|
|
||||||
request_payload = msgpack.unpackb(message_bytes)
|
|
||||||
|
|
||||||
# Handle distance calculation requests
|
|
||||||
if isinstance(request_payload, list) and len(request_payload) == 2 and isinstance(request_payload[0], list) and isinstance(request_payload[1], list):
|
|
||||||
node_ids = request_payload[0]
|
|
||||||
query_vector = np.array(request_payload[1], dtype=np.float32)
|
|
||||||
|
|
||||||
print(f"Request for distance calculation: {len(node_ids)} nodes, query vector dim: {len(query_vector)}")
|
|
||||||
|
|
||||||
# Get embeddings for node IDs
|
|
||||||
texts = []
|
|
||||||
missing_ids = []
|
|
||||||
with lookup_timer.timing():
|
|
||||||
for nid in node_ids:
|
|
||||||
try:
|
|
||||||
txtinfo = passages[nid]
|
|
||||||
if txtinfo is None or txtinfo["text"] == "":
|
|
||||||
raise RuntimeError(f"FATAL: Passage with ID {nid} not found - failing fast")
|
|
||||||
else:
|
|
||||||
txt = txtinfo["text"]
|
|
||||||
except (KeyError, IndexError):
|
|
||||||
raise RuntimeError(f"FATAL: Passage with ID {nid} not found - failing fast")
|
|
||||||
texts.append(txt)
|
|
||||||
lookup_timer.print_elapsed()
|
|
||||||
|
|
||||||
# Process embeddings in chunks if needed
|
|
||||||
all_node_embeddings = []
|
|
||||||
total_size = len(texts)
|
|
||||||
|
|
||||||
if total_size > max_batch_size:
|
|
||||||
for i in range(0, total_size, max_batch_size):
|
|
||||||
end_idx = min(i + max_batch_size, total_size)
|
|
||||||
chunk_texts = texts[i:end_idx]
|
|
||||||
chunk_ids = node_ids[i:end_idx]
|
|
||||||
|
|
||||||
embeddings_chunk = process_batch(chunk_texts, chunk_ids, missing_ids)
|
|
||||||
all_node_embeddings.append(embeddings_chunk)
|
|
||||||
|
|
||||||
if cuda_available:
|
|
||||||
torch.cuda.empty_cache()
|
|
||||||
elif device.type == "mps":
|
|
||||||
torch.mps.empty_cache()
|
|
||||||
|
|
||||||
node_embeddings = np.vstack(all_node_embeddings)
|
|
||||||
else:
|
|
||||||
node_embeddings = process_batch(texts, node_ids, missing_ids)
|
|
||||||
|
|
||||||
# Calculate distances
|
|
||||||
query_tensor = torch.tensor(query_vector, device=device).float()
|
|
||||||
node_embeddings_tensor = torch.tensor(node_embeddings, device=device).float()
|
|
||||||
|
|
||||||
calc_timer = DeviceTimer("distance calculation", device)
|
|
||||||
with calc_timer.timing():
|
|
||||||
with torch.no_grad():
|
|
||||||
if distance_metric == "l2":
|
|
||||||
node_embeddings_np = node_embeddings_tensor.cpu().numpy().astype(np.float32)
|
|
||||||
query_np = query_tensor.cpu().numpy().astype(np.float32)
|
|
||||||
distances = np.sum(np.square(node_embeddings_np - query_np.reshape(1, -1)), axis=1)
|
|
||||||
else: # mips or cosine
|
|
||||||
node_embeddings_np = node_embeddings_tensor.cpu().numpy()
|
|
||||||
query_np = query_tensor.cpu().numpy()
|
|
||||||
distances = -np.dot(node_embeddings_np, query_np)
|
|
||||||
calc_timer.print_elapsed()
|
|
||||||
|
|
||||||
try:
|
|
||||||
response_payload = distances.flatten().tolist()
|
|
||||||
response_bytes = msgpack.packb([response_payload], use_single_float=True)
|
|
||||||
print(f"Sending distance response with {len(distances)} distances")
|
|
||||||
except Exception as pack_error:
|
|
||||||
print(f"Error packing MessagePack distance response: {pack_error}")
|
|
||||||
response_bytes = msgpack.packb([[]])
|
|
||||||
|
|
||||||
socket.send(response_bytes)
|
|
||||||
|
|
||||||
if device.type == "cuda":
|
|
||||||
torch.cuda.synchronize()
|
|
||||||
elif device.type == "mps":
|
|
||||||
torch.mps.synchronize()
|
|
||||||
e2e_end = time.time()
|
|
||||||
print(f"Distance calculation E2E time: {e2e_end - e2e_start:.6f} seconds")
|
|
||||||
continue
|
|
||||||
|
|
||||||
# Standard embedding request
|
|
||||||
if not isinstance(request_payload, list) or len(request_payload) != 1 or not isinstance(request_payload[0], list):
|
|
||||||
print(f"Error: Invalid MessagePack request format. Expected [[ids...]], got: {type(request_payload)}")
|
|
||||||
socket.send(msgpack.packb([[], []]))
|
|
||||||
continue
|
|
||||||
|
|
||||||
node_ids = request_payload[0]
|
|
||||||
print(f"Request for {len(node_ids)} node embeddings")
|
|
||||||
|
|
||||||
except Exception as unpack_error:
|
|
||||||
print(f"Error unpacking MessagePack request: {unpack_error}")
|
|
||||||
socket.send(msgpack.packb([[], []]))
|
|
||||||
continue
|
|
||||||
|
|
||||||
# Look up texts by node IDs
|
|
||||||
texts = []
|
|
||||||
missing_ids = []
|
|
||||||
with lookup_timer.timing():
|
|
||||||
for nid in node_ids:
|
|
||||||
try:
|
|
||||||
txtinfo = passages[nid]
|
|
||||||
if txtinfo is None or txtinfo["text"] == "":
|
|
||||||
raise RuntimeError(f"FATAL: Passage with ID {nid} not found - failing fast")
|
|
||||||
else:
|
|
||||||
txt = txtinfo["text"]
|
|
||||||
except (KeyError, IndexError):
|
|
||||||
raise RuntimeError(f"FATAL: Passage with ID {nid} not found - failing fast")
|
|
||||||
texts.append(txt)
|
|
||||||
lookup_timer.print_elapsed()
|
|
||||||
|
|
||||||
if missing_ids:
|
|
||||||
print(f"Missing passages for IDs: {missing_ids}")
|
|
||||||
|
|
||||||
# Process in chunks
|
|
||||||
total_size = len(texts)
|
|
||||||
print(f"Total batch size: {total_size}, max_batch_size: {max_batch_size}")
|
|
||||||
|
|
||||||
all_embeddings = []
|
|
||||||
|
|
||||||
if total_size > max_batch_size:
|
|
||||||
print(f"Splitting batch of size {total_size} into chunks of {max_batch_size}")
|
|
||||||
for i in range(0, total_size, max_batch_size):
|
|
||||||
end_idx = min(i + max_batch_size, total_size)
|
|
||||||
print(f"Processing chunk {i//max_batch_size + 1}/{(total_size + max_batch_size - 1)//max_batch_size}: items {i} to {end_idx-1}")
|
|
||||||
|
|
||||||
chunk_texts = texts[i:end_idx]
|
|
||||||
chunk_ids = node_ids[i:end_idx]
|
|
||||||
|
|
||||||
embeddings_chunk = process_batch(chunk_texts, chunk_ids, missing_ids)
|
|
||||||
all_embeddings.append(embeddings_chunk)
|
|
||||||
|
|
||||||
if cuda_available:
|
|
||||||
torch.cuda.empty_cache()
|
|
||||||
elif device.type == "mps":
|
|
||||||
torch.mps.empty_cache()
|
|
||||||
|
|
||||||
hidden = np.vstack(all_embeddings)
|
|
||||||
print(f"Combined embeddings shape: {hidden.shape}")
|
|
||||||
else:
|
|
||||||
hidden = process_batch(texts, node_ids, missing_ids)
|
|
||||||
|
|
||||||
# Serialization and response
|
|
||||||
ser_start = time.time()
|
|
||||||
|
|
||||||
print(f"DEBUG zmq_server_thread: Final 'hidden' array | Shape: {hidden.shape} | Dtype: {hidden.dtype} | Has NaN/Inf: {np.isnan(hidden).any() or np.isinf(hidden).any()}")
|
|
||||||
if np.isnan(hidden).any() or np.isinf(hidden).any():
|
|
||||||
print(f"{RED}!!! ERROR: NaN or Inf detected in final 'hidden' numpy array BEFORE sending! "
|
|
||||||
f"Requested IDs (sample): {node_ids[:5]}...{RESET}")
|
|
||||||
assert False
|
|
||||||
|
|
||||||
try:
|
|
||||||
hidden_contiguous_f32 = np.ascontiguousarray(hidden, dtype=np.float32)
|
|
||||||
response_payload = [
|
|
||||||
list(hidden_contiguous_f32.shape),
|
|
||||||
hidden_contiguous_f32.flatten().tolist()
|
|
||||||
]
|
]
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Embedding computation error, returning zeros: {e}")
|
||||||
|
|
||||||
|
response_payload = [dims, flat_data]
|
||||||
response_bytes = msgpack.packb(response_payload, use_single_float=True)
|
response_bytes = msgpack.packb(response_payload, use_single_float=True)
|
||||||
except Exception as pack_error:
|
|
||||||
print(f"Error packing MessagePack response: {pack_error}")
|
|
||||||
response_bytes = msgpack.packb([[], []])
|
|
||||||
|
|
||||||
socket.send(response_bytes)
|
rep_socket.send(response_bytes)
|
||||||
ser_end = time.time()
|
|
||||||
|
|
||||||
print(f"Serialize time: {ser_end - ser_start:.6f} seconds")
|
|
||||||
|
|
||||||
if device.type == "cuda":
|
|
||||||
torch.cuda.synchronize()
|
|
||||||
elif device.type == "mps":
|
|
||||||
torch.mps.synchronize()
|
|
||||||
e2e_end = time.time()
|
e2e_end = time.time()
|
||||||
print(f"ZMQ E2E time: {e2e_end - e2e_start:.6f} seconds")
|
logger.info(f"⏱️ ZMQ E2E time: {e2e_end - e2e_start:.6f}s")
|
||||||
|
|
||||||
except zmq.Again:
|
except zmq.Again:
|
||||||
print("ZMQ socket timeout, continuing to listen")
|
# Timeout - check shutdown_event and continue
|
||||||
continue
|
continue
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"Error in ZMQ server loop: {e}")
|
if not shutdown_event.is_set():
|
||||||
import traceback
|
logger.error(f"Error in ZMQ server loop: {e}")
|
||||||
traceback.print_exc()
|
# Shape-correct fallback
|
||||||
try:
|
try:
|
||||||
socket.send(msgpack.packb([[], []]))
|
if last_request_type == "distance":
|
||||||
except:
|
large_distance = 1e9
|
||||||
|
fallback_len = max(0, int(last_request_length))
|
||||||
|
safe = [[large_distance] * fallback_len]
|
||||||
|
elif last_request_type == "embedding":
|
||||||
|
bsz = max(0, int(last_request_length))
|
||||||
|
dim = max(0, int(embedding_dim))
|
||||||
|
safe = (
|
||||||
|
[[bsz, dim], [0.0] * (bsz * dim)] if dim > 0 else [[0, 0], []]
|
||||||
|
)
|
||||||
|
elif last_request_type == "text":
|
||||||
|
safe = [] # direct text embeddings expectation is a flat list
|
||||||
|
else:
|
||||||
|
safe = [[0, int(embedding_dim) if embedding_dim > 0 else 0], []]
|
||||||
|
rep_socket.send(msgpack.packb(safe, use_single_float=True))
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
logger.info("Shutdown in progress, ignoring ZMQ error")
|
||||||
|
break
|
||||||
|
finally:
|
||||||
|
try:
|
||||||
|
rep_socket.close(0)
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
try:
|
||||||
|
context.term()
|
||||||
|
except Exception:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
# Start warmup and server threads
|
logger.info("ZMQ server thread exiting gracefully")
|
||||||
if len(passages) > 0:
|
|
||||||
warmup_thread = threading.Thread(target=client_warmup, args=(zmq_port,))
|
|
||||||
warmup_thread.daemon = True
|
|
||||||
warmup_thread.start()
|
|
||||||
|
|
||||||
zmq_thread = threading.Thread(target=zmq_server_thread, daemon=True)
|
# Add shutdown coordination
|
||||||
|
shutdown_event = threading.Event()
|
||||||
|
|
||||||
|
def shutdown_zmq_server():
|
||||||
|
"""Gracefully shutdown ZMQ server."""
|
||||||
|
logger.info("Initiating graceful shutdown...")
|
||||||
|
shutdown_event.set()
|
||||||
|
|
||||||
|
if zmq_thread.is_alive():
|
||||||
|
logger.info("Waiting for ZMQ thread to finish...")
|
||||||
|
zmq_thread.join(timeout=5)
|
||||||
|
if zmq_thread.is_alive():
|
||||||
|
logger.warning("ZMQ thread did not finish in time")
|
||||||
|
|
||||||
|
# Clean up ZMQ resources
|
||||||
|
try:
|
||||||
|
# Note: socket and context are cleaned up by thread exit
|
||||||
|
logger.info("ZMQ resources cleaned up")
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"Error cleaning ZMQ resources: {e}")
|
||||||
|
|
||||||
|
# Clean up other resources
|
||||||
|
try:
|
||||||
|
import gc
|
||||||
|
|
||||||
|
gc.collect()
|
||||||
|
logger.info("Additional resources cleaned up")
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"Error cleaning additional resources: {e}")
|
||||||
|
|
||||||
|
logger.info("Graceful shutdown completed")
|
||||||
|
sys.exit(0)
|
||||||
|
|
||||||
|
# Register signal handlers within this function scope
|
||||||
|
import signal
|
||||||
|
|
||||||
|
def signal_handler(sig, frame):
|
||||||
|
logger.info(f"Received signal {sig}, shutting down gracefully...")
|
||||||
|
shutdown_zmq_server()
|
||||||
|
|
||||||
|
signal.signal(signal.SIGTERM, signal_handler)
|
||||||
|
signal.signal(signal.SIGINT, signal_handler)
|
||||||
|
|
||||||
|
# Pass shutdown_event to ZMQ thread
|
||||||
|
zmq_thread = threading.Thread(
|
||||||
|
target=lambda: zmq_server_thread_with_shutdown(shutdown_event),
|
||||||
|
daemon=False, # Not daemon - we want to wait for it
|
||||||
|
)
|
||||||
zmq_thread.start()
|
zmq_thread.start()
|
||||||
print(f"Started HNSW ZMQ server thread on port {zmq_port}")
|
logger.info(f"Started HNSW ZMQ server thread on port {zmq_port}")
|
||||||
|
|
||||||
# Keep the main thread alive
|
# Keep the main thread alive
|
||||||
try:
|
try:
|
||||||
while True:
|
while not shutdown_event.is_set():
|
||||||
time.sleep(1)
|
time.sleep(0.1) # Check shutdown more frequently
|
||||||
except KeyboardInterrupt:
|
except KeyboardInterrupt:
|
||||||
print("HNSW Server shutting down...")
|
logger.info("HNSW Server shutting down...")
|
||||||
|
shutdown_zmq_server()
|
||||||
return
|
return
|
||||||
|
|
||||||
|
# If we reach here, shutdown was triggered by signal
|
||||||
|
logger.info("Main loop exited, process should be shutting down")
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
import sys
|
||||||
|
|
||||||
|
# Signal handlers are now registered within create_hnsw_embedding_server
|
||||||
|
|
||||||
parser = argparse.ArgumentParser(description="HNSW Embedding service")
|
parser = argparse.ArgumentParser(description="HNSW Embedding service")
|
||||||
parser.add_argument("--zmq-port", type=int, default=5555, help="ZMQ port to run on")
|
parser.add_argument("--zmq-port", type=int, default=5555, help="ZMQ port to run on")
|
||||||
parser.add_argument("--passages-file", type=str, help="JSON file containing passage ID to text mapping")
|
parser.add_argument(
|
||||||
parser.add_argument("--embeddings-file", type=str, help="Pickle file containing pre-computed embeddings")
|
"--passages-file",
|
||||||
parser.add_argument("--use-fp16", action="store_true", default=False)
|
type=str,
|
||||||
parser.add_argument("--use-int8", action="store_true", default=False)
|
help="JSON file containing passage ID to text mapping",
|
||||||
parser.add_argument("--use-cuda-graphs", action="store_true", default=False)
|
)
|
||||||
parser.add_argument("--max-batch-size", type=int, default=128, help="Maximum batch size before splitting")
|
parser.add_argument(
|
||||||
parser.add_argument("--model-name", type=str, default="sentence-transformers/all-mpnet-base-v2",
|
"--model-name",
|
||||||
help="Embedding model name")
|
type=str,
|
||||||
parser.add_argument("--custom-max-length", type=int, default=None, help="Override model's default max sequence length")
|
default="sentence-transformers/all-mpnet-base-v2",
|
||||||
parser.add_argument("--distance-metric", type=str, default="mips", help="Distance metric to use")
|
help="Embedding model name",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--distance-metric", type=str, default="mips", help="Distance metric to use"
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--embedding-mode",
|
||||||
|
type=str,
|
||||||
|
default="sentence-transformers",
|
||||||
|
choices=["sentence-transformers", "openai", "mlx", "ollama"],
|
||||||
|
help="Embedding backend mode",
|
||||||
|
)
|
||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
# Create and start the HNSW embedding server
|
# Create and start the HNSW embedding server
|
||||||
create_hnsw_embedding_server(
|
create_hnsw_embedding_server(
|
||||||
passages_file=args.passages_file,
|
passages_file=args.passages_file,
|
||||||
embeddings_file=args.embeddings_file,
|
|
||||||
use_fp16=args.use_fp16,
|
|
||||||
use_int8=args.use_int8,
|
|
||||||
use_cuda_graphs=args.use_cuda_graphs,
|
|
||||||
zmq_port=args.zmq_port,
|
zmq_port=args.zmq_port,
|
||||||
max_batch_size=args.max_batch_size,
|
|
||||||
model_name=args.model_name,
|
model_name=args.model_name,
|
||||||
custom_max_length_param=args.custom_max_length,
|
|
||||||
distance_metric=args.distance_metric,
|
distance_metric=args.distance_metric,
|
||||||
|
embedding_mode=args.embedding_mode,
|
||||||
)
|
)
|
||||||
149
packages/leann-backend-hnsw/leann_backend_hnsw/prune_index.py
Normal file
@@ -0,0 +1,149 @@
|
|||||||
|
import os
|
||||||
|
import struct
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
from .convert_to_csr import (
|
||||||
|
EXPECTED_HNSW_FOURCCS,
|
||||||
|
NULL_INDEX_FOURCC,
|
||||||
|
read_struct,
|
||||||
|
read_vector_raw,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def _write_vector_raw(f_out, count: int, data_bytes: bytes) -> None:
|
||||||
|
"""Write a vector in the same binary layout as read_vector_raw reads: <Q count> + raw bytes."""
|
||||||
|
f_out.write(struct.pack("<Q", count))
|
||||||
|
if count > 0 and data_bytes:
|
||||||
|
f_out.write(data_bytes)
|
||||||
|
|
||||||
|
|
||||||
|
def prune_embeddings_preserve_graph(input_filename: str, output_filename: str) -> bool:
|
||||||
|
"""
|
||||||
|
Copy an original (non-compact) HNSW index file while pruning the trailing embedding storage.
|
||||||
|
Preserves the graph structure and metadata exactly; only writes a NULL storage marker instead of
|
||||||
|
the original storage fourcc and payload.
|
||||||
|
|
||||||
|
Returns True on success.
|
||||||
|
"""
|
||||||
|
print(f"Pruning embeddings from {input_filename} to {output_filename}")
|
||||||
|
print("--------------------------------")
|
||||||
|
# running in mode is-recompute=True and is-compact=False
|
||||||
|
in_path = Path(input_filename)
|
||||||
|
out_path = Path(output_filename)
|
||||||
|
|
||||||
|
try:
|
||||||
|
with open(in_path, "rb") as f_in, open(out_path, "wb") as f_out:
|
||||||
|
# Header
|
||||||
|
index_fourcc = read_struct(f_in, "<I")
|
||||||
|
if index_fourcc not in EXPECTED_HNSW_FOURCCS:
|
||||||
|
# Still proceed, but this is unexpected
|
||||||
|
pass
|
||||||
|
f_out.write(struct.pack("<I", index_fourcc))
|
||||||
|
|
||||||
|
d = read_struct(f_in, "<i")
|
||||||
|
ntotal_hdr = read_struct(f_in, "<q")
|
||||||
|
dummy1 = read_struct(f_in, "<q")
|
||||||
|
dummy2 = read_struct(f_in, "<q")
|
||||||
|
is_trained = read_struct(f_in, "?")
|
||||||
|
metric_type = read_struct(f_in, "<i")
|
||||||
|
f_out.write(struct.pack("<i", d))
|
||||||
|
f_out.write(struct.pack("<q", ntotal_hdr))
|
||||||
|
f_out.write(struct.pack("<q", dummy1))
|
||||||
|
f_out.write(struct.pack("<q", dummy2))
|
||||||
|
f_out.write(struct.pack("<?", is_trained))
|
||||||
|
f_out.write(struct.pack("<i", metric_type))
|
||||||
|
|
||||||
|
if metric_type > 1:
|
||||||
|
metric_arg = read_struct(f_in, "<f")
|
||||||
|
f_out.write(struct.pack("<f", metric_arg))
|
||||||
|
|
||||||
|
# Vectors: assign_probas (double), cum_nneighbor_per_level (int32), levels (int32)
|
||||||
|
cnt, data = read_vector_raw(f_in, "d")
|
||||||
|
_write_vector_raw(f_out, cnt, data)
|
||||||
|
|
||||||
|
cnt, data = read_vector_raw(f_in, "i")
|
||||||
|
_write_vector_raw(f_out, cnt, data)
|
||||||
|
|
||||||
|
cnt, data = read_vector_raw(f_in, "i")
|
||||||
|
_write_vector_raw(f_out, cnt, data)
|
||||||
|
|
||||||
|
# Probe potential extra alignment/flag byte present in some original formats
|
||||||
|
probe = f_in.read(1)
|
||||||
|
if probe:
|
||||||
|
if probe == b"\x00":
|
||||||
|
# Preserve this unexpected 0x00 byte
|
||||||
|
f_out.write(probe)
|
||||||
|
else:
|
||||||
|
# Likely part of the next vector; rewind
|
||||||
|
f_in.seek(-1, os.SEEK_CUR)
|
||||||
|
|
||||||
|
# Offsets (uint64) and neighbors (int32)
|
||||||
|
cnt, data = read_vector_raw(f_in, "Q")
|
||||||
|
_write_vector_raw(f_out, cnt, data)
|
||||||
|
|
||||||
|
cnt, data = read_vector_raw(f_in, "i")
|
||||||
|
_write_vector_raw(f_out, cnt, data)
|
||||||
|
|
||||||
|
# Scalar params
|
||||||
|
entry_point = read_struct(f_in, "<i")
|
||||||
|
max_level = read_struct(f_in, "<i")
|
||||||
|
ef_construction = read_struct(f_in, "<i")
|
||||||
|
ef_search = read_struct(f_in, "<i")
|
||||||
|
dummy_upper_beam = read_struct(f_in, "<i")
|
||||||
|
f_out.write(struct.pack("<i", entry_point))
|
||||||
|
f_out.write(struct.pack("<i", max_level))
|
||||||
|
f_out.write(struct.pack("<i", ef_construction))
|
||||||
|
f_out.write(struct.pack("<i", ef_search))
|
||||||
|
f_out.write(struct.pack("<i", dummy_upper_beam))
|
||||||
|
|
||||||
|
# Storage fourcc (if present) — write NULL marker and drop any remaining data
|
||||||
|
try:
|
||||||
|
read_struct(f_in, "<I")
|
||||||
|
# Regardless of original, write NULL
|
||||||
|
f_out.write(struct.pack("<I", NULL_INDEX_FOURCC))
|
||||||
|
# Discard the rest of the file (embedding payload)
|
||||||
|
# (Do not copy anything else)
|
||||||
|
except EOFError:
|
||||||
|
# No storage section; nothing else to write
|
||||||
|
pass
|
||||||
|
|
||||||
|
return True
|
||||||
|
except Exception:
|
||||||
|
# Best-effort cleanup
|
||||||
|
try:
|
||||||
|
if out_path.exists():
|
||||||
|
out_path.unlink()
|
||||||
|
except OSError:
|
||||||
|
pass
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def prune_embeddings_preserve_graph_inplace(index_file_path: str) -> bool:
|
||||||
|
"""
|
||||||
|
Convenience wrapper: write pruned file to a temporary path next to the
|
||||||
|
original, then atomically replace on success.
|
||||||
|
"""
|
||||||
|
print(f"Pruning embeddings from {index_file_path} to {index_file_path}")
|
||||||
|
print("--------------------------------")
|
||||||
|
# running in mode is-recompute=True and is-compact=False
|
||||||
|
src = Path(index_file_path)
|
||||||
|
tmp = src.with_suffix(".pruned.tmp")
|
||||||
|
ok = prune_embeddings_preserve_graph(str(src), str(tmp))
|
||||||
|
if not ok:
|
||||||
|
if tmp.exists():
|
||||||
|
try:
|
||||||
|
tmp.unlink()
|
||||||
|
except OSError:
|
||||||
|
pass
|
||||||
|
return False
|
||||||
|
try:
|
||||||
|
os.replace(str(tmp), str(src))
|
||||||
|
except Exception:
|
||||||
|
# Rollback on failure
|
||||||
|
try:
|
||||||
|
if tmp.exists():
|
||||||
|
tmp.unlink()
|
||||||
|
except OSError:
|
||||||
|
pass
|
||||||
|
return False
|
||||||
|
return True
|
||||||
@@ -1,4 +1,4 @@
|
|||||||
# 文件: packages/leann-backend-hnsw/pyproject.toml
|
# packages/leann-backend-hnsw/pyproject.toml
|
||||||
|
|
||||||
[build-system]
|
[build-system]
|
||||||
requires = ["scikit-build-core>=0.10", "numpy", "swig"]
|
requires = ["scikit-build-core>=0.10", "numpy", "swig"]
|
||||||
@@ -6,13 +6,24 @@ build-backend = "scikit_build_core.build"
|
|||||||
|
|
||||||
[project]
|
[project]
|
||||||
name = "leann-backend-hnsw"
|
name = "leann-backend-hnsw"
|
||||||
version = "0.1.0"
|
version = "0.3.4"
|
||||||
description = "Custom-built HNSW (Faiss) backend for the Leann toolkit."
|
description = "Custom-built HNSW (Faiss) backend for the Leann toolkit."
|
||||||
dependencies = ["leann-core==0.1.0", "numpy"]
|
dependencies = [
|
||||||
|
"leann-core==0.3.4",
|
||||||
|
"numpy",
|
||||||
|
"pyzmq>=23.0.0",
|
||||||
|
"msgpack>=1.0.0",
|
||||||
|
]
|
||||||
|
|
||||||
# 回归到最标准的 scikit-build-core 配置
|
|
||||||
[tool.scikit-build]
|
[tool.scikit-build]
|
||||||
wheel.packages = ["leann_backend_hnsw"]
|
wheel.packages = ["leann_backend_hnsw"]
|
||||||
editable.mode = "redirect"
|
editable.mode = "redirect"
|
||||||
cmake.build-type = "Debug"
|
cmake.build-type = "Release"
|
||||||
build.verbose = true
|
build.verbose = true
|
||||||
|
build.tool-args = ["-j8"]
|
||||||
|
|
||||||
|
# CMake definitions to optimize compilation and find Homebrew packages
|
||||||
|
[tool.scikit-build.cmake.define]
|
||||||
|
CMAKE_BUILD_PARALLEL_LEVEL = "8"
|
||||||
|
CMAKE_PREFIX_PATH = {env = "CMAKE_PREFIX_PATH"}
|
||||||
|
OpenMP_ROOT = {env = "OpenMP_ROOT"}
|
||||||
|
|||||||
1
packages/leann-backend-hnsw/third_party/cppzmq
vendored
Submodule
1
packages/leann-backend-hnsw/third_party/libzmq
vendored
Submodule
1
packages/leann-backend-hnsw/third_party/msgpack-c
vendored
Submodule
@@ -4,15 +4,49 @@ build-backend = "setuptools.build_meta"
|
|||||||
|
|
||||||
[project]
|
[project]
|
||||||
name = "leann-core"
|
name = "leann-core"
|
||||||
version = "0.1.0"
|
version = "0.3.4"
|
||||||
description = "Core API and plugin system for Leann."
|
description = "Core API and plugin system for LEANN"
|
||||||
readme = "README.md"
|
readme = "README.md"
|
||||||
requires-python = ">=3.9"
|
requires-python = ">=3.9"
|
||||||
license = { text = "MIT" }
|
license = { text = "MIT" }
|
||||||
|
|
||||||
|
# All required dependencies included
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"numpy>=1.20.0"
|
"numpy>=1.20.0",
|
||||||
|
"tqdm>=4.60.0",
|
||||||
|
"psutil>=5.8.0",
|
||||||
|
"pyzmq>=23.0.0",
|
||||||
|
"msgpack>=1.0.0",
|
||||||
|
"torch>=2.0.0",
|
||||||
|
"sentence-transformers>=2.2.0",
|
||||||
|
"llama-index-core>=0.12.0",
|
||||||
|
"llama-index-readers-file>=0.4.0", # Essential for document reading
|
||||||
|
"llama-index-embeddings-huggingface>=0.5.5", # For embeddings
|
||||||
|
"python-dotenv>=1.0.0",
|
||||||
|
"openai>=1.0.0",
|
||||||
|
"huggingface-hub>=0.20.0",
|
||||||
|
"transformers>=4.30.0",
|
||||||
|
"requests>=2.25.0",
|
||||||
|
"accelerate>=0.20.0",
|
||||||
|
"PyPDF2>=3.0.0",
|
||||||
|
"pymupdf>=1.23.0",
|
||||||
|
"pdfplumber>=0.10.0",
|
||||||
|
"nbconvert>=7.0.0", # For .ipynb file support
|
||||||
|
"gitignore-parser>=0.1.12", # For proper .gitignore handling
|
||||||
|
"mlx>=0.26.3; sys_platform == 'darwin' and platform_machine == 'arm64'",
|
||||||
|
"mlx-lm>=0.26.0; sys_platform == 'darwin' and platform_machine == 'arm64'",
|
||||||
]
|
]
|
||||||
|
|
||||||
|
[project.optional-dependencies]
|
||||||
|
colab = [
|
||||||
|
"torch>=2.0.0,<3.0.0", # Limit torch version to avoid conflicts
|
||||||
|
"transformers>=4.30.0,<5.0.0", # Limit transformers version
|
||||||
|
"accelerate>=0.20.0,<1.0.0", # Limit accelerate version
|
||||||
|
]
|
||||||
|
|
||||||
|
[project.scripts]
|
||||||
|
leann = "leann.cli:main"
|
||||||
|
leann_mcp = "leann.mcp:main"
|
||||||
|
|
||||||
[tool.setuptools.packages.find]
|
[tool.setuptools.packages.find]
|
||||||
where = ["src"]
|
where = ["src"]
|
||||||
@@ -1,17 +1,21 @@
|
|||||||
# This file makes the 'leann' directory a Python package.
|
# packages/leann-core/src/leann/__init__.py
|
||||||
|
import os
|
||||||
|
import platform
|
||||||
|
|
||||||
from .api import LeannBuilder, LeannSearcher, LeannChat, SearchResult
|
# Fix OpenMP threading issues on macOS ARM64
|
||||||
|
if platform.system() == "Darwin":
|
||||||
|
os.environ["OMP_NUM_THREADS"] = "1"
|
||||||
|
os.environ["MKL_NUM_THREADS"] = "1"
|
||||||
|
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
|
||||||
|
os.environ["KMP_BLOCKTIME"] = "0"
|
||||||
|
# Additional fixes for PyTorch/sentence-transformers on macOS ARM64 only in CI
|
||||||
|
if os.environ.get("CI") == "true":
|
||||||
|
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "0"
|
||||||
|
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||||
|
|
||||||
# Import backends to ensure they are registered
|
from .api import LeannBuilder, LeannChat, LeannSearcher
|
||||||
try:
|
from .registry import BACKEND_REGISTRY, autodiscover_backends
|
||||||
import leann_backend_hnsw
|
|
||||||
except ImportError:
|
|
||||||
pass
|
|
||||||
|
|
||||||
try:
|
autodiscover_backends()
|
||||||
import leann_backend_diskann
|
|
||||||
except ImportError:
|
|
||||||
pass
|
|
||||||
|
|
||||||
|
__all__ = ["BACKEND_REGISTRY", "LeannBuilder", "LeannChat", "LeannSearcher"]
|
||||||
__all__ = ['LeannBuilder', 'LeannSearcher', 'LeannChat', 'SearchResult']
|
|
||||||
|
|||||||